
Kuali Rice 2.5.3-SNAPSHOT
Kuali Service Bus

iii

Table of Contents
1. KSB Overview ... 1

What is the Kuali Service Bus? .. 1
Features .. 1
Bean-Based Services ... 2
Overview of Supported Service Protocols ... 3

2. Message Queue .. 4
Current Node Info .. 4
Message Filter and Fetch ... 5
Documents Currently in Route Queue .. 6
View .. 7

3. Thread Pool ... 9
4. Service Registry .. 10
5. Pessimistic Locking ... 12

Default Pessimistic Locking .. 12
Locking for User Entry .. 12
Document Configuration - Document ... 12
Customizing ... 13
Defining 'Entry' Edit Modes ... 13
Using custom Lock Descriptors ... 13
Locking for Workflow Processing .. 14
Default Workflow Actions that Don't Require Locks ... 14
Document Configuration - Workflow ... 14
Customizing ... 14
Using a Custom Lock Owner .. 15

6. Quartz ... 16
7. Security ... 17

Overview ... 17
Security Management .. 17
Credentials types .. 18
CredentialsSource ... 18

KSB security: Server side configuration .. 18
KSB security: Client side configuration .. 19

KSB connector and exporter code .. 19
Connectors ... 19
Exporters ... 19

Security and Keystores .. 19
Generating the Keystore ... 19
Step 1: Create the Keystore .. 19
Step 2: Sign the Key ... 20
Step 3: Generate the Certificate ... 20
Step 4: Import Application Certificates ... 20
Configure KSB to use the keystore .. 20

BasicAuthenticationService ... 21
8. Details of Supported Service Protocols .. 23

Java Rice Client ... 23
As Consumer ... 23
As Producer ... 23

Any Java Client .. 23
As Consumer ... 23
As Producer ... 23

Non-Java/Non-Rice Client .. 24

Kuali Rice 2.5.3-SNAPSHOT
Kuali Service Bus

iv

As Consumer ... 24
As Producer ... 24

KSB Registry as a Service ... 24
9. Configuring the KSB Client in Spring ... 25

Overview ... 25
Spring Property Configuration ... 25
Spring JTA Configuration .. 26
Put JTA and the Rice Config object in the CoreConfigurer ... 27
Configuring KSB without JTA .. 27
web.xml Configuration .. 28
Configuration Parameters ... 29

dev.mode ... 29
message.persistence ... 29
message.delivery ... 29
message.off .. 30
RouteQueue.maxRetryAttempts ... 30
RouteQueue.timeIncrement ... 30
Routing.ImmediateExceptionRouting .. 30
RouteQueue.maxRetryAttemptsOverride ... 30
useQuartzDatabase .. 30
ksb.org.quartz.* .. 30
rice.ksb.config.allowSelfSignedSSL .. 30
rice.ksb.web.forceEnable .. 31

KSBConfigurer Properties .. 31
exceptionMessagingScheduler ... 31
messageDataSource ... 31
nonTransactionalMessageDataSource .. 31
registryDataSource .. 31
services ... 31

KSB Configurer .. 31
Implications of "synchronous" vs. "asynchronous" Message Delivery 33

10. Configuring Quartz for KSB .. 35
Quartz Scheduling ... 35

11. Acquiring and Invoking Services Deployed on KSB .. 36
Service invocation overview ... 36
Acquiring and invoking a service directly ... 36
Acquiring and invoking a service using messaging .. 38
Getting responses from service calls made with messaging ... 39

12. Failover ... 41
Service call failover .. 41
Failover with queues ... 41
Failover with topics ... 41

13. KSB Exception Messaging .. 42
14. KSB Messaging Paradigms ... 43

Queues .. 43
Topics ... 43
Message Fetcher ... 43

15. Load Balancing ... 44
16. Object Remoting ... 45
17. Publishing Services to KSB ... 46

KSBConfigurer ... 46
Service Exporter ... 46
CallbackServiceExporter .. 47

Version Compatibility for Callback Services .. 47

Kuali Rice 2.5.3-SNAPSHOT
Kuali Service Bus

v

Callback Service Exporter Helper .. 48
ServiceDefinition properties .. 48

Basic parameters ... 48
ServiceNameSpaceURI/MessageEntity .. 49
SOAPServiceDefinition .. 49
JavaServiceDefinition .. 49
Publishing Rice services .. 49

18. The ResourceLoader Stack .. 51
Overview ... 51
Accessing and overriding Rice services and beans from Spring ... 52

ResourceLoaderFactoryBean ... 52
Installing an application root resource loader ... 52
Overriding Rice services: Alternate method ... 52

19. Queue and Topic invocation .. 54
Queue invocation .. 54
Topic invocation ... 54

20. KSB Parameters .. 55
Core Parameters ... 55

serviceServletUrl .. 55
application.id .. 56
keystore.file, keystore.alias, keystore.password ... 56
ksb.mode ... 56
ksb.url ... 56
rice.ksb.struts.config.files ... 56
dev.mode ... 56
message.persistence ... 56
message.delivery ... 56
message.off .. 56
RouteQueue.maxRetryAttempts ... 57
RouteQueue.timeIncrement ... 57
RouteQueue.maxRetryAttemptsOverride ... 57
Routing.ImmediateExceptionRouting .. 57
useQuartzDatabase .. 57
ksb.org.quartz.* .. 57

KSB Configurer Properties ... 57
exceptionMessagingScheduler ... 57
messageDataSource ... 57
registryDataSource .. 58
overrideServices ... 58
Services .. 58

21. JAX-RS / RESTful services ... 59
Caveats ... 59
A Simple Example .. 59
Composite Services ... 60
Additional Service Definition Properties ... 61

Providers ... 61
Extension Mappings .. 62
Language Mappings .. 62
Additional Information ... 62

22. Using the KSB with bus security .. 63
Rice Services ... 63

Base Rice services .. 63
CampusService ... 63

Bus Security .. 64

Kuali Rice 2.5.3-SNAPSHOT
Kuali Service Bus

vi

Usage Examples ... 64
Obtaining rice.keystore .. 64
Using the KSB with bus security - new keystore aliases ... 64
KSB SoapUI Client ... 65

Creating the SoapUI project .. 65
Identifying rice.keystore to the SoapUI project ... 66
Configure using the keystore for outgoing requests ... 67
Associating our WS-Security Outgoing Configurations to a request 68
Execute the request ... 69

KSB Java Client ... 70
Generating the web service client .. 70
Create a Maven project .. 71
Writing the Java code .. 72
Complete sample application .. 74

Using the KSB with bus security - SOAP request ... 75
SOAP request with WS-Security header .. 75

23. Caching Infrastructure .. 77
Overview ... 77
Proposal that was Implemented ... 77
The Implementation .. 78

The Spring Parts ... 78
The Kuali Parts .. 79
A Real Example ... 79
Standards and Rules .. 81
Caching Administration UI ... 83
Putting it all together ... 83
Implementation Plug Points .. 84

References ... 86
Glossary .. 87

vii

List of Figures
1.1. Kuali Service Bus .. 1
1.2. Supported Service Protocols ... 3
2.1. Message Queue: Documents Currently In Route ... 4
2.2. Message Filter Screen ... 5
2.3. Execute Message Filter: Confirmation Screen .. 6
2.4. Documents In Route Queue ... 6
2.5. Requeue Documents: Confirmation Screen .. 8
3.1. Thread Pool Administration Page .. 9
4.1. Service Registry ... 10
4.2. Service Registry Results .. 11
6.1. Exception Routing Queue ... 16
7.1. Create Keystore .. 17
7.2. Create Keystore: File Section .. 17
7.3. Create Keystore: Existing Keystore Section ... 18
18.1. Global Resource Loader ... 51
22.1. Create a new SoapUI project ... 66
22.2. Identify rice.keystore to the SoapUI project ... 67
22.3. Identify rice.keystore to the SoapUI project ... 68
22.4. Associate Outgoing Config to a Request ... 69
22.5. Execute request .. 70
23.1. Cache Proposal ... 78
23.2. Standard call flow 1 .. 84
23.3. Standard call flow 2 .. 84

viii

List of Tables
2.1. Message Filter Screen: Attributes .. 5
2.2. Documents Currently in Route Queue: Attributes ... 6
2.3. Message: Attributes .. 7
2.4. Payload: Attributes ... 7
2.5. Edit Screen: Attributes .. 8
2.6. Edit Screen: Links .. 8
3.1. Thread Pool: Attributes ... 9
6.1. Exception Routing Queue: Attributes .. 16
7.1. Existing Keystore Entries: Attributes .. 18
9.1. KSB Configuration Parameters .. 29
11.1. Properties of the ServiceDefinition ... 37
17.1. ServiceDefinition Properties .. 48
17.2. SOAPServiceDefinition .. 49
17.3. JavaServiceDefinition .. 49
20.1. Core Parameters .. 55

1

Chapter 1. KSB Overview
What is the Kuali Service Bus?

The Kuali Service Bus (KSB) is a lightweight service bus designed to allow developers to quickly develop
and deploy services for remote and local consumption. You can deploy services to the bus using Spring
or programmatically. Services must be named when they are deployed to the bus. Services are acquired
from the bus using their name.

At the heart of the KSB is a service registry. This registry is a listing of all services available for
consumption on the bus. The registry provides the bus with the information necessary to achieve load
balancing, failover, and more.

Figure 1.1. Kuali Service Bus

You can deploy services to the bus using Spring or programmatically. Services must be named when they
are deployed to the bus. Services are acquired from the bus using their name.

Features
• Transactional Asynchronous Messaging - You can call services asynchronously to support a 'fire and

forget' model of calling services. Messaging participates in existing JTA transactions, so that messages
are not sent until the currently running transaction is committed and are not sent if the transaction is
rolled back. You can increase the performance of service calling code because you are not waiting for
a response.

KSB Overview

2

• Synchronous Messaging - Call any service on the bus using a request response paradigm.

• Queue Style Messaging - Supports executing Java services using message queues. When a message is
sent to a queue, only one of the services listening for messages on the queue is given the message.

• Topic Style Messaging - Supports executing Java services using messaging topics. When a message is
sent to a topic, all services that are listening for messages on the topic receive the message.

• Quality of Service - Determines how queues and topics handle messages that have problems. Time to
live is supported, giving the message a configured amount of time to be handled successfully before
exception handling is invoked for that message type. Messages can be given a number of retry attempts
before exception handling is invoked. The delay separating each call increases. Exception handlers can
be registered with each queue and topic for custom behavior when messages fail and Quality of Service
limits have been reached.

• Discovery - Services are automatically discovered along the bus by service name. End-point URLs are
not needed to connect to services.

• Reliability - Should problems arise, messages sent to services via queues or synchronous calls
automatically fail-over to any other services bound to the same name on the bus. Services that are not
available are removed from the bus until they come back online, at which time they will be rediscovered
for messaging.

• Persisted Callback - Callback objects can be sent with any message. This object will be called each
time the message is received with the response of the service (think topic as opposed to queue). In this
way, we can deploy services for messaging that actually return values.

• Primitive Business Activity Monitoring - If turned on, each call to every service, including the
parameters passed into that service, is recorded. This feature can be turned on and off at runtime.

• Spring-Based Integration - KSB is designed with Spring-based integration in mind. A typical scenario
is making an existing Spring-based POJO available for remote asynchronous calls.

• Programmatic Based Integration - KSB can be configured programmatically if Spring configuration
is not desired. Services can also be added and removed from the bus programmatically at runtime.

Bean-Based Services

Typically, KSB programming is centered on exposing Spring-configured beans to other calling code using
a number of different protocols. Using this paradigm the client developer and the organization can rapidly
build and consume services, often a daunting challenge using other buses.

KSB Overview

3

Overview of Supported Service Protocols

Figure 1.2. Supported Service Protocols

This drawing is conceptual and not representative of true deployment architecture. Essentially, the KSB is
a registry with service-calling behavior on the client end (Java client). All policies and behaviors (async as
opposed to sync) are coordinated on the client. The client offers some very attractive messaging features:

• Synchronization of message sending with currently running transaction (meaning all messages sent
during a transaction are ONLY sent if the transaction is successfully committed)

• Failover - If a call to a service comes back with a 404 (or various other network-related errors), it will
try to call other services of the same name on the bus. This is for both sync and async calls.

• Load balancing - Clients will round-robin call services of the same name on the bus. Proxy instances,
however, are bound to single machines if you want to keep a line of communication open to a single
machine for long periods of time.

• Topics and Queues

• Persistent messages - When using message persistence a message cannot be lost. It will be persisted
until it is sent.

• Message Driven Service Execution - Bind standard JavaBean services to messaging queues for
message driven beans.

4

Chapter 2. Message Queue
Use the Message Queue section to administer the KNS message queuing system. You can find it on the
Administration menu.

It has three main sections: Current Node Info, the message filter and fetch section, and the Documents
currently in route queue section.

Figure 2.1. Message Queue: Documents Currently In Route

Current Node Info
• IP Address: This value equals the IP address of the machine: Rice

• message.persistence: If true, then messages will be persisted to the datastore. Otherwise, they will only
be stored in memory. If message persistence is not turned on and the server is shutdown while there are
still messages in queue, those messages will be lost. For a production environment, it is recommended
that message persistence be set to true.

• message.delivery: Can be set to either "synchronous" or "async". If this is set to synchronous, then
messages that are sent in an asynchronous fashion using the KSB application interface (API) will be
sent synchronously. This is useful in certain development and unit testing scenarios. For a production
environment, it is recommended that message delivery be set to async.

• message.off: If set to "true" then asynchronous messages will not be sent. In the case that message
persistence is turned on, they will be persisted in the message store and can even be picked up later
using the Message Fetcher. However, if message persistence is turned off, these messages will be lost.
This can be useful in certain debugging or testing scenarios.

Message Queue

5

Message Filter and Fetch
The message filter and fetch section of the Message Queue screen lets you search for, filter, and/or isolate
messages in the Documents in route queue. To use the Message Filter section, enter your criteria and click
the Filter button:

Figure 2.2. Message Filter Screen

Table 2.1. Message Filter Screen: Attributes

Field Description

Message ID A unique 5-digit message queue identification number

Service Name The name of the service

Application ID The service container's identifier

IP Number The message initiator's IP address

Queue Status You can sort documents by the queue status. The queue status may be:

• QUEUED: The message is waiting for a worker thread to pick it up

• ROUTING: A worker is currently working on the message.

• EXCEPTION: There is a problem with the message and the route
manager will ignore it. EXCEPTION status is typically set manually by
the administrator to suspend a route queue entry until a problem can be
diagnosed.

App Specific Value 1 The specific value of a document

App Specific Value 2 The specific value of a document

Filter Button Click to execute the search filter

The Execute Message Fetcher button retrieves all the messages in the route queue. You can adjust the
number of messages requested by entering a number in the field left of the button.

When you click the Execute Message Fetcher button, a dialog box appears, confirming that you want to
execute this command:

Message Queue

6

Figure 2.3. Execute Message Filter: Confirmation Screen

KSB displays the results of a search and/or filter at the bottom of the page in the Documents currently
in route queue table.

Figure 2.4. Documents In Route Queue

Documents Currently in Route Queue
Table 2.2. Documents Currently in Route Queue: Attributes

Field Description

Message Queue ID A unique 5-digit message queue identification number. This is the same as
the Message ID in the Message Filter section.

Service Name The name of the service

Message Entity

IP Number The message initiator's IP address

Queue Status You can sort documents by the queue status. The queue status may be:

• QUEUED: The message is waiting for a worker thread to pick it up

• ROUTING: A worker is currently working on the message.

• EXCEPTION: There is a problem with the message and the route
manager will ignore it. EXCEPTION status is typically set manually by
the administrator to suspend a route queue entry until a problem can be
diagnosed.

Queue Priority The priority of the entry in the queue. Entries with the smallest number
are processed first.

Queue Date The date on which the queue entry should be processed. If the queue
checker runs and discovers entries that have a queue date that are equal to
or earlier than the current time, it processes them. The approximate time
at which this screenshot was taken 4:53 PM.

Expiration Date

Retry Count

App Specific Value 1

App Specific Value 2

Message Queue

7

Field Description

Actions Click a link in this field to:

• View: View the detail message report

• Edit: Edit the settings of a Message Entry

• ReQueue: Enforce the routing process

View
When you click View in the Actions menu, KSB displays information about that message. Most of the
initial information is the same as that displayed in the Documents currently in route queue table. Additional
information on the View screen:

• Message

Table 2.3. Message: Attributes

Field Description

Application ID: The service container's identifier

Method Name:

• Payload

Table 2.4. Payload: Attributes

Field Description

Payload Class The class of the Payload

Method Name The name of the method used in this document

ignoreStoreAndForward A true and false indicator that ignores the store functions and forwards
the message

ServiceInfo.messageEntryId A unique 4-digit message entry identification number

ServiceInfo.ServiceNamespace The application

ServiceInfo.serverIp The server's IP address

ServiceInfo.ServiceName The name of the service

ServiceInfo.endpointUrl The web address of the service

ServiceInfo.queue A true and false indicator that activates the queue or topic function:

• "True" uses the Queue method, which sends the message to one
contact at a time

• "False" uses the Topic method, which sends the message to all contacts
at once

ServiceInfo.alive A true and false indicator that shows the activity state of the document

ServiceInfo.priority The priority of the entry for execution. Entries with the smallest number
are processed first

ServiceInfo.retryAttempts How many times KSB will try to resend the message

ServiceInfo.millisToLive An expiration indicator:

• 1 means the message never expires

ServiceInfo.messageExceptionHandler This provides a reference the service can use to call back.

ServiceInfo.serviceclass The name of the service class

ServiceInfo.busSecurity A true and false indicator that assigns the security function

ServiceInfo.credentialsType The credential type of the document

Arguments The argument of this document

• Edit

Message Queue

8

When you click Edit in the Actions menu, KSB displays the editable fields for that message. Fields
on the Edit screen:

Table 2.5. Edit Screen: Attributes

Field Description

Queue Priority Change the queue priority by entering a positive number. A smaller
number has higher priority for execution.

Queue Status Change the status to Queued, Routing, or Exception.

Retry Count Change the number of times KSB will retry.

IP Number Change the initiator's IP address.

Service Name Change the name of the service.

Message Entity Change the message entity.

Method Name Change the method.

App Specific Value 1 Change the information for the specific value 1.

App Specific Value 2 Change the information for the specific value 2.

Functional links on the Edit page:

Table 2.6. Edit Screen: Links

Field Description

Save Changes Save the information you just changed.

Save Changes and Resubmit Save the information you changed and resubmit the message.

Save and Forward Save the message and send it to the next contact.

Delete Delete the message.

Reset Reload the previous settings. This undoes the changes that you made on
this screen, as long as you haven't yet saved them.

Clear Message Clear all information fields on this page.

• ReQueue

When you click ReQueue in the Actions menu, KSB displays this pop-up message:

Figure 2.5. Requeue Documents: Confirmation Screen

9

Chapter 3. Thread Pool
Thread pool is a feature that improves overall system performance by creating a pool of threads which
can be independently used by the system to execute multiple tasks at the same time. A task can execute
immediately if there is a thread in the pool that is available. If no thread is available, the task waits for a
thread to become available from the pool before executing.

The Thread Pool screen is accessed from the Administration menu. It tells you the current state of
the Thread Pool and allows you to change four parameters for the Thread Pool. The core pool size, the
maximum pool size, the RouteQueue.TimeIncrement and the RouteQueue.maxRetryAttempts.

Figure 3.1. Thread Pool Administration Page

Table 3.1. Thread Pool: Attributes

Field Description

Core Pool Size A positive number equal to the core number of threads in the pool

Maximum Pool Size A positive number equal to the maximum number of threads in the pool;
when the Core Pool Size is larger than the Maximum Pool Size, Maximum
Pool Size automatically sets the pool size equal to the Core Pool Size

Pool Size The current number of threads in the pool

Active Count The approximate number of threads that are actively executing tasks

Largest Pool Size Maximum number of threads allowed in the Thread Pool

Keep Alive Time The amount of time which threads in excess of the core pool size
may remain idle before being terminated; measured in milliseconds; for
example, 60,000 milliseconds = 60 seconds

Task Count Number of tasks that have been scheduled for execution

Completed Task Count Number of tasks that have completed execution

Execute Across All Servers with Application ID RICE When you click this checkbox, then click the Update button, the update
is applied across all servers.

Update button Click the Update button to execute the changes you entered in the editable
fields above.

10

Chapter 4. Service Registry
The Service Registry lists published and temporary services that are available for the local machine. You
cannot configure the service registry here; this is only information about the registry.

Display this page by clicking the Service Registry link on the Rice Administration page.

At the top of the page, the Current Node Info table shows the settings and configuration of the local
machine:

The returned table of services is divided into three sections:

1. Published Services: Services in use by the local machine

2. Published Temp Services: Temporary services that are the result of Object Remoting. For more
information about Object Remoting, please refer to the Object Remoting section of the KSB portion
of the Technical Reference Guide.

3. All Registry Services

This screen print shows the top of a Service Registry page, with the Current Node Info table and the
beginning of the Published Services table, as well as the refresh link and button:

Figure 4.1. Service Registry

To update the list of published services, use either the Refresh Page link in the header at the top of the
page or the "Refresh Service Registry" button.

This screen print shows the point on a Service Registry page where KSB displays a notation that there are
no published temporary services and the beginning of the All Registry Services table:

Service Registry

11

Figure 4.2. Service Registry Results

Please note, you may have permissions that allow you to click on a row's Endpoint URL to view the
WSDL fiels assoicated with the given service. In Internet Explorer or Firefox, this WSDL will be displayed
normally in a separate window. In Google Chrome or Safari, however, you will need to click the link then
right click to view the frame source to see the WSDL due to current restrictions in Chrome and Safari.

12

Chapter 5. Pessimistic Locking
Default Pessimistic Locking

Warning

Only Transactional Documents may use the default Pessimistic Locking implementation.

To lock a document via the default Pessimistic Locking mechanism means that the document is locked
by a user prior to any changes the user may perform. The traditional setup of documents in Rice is to
lock them using Optimistic Locking where two users may edit a document at the same time. However,
the first user to take an action that will save the document will 'win', and the second user will see an error
saying that the document was edited by another user. For Pessimistic Locking, the first user who has edit
privileges will get a lock on the document, and any subsequent users who should have edit privileges on
the document, who try to view the document, will only get read-only access to the document, until the
first user's lock is 'released'.

Note

Pessimistic Locking is used in conjunction with standard Rice Optimistic Locking. Currently
there is no way to use Pessimistic Locking instead of the default Optimistic Locking.

There are two places in Rice where Pessimistic Locks can be used:

• Locking for User Entry - locks are created by a user who has some type of entry privileges on the
document

• Locking for Workflow Processing - locks are created when a workflow process is begun

Locking for User Entry
The default implementation for locking a document for user entry tells the system to place a lock on a
document if a user attempts to view it and that user has one or more 'entry' type edit modes as defined
by the document's Document Authorizer class. Once the lock is placed, any other user who should have
'entry' privileges on the document will not be allowed to do so until the lock by the first user is released.

Note

If the Transactional Document that will be using Pessimistic Locking has a custom Document
Authorizer class and uses custom edit modes returned by the getEditMode(Document,
UniversalUser) method, the custom authorizer class should also override the method
isEntryEditMode(Map.Entry). See #Defining 'Entry' Edit Modes below.

Document Configuration - Document
To enable Pessimistic Locking on a document the attribute 'usePessimisticLocking' must be set to 'true'
in the transactional document's entry.

Example:

 1 <dictionaryEntry>
 2 <transactionalDocument>

Pessimistic Locking

13

 3 ...
 4 <usePessimisticLocking>true</usePessimisticLocking>
 5 ...
 6 </transactionalDocument>
 7 </dictionaryEntry>

Customizing
For extremely complex customization that goes beyond what may be described
in this document a client developer can look at the javadocs of the
org.kuali.core.document.authorization.DocumentAuthorizerBase class paying
special attention to the methods below:

• isLockRequiredByUser(Document, Map, UniversalUser)

• isEntryEditMode(Map.Entry)

• getEditModeWithEditableModesRemoved(Map)

• getEntryEditModeReplacementMode()

• createNewPessimisticLock(Document, Map, UniversalUser)

The completely override the lock handling the Document Authorizer method establishLocks(Document,
Map, UniversalUser) can be overriden.

