
Kuali Rice 2.5.7-
SNAPSHOT KRMS Guide

iii

Table of Contents
1. Kuali Rule Management System: Overview ... 1

What is a Rule Management System, in general? ... 1
What is KRMS? ... 1
What problems or functions does KRMS solve? ... 2
What problems does KRMS not address? ... 2
With which types of applications can KRMS integrate? ... 2
Can I use KRMS without building a Rice application? .. 3
When to use KRMS? .. 3

2. KRMS Concepts ... 4
Namespaces, Contexts, Agendas, Rules and Propositions ... 4

Propositions ... 5
KRMS Types ... 7
Example Rule .. 8
KRMS Terms and Concepts ... 8

3. KRMS Administration Guide .. 10
Initial Set up tasks .. 10

What do I have to install so that people can use KRMS? .. 10
What do I have to create or customize so that people can work with business contexts,
agendas, and rules? ... 10
Do I have to define permissions or approval processes so that people can create and
maintain KRMS agendas and rules? ... 19

4. The KRMS User Interface .. 22
KRMS Agenda Editor ... 22
KRMS Rule Editor ... 24

Glossary .. 26

iv

List of Figures
3.1. Term Lookup screen example ... 16
3.2. Term specification screen example ... 17
4.1. KRMS Agenda Editor ... 23
4.2. KRMS Agenda Editor with additional attributes displayed .. 24
4.3. KRMS Rules Editor .. 24
4.4. KRMS proposition and PeopleFlow Action ... 25

v

List of Tables
2.1. Non-common data elements in the proposition table ... 5
2.2. Non-common data elements in the proposition parameter table .. 7
3.1. Columns being inserted into KRMS_TYP_T .. 18
3.2. Columns being inserted into KRMS_TYP_RELN_T ... 19
3.3. Columns being inserted into KRMS_FUNC_T ... 19

1

Chapter 1. Kuali Rule Management
System: Overview

What is a Rule Management System, in
general?

Wikipedia defines a business rule management system, in general, as follows: "a software system used
to define, deploy, execute, monitor and maintain the variety and complexity of decision logic that is used
by operational systems within an organization or enterprise. This logic, also referred to as business rules,
includes policies, requirements, and conditional statements that are used to determine the tactical actions
that take place in applications and systems."

A key aspect of a rules management system is that it enables rules to be defined and maintained separately
from application code. This modularity has the potential to reduce application maintenance costs, enable
increased automation and application flexibility, and to enable business analysts and business process
experts who are not developers and who reside outside of the IT organizations in the business departments
themselves, to be more directly involved in creating and managing their rules.

A rules management system in general includes a repository of decision logic and a rules engine that can
be executed by applications in a run-time environment. Again from wikipedia: "... provides the ability
to: register, define, classify, and manage all the rules, verify consistency of rules definitions ("Gold-level
customers are eligible for free shipping when order quantity > 10" and "maximum order quantity for Silver-
level customers = 15"), define the relationships between different rules, and relate some of these rules to
IT applications that are affected or need to enforce one or more of the rules."

What is KRMS?
Kuali's Rule Management System (KRMS) supports the creation, maintenance, storage and retrieval of
business rules and agendas (ordered sets of business rules) within business contexts (e.g., for a particular
department or for a particular university-wide process). It allows applications to externalize business logic
that commonly needs customization, and empowers business analysts to modify them to reflect changes
in policy.

KRMS enables you to define a set of rules within a particular business unit or for a particular set of
applications. These business rules define logical conditions and the set of actions that result when those
conditions are met. KRMS enables you to call and use this logic from any application, without having to
re-write and manage all the rules' maintenance logic within the application.

Integration with organizational hierarchies and structures can be accomplished today using KEW for
routing and approval, and KEW also has a legacy rule system of its own that can be used to make routing
decisions. But before KRMS, managing general customizable business logic such as "if the transaction
date is in the future OR the transaction date is less than the account activation date then flag the transaction
for review" was the responsibility of the applications themselves. KRMS now offers a way to manage this
type of logic externally in a repository that allows for business analysts to change it without having to
modify application code.

Because KRMS is a general-purpose business rules management system, you can use it for many things,
for example, you can define a rule to specify that when an account is closed, a continuation account must

http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Business_rule

Kuali Rule Management
System: Overview

2

be specified. You can also define rules to manage your organizational hierarchies and internal structures.
You can define compound propositional logic, for example, "Must meet":

• P1 - 12 credits of FirstYearScience (CLU set)

AND

• P2 - Completed CALC101 with grade >= B+

AND

• p3 - Average of B+ on last 12 credits

What problems or functions does KRMS solve?

KRMS gives business applications a powerful tool to externalize logic in places where customization will
often be needed. This lowers the costs of adopting and administering the application by reducing the need
for changes to the software itself, and allows the application to more fluidly reflect the institution's desired
business processes.

There are a wide variety of actions that KRMS rules can be used to govern:

• Workflow Action rules - e.g. route an approval request

• Notification rules - e.g. send a notification to these people

• Validation rules - e.g. display this validation error message

• Questionnaire rules - e.g. administer this questionaire

• Custom-developed actions

For example, calling a KRMS set of rules (an agenda) from your application can result in routing a
document to a PeopleFlow*, which is a new feature in KEW in Rice 2.0, or to any other action you define
in KRMS.

* Essentially, it's like a mini people-based workflow that doesn't require you to specify a KEW node in
the document type for each role, group or individual who might need to approve or be notified.

What problems does KRMS not address?
Some rule engines are built upon special algorithms that allow for forward or backward chaining (one
example is Rete) that make them suitable for efficiently evaluating highly complex systems of what are
known as production rules. The default engine implementation for KRMS is not designed upon such an
algorithm, and it does not support either forward or backward chaining.

With which types of applications can KRMS
integrate?

Any Rice-based application can use KRMS.

http://en.wikipedia.org/wiki/Forward_chaining
http://en.wikipedia.org/wiki/Backward_chaining
http://en.wikipedia.org/wiki/Rete_algorithm

Kuali Rule Management
System: Overview

3

Can I use KRMS without building a Rice
application?

The project has aspirations to increase Rice's modularity, and some strides have been made, but at the time
of this writing the answer is no.

When to use KRMS?
A big question is, when should you use KRMS rules verses logic directly coded in an application or
document? This question can be answered by careful consideration of questions like these:

• How often the rule is likely to change

• How tightly coupled the rule is to the organization's unchanging policies

• The complexity of the rule

• The flexibility of the rule

• How the rule relates to other rules

4

Chapter 2. KRMS Concepts
Namespaces, Contexts, Agendas, Rules and
Propositions

Namespaces are the top level container in KRMS. They contain Contexts, KRMS Types, and all things
related to Terms. There isn't a namespace entity in the KRMS schema, they are specified via namespace
code fields on the applicable child entities.

Rules in KRMS are placed into ordered sets called Agendas. The order of the Rules in an Agenda
determines the sequencing: which rule gets evaluated first, second and so on. The Agenda also enables
you to include conditional branching logic between Rules.

In turn, Agendas are are created in Contexts, which may represent any categories of rules that are relevant
within your institution. For example, they will frequently correspond to document types, but they could
be more finely grained to encompass only a certain kind of rule that you might run, e.g. you might
have a context called "Proposal Validations". In some university environments, the following might be
relevant contexts: Awards, Proposals, IRB reviews, Course co-requisites, Course pre-requisites, Student
plan evaluations, and so on.

Each Context contains its own agendas, and each Agenda contains its own Rules. Rules aren't shared
across Agendas (though you can copy/paste, they become unique Rule instances), and Agendas aren't
shared across Contexts. There is no Context hierarchy, that is, Agendas and Rules can't be inherited across
contexts within any sort of hierarchy.

The following diagram outlines the hierarchy of entities in KRMS (note that some entities are omitted)

You'll also note that many of the entities in the above diagram are KRMS Types. In most cases (the notable
exception is Context) what that means is that you can develop and integrate custom implementations of
the engine objects associated with those entities. These include:

KRMS Concepts

5

• Agendas with custom selection and execution code

• Actions with custom execution code

• Rules with custom evaluation and Action triggering code

• Propositions with custom evaluation code

• Term Resolvers with custom value resolution code

Propositions
Rules consist of propositions, and KRMS supports the following three main types of propositions:

1. Simple Propositions - a proposition of the form lhs op rhs where lhs=left-hand side, rhs=right-hand
side, and op=operator

2. Compound Propositions - a proposition consisting of more than one simple proposition and a boolean
algebra operator (AND, OR) between each of the simple propositions

3. Custom Propositions - a proposition which can optionally be parameterized by some set of values.
Evaluation logic is implemented "by hand" and returns true or false.

The data model is designed in such a way to support each of these.

Next we'll look at each of the proposition tables in detail.

Proposition - krms_prop_t

Every proposition in the repository will have an entry in this table. Propositions are referenced by a rule or
another proposition (in the case of compound propositions). Propositions are never re-used across multiple
rules.

