
Kuali Rice 2.5.12 eDocLite Guide

iii

Table of Contents
1. Overview ... 1
2. Components ... 3

Field Definitions .. 3
XSLT Style Sheet ... 4

3. Lazy importing of EDL Styles .. 9
Document Type .. 9
Parent DocType .. 11
Child DocType ... 11
Rule Attributes ... 12
Rule Routing .. 12
Ingestion Order .. 13

4. eDocLite Lookup .. 14
Finding the eDocLite Lookup Screen ... 14
eDocLite Lookup .. 14

5. eDocLite Inquiry ... 17
6. Create New eDocLite Document .. 18

Document Header ... 18
Document body .. 18
Routing Action and Annotation, and Note area ... 18
Extendable functions ... 19

Restricted read/write rights ... 19
Hidden fields ... 19

7. XML Ingestion ... 20
Uploading an eDocLite form .. 20
Ingestion Order .. 20

8. eDocLite Examples ... 22
Example 1 Form ... 22
Interview Request Form ... 22
Offer Request Form .. 24
Search Status Form ... 25
Vacancy Form .. 26
Waiver Request .. 27

9. eDocLite Support Notes ... 30
eDocLite Supporting Material ... 30

Glossary .. 32

iv

List of Figures
1.1. EDL Controller Chain ... 2
4.1. Workflow Channel: eDocLite Link .. 14
4.2. eDocLite Lookup .. 14
4.3. eDocLite Lookup: Search Results .. 15
5.1. eDocLite Inquiry .. 17
7.1. Ingester ... 20
7.2. Ingestion Complete ... 20

v

List of Tables
4.1. eDocLite Lookup Attributes ... 14
6.1. Document Header Attributes ... 18
6.2. Document Body Attributes ... 18
6.3. Routing Action and Annotation, and Note Attributes ... 18

1

Chapter 1. Overview
eDocLite is a simple, form-based framework designed for rapid development and implementation within
an existing Kuali Enterprise Workflow (KEW) infrastructure. It allows for the development of simple web
applications, their forms and simple routing configurations using XML. Users only have to enter data into
the form and then submit it. Rules can be constructed so that the form is then routed to a specific user
or KIM Group based on the data entered. It can be integrated with larger applications using a database
layer post-processor component.

Web pages called eDoc's are generated and are associated with a specific document type definition that
provides the overall definition for how the document can be routed. Document types can also exist in
hierarchies which provide storage of common information at various levels.

Key Ideas:

• Rapid implementation and development solution for simpler documents

• Easily re-configured

• Easily manageable

• Entirely web-based from design/development and user perspectives

• No java code required for developments; only XML with optional JavaScript for client side editing
(workflow handles execution)

• Some validation JavaScript is automatically generated like regular expression editing and 'required field
checking'.

The form uses an XSLT stylesheet to generate the html code. It uses XML to define form fields. Certain
workflow classes make helper data available to the stylesheet programmer, and there are several features
that can be 'plugged-in' to eDocLite to further enhance its usability in many situations. The actual form
display is called an EDL. This diagram shows how these objects are related:

Overview

2

Figure 1.1. EDL Controller Chain

3

Chapter 2. Components
Field Definitions

You need to define eDocLite fields to capture data that is passed to the server for storage.

Key Information about eDocLite fields:

• Save eDocLite data fields as key value pairs in two columns of a single database table.

• Use the xml element name as the key.

• You do not need to make any database-related changes when building eDocLite web applications.

• Store documents by document number.

• Make all field names unique within a document type.

The code example below focuses on the EDL section of the eDocLite form definition. The file Edoclite.xsd
found in source under the impl/src/main/resources/schema/ directory describes the xml rules for this
section.

Note that the first few lines proceeding <edl name="eDoc.Example1.Form" relate to namespace
definitions. These are common across all eDocLites, so this guide does not discuss them.

In this example, any XML markup that has no value shown or that is not explained offers options that
are not important at this time.

 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <data xmlns="ns:workflow" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="ns:workflow resource:WorkflowData">
 3 <edoclite xmlns="ns:workflow/eDocLite " xsi:schemaLocation="ns:workflow/eDocLite resource:eDocLite ">
 4
 5 <edl name="eDoc.Example1.Form" title="Example 1">
 6 <security />
 7 <createInstructions>** Questions with an asterisk are required.</createInstructions>
 8 <instructions>** Questions with an asterisk are required.</instructions>
 9 <validations />
 10 <attributes />
 11 <fieldDef name="userName" title="Full Name">
 12 <display>
 13 <type>text</type>
 14 <meta>
 15 <name>size</name>
 16 <value>40</value>
 17 </meta>
 18 </display>
 19 <validation required="true">
 20 <message>Please enter your full name</message>
 21 </validation>
 22 </fieldDef>
 23 <fieldDef name="rqstDate" title="Requested Date of Implementation:">
 24 <display>
 25 <type>text</type>
 26 </display>
 27 <validation required="true">
 28 <regex>^[0-1]?[0-9](/|-)[0-3]?[0-9](/|-)[1-2][0-9][0-9][0-9]$</regex>
 29 <message>Enter a valid date in the format mm/dd/yyyy.</message>
 30 </validation>
 31 </fieldDef>
 32 <fieldDef name="requestType" title="Request Type:">
 33 <display>
 34 <type>radio</type>
 35 <values title="New">New</values>
 36 <values title="Modification">Modification</values>
 37 </display>

Components

4

 38 <validation required="true">
 39 <message>Please select a request type.</message>
 40 </validation>
 41 </fieldDef>
 42 <fieldDef attributeName="EDL.Campus.Example" name="campus" title="Campus:">
 43 <display>
 44 <type>select</type>
 45 <values title="IUB">IUB</values>
 46 <values title="IUPUI">IUPUI</values>
 47 </display>
 48 <validation required="true">
 49 <message>Please select a campus.</message>
 50 </validation>
 51 </fieldDef>
 52 <fieldDef name="description" title="Description of Request:">
 53 <display>
 54 <type>textarea</type>
 55 <meta>
 56 <name>rows</name>
 57 <value>5</value>
 58 </meta>
 59 <meta>
 60 <name>cols</name>
 61 <value>60</value>
 62 </meta>
 63 <meta>
 64 <name>wrap</name
 65 <value>hard</value>
 66 </meta>
 67 </display>
 68 <validation required="false" />
 69 </fieldDef>
 70 <fieldDef name="fundedBy" title="My research/sponsored program work is funded by NIH or NSF.">
 71 <display>
 72 <type>checkbox</type>
 73 <values title="My research/sponsored program work is funded by NIH or NSF.">nihnsf</values
 74 </display>
 75 </fieldDef>
 76 <fieldDef name="researchHumans" title="My research/sponsored program work involves human
 subjects.">
 77 <display>
 78 <type>checkbox</type>
 79 <values title="My research/sponsored program work involves human subjects.">humans</values>
 80 </display>
 81 </fieldDef>
 82 </edl>
 83 </eDocLite>
 84 </data>

In the EDL XML file, field definition is embodied in the edl element. This element has a name attribute
that is used to identify this file as a definition of an EDL form. It often has a title for display purposes.

Examination of this code shows that

• Individual fields have names, titles, and types. The types closely match html types.

• You can easily use simple validation attributes and sub-attributes to ensure that a field is entered if
required and that an appropriate error message is presented if no value is provided by the web user.

• Regular expressions enhance the edit criteria without using custom JavaScript. (There are several ways
that you can invoke custom JavaScript for a field, but they are not shown in this example.)

• An important field named campus has syntax that defines the value used to drive the routing destination.
(In more complex documents, several fields are involved in making the routing decision.)

XSLT Style Sheet
The next section of the EDL XML file is the XSLT style sheet. It renders the EDL that the browser will
present and contains logic to determine how data is rendered to the user.

Components

5

A major workhorse of the XSLT code is contained in a style sheet library called widgets.xml. In the
example below, it's included in the style sheet using an xsl:include directive.

Workflow Java classes have API's that offer methods that supply valuable information to the XSLT style
sheet logic. XML allows you to interrogate the current value of EDL-defined fields, and it provides a
variety of built-in functions.

Together, these helpers allow the eDocLite style sheet programmer to focus on rendering fields and
titles using library (widget) calls and to perform necessary logic using the constructs built into the XML
language(if, choose…when, etc.).

This is the area of eDocLite development that takes the longest and is the most tedious. Much of what the
eDocLite style sheet programmer writes focuses on are: which fields and titles appear, in what order, to
which users, and whether the fields are readOnly, editable, or hidden.

Below is the style sheet section of the EDL XML form for our example. It contains embedded comments.

 1 <!-- widgets is simply more xslt that contains common functionality that greatly simplifies html rendering
 2 It is somewhat complicated but does not require changes or full understanding unless enhancements are
 required. -->
 3 <xsl:include href="widgets" />
 4 <xsl:output indent="yes" method="html" omit-xml-declaration="yes" version="4.01" />
 5
 6 <!-- variables in the current version of xslt cannot be changed once set. Below they are set to various
 values often fed by java classes or to
 7 values contained in workflow xml. Not all of these are used in this form but are shown because often they
 can be useful
 8 The ones prefixed with my-class are methods that are exposed by workflow to eDocLite .-->
 9 <xsl:variable name="actionable" select="/documentContent/documentState/actionable" />
 10 <xsl:variable name="docHeaderId" select="/documentContent/documentState/docId" />
 11 <xsl:variable name="editable" select="/documentContent/documentState/editable" />
 12 <xsl:variable name="globalReadOnly" select="/documentContent/documentState/editable != 'true'" />
 13 <xsl:variable name="docStatus" select="//documentState/workflowDocumentState/status" />
 14 <xsl:variable name="isAtNodeInitiated" select="my-class:isAtNode($docHeaderId, 'Initiated')" />
 15 <xsl:variable name="isPastInitiated" select="my-class:isNodeInPreviousNodeList('Initiated',
 $docHeaderId)" />
 16 <xsl:variable name="isUserInitiator" select="my-class:isUserInitiator($docHeaderId)" />
 17 <!-- <xsl:variable name="workflowUser" select="my-class:getWorkflowUser().authenticationUserId().id()" />
 This has a unique implementation at IU -->
 18 <xsl:param name="overrideMain" select="'true'" />
 19
 20 <!-- mainForm begins here. Execution of stylesheet begins here. It calls other templates which can call
 other templates.
 21 Position of templates beyond this point do not matter. -->
 22 <xsl:template name="mainForm">
 23 <html xmlns="">
 24 <head>
 25 <script language="javascript" />
 26 <xsl:call-template name="htmlHead" />
 27 </head>
 28 <body onload="onPageLoad()">
 29 <xsl:call-template name="errors" />
 30 <!-- the header is useful because it tells the user whether they are in 'Editing' mode or 'Read
 Only' mode. -->
 31 <xsl:call-template name="header" />
 32 <xsl:call-template name="instructions" />
 33 <xsl:variable name="formTarget" select="'eDocLite '" />
 34 <!-- validateOnSubmit is a javascript function (file: edoclite1.js) which supports edoclite
 forms and can be somewhat complicated
 35 but does not
 36 require modification unless enhancements are required. -->
 37 <form action="{$formTarget}" enctype="multipart/form-data" id="edoclite" method="post"
 onsubmit="return validateOnSubmit(this)">
 38 <xsl:call-template name="hidden-params" />
 39 <xsl:call-template name="mainBody" />
 40 <xsl:call-template name="notes" />
 41