Defining 'Entry' Edit Modes
If the Transactional Document that will be using Pessimistic Locking has a custom Document
Authorizer class and uses custom edit modes returned by the getEditMode(Document,
UniversalUser) method, the custom authorizer class should also override the method
isEntryEditMode(Map.Entry) . If the entry parameter passed in is defined as a valid 'entry' mode
then the method should return true.

Using custom Lock Descriptors
The default Pessimistic Lock implementation does not use Lock Descriptors so only one person may have
a lock on a single document at any one time. If something more custom is required Lock Descriptors
can be used. The default implementation of a document that uses Pessimistic Locking and custom Lock
Descriptors is that once a single user establishes a lock on a certain document with a certain lock
descriptor... no other user can create a lock on that document with that descriptor. If another user needs
that lock created they will have read only access on the document until the other user releases their lock.

Example

As an example, think of a document that has both an Delivery section and a Billing section. Perhaps a
user 'fred' has access to edit the Delivery section but not the Billing section. Likewise, a user 'francine' has
access to edit the Billing section but not the Delivery section. In this case it would be possible for both
'francine' and 'fred' to each have a lock on a single document since the data they have editable is mutually
exclusive from the other. In this example 'fred' could have a Pessimistic Lock with a descriptor 'Delivery'
while 'francine' could have a Pessimistic Lock with a 'Billing' descriptor.

To use lock descriptors the client application document should implement a custom Document Authorizer
class if not done already (see Authorizers - Client Developer Guide (0.9.3) for more information). The
authorizer class should override the useCustomLockDescriptors() method to return true. The method

Pessimistic Locking

14

getCustomLockDescriptor(Document, Map, UniversalUser) must also be overriden to return the value of
the desired lock descriptor. It's up to the client to determine how to set these and what values to use.

Locking for Workflow Processing
The default implementation for locking a document for processing by Workflow tells the system to place
a lock on a document once a Workflow action is taken if that Workflow action is not contained in a list
(see Default Workflow Actions that Don't Require Locks). The default user that will 'own' the lock will
be the Rice System User. Once the lock is placed, any other user who should have 'entry' privileges on
the document will not be allowed to do so until the lock is released. Locks for Workflow processing are
released once the Workflow process completes successfully.

Note

If a document that has a Pessimistic Lock for Workflow is not successfully processed and goes
into Exception Routing, the document will stay locked by the Workflow process.

Default Workflow Actions that Don't Require
Locks

The following actions in Workflow will not set up a Pessimistic Lock for the coinciding process:

• Save

• Acknowledge

• Clear FYI

• Disapprove

• Canceled

• Log on Document

Document Configuration - Workflow
To enable Pessimistic Locking for Workflow operations on a document the attribute
useWorkflowPessimisticLocking must be set to 'true' in the transactional document's entry.

Example

 1 <dictionaryEntry>
 2 <transactionalDocument>
 3 ...
 4 <useWorkflowPessimisticLocking>true</useWorkflowPessimisticLocking>
 5 ...
 6 </transactionalDocument>
 7 </dictionaryEntry>

Customizing
The Pessimistic Locking mechanism for Workflow processes has lock creation and lock
releasing points that exist in a document's post processor methods. Specifically the method

Pessimistic Locking

15

doActionTaken(ActionTakenEventVO) in the DocumentBase class is used to create locks
while the method afterWorkflowEngineProcess(boolean) in the same class is used to release
locks. If a document overrides either of these methods or does not use the standard KualiPostProcessor
implementation, the client will need to use the DocumentBase methods code in whatever method they
implement if they would like Pessimistic Locking for Workflow.

Using a Custom Lock Owner
The default owner of a Pessimistic Lock created for a Workflow process is the Rice System
User. To change that a client can implement a custom Document Authorizer class and override
the method getWorkflowPessimisticLockOwnerUser(). This method is used to get the
lock owner for lock creation but also will be used to release the lock at the conclusion of the
Workflow process. If a non-static user will be used a client may need to override the method
releaseWorkflowPessimisticLocking(Document) to handle special cases.

16

Chapter 6. Quartz
The Kuali Service Bus (KSB) uses Quartz to schedule delayed tasks, including retry attempts for messages
that cannot be sent the first time. By default, KSB uses an embedded quartz scheduler that can be configured
by passing parameters starting with "ksb.org.quartz." into the Rice configuration.

You can inject a custom quartz scheduler if the application is already running one. See the Technical
Reference Guide for KSB, Configuring Quartz for KSB for more information.

Quartz is also known as the Exception Routing Queue.

Figure 6.1. Exception Routing Queue

When you click the Quartz link on the Kuali Rice Portal Administration page, KSB displays the screen
shown above. The contents of the table can be sorted in ascending or descending order by clicking on a
column title. This technique works for all columns except Actions. The table contains this information on
each job that is scheduled:

Table 6.1. Exception Routing Queue: Attributes

Field Description

Job Name Unique name for the job

Job Group Classification of the job

Description Text description of what this job does

Time to execute The scheduled date and time for the job to occur

FullName A more descriptive Job Name

Actions Put in message queue effectively is a button that takes that message out of
quartz and sends it back into the KSB to be retried without waiting until
the scheduled time.

17

Chapter 7. Security

Overview
Acegi handles the security layer for KSB. Acegi uses remote method invocation to hold the application's
security context and to propagate this object through to the service layer.

Security Management
For client applications to consume secured services hosted from a standalone Rice server, the implementer
must generate a keystore in KSB. KSB security relies on the creation of a keystore using the JVM keytool.

Figure 7.1. Create Keystore

To create a new Client Keystore file, complete all three fields and click the create button that is just below
the fields:

Figure 7.2. Create Keystore: File Section

The Desired Alias (name for the new keystore you are creating) must be unique among your keystores.
KSB automatically displays a list of existing Keystore entries for your reference below the Create new
Client Keystore file table. The data in this list can be sorted in ascending or descending order by clicking
the column heading for any column except Actions.

Security

18

Figure 7.3. Create Keystore: Existing Keystore Section

Table 7.1. Existing Keystore Entries: Attributes

Field Description

Alias Keystore name

Create Date Date and time the keystore was created

Type The type of keystore

Actions

Credentials types
There are several security types you can use to propagate the security context object:

• CAS

• USERNAME_PASSWORD

• JAAS

• X509

CredentialsSource
The CredentialsSource is an interface that helps obtain security credentials. It encapsulates the actual
source of credentials. The two ways to obtain the source are:

• X509CredentialsSource - X509 Certificate

• UsernamePasswordCredentialsSource - Username and Password

KSB security: Server side configuration
Here is a code snippet that shows the changes needed to configure KSB security on the server side:

 1 <bean id="ksbConfigurer" class="org.kuali.rice.ksb.messaging.config.KSBConfigurer">
 2 <!-- Other properties removed -->
 3 <property name="services">
 4 <list>
 5 <bean class="org.kuali.rice.ksb.api.bus.support.SoapServiceDefinition">
 6 <property name="service">
 7 <ref bean="soapService" />
 8 </property>
 9 <property name="localServiceName" value="soapLocalName"/>
 10 <property name="serviceNameSpaceURI" value="soapNameSpace"/>
 11 <property name="serviceInterface" value="org.kuali.ksb.examples.SOAPEchoService"/>
 12 <property name="priority" value="3"/>
 13 <property name="retryAttempts" value="1" />
 14 <property name="busSecurity" value="false"></property>
 15
 16 <!-- Valid Values: CAS, KERBEROS -->
 17 <property name="credentialsType" value="CAS"/>

Security

19

 18 </bean>
 19 <bean class="org.kuali.rice.ksb.api.bus.support.JavaServiceDefinition">
 20 <property name="service" ref="echoService"></property>
 21 <property name="localServiceName" value="javaLocalName" />
 22 <property name="serviceNameSpaceURI" value="javaNameSpace"/>
 23 <property name="serviceInterface" value="org.kuali.ksb.examples.EchoService"/>
 24 <property name="priority" value="5" />
 25 <property name="retryAttempts" value="1" />
 26 <property name="busSecurity" value="true" />
 27
 28 <!-- Valid Values: CAS, KERBEROS -->
 29 <property name="credentialsType" value="CAS"/>
 30 </bean>
 31 <!-- Other services removed -->
 32 </list>
 33 </property>
 34 </bean>

KSB security: Client side configuration

 1 <bean id="customCredentialsSourceFactory"
 class="edu.myinstituition.myapp.security.credentials.CredentialsSourceFactory" />
 2
 3 <bean id="coreConfigurer" class="org.kuali.rice.core.impl.config.module.CoreConfigurer">
 4 <!-- Other properties removed -->
 5 <property name="credentialsSourceFactory" ref="customCredentialsSourceFactory">
 6 </bean>
 7

KSB connector and exporter code

Connectors
Connectors are used by a client to connect to a service that is usually exposed through the KSB registry.
The Service Connector factory provides a bean that holds a proxy to a remote service with some contextual
information. The factory determines the type of proxy to invoke based on the service definition. The service
definition used by the server is serialized to the database and de-serialized by the client. There are different
types of connectors supported by KSB, most notable are SOAP and Java over HTTP.

Exporters
Services, when exported, can be secured using standard Acegi methods. A security manager and an
interceptor help organize the set of Business Objects that are exported.

Security and Keystores

Generating the Keystore
For client applications to be able to consume secured services hosted from a Rice server, the implementer
must generate a keystore. As an initial setup, KSB security relies on the creation of a keystore using the
JVM keytool as follows:

Step 1: Create the Keystore
The first step is to create the keystore and generate a public-private key combination for the client
application. When using secured services on the KSB, we require the client applications transfer their

Security

20

messages digitally signed so that Rice can verify the messages authenticity. This is why we must generate
these keys.

Generate your initial Rice keystore as follows:

keytool -genkey -validity 9999 -alias rice -keyalg RSA -keystore rice.keystore -dname "cn=rice" -keypass r1c3pw
 -storepass r1c3pw

Caution

keypass and storepass should be the same.

r1c3pw is the password used for the provided example.

Step 2: Sign the Key
This generates the keystore in a file called "rice_keystore" in the current directory and generates an RSA
key with the alias of "rice". Since there is no certificate signing authority to sign our key, we must sign it
ourselves. To do this, execute the following command:

keytool -selfcert -validity 9999 -alias rice -keystore rice.keystore -keypass r1c3pw -storepass r1c3pw

Step 3: Generate the Certificate
After the application's certificate has been signed, we must export it so that it can be imported into the
Rice keystore. To export a certificate, execute the following command:

keytool -export -alias rice -file rice.cert -keystore rice.keystore -storepass r1c3pw

Step 4: Import Application Certificates
The client application's certificate can be imported using the following command:

keytool -import -alias rice -file client.application.cert.file -keystore rice.keystore -storepass r1c3pw

The keystore file will end up deployed wherever your keystores are stored so hang on to both of these files
and don't lose them! Also, notice that we specified a validity of 9999 days for the keystore and cert. This
is so you do not have to continually update these keystores. This will be determined by your computing
standards on how you handle key management.

Configure KSB to use the keystore
The following params are needed in the xml config to allow the ksb to use the keystore:

 1 <param name="keystore.file">/usr/local/rice/rice.keystore</param>
 2 <param name="keystore.alias">rice</param>
 3 <param name="keystore.password"> password </param>
 4

• keystore.file - is the location of the keystore

Security

21

• keystore.alias - is the alias used in creating the keystore above

• keystore.password - this is the password of the alias AND the keystore. This assumes that the keystore
is up in such a way that these are the same.

BasicAuthenticationService
The BasicAuthenticationService allows services published on the KSB to be accessed securely with basic
authentication. As an example, here is how the Workflow Document Actions Service could be exposed
as a service with basic authentication.

• Add the following bean to a spring bean file that is loaded as a part of the KEW module.

 1 <bean id="rice.kew.workflowDocumentActionServiceBasicAuthentication.exporter"
 2 parent="kewServiceExporter" lazy-init="false">
 3 <property name="serviceDefinition">
 4 <bean parent="kewService">
 5 <property name="service">
 6 <ref bean="rice.kew.workflowDocumentActionsService" />
 7 </property>
 8 <property name="localServiceName"
 9 value="workflowDocumentActionsService-basicAuthentication" />
 10 <property name="busSecurity"
 11 value="${rice.kew.workflowDocumentActionsService.secure}" />
 12 <property name="basicAuthentication" value="true" />
 13 </bean>
 14 </property>
 15 </bean>

• Add the following bean to a spring bean file that is loaded as a part of the KSB module.

 1 <bean class="org.kuali.rice.ksb.service.BasicAuthenticationCredentials">
 2 <property name="serviceNameSpaceURI"
 3 value="http://rice.kuali.org/kew/v2_0" />
 4 <property name="localServiceName"
 5 value="workflowDocumentActionsService-basicAuthentication" />
 6 <property name="username"
 7 value="${WorkflowDocumentActionsService.username}" />
 8 <property name="password"
 9 value="${WorkflowDocumentActionsService.password}" />
 10 <property name="authenticationService" ref="basicAuthenticationService" />
 11 </bean>

• Add the following config parameters to a secure file that is loaded when the application is started.

 1 <param name="WorkflowDocumentActionsService.username">username</param>
 2 <param name="WorkflowDocumentActionsService.password">pw</param>

• To verify the new service can be called, it can be tested using a tool such as soapUI. Here is an example
call which will invoke the method logAnnotation on WorkflowDocumentActionsServiceImpl.

 1 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 2 xmlns:v2="http://rice.kuali.org/kew/v2_0">
 3 <soapenv:Header>
 4 <wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"
 5 soapenv:mustUnderstand="1">
 6 <wsse:UsernameToken xmlns:wsu=
 7 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 8 wsu:Id="UsernameToken-1815911473">
 9 <wsse:Username>username</wsse:Username>

Security

22

 10 <wsse:Password Type=
 11 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-
profile-1.0#PasswordText">pw</wsse:Password>
 12 </wsse:UsernameToken>
 13 </wsse:Security>
 14 </soapenv:Header>
 15 <soapenv:Body>
 16 <v2:logAnnotation>
 17 <v2:documentId>123456</v2:documentId>
 18 <v2:principalId>admin</v2:principalId>
 19 <v2:annotation>Add this annotation please.</v2:annotation>
 20 </v2:logAnnotation>
 21 <soapenv:Body>
 22 </soapenv:Envelope>

23

Chapter 8. Details of Supported Service
Protocols
Java Rice Client
As Consumer

If configured for the KSB, a Java Rice Client can invoke any service in the KSB Registry using these
protocols:

1. Synchronously

• SOAP WS p2p using KSB Spring configuration

• Java call if it is within the same JVM

• Spring HTTP Remoting

2. Asynchronously

• Messaging Queues – As a Consumer, a Java Rice Client can invoke a one-shot deal for calling a
KSB-registered service asynchronously

• Java, SOAP, Spring HTTP Remoting

• Messaging Topics - As a Consumer listening to a topic, the Java Rice Client will receive a broadcast
message

As Producer
You can register Spring-defined services in the KSB Registry through the KSB Configurer. Consumers
can call these services as described in other sections.

Any Java Client
As Consumer

A Java Client, regardless of whether or not it's a Rice Client configured for the KSB, can invoke any
web service:

1. As a SOAP WS p2p using a straight-up WS call through CXF, Axis, etc. If the external web service is
not registered on the KSB, the Java client must discover the service on its own.

2. Through Java if they are within the same JVM

3. Through Spring HTTP Remoting; you must know the endpoint URL of the service.

As Producer
1. Currently, you can't leverage the KSB and its registry for exposing any of its services. It is possible to

bring up the registry and register services without the rest of the KSB.

Details of Supported Service Protocols

24

2. A Java Client can expose its web services directly using XFire (CXF), Axis, etc.

3. You can bring up only the registry for discovery. However, the registry can't be a 'service;' it can only
be a piece of code talking to a database.

Non-Java/Non-Rice Client

As Consumer
A non-Java/non-Rice Client that knows nothing about the KSB or its registry can only invoke web
services synchronously using:

• SOAP WS p2p using straight-up WS call through native language-specific WS libs

• Discovery cannot be handled by leveraging the KSB Registry at this time.

As Producer
1. Currently cannot register services on KSB in registry

2. Can still produce services, but they can't be called leveraging the KSB; clients need to discover and
invoke the services directly (on their own).

KSB Registry as a Service
As of the 2.0 version of Rice, the ServiceRegistry is now itself a service. In order to bring the registry
online for the client application, the application needs to configure a URL similar to the following:

 1 <param name="rice.ksb.registry.serviceUrl">http://localhost:8080/kr-dev/remoting/serviceRegistrySoap</
param>

Currently, this connector is only configured to understand a SOAP interface to the service registry which
is secured by digital signatures. This is the only type of interface to the registry that the standalone server
currently publishes. Additionally, only a single URL to the registry can be configured at the current time.
If someone wants to do load balancing amongst potential registry endpoints, then a hardware or software
load balancer could be configured to do this.

25

Chapter 9. Configuring the KSB Client
in Spring
Overview

The Kuali Service Bus (KSB) is installed as a Kuali Rice (Rice) Module using Spring. Here is an example
XML snippet showing how to configure Rice and KSB using Spring:

 1 <beans>
 2 ...
 3 <bean id="coreConfigurer" class="org.kuali.rice.core.impl.config.module.CoreConfigurer">
 4 <property name="dataSource" ref="riceDataSource${connection.pool.impl}" />
 5 <property name="nonTransactionalDataSource" ref="riceNonTransactionalDataSource" />
 6 <property name="transactionManager" ref="transactionManager${connection.pool.impl}" />
 7 <property name="userTransaction" ref="jtaUserTransaction" />
 8 </bean>
 9
 10 <bean id="ksbConfigurer" class="org.kuali.rice.ksb.messaging.config.KSBConfigurer"/>
 11 </beans>

Spring Property Configuration
The KSBTestHarnessSpring.xml located in the project folder under /ksb/src/test/resources/ is a good
starting place to explore KSB configuration in depth. The first thing the file does is use a
PropertyPlaceholderConfigurer to bring tokens into the Spring file for runtime configuration. The source of
the tokens is the xml file: ksb-test-config.xml located in the /ksb/src/test/resources/META-INF directory.

 1 <bean id="config" class="org.kuali.rice.core.config.spring.ConfigFactoryBean">
 2 <property name="configLocations">
 3 <list>
 4 <value>classpath:META-INF/ksb-test-config.xml</value>
 5 </list>
 6 </property>
 7 </bean>
 8
 9
 10 <bean class="org.springframework.beans.factory.config.MethodInvokingFactoryBean">
 11 <property name="staticMethod"
 value="org.kuali.rice.core.impl.config.property.ConfigInitializer.initialize"/>
 12 <property name="arguments">
 13 <list>
 14 <ref bean="config"/>
 15 </list>
 16 </property>
 17 </bean>
 18
 19
 20 <bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 21 <property name="properties" value="#{config.getProperties()}" />
 22 </bean>

Note

• Properties are passed into the Rice configurer directly. These could be props loaded from
Spring and injected into the bean directly.

• You could use the Rice configuration subsystem for configuration.

Configuring the KSB Client in Spring

26

• A JTA TransactionManager and UserTransaction are also being injected into the
CoreConfigurer.

As mentioned above, this allows tokens to be used in the Spring file. If you are not familiar with tokens,
they look like this in the Spring file: ${datasource.pool.maxSize}

Let's take a look at the ksb-test-config.xml file:

 1 <config>
 2 <param name="config.location">classpath:META-INF/common-derby-connection-config.xml</param>
 3 <param name="config.location">classpath:META-INF/common-config-test-locations.xml</param>
 4 <param name="client1.location">/ssd/jenkins/workspace/rice-2.5-site-deploy/src/test/clients/
TestClient1</param>
 5 <param name="client2.location">/ssd/jenkins/workspace/rice-2.5-site-deploy/src/test/clients/
TestClient2</param>
 6 <param name="ksb.client1.port">9913</param>
 7 <param name="ksb.client2.port">9914</param>
 8 <param name="ksb.testharness.port">9915</param>
 9 <param name="threadPool.size">1</param>
 10 <param name="threadPool.fetchFrequency">3000</param>
 11 <param name="bus.refresh.rate">3000</param>
 12 <param name="bam.enabled">true</param>
 13 <param name="transaction.timeout">3600</param>
 14 <param name="keystore.alias">rice<param>
 15 <param name="keystore.password">keystorepass</param>
 16 <param name="keystore.file">/ssd/jenkins/workspace/rice-2.5-site-deploy/src/test/resources/keystore/
ricekeystore</param>
 17 <param name="use.clearDatabaseLifecycle">true</param>
 18 <param name="use.sqlDataLoaderLifecycle">true</param>
 19 <!-- bus messaging props -->
 20 <param name="message.delivery">synchronous</param>
 21 <param name="message.persistence">true</param>
 22 <param name="useQuartzDatabase">false</param>
 23 <param name="config.location">${additional.config.locations}</param>
 24 <param name="config.location">${alt.config.location}</param>
 25 </config>

This is an XML file for configuring key value pairs. When used in conjunction with Spring tokenization
and the PropertyPlaceHolderConfigurer bean, the parameter name must be equal to the key value in the
Spring file so that the properties propagate successfully.

Spring JTA Configuration
When doing persistent messaging it is best practice to use JTA as your transaction manager. This
ensures that the messages you are sending are synchronized with the current executed transaction in your
application. It also allows message persistence to be put in a different database than the application's logic
if needed. Currently, KSBTestHarnessSpring.xml uses JOTM to configure JTA without an application
server. Bitronix is another JTA product that could be used in Rice and you could consider using it instead
of JOTM. Below is the bean definition for JOTM that you can find in Spring:

 1 <bean id="jotm" class="org.springframework.transaction.jta.JotmFactoryBean">
 2 <property name="defaultTimeout" value="${transaction.timeout}"/>
 3
 4 </bean>
 5 <bean id="dataSource" class="org.kuali.rice.database.XAPoolDataSource">
 6 <property name="transactionManager" ref="jotm" />
 7 <property name="driverClassName" value="${datasource.driver.name}" />
 8 <property name="url" value="${datasource.url}" />
 9 <property name="maxSize" value="${datasource.pool.maxSize}" />
 10 <property name="minSize" value="${datasource.pool.minSize}" />
 11 <property name="maxWait" value="${datasource.pool.maxWait}" />
 12 <property name="validationQuery" value="${datasource.pool.validationQuery}" />
 13 <property name="username" value="${datasource.username}" />
 14 <property name="password" value="${datasource.password}" />

Configuring the KSB Client in Spring

27

 15
 16 </bean>

Bittronix's configuration is similar. Datasources for both are set up in
org.kuali.rice.core.RiceDataSourceSpringBeans.xml. If using JOTM, use the Rice XAPoolDataSource
class as your data source because it addresses some bugs in the StandardXAPoolDataSource, which
extends from this class.

Put JTA and the Rice Config object in the
CoreConfigurer

Next, you must inject the JOTM into the RiceConfigurer:

 1 <bean id="rice" class="org.kuali.rice.core.impl.config.module.CoreConfigurer">
 2 <property name="dataSource" ref="dataSource" />
 3 <property name="transactionManager" ref="jotm" />
 4 <property name="userTransaction" ref="jotm" />
 5 <...more.../>

Configuring JTA from an appserver is no different, except the TransactionManager and UserTransaction
are going to be fetched using a JNDI FactoryBean from Spring.

Note

You set the serviceNamespace property in the example above by injecting the name into the
RiceConfigurer. You can do this instead of setting the property in the configuration system.

Configuring KSB without JTA
You can configure KSB by injecting a PlatformTransactionManager into the KSBConfigurer.

• This eliminates the need for JTA. Behind the scenes, KSB uses Apache's OJB as its Object Relational
Mapping.

• Before you can use PlatformTransactionManager, you must have a client application set up the OJB
so that KSB can use it.

This is a good option if you are an OJB shop and you want to continue using your current setup without
introducing JTA into your stack. Normally, when a JTA transaction is found, the message is not sent until
the transaction commits. In this case, the message is sent immediately.