Here is a summary of the non-common data elements in this proposition table:

Table 2.1. Non-common data elements in the proposition table

Column Description

prop_id A generated primary key identifier for the proposition

desc_txt A plain-text description of the proposition

typ_id Defines the PropositionType for the proposition. Defined in the krms_typ_t table.

dscrm_typ_cd Discriminator type code which defines if the proposition is compound or simple. Valid values are C and S.

Proposition Parameters - krms_prop_parm_t

Each proposition can have zero or more parameters. The proposition parameter is the primary data element
used to define the proposition. These parameters will be one of the following three types:

1. Constant Values

• numbers

• strings

• dates

KRMS Concepts

6

• etc.

2. Terms

• data available in the execution environment and/or resolved by a term resolver

3. Functions

• resolve to a value

• Take a fixed number of parameters

4. Operators

• one of a set of built-in "functions"

• The full set of (currently) supported operators are as follows:

• =

• !=

• >

• <

• >=

• <=

• custom operators can be can be configured for use in specific Contexts.

To that end, the proposition parameter list should be modeled as a list in Reverse Polish Notation (RPN).
This allows for arbitrary nesting of parameters, which may have parameters of their own. However, this
requires that each function explicitly define the number of arguments that it expects. This will be specified
when the function is defined, so the proposition system can assume this is available. This requirement does
prohibit the use of functions that have a variable arity since the model currently does not have anyway to
group parameters. So this will currently be unsupported.

Examples of proposition parameter lists defined using RPN are as follows:

• [campusCode, "BL", =] equivalent to campusCode="BL"

• [totalDollarAmount, availableAmount, >] equivalent to totalDollarAmount > availableAmount

• [award, getTotalDollarAmountForAward, award, getAvailableAmountForAward, >] equivalent to
getTotalDollarAmount(award) > getAvailableAmountForAward(award)

In the cases above the following are constants:

• "BL"

The following are terms:

• campusCode

• totalDollarAmount

http://en.wikipedia.org/wiki/Reverse_Polish_notation

KRMS Concepts

7

• availableAmount

• award

The following are functions:

• getTotalDollarAmountForAward

• getAvailableAmountForAward

And the following are operators:

• =

• >

Here is a summary of the non-common data elements in this proposition parameter table:

Table 2.2. Non-common data elements in the proposition parameter table

Column Description

prop_parm_id A generated primary key identifier for the proposition parameter

prop_id The proposition which this parameter applies to

parm_val the value of the parameter

parm_typ_cd Indicates whether the parameter value represents a constant, term, or function. Valid values are C, T, F, O

seq_no Defines the order of the parameter within the larger parameter list.

KRMS Types
Many of the key concepts in KRMS are implemented by what are known as type services, and are
customizable or pluggable using the service bus and the KRMS type table. You can add custom attributes
and behavior that affects the options and execution behavior associated with a number of system
components:

• ActionTypeService

Enables custom actions that can be configured on rules.

• AgendaTypeService

Enables agendas that support custom execution behavior and have custom attributes associated with
them.

• FunctionTypeService

Defines reusable execution logic (functions) that can be utilized at the proposition level during rule
execution. Note that at present, functions are not directly supported within the rule authoring user
interface.

• RuleTypeService

Enables custom rule-level execution and action triggering behavior, as well as custom attributes at the
Rule level.

• TermResolverTypeService

KRMS Concepts

8

Enables custom resolution/reification of runtime values for Terms.

• CustomOperator

Enables richer expressions within simple propositions.

Example Rule
Previously if a newly hired employee met a set of criteria, they would need to have an eVerify check ran
in addition to the standard I-9 process. The initial requirement stated that if the original hire date of an
employee is greater that August 1, 2006, the grant is of a Government type, the grant amount is greater
than $5,000, the grant is longer than 2 months, and the employee has not previously completed an eVerify
check then their hire document needs to be routed to the special HR eVerify workgroup.

...or put another way

IF hr.hire_date > "08/01/2006) and cg.grant_type = "GOV" and
cg.grant_amount > "$5,000" and cg.grant_duration > 60 and
hr.eVerify_comp = "N" THEN ...

KRMS Terms and Concepts
• Agenda - a collection of rules in a defined plan.

KRMS agendas support conditional logic, e.g.

• rule 1: is initiator admin?

• When FALSE:

• rule 2: initiator has special permission?

• rule 3: exceeds dollar amount threshold?

• Rule - the logical expression in an Agenda. It consists of two parts, a proposition (condition or statement)
that returns a true of false value, and an action or set of actions. The entire example presented above
is a rule.

• Proposition - the logic that makes up a rule. A proposition is a single expression of logic that returns
true or false. Propositions can be compounded, created using AND, OR, or both to create more complex
logic. The entire IF statement in the example above comprises a compound propositio

• Action - the steps to perform in the event that the rule, after being evaluated against the propositions,
returns TRUE. In the example stated above this would involve routing the document to the HR eVerify
workgroup and presenting a warning on the document. Other examples of actions include:

• Route to a PeopleFlow

• Present a questionnaire

• Display a validation error

• Term - the definition of data that is evaluated in a proposition. hr.hire_date, cg.grant_type, etc. are
examples of Terms in the working example.

http://site.kuali.org/rice/2.5.7-SNAPSHOT/reference/html/KEW_Guide.html#peopleflow_ug_kew

KRMS Concepts

9

• Term Resolver - the term specification that is evaluated in a proposition. Each term (for example,
hr.hire_date, cg.grant_type, etc.) is given a specification which includes:

Namespace
Name
Data Type
Context Id
Context Namespace
Category Id
Category Namespace

This information is maintained and viewed via the Term Specification Lookup option from the Main
Menu.

• Fact - the actual data for the term being evaluated in a proposition, the data being passed in for
evaluation. In the example above, if the grant in question had an amount of $10,000, then $10,000 would
be the fact.

• Context - a collection of agendas, rules, terms, term specifications. In our example a context of
"HReVerify" would be established for easy identification of the items related to these business rules.

10

Chapter 3. KRMS Administration Guide
(work in progress - content tdb. The below preface is patterned after the KEW TRG - what will admins
need to administer for KRMS? I've put in some placeholder content-topics for a TOC skeleton.)

This guide provides information on administering a Kuali Rules Management System (KRMS) installation.
Out of the box, KRMS comes with a default setup that works well in development and test environments.
However, when moving to a production environment, this setup requires adjustments. This document
discusses basic administration as well as instructions for working with some of KRMS' administration
tools.

Initial Set up tasks
In this section we cover the types of tasks you'll need to do as a one-time setup at your institute in order
for you and others to be able to define KRMS agendas for use by applications.

What do I have to install so that people can use KRMS?

What do I have to create or customize so that people can
work with business contexts, agendas, and rules?

Below are the constructs you will need to point to or create for your institute:

• Use existing Namespaces or set up Namespaces for KRMS

• Use an existing Agenda Type service or set up an Agenda Type service for KRMS

• Use existing Types or set up Types for KRMS

• Use existing Contexts or configure new Contexts for KRMS

• Specify Terms

• Create Term Resolvers

• Create Parameterized Terms

• Create Custom Operators

Below are the instructions for doing these tasks.

Point to or Set up Namespaces

You can use existing Namespaces or set up additional Namespaces specifically for KRMS use.
Namespaces are used throughout Rice, the From the Administration tab of the Rice portal in the
Configuration section you'll see the link to the Namespace lookup, from which you can view existing or
create new namespaces.

Point to or Set up an Agenda Type service for KRMS

You can use an existing Agenda Type service or set up an Agenda Type service specifically for KRMS
(include information on how to do both of these).

KRMS Administration Guide

11

For example, below is a snippet of Spring configuration for defining an Agenda Type service. The first
bean definition configures the service implementation instance. The class being referenced implements the
AgendaTypeService interface. The second bean definition exports the service to the service bus, which is
required when the client application is running remotely to a Rice standalone server. It is being exported
here to the KR-SAP namespace with the service name campusAgendaTypeService:

 1 <bean id="campusAgendaTypeService"
 2 class="edu.sampleu.krms.impl.CampusAgendaTypeService">
 3 <property name="configurationService" ref="configurationService"/>
 4 </bean>
 5
 6 <bean id="campusAgendaTypeService.exporter"
 7 class="org.kuali.rice.ksb.api.bus.support.CallbackServiceExporter"
 8 p:serviceBus-ref="rice.ksb.serviceBus"
 9 p:callbackService-ref="campusAgendaTypeService"
 10 p:serviceNameSpaceURI="KR-SAP"
 11 p:localServiceName="campusAgendaTypeService"
 12 p:serviceInterface="org.kuali.rice.krms.framework.type.AgendaTypeService"/>
 13

Point to or Set up the Types for KRMS

Below is example SQL code to insert the Type into the Agenda Type service -- be sure to replace the
content of the 2nd parenthetical expressions in each of the following examples with your defined values:

• First, add the Type(s) itself:

insert into krms_typ_t (typ_id, nm, nmspc_cd, srvc_nm, actv, ver_nbr) values ('T6', 'Campus Agenda',
'KRMS_TEST', 'campusAgendaTypeService', 'Y', 1);

• Next, add the campus attribute(s) to the Campus Agenda Type:

insert into krms_attr_defn_t (ATTR_DEFN_ID, NM, NMSPC_CD, LBL, CMPNT_NM, DESC_TXT)
values ('Q9901', 'Campus', 'KRMS_TEST', 'campus label', null, 'the campus which this agenda is valid
for');

insert into krms_typ_attr_t (TYP_ATTR_ID, SEQ_NO, TYP_ID, ATTR_DEFN_ID) values ('T6A', 1,
'T6', 'Q9901');

Point to or Set up Contexts for KRMS

You can use existing Contexts or configure new Contexts for KRMS. There is graphical user interface
support for configuring a new Context, through a maintenance page. For example, in the Rice demo /
sample application, on the Main menu page, under KRMS Rules, select the Context Lookup.