 42 <xsl:call-template name="buttons" />
 43

 44 </form>
 45 <xsl:call-template name="footer" />

Components

6

 46 </body>
 47 </html>
 48 </xsl:template>
 49
 50 <!-- mainBody template begins here. It calls other templates which can call other templates. Position of
 templates do not matter. -->
 51 <xsl:template name="mainBody">
 52 <!-- to debug, or see values of previously created variables, one can use the following format.
 53 for example, uncomment the following line to see value of $docStatus. It will be rendered at the
 top of the main body form. -->
 54 <!-- $docStatus=<xsl:value-of select="$docStatus" /> -->
 55 <!-- rest of this all is within the form table -->
 56 <table xmlns="" align="center" border="0" cellpadding="0" cellspacing="0" class="bord-r-t" width="80%">
 57 <tr>
 58 <td align="left" border="3" class="thnormal" colspan="1">
 59

 60 <h3>
 61 My Page
 62

 63 EDL EDoclite Example
 64 </h3>
 65

 66 </td>
 67 <td align="center" border="3" class="thnormal" colspan="2">
 68

 69 <h2>eDocLite Example 1 Form</h2></td>
 70 </tr>
 71 <tr>
 72 <td class="headercell5" colspan="100%">
 73 User Information
 74 </td>
 75 </tr>
 76 <tr>
 77 <td class="thnormal">
 78 <xsl:call-template name="widget_render">
 79 <xsl:with-param name="fieldName" select="'userName'" />
 80 <xsl:with-param name="renderCmd" select="'title'" />
 81 </xsl:call-template>
 82 *
 83 </td>
 84 <td class="datacell">
 85 <xsl:call-template name="widget_render">
 86 <xsl:with-param name="fieldName" select="'userName'" />
 87 <xsl:with-param name="renderCmd" select="'input'" />
 88 <xsl:with-param name="readOnly" select="$isPastInitiated" />
 89 </xsl:call-template>
 90 </td>
 91 </tr>
 92 <tr>
 93 <td class="headercell5" colspan="100%">
 94 Other Information
 95 </td>
 96 </tr>
 97 <tr>
 98 <td class="thnormal">
 99 <xsl:call-template name="widget_render">
100 <xsl:with-param name="fieldName" select="'rqstDate'" />
101 <xsl:with-param name="renderCmd" select="'title'" />
102 </xsl:call-template>
103 *
104 </td>
105 <td class="datacell">
106 <xsl:call-template name="widget_render">
107 <xsl:with-param name="fieldName" select="'rqstDate'" />
108 <xsl:with-param name="renderCmd" select="'input'" />
109 <xsl:with-param name="readOnly" select="$isPastInitiated" />
110 </xsl:call-template>
111 </td>
112 </tr>
113 <tr>
114 <td class="thnormal">
115 <xsl:call-template name="widget_render">
116 <xsl:with-param name="fieldName" select="'campus'" />
117 <xsl:with-param name="renderCmd" select="'title'" />
118 </xsl:call-template>
119 *
120 </td>

Components

7

121 <td class="datacell">
122 <xsl:call-template name="widget_render">
123 <xsl:with-param name="fieldName" select="'campus'" />
124 <xsl:with-param name="renderCmd" select="'input'" />
125 <xsl:with-param name="readOnly" select="$isPastInitiated" />
126 </xsl:call-template>
127 </td>
128 </tr>
129 <tr>
130 <td class="thnormal">
131 <xsl:call-template name="widget_render">
132 <xsl:with-param name="fieldName" select="'description'" />
133 <xsl:with-param name="renderCmd" select="'title'" />
134 </xsl:call-template>
135 </td>
136 <td class="datacell">
137 <xsl:call-template name="widget_render">
138 <xsl:with-param name="fieldName" select="'description'" />
139 <xsl:with-param name="renderCmd" select="'input'" />
140 <xsl:with-param name="readOnly" select="$isPastInitiated" />
141 </xsl:call-template>
142 </td>
143 </tr>
144 <tr>
145 <td class="thnormal" colspan="2">
146 (Check all that apply)
147 </td>
148 </tr>
149 <tr>
150 <td class="datacell" colspan="2">
151 <xsl:call-template name="widget_render">
152 <xsl:with-param name="fieldName" select="'fundedBy'" />
153 <xsl:with-param name="renderCmd" select="'input'" />
154 <xsl:with-param name="readOnly" select="$isPastInitiated" />
155 </xsl:call-template>
156

157 <xsl:call-template name="widget_render">
158 <xsl:with-param name="fieldName" select="'researchHumans'" />
159 <xsl:with-param name="renderCmd" select="'input'" />
160 <xsl:with-param name="readOnly" select="$isPastInitiated" />
161 </xsl:call-template>
162

163 </td>
164 </tr>
165 <tr>
166 <td class="headercell1" colspan="100%">
167 Supporting Materials</td>
168 </tr>
169 <tr>
170 <td class="thnormal" colspan="100%">Use the Create Note box below to attach supporting
 materials to your request. Notes may be added with or without attachments. Click the red 'save' button on the
 right.</td>
171 </tr>
172 </table>
173 <br xmlns="" />
174 </xsl:template>
175 <xsl:template name="nbsp">
176 <xsl:text disable-output-escaping="yes">&nbsp;</xsl:text>
177 </xsl:template>
178 </xsl:stylesheet>
179 </style>
180

The beginning portion of this style sheet defines some XSL variables that are often useful to drive logic
choices. For simplicity, this example uses very little logic.

The isPastInitiated variable drives whether a user-defined EDL field renders readOnly or not.

The mainform often serves to call some common widget templates that add canned functionality. The
mainform then calls the mainBody template, which creates the html to render the EDL-defined fields.
The mainform then (optionally) calls the notes, buttons, and footer templates.

Components

8

The majority of your programming effort goes into the mainBody, where calls to widget_render
generate much of the field-specific title and value information. Various options can be passed into
widgets_render to allow client events to be executed. The mainBody is usually one or more html
tables and sometimes makes calls to programmer-defined sub-templates. The XSLT stylesheet generates
the HTML rendered by the browser.

The main and repeating theme of the example involves calling widget_render with the title of an EDL
field, followed by calling widget_render again with the input field. Widgets are a wrapper for XSLT
stylesheets that offer the ability to create HTML. Parameters offer different ways to render HTML when
making calls to widgets. Note that the variable value $isPastInitiated is passed as a parameter to
widgets_render so that the html readOnly attribute is generated when the form is passed the initiator's
node.

9

Chapter 3. Lazy importing of EDL
Styles

You can configure Rice to lazily import an eDocLite style into the database on demand by setting a custom
configuration parameter.

• Create a custom stylesheet file, e.g. myricestyle.xml containing a style with a unique name, e.g.
"xyzAppStyle" and store it in a location that is locally accessible to your application server.

• Set a configuration parameter named edl.style.<style-name> with the value being a path
to the file containing your style. Following the example above, you would name your parameter
"edl.style.xyzAppStyle".

The stylesheet file could contain a full EDL, or be a standalone EDL style. On first use of that named style
by an EDL, the file will be parsed and the named style will be imported into the database. The following
example contains just an eDocLite XSL stylesheet:

 1 <data xmlns="ns:workflow" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="ns:workflow resource:WorkflowData">
 2 <edoclite xmlns="ns:workflow/EDocLite" xsi:schemaLocation="ns:workflow/EDocLite resource:EDocLite">
 3 <style name="xyzAppStyle">
 4 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:wf="http://xml.apache.org/xalan/java/org.kuali.rice.kew.edoclite.WorkflowFunctions">
 5 <!-- your custom stylesheet -->
 6 </xsl:stylesheet>
 7 </style>
 8 </edoclite>
 9
 10 </data>
 11

Note that in a default Rice installation (starting in version 1.0.2), the "widgets" style is lazily imported
using this mechanism. In common-config-defaults.xml (which is located in the rice-impl jar), the following
parameter is defined:

 1 <param name="edl.style.widgets" override="false">classpath:org/kuali/rice/kew/edl/default-widgets.xml</
param>

If you wanted to override that file, you could define your own parameter in your Rice XML configuration
file using the above example as a template, but removing the override="false" attribute.

Document Type
A document type defines the workflow process for an eDocLite. You can create hierarchies where
Child document types inherit attributes of their Parents. At some level, a document type specifies routing
information. The document type definition for our first example follows. It contains routing information
that describes the route paths possible for a document.