Let's take a look at the KSBTestHarnessNoJtaSpring.xml file. Instead of JTA, the following transaction
and DataSource configuration is declared:

 1 <bean id="ojbConfigurer" class="org.springmodules.orm.ojb.support.LocalOjbConfigurer" />
 2
 3
 4 <bean id="transactionManager" class="org.springmodules.orm.ojb.PersistenceBrokerTransactionManager">
 5 <property name="jcdAlias" value="dataSource" />
 6 </bean>
 7
 8
 9 <bean id="dataSource" class="org.springframework.jdbc.datasource.DriverManagerDataSource">

Configuring the KSB Client in Spring

28

 10 <property name="driverClassName">
 11 <value>${datasource.driver.name}</value>
 12 </property>
 13 <property name="url">
 14 <value>${datasource.url}</value>
 15 </property>
 16 <property name="username">
 17 <value>${datasource.username}</value>
 18 </property>
 19 <property name="password">
 20 <value>${datasource.password}</value>
 21 </property>
 22 </bean>

The RiceNoJtaOJB.properties file needs to include the Rice connection factory property value:

ConnectionFactoryClass=org.kuali.rice.core.framework.persistence.ojb.RiceDataSourceConnectionFactory

Often, the DataSource is pulled from JNDI using a Spring FactoryBean. Next, we inject the DataSource
and transactionManager (now a Spring PlatformTransactionManager).

 1 <bean id="rice" class="org.kuali.rice.core.impl.config.module.CoreConfigurer">
 2 <property name="dataSource" ref="dataSource" />
 3 <property name="nonTransactionalDataSource" ref="dataSource" />
 4 ...
 5 </bean
 6
 7
 8 <bean id="ksbConfigurer" class="org.kuali.rice.ksb.messaging.config.KSBConfigurer">
 9 <property name="platformTransactionManager" ref="transactionManager" />
 10 <... more .../>
 11 </bean>

Notice that the transactionManager is injected into the KSBConfigurer directly. This is because only KSB,
and not Rice, supports this type of configuration. The DataSource is injected normally. When doing this, the
OJB setup is entirely in the hands of the client application. That doesn't mean anything more than providing
an OJB.properties object at the root of the classpath so OJB can load itself. KSB will automatically register
its mappings with OJB, so they don't need to be included in the repository.xml file.

web.xml Configuration
To allow external bus clients to invoke services on the bus-connected node, you must configure the
KSBDispatcherServlet in the web applications web.xml file. For example:

 1 <servlet>
 2 <servlet-name>remoting</servlet-name>
 3 <servlet-class>org.kuali.rice.ksb.messaging.servlet.KSBDispatcherServlet</servlet-class>
 4 <load-on-startup>1</load-on-startup>
 5
 6 </servlet>
 7
 8 <servlet-mapping>
 9 <servlet-name>remoting</servlet-name>
 10 <url-pattern>/remoting/*</url-pattern>
 11 </servlet-mapping>

This allows bus-exposed services to be accessed at a URL like http://yourlocalip:8080/myapp/remoting/
[KSB:service name]. Notice how this URL corresponds to the configured serviceServletUrl property on
the KSBConfigurer.

Configuring the KSB Client in Spring

29

Configuration Parameters
The service bus leverages the Rice configuration system for its configuration. Here is a comprehensive set
of configuration parameters that you can use to configure the Kuali Service Bus:

Table 9.1. KSB Configuration Parameters

Parameter Required Default Value

bam.enabled Whether Business Action Messaging is enabled false

bus.refresh.rate How often the service bus will update the
services it has deployed in minutes.

60

dev.mode no false

message.persistence no true

message.delivery no asynch

message.off no false

ksb.mode The mode that KSB will run in; choices are
"local", "embedded", or "remote".

LOCAL

ksb.url The base URL of KSB services and pages. ${application.url}/ksb

RouteQueue.maxRetryAttempts no 5

RouteQueue.timeIncrement no 5000

Routing.ImmediateExceptionRouting no false

RouteQueue.maxRetryAttemptsOverride no None

rice.ksb.batch.mode A service bus mode suitable for running batch
jobs; it, like the KSB dev mode, runs only local
services.

false

rice.ksb.struts.config.files The struts-config.xml configuration file that the
KSB portion of the Rice application will use.

/ksb/WEB-INF/struts-config.xml

rice.ksb.web.forceEnable no false

threadPool.size The size of the KSB thread pool. 5

useQuartzDatabase no true

ksb.org.quartz.* no None

rice.ksb.config.allowSelfSignedSSL no false

dev.mode
Indicates whether this node should export and consume services from the entire service bus. If set to true,
then the machine will not register its services in the global service registry. Instead, it can only consume
services that it has available locally. In addition to this, other nodes on the service bus will not be able to
"see" this node and will therefore not forward any messages to it.

message.persistence
If true, then messages will be persisted to the datastore. Otherwise, they will only be stored in memory.
If message persistence is not turned on and the server is shutdown while there are still messages that need
to be sent, those messages will be lost. For a production environment, it is recommended that you set
message.persistence to true.

message.delivery
Can be set to either synchronous or asynchronous. If this is set to synchronous, then messages that are
sent in an asynchronous fashion using the KSB API will instead be sent synchronously. This is useful in
certain development and unit testing scenarios. For a production environment, it is recommended that you
set message delivery to asynchronous.

Configuring the KSB Client in Spring

30

Note

It is strongly recommended that you set message.delivery to asynchronous for all cases except
for when implementing automated tests or short-lived programs that interact with the service bus.

message.off
If set to true, then asynchronous messages will not be sent. In the case that message persistence is turned
on, they will be persisted in the message store and can even be picked up later using the Message Fetcher.
However, if message persistence is turned off, these messages will be lost. This can be useful in certain
debugging or testing scenarios.

RouteQueue.maxRetryAttempts
Sets the default number of retries that will be executed if a message fails to be sent. You can also customize
this retry count for a specific service (see Exposing Services on the Bus).

RouteQueue.timeIncrement
Sets the default time increment between retry attempts. As with RouteQueue.maxRetryAttempts, you can
also configure this at the service level.

Routing.ImmediateExceptionRouting
If set to true, then messages that fail to be sent will not be retried. Instead, their MessageExceptionHandler
will be invoked immediately.

RouteQueue.maxRetryAttemptsOverride
If set with a number, it will temporarily set the retry attempts for ALL services going into exception routing.
You can set the number arbitrarily high to prevent all messages in a node from making it to exception
routing if they are having trouble. The message.off param produces the same result.

useQuartzDatabase
When using the embedded Quartz scheduler started by the KSB, indicates whether that Quartz scheduler
should store its entries in the database. If this is true, then the appropriate Quartz properties should be set
as well. (See ksb.org.quartz.* below).

ksb.org.quartz.*
Can be used to pass Quartz properties to the embedded Quartz scheduler. See the configuration
documentation on the Quartz site. Essentially, any property prefixed with ksb.org.quartz. will have the
"ksb." portion stripped and will be sent as configuration parameters to the embedded Quartz scheduler.

rice.ksb.config.allowSelfSignedSSL
If true, then the bus will allow communication using the https protocol between machines with self-signed
certificates. By default, this is not permitted and if attempted you will receive an error message like this:

http://www.quartz-scheduler.org/

Configuring the KSB Client in Spring

31

Note

It is best practice to only set this to 'true' in non-production environments!

rice.ksb.web.forceEnable
publish the KSB user interface components (such as the Message Queue, Thread Pool, Service Registry
screens) even when the ksb.mode is not set to local.

KSBConfigurer Properties
In addition to the configuration parameters that you can specify using the Rice configuration system, the
KSBConfigurer bean itself has some properties that can be injected in order to configure it:

exceptionMessagingScheduler
By default, KSB uses an embedded Quartz scheduler for scheduling the retry of messages that fail to be
sent. If desired, a Quartz scheduler can instead be injected into the KSBConfigurer and it will use that
scheduler instead. See Quartz Scheduling for more detail.

messageDataSource
Specifies the javax.sql.DataSource to use for storing the asynchronous message queue. If not specified,
this defaults to the DataSource injected into the RiceConfigurer.

If this DataSource is injected, then the registryDataSource must also be injected and vice-versa.

nonTransactionalMessageDataSource
Specifies the javax.sql.DataSource to use that matches the messageDataSource property. This datasource
instance must not be transactional. If not specified, this defaults to the nonTransactionalDataSource
injected into the RiceConfigurer.

registryDataSource
Specifies the javax.sql.DataSource to use for reading and writing from the Service Registry. If not
specified, this defaults to the DataSource injected into the RiceConfigurer.

If this DataSource is injected, then the messageDataSource must also be injected and vice-versa.

services
Specifies a list of Java service definitions relating to SOAP to use as part of messaging.

KSB Configurer
The application needs to do one more thing to begin publishing services to the bus: Configure the
KSBConfigurer object. This can be done using Spring or programmatically. We'll use Spring because it's
the easiest way to get things configured:

 1 <bean id="jotm" class="org.springframework.transaction.jta.JotmFactoryBean">

Configuring the KSB Client in Spring

32

 2 <property name="defaultTimeout" value="${transaction.timeout}"/>
 3 </bean>
 4
 5
 6
 7 <bean id="dataSource" class=" org.kuali.rice.core.database.XAPoolDataSource ">
 8 <property name="transactionManager" ref="jotm"/>
 9 <property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
 10 <property name="maxSize" value="25"/>
 11 <property name="minSize" value="2"/>
 12 <property name="maxWait" value="5000"/>
 13 <property name="validationQuery" value="select 1 from dual"/>
 14 <property name="url" value="jdbc:oracle:thin:@LOCALHOST:1521:XE"/>
 15 <property name="username" value="myapp"/>
 16 <property name="password" value="password"/>
 17 </bean>
 18
 19
 20 <bean id="nonTransactionalDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-
method="close">
 21 <property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
 22 <property name="url" value="jdbc:oracle:thin:@LOCALHOST:1521:XE"/>
 23 <property name="maxActive" value="50"/>
 24 <property name="minIdle" value="7"/>
 25 <property name="initialSize" value="7"/>
 26 <property name="validationQuery" value="select 1 from dual"/>
 27 <property name="username" value="myapp"/>
 28 <property name="password" value="password"/>
 29 <property name="accessToUnderlyingConnectionAllowed" value="true"/>
 30 </bean>
 31
 32 <bean id="coreConfigurer" class="org.kuali.rice.core.impl.config.module.CoreConfigurer">
 33 <property name="dataSource" ref="datasource" />
 34 <property name="nonTransactionalDataSource" ref="nonTransactionalDataSource" />
 35 <property name="transactionManager" ref="jotm" />
 36 <property name="userTransaction" ref="jotm" />
 37 </bean>
 38
 39 <bean id="ksbConfigurer" class="org.kuali.rice.ksb.messaging.config.KSBConfigurer"/>

The application is now ready to deploy services to the bus. Let's take a quick look at the Spring file above
and what's going on there: The following configures JOTM, which is currently required to run KSB.

 1 <bean id="jotm" class="org.springframework.transaction.jta.JotmFactoryBean" />

Next, we configure the XAPoolDataSource and the non transactional BasicDataSource. This is pretty
much standard data source configuration stuff. The XAPoolDataSource is configured through Spring and
not JNDI so it can take advantage of JTOM. Servlet containers, which don't support JTA, require this
configuration step so the datasource will use JTA.

 1 <bean id="dataSource" class=" org.kuali.rice.core.database.XAPoolDataSource ">
 2 <property name="transactionManager" ref="jotm"/>
 3 <property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
 4 <property name="url" value="jdbc:oracle:thin:@LOCALHOST:1521:XE"/>
 5 <property name="maxSize" value="25"/>
 6 <property name="minSize" value="2"/>
 7 <property name="maxWait" value="5000"/>
 8 <property name="validationQuery" value="select 1 from dual"/>
 9 <property name="username" value="myapp"/>
 10 <property name="password" value="password"/>
 11 </bean>
 12
 13 <bean id="nonTransactionalDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-
method="close">
 14 <property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
 15 <property name="url" value="jdbc:oracle:thin:@LOCALHOST:1521:XE"/>
 16 <property name="maxActive" value="50"/>
 17 <property name="minIdle" value="7"/>
 18 <property name="initialSize" value="7"/>
 19 <property name="validationQuery" value="select 1 from dual"/>

Configuring the KSB Client in Spring

33

 20 <property name="username" value="myapp"/>
 21 <property name="password" value="password"/>
 22 <property name="accessToUnderlyingConnectionAllowed" value="true"/>
 23 </bean>

Next, we configure the bus:

 1 <bean id="rice" class="org.kuali.rice.core.config.CoreConfigurer">
 2 <property name="dataSource" ref="dataSource" />
 3 <property name="nonTransactionalDataSource" ref="nonTransactionalDataSource" />
 4 <property name="transactionManager" ref="jotm" />
 5 <property name="userTransaction" ref="jotm" />
 6 </bean>
 7
 8 <bean id="ksbConfigurer" class="org.kuali.rice.ksb.messaging.config.KSBConfigurer">
 9 <property name="registryDataSource" ref="dataSource" />
 10 <property name="bamDataSource" ref="dataSource" />
 11 <property name="messageDataSource" ref="dataSource" />
 12 <property name="nonTransactionalMessageDataSource" ref="nonTransactionalDataSource" />
 13 </bean>

We are injecting JOTM, and the datasources. The injection of the KSBConfigurer class into the
ksbConfigurer property tells this instance of Rice to start the Service Bus. The final necessary step is
making sure the configuration parameter 'application.id' is set properly to some value that will identify all
services deployed from this node as a member of this node.

At this point, the application is configured to use the bus, both for publishing services and to send
messages to services. Usually, applications will publish services on the bus using the KSBConfigurer or
the SoapServiceExporter classes. See Acquiring and invoking services for more detail.

Implications of "synchronous" vs. "asynchronous"
Message Delivery

As noted in Configuration Parameters, it is possible to configure message delivery to run asynchronously or
synchronously. It is imported to understand that asynchronous messing should be used in almost all cases.

Asynchronous messing will result in messages being sent in a separate thread after the original transaction
that requested the message to be sent is committed. This is the appropriate behavior in a "fire-and-forget"
messaging model. The option to configure message deliver as synchronous was added for two reasons:

1. To allow for the implementation of automated unit tests which could perform various tests without
having to right "polling" code to wait for asynchronous messing to complete.

2. For short-lived programs (such as batch programs) which need to send messages. This allows for a
guarantee that all messages will be sent prior to the application being terminated.

The second case is the only case where synchronous messaging should be used in a production setting, and
even then it should be used with care. Synchronous message processing in Rice currently has the following
major differences from asynchronous messaging that need to be understood:

1. Order of Execution

2. Exception Handling

Order of Execution

In asynchronous messaging, messages are queued up until the end of the transaction, and then sent after
the transaction is committed (technically, they are sent when the transaction is committed).

Configuring the KSB Client in Spring

34

In synchronous messaging, messages are processed immediately when they are "sent". This results in a
different ordering of execution when using these two different messaging models.

Exception Handling

In asynchronous messaging, whenever there is a failure processing a message, an exception handler is
invoked. Recovery from such failures can include resending the message multiple times, or recording and
handling the error in some other way. Since all of this is happening after the original transaction was
committed, it does not affect the original processing which invoked the sending of the message.

With synchronous messaging, since the message processing is invoked immediately and the calling code
blocks until the processing is complete, any errors raised during messaging will be thrown back up to
the calling code. This means that if you are writing something like a batch program which relies on
synchronous messaging, you must be aware of this and add code to handle any errors if you want to deal
with them gracefully.

Another implication of this is that message exception handlers will not be invoked in this case.
Additionally, because an exception is being thrown, this will typically trigger a rollback in any transaction
that the calling code is running. So transactional issues must be dealt with as well. For example, if the
failure of a single message shouldn't cause the sending of all messages in a batch job to fail, then each
message will need to be sent in it's own transaction, and errors handled appropriately.

35

Chapter 10. Configuring Quartz for
KSB
Quartz Scheduling

The Kuali Service Bus (KSB) uses Quartz to schedule delayed tasks, including retry attempts for messages
that cannot be sent the first time. By default, KSB uses an embedded quartz scheduler that can be configured
by passing parameters starting with "ksb.org.quartz." into the Rice configuration.

If the application is already running a quartz scheduler, you can inject a custom quartz scheduler using
code like this:

 1 <bean class="org.kuali.rice.ksb.messaging.config.KSBConfigurer">
 2 ...
 3 <property name="exceptionMessagingScheduler">
 4 <bean class="org.springframework.scheduling.quartz.SchedulerFactoryBean">
 5 ...
 6 </bean>
 7 </property>
 8 </bean>

When you do this, KSB will not create an embedded scheduler but will instead use the one provided.

36

Chapter 11. Acquiring and Invoking
Services Deployed on KSB
Service invocation overview

1. Acquired and called directly

• Automatic Failover

• No Persistence

• Direct call - Request/Response

2. Acquired and called through the MessageHelper

• Automatic Failover

• Message Persistence

• KSB Exception Messaging

• Callback Mechanisms

In the examples below, notice that the client code is unaware of the protocol with which the underlying
service is deployed. Given a connector for a given protocol and a compatible service definition, you could
move a service to different protocols as access needs change without affecting dependent client code.

Acquiring and invoking a service directly
The easiest way to call a service is to grab it and invoke it directly. This uses a direct request/response
pattern and what you see is what you get. You will wait for the processing the call takes on the other
side plus the cost of the remote connection time. Any exceptions thrown will come across the wire in a
protocol-acceptable way.

This code acquires a SOAP-based service and calls it:

QName serviceName = new QName("testNameSpace", "soap-repeatTopic");

SOAPService soapService = (SOAPService) GlobalResourceLoader.getService(serviceName);
soapService.doTheThing("hello");

The SOAPService interface needs to be in the client classpath and bindable to the WSDL. The easiest
way to achieve this in Java is to create a bean that is exported as a SOAP service. This is the server-side
service declaration in a Spring file:

 1 <bean id="ksbConfigurer" class="org.kuali.rice.ksb.messaging.config.KSBConfigurer">
 2 ...
 3 <property name="services">
 4 <list>
 5 <bean class="org.kuali.rice.ksb.api.bus.support.SoapServiceDefinition">
 6 <property name="service">
 7 <ref bean="soapService" />
 8 </property>

Acquiring and Invoking
Services Deployed on KSB

37

 9 <property name="localServiceName" value="soap-repeatTopic" />
 10 <property name="serviceNameSpaceURI" value="testNameSpace" />
 11 <property name="priority" value="3" />
 12 <property name="queue" value="false" />
 13 <property name="retryAttempts" value="1" />
 14 </bean>
 15 ...
 16 </list>
 17 </property>
 18 </bean>

This declaration exposes the bean soapService on the bus as a SOAP available service. The Web Service
Definition Language is available at the serviceServletUrl + serviceNameSpaceURI + localServiceName
+ ?wsdl.

This next code snippet acquires and calls a Java base service:

EchoService echoService = (EchoService)GlobalResourceLoader.getService(new QName("TestCl1", "echoService"));
String echoValue = "echoValue";
String result = echoService.echo(echoValue);

Again, the interface is all that is required to make the call. This is the server-side service declaration that
deploys a bean using Spring's HttpInvoker as the underlying transport:

 1 <bean id="ksbConfigurer" class="org.kuali.rice.ksb.messaging.config.KSBConfigurer">
 2 ...
 3 <property name="services">
 4 <list>
 5 <bean class="org.kuali.rice.ksb.api.bus.support.SoapServiceDefinition">
 6 <property name="service" ref="echoService" />
 7 <property name="serviceInterface"
 value="org.kuali.rice.ksb.messaging.remotedservices.EchoService" />
 8 <property name="localServiceName" value="soap-echoService" />
 9 <property name="busSecurity" value="false"></property>
 10 </bean>
 11 ...
 12 </list>
 13 </property>
 14 </bean>

Below is a description of each property on the ServiceDefinition (JavaServiceDefinition and
SOAPServiceDefinition):

Table 11.1. Properties of the ServiceDefinition

property required default description

busSecurity no yes (JavaServiceDefinition), no
(SOAPServiceDefinition)

For Java-based services, message is digitally
signed before calling the service and verified
at the node hosting the service. For SOAP
services, WSS4J is used to digitally sign the
SOAP request/response in accordance with the
WS Security specification. More info on Bus
Security here.

localServiceName yes none The local name of the QName that makes up the
complete service name.

messageExceptionHandler no DefaultMessageExceptionHandler Name of the MessageExceptionHandler that is
called when a service call fails. This is called
after the retryAttempts or millisToLive policy of
the service or Node has been met.

millisToLive no none Used instead of retryAttempts. Only considered
in case of error when invoking service. Defines
how long the message should continue to be
tried before being put into KSB Exception
Messaging.

Acquiring and Invoking
Services Deployed on KSB

38

property required default description

priority no 5 Only applies when asynchronous messaging is
enabled. The lower the priority is, the sooner the
message will be executed. For example, if 100
priority 10 messages are waiting for invocation
and a priority 5 message is sent, the priority 5
message will be executed first.

queue no true If true, the service will behave like a queue in
that there is only one real service call when a
message is sent.

If false, the service will behave like a topic. All
beans bound to the service name will be sent a
message when a message is sent to the service.

Use queues for operations you only want to
happen once (for example, to route a document).
Use topics for notifications across a cluster (for
example, to invalidate cache entry).

retryAttempts no 7 Determines the number of times a service can
be invoked before being put into KSB Exception
Messaging (the error state)

service yes none The bean to be exposed for invocation on the bus

serviceEndPoint no serviceServletUrl + serviceName This can be explicitly set to create an alternate
service end point, different from the one the bus
automatically creates.

serviceName yes serviceNameSpaceURI + localServiceName If localServiceName and serviceNameSpaceURI
are omitted, the QName of the service. This can
be used instead of the localServiceName and
serviceNameSpaceURI convenience methods.

serviceNameSpaceURI no messageEntity property or message.entity
config param is used

The namespaceURI of the QName that makes
up the complete service name. If set to "" (blank
string) the property is NOT included in the
construction of the QName representing the
service and the service name will just be the
localServiceName with no namespace.

Acquiring and invoking a service using
messaging

To make a call to a service through messaging, acquire the service by its name using the MessageHelper:

QName serviceName = new QName("testAppsSharedQueue", "sharedQueue");

KEWSampleJavaService testJavaAsyncService = (KEWSampleJavaService)
 KsbApiServiceLocator.getMessageHelper().getServiceAsynchronously(serviceName);

At this point, the testJavaAsyncService can be called like a normal JavaBean:

testJavaAsyncService.invoke(new ClientAppServiceSharedPayloadObj("message content", false));

Because this is a queue, a single message is sent to one of the beans bound to the service name
new QName("testAppsSharedQueue", "sharedQueue"). That 'message' is the call 'invoke' and it takes a
ClientAppServiceSharedPayloadObj. Typically, messaging is done asynchronously. Messages are sent
when the currently running JTA transaction is committed - that is, the messaging layer automatically
synchronizes with the current transaction. So, using JTA, even though the above is coded in line with code,
invocation is normally delayed until the transaction surrounding the logic at runtime is committed.

When not using JTA, the message is sent asynchronously (by a different thread of execution), but it's sent
ASAP.

Acquiring and Invoking
Services Deployed on KSB

39

To review, the requirements to use a service that is exposed to the bus on a different machine are:

1. The service name

2. The interface to which to cast the returned service proxy object

3. The ExceptionMessageHandler required by the service in case invocation fails

Note

Typically, service providers give clients a JAR with this content or organizations maintain a JAR
with this content.

To complete the example: Below is the Spring configuration used to expose this service to the bus. This
is taken from the file TestClient1SpringBeans.xml:

 1 <!-- bean declaration -->
 2 <bean id="sharedQueue" class=" org.kuali.rice.ksb.testclient1.ClientApp1SharedQueue" />
 3
 4 <bean id="ksbConfigurer" class="org.kuali.rice.ksb.messaging.config.KSBConfigurer">
 5 ...
 6 <property name="services">
 7 <list>
 8 <bean class=" org.kuali.rice.ksb.messaging.JavaServiceDefinition">
 9 <property name="service" ref="sharedQueue" />
 10 <property name="localServiceName" value="sharedQueue" />
 11 <property name="serviceNameSpaceURI" value="testAppsSharedQueue" />
 12 </bean>
 13 <... more .../>
 14 </list>
 15 </property>
 16 </bean>

This is located in the Spring file of the application exposing the service (in other words, the location in
which the actual invocation will occur). The client does not need a Spring configuration to invoke the
service.

