Kuall Rice 2.5.0-M6-
SNAPSHOT Kuali Service Bus

Table of Contents

L KSB OVEIVIBIW ..ttt ettt e ettt e et et e e et e bt n e et e bt e e e era e eeee 1
What is the Kuali SErVICE BUS?cooviiiiiii e 1
FEALUMES ..o 1
BeaAN-BASEA SEIVICES ... it 2

Overview of Supported Service ProtOCOISuuuiiiiiiiiiiiii e 3

2. MESSAGE QUEUEeeeeeet ettt ettt ettt et et e et 4
CUITENt NOTE TNFO ..ttt e e 4
Message Filter and FELChcoouiiii e 5
Documents Currently in ROULE QUEUEcoeuuuieiiiiie ettt ettt 6
LY SO PP PP P PP TPPPPTPRPPPIN 7

3. TRIEBA POOI ...ttt 9
A, SEIVICE REGISIIY .ottt ettt 10
5. PESSIMISHIC LOCKING ..t eeieitie ettt ettt et e e et et et eeenan s 12
Default PeSSIMIStIC LOCKINGiiiiiiieiiiii et 12
LOCKING TOF USEI ENEIY ...ttt e e e e s 12
Document Configuration - DOCUMENTcveuuuneiiiii ettt 12
CUSEOIMIZING vttt ettt ettt e ettt e ettt e e et ettt e et ettt e e ettt e e e eebe e e e eebe e eeenbaaaeees 13
Defining 'ENtry’ BEdit MOOEScouuiiiiiii e 13
USiNg CUStOM LOCK DESCIIPLOISvueiiriieeeeie ettt e e 13
Locking for WOrKfIOW PrOCESSINGccevrueiiiie et 14
Default Workflow Actions that Don't Require LOCKSccoovuiiiiiiiiiiii e 14
Document Configuration - WOrKfIOWiiiiiiiiii e 14
CUSEOIMIZING vttt ettt ettt e ettt e ettt e e et ettt e et ettt e e ettt e e e eebe e e e eebe e eeenbaaaeees 14
USING & CUSIOM LOCK OWIETiitiiiiiii ettt e et e et e eeena s 15

O O 17 ¢ v PSPPI 16
S = o 11 AU UP PP UPPPPT 17
OVEIVIBIV .ttt ettt ettt e ettt e et e e et et e et e ab e et e tb e e e enaaas 17
SECUNTY M@NAGEIMENT ... eieit et et e et e e e e e e e na e 17
CredentialS tYPES .. .eerei ettt 18
Credential SSOUICTEceeiii et ettt ettt e e et e e et e e e e et e e eenta e aeens 18

KSB security: Server side CONfigUIationooeeeueieriiiiieieii e 18

KSB security: Client side configuIrationcouuuieiiiiiieeiiiiiieeei e 19

KSB connector and EXPOIEr COUEuuieiiiiiieeiii ettt e e e e 19
10700107 ol (o £ PPN 19

EXPOITENS ..ot 19

SECUNLY BN KEBYSIOMES ...ttt ettt e e ettt e eeaa e e eenes 19
Generating the KEYSIOreoiiiiii e 19

Step 1: Create the KEYSIOIe ... oot 19

SEEP 20 SIGN the K@Y oo e 20

Step 3: Generate the CartifiCatevieee e 20

Step 4: Import Application CertifiCateSuuviiiriiieeiiii e 20

Configure KSB t0 USE the KEYSIOreiiiiiiiiciii e 20

Basi CAULNENTI CALIONSEIVICEeeut ettt ettt e e et e e erb e eeees 21

8. Details of Supported Service PrOtOCOISccuuuriiiiiiiieiieii et 23
JAVA RICE CHIBNT ...t et e e e e e e e 23

AS CONSUIMES ...ttt ettt ettt e e e et et e e e e et at e e e e e e aees 23

AAS PIOUUCES ...ttt ettt e et ettt e ettt e e e et e e e ena e eeens 23

ANY JAVA CHENT ..ottt ettt e et e e e e e e 23

AS CONSUIMES ...ttt ettt ettt e e e et et e e e e et at e e e e e e aees 23

AAS PIOUUCES ...ttt ettt e et ettt e ettt e e e et e e e ena e eeens 23
NON-JAVA/INON-RICE CHIENL ...eeeitieeeei e e enees 24

Kuali Rice 2.5.0-M6-
SNAPSHOT Kuali Service Bus

AS CONSUIMEY ...ttt et ettt ettt et et e et e ea e ea e et et e et e en e en e e e e eeneees 24

F NS (0o 1= SO STTPPPIN 24

KSB REJISITY 85 @ SEIVICE ..ouuiiiiiciiii ettt e e e e e e e e e e et eean e eeas 24

9. Configuring the KSB Client in SPringcovueiiiiiiiie e e e e e s 25
L@ N = PR 25
Spring Property ConfigUIationuiiiiiiiiiiiie e ee e e e e e e e e ea e eaaes 25
Spring JTA CONfiQUIGLIONuuiiiieii et e e e e e e e e e ean s 26

Put JTA and the Rice Config object in the CoreConfigurerccooeviveiiiiiiiiiciiii e, 27
Configuring KSB WIthOUL JTA ...ooiniii i e e e e e e e e e e aaeees 27
(V= o 40 0 I @011 To 0= 1 o o P 28
(00001110 V1= (0 g I == = 011 £ PN 29

(01 Y 10T L= SO SPRTRPPPIN 29
QRIS 0 [0= £ B = o P 29
MESSAGE.AE I VENY .oeeiiii e 29
MNESSAQE. Off et 30
RouteQueue.MaxXRENY ATIEIMPLS ... 30
ROUtEQUEUELIMEINCIEMENTiive i e e e e e e eeen 30
Routing.ImmediateEXCEPtiONROULINGcuvuiiiiiieiiici e e 30
RouteQueue.maxRetry AttemptSOVEITIAEcvveiiii e 30
USEQUAINZDAANEASE i 30

(1S o X0 (0 o0 (U7 1t 2P 30
rice.ksh.config.alowSafSIgNEASSLcoiiiiiiii 30
rice.ksh.web.forCeENaDIEoiii e 31

K SBCONfIQUIEr PrOPEITIESvuiiii i et e e e e e e e e e e e et e e et e eaaeees 31
exceptioNMessagingSChedUIESouuiiii e 31

MESSAJED ALASOUICE ...ttt e ans 31
NoNTransactioNalMeSSageDAaSOUICEuvernieeiiieeieeeie e e e e e e e et e e e e e eeens 31

= 0TS LY B = o U o S 31

LSS Y o= P 31

(S = T 0 11T U= G 31
Implications of "synchronous' vs. "asynchronous' Message Deliveryccooceuvneeee. 33

10. Configuring QUAIZ fFOr KSBuiiiiiiiii e e e e e e e e e eees 35
(@ 0= S v = o (0] 1o To [P 35

11. Acquiring and Invoking Services Deployed on KSBcooiiiiiiiiiiiiiiecii e 36
SEPVICE INVOCELION OVEIVIEWiieiiiieeeeii ettt e et e et e e e e et e e e et e e e et eeeeaan e 36
Acquiring and invoking a service dir€Ctlyoovvuiiiiiiiii e 36
Acquiring and invoking a Service USING MESSAJING «..vucvvunerrrnieeineerinieriieeeteesineesrnaeenneeeens 38
Getting responses from service calls made with messagingcc.cocvveviiviiii i, 39