KRMS Administration Guide

12

You can search for existing Contexts or create a new one. To create a new one, select "Create New" at
the top right on the context lookup page:

The resulting Context Maintenance screen enables you to define a new Context. The Context ID must
be unique:

KRMS Administration Guide

13

After creating your Context(s), you must 1) set "CampusAgendaType" as valid*, 2) set "Route to
PeopleFlow" action as valid* for them, and 3) make the Type(s) you created valid for your Context(s).
See the following examples, and replace the content of each of the 2nd parenthetical expressions with
your defined values:

• insert into krms_cntxt_vld_agenda_t (cntxt_vld_agenda_id, cntxt_id, agenda_typ_id, ver_nbr) values
('agendaid', 'contextid', 'agendatypeid', version#);

• insert into krms_cntxt_vld_actn_t (cntxt_vld_actn_id, cntxt_id, actn_typ_id, ver_nbr) values
('agendaid', 'contextid', 'agendatypeid', version#);

• insert into krms_cntxt_vld_agenda_t (cntxt_vld_agenda_id, cntxt_id, agenda_typ_id, ver_nbr) values
(''agendaid', 'contextid', 'agendatypeid', version#);

Specify the Terms for KRMS

You can point to existing terms or specify new terms for KRMS (include information on how to do both
of these).

To specify newTerms, you will probably want to first create term categories. See the following examples,
and replace the content of each of the 2nd parenthetical expressions with your defined values:

• Example - Generic Workflow Properties

• • insert into krms_ctgry_t (ctgry_id, nm, nmspc_cd, ver_nbr) values ('CAT02', 'Workflow Document
Properties', 'KR-SAP', '1');

KRMS Administration Guide

14

• Example - Travel Account Properties

• • insert into krms_ctgry_t (ctgry_id, nm, nmspc_cd, ver_nbr) values ('CAT03', 'Travel Account
Properties', 'KR-SAP', '1');

And next, you can use existing Terms or configure new Terms for KRMS. There is graphical user interface
support for configuring a new Term, through a maintenance page. For example, in the Rice demo / sample
application, on the Main menu page, under KRMS Rules, select the Term Specification Lookup and, after
completing that, select the Term Lookup.

You can search for existing Term Specifications and Terms or create new ones. To create a new one, select
"Create New" at the top right on the term specification lookup page or copy and then modify an existing
one. See example Term Specification Lookup screen below:

KRMS Administration Guide

15

If you copy an existing term specification, be sure to give it a new and unique name before you change
and save or submit it. Below is a view of the term specification screen showing the types of attributes
you can associate with it.

KRMS Administration Guide

16

After creating your term specifications (your categories of terms), you can use the Term Lookup screen to
add or create new terms. See the example Term Lookup screen below:

Figure 3.1. Term Lookup screen example

If you copy an existing term, be sure to change the name to a new and unique term before you save or submit
it. Below is a view of the term specification screen showing the types of attributes you can associate with it.

KRMS Administration Guide

17

Figure 3.2. Term specification screen example

Create Custom Operators

Custom Operators give additional flexibility and power by allowing you to expand the kinds of logical
propositions that can be expressed. For example, you could add a "matches" operator that would allow
wildcarding instead of requiring strict string equality.

Custom Operators leverage a executable component that is loaded through a FunctionTypeService. The
Custom Operator implementation references that service indirectly by providing a FunctionDefinition to
the system that identifies the name of the function and the service that provides it in executable form.

Adding a Custom Operator to KRMS requires:

• development of a Java class implementing several methods

• Spring configuration to wire it up and export it to the service bus

• the addition of some database rows in the KRMS schema to configure the KRMS type and make it
usable from some Contexts.

This process is outlined below.

The Java class must implement the org.kuali.rice.krms.api.repository.operator.CustomOperator
interface, which has just two methods. The first of those methods, getOperatorFunctionDefinition,
provides the FunctionDefinition that the engine will use to find the FunctionTypeService. The second
method, validateOperandClasses, performs simple validation of the arguments based on their declared
Java types.

It will be most convenient to implement org.kuali.rice.krms.framework.type.FunctionTypeService
as well with your custom operator service class. In that case, you will need to implement a third

KRMS Administration Guide

18

method, loadFunction, that provides back the executable form for the function. An example of a Custom
Operator that implements both can be found in the Rice sample application module, the class name being
edu.sampleu.krms.impl.ContainsOperator.

Here is the Spring configuration for this Custom Operator. The first bean definition wires up the service
implementation instance. The second bean definition exports the service to the service bus. It is being
exported here to the KR-SAP namespace with the service name sampleAppContainsOperatorService:

<bean id="sampleAppContainsOperatorService"
 class="edu.sampleu.krms.impl.ContainsOperator"/>

<bean id="sampleAppContainsOperatorService.exporter"
 class="org.kuali.rice.ksb.api.bus.support.CallbackServiceExporter"
 p:serviceBus-ref="rice.ksb.serviceBus"
 p:callbackService-ref="sampleAppContainsOperatorService"
 p:serviceNameSpaceURI="KR-SAP"
 p:localServiceName="sampleAppContainsOperatorService"
 p:serviceInterface="org.kuali.rice.krms.api.repository.operator.CustomOperator"/>

The remainder of the work is done in the database in three discrete parts:

• Identify the Custom Operator on the service bus as a KRMS type

• Flag our custom operator as usable within Context of a certain type.

• Specify some metadata about our executable function.

First, we identify our custom operator as a KRMS type by creating an entry in the KRMS_TYP_T table.
You will not want to use this SQL directly, rather you will want to change the values as appropriate. The
significance of the columns and how you will want them set will be discussed below.

 insert into KRMS_TYP_T (TYP_ID, NM, NMSPC_CD, SRVC_NM, ACTV, VER_NBR)
 values ('OPERATOR-KRMS-TYPE-ID', 'contains operator', 'KR-SAP', 'sampleAppContainsOperatorService', 'Y',
 1);

Table 3.1. Columns being inserted into KRMS_TYP_T
Column Description

TYP_ID the primary key column for the KRMS_TYP_T table. You will want to set it to a unique value, one that will not collide
with a value from the KRMS_TYP_S sequence in the future.

NM the name of the type service, for descriptive purposes.

NMSPC_CD the namespace code that the service is exported to the bus within.

SRVC_NM the name that the service is exported to the bus with.

ACTV the active status of your type, you'll want to set this to 'Y'.

VER_NBR used for optimistic locking, you'll want to set this to '1'.

Note that the FunctionDefinition returned by your service will need to agree with the values configured
here. You can achieve that dynamically by loading it with the FunctionBoService using the service
namespace and name.

Next we will create the type-type relation that will make your Custom Operator usable within a certain
Context. Again, you will not want to use this SQL directly, rather you will want to change the values as
appropriate. The significance of the columns and how you will want them set will be discussed below.

insert into KRMS_TYP_RELN_T (TYP_RELN_ID, FROM_TYP_ID, TO_TYP_ID, RELN_TYP, SEQ_NO)
 values ('A-UNIQUE-ID', 'CONTEXT-TYPE-ID', 'OPERATOR-KRMS-TYPE-ID', 'A', 1);

KRMS Administration Guide

19

Table 3.2. Columns being inserted into KRMS_TYP_RELN_T

Column Description

TYP_RELN_ID the primary key column for the KRMS_TYP_RELN_T table. You will want to set it to a unique value, one that will not
collide with a value from the KRMS_TYP_RELN_S sequence in the future.

FROM_TYP_ID The TYP_ID value from your Context. The custom operator will be available in any Contexts having this TYP_ID.

TO_TYP_ID the TYP_ID value you used when creating your KRMS type in the previous step.

RELN_TYP the type of relationship, which you should set to 'A' indicating that usage is allowed.

SEQ_NO Used for order of presentation in some other cases. Set this to 1.

Finally we will configure our function definition:

insert into KRMS_FUNC_T
 (FUNC_ID, NMSPC_CD, NM, DESC_TXT, RTRN_TYP, TYP_ID, ACTV, VER_NBR)
 values
 ('A-UNIQUE-ID', 'KR-SAP', 'contains', 'descr...', 'java.lang.Boolean', 'OPERATOR-KRMS-TYPE-ID',
 'A', 1);

Table 3.3. Columns being inserted into KRMS_FUNC_T

Column Description

FUNC_ID the primary key column for the KRMS_FUNC_T table. You will want to set it to a unique value, one that will not collide
with a value from the KRMS_FUNC_S sequence in the future.