There are two messaging call paradigms, called Topics and Queues. When any number of services is
declared a Topic, then those services are invoked at least once or multiple times. If any number of services
is declared a Queue, then one and only one service name will be invoked.

Getting responses from service calls made
with messaging

You can use Callback objects to get responses from service calls made using messaging. Acquiring a
service for use with a Callback:

QName serviceName = new QName("TestCl1", "testXmlAsyncService");
SimpleCallback callback = new SimpleCallback();
KSBXMLService testXmlAsyncService = (KSBXMLService)
 KsbApiServiceLocator.getMessageHelper().getServiceAsynchronously(serviceName, callback);

testXmlAsyncService.invoke("message content");

When the service is invoked asynchronously, the AsynchronousCallback object's (the SimpleCallback
class above) callback method is called.

Acquiring and Invoking
Services Deployed on KSB

40

When message persistence is turned on, this object is serialized with any method call made through the
messaging API. Take into consideration that this object (and the result of a method call) may survive
machine restart and therefore it's recommended that you NOT depend on certain transient in-memory
resources.

41

Chapter 12. Failover
Service call failover

Failover works the same whether making direct service calls or using messaging.

Services exported to the bus have automatic failover from the client's perspective. For example, if service
A is deployed on machines 1 and 2 and a client happens to get a proxy that points to machine 1 but machine
1 crashes, the KSB will automatically detect that the exception is a result of some network issue and direct
the call to machine 2. KSB then removes machine 1 from the registry so new clients to the bus don't try to
acquire the service. When machine 1 returns to the network it will register itself with the service registry
and therefore the bus.

When a message calls a service, the failover rules determine which service KSB assigns (topic or queue)
to the message.

Failover with queues
Because queues require only one call between all beans bound to the queue, if a single call to a queue fails,
failover to the next bean occurs. If successful, the call is done. If it is not successful, it continues until a
suitable bean is found. If none is found, the message is marked for retry later. Eventually, the message
either goes to KSB exception messaging or successfully completes.

Failover with topics
If a machine in a topic is unavailable, a failed call to that machine will continue to be retried until that call
is successful or that call goes into KSB exception messaging.

42

Chapter 13. KSB Exception Messaging
Exception Messaging is the set of services and configuration options that handle messages that cannot
be delivered successfully. Exception Messaging is primarily used by configuring your service using
the properties outlined in KSB Module Configuration. When services are configured to use message
persistence and there is a problem invoking a service, the persisted message or service call is relied upon
to make another call to that service until the call is either:

1. Successful

2. Certain configuration policies have been met and the message goes into the Exception state

The Exception state means that KSB can't doing anything more with this message. The message will not
invoke properly. That generally means that some sort of technical intervention is required by both the
consumer and the provider of the service to determine what the problem is.

All Exception behavior is configurable at the service level by setting the name of the class to be used as
MessageExceptionHandler. This class determines what to do when a client of a service cannot invoke a
message. The DefaultMessageExceptionHandler is enough to meet most requirements.

When a message is put into the Exception state, KSB puts it back into the message store and marks it
with a status of 'E'. At that point, it is up to the person responsible for monitoring this node on the bus to
determine what to do with the message.

Because the node exposing the service configures the MessageExceptionHandler, any clients depending
on the service need that MessageExceptionHandler and any dependent code and configuration.

43

Chapter 14. KSB Messaging Paradigms
KSB supports two types of messaging paradigms; Queues and Topics, and the differences are explained
below. These are very similar to JMS messaging concepts. An open source solution was not used for
KSB messaging because an open source JMS provider wasn't found that provided JTA synchronization,
discovery, failover, and load balancing. Many claim such features, but when put to the test in real world
scenarios (i.e., machines going down and coming back up, databases failing, network connectivity issues);
none managed to reliably deliver messages.

The advantage here is that we can apply these messaging concepts to any support protocol with which
we can communicate.

Queues
When any number of services is bound to a queue and a method is invoked, one and only one service
gets the invocation.

Topics
When any number of services is bound to a topic and a method is invoked, all services are invoked AT
LEAST once or multiple times.

Message Fetcher
org.kuali.rice.ksb.messaging.MessageFetcher is a Runnable that needs to be configured by the client
application to retrieve stored messages from the database that weren't processed when the node went down.
This can happen for many reasons. The machine can be under load and just crash.

When message persistence is enabled, a service that fails or throws an Exception stores preprocessed
messages in the database until they can be resent. This makes certain that a crash or emergency restart of
your machine will not result in message loss.

The KSB does not automatically fetch all these messages and attempt to invoke them when it starts, because
often the KSB is started when the services the messages are bound for are not yet started. For now, you
need to decide when to call the run method on the MessageFetcher. Because it's a Runnable, you could also
put the MessageFetcher in the KSBThreadPool that is available on the KSBServiceLocator. You could
wrap it in a TimerTask, etc. All that is required is this:

new MessageFetcher((Integer) null).run()

Unfortunately, the cast to Integer is required. The MessageFetcher also has a constructor that takes a long
variable as a parameter. This can be used to pull any message in the message store and put it in memory
for invocation. Integer is a fetch size; null means all.

44

Chapter 15. Load Balancing
Load balancing between service calls is automatic. If there are multiple nodes that expose services of the
same name, clients will randomly acquire proxies to each endpoint bound to that name.

45

Chapter 16. Object Remoting
As of Rice 2.0, Object remoting support has been removed.

46

Chapter 17. Publishing Services to
KSB

You can publish Services on the service bus either by configuring them directly in the application's
KSBConfigurer module definition, or by using the PropertyConditionalServiceBusExporter bean. In either
case, a ServiceDefinition is provided that specifies various bus settings and the target Spring bean.

KSBConfigurer
A service can be exposed by explicitly registering it with the KSBConfigurer module, services property:

 1 <bean class="org.kuali.rice.ksb.messaging.config.KSBConfigurer">
 2 <property name="serviceServletUrl" value="${base url}/MYAPP/remoting/" />
 3 ...
 4 <property name="services">
 5 <list>
 6 <bean class="org.kuali.rice.ksb.api.bus.support.SoapServiceDefinition">
 7 <property name="service">
 8 <ref bean="mySoapService" />
 9 </property>
 10 <property name="serviceInterface"><value>org.myapp.services.MySOAPService</value></property>
 11 <property name="localServiceName" value="myExposedSoapService" />
 12 </bean>
 13 <bean class="org.kuali.rice.ksb.api.bus.support.JavaServiceDefinition">
 14 <property name="service">
 15 <ref bean="myJavaService" />
 16 </property>
 17 <property name="serviceInterface">
 18 <value>org.myapp.services.MyJavaService</value></property>
 19 <property name="localServiceName" value="myExposedJavaService" />
 20 </bean>
 21

Service Exporter
You can also publish Services in any context using the ServiceBusExporter (or
PropertyConditionalServiceBusExporter) bean. Note that KSBConfigurer must also be defined in your
RiceConfigurer.

 1 <bean id="myapp.serviceBus"
 2 class="org.kuali.rice.core.framework.resourceloader.GlobalResourceLoaderServiceFactoryBean">
 3 <property name="serviceName" value="rice.ksb.serviceBus"/>
 4 </bean>
 5
 6 <bean id="myAppServiceExporter"
 7 class="org.kuali.rice.ksb.api.bus.support.ServiceBusExporter"
 8 abstract="true">
 9 <property name="serviceBus" ref="myapp.serviceBus"/>
 10 </bean>
 11
 12 <bean id="myJavaService.exporter" parent="myAppServiceExporter">
 13 <property name="serviceDefinition">
 14 <bean class="org.kuali.rice.ksb.api.bus.support.JavaServiceDefinition">
 15 <property name="service">
 16 <ref bean="myJavaService" />
 17 </property>
 18 <property name="serviceInterface">
 19 <value>org.myapp.services.MyJavaService</value>
 20 </property>
 21 <property name="localServiceName" value="myExposedJavaService" />
 22 </bean>

Publishing Services to KSB

47

 23 </property>
 24 </bean>
 25
 26 <bean id="mySoapService.exporter" parent="myAppServiceExporter">
 27 <property name="serviceDefinition">
 28 <bean class="org.kuali.rice.ksb.api.bus.support.SoapServiceDefinition">
 29 <property name="service">
 30 <ref bean="mySoapService" />
 31 </property>
 32 <property name="serviceInterface">
 33 <value>org.myapp.services.MySOAPService</value>
 34 </property>
 35 <property name="localServiceName" value="myExposedSoapService" />
 36 </bean>
 37 </property>
 38
 39 </bean>

CallbackServiceExporter
The term "Callback Service" refers to services that client applications write and configure and which are
used by various modules of Rice including KIM, KEW, and KRMS. Because of the naming convention
on these, they are often referred to as "Type Services". These include:

• KIM

• RoleTypeService

• PermissionTypeService

• GroupTypeService

• etc.

• KRMS

• ActionTypeService

• PropositionTypeService

• AgendaTypeService

• etc.

• KEW

• PeopleFlowTypeService

These are typically called back into from the Rice Standalone Server when needing information for
rendering of various components in the server-side user interface. Additionally, in some cases they can
also be used to provide custom processing hooks for different components of the various Kuali Rice
frameworks.

Version Compatibility for Callback Services
Callback services (like all services in Rice) can be evolved over time and across versions. This means that
new functionality might be added to them. Since the Rice Standalone Server interacts with these services
remotely, it really needs to know what version of a particular callback service that the client application
is running. They also must be published as the appropriate type of service endpoint that the standalone

Publishing Services to KSB

48

server knows how to talk to (i.e. SOAP instead of Java Serialization). Thankfully, the KSB service registry
can store metadata about a service which includes the service version. However, in order to for this to
work properly the client application must be sure they publish the service with a version that matches the
version of Rice they are using.

In order to make this easier on client applications, a helper has been implemented which can be used for
this purpose in Rice.

Callback Service Exporter Helper
There is a helper class which can be used by client applications to
export these callback services onto the Kuali Service Bus. The class is
org.kuali.rice.ksb.api.bus.support.CallbackServiceExporter. This is a class
which can be wired up inside of a Spring context in order to publish a callback service to the KSB with
the appropriate Rice version. The version of Rice is packaged up into the Rice jars inside of a file called
common-config-defaults.xml and it uses the version that matches the version of Rice in the POM when
the jar was packaged.

Typical configuration might look like the following:

 1 <bean id="sampleAppPeopleFlowTypeService.exporter"
 2 class="org.kuali.rice.ksb.api.bus.support.CallbackServiceExporter"
 3 p:serviceBus-ref="rice.ksb.serviceBus"
 4 p:callbackService-ref="sampleAppPeopleFlowTypeService"
 5 p:serviceNameSpaceURI="http://rice.kuali.org/sample-app"
 6 p:localServiceName="sampleAppPeopleFlowTypeService"
 7 p:serviceInterface="org.kuali.rice.kew.framework.peopleflow.PeopleFlowTypeService"/>

The javadocs for CallbackServiceExporter provide more detail on the options for publishing of
callback services.

ServiceDefinition properties
ServiceDefinitions define how the service is published to the KSB. Currently KSB supports three types of
services: Java RPC (via serialization over HTTP), SOAP, and JMS.

Basic parameters
All service definitions support these properties:

Table 17.1. ServiceDefinition Properties

Property Description Required

Service The reference to the target service bean yes

localServiceName The "local" part of the service name; together with a
namespace this forms a qualified name, or QName

yes

serviceNameSpaceURI The "namespace" part of the service name; together
with a local name forms a qualified name, or QName

Not required; if omitted, the
Core.currentContextConfig().getMessageEntity()
is used when exporting the service

serviceEndpoint URL at which the service can be invoked by a remote
call

Not required; defaults to the serviceServletUrl
parameter defined in the Rice config

retryAttempts Number of attempts to retry the service invocation on
failure; for services with side-effects you are advised
to omit this property

Not required; defaults to 0

millisToLive Number of milliseconds the call should persist before
resulting in failure

Not required; defaults to no limit (-1)

Publishing Services to KSB

49

Property Description Required

Priority Priority Not required; defaults to 5

MessageExceptionHandler Reference to a MessageExceptionHandler that
should be invoked in case of exception

Not required; default implementation handles retries
and timeouts

busSecurity Whether to enable bus security for the service Not required; defaults to ON

ServiceNameSpaceURI/MessageEntity
ServiceNameSpaceURI is the same as the Message Entity that composes the qualified name under which
the service is exposed. When omitted, this namespace defaults to the message entity configured for Rice
(e.g., in the RiceConfigurer), thereby qualifying the local name. Note: Although this implicit qualification
occurs during export, you must always specify an explicit message entity when acquiring a resource, for
example:

GlobalResourceLoader.getService(new QName("MYAPP", "myExposedSoapService"))

SOAPServiceDefinition
Table 17.2. SOAPServiceDefinition

Property Description Required

serviceInterface The interface to expose and from which to generate the
WSDL

Not required; if omitted the first interface implemented by
the class is used

JavaServiceDefinition
Table 17.3. JavaServiceDefinition

Property Description Required

serviceInterface The interface to expose Not required; if omitted, all application-layer interfaces
implemented by the class are exposed

serviceInterfaces A list of interfaces to expose Not required; if omitted, all application-layer interfaces
implemented by the class are exposed

Publishing Rice services
We show how you can "import" Rice services into the client Spring application context in Configuring
KSB Client in Spring. Using this technique, you can also publish Rice services on the KSB:

 1 <!-- import a Rice service from the ResourceLoader stack -->
 2 <bean id="myapp.aRiceService"
 class="org.kuali.rice.core.framework.resourceloader.GlobalResourceLoaderServiceFactoryBean">
 3 <property name="serviceName" value="aRiceService"/>
 4 </bean
 5
 6
 7 <!-- if Rice does not publish this service on the bus, one can explicitly publish it -->
 8 <bean id="myAppServiceExporter"
 9 class="org.kuali.rice.ksb.api.bus.support.ServiceBusExporter"
 10 abstract="true">
 11 <property name="serviceBus" ref="myapp.serviceBus"/>
 12 </bean>
 13
 14 <bean id="myJavaService.exporter" parent="myAppServiceExporter">
 15 <property name="serviceDefinition">

Publishing Services to KSB

50

 16 <bean class="org.kuali.rice.ksb.api.bus.support.JavaServiceDefinition">
 17 <property name="service">
 18 <ref bean="aRiceService" />
 19 </property>
 20 <property name="serviceInterface" value="org.kuali.rice...SomeInterface" />
 21 <property name="localServiceName" value="aPublishedRiceService" />
 22 </bean>
 23 </property>
 24 </bean>

Warning

Not all Rice services are intended for public use. Do not arbitrarily expose them on the bus

51

Chapter 18. The ResourceLoader Stack

Overview
Rice is composed of a set of modules that provide distinct functionality and expose various services.

• Services in Rice are accessible by the ResourceLoader, which can be thought of as analogous to
Spring's BeanFactory interface. (In fact, Rice modules themselves back ResourceLoaders with Spring
bean factories.)

• Services can be acquired by name. (Rice adds several additional concepts, including qualification of
service names by namespaces.)

• When the RiceConfigurer is instantiated, it constructs a GlobalResourceLoader that is composed of
an initial RootResourceLoader (which may be provided by the application via the RiceConfigurer), as
well as resource loaders supplied by each module:

Figure 18.1. Global Resource Loader

The GlobalResourceLoader is the top-level entry point through which all application code should go to
obtain services. The getService call will iterate through each registered ResourceLoader, looking for the
service of the specified name. If the service is found, it is returned, but if it is not found, ultimately the
call will reach the RemoteResourceLoader. The Root ResourceLoader is registered by the KSB module
that exposes services that have been registered on the bus.

The ResourceLoader Stack

52

Accessing and overriding Rice services and
beans from Spring
ResourceLoaderFactoryBean

In addition to programmatically acquiring service references, you can also import Rice services into a
Spring context with the help of the GlobalResourceLoaderServiceFactoryBean:

This bean is bean-name-aware and will produce a bean of the same name obtained from Rice's resource
loader stack. The bean can then be wired in Spring like any other bean.

Installing an application root resource loader
Applications can install their own root ResourceLoader to override beans defined by Rice. To do so,
inject a bean that implements the ResourceLoader interface into the RiceConfigurer rootResourceLoader
property. For example:

 1 <!-- a Rice bean we want to override in our application -->
 2 <bean id="overriddenRiceBean" class="my.app.package.MyRiceServiceImpl"/>
 3
 4 <!-- supplies services from this Spring context -->
 5 <bean id="appResourceLoader"
 class="org.kuali.rice.core.impl.resourceloader.SpringBeanFactoryResourceLoader"/>
 6 <bean id="coreConfigurer" class="org.kuali.rice.core.impl.config.module.CoreConfigurer">
 7 <property name="dataSource" ref="standaloneDataSource" />
 8 <property name="transactionManager" ref="atomikosTransactionManager" />
 9 <property name="userTransaction" ref="atomikosUserTransaction" />
 10 <property name="rootResourceLoader" ref="appResourceLoader"/>
 11 </bean>

Warning

Application ResourceLoader and Circular Dependencies

Be careful when mixing registration of an application root resourceloader and lookup of Rice
services through the GlobalResourceLoader. If you are using an application resourceloader to
override a Rice bean, but one of your application beans requires that bean to be injected during
startup, you may create a circular dependency. In this case, you will either have to make sure you
are not unintentionally exposing application beans (which may not yet have been fully initialized
by Spring) in the application resourceloader, or you will have to arrange for the GRL lookup
to occur lazily, after Spring initialization has completed (either programmatically or through a
proxy).

Overriding Rice services: Alternate method
A Rice-enabled webapp (including the Rice Standalone distribution) contains a multiple module
configurers, typically defined in an xml Spring context file. These load the Rice modules. Each module
has its own ResourceLoader, which is typically backed by an XML Spring context file. Overriding and/or
setting global beans and/or services (such as data sources and transaction managers) is done as described
above. However, because in each module services can be injected into each other, overriding module
services involves overriding the respective module's Spring context file.

The cleanest way to do this is to set the rice.*.addtionalSpringFiles to an accessible spring beans file that
overrides one or more spring beans in the existing module's context. Each rice module has a corresponding
configuration parameter that can be pointed to a file that will override any existing services.

The ResourceLoader Stack

53

 1 <param name="rice.kew.additionalSpringFiles">classpath:myapp/config/MyAppKewOverrideSpringBeans.xml</param>
 2
 3 <param name="rice.ksb.additionalSpringFiles">classpath:myapp/config/MyAppKsbOverrideSpringBeans.xml</param>
 4
 5 <param name="rice.krms.additionalSpringFiles">classpath:myapp/config/MyAppKrmsOverrideSpringBeans.xml</
param>
 6
 7 <param name="rice.kim.additionalSpringFiles">classpath:myapp/config/MyAppKimOverrideSpringBeans.xml</param>

 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.org/dtd/spring-beans.dtd">
 3 <!-- override of KNS encryption service -->
 4 <beans>
 5
 6
 7 <!-- override encryption services -->
 8 <bean id="encryptionService" class="edu.my.school.myapp.service.impl.MyEncryptionServiceImpl" lazy-
init="true">
 9 <property name="cipherAlgorithm" value="${encryption.cipherAlg}"/>
 10 <property name="keyAlgorithm" value="${encryption.keyAlg}"/>
 11 <property name="key" value="${encryption.key}"/>
 12 <property name="enabled" value="${encryption.busEncryption}"/>
 13 </bean>
 14
 15 </beans>

54

Chapter 19. Queue and Topic
invocation

When you deploy a service, you can configure it for queue or for topic invocation using the setQueue
property on the ServiceDefinition. The default is to register it as a queue-style service. The distinction
between queue and topic invocation occurs when there is more than one service registered under the same
QName.

Queue invocation
Remote service proxies obtained through the resource loader stack using getService(QName) (ultimately
through the ServiceBus) are inherently synchronous. In the presence of multiple service registrations, the
ServiceBus will choose one at random.

When invoking services asynchronously through the MessageHelper, an asynchronous service call proxy
will be constructed with all available service definitions. The MessageServiceInvoker is called to invoke
each service. If the service is defined as a queue service, then the ServiceBus will be consulted in
a similar fashion to determine a single service to call. After the first queue service invocation the
MessageServiceInvoker will return.

Topic invocation
The simplest way to invoke a topic service is using the MessageHelper functions to invoke the service
asynchronously. As described above for an asynchronous queue invocation, an asynchronous service call
proxy will be constructed with the list of all of the services registered as a topic under the given name.
Each of these services will be independently obtained and invoked by the MessageServiceInvoker.

Invoking a topic synchronously, however, requires use of a synchronous service call proxy to aggregate
all of the topic's services. This functionality is not directly available via the ServiceBus API because the
ServiceBus acts as a facade for direct service invocation.

To invoke a topic synchronously, you can construct a SynchronousServiceCallProxy using
SynchronousServiceCallProxy.createInstance, passing the list of Endpoint obtained using
ServiceBus.getEndpoints(QName). This is done, for example, by MessageHelperImpl when the bus
has been forced into synchronous mode via the message.delivery config param.

The synchronous service call proxy is the same as the asynchronous service call proxy, except that it does
not queue up the invocation, it will invoke it blockingly. The same queue/topic distinctions described above
apply when you invoke a topic synchronously. Under the normal queue situation, use of the synchronous
service call proxy is not necessary because, as mentioned above, remote services obtained through the
ServiceBus are naturally synchronous. You can see this in the example below:

List<Endpoint> servicesToProxy = KsbApiServiceLocator.getServiceBus().getEndpoints(qname);

SynchronousServiceCallProxy sscp = return SynchronousServiceCallProxy.createInstance(servicesToProxy, callback,
 context, value1, value2);

55

Chapter 20. KSB Parameters
Here is a comprehensive set of configuration parameters used to configure the Kuali Service Bus.

Core Parameters
Table 20.1. Core Parameters

Core Description Default

serviceServletUrl URL that maps to the KSB Servlet. It handles incoming
requests from the service bus.

${application.url}/remoting/

rice.ksb.config.allowSelfSignedSSL Indicates if self-signed certificates are permitted for https
communication on the service bus

false

application.id Application identifier for client application

keystore.file Path to the keystore file to use for security

keystore.alias Alias of the standalone server's key

keystore.password Password to access the keystore and the server's key

ksb.mode Mode in which to load the KSB module local

ksb.url The URL of the KSB web application ${application.url}/ksb

rice.ksb.struts.config.files The file that defines the struts context for the KRice KSB
struts module

/ksb/WEB-INF/struts-config.xml

dev.mode If true, application will not publish or consume services
from the central service registry, but will maintain a local
copy of the registry. This is intended only for client
application development purposes.

false

bam.enabled If true, will monitor and log the service calls made and
general business activity performed to the database.

Recommendation: Enable this only for testing purposes, as
there is a significant performance impact when enabled.

false

message.persistence If true, messages are stored in the database until sent. If
false, they are stored in memory.

true

message.delivery Specifies whether messages are sent synchronously are
asynchronously. Valid values are synchronous or async

async

message.off If set to true, then messages will not be sent but will instead
pile up in the message queue. Intended for development and
debugging purposes only.

false

Routing.ImmediateExceptionRouting If true, messages will go immediately to exception routing
if they fail, rather than being retried

false

RouteQueue.maxRetryAttempts Default number of times to retry messages that fail to be
delivered successfully.

5

RouteQueue.maxRetryAttemptsOverride If set, will override the max retry setting for ALL services,
even if they have their own custom retry setting.

ksb.org.quartz.* Can define any property beginning with ksb.org.quartz and
it will be passed to the internal KSB quartz configuration as
a property beginning with org.quartz (more details below)

useQuartzDatabase If true, then Quartz scheduler in Rice will use a database-
backed job store; if false, then jobs will be stored in
memory

true

serviceServletUrl
The URL that resolves to the KSB servlet that handles incoming requests from the service bus. All services
exported onto the service bus use this value to construct their endpoint URLs when they are published to
the service registry. See section below on configuring the KSBDispatcherServlet. This parameter should
point to the absolute URL of where that servlet is mapped. It should include a trailing slash.