I = o = S PRTSPPI 41
SEPVICE CaAll FAIIOVET ...t e e 41
FallOVEr WIth QUBUESiii e e e e e e e e e aaas 41
Fallover With TOPICS . .iuvuiii e e e 41

13. KSB EXCEPtION MESSAGING .vunivvneiiieiiieeeiiieeeteeeteee e esata e et e e et e e st e e st eeaneestaastnaeesnaees 42
14. KSB Messaging Paratigmscouviiiiiiii e e 43
L0 11T 1= PP 43

I oo 43
MESSAGE FEICNEr ... i e 43

T oo [2T =T Voo Vo [PPN 44
SR o= 2 L= 127011 o [45
17. Publishing SErviCeS t0 KSBiiiiiiii e 46
(S =101 1T U = PN 46

S YTl (o] (= G 46
CallbackSErVICEEXPOIEN .. ovvi it e e e e 47
Version Compatibility for Callback SErviCesoovviiiiiiiiiiii e, 47

Kuali Rice 2.5.0-M6-
SNAPSHOT Kuali Service Bus

Callback Service EXporter HEIPENcovvniiiii e 48
ServiceDEfINITION PrOPEITIEScvii i e e e e e e e e e e e e e eens 48
2 F S Tol 0= = 1= (= £ TP 48
ServiceNameSpaceURI/MESSAGEENTLITYccvuiiiiieiii e e e e 49
SOAPSENVICEDEFINITION ...iiiiiiiiiieeei e e e e et e e et e e et e e e eean s 49
JaVaSENVICEDEFINITION L...iiiiii e e e e et e e e 49
PUDIISNING RICE SEIVICES ...uuiiiiii et e e e e e e e e e e e e et e e eanees 49
18. The ReSOUrCELOBAEr SEACK ... iiviii et e et e e e aae e e eee 51
L@ N = PR 51
Accessing and overriding Rice services and beans from Springcooocviveiinciiinecieeeennn, 52
Resourcel 0aderFaCtoryBeEaNoeviuuiiiiiiii e e e e e e e e e e 52
Installing an application root resource oaderccoovviieiiiiiiiiiii e, 52
Overriding Rice services: Alternate methodcooevviiiiiiiiiii e 52

19. Queue and TOPIC INVOCEEIONu.iiiieeiiee e e e e e e e e e e e e e e e e et e e eat e e et e e st e aeanaeeannaees 54
(@ 01C 8T 01V o= Lo o U 54
B o] o B 017/ = 1 Lo o ISP 54
20. KSB ParBIMEBLENSieieieeeie ettt et et e et e e r e e e et et e e e en e e e e e e eaeees 55
COME Pal@MELEN'S ... ettt et et et e et et e et e et e e e e e e aens 55
SEIVICESEIVIEIUN ...t e e e e 55

= To] o] 1o (0] o NS PP 56
keystorefile, keystore.alias, KeysStore.passwordccoceuveiiiiiiiiiieiii e 56

R o 10700 [= PP 56

16 o PPN 56
MCE.KSD.SrUtS.CONTIG.fIIES .oviiri e 56

(01 Y 0T L= PSPPI 56
QRIS 0L 0= £ B = (o P 56
MESSAGE.AE I VENY ..oeeiiit e 56
MNESSAQE. Off et 56
RouteQueue.MaxXRENY ATIEIMPLS ... 57
ROUtEQUEUELIMEINCIEMENTiivt e e e e e e e e aa e eeen 57
RouteQueue.maxRetry AttemptSOVEITIAEcvveiiiie e 57
Routing.ImmediateEXCEPtiONROULINGcvvuiiiiiieiiicie e e e e e 57
USEQUAINZDAANEASE iiii e 57

(RS o X0 (0 o117t 2P 57

KSB Configurer PrOPEIIES ...uuuiiii et et e e e e e e e e e e et e e an e eeen 57
exceptioNMessagingSChedUIESouuiiii e 57
MESSAJED ALASOUICE ...ttt e e ans 57

(= 0TI 1Y B = Ko U o S 58
OVEITIOESEIVICES ...iiiviieeeeii ettt e et e ettt e e ettt e e et e e e e ettt e e e et aeeeeatn s eeeestnnaaaes 58
SEIVICES .ottt ettt a s 58

21, JAX-RS / RESTFUI SEIVICES ..oevuieiiiiiieeee ettt e e e et e e e et e e e e era s 59
(02 Y2 PP 59
A SIMPIE EXAMPIE et 59
COMPOSITE SEIVICES ...ivtiieii i eii et et e e e e e e e e e et e e et e e et e e et e e et e eannnas 60
Additional Service Definition Propertiesocuuuiiiiiieiiie e e e 61
[0V 70 < =SSP PPRTUN 61
[T i o ALY, =0 o] oo 62

(= TqTo (0= L1V oo o] o PN 62
Additional INfOrMELIONoiiiiiie e 62

22. Using the KSB With BUS SECUIMLYcvveiii e e 63
e =S = Y =< SR 63
BaSe RICE SEIVICESiiiiiiieiiii ettt e e e e e et e e eaanns 63
CAIMPUSSENVICE ..eetiieii e ittt et e e e e e e e e e e e et e e et e e et e e et e e et e eaaneeeens 63

BUS SECULY .vuiiiiiiiii e it e e et e e e e e e e e e e e e et e e et e e et e e et eeaa e e et e e st e eaneeees 64

Kuali Rice 2.5.0-M6-
SNAPSHOT Kuali Service Bus

USAgE EXAMPIES ..ottt e e e e a s 64
ObtaiNiNg MCEKEYSIOIE .. .oveiii e e e e e e e e e 64
Using the KSB with bus security - new Keystore aliaseSccvveviiiiiiiiiiiii e, 64
KSB SOGDUI ClIENE «.evtiieiiii e e e et e e et e e e et e e e e et 65
Creating the S0apUI PrOJECEiive i e e e e e e e e 65
Identifying rice.keystore to the SoapUI ProjECtc.uivviiiiiiieiie e 66
Configure using the keystore for outgoiNg reqUESESevvueiiiiieiiieeeii e e 67
Associating our WS-Security Outgoing Configurationsto arequestccoccuvvevvvnennen. 68
EXECULE the FEQUESEeeiiii e e e e eens 69

QS S I - V= W O 1 o | PP 70
Generating the web service Client ... 70
Create @ MaVven PrOJECEciuiieii e e e e e e e e e e e e e e 71
WIHHING the JAVA COUEccveiii e e 72
Complete sample apPlICAIONuiiii e e e e s 74
Using the KSB with bus security - SOAP FreQUESEviivnieiiiieiie e 75
SOAP request with WS-Security headerc.oeviiiiiiiiiiie e 75

23. Caching INFraStTUCIUIEuuiii e e e e e e e e e e et e e e e et e e et e e e eeanns 77
L@ N T PR 77
Proposal that was IMPIEMENtEdoiiiiiiii e e e eaaes 77
The IMPIEMENTALIONuiei e e e e e 78
ThE SPIING Parts ...ooun e 78

THE KU PartS ... e e e 79

A REAl EXAMPIE ..t 79
Standards and RUIESuuiiiiiii e e e e e e aaaes 81
Caching AdmINIStration Uliiiiiiiiii e e e e eaaas 83
Putting it all tOgEtNErvi i 83
Implementation PlUg POINEScouuiiiiicii e e e e e e 84
REFEIENCES ...ttt 86
L1105 S 87