 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <data xmlns="ns:workflow" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="ns:workflow resource:WorkflowData">
 3 <documentTypes xmlns="ns:workflow/DocumentType" xsi:schemaLocation="ns:workflow/DocumentType
 resource:DocumentType">

Lazy importing of EDL Styles

10

 4 <documentType>
 5 <name>eDoc.Example1Doctype</name>
 6 <parent>eDoc.Example1.ParentDoctype</parent>
 7 <description>eDoc.Example1 Request DocumentType</description>
 8 <label>eDoc.Example1 Request DocumentType</label>
 9 <postProcessorName>org.kuali.rice.kew.edl.EDocLitePostProcessor</postProcessorName>
 10 <superUserGroupName namespace="KUALI">eDoc.Example1.SuperUsers</superUserGroupName>
 11 <blanketApprovePolicy>NONE</blanketApprovePolicy>
 12 <defaultExceptionGroupName namespace="KUALI">eDoc.Example1.defaultExceptions</
defaultExceptionGroupName>
 13 <docHandler>${workflow.url}/EDocLite</docHandler>
 14 <active>true</active>
 15 <routingVersion>2</routingVersion>
 16 <routePaths>
 17 <routePath>
 18 <start name="Initiated" nextNode="eDoc.Example1.Node1" />
 19 <requests name="eDoc.Example1.Node1" />
 20 </routePath>
 21 </routePaths>
 22 <routeNodes>
 23 <start name="Initiated">
 24 <activationType>P</activationType>
 25 <mandatoryRoute>false</mandatoryRoute>
 26 <finalApproval>false</finalApproval>
 27 </start>
 28 <requests name="eDoc.Example1.Node1">
 29 <activationType>P</activationType>
 30 <ruleTemplate>eDoc.Example1.Node1</ruleTemplate>
 31 <mandatoryRoute>false</mandatoryRoute>
 32 <finalApproval>false</finalApproval>
 33 </requests>
 34 </routeNodes>
 35 </documentType>
 36 </documentTypes>
 37 </data>
 38

The Parent element refers to a hierarchical order of the document types. Usually, you create one Root
document type with limited but common information. Then, under that, you create more specific document
types. In our example, there are only two levels.

The Root document type definition for our first example:

 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <data xmlns="ns:workflow" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="ns:workflow resource:WorkflowData">
 3 <documentTypes xmlns="ns:workflow/DocumentType" xsi:schemaLocation="ns:workflow/DocumentType
 resource:DocumentType">
 4 <documentType>
 5 <name>eDoc.Example1.ParentDoctype</name>
 6 <description>eDoc.Example1 Parent Doctype</description>
 7 <label>eDoc.Example1 Parent Document</label>
 8 <postProcessorName>org.kuali.rice.kew.edl.EDocLitePostProcessor</postProcessorName>
 9 <superUserGroupName namespace="KUALI">eDoc.Example1.SuperUsers</superUserGroupName>
 10 <blanketApprovePolicy>NONE</blanketApprovePolicy>
 11 <docHandler>${workflow.url}/EDocLite</docHandler>
 12 <active>true</active>
 13 <routingVersion>2</routingVersion>
 14 <routePaths />
 15 </documentType>
 16 </documentTypes>
 17 </data>
 18

A Child document type can inherit most element values, although you must define certain element values,
like postProcessor, for each Child document type.

A brief explanation of elements that are not intuitive is below. You can find additional element explanations
by reading the Document Type Guide.

Lazy importing of EDL Styles

11

Parent DocType
postProcessorName - Use the default, as shown above, unless special processing is needed.

blanketApprovePolicy – When specified as NONE, this means that a user cannot click a single
button that satisfies multiple levels of approval.

dochandler - Use the default, as shown above, so URLs are automatically unique in each environment,
based on settings in the Application Constants (i.e., unique in each Test environment and unique again
in Production).

active - Set this element to false to disable this feature.

routingVersion - Use the default, as shown above.

Child DocType
name - The name value must exactly match the value in the EDL Association document type element.

parent - The parent value must exactly match the name value of the parent document type.

superUserGroupName - A group of people who have special privileges that can be defined using the
management service that's part of the KIM module.

defaultExceptionGroupName - A group of people who address a document of this type when it
goes into Exception routing

routePaths and routePath - The initial elements that summarize the routing path the document
will follow. In our example, an initiator fills out an eDocLite form. When the initiator submits that form,
where it is routed depends on the value in the Campus field. There is only one destination node in our
first example. The submitted form goes to either the IUB person or the IUPUI person, depending on the
selection in the Campus field.

In most cases, a workgroup of people is the destination for an EDL form, not a single person. Workgroups
are used as destinations because anyone in the workgroup can open the document, edit it, and click an
Action button that routes the document to the next node. This prevents delays when someone is out of
the office and a document awaits their action.

When the initiator submits the document, KEW adds that document to the Action List of the destination
person or workgroup. The destination person or workgroup can then open the document, edit it (if any
fields are available for editing), and click an Action button such as Approve, which routes the document
onward. In our case, there is no further destination, so when the destination person or workgroup approves
the document, the document becomes Final (it is finished). Some real-life examples have ten or more
nodes for approvals or other actions. A document may bypass some of those nodes, depending on data
placed into the form by previous participants.

routeNodes- Redefines the route path.

activationType

• P stands for parallel and is almost always used. This value makes more sense when considered
from a target node perspective. From that perspective, it means that if a workgroup of people all
received the document in their Action List, any one, in any order, can approve it. Once it is approved
by anyone in the workgroup, it is routed to the next node, and KEW removes the document from the
Action List of all the people in the workgroup. activationType

Lazy importing of EDL Styles

12

• S stands for sequential and is reserved for special cases where rules can specify that two or more
people in a workgroup must take Action on a document, in a specific order, before KEW will route the
document to the next node.

mandatoryRoute - Use false unless there is a special condition to solve. When this parameter is set to
true, the document goes into exception routing if an approve request isn't generated by the ruleTemplate.
This means that you are only expecting an approve, and nothing else.

finalApproval - Use false unless there is a special condition to solve. When this parm is set to true,
the document goes into exception routing if approves are generated after this route node. This means this
must be the last Action, or it will go into exception routing. (Be careful, because if this parameter is set to
true and a user clicks a Return to Previous button, then the next action button clicked sends the document
into exception handling.)

requests name= "..." - Defines the name of the node

ruleTemplate - A named entity type that helps define which routing rule fires. In our example, the
ruleTemplate name is the same as the request name. These field values do NOT need to be the
same. They are simply identifiers.

Rule Attributes
The RuleAttribute is a mechanism that can relate directly to an edl field. Most rule attributes are of the
xml rule attribute type. This type uses an xpath statement which is used by the workflow engine to match
to a rule that fires or does not fire.

In the below example, it can be seen that the edl defined field named 'campus' and its permissible values
are defined. Then in the xpathexpression element says; when the value in the edl field named 'campus'
matches the rule that contains 'IUB' the rule will fire. Or when the value in the edl field named 'campus'
matches the rule that contains 'IUPUI' that rule will fire instead. Rules firing route a document to a person
or a workgroup of people.

To make another rule attribute for a different field, clone this one, change all references to the field 'campus'
to your different edl field name. Then cut and paste in the values section. Then in the edl definition, the
new field must carry the extra syntax 'attributeName='. For example the eld definition for campus looks
like this:

 1 <fieldDef name="campus" title="Campus" workflowType="ALL">

Rule Routing
 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <data xmlns="ns:workflow" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="ns:workflow resource:WorkflowData">
 3 <ruleAttributes xmlns="ns:workflow/RuleAttribute" xsi:schemaLocation="ns:workflow/RuleAttribute
 resource:RuleAttribute">
 4 <ruleAttribute>
 5 <name>EDL.Campus.Example</name>
 6 <className>org.kuali.rice.kew.rule.xmlrouting.StandardGenericXMLRuleAttribute</className>
 7 <label>EDL Campus Routing</label>
 8 <description>EDL School Routing</description>
 9 <type>RuleXmlAttribute</type>
 10 <routingConfig>
 11 <fieldDef name="campus" title="Campus" workflowType="ALL">
 12 <display>
 13 <type>select</type>
 14 <values title="IUB">IUB</values>

Lazy importing of EDL Styles

13

 15 <values title="IUPUI">IUPUI</values>
 16 </display>
 17 <validation required="false" />
 18 <fieldEvaluation>
 19 <xpathexpression>//campus = wf:ruledata('campus')</xpathexpression>
 20 </fieldEvaluation>
 21 </fieldDef>
 22 <xmlDocumentContent>
 23 <campus>%campus%</campus>
 24 </xmlDocumentContent>
 25 </routingConfig>
 26 </ruleAttribute>
 27 </ruleAttributes>
 28
 29 </data>
 30

Rule attributes can have a different types such a searchable, but this type does not have to do with routing.
Instead it relates to additional columns that are displayed in doc search for a particular doc type.

Ingestion Order
Many components can go in at any time, but it is advisable to follow a pattern to minimize the conflicts
that can occur. A few pieces are co-dependent.

1. Basic Components:

2. Widgets.xml (If changed or not previously in the environment)

3. Kim Group(s)

4. Rule Attributes

5. Rule Template(s)

6. Parent Doctype (often no routing so data is more generic, but do put routing here if children will use
common routing.)

7. Children Doctype(s) (routing defined here or on Parent)

8. EDL Form

9. Rule routing rule (Used if rules are created; explained later- 1 per parent doctype)

10.Rules (Create or Ingest)

11.Anything else - Like optional custom Email Stylesheet

14

Chapter 4. eDocLite Lookup
Use the eDocLite Lookup screen to quickly find basic information about eDocLite documents and as the
first step in creating a new eDocLite.

Figure 4.1. Workflow Channel: eDocLite Link

Finding the eDocLite Lookup Screen
You can go to the eDocLite Lookup by:

1. Click the Main Menu tab

2. Look in the Workflow section

3. Click eDoc Lite

eDocLite Lookup
Figure 4.2. eDocLite Lookup

On the eDocLite lookup page, users can search for an eDocLite document based on several criteria:

Table 4.1. eDocLite Lookup Attributes

Field Description

Id The unique ID number assigned to each document.

eDocLite Lookup

15

Field Description

Document Type The name of the document type, which is specified in the Document Type attribute of
an eDocLite.

Definition The name of the EDL XML definition.

Style The style specified in the EDL XML file is the style attribute of an eDocLite. Generally an
EDL XML file has only one definition name which relates to one and only one style name.

Active Indicator You have the choice of searching by the active status of an eDocLite.

You can use the above criteria to limit your search results. A search will produce a list of one or more
results that look similar to the following:

Figure 4.3. eDocLite Lookup: Search Results

Clicking Create Document on any line takes you to the eDocLite document screen where new documents
can be created. The line item you choose will result in that document being used as a template for the
new one you are creating. More information on this follows in the section called Create New eDocLite
Document.

Clicking any underlined Id will take you to the eDocLite Inquiry screen for that document.

Note

Exporting the output list to XML will give you the option of viewing the XML used to produce
the list returned from the search.