KSB Parameters

56

application.id
An identifier that indicates the name of the logical node on the service bus. If the application is running in
a cluster, this should be the same for each machine in the cluster. This is used for namespacing of services,
among other things. All services exported from the client application onto the service bus use this value
as their default namespace unless otherwise specified.

keystore.file, keystore.alias, keystore.password
See the documentation below on keystore management.

ksb.mode
Mode in which to load the KSB module. Valid values are local and embedded. There is currently no
difference in how the KSB module loads based on these settings. It will always try to load the KSB struts
module if a KualiActionServlet is configured.

ksb.url
The URL of the KSB web application screens

rice.ksb.struts.config.files
The file that defines the struts context for the KRice KSB struts module. The struts module is loaded
automatically if a KualiActionServlet is configured in the web.xml.

dev.mode
Indicates whether this node should export and consume services from the entire service bus. If set to false,
then the machine will not register its services in the global service registry. Instead, it can only consume
services that it has available locally. In addition to this, other nodes on the service bus will not be able to
"see" this node and will therefore not forward any messages to it.

message.persistence
If true, then messages will be persisted to the datastore. Otherwise, they will only be stored in memory.
If message persistence is not turned on and the server is shutdown while there are still messages that need
to be sent, those messages will be lost. For a production environment, it is recommended that message
persistence be set to true.

message.delivery
Can be set to either synchronous or async. If this is set to synchronous, then messages that are sent in
an asynchronous fashion using the KSB API will instead be sent synchronously. This is useful in certain
development and unit testing scenarios. For a production environment, it is recommended that message
delivery be set to async.

message.off
If set to true then asynchronous messages will not be sent. In the case that message persistence is turned
on, they will be persisted in the message store and can even be picked up later using the Message Fetcher.

KSB Parameters

57

However, if message persistence is turned off, these messages will be lost. This can be useful in certain
debugging or testing scenarios.

RouteQueue.maxRetryAttempts
Sets the default number of retries that will be executed if a message fails to be sent. This retry count can
also be customized for a specific service. (See Exposing Services on the Bus)

RouteQueue.timeIncrement
Sets the default time increment between retry attempts. As with RouteQueue.maxRetryAttempts this can
also be configured at the service level.

RouteQueue.maxRetryAttemptsOverride
If set with a number, it will temporarily set the retry attempts for ALL services going into exception routing.
A good way to prevent all messages in a node that is having trouble from making it to exception routing
is by setting the number arbitrarily high. The message.off param does the same thing.

Routing.ImmediateExceptionRouting
If set to true, then messages that fail to be sent will not be re-tried. Instead their MessageExceptionHandler
will be invoked immediately.

useQuartzDatabase
When using the embedded Quartz scheduler started by the KSB, indicates whether that Quartz scheduler
should store its entries in the database. If this is true, then the appropriate Quartz properties should be set
as well (see ksb.org.quartz.* below).

ksb.org.quartz.*
Can be used to pass Quartz properties to the embedded Quartz scheduler. See the configuration
documentation on the Quartz site. Essentially, any property prefixed with ksb.org.quartz. will have the
"ksb." portion stripped and will be sent as configuration parameters to the embedded Quartz scheduler.

KSB Configurer Properties
In addition to the configuration parameters available in the KRice configuration system, the
KSBConfigurer bean has some properties that can be injected to configure it:

exceptionMessagingScheduler
By default, the KSB uses an embedded Quartz scheduler for scheduling the retry of messages that fail to
be sent. If desired, a Quartz scheduler can instead be injected into the KSBConfigurer and it will use that
scheduler instead. See Quartz Scheduling for more detail.

messageDataSource
Specifies the javax.sql.DataSource to use for storing the asynchronous message queue. If not specified,
this defaults to the DataSource injected into the RiceConfigurer.

KSB Parameters

58

If this DataSource is injected, then the registryDataSource must also be injected, and vice-versa.

registryDataSource
Specifies the javax.sql.DataSource to use for reading and writing from the Service Registry. If not
specified, this defaults to the DataSource injected into the RiceConfigurer.

If this DataSource is injected, then the messageDataSource must also be injected, and vice-versa.

overrideServices
See Acquiring and invoking services

Services
See Acquiring and invoking services

59

Chapter 21. JAX-RS / RESTful services
Rice now allows allows RESTful (JAX-RS) services to be exported and consumed on the
Kuali Service Bus (KSB). For some background on REST, see http://en.wikipedia.org/wiki/
Representational_State_Transfer.

For details on JAX-RS, see JSR-311.

Caveats
• The KSB does not currently support "busSecure" (digital signing of requests & responses) REST

services. Attempting to set a REST service's "busSecure" property to "true" will result in a
RiceRuntimeException being thrown. Rice can be customized to expose REST services in a secure way,
e.g. using SSL and an authentication mechanism such as client certificates, but that is beyond the scope
of this documentation.

• If the JAX-RS annotations on your resource class don't cover all of its public methods, then accessing
the non-annotated methods over the bus will result in an Exception being thrown.

A Simple Example
To expose a simple JAX-RS annotated service on the bus, you can follow this recipe for your spring
configuration (which comes from the Rice unit tests):

 1 <!-- The service implementation you want to expose -->
 2
 3 <bean id="baseballCardCollectionService"
 class="org.kuali.rice.ksb.testclient1.BaseballCardCollectionServiceImpl"/>
 4
 5
 6 <!-- The service definition which tells the KSB to expose our RESTful service -->
 7 <bean class="org.kuali.rice.ksb.messaging.RESTServiceDefinition">
 8 <property name="serviceNameSpaceURI" value="test" />
 9
 10
 11 <!-- as noted earlier, the servicePath property of RESTServiceDefinition can't be set here -->
 12
 13
 14 <!-- The service to expose. Refers to the bean above -->
 15 <property name="service" ref="baseballCardCollectionService" />
 16
 17
 18 <!-- The "Resource class", the class with the JAX-RS annotations on it. Could be the same as the -->
 19 <!-- service implementation, or could be different, e.g. an interface or superclass -->
 20
 21 <property name="resourceClass"
 22 value="org.kuali.rice.ksb.messaging.remotedservices.BaseballCardCollectionService" />
 23
 24
 25 <!-- the name of the service, which will be part of the RESTful URLs used to access it -->
 26 <property name="localServiceName" value="baseballCardCollectionService" />
 27 </bean>
 28

The following java interface uses JAX-RS annotations to specify its RESTful interface:

 1 // … eliding package and imports
 2
 3 @Path("/")
 4 public interface BaseballCardCollectionService {
 5 @GET

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://jcp.org/en/jsr/detail?id=311

JAX-RS / RESTful services

60

 6 public List<BaseballCard> getAll();
 7
 8
 9 /**
 10 * gets a card by it's (arbitrary) identifier
 11 */
 12 @GET
 13 @Path("/BaseballCard/id/{id}")
 14 public BaseballCard get(@PathParam("id") Integer id);
 15 /**
 16 * gets all the cards in the collection with the given player name
 17 */
 18 @GET
 19 @Path("/BaseballCard/playerName/{playerName}")
 20 public List<BaseballCard> get(@PathParam("playerName") String playerName);
 21
 22
 23 /**
 24 * Add a card to the collection. This is a non-idempotent method
 25 * (because you can add more than one of the same card), so we'll use @POST
 26 * @return the (arbitrary) numerical identifier assigned to this card by the service
 27 */
 28 @POST
 29 @Path("/BaseballCard")
 30 public Integer add(BaseballCard card);
 31
 32
 33 /**
 34 * update the card for the given identifier. This will replace the card that was previously
 35 * associated with that identifier.
 36 */
 37 @PUT
 38 @Path("/BaseballCard/id/{id}")
 39 @Consumes("application/xml")
 40 public void update(@PathParam("id") Integer id, BaseballCard card);
 41
 42
 43 /**
 44 * delete the card with the given identifier.
 45 */
 46 @DELETE
 47 @Path("/BaseballCard/id/{id}")
 48 public void delete(@PathParam("id") Integer id);
 49
 50 /**
 51 * This method lacks JAX-RS annotations
 52 */
 53 public void unannotatedMethod();
 54 }

Acquisition and use of this service over the KSB looks just like that of any other KSB service. In the
synchronous case:

BaseballCardCollectionService baseballCardCollection = (BaseballCardCollectionService)
 GlobalResourceLoader.getService(new QName("test", "baseballCardCollectionService");
);

List<BaseballCard> allMyMickeyMantles = baseballCardCollection.get("Mickey Mantle");
// baseballCardCollection.<other service method>(...)
// etc

Composite Services
It is also possible to aggregate multiple Rice service implementations into a single RESTful service where
requests to different sub-paths off of the base service URL can be handled by different underlying services.
This may be desirable to expose a RESTful service that is more complex than could be cleanly factored
into a single java service interface.

JAX-RS / RESTful services

61

The configuration for a composite RESTfull service looks a little bit different, and as might be expected
given the one-to-many mapping from RESTful service to java services, there are some caveats to using
that service over the KSB. Here is a simple example of a composite service definition (which also comes
from the Rice unit tests):

 1 <bean class="org.kuali.rice.ksb.messaging.RESTServiceDefinition">
 2 <property name="serviceNameSpaceURI" value="test" />
 3 <property name="localServiceName" value="kms" />
 4 <property name="resources">
 5 <list>
 6 <ref bean="inboxResource"/>
 7 <ref bean="messageResource"/>
 8 </list>
 9 </property>
 10 <property name="servicePath" value="/" />
 11 </bean>
 12
 13
 14 <!-- the beans referenced above are just JAX-RS annotated Java services -->
 15 <bean id="inboxResource" class="org.kuali.rice.ksb.testclient1.InboxResourceImpl">
 16 <!-- ... eliding bean properties ... -->
 17 </bean>
 18 <bean id="messageResource" class="org.kuali.rice.ksb.testclient1.MessageResourceImpl">
 19 <!-- ... eliding bean properties ... -->
 20
 21 </bean>

As you can see in the bean definition above, the service name is kms, so the base service
url would by default (in a dev environment) be http://localhost:8080/kr-dev/remoting/kms/
. Acquiring a composite service such as this one on the KSB will actually return you
a org.kuali.rice.ksb.messaging.serviceconnectors.ResourceFacade, which allows you to get the
individual java services in a couple of ways, as shown in the following simple example:

ResourceFacade kmsService =
 (ResourceFacade) GlobalResourceLoader.getService(
new QName(NAMESPACE, KMS_SERVICE));

// Get service by resource name (url path)
InboxResource inboxResource = kmsService.getResource("inbox");
// Get service by resource class
MessageResource messageResource = kmsService.getResource(MessageResource.class);

Additional Service Definition Properties
There are some properties on the RESTServiceDefinition object that let you do more advanced
configuration:

Providers
JAX-RS Providers allow you to define:

• ExceptionMappers which will handle specific Exception types with specific Responses.

• MessageBodyReaders and MessageBodyWriters that will convert custom Java types to and from
streams.

• ContextResolver providers allow you to create special JAXBContexts for specific types, which will
gives you fine control over marshalling, unmarshalling, and validation.

JAX-RS / RESTful services

62

The JAX-RS specification calls for classes annotated with @Provider to be automatically used in the
underlying implementation, but the CXF project which Rice uses under the hood does not (at the time of
this writing) support this configuration mechanism, so this configuration property is currently necessary.

Extension Mappings
Ordinarily you need to set your ACCEPT header to ask for a specific representation of a resource.
ExtensionMappings let you map certain file extensions to specific media types for your RESTful service,
so your URLs can then optionally specify a media type directly. For example you could map the .xml
extension to the media type text/xml, and then tag .xml on to the end of your resource URL to specify
that representation.

Language Mappings
language mappings allow you a way to control the the Content-Language header, which lets you specify
which languages your service can accept and provide.

Additional Information
For more information on what these properties provide, it may be helpful to consult the JAX-RS
specification, or the CXF documentation.

63

Chapter 22. Using the KSB with bus
security

Warning

The information in this section is under development.

The Kuali Service Bus (KSB) includes web services already installed with a base Rice implementation.
These services use WS-Security requiring the digital signing of each request providing a Signature and
digest of the request. The digital signing ensures that the client application has the proper credentials to
access the service.

Rice Services
This documentation will illustrate how to interact with the a base KSB using the expected bus security.
The examples will include a SoapUI client and a Java client application. Both of these examples can be
used with the demo Rice implementation available at: http://demo.rice.kuali.org/portal.do

Base Rice services
The list of Rice services is available from the Rice Administration menu:

• http://demo.rice.kuali.org/portal.do

username: admin

• Administration tab

• Service Bus link from the Service Bus section

Note

The demo Rice server is using the http protocol. The KSB Bus Security uses the keystore to
produce a digest and digitally sign the request, but it does not encrypt the request. A production
system should use the https protocol so that the request is encrypted as part of the transport.

CampusService
For simplicity's sake the CampusService.findAllCampuses method will serve as the example. There are
no query parameters and the answering web service response XML is easily human readable.

From the list of services on the demo Rice server, the CampusService has the following attributes:

• ServiceName:

 1 {http://rice.kuali.org/location/v2_0}campusService

• Endpoint URL:

http://demo.rice.kuali.org/remoting/soap/location/v2_0/campusService

http://demo.rice.kuali.org/portal.do
http://demo.rice.kuali.org/portal.do

Using the KSB with bus security

64

• Type: SOAP

Because the type is SOAP, the WSDL can be found at http://demo.rice.kuali.org/remoting/soap/location/
v2_0/campusService?wsdl

Bus Security
The base SOAP services published on the KSB all rely on the use of the Rice Java Keystore included
with the base Rice implementation. It is imperative that the client applications use the same rice.keystore
file that the server is using. The Rice Administration menu provides an interface where an alias can be
added to a new keystore and that new keystore is downloaded by your browser. See the notes on why this
approach does not work for newly added aliases.

See this for information on obtaining a rice.keystore.

Usage Examples
When consuming SOAP webservices with Java, two approaches are typical: a SoapUI client with tests
and assertions, and a Java client application.

SoapUI

• Using SoapUI with rice.keystore bus security

Java client application

• Java client application using rice.keystore bus security

SOAP request

• What does the SOAP request look like, anyway?

Obtaining rice.keystore
Kuali Rice Java Keystore (jks)

If you already have a running Rice instance, chances are you are already using, or have configured, a Rice
keystore.

The links provided here are for convenience in finding the latest default keystore from source.

Kuali locations

• https://wiki.kuali.org/display/KULFOUND/GitHub

• https://github.com/kuali

• https://github.com/kuali/rice/blob/master/rice-middleware/security/rice.keystore

Using the KSB with bus security - new
keystore aliases

Rice provides an interface for creating new aliases and producing new keystore files.

http://demo.rice.kuali.org/remoting/soap/location/v2_0/campusService?wsdl
http://demo.rice.kuali.org/remoting/soap/location/v2_0/campusService?wsdl
https://wiki.kuali.org/display/KULFOUND/GitHub
https://github.com/kuali
https://github.com/kuali/rice/blob/master/rice-middleware/security/rice.keystore

Using the KSB with bus security

65

However, both the server and the client must be using the same PrivateKeyEntry or trustedCertEntry.
These are identified inside of your keystore by the owner, issuer, and serial number values. So, in using
this interface to create a new alias which produces a new keystore, you will not be able to use the new
alias since the new keystore will not be used by the server. You can use the new keystore but only with
the alias (representing the cert) that the server is expecting - namely 'rice'.

keytool inspection of keystore

 1 $ keytool -list -v -keystore rice.keystore
 2 Enter keystore password:
 3
 4 Keystore type: JKS
 5 Keystore provider: SUN
 6
 7 Your keystore contains 1 entry
 8
 9 Alias name: rice
 10 Creation date: Oct 10, 2007
 11 Entry type: PrivateKeyEntry
 12 Certificate chain length: 1
 13 Certificate[1]:
 14 Owner: CN=rice
 15 Issuer: CN=rice
 16 Serial number: 470d1315
 17 Valid from: Wed Oct 10 10:59:49 PDT 2007 until: Sat Sep 22 10:59:49 PDT 2018
 18 Certificate fingerprints:
 19 MD5: 53:73:B3:E6:39:56:73:AA:98:D4:A9:2D:C6:36:A2:DB
 20 SHA1: 86:4B:D2:54:39:D8:9B:B2:97:A9:B3:1A:32:B3:1F:12:83:A5:1F:4F
 21 Signature algorithm name: MD5withRSA
 22 Version: 1
 23
 24
 25 ***
 26 ***

Note

The Issuer and Serial number are used in the digital signing of the SOAP Request. Here the Serial
number is represented in hex, in the SOAP Request it is represented in base 10.

KSB SoapUI Client
SoapUI is an excellent client for exercising, and automated testing of, SOAP services.

The steps necessary for a SoapUI Client include:

1. Creating the SoapUI project

2. Identification of the rice.keystore file to the SoapUI project definition

3. Configuring the use of the rice.keystore for outgoing requests

4. Associating the rice.keystore to a request

Creating the SoapUI project
Create a new SoapUI project and provide the location of the WSDL.

http://demo.rice.kuali.org/remoting/soap/location/v2_0/campusService?wsdl

http://www.soapui.org/

Using the KSB with bus security

66

Figure 22.1. Create a new SoapUI project

Identifying rice.keystore to the SoapUI project

With the project highlighted, use the Enter key to bring up the project attributes.

• choose the WS-Security Configurations parent tab

• choose the Keystores child tab

• add our keystore

1. Navigate to the location of your rice.keystore

2. Provide the keystore password (r1c3pw is the default)

3. Choose a default alias of rice

4. Provide the alias password (also r1c3pw is the default)

The interface should report the Status of "OK" if the keystore is found and accessible with the keystore
password provided.

Using the KSB with bus security

67

Figure 22.2. Identify rice.keystore to the SoapUI project

Configure using the keystore for outgoing requests
Still within the project attributes:

• choose the WS-Security Configurations parent tab

• choose the Outgoing WS-Security Configurations child tab

• add a new configuration

• provide an internal name for the configuration

• provide the alias name of rice

• provide the alias password (r1c3pw is the default)

• add a Signature action

1. Choose our rice.keystore keystore

2. Choose our rice alias

3. Provide our alias password (r1c3pw)

4. The Key Identifier and Serial Number should be defaulted and is the desired choice.

Using the KSB with bus security

68

5. Leave the other entries as default

When done with the project attributes, close the attributes window.

Figure 22.3. Identify rice.keystore to the SoapUI project

Associating our WS-Security Outgoing Configurations to
a request

Expand the project tree to find our desired request of findAllCampuses

• click on the Request1 name

• find the Aut (short for Authentication) button at the bottom of the window

• choose our internal name for the outgoing configuration

Using the KSB with bus security

69

Figure 22.4. Associate Outgoing Config to a Request

Execute the request

Click the green triangle "run" button at the top of the window to execute the request

• the request should execute successfully and return an XML structure which includes attributes on each
of the 12 campuses defined in the demo Rice data set

Using the KSB with bus security

70

Figure 22.5. Execute request

KSB Java Client
The generation of a Java client application is relatively easy using the capabilities of JDK1.6 and Apache
CXF libraries.

The steps outlined below include:

1. Generating a web service client from the SOAP WSDL

2. Creating a Maven project including dependencies

3. Writing just enough Java code to employ the generated client and including the WS-Security headers
using the keystore

Generating the web service client
Using the JDK1.6+ tool wsimport, a Java client can be created directly from the WSDL definition of our
desired service.

Use wsimport with the following parameters

• Keep to keep the generated source files

• Xnocompile since your .java files will probably be added and compiled inside of an IDE anyway

• Verbose to see the list of classes generated

• http://demo.rice.kuali.org/remoting/soap/location/v2_0/campusService?wsdl the WSDL location to the
campusService service

Your output should look similar to this listing.

Using the KSB with bus security

71

 1 wsimport
 2 $ wsimport -keep -Xnocompile -verbose http://demo.rice.kuali.org/remoting/soap/location/v2_0/campusService?
wsdl
 3 parsing WSDL...
 4
 5
 6 generating code...
 7
 8 org\kuali\rice\core\v2_0\AbstractPredicate.java
 9 org\kuali\rice\core\v2_0\AndType.java
 10 org\kuali\rice\core\v2_0\CompositePredicateType.java
 11 org\kuali\rice\core\v2_0\EqualIgnoreCaseType.java
 12 org\kuali\rice\core\v2_0\EqualType.java
 13 org\kuali\rice\core\v2_0\GreaterThanOrEqualType.java
 14 org\kuali\rice\core\v2_0\GreaterThanType.java
 15 org\kuali\rice\core\v2_0\IllegalArgumentFault.java
 16 org\kuali\rice\core\v2_0\InIgnoreCaseType.java
 17 org\kuali\rice\core\v2_0\InType.java
 18 org\kuali\rice\core\v2_0\LessThanOrEqualType.java
 19 org\kuali\rice\core\v2_0\LessThanType.java
 20 org\kuali\rice\core\v2_0\LikeType.java
 21 org\kuali\rice\core\v2_0\NotEqualIgnoreCaseType.java
 22 org\kuali\rice\core\v2_0\NotEqualType.java
 23 org\kuali\rice\core\v2_0\NotInIgnoreCaseType.java
 24 org\kuali\rice\core\v2_0\NotInType.java
 25 org\kuali\rice\core\v2_0\NotLikeType.java
 26 org\kuali\rice\core\v2_0\NotNullType.java
 27 org\kuali\rice\core\v2_0\NullType.java
 28 org\kuali\rice\core\v2_0\ObjectFactory.java
 29 org\kuali\rice\core\v2_0\OrType.java
 30 org\kuali\rice\core\v2_0\QueryByCriteriaType.java
 31 org\kuali\rice\core\v2_0\package-info.java
 32 org\kuali\rice\location\v2_0\CampusQueryResultsType.java
 33 org\kuali\rice\location\v2_0\CampusService.java
 34 org\kuali\rice\location\v2_0\CampusService_Service.java
 35 org\kuali\rice\location\v2_0\CampusType.java
 36 org\kuali\rice\location\v2_0\CampusTypeQueryResultsType.java
 37 org\kuali\rice\location\v2_0\CampusTypeType.java
 38 org\kuali\rice\location\v2_0\FindAllCampusTypes.java
 39 org\kuali\rice\location\v2_0\FindAllCampusTypesResponse.java
 40 org\kuali\rice\location\v2_0\FindAllCampuses.java
 41 org\kuali\rice\location\v2_0\FindAllCampusesResponse.java
 42 org\kuali\rice\location\v2_0\FindCampusTypes.java
 43 org\kuali\rice\location\v2_0\FindCampusTypesResponse.java
 44 org\kuali\rice\location\v2_0\FindCampuses.java
 45 org\kuali\rice\location\v2_0\FindCampusesResponse.java
 46 org\kuali\rice\location\v2_0\GetCampus.java
 47 org\kuali\rice\location\v2_0\GetCampusResponse.java
 48 org\kuali\rice\location\v2_0\GetCampusType.java
 49 org\kuali\rice\location\v2_0\GetCampusTypeResponse.java
 50 org\kuali\rice\location\v2_0\ObjectFactory.java
 51 org\kuali\rice\location\v2_0\RiceIllegalArgumentException.java
 52 org\kuali\rice\location\v2_0\package-info.java

The classes are generated into two package structures which directly match the namespace declarations
in the WSDL:

• org.kuali.rice.core.v2_0

• org.kuali.rice.location.v2_0

There are other command-line parameters for wsimport which gives you control over package names if
you so desire.

Create a Maven project
Maven is only a suggestion, of course. But, usage of Maven will ease the structure of your application
and the dependencies.

Using the KSB with bus security

72

Your pom.xml can be as simple as the example given here.