Vi

List of Figures

L1 KUAH SEIVICE BUS ...ttt e e e e 1
1.2, SUPPOIted SErVICE PrOTOCOISceveueiiiiii ettt ettt ettt e e e e et e eeneens 3
2.1. Message Queue: Documents Currently 1N ROULEuuiiiiiiiiiiiiiie e 4
2.2. MESSA0R FlLEr SCIEEN ...ouiciiit ettt 5
2.3. Execute Message Filter: Confirmation SCreenoovuuuioiiiiieee e 6
2.4. Documents [N ROULE QUEUIEuiie ittt e e e e et et e e e e e e e e eaeees 6
2.5. Requeue Documents: Confirmation SCrEENuuiiiiiiiiiiiiie et 8
3.1. Thread Pool AdMIiNISIration Pageeiieeiiiiiiiiiie e eeeens 9
A1, SEIVICE REJISIIY vttt ettt e et e et et e s 10
4.2, Service REQISITY RESUILS ...ttt e et e e e e eeees 11
6.1. EXCeption ROULING QUEUEuuniiiiii ettt ettt e e e et e e et e e e raa s 16
7.1, Create KEYSIOMEieviieit ettt et et et e e et e 17
7.2. Create Keystore: File SECHIONuiiiii e e 17
7.3. Create Keystore: EXisting Keystore SECHONuuiiiiiiiieiiiiie e 18
18.1. GlObal RESOUICE LOBOENcieiiiiieeeeit ettt ettt e et e e e et e e e ena e eeees 51
22.1. Create a NeW SOAPUI PrOJEC ... ieeeeeeieiit ettt ettt et et e e et e e e e e eeaanns 66
22.2. ldentify rice.keystore to the SOapUI PrOJECEccvvniiiiiiieiiiii e 67
22.3. ldentify rice.keystore to the SOapUI PrOJECEccuuniriiiiieiiiii e 68
22.4. Associate Outgoing Config t0 @ REQUESEuiiiiiiiicii e 69
22.5. EXECULE TEOUESEciveiiiei ettt ettt ettt e e et e et e e e e e e e e e e e eenas 70
23.1. CAChE PrOPOSALcieiii et 78
23.2. Standard Call FIOW Lueeiiii e 84
23.3. Standard Call FIOW 2eeieii e 84

Vii

List of Tables

2.1. Message Filter SCreen: AHDULESuiiiiiiie e e 5
2.2. Documents Currently in Route Queue: AMIDULESccoovviiiiiiii e 6
2.3. MESSA0ET ALIULES ... et 7
2.4, Payload: ATMIDULESooeiiii et 7
2.5, Edit SCreen: AIDULES oot 8
2.6, EQit SCrean: LiNKS ...ttt 8
3.1. Thread Pool: ATHDULES et eaaens 9
6.1. Exception Routing QUEeUE: ATIHDULESccoiitiiiiiii e 16
7.1. Existing Keystore Entries: AttiDULESooiiiiii e 18
9.1. KSB Configuration ParamMeELerSueiieuiieiiiiii ettt ettt e e e e eneans 29
11.1. Properties of the ServiceDEfiNItioNcouuiiiiiiie e 37
17.1. ServiceDefiNition ProPertiesc.uu i 48
17.2. SOAPSENVICEDEFINITION ...iiiiiie ettt ettt e e eeanns 49
17.3. JavaSerViCEDEIINITIONcieiii et 49
20.1. COr€ PaIAMELEIS ... ceueiiiee ettt ettt ettt et e e et et e 55

viii

Chapter 1. KSB Overview

What is the Kuali Service Bus?

TheKuali Service Bus (KSB) isalightweight service bus designed to allow devel opersto quickly develop
and deploy services for remote and local consumption. Y ou can deploy services to the bus using Spring
or programmatically. Services must be named when they are deployed to the bus. Services are acquired
from the bus using their name.

At the heart of the KSB is a service registry. This registry is a listing of al services available for
consumption on the bus. The registry provides the bus with the information necessary to achieve load
balancing, failover, and more.

Figure 1.1. Kuali Service Bus

Java

POJO
BRIDGES: EXPORTERS: Java Services on the bus can be made available via
Way to export connectors export protocols

p
.fﬁ SECURITY LAYER TRANSFORMATION

SERVICE BUS BACKBONE vaver

* WS-Security for SOAP u formation
+ Bus traffic - digitally « JMS and/or KSB messaging 3 - et
signed and/or encrypted « Orchestration via BPEL or KEW

+ AuthN/AuthZ on a per

service basi * Service registry

Y ou can deploy servicesto the bus using Spring or programmatically. Services must be named when they
are deployed to the bus. Services are acquired from the bus using their name.

Features

» Transactional AsynchronousM essaging - Y ou can call services asynchronously to support a 'fire and
forget' model of calling services. Messaging participates in existing JTA transactions, so that messages
are not sent until the currently running transaction is committed and are not sent if the transaction is
rolled back. Y ou can increase the performance of service calling code because you are not waiting for
aresponse.

KSB Overview

» Synchronous Messaging - Call any service on the bus using a request response paradigm.

* Queue Style Messaging - Supports executing Java services using message queues. When amessage is
sent to a queue, only one of the services listening for messages on the queue is given the message.

e Topic Style Messaging - Supports executing Java services using messaging topics. When amessageis
sent to atopic, all servicesthat are listening for messages on the topic receive the message.

e Quality of Service - Determines how queues and topics handle messages that have problems. Time to
live is supported, giving the message a configured amount of time to be handled successfully before
exception handling isinvoked for that message type. M essages can be given anumber of retry attempts
before exception handling isinvoked. The delay separating each call increases. Exception handlers can
be registered with each queue and topic for custom behavior when messagesfail and Quality of Service
limits have been reached.

» Discovery - Services are automatically discovered along the bus by service name. End-point URLs are
not needed to connect to services.

» Reliability - Should problems arise, messages sent to services via queues or synchronous calls
automatically fail-over to any other services bound to the same name on the bus. Services that are not
available are removed from the bus until they come back online, at which time they will be rediscovered

for messaging.

» Persisted Callback - Callback objects can be sent with any message. This object will be called each
time the message is received with the response of the service (think topic as opposed to queue). In this
way, we can deploy services for messaging that actually return values.

e Primitive Business Activity Monitoring - If turned on, each call to every service, including the
parameters passed into that service, is recorded. This feature can be turned on and off at runtime.

e Spring-Based I ntegration - KSB isdesigned with Spring-based integration in mind. A typical scenario
is making an existing Spring-based POJO available for remote asynchronous calls.

* Programmatic Based I ntegration - KSB can be configured programmatically if Spring configuration
is not desired. Services can aso be added and removed from the bus programmatically at runtime.

Bean-Based Services

Typically, KSB programming is centered on exposing Spring-configured beansto other calling code using
anumber of different protocols. Using this paradigm the client devel oper and the organization can rapidly
build and consume services, often a daunting challenge using other buses.

KSB Overview

Overview of Supported Service Protocols

Figure 1.2. Supported Service Protocols

| SOAP WS
p2p

A

——

| |
;SOS;WSJ

Thisdrawing is conceptual and not representative of true deployment architecture. Essentially, the KSB is
aregistry with service-calling behavior on the client end (Javaclient). All policies and behaviors (async as
opposed to sync) are coordinated on the client. The client offers some very attractive messaging features:

Synchronization of message sending with currently running transaction (meaning all messages sent
during atransaction are ONLY sent if the transaction is successfully committed)

Failover - If acall to aservice comes back with a 404 (or various other network-related errors), it will
try to call other services of the same name on the bus. Thisis for both sync and async calls.