Standard in KEW there is one eDocLite for electronic routing, and new eDocLites can be added based on
business requirements. Some of the functions that eDocLites are used for in business include:

• Applicant Monitoring

• BLSC Request

• Course Change Request

• Grade Replacement Request

• Internship Contract

• Interview Request

• Mass Mailing Request

• Offer Request

• Program Plan Update

• REGR Access Request

• Removal Of Incomplete

• Revenue Producing Activity

eDocLite Lookup

16

• SUDS Request Document Type

• Search Status

• Special Credit Request

• Student Trip

• User Agreement

• Unit Change Request

• Vacancy Notice

• Vehicle Replacement

• Waiver Request

• New Course Request

17

Chapter 5. eDocLite Inquiry
Figure 5.1. eDocLite Inquiry

The Inquiry screen displays the same information as is found on a line of the Lookup output, but this
screen provides you with the export option. Exporting from the Inquiry screen produces a XML file of
the source for the eDocLite document.

18

Chapter 6. Create New eDocLite
Document

To create a new eDocLite document to be routed in KEW, click on Create Document in the row for
eDocLite type wanted. It will take users to different forms of eDocLites depending on the document
function, but they all have three general parts:

• Document header

• Document body

• Routing action and annotation, and note area

Document Header
The Document Header contains the following fields:

Table 6.1. Document Header Attributes

Field Description

Document Type The name defined by the document creator of this type of eDocLite.

Document Status The status of this document based on its routing status.

Create Date The date and time this document is created.

Document ID The unique system generated ID for this document.

Document body
This portion of the document is where the user identifies the routing and complete business function.

Table 6.2. Document Body Attributes

Field Description

Title specifies the actions users are taking on the EDocLite forms, including editing and reviewing. Other general
information can be stored here such as contact information, important notes, etc.

Form Renders form fields and input areas for the user to complete information required, depends upon the specific
eDocLite requirements.

Routing Action and Annotation, and Note area
This area is used to add annotation and choose action to be taken on this eDocLite document. Annotation
is the comments associated with the routing process. You can add them to different nodes of the routing
process and take actions on an eDocLite by adding annotations. The annotation appears in the route log of
eDocLite as comments. Notes are the comments associated with this specific eDocLite form and appear
with the form and not in the route log.

Table 6.3. Routing Action and Annotation, and Note Attributes

Field Description

Set annotation The area to add annotation.

Action buttons • route: begins and continues routing the eDocLite document.

• save: saves the information currently on the eDocLite document.

Create New eDocLite Document

19

Field Description

• cancel: cancels the actions on this eDocLite document, and the information on the form is not saved.

create note Area where users can add notes and attach documents to this eDocLite form. This part keeps track of Author,
Date and time, and the Note added. Users have the right to add, edit and delete the notes they create.

The following is one example of an eDocLite form:

Note

Notes that have been added to an eDocLite document can be edited or deleted.

Extendable functions
eDocLites are highly customizable. New eDocLites can be designed for new business and functional
requirements. The document header and routing annotation and notes parts will be same or similar, the
form will be different.

eDocLites can be designed to include following functions:

Restricted read/write rights
• Some fields in eDocLite can be set as GlobalReadOnly. With this setting they are disabled and can't

be edited by any user other than the author.

• Some fields in eDocLite can be set as ReadOnly, but users with rights can still edit them. After the
initiator writes them they are disabled and become locked to some of the users in the routing process.
But for users with proper rights in certain nodes in the routing process, the fields will become editable
again. These users can take actions on them, such as modify, add, and return to a former routing node.

Hidden fields
To accommodate some business requirements, certain fields and notes can be hidden from certain nodes
in the routing process. For instance, some administrative notes on a course waiver request will be hidden
from students when s/he gets the eDocLite form in the final stage of the routing process.

20

Chapter 7. XML Ingestion
KEW relies on XML for data population and routing configuration. XML Ingester is available from the
Administrator channel in the portal. This allows import of various KEW components from XML, such
as DocumentTypes, RuleAttributes, Rules, Workgroups, and more.

Uploading an eDocLite form
To upload XML, from the Administration menu, in the Workflow section, click on XML Ingester and
select the (one or more) XML file(s) that you want to import:

Figure 7.1. Ingester

After upload, notice the statement in red, Ingested xml doc: <name of file>:

Figure 7.2. Ingestion Complete

Ingestion Order
Many components can go in at any time, but it is advisable to follow a pattern to minimize the conflicts
that can occur. A few pieces are co-dependent.

XML Ingestion

21

1. Basic Components:

2. Widgets.xml (If changed or not previously in the environment)

3. Kim Group(s)

4. Rule Attributes

5. Rule Template(s)

6. Parent Doctype (often no routing so data is more generic, but do put routing here if children will use
common routing.)

7. Children Doctype(s) (routing defined here or on Parent)

8. EDL Form

9. Rule routing rule (Used if rules are created; explained later- 1 per parent doctype)

10.Rules (Create or Ingest)

11.Anything else - Like optional custom Email Stylesheet

A set of sample eDocLite documents you can upload and start using from the Developer Documentation
wiki page at this location.

Note

Please ingest the samples in the correct order, by title (which includes number). That is:

01-OAA_Workgroups.xml
02-OAA_Attributes.xml
03-OAA_RuleTemplates.xml
04-OAA_ParentDocumentType.xml
05-OAA_ChildDoctypes.xml
06-OAA_Rules.xml
07-OAA_InterviewRequestEdl.xml
08-OAA_OfferRequestEdl.xml
09-OAA_SearchStatusEdl.xml
10-OAA_VacancyNoticeEdl.xml
11-OAA_WaiverRequestEdl.xml
You can ingest the first 10 at one time on the first screen, if they are ordered as above.

The examples section of this guide looks at some of these.

https://wiki.kuali.org/display/KULRICE/eDocLite+Examples

22

Chapter 8. eDocLite Examples

Example 1 Form
This simple first example form can be used to gather data from an initiator, then route the document when
the submit button is pressed to one of two nodes depending on the value the initiator selects from a field
called campus. It makes use of several common html field types. Any number of notes can be added as
well as any number of attachments. In this example, the campus field has two possible selection choices
(only first on shown in the picture).

Interview Request Form
The Interview Request document is to be filled out by the department initiating the search and is used to
declare persons to be interviewed.

eDocLite Examples

23

eDocLite Examples

24

If more than 8 Candidates are to be interviewed, an additional Interview Request should be created.
The OAA number used is the same as the one provided by the Office Affirmative Action for the
corresponding Vacancy Notice.
A separate section towards the bottom is presented for Applicant Pool data. This section is to be completed
only by the OAA group. After they have entered the information, this data will be available for viewing
when it is routed back for acknowledgement or by using the document search option to view the document

Offer Request Form
The Offer Request is to be filled out by the department initiating the search and is used to document a
potential offer to the candidate.

• The OAA number used is the same as the one for the corresponding Vacancy Notice.

• You may wish to attach a letter such as an offer to recommend an appointment.

eDocLite Examples

25

After you#ve created the letter (which may be another eDocLite document), you need to attach it to the
document for review at the approval levels. Multiple versions of the letter can be created and attached
to this document. Then attach the letter(s).
Click on the Choose Filebutton in the Create a Note section towards the bottom of the document.
Select the file and then click the save button.
Finally, click the save button to save your document for further changes. If it is ready for approvals,
then click the submit button instead.

Search Status Form
The Search Status document is to be filled out by the department initiating the search and is used to
document the final results of the search. The OAA number used is the same as the one for the corresponding
Vacancy Notice or Waiver Request.

eDocLite Examples

26

In the event that the Offer Status is selected as Declined or No Offer was made, a new list of values is
provided to outline what the next steps for this search will be.

Vacancy Form
The Vacancy Notice document is to be filled out by the department who is initiating a search for a vacant
position.

eDocLite Examples

27

The first field on the document is an OAA number; this is not a required field and will be entered when
the document reaches the Office of Affirmative Action for approval.
A field provided for instances where a prior search is being continued is provided. The field, "Reactivating
Prior Year Search: OAA#", is used for linking this new search to the prior one by providing the prior
OAA #.
A separate section towards the bottom is presented for Utilization data. This section is to be completed
only by the OAA group. After they have entered the information, this data will be available for viewing
using the document search option to view the document.

Waiver Request
The Waiver Request document is similar to the Vacancy Notice in that the department initiating the search
completes it, but in this case the department is also requesting a waiver from the normal academic search
requirements.

eDocLite Examples

28

The first field on the document is an OAA number; this is not a required field and will be entered when
the document reaches the Office of Affirmative Action for approval.

You may wish to attach a letter such as an offer to recommend an appointment.

After you've created the letter (which may be another eDocLite document), you need to attach it to the
document for review at the approval levels. Multiple versions of the letter can be created and attached to
this document. Then attach the letter(s).
Click on the Choose File button in the Create a Note section towards the bottom of the document.

eDocLite Examples

29

Select the file and then click the save button.
Finally, click the save button to save your document for further changes. If it is ready for approvals, then
click the submit button instead.

30

Chapter 9. eDocLite Support Notes

eDocLite Supporting Material
• The Notes section of widgets allows notes to be saved and attachments to be uploaded/removed while

the document is editable. An Application Constant called saveAttachments must be set to true
before the attachments portion of the Notes will render. Application Constants can be accessed from
the main workflow menu, near the same location where the Ingester link appears. I believe the server
must be restarted to invoke Application Constant changes.

• Route Paths describe the flow of the document between various individuals or groups. Each Route path
has a further description called a routeNode.

• Route Nodes:

activationType should be P for parallel, rather than S for sequential. S forces sequential routing which
means that if a document is sent to two different nodes, it will only appear in the action list in of the
first, and the second will only see it after the first has approved it.
Each Route Node other than the first has a ruleTemplate element.
Rule Templates define rules for a node.
They may have 0-n* number of rule attributes. No attributes means to go ahead and route document
to next node if approved.

• In a Rule Template zero to N number of rule attributes can be listed. For EDocLite there are two types of
rule attributes: Searchable (used for searching not used for routing), and RuleXmlAttribute (used to drive
workflow engine to determine where the form should be routed). We will focus on the Xml type. Use the
admin menu 'Rule Attribute' to report on it. To be used, Rule Attributes must be defined in the EDL after
the <fieldDef. For example: <fieldDef attributeName="UGSRemonstranceFiled"
name="remonstranceFiled" title="Remonstrance Filed?">

• Fields that can participate in a Rule Attribute are often drop down selection fields but do not have to be.

• It is important to understand how the workflow engine figures out where to route a document. For each
Route Node defined for the doctype:

• The name of the rule template is used to access the rule template. If the rule Template contains a rule
attribute name then the rule attribute is accessed.

• The rule attribute usually contains an xpathexpression element. The left side of the equals sign
accesses the form value of this field.