• cxf-rt-frontend-jaxws

• csf-rt-ws-security

• junit (test scope)

 1 pom.xml
 2 <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd">
 3 <modelVersion>4.0.0</modelVersion>
 4 <groupId>edu.somewhere</groupId>
 5 <artifactId>ksb-campusservice-client</artifactId>
 6 <version>0.0.1-SNAPSHOT</version>
 7 <dependencies>
 8 <dependency>
 9 <groupId>org.apache.cxf</groupId>
 10 <artifactId>cxf-rt-frontend-jaxws</artifactId>
 11 <version>2.7.3</version>
 12 </dependency>
 13 <dependency>
 14 <groupId>org.apache.cxf</groupId>
 15 <artifactId>cxf-rt-ws-security</artifactId>
 16 <version>2.7.3</version>
 17 </dependency>
 18 <dependency>
 19 <groupId>junit</groupId>
 20 <artifactId>junit</artifactId>
 21 <version>4.11</version>
 22 <scope>test</scope>
 23 </dependency>
 24 </dependencies>
 25 </project>

Apache CXF provides very convenient classes and functionality to take the XML of the request and provide
the digesting and signing. It is possible to perform those functions without CXF by using wss4j directly
or even modifying the XML of the request by hand, but the Apache CXF classes make it much easier.

Writing the Java code
The approach here is to write a client class that can be used as the Data Access Object (DAO) in your
data access layer (DAL) of an enclosing application. This Maven project could be compiled as a .jar and
included as a dependency for your other applications needing access to the Rice KSB services.

Your project will need to include the following:

• the generated classes, keeping their package structure intact, included at src/main/java

• client-sign.properties at src/main/resources

• rice.keystore included at src/main/resources

 1 client-sign.properties
 2 # Properties for the KSB Client Test classes
 3
 4 # properties for accessing the java keystore using Merlin
 5 org.apache.ws.security.crypto.provider=org.apache.ws.security.components.crypto.Merlin
 6 org.apache.ws.security.crypto.merlin.keystore.type=jks
 7 org.apache.ws.security.crypto.merlin.keystore.password=r1c3pw
 8 org.apache.ws.security.crypto.merlin.keystore.alias=rice
 9 org.apache.ws.security.crypto.merlin.keystore.file=rice.keystore

Using the KSB with bus security

73

Your Java code will include the following:

• KSBCampusServiceClient.java

 1 KSBCampusServiceClient.java
 2 package edu.somewhere;
 3
 4 import java.net.URL;
 5 import java.util.HashMap;
 6 import java.util.Map;
 7
 8 import org.apache.cxf.endpoint.Client;
 9 import org.apache.cxf.endpoint.Endpoint;
 10 import org.apache.cxf.frontend.ClientProxy;
 11 import org.apache.cxf.ws.security.wss4j.WSS4JOutInterceptor;
 12 import org.apache.ws.security.handler.WSHandlerConstants;
 13 import org.kuali.rice.location.v2_0.CampusService;
 14 import org.kuali.rice.location.v2_0.CampusService_Service;
 15
 16 public class KSBCampusServiceClient
 17 {
 18
 19 public CampusService getCampusService(URL url)
 20 {
 21 CampusService_Service svc = new CampusService_Service();
 22
 23 CampusService campusService = svc.getCampusServicePort();
 24
 25 Client client = ClientProxy.getClient(campusService);
 26 Endpoint cxfEP = client.getEndpoint();
 27
 28 Map<String, Object> outProps = new HashMap<String, Object>();
 29 outProps.put(WSHandlerConstants.ACTION, "Signature");
 30 outProps.put(WSHandlerConstants.USER, "rice");
 31 outProps.put(WSHandlerConstants.PW_CALLBACK_CLASS, KSBClientCallbackHandler.class.getName());
 32 outProps.put(WSHandlerConstants.SIG_PROP_FILE, "client-sign.properties");
 33
 34 WSS4JOutInterceptor wssOut = new WSS4JOutInterceptor(outProps);
 35
 36 cxfEP.getOutInterceptors().add(wssOut);
 37
 38 return campusService;
 39 }
 40 }

This is your public DAO class and it provides the wiring of the WS-Security Signature action to the
WSS4JOutInterceptor. In other words, it takes your outbound XML request and properly adds the digest
and signature values in the SOAP header. The key identifiers in this class include the rice user, the
callback handler class, and the properties file for access to the keystore.

• KSBClientCallbackHandler.java

 1 KSBClientCallbackHandler.java
 2 package edu.somewhere;
 3
 4 import java.io.IOException;
 5 import javax.security.auth.callback.Callback;
 6 import javax.security.auth.callback.CallbackHandler;
 7 import javax.security.auth.callback.UnsupportedCallbackException;
 8
 9 import org.apache.ws.security.WSPasswordCallback;
 10
 11 public class KSBClientCallbackHandler implements CallbackHandler
 12 {
 13
 14 @Override
 15 public void handle(Callback[] callbacks) throws IOException, UnsupportedCallbackException
 16 {
 17 for(Callback thisCallback : callbacks)
 18 {

Using the KSB with bus security

74

 19 WSPasswordCallback pwcb = (WSPasswordCallback)thisCallback;
 20 String user = pwcb.getIdentifier();
 21 int usage = pwcb.getUsage();
 22
 23 if(usage == WSPasswordCallback.SIGNATURE)
 24 {
 25 // this is to provide the password for the alias within the keystore
 26 // - while it is the same value as the keystore name and password,
 27 // - you could craft a different alias than the keystore user
 28 if("rice".equals(user)) pwcb.setPassword("r1c3pw");
 29 }
 30 }
 31 }
 32 }

This class is an implementation of a callback handler. The wss4j WS-Security function requires access
to the keystore for purposes of hashing and signing the request. This is accomplished by providing a
callback to a class which can provide the proper keystore credentials. This is the same technique used
for simple username/password credentialing of simple WS-Security SOAP headers, but in our case this
callback handler is asking for the password to the certificate identified by the alias within the keystore.

• KSBCampusServiceClientTest.java

 1 KSBCampusServiceClientTest.java
 2 package edu.somewhere;
 3
 4 import static org.junit.Assert.*;
 5
 6 import java.net.URL;
 7
 8 import org.junit.Test;
 9 import org.kuali.rice.location.v2_0.CampusService;
 10 import org.kuali.rice.location.v2_0.CampusType;
 11 import org.kuali.rice.location.v2_0.FindAllCampusesResponse.Campuses;
 12
 13 import edu.somewhere.KSBCampusServiceClient;
 14
 15 public class KSBCampusServiceClientTest
 16 {
 17
 18 @Test
 19 public void campusServiceTest() throws Exception
 20 {
 21 KSBCampusServiceClient client = new KSBCampusServiceClient();
 22
 23 CampusService svc = client.getCampusService(new URL("http://demo.rice.kuali.org/remoting/soap/
location/v2_0/campusService?wsdl"));
 24 Campuses campuses = svc.findAllCampuses();
 25
 26 assertEquals(12, campuses.getCampus().size());
 27
 28 for(CampusType campus : campuses.getCampus())
 29 {
 30 System.out.printf("%s : %s : %s \n", campus.getCode(), campus.getShortName(),
 campus.getName());
 31 }
 32 }
 33 }

This class was written as a JUnit test class (located at src/test/java) but could easily be a class with a
main() method as well. This serves as the example calling class employing the client's functionality.

Complete sample application
The code included here is available from a public respository.

• https://bitbucket.org/majorbanzai/kuali-kode/src

https://bitbucket.org/majorbanzai/kuali-kode/src

Using the KSB with bus security

75

look for the ksbclient directory

• eclipse project

• maven project

 1 get the code
 2 $ hg clone https://bitbucket.org/majorbanzai/kuali-kode
 3 $ cd kuali-kode/ksbclient
 4 $ mvn test

• KSBCampusServiceClientTest integration test

 1 KSBCampusServiceClientTest output
 2 BL : BLOOMINGTON : BLOOMINGTON
 3 BX : BLGTN OFF CA : BLGTN OFF CAMPUS
 4 CO : COLUMBUS : COLUMBUS
 5 EA : EA-RICHMOND : EAST-RICHMOND
 6 FW : FORT WAYNE : FORT WAYNE
 7 IN : INDIANAPOLIS : INDIANAPOLIS
 8 KO : KOKOMO : KOKOMO
 9 NW : NW-GARY : NORTHWEST-GARY
 10 OC : OFF CAMPUS : OFF CAMPUS
 11 SB : SOUTH BEND : SOUTH BEND
 12 SE : SE-NEW ALBNY : SOUTHEAST-NEW ALBANY
 13 UA : UNIVER ADMIN : UNIVERSITY ADMINISTRATION

Using the KSB with bus security - SOAP
request

SOAP request with WS-Security header
What does the SOAP request look like, anyway?

Because the demo Rice server is using the http protocol, we can use our favorite network sniffer to watch
the traffic. Your SOAP message looks like the following:

 1 SOAP request
 2 <soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/" xmlns:v2="http://
rice.kuali.org/location/v2_0">
 3 <soapenv:Header>
 4 <wsse:Security soapenv:mustUnderstand="1"
 5 xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd"
 6 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">

 7 <ds:Signature Id="SIG-6" xmlns:ds="http://www.w3.org/2000/09/xmldsig#">

 8 <ds:SignedInfo>
 9 <ds:CanonicalizationMethod Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 10 <ec:InclusiveNamespaces PrefixList="soapenv v2"
 11 xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 12 </ds:CanonicalizationMethod>
 13 <ds:SignatureMethod Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"/>
 14 <ds:Reference URI="#id-5">
 15 <ds:Transforms>
 16 <ds:Transform Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#">
 17 <ec:InclusiveNamespaces PrefixList="v2"
 18 xmlns:ec="http://www.w3.org/2001/10/xml-exc-c14n#"/>
 19 </ds:Transform>
 20 </ds:Transforms>

Using the KSB with bus security

76

 21 <ds:DigestMethod Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"/>

 22 <ds:DigestValue>Vw3UgSOjyJLj2Qapgiw4//qxsO0=</ds:DigestValue>
 23 </ds:Reference>
 24 </ds:SignedInfo>
 25 <ds:SignatureValue>eYwbnLoVQNKHQxJjC1zolpxZ6mx1ixU4C

+pJaVP6fLDGdnwxU1ueWRoXAbDVCKFOYrPpX7k6TGii
 26 Q9Zy4CeUiI7KBqqGpOlMbQ5avVjAk4AGSIo3f02cAtx3kwlD/Dyb+PuCmAVm0QGB8GOeWDsFfX6x
 27 RJuO40x5n3tPtNXhq5U=
 28 </ds:SignatureValue>
 29 <ds:KeyInfo Id="KI-21FCA5124C428B1F2113651984409138">
 30 <wsse:SecurityTokenReference wsu:Id="STR-21FCA5124C428B1F2113651984409139">
 31 <ds:X509Data>
 32 <ds:X509IssuerSerial>

 33 <ds:X509IssuerName>CN=rice</ds:X509IssuerName>

 34 <ds:X509SerialNumber>1192039189</ds:X509SerialNumber>
 35 </ds:X509IssuerSerial>
 36 </ds:X509Data>
 37 </wsse:SecurityTokenReference>
 38 </ds:KeyInfo>
 39 </ds:Signature>
 40 </wsse:Security>
 41 </soapenv:Header>
 42 <soapenv:Body wsu:Id="id-5"
 43 xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd">
 44 <v2:findAllCampuses/>
 45 </soapenv:Body>
 46 </soapenv:Envelope>

Request breakdown

<ds:Signature> begins the signing of the request
<ds:SignedInfo> is the signature package. Once generated, the following bytes all the way down to
the </ds:SignatureValue> cannot be altered
<ds:DigestValue> is the hash digest generated from the body of the request and the signature value
<ds:SignatureValue> is the signature. In this case some of the bytes, when printed, represent a new-
line character. Any modification of this stanza byte stream will invalidate the signature
<ds:X509IssuerName> is the alias expected and must be in the keystores of the server and the client
<ds:X509SerialNumber> is directly from the keystore and must match between the server and the
client. Using the keytool tool, you can see this value (represented in hex)

The request itself is very small. The <soapenv:Body> stanza represents the actual request of calling the
findAllCampuses method. The bus security starts inside the header with the <wsse:Security> stanza.

Note

The X509IssuerName and X509SerialNumber come directly from the keystore. Here the serial
number is in base 10, in the keystore the value is shown in hex.

77

Chapter 23. Caching Infrastructure

Overview
As we decrease the direct database access from Rice clients and expose services remotely, service-
level caching becomes more important. Previously in Rice we didn't approach caching with a standard
comprehensive solution. This was problematic for many reasons explained later in the document. As
caching starts to take a greater role in Rice it is clear that we must have a well thought out plan for caching.
The caching solution we are looking for and have implemented must have the following properties:

1. Usable by developers without introducing bugs

2. Current (not built on dead or dying technologies)

3. Concise (doesn't pollute the codebase with caching logic)

4. Flexible (works for most/many caching situations)

5. Supports client/server side caching

6. Tunable/customizable (max cache size, cache to disk, etc)

7. Supports distributed caching (will it work with the KSB?)

8. Performant

9. Usable by Kuali clients for their own caching needs not just Rice

10.Version compatible

11.Pluggable (allows using different caching implementations)

Proposal that was Implemented
Spring 3.1 includes a declarative cache abstraction API. This is an annotation driven approach which
significantly reduces caching logic. The only thing service authors should have to do is annotate service
interfaces (or implementation code) with Spring cache annotations. For example:

 1 @Cacheable(value="foo", key="#p0")
 2 public Foo getFoo(String id);
 3
 4 @CacheEvict(value = "foos", allEntries=true)
 5 public Foo updatefoo(Foo f);

Then the service implementation would look like:

public Foo getFoo(String id) {
 return getFooFromDB(id);
}

public Foo updatefoo(Foo f) {
 return updateinDB(f);

Caching Infrastructure

78

}

All the boilerplate caching logic has been magically melted away through the wonders of AOP proxies.
When Spring creates a Spring managed service (bean) it will automatically return a proxy containing
caching logic. This works great for most cases, but falls apart when clients are calling services
remotely. This is because the remote proxy is not created by Spring, but is instead created by the KSB
(ServiceConnectorFactory). In order to handle this case, we will need to directly cache proxy our remote
proxies.

To make sure the annotations are actually being read by Spring, we must include the following in our
Spring xml files:

 1 <cache:annotation-driven />

and declare a cache manager like:

 1 <bean id="cacheManager" class="org.springframework.cache.ehcache.EhcacheCacheManager" p:cache-
manager="ehcache"/>
 2
 3 <!-- Ehcache library setup -->
 4 <bean id="ehcache" class="org.springframework.cache.ehcache.EhCacheManagerFactoryBean" p:config-
location="ehcache.xml"/>

Due to the fact that Spring is using proxies, there is a slight overhead in going through an extra layer. This
will probably not be a problem, but if it is, Spring provides the option to use aspectj and aspect weaving.
This will remove the proxying at the expense of complexity.

Figure 23.1. Cache Proposal

The Implementation
The above proposal has been put to code, which here is explained in more detail. To understand the various
parts of the Spring Cache abstraction and the implementation it is recommended to read the Spring cache
documentation before going any further.

The Spring Parts
• CacheManager:An interface that defines a way to retrieve a particular cache. This cache manager has

a name and manages one of more cache objects

• Cache:An interface that defines a data structure to hold objects to cache. The cache has a name and can
be thought of as a Map-like structure. In fact, some cache implementations are backed by a java.util.Map.

• Cacheable:An annotation to use on a Spring-managed (or non-Spring-managed w/ Kuali extensions)
bean to enable method caching. This annotation has two important parts. One or more cache name(s)
to put the cached object in and the key to use for caching. Both should be present. It is recommended
that cache keys be simple string (or primitive) values.

• CacheEvict:An annotation to use on a Spring-managed (or non-Spring-managed w/ Kuali extensions)
bean to enable cache eviction. This annotation has several important parts. You must always specify

http://static.springsource.org/spring/docs/3.1.0.M2/spring-framework-reference/html/cache.html
http://static.springsource.org/spring/docs/3.1.0.M2/spring-framework-reference/html/cache.html

Caching Infrastructure

79

one or more cache name(s). You can optionally specify either a clearAll flag to force the entire cache
to be cleared or you can specify a cache key so that only one item is cleared from the cache.

• Spring annotation processor:an xml snippet to enable Spring caching on Spring beans. You must
specify the CacheManager to use for caching. There are several optional settings that can be used on
this declaration which will not be explained here.

Note

Due to the way Rice is using the Spring Expression Language with Cacheable and CacheEvict
annotations, Rice must be compiled with debug symbols.

The Kuali Parts
• CacheService:An interface that defines operations to invoke on a local cache. This is used in distributed

cache operations. Currently only supports flush style operations.

• CacheServiceImpl:The default implementation of the CacheService. It contains a reference to a
CacheManager and invokes caching operations on it. Most standard Kuali apps will have multiple
CacheService endpoints remotely available.

• DistributedCacheManagerDecorator: A CacheManager that decorates an existing CacheManager. It
adds distributed caching operations by retrieving a list of CacheServices deployed on the bus and calling
each one asynchronously. In the future, this will only call CacheService endpoints that are interested in
receiving a certain message. Although some of the diagrams on this page may suggest that the distributed
cache messages execute immediately, they are actually queued up and sent in bulk at the end of a
transaction. This means that our distributed caching is transaction aware. The queuing nature of this
class helps decrease the chattiness of cache flush messages on the KSB.

Note

Since all cache keys must generate stable soap values, all cache keys are coerced to a String
by this decorator. This is why our cache keys should be primitive values; otherwise, we might
be relying on unstable toString implementations.

• CacheProxy:A utility class provides an extension to the Spring cache abstraction. This allows the
proxing on non-Spring managed beans with Spring caching behavior. This is used for client-side caching
behavior for remote proxies. See Spring enhancement JIRA

A Real Example

 1 FooService.java
 2 interface FooService {
 3
 4 //demonstrates a simple argument
 5 @Cacheable(value=Foo.Cache.NAME, key="'id=' + #p0")
 6 Foo getFoo(String id);
 7
 8 //demonstrates a complex argument - build a string. No using the actual object as key
 9 @Cacheable(value=Foo.Cache.NAME, key="'name=' + #p0.name + '|' + 'name=' + #p0.code")
 10 Foo getFooByNameAndCode(NameAndCode nc);
 11
 12 //demonstrates no arguments. making up a key
 13 @Cacheable(value=Foo.Cache.NAME, key="all")
 14 Collection<Foo> findAllFoos();
 15
 16 //demonstrates a single evict.
 17 //We need to be careful here because if multiple
 18 //"keys" hold the FooType object then the allEntries must be true*
 19 @CacheEvict(value=FooType.Cache.NAME, key="'id=' + #p0")

https://jira.springsource.org/browse/SPR-8620

Caching Infrastructure

80

 20 void updateNameOnFooType(String id, String name);
 21
 22 //demonstrates a complete evict.
 23 @CacheEvict(value=Foo.Cache.NAME, allEntries=true)
 24 void addFoos(Collection<Foo> foos);
 25 }

 1 FooSpringBeans.xml
 2 <beans>
 3 <!-- tell Spring to look for cache annotations and which CacheManager to use -->
 4 <cache:annotation-driven cache-manager="fooDistributedCacheManager" />
 5
 6 <!--
 7 create a local CacheManager. Cache operations on this CacheManager only happen
 8 against the application's local cache.
 9 Can use any cache implementation: java.util.concurrent, ehcache, etc.
 10 -->
 11 <bean id="fooLocalCacheManager" class="org.springframework.cache.support.SimpleCacheManager">
 12 <property name="caches">
 13 <set>
 14 <bean class="org.springframework.cache.concurrent.ConcurrentMapCacheFactoryBean"
 15 p:name="#{T(org.Kuali.Rice.module.api.foo.Foo$Cache).NAME}"/>
 16 <bean class="org.springframework.cache.concurrent.ConcurrentMapCacheFactoryBean"
 17 p:name="#{T(org.Kuali.Rice.module.api.foo.FooType$Cache).NAME}"/>
 18 </set>
 19 </property>
 20 </bean>
 21
 22 <!--
 23 Wrap the local CacheManager in a decorator to enable distributed cache
 24 operations across the Kuali ecosystem.
 25 -->
 26 <bean id="fooDistributedCacheManager"
 class="org.Kuali.Rice.core.impl.cache.DistributedCacheManagerDecorator">
 27 <!-- the local CacheManager to wrap -->
 28 <property name="cacheManager" ref="sharedDataLocalCacheManager" />
 29 <!-- the ksb service to lookup and call CacheService Enpoints asynchronously -->
 30 <property name="messageHelper" ref="Rice.ksb.messageHelper" />
 31 <!-- the name of the endpoint to call. Must be the same (for this module) across all applications in
 the Kuali ecosystem -->
 32 <property name="serviceName" value="{http://Rice.Kuali.org/foo/2_0}fooModuleCacheServiceSoap" />
 33 <!--
 34 how long to wait in milliseconds before flushing the distributed cache queue and sending
 distributed flush messages.
 35 defaults to 60000 (60 seconds).
 36 -->
 37 <property name="flushQueueMaxWait" value="${Rice.cache.flush.queue.max.wait}" />
 38 </bean>
 39
 40 <!--
 41 Service that should be exposed on the ksb to receive messages from the distributed cache manager.
 42 Notice it handles calling into the *local* CacheManager.
 43 -->
 44 <bean id="fooCacheService" class="org.Kuali.Rice.core.impl.cache.CacheServiceImpl"
 45 p:cacheManager-ref="fooLocalCacheManager" />
 46 </beans>

 1 FooServiceBusSpringBeans.xml
 2 <beans>
 3 <!-- export the CacheService on the service bus to receive distributed cache messages for the foo
 module-->
 4 <bean parent="fooRemoteServiceExporter">
 5 <property name="serviceBus" ref="Rice.ksb.serviceBus"/>
 6 <property name="serviceDefinition">
 7 <bean parent="fooJaxWsSoapService"
 8 p:service-ref="fooCacheService"
 9 p:localServiceName="fooCacheServiceSoap"/>
 10 </property>
 11 <property name="exportIf" value="fooCacheServiceSOAP.expose"/>
 12 </bean>
 13 </beans>

Caching Infrastructure

81

Standards and Rules

Version Compatibility Rules

1. Cache Names cannot change (using the object's namespace is a good way to enforce this).

2. Cache Keys cannot change (may want to create a utility method for this on each object we are caching).

3. Always use simple keys (Strings or primitives).

4. When doing a single evict (allEntries=false), object can only be present with a single cache key. (*more
on this below [81]).

Suggested Standards

1. Only effectively immutable/thread-safe objects should be cached!

2. One cache manager per module KimCacheManager, KewCacheManager.

3. One cache per top-level object Permission, Responsibility, etc.

4. One remotely available CacheService per cacheManager (*more on this below [81]).

5. Use jdk style proxying (*more on this below [82]).

6. All Remotable services should cache.

7. Always annotate service interfaces so remote proxies automatically get client-side caching.

Notes on Standards, Rules, etc.

Many CacheService Enpoints: One CacheService endpoint per CacheManager allows client apps to
use Rice's caching infrastructure without sending distributed cache flush messages to apps that don't
care. For example: KC exposes a remote service (AwardService) to KFS. KC hands KFS a fully cache
annotated service interface. KFS and KC clusters can participate is distributed cache messages without
bothering other Kuali apps that don't ever call the AwardService and don't have a AwardCacheService
exposed remotely. Another interesting prospect is a Kuali ecosystem may have Rice installs with different
"modules" enabled. This design allows the Rice installs to only receive messages for the modules they
have enabled (XXXCacheService available).

Spanning CacheManagers: This design cannot currently handle flushing across CacheManagers. This
is a current limitation although in practice it may not be needed. For example: Say the GenericType
object is used and cached in KIM and KEW (KimCacheManager, KewCacheManager). If a Kim api
updates the GenericType object the KimCacheManager will handle flushing the kim module cache but the
KewCacheManager's cache will be stale.