L oad balancing - Clients will round-robin call services of the same name on the bus. Proxy instances,
however, are bound to single machines if you want to keep aline of communication open to a single
machine for long periods of time.

Topicsand Queues

Persistent messages - When using message persistence a message cannot be lost. It will be persisted
until it is sent.

Message Driven Service Execution - Bind standard JavaBean services to messaging queues for
message driven beans.

Chapter 2. Message Queue

Use the Message Queue section to administer the KNS message queuing system. Y ou can find it on the
Administration menu.

It has three main sections. Current Node Info, the message filter and fetch section, and the Documents
currently in route queue section.

Figure 2.1. Message Queue: Documents Currently In Route

X workflow Refresh Pane

Current Node Info

IP Address: 65.60.44.250
Service Namespace: RICE
MEessage persistence: true
message.delivery: async
message.off:

Message ID: r—
Service Mame: ([
Service Namespace: |
P humber: ([
Queue Status: =
App Spedfic Ualnl.l.e [

App Specdfic Value [
2:

Filter I
50 Execute Message Fetcher

Documents currently in route queve: 4
4 tems retrieved, displaying all items.
Name Entity Status | Priority Date Date Count| Value 1 Yalue 2

2340 {TRAVEL }BlankettpproveProcessorService | TRAVEL | 129.79.44.31 | EXCEPTION 4 04:43 PM 0B/11/2008 | 04:43 PM 08/11/2008 1 2120 View Edit
63 { TRAVEL } DocumentRoutingService TRAVEL | 129.79.44.31 | EXCEPTION 5 01:21 PM 12/22/2008 | 01:21 PM 12/22/2008 1 2604 View Edit
62 { TRAVEL }DocumentRoutingServica TRAVEL | 129.79.44.31 | EXCEPTION 5 01:00 PM 12/22/2008 | 01:00 PM 12/22/2008 1 2603 Miew Edt EeQueus
61 { TRAVEL }DocumantRoutingSarvice TRAVEL | 129.79.44.31 | EXCEPTION -] 01:04 PM 12/22/2008 | 01:04 PM 12/22/2008 1 2692 View Edt EsQueys
4 tems retrioved, displaying all items
Copyright 200%-2007 The Kuali Foundation, All nghts reserved,
Portions of Kuali Rice are copyrighted by othor parbes as describad in the Ack ibg screan

Current Node Info

* |P Address: Thisvaue equasthe | P address of the machine: Rice

» message.persistence: If true, then messages will be persisted to the datastore. Otherwise, they will only
be stored in memory. If message persistence is not turned on and the server is shutdown while there are
still messages in queue, those messages will be lost. For a production environment, it is recommended
that message persistence be set to true.

» message.delivery: Can be set to either "synchronous' or "async". If thisis set to synchronous, then

messages that are sent in an asynchronous fashion using the KSB application interface (API) will be

sent synchronously. Thisis useful in certain development and unit testing scenarios. For a production
environment, it is recommended that message delivery be set to async.

* message.off: If set to "true" then asynchronous messages will not be sent. In the case that message
persistence is turned on, they will be persisted in the message store and can even be picked up later
using the Message Fetcher. However, if message persistence is turned off, these messages will be lost.
This can be useful in certain debugging or testing scenarios.

Message Queue

Message Filter and Fetch

The message filter and fetch section of the Message Queue screen lets you search for, filter, and/or isolate
messages in the Documents in route queue. To use the Message Filter section, enter your criteriaand click
the Filter button:

Figure 2.2. Message Filter Screen

Message ID:

Service Name:

Service Namespace:

IP Number:

Queue Status: | -

App Specific Value
1:

App Specific Value
2:

Table 2.1. Message Filter Screen: Attributes

Field Description

Message ID A unique 5-digit message queue identification number

Service Name The name of the service

Application ID The service container's identifier

1P Number The message initiator's | P address

Queue Status Y ou can sort documents by the queue status. The queue status may be:

* QUEUED: The message iswaiting for aworker thread to pick it up
* ROUTING: A worker is currently working on the message.

+« EXCEPTION: There is a problem with the message and the route
manager will ignoreit. EXCEPTION statusistypically set manually by
the administrator to suspend a route queue entry until a problem can be
diagnosed.

App Specific Value 1
App Specific Value 2
Filter Button Click to execute the search filter

The specific vaue of a document

The specific vaue of a document

The Execute Message Fetcher button retrieves al the messages in the route queue. You can adjust the
number of messages requested by entering anumber in the field | eft of the button.

When you click the Execute Message Fetcher button, a dialog box appears, confirming that you want to
execute this command:

Message Queue

Figure 2.3. Execute M essage Filter: Confirmation Screen

i N
The page at https://test.kuali.org says: M

) This will execute the Message Fetcher which will grab all messages in the queue with this
machine's service namespace and ip address and queue them up to be processed again. Are
you sure you want to do this?

E 0K J I Cancel

KSB displays the results of a search and/or filter at the bottom of the page in the Documents currently
in route queue table.

Figure 2.4. Documents | n Route Queue

Documents currently in route queue: 5
5 items retrieved, displaying all items.
i e PNC mwmbe QEe gme Gme Opme g s s acom
| 2487 | {TRAVEL} DocumentRoutingService .TR.QU'EL .129.79.1111.31 .EXCEPTiDN | -1 | 091.?2?:2;3"5 03?22;23;‘3 | 1 | 2281 y‘gf'miﬁ
| 2340 .{TRA\.I'EL) pproveProcessorService .TR.QU'EL .129.79.1111.31 .EXCEPTiON | 4 | Ug“"l;fz:g‘ﬁ | nau‘;;_:%op;‘s | 1 | 2120 %
63 | {TRAVEL} DocumentRoutingService .TR.QU'EL 129.79.44.31 .EXCEPTiON | - | 12}5;12:':5 121’12:2}2:;‘8 | 1 | 2694 %
62 | {TRAVEL} DocumentRoutingService .TRAVEL 129.79.44.31 .EXCEPTEDN | S | 12;12;2.?2:;13 121'12101’92:;‘8 | 1 | 2693 %
61 {TRAVEL} DocumentRoutingService TRAVEL |129.79.44.31 |EXCEPTION | 5 A 12,1.‘,_‘2”‘,‘3‘,_;5‘8 1 2602 %
5 items retrieved, displaying all items.
Documents Currently in Route Queue
Table 2.2. Documents Currently in Route Queue: Attributes
Field Description
Message Queue ID A unique 5-digit message queue identification number. Thisisthe same as
the Message 1D in the Message Filter section.
Service Name The name of the service
Message Entity
1P Number The message initiator's |P address
Queue Status Y ou can sort documents by the queue status. The queue status may be:

* QUEUED: The message is waiting for aworker thread to pick it up
* ROUTING: A worker is currently working on the message.
« EXCEPTION: There is a problem with the message and the route

manager will ignoreit. EXCEPTION statusistypically set manually by
the administrator to suspend aroute queue entry until a problem can be

diagnosed.
Queue Priority The priority of the entry in the queue. Entries with the smallest number
are processed first.
Queue Date The date on which the queue entry should be processed. If the queue

checker runs and discovers entries that have a queue date that are equal to
or earlier than the current time, it processes them. The approximate time
at which this screenshot was taken 4:53 PM.