• On the right side of the equals sign: The java workflow engine access each rule (keyed by doctype +
rule template) and attempts to match the rule data to the form data. If no match is found, the workflow
engine skips this route node. If a match is found the rule tells the workflow engine what workgroup
to route the document to.

• If the rule template does NOT contain any rule attributes, then all forms stop at this node (referred
to as 'AUTO-STOP').

• To review what rules exist for a doctype one can find them in the Main Menu tab under the Workflow
section. The link to click is Quicklinks. For the doctype that carries the route paths, click search.
Then without adding any other info click search. If further info is required for the page - you will be

eDocLite Support Notes

31

told so. There is likely a rule that is active for the doctype/ruletemplate combination. A report on that
rule will show the 'Reviewer' which normally is a workgroup where the document should be routed.

• When changing a Rule Template, like adding another rule attribute, inactivate existing rules first because
old rules do NOT automatically deactivate. In the route log of a document, one can examine the rules
(by id number) that fired. This is one way to identify if old rules that are not expected or desired to
fire are in fact firing.

• To change a rule template

export the xml, modify it accordingly, then add an attribute to the <ruleTemplate> making it look
like: <ruleTemplate allowOverwrite="true" >. This is a safety feature, because when
a template is changed the rules behind it are affected. Note that the schema definition file is named
RuleTemplate.xsd in Eclipse; which describes what is valid for the xml construct. If you added a rule
attribute to the template, validate the rule attribute exists, or create it new if you must.
Next you would create the routing rule(s) for the modified doctype/ruleTemplate.

• RuleAttributes can also be used for verification purposes by associating them with a java method.
Unique code can be written to perform the logic to do the validation (usually involves hitting a database).
See class workflowAttribute -> method validateClientRoutingData.

32

Glossary
A
Action List A list of the user's notification and workflow items. Also called the user's

Notification List. Clicking an item in the Action List displays details about that
notification, if the item is a notification, or displays that document, if it is a
workflow item. The user will usually load the document from their Action List in
order to take the requested action against it, such as approving or acknowledging
the document.

Action List Type This tells you if the Action List item is a notification or a more specific workflow
request item. When the Action List item is a notification, the Action List Type is
"Notification."

Action Request A request to a user or Workgroup to take action on a document. It designates the
type of action that is requested, which includes:

• Approve: requests an approve or disapprove action.

• Complete: requests a completion of the contents of a document. This action
request is displayed in the Action List after the user saves an incomplete
document.

• Acknowledge: requests an acknowledgment by the user that the document has
been opened - the doc will not leave the Action List until acknowledgment has
occurred; however, the document routing will not be held up and the document
will be permitted to transaction into the processed state if neccessary.

• FYI: a notification to the user regarding the document. Documents requesting
FYI can be cleared directly from the Action List. Even if a document has FYI
requests remaining, it will still be permitted to transition into the FINAL state.

Action Request Hierarchy Action requests are hierarchical in nature and can have one parent and multiple
children.

Action Requested The action one needs to take on a document; also the type of action that is requested
by an Action Request. Actions that may be requested of a user are:

• Acknowledge: requests that the users states he or she has reviewed the
document.

• Approve: requests that the user either Approve or Disapprove a document.

• Complete: requests the user to enter additional information in a document so
that the content of the document is complete.

• FYI: intended to simply makes a user aware of the document.

Action Taken An action taken on a document by a Reviewer in response to an Action Request.
The Action Taken may be:

• Acknowledged: Reviewer has viewed and acknowledged document.

• Approved: Reviewer has approved the action requested on document.

Glossary

33

• Blanket Approved: Reviewer has requested a blanket approval up to a specified
point in the route path on the document.

• Canceled: Reviewer has canceled the document. The document will not be
routed to any more reviewers.

• Cleared FYI: Reviewer has viewed the document and cleared all of his or her
pending FYI(s) on this document.

• Completed: Reviewer has completed and supplied all data requested on
document.

• Created Document: User has created a document

• Disapproved: Reviewer has disapproved the document. The document will not
being routed to any subsequent reviewers for approval. Acknowledge Requests
are sent to previous approvers to inform them of the disapproval.

• Logged Document: Reviewer has added a message to the Route Log of the
document.

• Moved Document: Reviewer has moved the document either backward or
forward in its routing path.

• Returned to Previous Node: Reviewer has returned the document to a previous
routing node. When a Reviewer does this, all the actions taken between the
current node and the return node are removed and all the pending requests on
the document are deactivated.

• Routed Document: Reviewer has submitted the document to the workflow
engine for routing.

• Saved: Reviewer has saved the document for later completion and routing.

• Superuser Approved Document: Superuser has approved the entire document,
any remaining routing is cancelled.

• Superuser Approved Node: Superuser has approved the document through all
nodes up to (but not including) a specific node. When the document gets to that
node, the normal Action Requests will be created.

• Superuser Approved Request: Superuser has approved a single pending
Approve or Complete Action Request. The document then goes to the next
routing node.

• Superuser Cancelled: Superuser has canceled the document. A Superuser can
cancel a document without a pending Action Request to him/her on the
document.

• Superuser Disapproved: Superuser has disapproved the document. A Superuser
can disapprove a document without a pending Action Request to him/her on
the document.

Glossary

34

• Superuser Returned to Previous Node: Superuser has returned the document
to a previous routing node. A Superuser can do this without a pending Action
Request to him/her on the document.

Activated The state of an action request when it is has been sent to a user's Action List.

Activation The process by which requests appear in a user's Action List

Activation Type Defines how a route node handles activation of Action Requests. There are two
standard activation types:

• Sequential: Action Requests are activated one at a time based on routing
priority. The next Action Request isn't activated until the previous request is
satisfied.

• Parallel: All Action Requests at the route node are activated immediately,
regardless of priority

Active Indicator An indicator specifying whether an object in the system is active or not. Used as
an alternative to complete removal of an object.

Ad Hoc Routing A type of routing used to route a document to users or groups that are not in the
Routing path for that Document Type. When the Ad Hoc Routing is complete, the
routing returns to its normal path.

Annotation Optional comments added by a Reviewer when taking action. Intended to explain
or clarify the action taken or to advise subsequent Reviewers.

Approve A type of workflow action button. Signifies that the document represents a valid
business transaction in accordance with institutional needs and policies in the
user's judgment. A single document may require approval from several users, at
multiple route levels, before it moves to final status.

Approver The user who approves the document. As a document moves through Workflow,
it moves one route level at a time. An Approver operates at a particular route level
of the document.

Attachment The pathname of a related file to attach to a Note. Use the "Browse..." button to
open the file dialog, select the file and automatically fill in the pathname.

Attribute Type Used to strongly type or categorize the values that can be stored for the various
attributes in the system (e.g., the value of the arbitrary key/value pairs that can be
defined and associated with a given parent object in the system).

Authentication The act of logging into the system. The Out of the box (OOTB) authenticaton
implementation in Rice does not require a password as it is intended for testing
puposes only. This is something that must be enabled as part of an implementation.
Various authentication solutions exist, such as CAS or Shibboleth, that an
implementer may want to use depending on their needs.

Authorization Authorization is the permissions that an authenticated user has for performing
actions in the system.

Author Universal ID A free-form text field for the full name of the Author of the Note, expressed as
"Lastname, Firstname Initial"

Glossary

35

B
Base Rule Attribute The standard fields that are defined and collected for every Routing Rule These

include:

• Active: A true/false flag to indicate if the Routing Rule is active. If false, then
the rule will not be evaluated during routing.

• Document Type: The Document Type to which the Routing Rule applies.

• From Date: The inclusive start date from which the Routing Rule will be
considered for a match.

• Force Action: a true/false flag to indicate if the review should be forced to take
action again for the requests generated by this rule, even if they had taken action
on the document previously.

• Name: the name of the rule, this serves as a unique identifier for the rule. If one
is not specified when the rule is created, then it will be generated.

• Rule Template: The Rule Template used to create the Routing Rule.

• To Date: The inclusive end date to which the Routing Rule will be considered
for a match.

Blanket Approval Authority that is given to designated Reviewers who can approve a document to a
chosen route point. A Blanket Approval bypasses approvals that would otherwise
be required in the Routing For an authorized Reviewer, the Doc Handler typically
displays the Blanket Approval button along with the other options. When a Blanket
Approval is used, the Reviewers who are skipped are sent Acknowledge requests
to notify them that they were bypassed.

Blanket Approve Workgroup A workgroup that has the authority to Blanket Approve a document.

Branch A path containing one or more Route Nodes that a document traverses during
routing. When a document enters a Split Node multiple branches can be created.
A Join Node joins multiple branches together.

Business Rule 1. Describes the operations, definitions and constraints that apply to an
organization in achieving its goals.

2. A restriction to a function for a business reason (such as making a specific
object code unavailable for a particular type of disbursement). Customizable
business rules are controlled by Parameters.

C
Campus Identifies the different fiscal and physical operating entities of an institution.

Campus Type Designates a campus as physical only, fiscal only or both.

Cancel A workflow action available to document initiators on documents that have not
yet been routed for approval. Denotes that the document is void and should be
disregarded. Canceled documents cannot be modified in any way and do not route
for approval.

Glossary

36

Canceled A routing status. The document is denoted as void and should be disregarded.

CAS - Central Authentication
Service

http://www.jasig.org/cas - An open source authentication framework. Kuali Rice
provides support for integrating with CAS as an authentication provider (among
other authentication solutions), and Kuali also provides an implementation of a
CAS server that integrates with Kuali Identity Management.

Client A Java Application Program Interface (API) for interfacing with the Kuali
Enterprise Workflow Engine.

Client/Server The use of one computer to request the services of another computer over a
network. The workstation in an organization will be used to initiate a business
transaction (e.g., a budget transfer). This workstation needs to gather information
from a remote database to process the transaction, and will eventually be used to
post new or changed information back onto that remote database. The workstation
is thus a Client and the remote computer that houses the database is the Server.

Close A workflow action available on documents in most statuses. Signifies that the
user wishes to exit the document. No changes to Action Requests, Route Logs or
document status occur as a result of a Close action. If you initiate a document and
close it without saving, it is the same as canceling that document.

Comma-separated value A file format using commas as delimiters utilized in import and export
functionality.

Complete A pending action request to a user to submit a saved document.

Completed The action taken by a user or group in response to a request in order to finish
populating a document with information, as evidenced in the Document Route
Log.