One way we can handle this in the situations that we definitively need to access another cache manager,
is to execute the following code in the service implementation (in normal cases this should be avoided):

 1
 2
 GlobalResourceLoader.getService("alternateDistributedCacheManager").getCache("the_cache_to_retrieve").evict("the_specific_key");

Caching Infrastructure

82

Same object, multiple cache keys: See Spring enhancement JIRA #2 for more info. Seems like we will be
doing a lot of @CacheEvict(value="cache_name" allEntries=true) because the same object may be present
under multiple cache keys. Not exactly sure what to do about this...We could have a cache per method but
that will be hard to manage. Maybe the underlying caching implementations can handle this for us?

One way we can handle this in the situations that we definitively want to avoid flushing an entire cache, is
by executing the following code in the service implementation (in normal cases this should be avoided):

GlobalResourceLoader.getService("fooDistributedCacheManager").getCache("the_cache_to_retrieve").evict("the_specific_key");

jdk proxying? With the Spring caching abstraction, you can either proxy a service to inject the caching
logic (like a decorator), or use bytecode weaving with aspectj. Proxying is a simpler solution while less
performant than aspectj. Unless jdk proxying becomes a significant bottleneck (which seems doubtful),
then using code weaving should be an option implementers can turn on but not enabled by default. Tuning
the cache setting (like ehcache settings) is probably a more important thing to do than proxy versus code
weaving.

pushing/priming: Distributed cache updates (pushing updates to clients), cache priming, or cache
warming is currently not supported.

where to cache? Although we have primarily targeted our remotable services for caching, there is no
reason why caching couldn't get used anywhere in Rice or a client application. We just need to be mindful
of the version compatibility rules.

caching mutable objects? This depends on the implementation of the caching framework. If using
ConcurrentHashMap as a caching implementation, then mutable values should NOT be cached. If using
ehcache, then mutable values can be cached as long as the cache is configured correctly to do a defensive
copy. The safest rule of thumb in Rice is to only store immutable values in a cache. This gives implementers
the greatest flexibility in regards to what caching implementation to use.

duplicate cache flush messages: This is the biggest drawback to this design. The server has to be the entity
to send out the distributed cache flush messages. Why? This is because the server knows if a destructive call
succeeds and therefore causes a stale cache. Since the server does not know which client made the service
request, the server will send out a cache flush message to the calling client even though the client already
cleared his own cache. If there was some way to pass along the instanceId of the calling client, this could be
avoided. It appears the RiceCacheAdministrator (RiceDistributedCacheListener) has the same limitation
if used for client and server side caching. Maybe, the KSB could maintain a ThreadLocal variable that
contains the calling client's applicationId, instanceId, etc. It could do this through some interceptor style
pattern. The interceptor would need to make sure the variable is cleared even when exceptions happen.
The thread local idea is kind of a code smell, but may be just what the doctor ordered in this case.

make sure we support bundled: This should be working now but we need to confirm that when in
dev.mode in a bundled architecture, this still works correctly.

no compile dependency on ehcache: By using Spring's Cache Abstraction, there is no need to compile
against any ehcache APIs. In fact, the maven dependency for ehcache is runtime only (which could
even be switched to optional). It's important that we be mindful of this in the future because this allows
implementers to switch ehcache for some other solution (like JBoss' native caching support).

cache keys: Cache keys should be made up of the important arguments to a method and optionally the
method name. They key is meant to uniquely identify a method's return value in a cache. A few examples
are:

 1 @Cacheable(value= Group.Cache.NAME, key="'{getAttributes}' + 'groupId=' + #p0")

https://jira.springsource.org/browse/SPR-8629

Caching Infrastructure

83

 1 @Cacheable(value= Group.Cache.NAME, key="'id=' + #p0")

Caching Administration UI

Requirements

The caching UI should allow a system administrator visualize the "local" caches in a running instance of a
cache enabled Kuali Application. The administrator should have the ability to trigger a distributed cache
flush of cached item(s). To demonstrate the items that must be displayed on this UI see the following
example:

• KimCacheManager

• RoleCache

• CacheEntry (id-1)

• CacheEntry (id-2)

• PermissionCache

• KewCacheManager

• DocumentTypeCache

• CacheEntry(ParameterDocumentType)

With the above example, an admin should be able to do the following:

• Flush All CacheManagers (KimCacheManager, KewCacheManager)

• Flush KimCacheManager

• Flush RoleCache in KimCacheManager

• Flush CacheEntry (id-1) in RoleCache in KimCacheManager

Access to the screen and flush actions must also be locked down through KIM Permissions.

Non-requirements

• We have not identified the need to do a non-distributed flush through the UI (local flush).

• We have not identified the need to do a complete flush of all caches across the Kuali-ecosystem from
a single point. For example: If you wanted to flush KFS specific cache you would have to login to the
KFS admin screen to perform that action rather than pushing an uber-flush button from Rice.

• We have not identified the need to dynamically disable caching from a UI on a running application

Putting it all together
Below are a couple pseudo examples of UML sequence diagrams to help illustrate a couple standard call
flows.

Caching Infrastructure

84

Figure 23.2. Standard call flow 1

Figure 23.3. Standard call flow 2

Implementation Plug Points
One critical piece of this design is the ability to plugin into different cache implementations with very
little impact to the Rice codebase. Why would you want to do this? Simply put: some applications servers
or infrastructures have alternative caching frameworks that have advantages over what we provide with
Rice. In order to achieve this, the Rice team (and other Kuali apps) must make an effort to NOT directly
use a caching framework in code, but to always go through Spring's caching abstraction. In Rice, we will
achieve this by making our default caching implementation (ehcache) a runtime or optional dependency.
Remember: the following hints for customization will have to be done for every module of Rice and every
cache enabled Kuali app.

Option 1: replacing the default caching implementation

To do this you must replace(or override) the following Spring entries for the local CacheManagers. For
example:

 1 <bean id="sharedDataLocalCacheManager" class="org.springframework.cache.ehcache.EhCacheCacheManager">

Caching Infrastructure

85

 2 <property name="cacheManager">
 3 <bean class="org.springframework.cache.ehcache.EhCacheManagerFactoryBean"
 4 p:config-location="${shareddata.ehcache.config.location}"/>
 5 </property>
 6 </bean>

Could be replaced with:

 1 <!-- this assumes org.jboss.JBossCacheManager implements the org.springframework.cache.support.CacheManager
 interface -->
 2 <bean id="sharedDataLocalCacheManager" class="org.jboss.JBossCacheManager">
 3 <!--...-->
 4 </bean>

Option 2: replacing the Distributed CacheManager

Doing Option 1 changes the caching implementation but still uses the Kuali Service Bus for transaction-
aware flush messages. Many Caching implementations already provide these facilities. You could remove
or replace the following:

 1 <bean id="sharedDataDistributedCacheManager"
 class="org.Kuali.Rice.core.impl.cache.DistributedCacheManagerDecorator">
 2 <property name="cacheManager" ref="sharedDataLocalCacheManager" />
 3 <property name="messageHelper" ref="Rice.ksb.messageHelper" />
 4 <property name="serviceName" value="{http://Rice.Kuali.org/shareddata}sharedDataCacheServiceSoap" />
 5 </bean>

Doing this may mean that the CacheService endpoints are no longer used so the following entries could
be removed as well:

 1 <bean id="sharedDataCacheService" class="org.Kuali.Rice.core.impl.cache.CacheServiceImpl"
 2 p:cacheManager-ref="sharedDataLocalCacheManager" />

 1 <bean parent="sharedDataRemoteServiceExporter">
 2 <property name="serviceBus" ref="Rice.ksb.serviceBus"/>
 3 <property name="serviceDefinition">
 4 <bean parent="sharedDataJaxWsSoapService"
 5 p:service-ref="sharedDataCacheService"
 6 p:localServiceName="sharedDataCacheServiceSoap"/>
 7 </property>
 8 <property name="exportIf" value="sharedDataCacheServiceSOAP.expose"/>
 9 </bean>

And finally, remember to update the cache section of the Spring files like the following:

 1 <cache:annotation-driven cache-manager="jbossDistributedCacheManager" />

Option 3: Aspect Weaving

There have been some concerns that Rice's choice to use jdk proxying may cause some overhead. To
switch to aspect weaving which is more performant change the following:

 1 <cache:annotation-driven cache-manager="sharedDataDistributedCacheManager" />

to

Caching Infrastructure

86

 1 <cache:annotation-driven cache-manager="sharedDataDistributedCacheManager" mode="aspectj" />

You must also include the spring-aspectj.jar on the classpath.

References
Kuali Rice JIRA

Design/Code Review

Spring Cache Abstraction

EhCache

Spring enhancement JIRA #1

Spring enhancement JIRA #2

Spring bug JIRA #1

Rice 2.0 Wiki - Compatibility Refactoring - Caching Infrastructure

https://jira.Kuali.org/browse/KULRICE-5357
http://fisheye.Kuali.org/cru/Rice-61
http://static.springsource.org/spring/docs/3.1.0.M2/spring-framework-reference/html/cache.html
http://ehcache.org/
https://jira.springsource.org/browse/SPR-8620
https://jira.springsource.org/browse/SPR-8629
https://jira.springsource.org/browse/SPR-8632
https://wiki.Kuali.org/pages/viewpage.action?pageId=311822686#Rice2.0-CompatibilityRefactoring-CachingInfrastructure-Puttingitalltogether

87

Glossary
A
Action List A list of the user's notification and workflow items. Also called the user's

Notification List. Clicking an item in the Action List displays details about that
notification, if the item is a notification, or displays that document, if it is a
workflow item. The user will usually load the document from their Action List in
order to take the requested action against it, such as approving or acknowledging
the document.

Action List Type This tells you if the Action List item is a notification or a more specific workflow
request item. When the Action List item is a notification, the Action List Type is
"Notification."

Action Request A request to a user or Workgroup to take action on a document. It designates the
type of action that is requested, which includes:

• Approve: requests an approve or disapprove action.

• Complete: requests a completion of the contents of a document. This action
request is displayed in the Action List after the user saves an incomplete
document.

• Acknowledge: requests an acknowledgment by the user that the document has
been opened - the doc will not leave the Action List until acknowledgment has
occurred; however, the document routing will not be held up and the document
will be permitted to transaction into the processed state if neccessary.

• FYI: a notification to the user regarding the document. Documents requesting
FYI can be cleared directly from the Action List. Even if a document has FYI
requests remaining, it will still be permitted to transition into the FINAL state.

Action Request Hierarchy Action requests are hierarchical in nature and can have one parent and multiple
children.

Action Requested The action one needs to take on a document; also the type of action that is requested
by an Action Request. Actions that may be requested of a user are:

• Acknowledge: requests that the users states he or she has reviewed the
document.

• Approve: requests that the user either Approve or Disapprove a document.

• Complete: requests the user to enter additional information in a document so
that the content of the document is complete.

• FYI: intended to simply makes a user aware of the document.

Action Taken An action taken on a document by a Reviewer in response to an Action Request.
The Action Taken may be:

• Acknowledged: Reviewer has viewed and acknowledged document.

• Approved: Reviewer has approved the action requested on document.

Glossary

88

• Blanket Approved: Reviewer has requested a blanket approval up to a specified
point in the route path on the document.

• Canceled: Reviewer has canceled the document. The document will not be
routed to any more reviewers.

• Cleared FYI: Reviewer has viewed the document and cleared all of his or her
pending FYI(s) on this document.

• Completed: Reviewer has completed and supplied all data requested on
document.

• Created Document: User has created a document

• Disapproved: Reviewer has disapproved the document. The document will not
being routed to any subsequent reviewers for approval. Acknowledge Requests
are sent to previous approvers to inform them of the disapproval.

• Logged Document: Reviewer has added a message to the Route Log of the
document.

• Moved Document: Reviewer has moved the document either backward or
forward in its routing path.

• Returned to Previous Node: Reviewer has returned the document to a previous
routing node. When a Reviewer does this, all the actions taken between the
current node and the return node are removed and all the pending requests on
the document are deactivated.

• Routed Document: Reviewer has submitted the document to the workflow
engine for routing.

• Saved: Reviewer has saved the document for later completion and routing.

• Superuser Approved Document: Superuser has approved the entire document,
any remaining routing is cancelled.

• Superuser Approved Node: Superuser has approved the document through all
nodes up to (but not including) a specific node. When the document gets to that
node, the normal Action Requests will be created.

• Superuser Approved Request: Superuser has approved a single pending
Approve or Complete Action Request. The document then goes to the next
routing node.

• Superuser Cancelled: Superuser has canceled the document. A Superuser can
cancel a document without a pending Action Request to him/her on the
document.

• Superuser Disapproved: Superuser has disapproved the document. A Superuser
can disapprove a document without a pending Action Request to him/her on
the document.

Glossary

89

• Superuser Returned to Previous Node: Superuser has returned the document
to a previous routing node. A Superuser can do this without a pending Action
Request to him/her on the document.

Activated The state of an action request when it is has been sent to a user's Action List.

Activation The process by which requests appear in a user's Action List

Activation Type Defines how a route node handles activation of Action Requests. There are two
standard activation types:

• Sequential: Action Requests are activated one at a time based on routing
priority. The next Action Request isn't activated until the previous request is
satisfied.

• Parallel: All Action Requests at the route node are activated immediately,
regardless of priority

Active Indicator An indicator specifying whether an object in the system is active or not. Used as
an alternative to complete removal of an object.

Ad Hoc Routing A type of routing used to route a document to users or groups that are not in the
Routing path for that Document Type. When the Ad Hoc Routing is complete, the
routing returns to its normal path.

Annotation Optional comments added by a Reviewer when taking action. Intended to explain
or clarify the action taken or to advise subsequent Reviewers.

Approve A type of workflow action button. Signifies that the document represents a valid
business transaction in accordance with institutional needs and policies in the
user's judgment. A single document may require approval from several users, at
multiple route levels, before it moves to final status.

Approver The user who approves the document. As a document moves through Workflow,
it moves one route level at a time. An Approver operates at a particular route level
of the document.

Attachment The pathname of a related file to attach to a Note. Use the "Browse..." button to
open the file dialog, select the file and automatically fill in the pathname.

Attribute Type Used to strongly type or categorize the values that can be stored for the various
attributes in the system (e.g., the value of the arbitrary key/value pairs that can be
defined and associated with a given parent object in the system).

Authentication The act of logging into the system. The Out of the box (OOTB) authenticaton
implementation in Rice does not require a password as it is intended for testing
puposes only. This is something that must be enabled as part of an implementation.
Various authentication solutions exist, such as CAS or Shibboleth, that an
implementer may want to use depending on their needs.

Authorization Authorization is the permissions that an authenticated user has for performing
actions in the system.

Author Universal ID A free-form text field for the full name of the Author of the Note, expressed as
"Lastname, Firstname Initial"

Glossary

90

B
Base Rule Attribute The standard fields that are defined and collected for every Routing Rule These

include:

• Active: A true/false flag to indicate if the Routing Rule is active. If false, then
the rule will not be evaluated during routing.

• Document Type: The Document Type to which the Routing Rule applies.

• From Date: The inclusive start date from which the Routing Rule will be
considered for a match.

• Force Action: a true/false flag to indicate if the review should be forced to take
action again for the requests generated by this rule, even if they had taken action
on the document previously.

• Name: the name of the rule, this serves as a unique identifier for the rule. If one
is not specified when the rule is created, then it will be generated.

• Rule Template: The Rule Template used to create the Routing Rule.

• To Date: The inclusive end date to which the Routing Rule will be considered
for a match.

Blanket Approval Authority that is given to designated Reviewers who can approve a document to a
chosen route point. A Blanket Approval bypasses approvals that would otherwise
be required in the Routing For an authorized Reviewer, the Doc Handler typically
displays the Blanket Approval button along with the other options. When a Blanket
Approval is used, the Reviewers who are skipped are sent Acknowledge requests
to notify them that they were bypassed.

Blanket Approve Workgroup A workgroup that has the authority to Blanket Approve a document.

Branch A path containing one or more Route Nodes that a document traverses during
routing. When a document enters a Split Node multiple branches can be created.
A Join Node joins multiple branches together.

Business Rule 1. Describes the operations, definitions and constraints that apply to an
organization in achieving its goals.

2. A restriction to a function for a business reason (such as making a specific
object code unavailable for a particular type of disbursement). Customizable
business rules are controlled by Parameters.

C
Campus Identifies the different fiscal and physical operating entities of an institution.

Campus Type Designates a campus as physical only, fiscal only or both.

Cancel A workflow action available to document initiators on documents that have not
yet been routed for approval. Denotes that the document is void and should be
disregarded. Canceled documents cannot be modified in any way and do not route
for approval.

Glossary

91

Canceled A routing status. The document is denoted as void and should be disregarded.

CAS - Central Authentication
Service

http://www.jasig.org/cas - An open source authentication framework. Kuali Rice
provides support for integrating with CAS as an authentication provider (among
other authentication solutions), and Kuali also provides an implementation of a
CAS server that integrates with Kuali Identity Management.

Client A Java Application Program Interface (API) for interfacing with the Kuali
Enterprise Workflow Engine.

Client/Server The use of one computer to request the services of another computer over a
network. The workstation in an organization will be used to initiate a business
transaction (e.g., a budget transfer). This workstation needs to gather information
from a remote database to process the transaction, and will eventually be used to
post new or changed information back onto that remote database. The workstation
is thus a Client and the remote computer that houses the database is the Server.

Close A workflow action available on documents in most statuses. Signifies that the
user wishes to exit the document. No changes to Action Requests, Route Logs or
document status occur as a result of a Close action. If you initiate a document and
close it without saving, it is the same as canceling that document.

Comma-separated value A file format using commas as delimiters utilized in import and export
functionality.

Complete A pending action request to a user to submit a saved document.

Completed The action taken by a user or group in response to a request in order to finish
populating a document with information, as evidenced in the Document Route
Log.

Country Restricted Indicator Field used to indicate if a country is restricted from use in procurement. If there
is no value then there is no restriction.

Creation Date The date on which a document is created.

CSV See comma-separated value

D
Date Approved The date on which a document was most recently approved.

Date Finalized The date on which a document enters the FINAL state. At this point, all approvals
and acknowledgments are complete for the document.

Deactivation The process by which requests are removed from a user's Action List

Delegate A user who has been registered to act on behalf of another user. The Delegate
acts with the full authority of the Delegator. Delegation may be either Primary
Delegation or Secondary Delegation.

Delegate Action List A separate Action List for Delegate actions. When a Delegate selects a Delegator
for whom to act, an Action List of all documents sent to the Delegator is displayed.

http://www.jasig.org/cas

Glossary

92

For both Primary and Secondary Delegation the Delegate may act on any of the
entries with the full authority of the Delegator.

Disapprove A workflow action that allows a user to indicate that a document does not represent
a valid business transaction in that user's judgment. The initiator and previous
approvers will receive Acknowledgment requests indicating the document was
disapproved.

Disapproved A status that indicates the document has been disapproved by an approver as a
valid transaction and it will not generate the originally intended transaction.

Doc Handler The Doc Handler is a web interface that a Client uses for the appropriate display
of a document. When a user opens a document from the Action List or Document
Search, the Doc Handler manages access permissions, content format, and user
options according to the requirements of the Client.

Doc Handler URL The URL for the Doc Handler.

Doc Nbr See Document Number.

Document Also see E-Doc.

An electronic document containing information for a business transaction that is
routed for Actions in KEW. It includes information such as Document ID, Type,
Title, Route Status, Initiator, Date Created, etc. In KEW, a document typically has
XML content attached to it that is used to make routing decisions.

Document Id See Document Number.

Document Number A unique, sequential, system-assigned number for a document

Document Operation A workflow screen that provides an interface for authorized users to manipulate
the XML and other data that defines a document in workflow. It allows you
to access and open a document by Document ID for the purpose of performing
operations on the document.

Document Search A web interface in which users can search for documents. Users may search by
a combination of document properties such as Document Type or Document ID,
or by more specialized properties using the Detailed Search. Search results are
displayed in a list similar to an Action List.

Document Status See also Route Status.

Document Title The title given to the document when it was created. Depending on the Document
Type, this title may have been assigned by the Initiator or built automatically based
on the contents of the document. The Document Title is displayed in both the
Action List and Document Search.

Document Type The Document Type defines the routing definition and other properties for a set
of documents. Each document is an instance of a Document Type and conducts
the same type of business transaction as other instances of that Document Type.

Document Types have the following characteristics:

• They are specifications for a document that can be created in KEW

Glossary

93

• They contain identifying information as well as policies and other attributes

• They defines the Route Path executed for a document of that type (Process
Definition)

• They are hierarchical in nature may be part of a hierarchy of Document Types,
each of which inherits certain properties of its Parent Document Type.

• They are typically defined in XML, but certain properties can be maintained
from a graphical interface

Document Type Hierarchy A hierarchy of Document Type definitions. Document Types inherit certain
attributes from their parent Document Types. This hierarchy is also leveraged by
various pieces of the system, including the Rules engine when evaluating rule sets
and KIM when evaluating certain Document Type-based permissions.

Document Type Label The human-readable label assigned to a Document Type.

Document Type Name The assigned name of the document type. It must be unique.

Document Type Policy These advise various checks and authorizations for instances of a Document Type
during the routing process.

Drilldown A link that allows a user to access more detailed information about the current
data. These links typically take the user through a series of inquiries on different
business objects.

Dynamic Node An advanced type of Route Node that can be used to generate complex routing
paths on the fly. Typically used whenever the route path of a document cannot be
statically defined and must be completely derived from document data.

E
ECL 1. An acronym for Educational Community License.

2. All Kuali software and material is available under the Educational Community
License and may be adopted by colleges and universities without licensing
fees. The open licensing approach also provides opportunities for support and
implementation assistance from commercial affiliates.

E-Doc An abbreviation for electronic documents, also a shorthand reference to
documents created with eDocLite.

eDocLite A framework for quickly building workflow-enabled documents. Allows you to
define document screens in XML and render them using XSL style sheets.

Embedded Client A type of client that runs an embedded workflow engine.

Employee Status Found on the Person Document; defines the employee's current employment
classification (for example, "A" for Active).

Employee Type Found on the Person Document; defines the employee's position classification (for
example, "P" for Professional).

Glossary

94

Entity An Entity record houses identity information for a given Person, Process, System,
etc. Each Entity is categorized by its association with an Entity Type.

Entity Attribute Entities have directory-like information called Entity Attributes that are associated
with them

Entity Attributes make up the identity information for an Entity record.

Entity Type Provides categorization to Entities. For example, a "System" could be considered
an Entity Type because something like a batch process may need to interfact with
the application.

Exception A workflow routing status indicating that the document routed to an exception
queue because workflow has encountered a system error when trying to process
the document.

Exception Messaging The set of services and configuration options that are responsible for handling
messages when they cannot be successfully delivered. Exception Messaging is
set up when you configure KSB using the properties outlined in KSB Module
Configuration.

Exception Routing A type of routing used to handle error conditions that occur during the routing
of a document. A document goes into Exception Routing when the workflow
engine encounters an error or a situation where it cannot proceed, such as a
violation of a Document Type Policy or an error contacting external services.
When this occurs, the document is routed to the parties responsible for handling
these exception cases. This can be a group configured on the document or a
responsibility configured in KIM. Once one of these responsible parties has
reviewed the situation and approved the document, it will be resubmitted to the
workflow engine to attempt the processing again.

Extended Attributes Custom, table-driven business object attributes that can be established by
implementing institutions.

Extension Rule Attribute One of the rule attributes added in the definition of a rule template that extends
beyond the base rule attributes to differentiate the routing rule. A Required
Extension Attribute has its "Required" field set to True in the rule template.
Otherwise, it is an Optional Extension Attribute. Extension attributes are typically
used to add additional fields that can be collected on a rule. They also define the
logic for how those fields will be processed during rule evaluation.

F
Field Lookup The round magnifying glass icon found next to fields throughout the GUI that

allow the user to look up reference table information and display (and select from)
a list of valid values for that field.

Final A workflow routing status indicating that the document has been routed and has
no pending approval or acknowledgement requests.

Flexible Route Management A standard KEW routing scheme based on rules rather than dedicated table-based
routing.

FlexRM (Flexible Route
Module)

The Route Module that performs the Routing for any Routing Rule is defined
through FlexRM. FlexRM generates Action Requests when a Rule matches the

Glossary

95

data value contained in a document. An abbreviation of "Flexible Route Module."
A standard KEW routing scheme that is based on rules rather than dedicated table-
based routing.