NMSPC_CD the code for the namespace that your function belongs in. Technically, this doesn't have to match that of the
corresponding service, but in most cases it makes sense for it to do so.

NM the name of the function, which is used to identify the custom operator in the user interface. This is what will show
up in the operator selector widget.

DESC_TXT some descriptive text about the function.

RTRN_TYP the Java type of your function return value, set this to 'java.lang.Boolean'.

TYP_ID the TYP_ID value for your FunctionTypeService (which will, if you implement both interfaces in one class, be the same
as for your CustomOperator service).

ACTV the active status of your function, you'll want to set this to 'Y'.

VER_NBR used for optimistic locking, you'll want to set this to '1'.

With that configuration complete, you should be able to see the new operator available when editing
propositions for any Agenda whose Context has the type that we configured our type-type relation with
in the second SQL step.

Do I have to define permissions or approval processes
so that people can create and maintain KRMS agendas
and rules?

The answer is yes. To set up Permissions for creating and maintaining agendas, you can use the
maintenance screens for identities and for role/group/permission/responsibility-type that are available on
the Administration tab in the Kuali Rice portal:

• First, in the Kuali Rice portal, go to the Administration tab, and in the Identity category, select
"Permission". Create a new permission: give it a unique Permission name and select the namespace
you'd like to associate it with. For example, give it the name 'Maintain KRMS Agenda' and select the
appropriate namespace.

KRMS Administration Guide

20

• Next, add that permission to a role that your agenda-maintaining user has. You can do that through the
Kuali Rice portal, by going to the Administration tab, and in the Identity category, select "Role". You
can search for the role you just created (in the example above, 'Maintain KRMS Agenda', and select
to edit it.

Add the individuals you would like to this role, so that they will have the permissions needed to create
and maintain agendas and rules. Click on the edit action to bring up the following screen to add the
individuals to this role.

KRMS Administration Guide

21

Alternatively, you could set up these permissions via code - see SQL server code examples below:

insert into krim_role_perm_id_s values (null);

insert into krim_role_perm_t (role_perm_id, role_id, perm_id, actv_ind,
ver_nbr, obj_id) values ((select max(id) from krim_role_perm_id_s),
<YOUR_ROLE_ID>, <YOUR_PERMISSION_ID>, 'Y', 1, uuid());

22

Chapter 4. The KRMS User Interface

KRMS Agenda Editor
Rules in KRMS are placed into ordered sets called Agendas. The order of the Rules in an Agenda
determines the sequencing: which rule gets evaluated first, second and so on. The Agenda also enables
you to include conditional branching logic between Rules.

In turn, Agendas are created in Contexts, which may represent any categories that are relevant within
your institution. For example, they could correspond to document types or business processes or any other
categories. In some university environments, the following might be relevant contexts: Awards, Proposals,
IRB reviews, Course co-requisites, Course pre-requisites, Student plan evaluations, and so on.

Each Context contains its own agendas, and each Agenda contains its own rules. Rules aren't shared across
agendas (though you can copy/paste them, in which case they become unique Rule instances), and Agendas
aren't shared across Contexts. There is no Context hierarchy; that is, Agendas and Rules can't be inherited
across contexts within any sort of hierarchy.

See below for a view of the Agenda Editor in KRMS.

The KRMS User Interface

23

Figure 4.1. KRMS Agenda Editor

Rules in the Agenda can be selected by clicking on them. The order and conditional logic within the agenda
can be manipulated by selecting rules and clicking the buttons on the toolbar above the Rules. Clicking on
the Add Rule button on the Agenda Editor screen will take you to the Rule Editor with a new blank Rule,
and selecting a Rule and clicking on the Edit Rule button will open that existing Rule in the Rule Editor.

And see below for an example of how attributes can be progressively rendered in KRMS. In this
example, the selected context, "Context 1", requires the selection of a type, and the selected type,
"CampusAgendaType", requires some additional attributes, that are not required by all types. These are
shown to the end user only when required. This is an example of KRAD's progressive disclosure capability:

The KRMS User Interface

24

Figure 4.2. KRMS Agenda Editor with additional attributes displayed

KRMS Rule Editor
See below for views of editing a Rule from an Agenda in KRMS.

Figure 4.3. KRMS Rules Editor

The KRMS User Interface

25

And below is the same Rule but scrolled down further on the page to show the Action configuration as
well. In this example, when the logical proposition for this rule is satisfied (when it is true), the rule will
call a PeopleFlow to route a request to it.

Figure 4.4. KRMS proposition and PeopleFlow Action

You can add Simple Propositions via add, or Compound Propositions via add parent. Simple
Propositions are configured with a Term and a user-supplied value to compare it with.

http://site.kuali.org/rice/2.5.7-SNAPSHOT/reference/html/KEW_Guide.html#peopleflow_ug_kew

26

Glossary
A
Action List A list of the user's notification and workflow items. Also called the user's

Notification List. Clicking an item in the Action List displays details about that
notification, if the item is a notification, or displays that document, if it is a
workflow item. The user will usually load the document from their Action List in
order to take the requested action against it, such as approving or acknowledging
the document.

Action List Type This tells you if the Action List item is a notification or a more specific workflow
request item. When the Action List item is a notification, the Action List Type is
"Notification."

Action Request A request to a user or Workgroup to take action on a document. It designates the
type of action that is requested, which includes:

• Approve: requests an approve or disapprove action.

• Complete: requests a completion of the contents of a document. This action
request is displayed in the Action List after the user saves an incomplete
document.

• Acknowledge: requests an acknowledgment by the user that the document has
been opened - the doc will not leave the Action List until acknowledgment has
occurred; however, the document routing will not be held up and the document
will be permitted to transaction into the processed state if neccessary.

• FYI: a notification to the user regarding the document. Documents requesting
FYI can be cleared directly from the Action List. Even if a document has FYI
requests remaining, it will still be permitted to transition into the FINAL state.

Action Request Hierarchy Action requests are hierarchical in nature and can have one parent and multiple
children.

Action Requested The action one needs to take on a document; also the type of action that is requested
by an Action Request. Actions that may be requested of a user are:

• Acknowledge: requests that the users states he or she has reviewed the
document.

• Approve: requests that the user either Approve or Disapprove a document.

• Complete: requests the user to enter additional information in a document so
that the content of the document is complete.

• FYI: intended to simply makes a user aware of the document.

Action Taken An action taken on a document by a Reviewer in response to an Action Request.
The Action Taken may be:

• Acknowledged: Reviewer has viewed and acknowledged document.

• Approved: Reviewer has approved the action requested on document.

Glossary

27

• Blanket Approved: Reviewer has requested a blanket approval up to a specified
point in the route path on the document.

• Canceled: Reviewer has canceled the document. The document will not be
routed to any more reviewers.

• Cleared FYI: Reviewer has viewed the document and cleared all of his or her
pending FYI(s) on this document.

• Completed: Reviewer has completed and supplied all data requested on
document.

• Created Document: User has created a document

• Disapproved: Reviewer has disapproved the document. The document will not
being routed to any subsequent reviewers for approval. Acknowledge Requests
are sent to previous approvers to inform them of the disapproval.

• Logged Document: Reviewer has added a message to the Route Log of the
document.

• Moved Document: Reviewer has moved the document either backward or
forward in its routing path.

• Returned to Previous Node: Reviewer has returned the document to a previous
routing node. When a Reviewer does this, all the actions taken between the
current node and the return node are removed and all the pending requests on
the document are deactivated.

• Routed Document: Reviewer has submitted the document to the workflow
engine for routing.

• Saved: Reviewer has saved the document for later completion and routing.

• Superuser Approved Document: Superuser has approved the entire document,
any remaining routing is cancelled.

• Superuser Approved Node: Superuser has approved the document through all
nodes up to (but not including) a specific node. When the document gets to that
node, the normal Action Requests will be created.

• Superuser Approved Request: Superuser has approved a single pending
Approve or Complete Action Request. The document then goes to the next
routing node.

• Superuser Cancelled: Superuser has canceled the document. A Superuser can
cancel a document without a pending Action Request to him/her on the
document.

• Superuser Disapproved: Superuser has disapproved the document. A Superuser
can disapprove a document without a pending Action Request to him/her on
the document.

Glossary

28

• Superuser Returned to Previous Node: Superuser has returned the document
to a previous routing node. A Superuser can do this without a pending Action
Request to him/her on the document.

Activated The state of an action request when it is has been sent to a user's Action List.

Activation The process by which requests appear in a user's Action List

Activation Type Defines how a route node handles activation of Action Requests. There are two
standard activation types:

• Sequential: Action Requests are activated one at a time based on routing
priority. The next Action Request isn't activated until the previous request is
satisfied.