Country Restricted Indicator Field used to indicate if a country is restricted from use in procurement. If there
is no value then there is no restriction.

Creation Date The date on which a document is created.

CSV See comma-separated value

D
Date Approved The date on which a document was most recently approved.

Date Finalized The date on which a document enters the FINAL state. At this point, all approvals
and acknowledgments are complete for the document.

Deactivation The process by which requests are removed from a user's Action List

Delegate A user who has been registered to act on behalf of another user. The Delegate
acts with the full authority of the Delegator. Delegation may be either Primary
Delegation or Secondary Delegation.

Delegate Action List A separate Action List for Delegate actions. When a Delegate selects a Delegator
for whom to act, an Action List of all documents sent to the Delegator is displayed.

http://www.jasig.org/cas

Glossary

37

For both Primary and Secondary Delegation the Delegate may act on any of the
entries with the full authority of the Delegator.

Disapprove A workflow action that allows a user to indicate that a document does not represent
a valid business transaction in that user's judgment. The initiator and previous
approvers will receive Acknowledgment requests indicating the document was
disapproved.

Disapproved A status that indicates the document has been disapproved by an approver as a
valid transaction and it will not generate the originally intended transaction.

Doc Handler The Doc Handler is a web interface that a Client uses for the appropriate display
of a document. When a user opens a document from the Action List or Document
Search, the Doc Handler manages access permissions, content format, and user
options according to the requirements of the Client.

Doc Handler URL The URL for the Doc Handler.

Doc Nbr See Document Number.

Document Also see E-Doc.

An electronic document containing information for a business transaction that is
routed for Actions in KEW. It includes information such as Document ID, Type,
Title, Route Status, Initiator, Date Created, etc. In KEW, a document typically has
XML content attached to it that is used to make routing decisions.

Document Id See Document Number.

Document Number A unique, sequential, system-assigned number for a document

Document Operation A workflow screen that provides an interface for authorized users to manipulate
the XML and other data that defines a document in workflow. It allows you
to access and open a document by Document ID for the purpose of performing
operations on the document.

Document Search A web interface in which users can search for documents. Users may search by
a combination of document properties such as Document Type or Document ID,
or by more specialized properties using the Detailed Search. Search results are
displayed in a list similar to an Action List.

Document Status See also Route Status.

Document Title The title given to the document when it was created. Depending on the Document
Type, this title may have been assigned by the Initiator or built automatically based
on the contents of the document. The Document Title is displayed in both the
Action List and Document Search.

Document Type The Document Type defines the routing definition and other properties for a set
of documents. Each document is an instance of a Document Type and conducts
the same type of business transaction as other instances of that Document Type.

Document Types have the following characteristics:

• They are specifications for a document that can be created in KEW

Glossary

38

• They contain identifying information as well as policies and other attributes

• They defines the Route Path executed for a document of that type (Process
Definition)

• They are hierarchical in nature may be part of a hierarchy of Document Types,
each of which inherits certain properties of its Parent Document Type.

• They are typically defined in XML, but certain properties can be maintained
from a graphical interface

Document Type Hierarchy A hierarchy of Document Type definitions. Document Types inherit certain
attributes from their parent Document Types. This hierarchy is also leveraged by
various pieces of the system, including the Rules engine when evaluating rule sets
and KIM when evaluating certain Document Type-based permissions.

Document Type Label The human-readable label assigned to a Document Type.

Document Type Name The assigned name of the document type. It must be unique.

Document Type Policy These advise various checks and authorizations for instances of a Document Type
during the routing process.

Drilldown A link that allows a user to access more detailed information about the current
data. These links typically take the user through a series of inquiries on different
business objects.

Dynamic Node An advanced type of Route Node that can be used to generate complex routing
paths on the fly. Typically used whenever the route path of a document cannot be
statically defined and must be completely derived from document data.

E
ECL 1. An acronym for Educational Community License.

2. All Kuali software and material is available under the Educational Community
License and may be adopted by colleges and universities without licensing
fees. The open licensing approach also provides opportunities for support and
implementation assistance from commercial affiliates.

E-Doc An abbreviation for electronic documents, also a shorthand reference to
documents created with eDocLite.

eDocLite A framework for quickly building workflow-enabled documents. Allows you to
define document screens in XML and render them using XSL style sheets.

Embedded Client A type of client that runs an embedded workflow engine.

Employee Status Found on the Person Document; defines the employee's current employment
classification (for example, "A" for Active).

Employee Type Found on the Person Document; defines the employee's position classification (for
example, "P" for Professional).

Glossary

39

Entity An Entity record houses identity information for a given Person, Process, System,
etc. Each Entity is categorized by its association with an Entity Type.

Entity Attribute Entities have directory-like information called Entity Attributes that are associated
with them

Entity Attributes make up the identity information for an Entity record.

Entity Type Provides categorization to Entities. For example, a "System" could be considered
an Entity Type because something like a batch process may need to interfact with
the application.

Exception A workflow routing status indicating that the document routed to an exception
queue because workflow has encountered a system error when trying to process
the document.

Exception Messaging The set of services and configuration options that are responsible for handling
messages when they cannot be successfully delivered. Exception Messaging is
set up when you configure KSB using the properties outlined in KSB Module
Configuration.

Exception Routing A type of routing used to handle error conditions that occur during the routing
of a document. A document goes into Exception Routing when the workflow
engine encounters an error or a situation where it cannot proceed, such as a
violation of a Document Type Policy or an error contacting external services.
When this occurs, the document is routed to the parties responsible for handling
these exception cases. This can be a group configured on the document or a
responsibility configured in KIM. Once one of these responsible parties has
reviewed the situation and approved the document, it will be resubmitted to the
workflow engine to attempt the processing again.

Extended Attributes Custom, table-driven business object attributes that can be established by
implementing institutions.

Extension Rule Attribute One of the rule attributes added in the definition of a rule template that extends
beyond the base rule attributes to differentiate the routing rule. A Required
Extension Attribute has its "Required" field set to True in the rule template.
Otherwise, it is an Optional Extension Attribute. Extension attributes are typically
used to add additional fields that can be collected on a rule. They also define the
logic for how those fields will be processed during rule evaluation.

F
Field Lookup The round magnifying glass icon found next to fields throughout the GUI that

allow the user to look up reference table information and display (and select from)
a list of valid values for that field.

Final A workflow routing status indicating that the document has been routed and has
no pending approval or acknowledgement requests.

Flexible Route Management A standard KEW routing scheme based on rules rather than dedicated table-based
routing.

FlexRM (Flexible Route
Module)

The Route Module that performs the Routing for any Routing Rule is defined
through FlexRM. FlexRM generates Action Requests when a Rule matches the

Glossary

40

data value contained in a document. An abbreviation of "Flexible Route Module."
A standard KEW routing scheme that is based on rules rather than dedicated table-
based routing.

Force Action A true/false flag that indicates if previous Routing for approval will be ignored
when an Action Request is generated. The flag is used in multiple contexts where
requests are generated (e.g., rules, ad hoc routing). If Force Action is False, then
prior Actions taken by a user can satisfy newly generated requests. If it is True,
then the user needs to take another Action to satisfy the request.

FYI A workflow action request that can be cleared from a user's Action List with
or without opening and viewing the document. A document with no pending
approval requests but with pending Acknowledge requests is in Processed status.
A document with no pending approval requests but with pending FYI requests is
in Final status. See also Ad Hoc Routing and Action Request.

G
Group A Group has members that can be either Principals or other Groups (nested).

Groups essentially become a way to organize Entities (via Principal relationships)
and other Groups within logical categories.

Groups can be given authorization to perform actions within applications by
assigning them as members of Roles.

Groups can also have arbitrary identity information (i.e., Group Attributes hanging
from them. Group Attributes might be values for "Office Address," "Group
Leader," etc.

Groups can be maintained at runtime through a user interface that is capable of
workflow.

Group Attribute Groups have directory-like information called Group Attributes hanging from
them. "Group Phone Number" and "Team Leader" are examples of Group
Attributes.

Group Attributes make up the identity information for a Group record.

Group Attributes can be maintained at runtime through a user interface that is
capable of workflow.

H
Hierarchical Tree Structure A hierarchical representation of data in a graphical form.

I
Initialized The state of an Action Request when it is first created but has not yet been

Activated (sent to a user's Action List).

Initiated A workflow routing status indicating a document has been created but has not
yet been saved or routed. A Document Number is automatically assigned by the
system.

Glossary

41

Initiator A user role for a person who creates (initiates or authors) a new document for
routing. Depending on the permissions associated with the Document Type, only
certain users may be able to initiate documents of that type.

Inquiry A screen that allows a user to view information about a business object.

J
Join Node The point in the routing path where multiple branches are joined together. A Join

Node typically has a corresponding Split Node for which it joins the branches.

K
KC - Kuali Coeus TODO

KCA - Kuali Commercial
Affiliates

A designation provided to commercial affiliates who become part of the Kuali
Partners Program to provide for-fee guidance, support, implementation, and
integration services related to the Kuali software. Affiliates hold no ownership of
Kuali intellectual property, but are full KPP participants. Affiliates may provide
packaged versions of Kuali that provide value for installation or integration
beyond the basic Kuali software. Affiliates may also offer other types of training,
documentation, or hosting services.

KCB – Kuali Communications
Broker

KCB is logically related to KEN. It handles dispatching messages based on user
preferences (email, SMS, etc.).

KEN - Kuali Enterprise
Notification

A key component of the Enterprise Integration layer of the architecture
framework. Its features include:

• Automatic Message Generation and Logging

• Message integrity and delivery standards

• Delivery of notifications to a user's Action List

KEW – Kuali Enterprise
Workflow

Kuali Enterprise Workflow is a general-purpose electronic routing infrastructure,
or workflow engine. It manages the creation, routing, and processing of electronic
documents (eDocs) necessary to complete a transaction. Other applications can
also use Kuali Enterprise Workflow to automate and regulate the approval process
for the transactions or documents they create.

KFS – Kuali Financial System Delivers a comprehensive suite of functionality to serve the financial system needs
of all Carnegie-Class institutions. An enhancement of the proven functionality of
Indiana University's Financial Information System (FIS), KFS meets GASB and
FASB standards while providing a strong control environment to keep pace with
advances in both technology and business. Modules include financial transactions,
general ledger, chart of accounts, contracts and grants, purchasing/accounts
payable, labor distribution, budget, accounts receivable and capital assets.