Force Action A true/false flag that indicates if previous Routing for approval will be ignored
when an Action Request is generated. The flag is used in multiple contexts where
requests are generated (e.g., rules, ad hoc routing). If Force Action is False, then
prior Actions taken by a user can satisfy newly generated requests. If it is True,
then the user needs to take another Action to satisfy the request.

FYI A workflow action request that can be cleared from a user's Action List with
or without opening and viewing the document. A document with no pending
approval requests but with pending Acknowledge requests is in Processed status.
A document with no pending approval requests but with pending FYI requests is
in Final status. See also Ad Hoc Routing and Action Request.

G
Group A Group has members that can be either Principals or other Groups (nested).

Groups essentially become a way to organize Entities (via Principal relationships)
and other Groups within logical categories.

Groups can be given authorization to perform actions within applications by
assigning them as members of Roles.

Groups can also have arbitrary identity information (i.e., Group Attributes hanging
from them. Group Attributes might be values for "Office Address," "Group
Leader," etc.

Groups can be maintained at runtime through a user interface that is capable of
workflow.

Group Attribute Groups have directory-like information called Group Attributes hanging from
them. "Group Phone Number" and "Team Leader" are examples of Group
Attributes.

Group Attributes make up the identity information for a Group record.

Group Attributes can be maintained at runtime through a user interface that is
capable of workflow.

H
Hierarchical Tree Structure A hierarchical representation of data in a graphical form.

I
Initialized The state of an Action Request when it is first created but has not yet been

Activated (sent to a user's Action List).

Initiated A workflow routing status indicating a document has been created but has not
yet been saved or routed. A Document Number is automatically assigned by the
system.

Glossary

96

Initiator A user role for a person who creates (initiates or authors) a new document for
routing. Depending on the permissions associated with the Document Type, only
certain users may be able to initiate documents of that type.

Inquiry A screen that allows a user to view information about a business object.

J
Join Node The point in the routing path where multiple branches are joined together. A Join

Node typically has a corresponding Split Node for which it joins the branches.

K
KC - Kuali Coeus TODO

KCA - Kuali Commercial
Affiliates

A designation provided to commercial affiliates who become part of the Kuali
Partners Program to provide for-fee guidance, support, implementation, and
integration services related to the Kuali software. Affiliates hold no ownership of
Kuali intellectual property, but are full KPP participants. Affiliates may provide
packaged versions of Kuali that provide value for installation or integration
beyond the basic Kuali software. Affiliates may also offer other types of training,
documentation, or hosting services.

KCB – Kuali Communications
Broker

KCB is logically related to KEN. It handles dispatching messages based on user
preferences (email, SMS, etc.).

KEN - Kuali Enterprise
Notification

A key component of the Enterprise Integration layer of the architecture
framework. Its features include:

• Automatic Message Generation and Logging

• Message integrity and delivery standards

• Delivery of notifications to a user's Action List

KEW – Kuali Enterprise
Workflow

Kuali Enterprise Workflow is a general-purpose electronic routing infrastructure,
or workflow engine. It manages the creation, routing, and processing of electronic
documents (eDocs) necessary to complete a transaction. Other applications can
also use Kuali Enterprise Workflow to automate and regulate the approval process
for the transactions or documents they create.

KFS – Kuali Financial System Delivers a comprehensive suite of functionality to serve the financial system needs
of all Carnegie-Class institutions. An enhancement of the proven functionality of
Indiana University's Financial Information System (FIS), KFS meets GASB and
FASB standards while providing a strong control environment to keep pace with
advances in both technology and business. Modules include financial transactions,
general ledger, chart of accounts, contracts and grants, purchasing/accounts
payable, labor distribution, budget, accounts receivable and capital assets.

KIM – Kuali Identity
Management

A Kuali Rice module, Kuali Identity Management provides a standard API for
persons, groups, roles and permissions that can be implemented by an institution.
It also provdies an out of the box reference implementation that allows for a
university to use Kuali as their Identity Management solution.

Glossary

97

KNS – Kuali Nervous System A core technical module composed of reusable code components that provide
the common, underlying infrastructure code and functionality that any module
may employ to perform its functions (for example, creating custom attributes,
attaching electronic images, uploading data from desktop applications, lookup/
search routines, and database interaction).

KPP - Kuali Partners Program The Kuali Partners Program (KPP) is the means for organizations to get involved
in the Kuali software community and influence its future through voting rights to
determine software development priorities. Membership dues pay staff to perform
Quality Assurance (QA) work, release engineering, packaging, documentation,
and other work to coordinate the timely enhancement and release of quality
software and other services valuable to the members. Partners are also encouraged
to tender functional, technical, support or administrative staff members to the
Kuali Foundation for specific periods of time.

KRAD - Kuali Rapid
Application Development

TODO

KRMS - Kuali Rules
Management System

TODO

KS - Kuali Student Delivers a means to support students and other users with a student-centric system
that provides real-time, cost-effective, scalable support to help them identify
and achieve their goals while simplifying or eliminating administrative tasks.
The high-level entities of person (evolving roles-student, instructor, etc.), time
(nested units of time - semesters, terms, classes), learning unit (assigned to any
learning activity), learning result (grades, assessments, evaluations), learning
plan (intentions, activities, major, degree), and learning resources (instructors,
classrooms, equipment). The concierge function is a self-service information
sharing system that aligns information with needs and tasks to accomplish goals.
The support for integration of locally-developed processes provides flexibility for
any institution's needs.

KSB – Kuali Service Bus Provides an out-of-the-box service architecture and runtime environment for Kuali
Applications. It is the cornerstone of the Service Oriented Architecture layer of
the architectural reference framework. The Kuali Service Bus consists of:

• A services registry and repository for identifying and instantiating services

• Run time monitoring of messages

• Support for synchronous and asynchronous service and message paradigms

Kuali 1. Pronounced "ku-wah-lee". A partnership organization that produces a suite of
community-source, modular administrative software for Carnegie-class higher
education institutions. See also Kuali Foundation

2. (n.) A humble kitchen wok that plays an important role in a successful kitchen.

Kuali Foundation Employs staff to coordinate partner efforts and to manage and protect the
Foundation's intellectual property. The Kuali Foundation manages a growing
portfolio of enterprise software applications for colleges and universities. A
lightweight Foundation staff coordinates the activities of Foundation members
for critical software development and coordination activities such as source code
control, release engineering, packaging, documentation, project management,

Glossary

98

software testing and quality assurance, conference planning, and educating and
assisting members of the Kuali Partners program.

Kuali Rice Provides an enterprise-class middleware suite of integrated products that allow
both Kuali and non-Kuali applications to be built in an agile fashion, such
that developers are able to react to end-user business requirements in an
efficient manner to produce high-quality business applications. Built with Service
Oriented Architecture (SOA) concepts in mind, KR enables developers to build
robust systems with common enterprise workflow functionality, customizable
and configurable user interfaces with a clean and universal look and feel, and
general notification features to allow for a consolidated list of work "action
items." All of this adds up to providing a re-usable development framework that
encourages a simplified approach to developing true business functionality as
modular applications.

L
Last Modified Date The date on which the document was last modified (e.g., the date of the last action

taken, the last action request generated, the last status changed, etc.).

M
Maintenance Document An e-doc used to establish and maintain a table record.

Message The full description of a notification message. This is a specific field that can be
filled out as part of the Simple Message or Event Message form. This can also
be set by the programmatic interfaces when sending notifications from a client
system.

Message Queue Allows administrators to monitor messages that are flowing through the Service
Bus. Messages can be edited, deleted or forwarded to other machines for
processing from this screen.

N
Namespace A Namespace is a way to scope both Permissions and Entity Attributes Each

Namespace instance is one level of scoping and is one record in the system.
For example, "KRA" or "KC" or "KFS" could be a Namespace. Or you could
further break those up into finer-grained Namespaces such that they would roughly
correlate to functional modules within each application. Examples could be "KRA
Rolodex", "KC Grants", "KFS Chart of Accounts".

Out of the box, the system is bootstrapped with numerous Rice namespaces
which correspond to the different modules. There is also a default namespace of
"KUALI".

Namespaces can be maintained at runtime through a maintenance document.

Note Text A free-form text field for the text of a Note

Notification Content This section of a notification message which displays the actual full message for
the notification along with any other content-type-specific fields.

Glossary

99

Notification Message The overall Notification item or Notification Message that a user sees when she
views the details of a notification in her Action List. A Notification Message
contains not only common elements such as Sender, Channel, and Title, but also
content-type-specific fields.

O
OOTB Stands for "out of the box" and refers to the base deliverable of a given feature

in the system.

Optimistic Locking A type of "locking" that is placed on a database row by a process to prevent
other processes from updating that row before the first process is complete. A
characteristic of this locking technique is that another user who wants to make
modifications at the same time as another user is permitted to, but the first one
who submits their changes will have them applied. Any subsequent changes will
result in the user being notified of the optimistic lock and their changes will not
be applied. This technique assumes that another update is unlikely.

Optional Rule Extension
Attribute

An Extension Attribute that is not required in a Rule Template. It may or may
not be present in a Routing Rule created from the Template. It can be used as
a conditional element to aid in deciding if a Rule matches. These Attributes are
simply additional criteria for the Rule matching process.

Org Doc # The originating document number.

Organization Refers to a unit within the institution such as department, responsibility center,
campus, etc.

Organization Code Represents a unique identifier assigned to units at many different levels within the
institution (for example, department, responsibility center, and campus).

P
Parameter Component Code Code identifying the parameter Component.

Parameter Description This field houses the purpose of this parameter.

Parameter Name This will be used as the identifier for the parameter. Parameter values will be
accessed using this field and the namespace as the key.

Parameter Type Code Code identifying the parameter type. Parameter Type Code is the primary key for
its' table.

Parameter Value This field houses the actual value associated with the parameter.

Parent Document Type A Document Type from which another Document Type derives. The child type can
inherit certain properties of the parent type, any of which it may override. A Parent
Document Type may have a parent as part of a hierarchy of document types.

Parent Rule A Routing Rule in KEW from which another Routing Rule derives. The child Rule
can inherit certain properties of the parent Rule, any of which it may override. A
Parent Rule may have a parent as part of a hierarchy of Rules.

Permission Permissions represent fine grained actions that can be mapped to functionality
within a given system. Permissions are scoped to Namespace which roughly
correlate to modules or sections of functionality within a given system.

Glossary

100

A developer would code authorization checks in their application against these
permissions.

Some examples would be: "canSave", "canView", "canEdit", etc.

Permissions are aggregated by Roles.

Permissions can be maintained at runtime through a user interface that is capable
of workflow; however, developers still need to code authorization checks against
them in their code, once they are set up in the system.

Attributes

1. Id - a system generated unique identifier that is the primary key for any
Permission record in the system

2. Name - the name of the permission; also a human understandable unique
identifier

3. Description - a full description of the purpose of the Permission record

4. Namespace - the reference to the associated Namespace

Relationships

1. Permission to Role - many to many; this relationship ties a Permission record
to a Role that is authorized for the Permission

2. Permission to Namespace - many to one; this relationship allows for scoping
of a Permission to a Namespace that contains functionality which keys its
authorization checking off of said

Person Identifier The username of an individual user who receives the document ad hoc for the
Action Requested

Person Role Creates or maintains the list used in selection of personnel when preparing the
Routing Form document.

Pessimistic Locking A type of lock placed on a database row by a process to prevent other processes
from reading or updating that row until the first process is finished. This technique
assumes that another update is likely.

Plugins A plugin is a packaged set of code providing essential services that can be
deployed into the Rice standalone server. Plugins usually contains only classes
used in routing such as custom rules or searchable attributes, but can contain
client application specific services. They are usually used only by clients being
implemented by the 'Thin Client' method

Post Processor A routing component that is notified by the workflow engine about various events
pertaining to the routing of a specific document (e.g., node transition, status
change, action taken). The implementation of a Post Processor is typically specific
to a particular set of Document Types. When all required approvals are completed,
the engine notifies the Post Processor accordingly. At this point, the Post Processor
is responsible for completing the business transaction in the manner appropriate
to its Document Type.

Glossary

101

Posted Date/Time Stamp A free-form text field that identifies the time and date at which the Notes is posted.

Postal Code Defines zip code to city and state cross-references.

Preferences User options in an Action List for displaying the list of documents. Users can click
the Preferences button in the top margin of the Action List to display the Action
List Preferences screen. On the Preferences screen, users may change the columns
displayed, the background colors by Route Status, and the number of documents
displayed per page.

Primary Delegation The Delegator turns over full authority to the Delegate. The Action Requests
for the Delegator only appear in the Action List of the Primary Delegate. The
Delegation must be registered in KEW or KIM to be in effect.

Principal A Principal represents an Entity that can authenticate into the system. One can
roughly correlate a Principal to a login username. Entities can exist in KIM without
having permissions or authorization to do anything; therefore, a Principal must
exist and must be associated with an Entity in order for it to have access privileges.
All authorization that is not specific to Groups is tied to a Principal.

In other words, an Entity is for identity while a Principal is for access management.

Also note that an Entity is allowed to have multiple Principals associated with
it. The use case typically given here is that a person may apply to a school and
receive one log in for the application system; however, once accepted, they may
receive their official login, but use the same identity information set up for their
Entity record.

Processed A routing status indicating that the document has no pending approval requests
but still has one or more pending acknowledgement requests.

R
Recipient Type The type of entity that is receiving an Action Request. Can be a user, workgroup,

or role.

Required Rule Extension
Attribute

An Extension Attribute that is required in a Rule Template. It will be present in
every Routing Rule created from the Template.

Responsibility See Responsible Party.

Responsibility Id A unique identifier representing a particular responsibility on a rule (or from a
route module This identifier stays the same for a particular responsibility no matter
how many times a rule is modified.

Responsible Party The Reviewer defined on a routing rule that receives requests when the rule
is successfully executed. Each routing rule has one or more responsible parties
defined.

Reviewer A user acting on a document in his/her Action List and who has received an Action
Request for the document.

Rice An abbreviation for Kuali Rice.

Role Roles aggregate Permissions When Roles are given to Entities (via their
relationship with Principals) or Groups an authorization for all associated
Permissions is granted.

Glossary

102

Route Header Id Another name for the Document Id.

Route Log Displays information about the routing of a document. The Route Log is usually
accessed from either the Action List or a Document Search. It displays general
document information about the document and a detailed list of Actions Taken
and pending Action Requests for the document. The Route Log can be considered
an audit trail for a document.

Route Module A routing component that the engine uses to generate action requests at a particular
Route Node. FlexRM (Flexible Route Module) is a general Route Module that
is rule-based. Clients can define their own Route Modules that can conduct
specialized Routing based on routing tables or any other desired implementation.

Route Node Represents a step in the routing process of a document type. Route node
"instances" are created dynamically as a document goes through its routing process
and can be defined to perform any function. The most common functions are to
generate Action Requests or to split or join the route path.

• Simple: do some arbitrary work

• Requests: generate action requests using a Route Module or the Rules engine

• Split: split the route path into one or more parallel branches

• Join: join one or more branches back together

• Sub Process: execute another route path inline

• Dynamic: generate a dynamic route path

Route Path The path a document follows during the routing process. Consists of a set of
route nodes and branches. The route path is defined as part of the document type
definition.

Route Status The status of a document in the course of its routing:

• Approved: These documents have been approved by all required reviewers and
are waiting additional postprocessing.

• Cancelled: These documents have been stopped. The document's initiator can
'Cancel' it before routing begins or a reviewer of the document can cancel it
after routing begins. When a document is cancelled, routing stops; it is not sent
to another Action List.

• Disapproved: These documents have been disapproved by at least one reviewer.
Routing has stopped for these documents.

• Enroute: Routing is in progress on these documents and an action request is
waiting for someone to take action.

• Exception: A routing exception has occurred on this document. Someone from
the Exception Workgroup for this Document Type must take action on this
document, and it has been sent to the Action List of this workgroup.

• Final: All required approvals and all acknowledgements have been received on
these documents. No changes are allowed to a document that is in Final status.

Glossary

103

• Initiated: A user or a process has created this document, but it has not yet been
routed to anyone's Action List.

• Processed: These documents have been approved by all required users, and is
completed on them. They may be waiting for Acknowledgements. No further
action is needed on these documents.

• Saved: These documents have been saved for later work. An author (initiator)
can save a document before routing begins or a reviewer can save a document
before he or she takes action on it. When someone saves a document, the
document goes on that person's Action List.

Routed By User The user who submits the document into routing. This is often the same as the
Initiator. However, for some types of documents they may be different.

Routing The process of moving a document through its route path as defined in its
Document Type. Routing is executed and administered by the workflow engine.
This process will typically include generating Action Requests and processing
actions from the users who receive those requests. In addition, the Routing process
includes callbacks to the Post Processor when there are changes in document state.

Routing Priority A number that indicates the routing priority; a smaller number has a higher routing
priority. Routing priority is used to determine the order that requests are activated
on a route node with sequential activation type.

Routing Rule A record that contains the data for the Rule Attributes specified in a Rule Template
It is an instance of a Rule Template populated to determine the appropriate
Routing. The Rule includes the Base Attributes, Required Extension Attributes,
Responsible Party Attributes, and any Optional Extension Attributes that are
declared in the Rule Template. Rules are evaluated at certain points in the routing
process and, when they fire, can generate Action Requests to the responsible
parties that are defined on them.

Technical considerations for a Routing Rules are:

• Configured via a GUI (or imported from XML)

• Created against a Rule Template and a Document Type

• The Rule Template and it's list of Rule Attributes define what fields will be
collected in the Rule GUI

• Rules define the users, groups and/or roles who should receive action requests

• Available Action Request Types that Rules can route

• Complete

• Approve

• Acknowledge

• FYI

• During routing, Rule Evaluation Sets are "selected" at each node. Default is to
select by Document Type and Rule Template defined on the Route Node

Glossary

104

• Rules match (or 'fire') based on the evaluation of data on the document and data
contained on the individual rule

• Examples

• If dollar amount is greater than $10,000 then send an Approval request to Joe.

• If department is "HR" request an Acknowledgment from the
HR.Acknowledgers workgroup.

Rule Attribute Rule attributes are a core KEW data element contained in a document that controls
its Routing. It participates in routing as part of a Rule Template and is responsible
for defining custom fields that can be rendered on a routing rule. It also defines
the logic for how rules that contain the attribute data are evaluated.

Technical considerations for a Rule Attribute are:

• They might be backed by a Java class to provide lookups and validations of
appropriate values.

• Define how a Routing Rule evaluates document data to determine whether or
not the rule data matches the document data.

• Define what data is collected on a rule.

• An attribute typically corresponds to one piece of data on a document (i.e dollar
amount, department, organization, account, etc.).

• Can be written in Java or defined using XML (with matching done by XPath).

• Can have multiple GUI fields defined in a single attribute.

Rule QuickLinks A list of document groups with their document hierarchies and actions that can be
selected. For specific document types, you can create the rule delegate.

Rule Template A Rule Template serves as a pattern or design for the routing rules. All of the
Rule Attributes that include both Required and _Optional_ are contained in the
Rule Template; it defines the structure of the routing rule of FlexRM. The Rule
Template is also used to associate certain Route Nodes on a document type to
routing rules.

Technical considerations for a Rule Templates are:

• They are a composition of Rule Attributes

• Adding a 'Role' attribute to a template allows for the use of the Role on any
rules created against the template

• When rule attributes are used for matching on rules, each attribute is associated
with the other attributes on the template using an implicit 'and' logic attributes

• Can be used to define various other aspects to be used by the rule creation GUI
such as rule data defaults (effective dates, ignore previous, available request
types, etc)

Glossary

105

S
Save A workflow action button that allows the Initiator of a document to save their

work and close the document. The document may be retrieved from the initiator's
Action List for completion and routing at a later time.

Saved A routing status indicating the document has been started but not yet completed or
routed. The Save action allows the initiator of a document to save their work and
close the document. The document may be retrieved from the initiator's action list
for completion and routing at a later time.

Searchable Attributes Attributes that can be defined to index certain pieces of data on a document so that
it can be searched from the Document Search screen.

Technical considerations for a Searchable Attributes are:

• They are responsible for extracting and indexing document data for searching

• They allow for custom fields to be added to Document Search for documents
of a particular type

• They are configured as an attribute of a Document Type

• They can be written in Java or defined in XML by using Xpath to facilitate
matching

Secondary Delegation The Secondary Delegate acts as a temporary backup Delegator who acts with the
same authority as the primary Approver/the Delegator when the Delegator is not
available. Documents appear in the Action Lists of both the Delegator and the
Delegate. When either acts on the document, it disappears from both Action Lists.

Secondary Delegation is often configured for a range of dates and it must be
registered in KEW or KIM to be in effect.

Service Registry Displays a read-only view of all of the services that are exposed on the Service Bus
and includes information about them (for example, IP Address, or Endpoint URL).

Simple Node A type of node that can perform any function desired by the implementer. An
example implementation of a simple node is the node that generates Action
Requests from route modules.

SOA An acronym for Service Oriented Architecture.

Special Condition Routing This is a generic term for additional route levels that might be triggered by various
attributes of a transaction. They can be based on the type of document, attributes of
the accounts being used, or other attributes of the transaction. They often represent
special administrative approvals that may be required.

Split Node A node in the routing path that can split the route path into multiple branches.

Spring The Spring Framework is an open source application framework for the Java
platform.

State Defines U.S. Postal Service codes used to identify states.

Status On an Action List; also known as Route Status. The current location of the
document in its routing path.

http://www.springsource.org/

Glossary

106

Submit A workflow action button used by the initiator of a document to begin workflow
routing for that transaction. It moves the document (through workflow) to the next
level of approval. Once a document is submitted, it remains in 'ENROUTE' status
until all approvals have taken place.

Superuser A user who has been given special permission to perform Superuser Approvals
and other Superuser actions on documents of a certain Document Type.

Superuser Approval Authority given Superusers to approve a document of a chosen Route Node. A
Superuser Approval action bypasses approvals that would otherwise be required
in the Routing. It is available in Superuser Document Search. In most cases,
reviewers who are skipped are not sent Acknowledge Action Requests.

Superuser Document Search A special mode of Document Search that allows Superusers to access documents
in a special Superuser mode and perform administrative functions on those
documents. Access to these documents is governed by the user's membership in
the Superuser Workgroup as defined on a particular Document Type.

T
Thread pool A technique that improves overall system performance by creating a pool of

threads to execute multiple tasks at the same time. A task can execute immediately
if a thread in the pool is available or else the task waits for a thread to become
available from the pool before executing.

Title A short summary of the notification message. This field can be filled out as part
of the Simple Message or Event Message form. In addition, this can be set by the
programmatic interfaces when sending notifications from a client system.

This field is equivalent to the "Subject" field in an email.

U
URL An acronym for Uniform Resource Locator.

User A person who can log in and use the application. This term is synonymous with
"Principal" in KIM. "Whereas Entity Id represents a unique Person, Principal Id
represents a set of login information for that Person."

V
Viewer A user(s) who views a document during the routing process. This includes users

who have action requests generated to them on a document.

W
Web Service Client A type of client that connects to a standalone KEW server using Web Services.

Wildcard A character that may be substituted for any of a defined subset of all possible
characters.

Workflow Electronic document routing, approval and tracking. Also known as Workflow
Services or Kuali Enterprise Workflow (KEW). The Kuali infrastructure service

Glossary

107

that electronically routes an e-doc to its approvers in a prescribed sequence,
according to established business rules based on the e-doc content. See also Kuali
Enterprise Workflow.

Workflow Engine The component of KEW that handles initiating and executing the route path of a
document.

Workflow QuickLinks A web interface that provides quick navigation to various functions in KEW.
These include:

• Quick EDoc Watch: The last five Actions taken by this user. The user can select
and repeat these actions.

• Quick EDoc Search: The last five EDocs searched for by this user. The user can
select one and repeat that search.

• Quick Action List: The last five document types the user took action with. The
user can select one and repeat that action.

X
XML See also XML Ingester.

1. An acronym for Extensible Markup Language.

2. Used for data import/export.

XML Ingester A workflow function that allows you to browse for and upload XML data.

XML RuleAttribute Similar in functionality to a RuleAttribute but built using XML only