• Parallel: All Action Requests at the route node are activated immediately,
regardless of priority

Active Indicator An indicator specifying whether an object in the system is active or not. Used as
an alternative to complete removal of an object.

Ad Hoc Routing A type of routing used to route a document to users or groups that are not in the
Routing path for that Document Type. When the Ad Hoc Routing is complete, the
routing returns to its normal path.

Annotation Optional comments added by a Reviewer when taking action. Intended to explain
or clarify the action taken or to advise subsequent Reviewers.

Approve A type of workflow action button. Signifies that the document represents a valid
business transaction in accordance with institutional needs and policies in the
user's judgment. A single document may require approval from several users, at
multiple route levels, before it moves to final status.

Approver The user who approves the document. As a document moves through Workflow,
it moves one route level at a time. An Approver operates at a particular route level
of the document.

Attachment The pathname of a related file to attach to a Note. Use the "Browse..." button to
open the file dialog, select the file and automatically fill in the pathname.

Attribute Type Used to strongly type or categorize the values that can be stored for the various
attributes in the system (e.g., the value of the arbitrary key/value pairs that can be
defined and associated with a given parent object in the system).

Authentication The act of logging into the system. The Out of the box (OOTB) authenticaton
implementation in Rice does not require a password as it is intended for testing
puposes only. This is something that must be enabled as part of an implementation.
Various authentication solutions exist, such as CAS or Shibboleth, that an
implementer may want to use depending on their needs.

Authorization Authorization is the permissions that an authenticated user has for performing
actions in the system.

Author Universal ID A free-form text field for the full name of the Author of the Note, expressed as
"Lastname, Firstname Initial"

Glossary

29

B
Base Rule Attribute The standard fields that are defined and collected for every Routing Rule These

include:

• Active: A true/false flag to indicate if the Routing Rule is active. If false, then
the rule will not be evaluated during routing.

• Document Type: The Document Type to which the Routing Rule applies.

• From Date: The inclusive start date from which the Routing Rule will be
considered for a match.

• Force Action: a true/false flag to indicate if the review should be forced to take
action again for the requests generated by this rule, even if they had taken action
on the document previously.

• Name: the name of the rule, this serves as a unique identifier for the rule. If one
is not specified when the rule is created, then it will be generated.

• Rule Template: The Rule Template used to create the Routing Rule.

• To Date: The inclusive end date to which the Routing Rule will be considered
for a match.

Blanket Approval Authority that is given to designated Reviewers who can approve a document to a
chosen route point. A Blanket Approval bypasses approvals that would otherwise
be required in the Routing For an authorized Reviewer, the Doc Handler typically
displays the Blanket Approval button along with the other options. When a Blanket
Approval is used, the Reviewers who are skipped are sent Acknowledge requests
to notify them that they were bypassed.

Blanket Approve Workgroup A workgroup that has the authority to Blanket Approve a document.

Branch A path containing one or more Route Nodes that a document traverses during
routing. When a document enters a Split Node multiple branches can be created.
A Join Node joins multiple branches together.

Business Rule 1. Describes the operations, definitions and constraints that apply to an
organization in achieving its goals.

2. A restriction to a function for a business reason (such as making a specific
object code unavailable for a particular type of disbursement). Customizable
business rules are controlled by Parameters.

C
Campus Identifies the different fiscal and physical operating entities of an institution.

Campus Type Designates a campus as physical only, fiscal only or both.

Cancel A workflow action available to document initiators on documents that have not
yet been routed for approval. Denotes that the document is void and should be
disregarded. Canceled documents cannot be modified in any way and do not route
for approval.

Glossary

30

Canceled A routing status. The document is denoted as void and should be disregarded.

CAS - Central Authentication
Service

http://www.jasig.org/cas - An open source authentication framework. Kuali Rice
provides support for integrating with CAS as an authentication provider (among
other authentication solutions), and Kuali also provides an implementation of a
CAS server that integrates with Kuali Identity Management.

Client A Java Application Program Interface (API) for interfacing with the Kuali
Enterprise Workflow Engine.

Client/Server The use of one computer to request the services of another computer over a
network. The workstation in an organization will be used to initiate a business
transaction (e.g., a budget transfer). This workstation needs to gather information
from a remote database to process the transaction, and will eventually be used to
post new or changed information back onto that remote database. The workstation
is thus a Client and the remote computer that houses the database is the Server.

Close A workflow action available on documents in most statuses. Signifies that the
user wishes to exit the document. No changes to Action Requests, Route Logs or
document status occur as a result of a Close action. If you initiate a document and
close it without saving, it is the same as canceling that document.

Comma-separated value A file format using commas as delimiters utilized in import and export
functionality.

Complete A pending action request to a user to submit a saved document.

Completed The action taken by a user or group in response to a request in order to finish
populating a document with information, as evidenced in the Document Route
Log.

Country Restricted Indicator Field used to indicate if a country is restricted from use in procurement. If there
is no value then there is no restriction.

Creation Date The date on which a document is created.

CSV See comma-separated value

D
Date Approved The date on which a document was most recently approved.

Date Finalized The date on which a document enters the FINAL state. At this point, all approvals
and acknowledgments are complete for the document.

Deactivation The process by which requests are removed from a user's Action List

Delegate A user who has been registered to act on behalf of another user. The Delegate
acts with the full authority of the Delegator. Delegation may be either Primary
Delegation or Secondary Delegation.

Delegate Action List A separate Action List for Delegate actions. When a Delegate selects a Delegator
for whom to act, an Action List of all documents sent to the Delegator is displayed.

http://www.jasig.org/cas

Glossary

31

For both Primary and Secondary Delegation the Delegate may act on any of the
entries with the full authority of the Delegator.

Disapprove A workflow action that allows a user to indicate that a document does not represent
a valid business transaction in that user's judgment. The initiator and previous
approvers will receive Acknowledgment requests indicating the document was
disapproved.

Disapproved A status that indicates the document has been disapproved by an approver as a
valid transaction and it will not generate the originally intended transaction.

Doc Handler The Doc Handler is a web interface that a Client uses for the appropriate display
of a document. When a user opens a document from the Action List or Document
Search, the Doc Handler manages access permissions, content format, and user
options according to the requirements of the Client.

Doc Handler URL The URL for the Doc Handler.

Doc Nbr See Document Number.

Document Also see E-Doc.

An electronic document containing information for a business transaction that is
routed for Actions in KEW. It includes information such as Document ID, Type,
Title, Route Status, Initiator, Date Created, etc. In KEW, a document typically has
XML content attached to it that is used to make routing decisions.

Document Id See Document Number.

Document Number A unique, sequential, system-assigned number for a document

Document Operation A workflow screen that provides an interface for authorized users to manipulate
the XML and other data that defines a document in workflow. It allows you
to access and open a document by Document ID for the purpose of performing
operations on the document.

Document Search A web interface in which users can search for documents. Users may search by
a combination of document properties such as Document Type or Document ID,
or by more specialized properties using the Detailed Search. Search results are
displayed in a list similar to an Action List.

Document Status See also Route Status.

Document Title The title given to the document when it was created. Depending on the Document
Type, this title may have been assigned by the Initiator or built automatically based
on the contents of the document. The Document Title is displayed in both the
Action List and Document Search.

Document Type The Document Type defines the routing definition and other properties for a set
of documents. Each document is an instance of a Document Type and conducts
the same type of business transaction as other instances of that Document Type.

Document Types have the following characteristics:

• They are specifications for a document that can be created in KEW

Glossary

32

• They contain identifying information as well as policies and other attributes

• They defines the Route Path executed for a document of that type (Process
Definition)

• They are hierarchical in nature may be part of a hierarchy of Document Types,
each of which inherits certain properties of its Parent Document Type.

• They are typically defined in XML, but certain properties can be maintained
from a graphical interface

Document Type Hierarchy A hierarchy of Document Type definitions. Document Types inherit certain
attributes from their parent Document Types. This hierarchy is also leveraged by
various pieces of the system, including the Rules engine when evaluating rule sets
and KIM when evaluating certain Document Type-based permissions.

Document Type Label The human-readable label assigned to a Document Type.

Document Type Name The assigned name of the document type. It must be unique.

Document Type Policy These advise various checks and authorizations for instances of a Document Type
during the routing process.

Drilldown A link that allows a user to access more detailed information about the current
data. These links typically take the user through a series of inquiries on different
business objects.

Dynamic Node An advanced type of Route Node that can be used to generate complex routing
paths on the fly. Typically used whenever the route path of a document cannot be
statically defined and must be completely derived from document data.

E
ECL 1. An acronym for Educational Community License.

2. All Kuali software and material is available under the Educational Community
License and may be adopted by colleges and universities without licensing
fees. The open licensing approach also provides opportunities for support and
implementation assistance from commercial affiliates.

E-Doc An abbreviation for electronic documents, also a shorthand reference to
documents created with eDocLite.

eDocLite A framework for quickly building workflow-enabled documents. Allows you to
define document screens in XML and render them using XSL style sheets.

Embedded Client A type of client that runs an embedded workflow engine.