Expiration Date

Retry Count

App Specific Value 1

App Specific Value 2

Message Queue

Field

| Description

View

Actions

Click alink in thisfield to:
« View: View the detail message report
« Edit: Edit the settings of a Message Entry

* ReQueue: Enforce the routing process

When you click View in the Actions menu, KSB displays information about that message. Most of the
initial information isthe sasme asthat displayed in the Documents currently in route queuetable. Additional

information on the View screen:

* Message

Table 2.3. Message: Attributes

Field Description

Application ID: The service container's identifier
Method Name:

Payload

Table 2.4. Payload: Attributes

Field Description

Payload Class The class of the Payload

Method Name The name of the method used in this document
ignoreStoreAndForward A true and false indicator that ignores the store functions and forwards

the message

Servicel nfo.messageEntryld

A unique 4-digit message entry identification number

Servicelnfo.ServiceNamespace

The application

Servicelnfo.serverlp

The server's |P address

Servicelnfo.ServiceName

The name of the service

Servicel nfo.endpointUrl

The web address of the service

Servicelnfo.queue

A true and false indicator that activates the queue or topic function:

* "True" uses the Queue method, which sends the message to one
contact at atime

« "False" usesthe Topic method, which sendsthe messageto all contacts
at once

Servicelnfo.aive

A true and false indicator that shows the activity state of the document

Servicelnfo.priority

The priority of the entry for execution. Entries with the smallest number
are processed first

Servicelnfo.retryAttempts

How many times KSB will try to resend the message

Servicelnfo.millisToLive

An expiration indicator:

« 1 means the message never expires

Servicel nfo.messageExceptionHandler

This provides areference the service can use to call back.

Servicelnfo.serviceclass

The name of the service class

Servicelnfo.busSecurity

A true and false indicator that assigns the security function

Servicelnfo.credentialsType

The credential type of the document

Arguments

Edit

The argument of this document

Message Queue

When you click Edit in the Actions menu, KSB displays the editable fields for that message. Fields

on the Edit screen:

Table 2.5. Edit Screen: Attributes

Field Description

Queue Priority Change the queue priority by entering a positive number. A smaller
number has higher priority for execution.

Queue Status Change the status to Queued, Routing, or Exception.

Retry Count Change the number of times KSB will retry.

1P Number Change theinitiator's | P address.

Service Name Change the name of the service.

Message Entity Change the message entity.

Method Name Change the method.

App Specific Value 1 Change the information for the specific value 1.

App Specific Value 2 Change the information for the specific value 2.

Functional links on the Edit page:

Table 2.6. Edit Screen: Links

Field Description
Save Changes Save the information you just changed.
Save Changes and Resubmit Save the information you changed and resubmit the message.

Save and Forward

Save the message and send it to the next contact.

Delete Delete the message.

Reset Reload the previous settings. This undoes the changes that you made on
this screen, as long as you haven't yet saved them.

Clear Message Clear dl information fields on this page.

ReQueue

When you click ReQueue in the Actions menu, KSB displays this pop-up message:

Figure 2.5. Requeue Documents. Confirmation Screen

The page at h& .//test.kuali.org sa

@, Are you sure you want to ReQueue this message?

The QueueDate will be reset to today and the Retry set to zero.

QK

[Cancel }

Chapter 3. Thread Pool

Thread pool is afeature that improves overall system performance by creating a pool of threads which
can be independently used by the system to execute multiple tasks at the same time. A task can execute
immediately if there is athread in the pool that is available. If no thread is available, the task waits for a
thread to become available from the pool before executing.

The Thread Pool screen is accessed from the Administration menu. It tells you the current state of
the Thread Pool and allows you to change four parameters for the Thread Pool. The core pool size, the
maximum pool size, the RouteQueue. Timel ncrement and the RouteQueue.maxRetryAttempts.

Figure 3.1. Thread Pool Administration Page

Core Pool Size: 5

Maximum Pool Size: 5

Pool Size: 5

Active Count: 0

Largest Pool Size: 5

Keep Alive Time: 60000
Task Count: 112
Completed Task Count: 112

RouteQueue.maxRetryAttempts:

RouteQueue.Timelncrement: 5000

[] Execute Across All Servers with Service Namespace RICE

Table 3.1. Thread Pool: Attributes

Field

Description

Core Pool Size

A positive number equal to the core number of threadsin the pool

Maximum Pool Size

A positive number equal to the maximum number of threads in the pool;
when the Core Pool Sizeislarger than the Maximum Pool Size, Maximum
Pool Size automatically sets the pool size equal to the Core Pool Size

Pool Size

The current number of threads in the pool

Active Count

The approximate number of threads that are actively executing tasks

Largest Pool Size

Maximum number of threads allowed in the Thread Pool

Keep Alive Time

The amount of time which threads in excess of the core pool size
may remain idle before being terminated; measured in milliseconds; for
example, 60,000 milliseconds = 60 seconds

Task Count

Number of tasks that have been scheduled for execution

Completed Task Count

Number of tasks that have completed execution

Execute Across All Serverswith Application ID RICE

When you click this checkbox, then click the Update button, the update
isapplied across all servers.

Update button

Click the Update button to execute the changes you entered in the editable
fields above.

Chapter 4. Service Registry

The Service Registry lists published and temporary services that are available for the local machine. You
cannot configure the service registry here; thisis only information about the registry.

Display this page by clicking the Service Registry link on the Rice Administration page.

At the top of the page, the Current Node Info table shows the settings and configuration of the local
machine;

The returned table of servicesis divided into three sections:

1. Published Services: Servicesin use by the local machine

2. Published Temp Services: Temporary services that are the result of Object Remoting. For more
information about Object Remoting, please refer to the Object Remoting section of the KSB portion
of the Technical Reference Guide.

3. All Registry Services

This screen print shows the top of a Service Registry page, with the Current Node Info table and the
beginning of the Published Servicestable, aswell asthe refresh link and button:

Figure4.1. Service Registry

Xworkflow geieshpace 3
Current Node Info]
1P Address: 65.60.44.250
Service Namespace: RICE
dev.mode: false
Refresh Service Registry
Fublished Services: k . .
Namesoace
ImmediateEmailService | http://65.60.44.250:8080/kr-dev/remoting/ ImmediateEmailService | RICE | 65.60.44.250 |true |
[vice-forwardHandier | htto://65.60.44.250:8080/kr-dev/remoting/ImmediateEmailService-forwardHandler | RICE | 65.50.44.250 |true |
OSCacheNctificationService | hitp://65.60.44.250: 8080/ kr-dev, g/0SC vi | RICE [65.60.44.250 |true
0SC ifieati - hetp://65.60.44.250:8080/kr- ing/OSC. i i RICE 65.60.44.250 | true
RuleCacheProcessorService http://65.60.44,250:8080/kr-dev/remoting/RuleCacheProcessarService RICE 65.60.44.250 | true
RuleCacheProcessorService-forwardHandler http://65.60.44.250:8080/kr-dev/remoting/RuleCacheProcessorService-forwardHandler | RICE | 65.60.44.250 | true
WorkgroupMembershipChangeService http://65.50.44.250:8080/kr-de g/ Workgroup ipChang . RICE 65.60.44.250 | true
. . http://65.60.44.250:8080/kr-de: orkg i i
forwardHandler | RICE .55,5uu,250 true
{KiM}activePrincipalRoleTypeService http://65.60.44.250:8080/kr-de g ipaiRoleType: e | mICE [65.60.44.250 |true
{KIM}activePrincipalRoleTypeService-forwardHandler :'fr&:ﬁgz;?d;‘:zsozsosu"kr'd“’""‘“"’“”“‘“"P""“'“'R"lﬂ“"s“"'“' RICE 65.50,44,250 |true
{KiM}documentEditorRaleTypeService | http://65.60.44.250:8080/kr-dev/remoting/documentEditarRaleTypeService | RICE |65.60.44.250 | true
http://65.60.44.250:8080/kr-dev/ remoting/ documentEditorRole Ty peService-
{kam; Type! - RICE 65.60.44.250 | true
{KIM}documentOpenerRoleTypeService http://65.60.44.250:8080/kr-dev g/documentOpenerRoleType . RICE 65.60.44.250 | true

To update the list of published services, use either the Refresh Page link in the header at the top of the
page or the "Refresh Service Registry” button.