KIM – Kuali Identity
Management

A Kuali Rice module, Kuali Identity Management provides a standard API for
persons, groups, roles and permissions that can be implemented by an institution.
It also provdies an out of the box reference implementation that allows for a
university to use Kuali as their Identity Management solution.

Glossary

42

KNS – Kuali Nervous System A core technical module composed of reusable code components that provide
the common, underlying infrastructure code and functionality that any module
may employ to perform its functions (for example, creating custom attributes,
attaching electronic images, uploading data from desktop applications, lookup/
search routines, and database interaction).

KPP - Kuali Partners Program The Kuali Partners Program (KPP) is the means for organizations to get involved
in the Kuali software community and influence its future through voting rights to
determine software development priorities. Membership dues pay staff to perform
Quality Assurance (QA) work, release engineering, packaging, documentation,
and other work to coordinate the timely enhancement and release of quality
software and other services valuable to the members. Partners are also encouraged
to tender functional, technical, support or administrative staff members to the
Kuali Foundation for specific periods of time.

KRAD - Kuali Rapid
Application Development

TODO

KRMS - Kuali Rules
Management System

TODO

KS - Kuali Student Delivers a means to support students and other users with a student-centric system
that provides real-time, cost-effective, scalable support to help them identify
and achieve their goals while simplifying or eliminating administrative tasks.
The high-level entities of person (evolving roles-student, instructor, etc.), time
(nested units of time - semesters, terms, classes), learning unit (assigned to any
learning activity), learning result (grades, assessments, evaluations), learning
plan (intentions, activities, major, degree), and learning resources (instructors,
classrooms, equipment). The concierge function is a self-service information
sharing system that aligns information with needs and tasks to accomplish goals.
The support for integration of locally-developed processes provides flexibility for
any institution's needs.

KSB – Kuali Service Bus Provides an out-of-the-box service architecture and runtime environment for Kuali
Applications. It is the cornerstone of the Service Oriented Architecture layer of
the architectural reference framework. The Kuali Service Bus consists of:

• A services registry and repository for identifying and instantiating services

• Run time monitoring of messages

• Support for synchronous and asynchronous service and message paradigms

Kuali 1. Pronounced "ku-wah-lee". A partnership organization that produces a suite of
community-source, modular administrative software for Carnegie-class higher
education institutions. See also Kuali Foundation

2. (n.) A humble kitchen wok that plays an important role in a successful kitchen.

Kuali Foundation Employs staff to coordinate partner efforts and to manage and protect the
Foundation's intellectual property. The Kuali Foundation manages a growing
portfolio of enterprise software applications for colleges and universities. A
lightweight Foundation staff coordinates the activities of Foundation members
for critical software development and coordination activities such as source code
control, release engineering, packaging, documentation, project management,

Glossary

43

software testing and quality assurance, conference planning, and educating and
assisting members of the Kuali Partners program.

Kuali Rice Provides an enterprise-class middleware suite of integrated products that allow
both Kuali and non-Kuali applications to be built in an agile fashion, such
that developers are able to react to end-user business requirements in an
efficient manner to produce high-quality business applications. Built with Service
Oriented Architecture (SOA) concepts in mind, KR enables developers to build
robust systems with common enterprise workflow functionality, customizable
and configurable user interfaces with a clean and universal look and feel, and
general notification features to allow for a consolidated list of work "action
items." All of this adds up to providing a re-usable development framework that
encourages a simplified approach to developing true business functionality as
modular applications.

L
Last Modified Date The date on which the document was last modified (e.g., the date of the last action

taken, the last action request generated, the last status changed, etc.).

M
Maintenance Document An e-doc used to establish and maintain a table record.

Message The full description of a notification message. This is a specific field that can be
filled out as part of the Simple Message or Event Message form. This can also
be set by the programmatic interfaces when sending notifications from a client
system.

Message Queue Allows administrators to monitor messages that are flowing through the Service
Bus. Messages can be edited, deleted or forwarded to other machines for
processing from this screen.

N
Namespace A Namespace is a way to scope both Permissions and Entity Attributes Each

Namespace instance is one level of scoping and is one record in the system.
For example, "KRA" or "KC" or "KFS" could be a Namespace. Or you could
further break those up into finer-grained Namespaces such that they would roughly
correlate to functional modules within each application. Examples could be "KRA
Rolodex", "KC Grants", "KFS Chart of Accounts".

Out of the box, the system is bootstrapped with numerous Rice namespaces
which correspond to the different modules. There is also a default namespace of
"KUALI".

Namespaces can be maintained at runtime through a maintenance document.

Note Text A free-form text field for the text of a Note

Notification Content This section of a notification message which displays the actual full message for
the notification along with any other content-type-specific fields.

Glossary

44

Notification Message The overall Notification item or Notification Message that a user sees when she
views the details of a notification in her Action List. A Notification Message
contains not only common elements such as Sender, Channel, and Title, but also
content-type-specific fields.

O
OOTB Stands for "out of the box" and refers to the base deliverable of a given feature

in the system.

Optimistic Locking A type of "locking" that is placed on a database row by a process to prevent
other processes from updating that row before the first process is complete. A
characteristic of this locking technique is that another user who wants to make
modifications at the same time as another user is permitted to, but the first one
who submits their changes will have them applied. Any subsequent changes will
result in the user being notified of the optimistic lock and their changes will not
be applied. This technique assumes that another update is unlikely.

Optional Rule Extension
Attribute

An Extension Attribute that is not required in a Rule Template. It may or may
not be present in a Routing Rule created from the Template. It can be used as
a conditional element to aid in deciding if a Rule matches. These Attributes are
simply additional criteria for the Rule matching process.

Org Doc # The originating document number.

Organization Refers to a unit within the institution such as department, responsibility center,
campus, etc.

Organization Code Represents a unique identifier assigned to units at many different levels within the
institution (for example, department, responsibility center, and campus).

P
Parameter Component Code Code identifying the parameter Component.

Parameter Description This field houses the purpose of this parameter.

Parameter Name This will be used as the identifier for the parameter. Parameter values will be
accessed using this field and the namespace as the key.

Parameter Type Code Code identifying the parameter type. Parameter Type Code is the primary key for
its' table.

Parameter Value This field houses the actual value associated with the parameter.

Parent Document Type A Document Type from which another Document Type derives. The child type can
inherit certain properties of the parent type, any of which it may override. A Parent
Document Type may have a parent as part of a hierarchy of document types.

Parent Rule A Routing Rule in KEW from which another Routing Rule derives. The child Rule
can inherit certain properties of the parent Rule, any of which it may override. A
Parent Rule may have a parent as part of a hierarchy of Rules.

Permission Permissions represent fine grained actions that can be mapped to functionality
within a given system. Permissions are scoped to Namespace which roughly
correlate to modules or sections of functionality within a given system.

Glossary

45

A developer would code authorization checks in their application against these
permissions.

Some examples would be: "canSave", "canView", "canEdit", etc.

Permissions are aggregated by Roles.

Permissions can be maintained at runtime through a user interface that is capable
of workflow; however, developers still need to code authorization checks against
them in their code, once they are set up in the system.

Attributes

1. Id - a system generated unique identifier that is the primary key for any
Permission record in the system

2. Name - the name of the permission; also a human understandable unique
identifier

3. Description - a full description of the purpose of the Permission record

4. Namespace - the reference to the associated Namespace

Relationships

1. Permission to Role - many to many; this relationship ties a Permission record
to a Role that is authorized for the Permission

2. Permission to Namespace - many to one; this relationship allows for scoping
of a Permission to a Namespace that contains functionality which keys its
authorization checking off of said

Person Identifier The username of an individual user who receives the document ad hoc for the
Action Requested

Person Role Creates or maintains the list used in selection of personnel when preparing the
Routing Form document.

Pessimistic Locking A type of lock placed on a database row by a process to prevent other processes
from reading or updating that row until the first process is finished. This technique
assumes that another update is likely.

Plugins A plugin is a packaged set of code providing essential services that can be
deployed into the Rice standalone server. Plugins usually contains only classes
used in routing such as custom rules or searchable attributes, but can contain
client application specific services. They are usually used only by clients being
implemented by the 'Thin Client' method

Post Processor A routing component that is notified by the workflow engine about various events
pertaining to the routing of a specific document (e.g., node transition, status
change, action taken). The implementation of a Post Processor is typically specific
to a particular set of Document Types. When all required approvals are completed,
the engine notifies the Post Processor accordingly. At this point, the Post Processor
is responsible for completing the business transaction in the manner appropriate
to its Document Type.

Glossary

46

Posted Date/Time Stamp A free-form text field that identifies the time and date at which the Notes is posted.

Postal Code Defines zip code to city and state cross-references.

Preferences User options in an Action List for displaying the list of documents. Users can click
the Preferences button in the top margin of the Action List to display the Action
List Preferences screen. On the Preferences screen, users may change the columns
displayed, the background colors by Route Status, and the number of documents
displayed per page.

Primary Delegation The Delegator turns over full authority to the Delegate. The Action Requests
for the Delegator only appear in the Action List of the Primary Delegate. The
Delegation must be registered in KEW or KIM to be in effect.

Principal A Principal represents an Entity that can authenticate into the system. One can
roughly correlate a Principal to a login username. Entities can exist in KIM without
having permissions or authorization to do anything; therefore, a Principal must
exist and must be associated with an Entity in order for it to have access privileges.
All authorization that is not specific to Groups is tied to a Principal.

In other words, an Entity is for identity while a Principal is for access management.

Also note that an Entity is allowed to have multiple Principals associated with
it. The use case typically given here is that a person may apply to a school and
receive one log in for the application system; however, once accepted, they may
receive their official login, but use the same identity information set up for their
Entity record.

Processed A routing status indicating that the document has no pending approval requests
but still has one or more pending acknowledgement requests.

R
Recipient Type The type of entity that is receiving an Action Request. Can be a user, workgroup,

or role.

Required Rule Extension
Attribute

An Extension Attribute that is required in a Rule Template. It will be present in
every Routing Rule created from the Template.

Responsibility See Responsible Party.

Responsibility Id A unique identifier representing a particular responsibility on a rule (or from a
route module This identifier stays the same for a particular responsibility no matter
how many times a rule is modified.

Responsible Party The Reviewer defined on a routing rule that receives requests when the rule
is successfully executed. Each routing rule has one or more responsible parties
defined.

Reviewer A user acting on a document in his/her Action List and who has received an Action
Request for the document.