Employee Status Found on the Person Document; defines the employee's current employment
classification (for example, "A" for Active).

Employee Type Found on the Person Document; defines the employee's position classification (for
example, "P" for Professional).

Glossary

33

Entity An Entity record houses identity information for a given Person, Process, System,
etc. Each Entity is categorized by its association with an Entity Type.

Entity Attribute Entities have directory-like information called Entity Attributes that are associated
with them

Entity Attributes make up the identity information for an Entity record.

Entity Type Provides categorization to Entities. For example, a "System" could be considered
an Entity Type because something like a batch process may need to interfact with
the application.

Exception A workflow routing status indicating that the document routed to an exception
queue because workflow has encountered a system error when trying to process
the document.

Exception Messaging The set of services and configuration options that are responsible for handling
messages when they cannot be successfully delivered. Exception Messaging is
set up when you configure KSB using the properties outlined in KSB Module
Configuration.

Exception Routing A type of routing used to handle error conditions that occur during the routing
of a document. A document goes into Exception Routing when the workflow
engine encounters an error or a situation where it cannot proceed, such as a
violation of a Document Type Policy or an error contacting external services.
When this occurs, the document is routed to the parties responsible for handling
these exception cases. This can be a group configured on the document or a
responsibility configured in KIM. Once one of these responsible parties has
reviewed the situation and approved the document, it will be resubmitted to the
workflow engine to attempt the processing again.

Extended Attributes Custom, table-driven business object attributes that can be established by
implementing institutions.

Extension Rule Attribute One of the rule attributes added in the definition of a rule template that extends
beyond the base rule attributes to differentiate the routing rule. A Required
Extension Attribute has its "Required" field set to True in the rule template.
Otherwise, it is an Optional Extension Attribute. Extension attributes are typically
used to add additional fields that can be collected on a rule. They also define the
logic for how those fields will be processed during rule evaluation.

F
Field Lookup The round magnifying glass icon found next to fields throughout the GUI that

allow the user to look up reference table information and display (and select from)
a list of valid values for that field.

Final A workflow routing status indicating that the document has been routed and has
no pending approval or acknowledgement requests.

Flexible Route Management A standard KEW routing scheme based on rules rather than dedicated table-based
routing.

FlexRM (Flexible Route
Module)

The Route Module that performs the Routing for any Routing Rule is defined
through FlexRM. FlexRM generates Action Requests when a Rule matches the

Glossary

34

data value contained in a document. An abbreviation of "Flexible Route Module."
A standard KEW routing scheme that is based on rules rather than dedicated table-
based routing.

Force Action A true/false flag that indicates if previous Routing for approval will be ignored
when an Action Request is generated. The flag is used in multiple contexts where
requests are generated (e.g., rules, ad hoc routing). If Force Action is False, then
prior Actions taken by a user can satisfy newly generated requests. If it is True,
then the user needs to take another Action to satisfy the request.

FYI A workflow action request that can be cleared from a user's Action List with
or without opening and viewing the document. A document with no pending
approval requests but with pending Acknowledge requests is in Processed status.
A document with no pending approval requests but with pending FYI requests is
in Final status. See also Ad Hoc Routing and Action Request.

G
Group A Group has members that can be either Principals or other Groups (nested).

Groups essentially become a way to organize Entities (via Principal relationships)
and other Groups within logical categories.

Groups can be given authorization to perform actions within applications by
assigning them as members of Roles.

Groups can also have arbitrary identity information (i.e., Group Attributes hanging
from them. Group Attributes might be values for "Office Address," "Group
Leader," etc.

Groups can be maintained at runtime through a user interface that is capable of
workflow.

Group Attribute Groups have directory-like information called Group Attributes hanging from
them. "Group Phone Number" and "Team Leader" are examples of Group
Attributes.

Group Attributes make up the identity information for a Group record.

Group Attributes can be maintained at runtime through a user interface that is
capable of workflow.

H
Hierarchical Tree Structure A hierarchical representation of data in a graphical form.

I
Initialized The state of an Action Request when it is first created but has not yet been

Activated (sent to a user's Action List).

Initiated A workflow routing status indicating a document has been created but has not
yet been saved or routed. A Document Number is automatically assigned by the
system.

Glossary

35

Initiator A user role for a person who creates (initiates or authors) a new document for
routing. Depending on the permissions associated with the Document Type, only
certain users may be able to initiate documents of that type.

Inquiry A screen that allows a user to view information about a business object.

J
Join Node The point in the routing path where multiple branches are joined together. A Join

Node typically has a corresponding Split Node for which it joins the branches.

K
KC - Kuali Coeus TODO

KCA - Kuali Commercial
Affiliates

A designation provided to commercial affiliates who become part of the Kuali
Partners Program to provide for-fee guidance, support, implementation, and
integration services related to the Kuali software. Affiliates hold no ownership of
Kuali intellectual property, but are full KPP participants. Affiliates may provide
packaged versions of Kuali that provide value for installation or integration
beyond the basic Kuali software. Affiliates may also offer other types of training,
documentation, or hosting services.

KCB – Kuali Communications
Broker

KCB is logically related to KEN. It handles dispatching messages based on user
preferences (email, SMS, etc.).

KEN - Kuali Enterprise
Notification

A key component of the Enterprise Integration layer of the architecture
framework. Its features include:

• Automatic Message Generation and Logging

• Message integrity and delivery standards

• Delivery of notifications to a user's Action List

KEW – Kuali Enterprise
Workflow

Kuali Enterprise Workflow is a general-purpose electronic routing infrastructure,
or workflow engine. It manages the creation, routing, and processing of electronic
documents (eDocs) necessary to complete a transaction. Other applications can
also use Kuali Enterprise Workflow to automate and regulate the approval process
for the transactions or documents they create.

KFS – Kuali Financial System Delivers a comprehensive suite of functionality to serve the financial system needs
of all Carnegie-Class institutions. An enhancement of the proven functionality of
Indiana University's Financial Information System (FIS), KFS meets GASB and
FASB standards while providing a strong control environment to keep pace with
advances in both technology and business. Modules include financial transactions,
general ledger, chart of accounts, contracts and grants, purchasing/accounts
payable, labor distribution, budget, accounts receivable and capital assets.

KIM – Kuali Identity
Management

A Kuali Rice module, Kuali Identity Management provides a standard API for
persons, groups, roles and permissions that can be implemented by an institution.
It also provdies an out of the box reference implementation that allows for a
university to use Kuali as their Identity Management solution.

Glossary

36

KNS – Kuali Nervous System A core technical module composed of reusable code components that provide
the common, underlying infrastructure code and functionality that any module
may employ to perform its functions (for example, creating custom attributes,
attaching electronic images, uploading data from desktop applications, lookup/
search routines, and database interaction).

KPP - Kuali Partners Program The Kuali Partners Program (KPP) is the means for organizations to get involved
in the Kuali software community and influence its future through voting rights to
determine software development priorities. Membership dues pay staff to perform
Quality Assurance (QA) work, release engineering, packaging, documentation,
and other work to coordinate the timely enhancement and release of quality
software and other services valuable to the members. Partners are also encouraged
to tender functional, technical, support or administrative staff members to the
Kuali Foundation for specific periods of time.

KRAD - Kuali Rapid
Application Development

TODO

KRMS - Kuali Rules
Management System

TODO

KS - Kuali Student Delivers a means to support students and other users with a student-centric system
that provides real-time, cost-effective, scalable support to help them identify
and achieve their goals while simplifying or eliminating administrative tasks.
The high-level entities of person (evolving roles-student, instructor, etc.), time
(nested units of time - semesters, terms, classes), learning unit (assigned to any
learning activity), learning result (grades, assessments, evaluations), learning
plan (intentions, activities, major, degree), and learning resources (instructors,
classrooms, equipment). The concierge function is a self-service information
sharing system that aligns information with needs and tasks to accomplish goals.
The support for integration of locally-developed processes provides flexibility for
any institution's needs.

KSB – Kuali Service Bus Provides an out-of-the-box service architecture and runtime environment for Kuali
Applications. It is the cornerstone of the Service Oriented Architecture layer of
the architectural reference framework. The Kuali Service Bus consists of:

• A services registry and repository for identifying and instantiating services

• Run time monitoring of messages

• Support for synchronous and asynchronous service and message paradigms

Kuali 1. Pronounced "ku-wah-lee". A partnership organization that produces a suite of
community-source, modular administrative software for Carnegie-class higher
education institutions. See also Kuali Foundation

2. (n.) A humble kitchen wok that plays an important role in a successful kitchen.

Kuali Foundation Employs staff to coordinate partner efforts and to manage and protect the
Foundation's intellectual property. The Kuali Foundation manages a growing
portfolio of enterprise software applications for colleges and universities. A
lightweight Foundation staff coordinates the activities of Foundation members
for critical software development and coordination activities such as source code
control, release engineering, packaging, documentation, project management,

Glossary

37

software testing and quality assurance, conference planning, and educating and
assisting members of the Kuali Partners program.