This screen print shows the point on a Service Registry page where KSB displays a notation that there are
no published temporary services and the beginning of the All Registry Servicestable:

10

Service Registry

Figure4.2. Service Registry Results

Published Services:

Service Name Endpoint URL

{http://rice.kuali.org/core/v2_0}componentService http://localhost: 8080/bar/remoting/soap/core/v2 0/componentService
{http://rice.kuali.org/core/v2_0}coreServiceCacheAdminService http://localhost:8080/bar/remoting/soap/core/v2 0/coreServiceCacheAdminService
{http://rice.kuali.org/core/v2_0}namespaceService http://localhost: 8080/bar/remoting/soap/core/v2 0/namespaceService
{http://rice.kuali.org/core/v2_0}parameterRepositoryService http://localhost: 8080/bar/remoting/soap/core/v2 0/parameterRepositoryService
{http://rice.kuali.org/core/v2_0}styleRepositoryService http://localhost:8080/bar/remoting/soap/core/v2 0/styleRepositoryService
{http://rice.kuali.org/ken/v2_0}sendNotificationService http://localhost:8080/bar/remoting/soap/ken/v2 0/sendMotificationService
{http://rice.kuali.org/kew/v2_0 }actionlnvocationQueue http://localhost: 8080/bar/remoting/soap/kew/v2 0/actionlnvocationQueue
{http://rice.kuali.org/kew/v2_0 jactionListCustomizationHandlerService http://localhost:8080/bar/remoting/soap/kew/v2 0/actionlistCustomizationHandlerService
{http://rice.kuali.org/kew/v2_0}actionListService http://localhost:8080/bar/remoting/soap/kew/v2 0/actionListService
{http://rice.kuali.org/kew/v2_0}backdoorRestrictionPermissionTypeService http://localhost:8080/bar/remoting/soap/kew/v2 0/backdoorRestrictionPermissionTypeService
{http://rice.kuali.org/kew/v2_0}documentAttributelndexingQueue http://localhost: 8080/bar/remoting/soap/kew/v2 0/documentAttributelndexingQueue
{http://rice.kuali.org/kew/v2_0}documentOrchestrationQueue http://localhost:8080/bar/remoting/soap/kew/v2 0/documentOrchestrationQueue
{http://rice.kuali.org/kew/v2_0}documentProcessingQueue http://localhost: 8080/bar/remoting/soap/kew/v2 0/documentProcessingQueue
{http://rice.kuali.org/kew/v2_0}documentRefreshQueue http://localhost:8080/bar/remoting/soap/kew/v2 0/documentRefreshQueue |
{http://rice.kuali.org/kew/v2_0}documentSearchCustomizationHandlerService | http://localhost: 8080/bar/remoting/soap/kew/v2 0/documentSearchCustomizationHandlerService

Please note, you may have permissions that allow you to click on a row's Endpoint URL to view the
WSDL fielsassoicated with the given service. In Internet Explorer or Firefox, thisWSDL will bedisplayed
normally in a separate window. In Google Chrome or Safari, however, you will need to click the link then
right click to view the frame source to see the WSDL due to current restrictions in Chrome and Safari.

11

Chapter 5. Pessimistic Locking

Default Pessimistic Locking
Warning

Only Transactional Documents may use the default Pessimistic Locking implementation.

To lock a document via the default Pessimistic L ocking mechanism means that the document is locked
by a user prior to any changes the user may perform. The traditional setup of documents in Rice is to
lock them using Optimistic Locking where two users may edit a document at the same time. However,
the first user to take an action that will save the document will 'win', and the second user will see an error
saying that the document was edited by another user. For Pessimistic Locking, the first user who has edit
privileges will get alock on the document, and any subsequent users who should have edit privileges on
the document, who try to view the document, will only get read-only access to the document, until the
first user'slock is 'released'.

Note

Pessimistic Locking is used in conjunction with standard Rice Optimistic Locking. Currently
thereis no way to use Pessimistic Locking instead of the default Optimistic Locking.

There are two placesin Rice where Pessimistic Locks can be used:

» Locking for User Entry - locks are created by a user who has some type of entry privileges on the
document

» Locking for Workflow Processing - locks are created when a workflow processis begun

Locking for User Entry

The default implementation for locking a document for user entry tells the system to place alock on a
document if a user attempts to view it and that user has one or more 'entry' type edit modes as defined
by the document's Document Authorizer class. Once the lock is placed, any other user who should have
‘entry’ privileges on the document will not be allowed to do so until the lock by the first user is released.

Note

If the Transactional Document that will be using Pessimistic Locking has a custom Document
Authorizer class and uses custom edit modes returned by the getEditMode(Document,
UniversalUser) method, the custom authorizer class should also override the method
isEntryEditM ode(Map.Entry). See #Defining 'Entry' Edit Modes below.

Document Configuration - Document

To enable Pessimistic Locking on a document the attribute 'usePessimisticLocking' must be set to ‘true
in the transactional document's entry.

Example:

1 <dictionaryEntry>
2 <transacti onal Docunment >

12

Pessimistic Locking

<usePessi mi sticLocki ng>true</ usePessi m sti cLocki ng>

</transactional Docunent >
</ dictionaryEntry>

Customizing

For extremely complex customization that goes beyond what may be described
in this document a client developer can look a the javadocs of the
org. kual i . core. docunent . aut hori zati on. Docunent Aut hor i zer Base class paying
specia attention to the methods below:

* isLockRequiredByUser(Document, Map, UniversalUser)

* isEntryEditMode(Map.Entry)

* getEditM odeWithEditableM odesRemoved(Map)
 getEntryEditM odeRepl acementM ode()

* createNewPessimisticL ock(Document, Map, UniversalUser)

The completely override the lock handling the Document Authorizer method establishL ocks(Document,
Map, UniversalUser) can be overriden.

Defining 'Entry' Edit Modes

If the Transactional Document that will be using Pessimistic Locking has a custom Document
Authorizer class and uses custom edit modes returned by the get Edi t Mode(Docunent,
Uni ver sal User) method, the custom authorizer class should also override the method
i SEnt ryEdi t Mode(Map. Entry) .If theentry parameter passed inisdefined asavalid 'entry' mode
then the method should return true.

Using custom Lock Descriptors

The default Pessimistic Lock implementation does not use Lock Descriptors so only one person may have
alock on a single document at any one time. If something more custom is required Lock Descriptors
can be used. The default implementation of a document that uses Pessimistic Locking and custom Lock
Descriptors is that once a single user establishes a lock on a certain document with a certain lock
descriptor... no other user can create alock on that document with that descriptor. If another user needs
that lock created they will have read only access on the document until the other user releases their lock.