Rice An abbreviation for Kuali Rice.

Role Roles aggregate Permissions When Roles are given to Entities (via their
relationship with Principals) or Groups an authorization for all associated
Permissions is granted.

Glossary

47

Route Header Id Another name for the Document Id.

Route Log Displays information about the routing of a document. The Route Log is usually
accessed from either the Action List or a Document Search. It displays general
document information about the document and a detailed list of Actions Taken
and pending Action Requests for the document. The Route Log can be considered
an audit trail for a document.

Route Module A routing component that the engine uses to generate action requests at a particular
Route Node. FlexRM (Flexible Route Module) is a general Route Module that
is rule-based. Clients can define their own Route Modules that can conduct
specialized Routing based on routing tables or any other desired implementation.

Route Node Represents a step in the routing process of a document type. Route node
"instances" are created dynamically as a document goes through its routing process
and can be defined to perform any function. The most common functions are to
generate Action Requests or to split or join the route path.

• Simple: do some arbitrary work

• Requests: generate action requests using a Route Module or the Rules engine

• Split: split the route path into one or more parallel branches

• Join: join one or more branches back together

• Sub Process: execute another route path inline

• Dynamic: generate a dynamic route path

Route Path The path a document follows during the routing process. Consists of a set of
route nodes and branches. The route path is defined as part of the document type
definition.

Route Status The status of a document in the course of its routing:

• Approved: These documents have been approved by all required reviewers and
are waiting additional postprocessing.

• Cancelled: These documents have been stopped. The document's initiator can
'Cancel' it before routing begins or a reviewer of the document can cancel it
after routing begins. When a document is cancelled, routing stops; it is not sent
to another Action List.

• Disapproved: These documents have been disapproved by at least one reviewer.
Routing has stopped for these documents.

• Enroute: Routing is in progress on these documents and an action request is
waiting for someone to take action.

• Exception: A routing exception has occurred on this document. Someone from
the Exception Workgroup for this Document Type must take action on this
document, and it has been sent to the Action List of this workgroup.

• Final: All required approvals and all acknowledgements have been received on
these documents. No changes are allowed to a document that is in Final status.

Glossary

48

• Initiated: A user or a process has created this document, but it has not yet been
routed to anyone's Action List.

• Processed: These documents have been approved by all required users, and is
completed on them. They may be waiting for Acknowledgements. No further
action is needed on these documents.

• Saved: These documents have been saved for later work. An author (initiator)
can save a document before routing begins or a reviewer can save a document
before he or she takes action on it. When someone saves a document, the
document goes on that person's Action List.

Routed By User The user who submits the document into routing. This is often the same as the
Initiator. However, for some types of documents they may be different.

Routing The process of moving a document through its route path as defined in its
Document Type. Routing is executed and administered by the workflow engine.
This process will typically include generating Action Requests and processing
actions from the users who receive those requests. In addition, the Routing process
includes callbacks to the Post Processor when there are changes in document state.

Routing Priority A number that indicates the routing priority; a smaller number has a higher routing
priority. Routing priority is used to determine the order that requests are activated
on a route node with sequential activation type.

Routing Rule A record that contains the data for the Rule Attributes specified in a Rule Template
It is an instance of a Rule Template populated to determine the appropriate
Routing. The Rule includes the Base Attributes, Required Extension Attributes,
Responsible Party Attributes, and any Optional Extension Attributes that are
declared in the Rule Template. Rules are evaluated at certain points in the routing
process and, when they fire, can generate Action Requests to the responsible
parties that are defined on them.

Technical considerations for a Routing Rules are:

• Configured via a GUI (or imported from XML)

• Created against a Rule Template and a Document Type

• The Rule Template and it's list of Rule Attributes define what fields will be
collected in the Rule GUI

• Rules define the users, groups and/or roles who should receive action requests

• Available Action Request Types that Rules can route

• Complete

• Approve

• Acknowledge

• FYI

• During routing, Rule Evaluation Sets are "selected" at each node. Default is to
select by Document Type and Rule Template defined on the Route Node

Glossary

49

• Rules match (or 'fire') based on the evaluation of data on the document and data
contained on the individual rule

• Examples

• If dollar amount is greater than $10,000 then send an Approval request to Joe.

• If department is "HR" request an Acknowledgment from the
HR.Acknowledgers workgroup.

Rule Attribute Rule attributes are a core KEW data element contained in a document that controls
its Routing. It participates in routing as part of a Rule Template and is responsible
for defining custom fields that can be rendered on a routing rule. It also defines
the logic for how rules that contain the attribute data are evaluated.

Technical considerations for a Rule Attribute are:

• They might be backed by a Java class to provide lookups and validations of
appropriate values.

• Define how a Routing Rule evaluates document data to determine whether or
not the rule data matches the document data.

• Define what data is collected on a rule.

• An attribute typically corresponds to one piece of data on a document (i.e dollar
amount, department, organization, account, etc.).

• Can be written in Java or defined using XML (with matching done by XPath).

• Can have multiple GUI fields defined in a single attribute.

Rule QuickLinks A list of document groups with their document hierarchies and actions that can be
selected. For specific document types, you can create the rule delegate.

Rule Template A Rule Template serves as a pattern or design for the routing rules. All of the
Rule Attributes that include both Required and _Optional_ are contained in the
Rule Template; it defines the structure of the routing rule of FlexRM. The Rule
Template is also used to associate certain Route Nodes on a document type to
routing rules.

Technical considerations for a Rule Templates are:

• They are a composition of Rule Attributes

• Adding a 'Role' attribute to a template allows for the use of the Role on any
rules created against the template

• When rule attributes are used for matching on rules, each attribute is associated
with the other attributes on the template using an implicit 'and' logic attributes

• Can be used to define various other aspects to be used by the rule creation GUI
such as rule data defaults (effective dates, ignore previous, available request
types, etc)

Glossary

50

S
Save A workflow action button that allows the Initiator of a document to save their

work and close the document. The document may be retrieved from the initiator's
Action List for completion and routing at a later time.

Saved A routing status indicating the document has been started but not yet completed or
routed. The Save action allows the initiator of a document to save their work and
close the document. The document may be retrieved from the initiator's action list
for completion and routing at a later time.

Searchable Attributes Attributes that can be defined to index certain pieces of data on a document so that
it can be searched from the Document Search screen.

Technical considerations for a Searchable Attributes are:

• They are responsible for extracting and indexing document data for searching

• They allow for custom fields to be added to Document Search for documents
of a particular type

• They are configured as an attribute of a Document Type

• They can be written in Java or defined in XML by using Xpath to facilitate
matching

Secondary Delegation The Secondary Delegate acts as a temporary backup Delegator who acts with the
same authority as the primary Approver/the Delegator when the Delegator is not
available. Documents appear in the Action Lists of both the Delegator and the
Delegate. When either acts on the document, it disappears from both Action Lists.

Secondary Delegation is often configured for a range of dates and it must be
registered in KEW or KIM to be in effect.

Service Registry Displays a read-only view of all of the services that are exposed on the Service Bus
and includes information about them (for example, IP Address, or Endpoint URL).

Simple Node A type of node that can perform any function desired by the implementer. An
example implementation of a simple node is the node that generates Action
Requests from route modules.

SOA An acronym for Service Oriented Architecture.

Special Condition Routing This is a generic term for additional route levels that might be triggered by various
attributes of a transaction. They can be based on the type of document, attributes of
the accounts being used, or other attributes of the transaction. They often represent
special administrative approvals that may be required.

Split Node A node in the routing path that can split the route path into multiple branches.

Spring The Spring Framework is an open source application framework for the Java
platform.

State Defines U.S. Postal Service codes used to identify states.

Status On an Action List; also known as Route Status. The current location of the
document in its routing path.

http://www.springsource.org/

Glossary

51

Submit A workflow action button used by the initiator of a document to begin workflow
routing for that transaction. It moves the document (through workflow) to the next
level of approval. Once a document is submitted, it remains in 'ENROUTE' status
until all approvals have taken place.

Superuser A user who has been given special permission to perform Superuser Approvals
and other Superuser actions on documents of a certain Document Type.

Superuser Approval Authority given Superusers to approve a document of a chosen Route Node. A
Superuser Approval action bypasses approvals that would otherwise be required
in the Routing. It is available in Superuser Document Search. In most cases,
reviewers who are skipped are not sent Acknowledge Action Requests.

Superuser Document Search A special mode of Document Search that allows Superusers to access documents
in a special Superuser mode and perform administrative functions on those
documents. Access to these documents is governed by the user's membership in
the Superuser Workgroup as defined on a particular Document Type.

T
Thread pool A technique that improves overall system performance by creating a pool of

threads to execute multiple tasks at the same time. A task can execute immediately
if a thread in the pool is available or else the task waits for a thread to become
available from the pool before executing.

Title A short summary of the notification message. This field can be filled out as part
of the Simple Message or Event Message form. In addition, this can be set by the
programmatic interfaces when sending notifications from a client system.

This field is equivalent to the "Subject" field in an email.

U
URL An acronym for Uniform Resource Locator.

User A person who can log in and use the application. This term is synonymous with
"Principal" in KIM. "Whereas Entity Id represents a unique Person, Principal Id
represents a set of login information for that Person."

V
Viewer A user(s) who views a document during the routing process. This includes users

who have action requests generated to them on a document.

W
Web Service Client A type of client that connects to a standalone KEW server using Web Services.

Wildcard A character that may be substituted for any of a defined subset of all possible
characters.

Workflow Electronic document routing, approval and tracking. Also known as Workflow
Services or Kuali Enterprise Workflow (KEW). The Kuali infrastructure service

Glossary

52

that electronically routes an e-doc to its approvers in a prescribed sequence,
according to established business rules based on the e-doc content. See also Kuali
Enterprise Workflow.

Workflow Engine The component of KEW that handles initiating and executing the route path of a
document.

Workflow QuickLinks A web interface that provides quick navigation to various functions in KEW.
These include:

• Quick EDoc Watch: The last five Actions taken by this user. The user can select
and repeat these actions.

• Quick EDoc Search: The last five EDocs searched for by this user. The user can
select one and repeat that search.

• Quick Action List: The last five document types the user took action with. The
user can select one and repeat that action.

X
XML See also XML Ingester.

1. An acronym for Extensible Markup Language.

2. Used for data import/export.

XML Ingester A workflow function that allows you to browse for and upload XML data.

XML RuleAttribute Similar in functionality to a RuleAttribute but built using XML only