Kuali Rice Provides an enterprise-class middleware suite of integrated products that allow
both Kuali and non-Kuali applications to be built in an agile fashion, such
that developers are able to react to end-user business requirements in an
efficient manner to produce high-quality business applications. Built with Service
Oriented Architecture (SOA) concepts in mind, KR enables developers to build
robust systems with common enterprise workflow functionality, customizable
and configurable user interfaces with a clean and universal look and feel, and
general notification features to allow for a consolidated list of work "action
items." All of this adds up to providing a re-usable development framework that
encourages a simplified approach to developing true business functionality as
modular applications.

L
Last Modified Date The date on which the document was last modified (e.g., the date of the last action

taken, the last action request generated, the last status changed, etc.).

M
Maintenance Document An e-doc used to establish and maintain a table record.

Message The full description of a notification message. This is a specific field that can be
filled out as part of the Simple Message or Event Message form. This can also
be set by the programmatic interfaces when sending notifications from a client
system.

Message Queue Allows administrators to monitor messages that are flowing through the Service
Bus. Messages can be edited, deleted or forwarded to other machines for
processing from this screen.

N
Namespace A Namespace is a way to scope both Permissions and Entity Attributes Each

Namespace instance is one level of scoping and is one record in the system.
For example, "KRA" or "KC" or "KFS" could be a Namespace. Or you could
further break those up into finer-grained Namespaces such that they would roughly
correlate to functional modules within each application. Examples could be "KRA
Rolodex", "KC Grants", "KFS Chart of Accounts".

Out of the box, the system is bootstrapped with numerous Rice namespaces
which correspond to the different modules. There is also a default namespace of
"KUALI".

Namespaces can be maintained at runtime through a maintenance document.

Note Text A free-form text field for the text of a Note

Notification Content This section of a notification message which displays the actual full message for
the notification along with any other content-type-specific fields.

Glossary

38

Notification Message The overall Notification item or Notification Message that a user sees when she
views the details of a notification in her Action List. A Notification Message
contains not only common elements such as Sender, Channel, and Title, but also
content-type-specific fields.

O
OOTB Stands for "out of the box" and refers to the base deliverable of a given feature

in the system.

Optimistic Locking A type of "locking" that is placed on a database row by a process to prevent
other processes from updating that row before the first process is complete. A
characteristic of this locking technique is that another user who wants to make
modifications at the same time as another user is permitted to, but the first one
who submits their changes will have them applied. Any subsequent changes will
result in the user being notified of the optimistic lock and their changes will not
be applied. This technique assumes that another update is unlikely.

Optional Rule Extension
Attribute

An Extension Attribute that is not required in a Rule Template. It may or may
not be present in a Routing Rule created from the Template. It can be used as
a conditional element to aid in deciding if a Rule matches. These Attributes are
simply additional criteria for the Rule matching process.

Org Doc # The originating document number.

Organization Refers to a unit within the institution such as department, responsibility center,
campus, etc.

Organization Code Represents a unique identifier assigned to units at many different levels within the
institution (for example, department, responsibility center, and campus).

P
Parameter Component Code Code identifying the parameter Component.

Parameter Description This field houses the purpose of this parameter.

Parameter Name This will be used as the identifier for the parameter. Parameter values will be
accessed using this field and the namespace as the key.

Parameter Type Code Code identifying the parameter type. Parameter Type Code is the primary key for
its' table.

Parameter Value This field houses the actual value associated with the parameter.

Parent Document Type A Document Type from which another Document Type derives. The child type can
inherit certain properties of the parent type, any of which it may override. A Parent
Document Type may have a parent as part of a hierarchy of document types.

Parent Rule A Routing Rule in KEW from which another Routing Rule derives. The child Rule
can inherit certain properties of the parent Rule, any of which it may override. A
Parent Rule may have a parent as part of a hierarchy of Rules.

Permission Permissions represent fine grained actions that can be mapped to functionality
within a given system. Permissions are scoped to Namespace which roughly
correlate to modules or sections of functionality within a given system.

Glossary

39

A developer would code authorization checks in their application against these
permissions.

Some examples would be: "canSave", "canView", "canEdit", etc.

Permissions are aggregated by Roles.

Permissions can be maintained at runtime through a user interface that is capable
of workflow; however, developers still need to code authorization checks against
them in their code, once they are set up in the system.

Attributes

1. Id - a system generated unique identifier that is the primary key for any
Permission record in the system

2. Name - the name of the permission; also a human understandable unique
identifier

3. Description - a full description of the purpose of the Permission record

4. Namespace - the reference to the associated Namespace

Relationships

1. Permission to Role - many to many; this relationship ties a Permission record
to a Role that is authorized for the Permission

2. Permission to Namespace - many to one; this relationship allows for scoping
of a Permission to a Namespace that contains functionality which keys its
authorization checking off of said

Person Identifier The username of an individual user who receives the document ad hoc for the
Action Requested

Person Role Creates or maintains the list used in selection of personnel when preparing the
Routing Form document.

Pessimistic Locking A type of lock placed on a database row by a process to prevent other processes
from reading or updating that row until the first process is finished. This technique
assumes that another update is likely.

Plugins A plugin is a packaged set of code providing essential services that can be
deployed into the Rice standalone server. Plugins usually contains only classes
used in routing such as custom rules or searchable attributes, but can contain
client application specific services. They are usually used only by clients being
implemented by the 'Thin Client' method

Post Processor A routing component that is notified by the workflow engine about various events
pertaining to the routing of a specific document (e.g., node transition, status
change, action taken). The implementation of a Post Processor is typically specific
to a particular set of Document Types. When all required approvals are completed,
the engine notifies the Post Processor accordingly. At this point, the Post Processor
is responsible for completing the business transaction in the manner appropriate
to its Document Type.

Glossary

40

Posted Date/Time Stamp A free-form text field that identifies the time and date at which the Notes is posted.

Postal Code Defines zip code to city and state cross-references.

Preferences User options in an Action List for displaying the list of documents. Users can click
the Preferences button in the top margin of the Action List to display the Action
List Preferences screen. On the Preferences screen, users may change the columns
displayed, the background colors by Route Status, and the number of documents
displayed per page.

Primary Delegation The Delegator turns over full authority to the Delegate. The Action Requests
for the Delegator only appear in the Action List of the Primary Delegate. The
Delegation must be registered in KEW or KIM to be in effect.

Principal A Principal represents an Entity that can authenticate into the system. One can
roughly correlate a Principal to a login username. Entities can exist in KIM without
having permissions or authorization to do anything; therefore, a Principal must
exist and must be associated with an Entity in order for it to have access privileges.
All authorization that is not specific to Groups is tied to a Principal.

In other words, an Entity is for identity while a Principal is for access management.

Also note that an Entity is allowed to have multiple Principals associated with
it. The use case typically given here is that a person may apply to a school and
receive one log in for the application system; however, once accepted, they may
receive their official login, but use the same identity information set up for their
Entity record.

Processed A routing status indicating that the document has no pending approval requests
but still has one or more pending acknowledgement requests.

R
Recipient Type The type of entity that is receiving an Action Request. Can be a user, workgroup,

or role.

Required Rule Extension
Attribute

An Extension Attribute that is required in a Rule Template. It will be present in
every Routing Rule created from the Template.

Responsibility See Responsible Party.

Responsibility Id A unique identifier representing a particular responsibility on a rule (or from a
route module This identifier stays the same for a particular responsibility no matter
how many times a rule is modified.

Responsible Party The Reviewer defined on a routing rule that receives requests when the rule
is successfully executed. Each routing rule has one or more responsible parties
defined.

Reviewer A user acting on a document in his/her Action List and who has received an Action
Request for the document.

Rice An abbreviation for Kuali Rice.

Role Roles aggregate Permissions When Roles are given to Entities (via their
relationship with Principals) or Groups an authorization for all associated
Permissions is granted.

Glossary

41

Route Header Id Another name for the Document Id.

Route Log Displays information about the routing of a document. The Route Log is usually
accessed from either the Action List or a Document Search. It displays general
document information about the document and a detailed list of Actions Taken
and pending Action Requests for the document. The Route Log can be considered
an audit trail for a document.

Route Module A routing component that the engine uses to generate action requests at a particular
Route Node. FlexRM (Flexible Route Module) is a general Route Module that
is rule-based. Clients can define their own Route Modules that can conduct
specialized Routing based on routing tables or any other desired implementation.

Route Node Represents a step in the routing process of a document type. Route node
"instances" are created dynamically as a document goes through its routing process
and can be defined to perform any function. The most common functions are to
generate Action Requests or to split or join the route path.

• Simple: do some arbitrary work

• Requests: generate action requests using a Route Module or the Rules engine

• Split: split the route path into one or more parallel branches

• Join: join one or more branches back together

• Sub Process: execute another route path inline

• Dynamic: generate a dynamic route path

Route Path The path a document follows during the routing process. Consists of a set of
route nodes and branches. The route path is defined as part of the document type
definition.

Route Status The status of a document in the course of its routing:

• Approved: These documents have been approved by all required reviewers and
are waiting additional postprocessing.