Example

As an example, think of a document that has both an Delivery section and a Billing section. Perhaps a
user 'fred' has accessto edit the Delivery section but not the Billing section. Likewise, auser 'francine' has
access to edit the Billing section but not the Delivery section. In this case it would be possible for both
'francine’ and 'fred' to each have alock on a single document since the data they have editable is mutually
exclusive from the other. In this example 'fred' could have a Pessimistic Lock with a descriptor 'Delivery'
while 'francine' could have a Pessimistic Lock with a'Billing' descriptor.

To uselock descriptors the client application document should implement a custom Document Authorizer
class if not done already (see Authorizers - Client Developer Guide (0.9.3) for more information). The
authorizer class should override the useCustomLockDescriptors() method to return true. The method

13

Pessimistic Locking

getCustomL ockDescriptor(Document, Map, UniversalUser) must also be overriden to return the value of
the desired lock descriptor. It's up to the client to determine how to set these and what valuesto use.

Locking for Workflow Processing

The default implementation for locking a document for processing by Workflow tells the system to place
alock on a document once a Workflow action is taken if that Workflow action is not contained in a list
(see Default Workflow Actions that Don't Require Locks). The default user that will ‘own' the lock will
be the Rice System User. Once the lock is placed, any other user who should have 'entry' privileges on
the document will not be allowed to do so until the lock is released. Locks for Workflow processing are
released once the Workflow process completes successfully.

Note

If a document that has a Pessimistic Lock for Workflow is not successfully processed and goes
into Exception Routing, the document will stay locked by the Workflow process.

Default Workflow Actions that Don't Require
Locks

The following actions in Workflow will not set up a Pessimistic Lock for the coinciding process:

* Save

Acknowledge
* Clear FYI

» Disapprove
» Canceled

* Log on Document

Document Configuration - Workflow

To enable Pessimistic Locking for Workflow operations on a document the attribute
useWor kf | owPessi m sti cLocki ng must be set to 'true’ in the transactional document's entry.

Example

<di ctionaryEntry>
<transacti onal Docunent >

</transactional Docunent >

1
2
3 ce
4 <useWor kf | owPessi mi sti cLocki ng>t rue</ useWr kf | owPessi m sti cLocki ng>
5
6
7 <l/dictionaryEntry>

Customizing

The Pessimistic Locking mechanism for Workflow processes has lock creation and lock
releasing points that exist in a document's post processor methods. Specifically the method

14

Pessimistic Locking

doAct i onTaken(Acti onTakenEvent VO in the Docunent Base class is used to create locks
while the method af t er Wor kf | owEngi nePr ocess(bool ean) inthesameclassisused to release
locks. If a document overrides either of these methods or does not use the standard KualiPostProcessor
implementation, the client will need to use the DocumentBase methods code in whatever method they
implement if they would like Pessimistic Locking for Workflow.

Using a Custom Lock Owner

The default owner of a Pessimistic Lock created for a Workflow process is the Rice System
User. To change that a client can implement a custom Document Authorizer class and override
the method get Wor kf | owPessi nmi sti cLockOaner User (). This method is used to get the
lock owner for lock creation but also will be used to release the lock at the conclusion of the
Workflow process. If a non-static user will be used a client may need to override the method
rel easeWsr kf | owPessi m sti cLocki ng(Docunent) to handle special cases.

15

Chapter 6. Quartz

TheKuali Service Bus(KSB) uses Quartz to schedule delayed tasks, including retry attempts for messages
that cannot be sent thefirst time. By default, KSB usesan embedded quartz schedul er that can be configured
by passing parameters starting with "ksb.org.quartz." into the Rice configuration.

You can inject a custom quartz scheduler if the application is already running one. See the Technical
Reference Guide for KSB, Configuring Quartz for KSB for more information.

Quartz is also known as the Exception Routing Queue.

Figure 6.1. Exception Routing Queue

Xworkflow gefresh eage

3 items retrieved, displaying all items.

Job Name Job Group | Description | Iimeto execute EullName | Actions
MessageProcessinglobDetail D!KIgE;V o th:ll;r::gal?::;vEZZ:?:S:;Vi$:::W end Wed P‘C’STziTU%%: 1140 Del-v!ry.M!ssag:Pcr?;c!ssmg]ubD!tall %ﬂ“
Daily Email ey o e Email Batch.Daily Email %ﬁm
Weekly Email ;:l‘;"' Mon ’ng‘zé’g;“"“’" Email Batch.Weekly Email %ﬁm

3 items retrieved, displaying all items.

Copyright 2005-2007 The Kuali Foundation. All rights reserved.
Portions of Kuali Rice are copyrighted by other parties as described in the Acknowledgments screen.

When you click the Quartz link on the Kuali Rice Portal Administration page, KSB displays the screen
shown above. The contents of the table can be sorted in ascending or descending order by clicking on a
column title. This technique worksfor all columns except Actions. The table contains thisinformation on
each job that is scheduled:

Table 6.1. Exception Routing Queue: Attributes

Field Description

Job Name Unique name for the job

Job Group Classification of the job

Description Text description of what this job does

Time to execute The scheduled date and time for the job to occur

FullName A more descriptive Job Name

Actions Put in message queue effectively is a button that takes that message out of
quartz and sends it back into the KSB to be retried without waiting until
the scheduled time.

16

Chapter 7. Security

Overview

Acegi handles the security layer for KSB. Acegi uses remote method invocation to hold the application's
security context and to propagate this object through to the service layer.

Security Management

For client applicationsto consume secured services hosted from a standal one Rice server, the implementer
must generate akeystorein KSB. KSB security relies on the creation of akeystore using the VM keytool.

Figure7.1. Create Keystore

R

Administration

action list doc search Legged in User: admin u

Xworkflow gefresh page

Create new Client Keystore file:

Desired Alias (must be unique from list below):
Password (will be used for keys as well as keystore):
Re-Enter Password:

create clear fieids

Existing Keystore Entries:

One item retrieved.

Alias Create Date Ivps [Actions

rice 01:59 PM 10/10/2007 Private Key

One item retrieved.

Copyright 2005-2007 The Kuali Foundation. All rights reserved.
Portions of Kuali Rice are copyrighted by other parties as described in the Acknowledameants screen.

cuali Provide Feedback

To create anew Client Keystore file, complete all three fields and click the create button that isjust below
the fields:

Figure 7.2. Create Keystore: File Section

Create new Client Keystore file:

Desired Alias (must be unique from list below):

bPassword (will be used for keys as well as keystore):
Re-Enter Password:

create clear fields

The Desired Alias (name for the new keystore you are creating) must be unique among your keystores.
KSB automatically displays a list of existing Keystore entries for your reference below the Create new
Client Keystore file table. The datain thislist can be sorted in ascending or descending order by clicking
the column heading for any column except Actions.

17

Security

Figure 7.3. Create Keystore: Existing Keystore Section

Existing I%ystore Entries:

One item retrieved.

Alas Create Date Type ' Actions
rice 01:59 PM 10/10/2007 Private Key

One item retrieved.