• Cancelled: These documents have been stopped. The document's initiator can
'Cancel' it before routing begins or a reviewer of the document can cancel it
after routing begins. When a document is cancelled, routing stops; it is not sent
to another Action List.

• Disapproved: These documents have been disapproved by at least one reviewer.
Routing has stopped for these documents.

• Enroute: Routing is in progress on these documents and an action request is
waiting for someone to take action.

• Exception: A routing exception has occurred on this document. Someone from
the Exception Workgroup for this Document Type must take action on this
document, and it has been sent to the Action List of this workgroup.

• Final: All required approvals and all acknowledgements have been received on
these documents. No changes are allowed to a document that is in Final status.

Glossary

42

• Initiated: A user or a process has created this document, but it has not yet been
routed to anyone's Action List.

• Processed: These documents have been approved by all required users, and is
completed on them. They may be waiting for Acknowledgements. No further
action is needed on these documents.

• Saved: These documents have been saved for later work. An author (initiator)
can save a document before routing begins or a reviewer can save a document
before he or she takes action on it. When someone saves a document, the
document goes on that person's Action List.

Routed By User The user who submits the document into routing. This is often the same as the
Initiator. However, for some types of documents they may be different.

Routing The process of moving a document through its route path as defined in its
Document Type. Routing is executed and administered by the workflow engine.
This process will typically include generating Action Requests and processing
actions from the users who receive those requests. In addition, the Routing process
includes callbacks to the Post Processor when there are changes in document state.

Routing Priority A number that indicates the routing priority; a smaller number has a higher routing
priority. Routing priority is used to determine the order that requests are activated
on a route node with sequential activation type.

Routing Rule A record that contains the data for the Rule Attributes specified in a Rule Template
It is an instance of a Rule Template populated to determine the appropriate
Routing. The Rule includes the Base Attributes, Required Extension Attributes,
Responsible Party Attributes, and any Optional Extension Attributes that are
declared in the Rule Template. Rules are evaluated at certain points in the routing
process and, when they fire, can generate Action Requests to the responsible
parties that are defined on them.

Technical considerations for a Routing Rules are:

• Configured via a GUI (or imported from XML)

• Created against a Rule Template and a Document Type

• The Rule Template and it's list of Rule Attributes define what fields will be
collected in the Rule GUI

• Rules define the users, groups and/or roles who should receive action requests

• Available Action Request Types that Rules can route

• Complete

• Approve

• Acknowledge

• FYI

• During routing, Rule Evaluation Sets are "selected" at each node. Default is to
select by Document Type and Rule Template defined on the Route Node

Glossary

43

• Rules match (or 'fire') based on the evaluation of data on the document and data
contained on the individual rule

• Examples

• If dollar amount is greater than $10,000 then send an Approval request to Joe.

• If department is "HR" request an Acknowledgment from the
HR.Acknowledgers workgroup.

Rule Attribute Rule attributes are a core KEW data element contained in a document that controls
its Routing. It participates in routing as part of a Rule Template and is responsible
for defining custom fields that can be rendered on a routing rule. It also defines
the logic for how rules that contain the attribute data are evaluated.

Technical considerations for a Rule Attribute are:

• They might be backed by a Java class to provide lookups and validations of
appropriate values.

• Define how a Routing Rule evaluates document data to determine whether or
not the rule data matches the document data.

• Define what data is collected on a rule.

• An attribute typically corresponds to one piece of data on a document (i.e dollar
amount, department, organization, account, etc.).

• Can be written in Java or defined using XML (with matching done by XPath).

• Can have multiple GUI fields defined in a single attribute.

Rule QuickLinks A list of document groups with their document hierarchies and actions that can be
selected. For specific document types, you can create the rule delegate.

Rule Template A Rule Template serves as a pattern or design for the routing rules. All of the
Rule Attributes that include both Required and _Optional_ are contained in the
Rule Template; it defines the structure of the routing rule of FlexRM. The Rule
Template is also used to associate certain Route Nodes on a document type to
routing rules.

Technical considerations for a Rule Templates are:

• They are a composition of Rule Attributes

• Adding a 'Role' attribute to a template allows for the use of the Role on any
rules created against the template

• When rule attributes are used for matching on rules, each attribute is associated
with the other attributes on the template using an implicit 'and' logic attributes

• Can be used to define various other aspects to be used by the rule creation GUI
such as rule data defaults (effective dates, ignore previous, available request
types, etc)

Glossary

44

S
Save A workflow action button that allows the Initiator of a document to save their

work and close the document. The document may be retrieved from the initiator's
Action List for completion and routing at a later time.

Saved A routing status indicating the document has been started but not yet completed or
routed. The Save action allows the initiator of a document to save their work and
close the document. The document may be retrieved from the initiator's action list
for completion and routing at a later time.

Searchable Attributes Attributes that can be defined to index certain pieces of data on a document so that
it can be searched from the Document Search screen.

Technical considerations for a Searchable Attributes are:

• They are responsible for extracting and indexing document data for searching

• They allow for custom fields to be added to Document Search for documents
of a particular type

• They are configured as an attribute of a Document Type

• They can be written in Java or defined in XML by using Xpath to facilitate
matching

Secondary Delegation The Secondary Delegate acts as a temporary backup Delegator who acts with the
same authority as the primary Approver/the Delegator when the Delegator is not
available. Documents appear in the Action Lists of both the Delegator and the
Delegate. When either acts on the document, it disappears from both Action Lists.

Secondary Delegation is often configured for a range of dates and it must be
registered in KEW or KIM to be in effect.

Service Registry Displays a read-only view of all of the services that are exposed on the Service Bus
and includes information about them (for example, IP Address, or Endpoint URL).

Simple Node A type of node that can perform any function desired by the implementer. An
example implementation of a simple node is the node that generates Action
Requests from route modules.

SOA An acronym for Service Oriented Architecture.

Special Condition Routing This is a generic term for additional route levels that might be triggered by various
attributes of a transaction. They can be based on the type of document, attributes of
the accounts being used, or other attributes of the transaction. They often represent
special administrative approvals that may be required.

Split Node A node in the routing path that can split the route path into multiple branches.

Spring The Spring Framework is an open source application framework for the Java
platform.

State Defines U.S. Postal Service codes used to identify states.

Status On an Action List; also known as Route Status. The current location of the
document in its routing path.

http://www.springsource.org/

Glossary

45

Submit A workflow action button used by the initiator of a document to begin workflow
routing for that transaction. It moves the document (through workflow) to the next
level of approval. Once a document is submitted, it remains in 'ENROUTE' status
until all approvals have taken place.

Superuser A user who has been given special permission to perform Superuser Approvals
and other Superuser actions on documents of a certain Document Type.

Superuser Approval Authority given Superusers to approve a document of a chosen Route Node. A
Superuser Approval action bypasses approvals that would otherwise be required
in the Routing. It is available in Superuser Document Search. In most cases,
reviewers who are skipped are not sent Acknowledge Action Requests.

Superuser Document Search A special mode of Document Search that allows Superusers to access documents
in a special Superuser mode and perform administrative functions on those
documents. Access to these documents is governed by the user's membership in
the Superuser Workgroup as defined on a particular Document Type.

T
Thread pool A technique that improves overall system performance by creating a pool of

threads to execute multiple tasks at the same time. A task can execute immediately
if a thread in the pool is available or else the task waits for a thread to become
available from the pool before executing.

Title A short summary of the notification message. This field can be filled out as part
of the Simple Message or Event Message form. In addition, this can be set by the
programmatic interfaces when sending notifications from a client system.

This field is equivalent to the "Subject" field in an email.

U
URL An acronym for Uniform Resource Locator.

User A person who can log in and use the application. This term is synonymous with
"Principal" in KIM. "Whereas Entity Id represents a unique Person, Principal Id
represents a set of login information for that Person."

V
Viewer A user(s) who views a document during the routing process. This includes users

who have action requests generated to them on a document.

W
Web Service Client A type of client that connects to a standalone KEW server using Web Services.

Wildcard A character that may be substituted for any of a defined subset of all possible
characters.

Workflow Electronic document routing, approval and tracking. Also known as Workflow
Services or Kuali Enterprise Workflow (KEW). The Kuali infrastructure service

Glossary

46

that electronically routes an e-doc to its approvers in a prescribed sequence,
according to established business rules based on the e-doc content. See also Kuali
Enterprise Workflow.

Workflow Engine The component of KEW that handles initiating and executing the route path of a
document.

Workflow QuickLinks A web interface that provides quick navigation to various functions in KEW.
These include:

• Quick EDoc Watch: The last five Actions taken by this user. The user can select
and repeat these actions.

• Quick EDoc Search: The last five EDocs searched for by this user. The user can
select one and repeat that search.

• Quick Action List: The last five document types the user took action with. The
user can select one and repeat that action.

X
XML See also XML Ingester.

1. An acronym for Extensible Markup Language.

2. Used for data import/export.

XML Ingester A workflow function that allows you to browse for and upload XML data.

XML RuleAttribute Similar in functionality to a RuleAttribute but built using XML only