Table7.1. Existing Keystore Entries: Attributes

Field Description

Alias Keystore name

Create Date Date and time the keystore was created
Type The type of keystore

Actions

Credentials types

There are several security types you can use to propagate the security context object:
« CAS

» USERNAME_PASSWORD

* JAAS

» X509

CredentialsSource

The CredentialsSource is an interface that helps obtain security credentials. It encapsulates the actual
source of credentials. The two ways to obtain the source are:

» X509CredentialsSource - X509 Certificate

» UsernamePasswordCredential sSource - Username and Password

KSB security: Server side configuration

Hereis a code snippet that shows the changes needed to configure KSB security on the server side:

1 <bean id="ksbConfigurer" class="org. kuali.rice.ksh. nessagi ng. confi g. KSBConfi gurer">
2 <l-- OQher properties renmoved -->

3 <property name="services">

4 <list>

5 <bean cl ass="org. kuali.rice. ksb. api . bus. support. SoapServi ceDefi niti on">
6 <property name="service">

7 <ref bean="soapService" />

8 </ property>

9 <property name="| ocal Servi ceName" val ue="soaplLocal Nane"/>

10 <property name="servi ceNaneSpaceURl " val ue="soapNaneSpace"/ >

11 <property name="servicelnterface" value="org. kual i . ksb. exanpl es. SOAPEchoSer vi ce"/ >
12 <property name="priority" value="3"/>

13 <property name="retryAttenpts" value="1" />

14 <property name="busSecurity" val ue="fal se"></property>

15

16

17

<l-- Valid Values: CAS, KERBERCS -->
<property name="credential sType" val ue="CAS"/ >

18

Security

18 </ bean>

19 <bean cl ass="org. kuali.rice. ksb. api . bus. support. JavaServi ceDefinition">
20 <property name="service" ref="echoService"></property>

21 <property name="| ocal Servi ceName" val ue="j avalLocal Nane" />

22 <property name="servi ceNameSpaceURl " val ue="j avaNaneSpace"/ >

23 <property name="servicelnterface" val ue="org. kual i . ksh. exanpl es. EchoSer vi ce"/ >
24 <property name="priority" value="5" />

25 <property name="retryAttenpts" value="1" />

26 <property name="busSecurity" value="true" />

27

28 <!-- Valid Values: CAS, KERBERCS -->

29 <property name="credential sType" val ue="CAS"/ >

30 </ bean>

31 <l-- Oher services renoved -->

32 </list>

33 </ property>

34 </ bean>

KSB security: Client side configuration

1 <bean i d="custonCredenti al sSour ceFact ory"
cl ass="edu. nyinstituition. myapp.security.credentials.Credential sSourceFactory" />
2
3 <bean id="coreConfigurer" class="org.kuali.rice.core.inpl.config.nodul e. CoreConfigurer">
4 <l-- Oher properties renoved -->

5 <property name="credenti al sSourceFactory" ref="custonCredenti al sSourceFactory">
6 </ bean>
7

KSB connector and exporter code

Connectors

Connectors are used by a client to connect to a service that is usually exposed through the KSB registry.
The Service Connector factory provides abean that holds a proxy to aremote service with some contextual
information. Thefactory determinesthetype of proxy to invokebased on the service definition. Theservice
definition used by the server is serialized to the database and de-serialized by the client. There are different
types of connectors supported by KSB, most notable are SOAP and Javaover HTTP.

Exporters

Services, when exported, can be secured using standard Acegi methods. A security manager and an
interceptor help organize the set of Business Objects that are exported.

Security and Keystores

Generating the Keystore
For client applications to be able to consume secured services hosted from a Rice server, the implementer

must generate a keystore. As an initial setup, KSB security relies on the creation of a keystore using the
JVM keytool asfollows:

Step 1: Create the Keystore

The first step is to create the keystore and generate a public-private key combination for the client
application. When using secured services on the KSB, we require the client applications transfer their

19

Security

messages digitally signed so that Rice can verify the messages authenticity. Thisis why we must generate
these keys.

Generate your initial Rice keystore asfollows:

keyt ool -genkey -validity 9999 -alias rice -keyalg RSA -keystore rice. keystore -dnanme "cn=rice" -keypass rlc3pw
-storepass rlc3pw

Caution

keypass and storepass should be the same.

ric3pw isthe password used for the provided example.

Step 2: Sign the Key

This generates the keystore in afile called "rice_keystore" in the current directory and generates an RSA
key with the alias of "rice". Since there is no certificate signing authority to sign our key, we must sign it
ourselves. To do this, execute the following command:

keytool -selfcert -validity 9999 -alias rice -keystore rice. keystore -keypass rlc3pw -storepass rlc3pw

Step 3: Generate the Certificate

After the application's certificate has been signed, we must export it so that it can be imported into the
Rice keystore. To export a certificate, execute the following command:

keytool -export -alias rice -file rice.cert -keystore rice. keystore -storepass rlc3pw

Step 4: Import Application Certificates

The client application's certificate can be imported using the following command:

keytool -inmport -alias rice -file client.application.cert.file -keystore rice.keystore -storepass rilc3pw

The keystorefile will end up deployed wherever your keystores are stored so hang on to both of these files
and don't lose them! Also, notice that we specified avalidity of 9999 days for the keystore and cert. This
is so you do not have to continually update these keystores. This will be determined by your computing
standards on how you handle key management.

Configure KSB to use the keystore

The following params are heeded in the xml config to allow the ksb to use the keystore:

1 <param nane="keystore.file">/usr/local/ricel/rice.keystore</paranr
2 <param nanme="keystore. al i as">ri ce</ paran>

3 <par am nanme="keyst or e. passwor d"> password </ paranp

4

» keystorefile - isthe location of the keystore

20

Security

» keystore.dias - isthe alias used in creating the keystore above

 keystore.password - thisis the password of the alias AND the keystore. This assumes that the keystore
isup in such away that these are the same.

BasicAuthenticationService

PR R R R

e

se

R WNPOOONOOUTONMWNLPR

POOWWO~NOUOMWNERE

=

©CO~NOOUIO DMWNPRE

TheBasicAuthenticationSer vice allows services published on the KSB to be accessed securely with basic
authentication. As an example, here is how the Workflow Document Actions Service could be exposed
as a service with basic authentication.

» Add the following bean to a spring bean file that is loaded as a part of the KEW module.

<bean id="rice. kew. wor kf | owDocument Acti onSer vi ceBasi cAut henti cati on. exporter"
par ent =" kewSer vi ceExporter" |azy-init="fal se">
<property name="servi ceDefinition">
<bean parent ="kewServi ce">
<property name="service">
<ref bean="rice. kew. wor kf | owDocunent Acti onsServi ce" />
</ property>
<property name="| ocal Servi ceNane"
val ue="wor kf | owDocurnent Act i onsSer vi ce- basi cAut henti cation" />
<property name="busSecurity"
val ue="${ri ce. kew. wor kf | owDocunent Act i onsServi ce. secure}" />
<property name="basi cAut henti cati on" val ue="true" />
</ bean>
</ property>
</ bean>
» Add the following bean to a spring bean file that is loaded as a part of the KSB module.
<bean cl ass="org. kuali.rice.ksb. servi ce. Basi cAut henti cati onCredenti al s">
<property name="servi ceNameSpaceURl "
val ue="http://rice. kuali.org/kewv2_0" />
<property name="I| ocal Servi ceNane"
val ue="wor kf | owDocunent Act i onsSer vi ce- basi cAut henti cation" />
<property name="user name"
val ue="${ Wr kf | owDocunent Acti onsServi ce. user nane}" />
<property nanme="password"
val ue="${ Wr kf | owDocunent Acti onsServi ce. password}" />
<property name="aut henticationService" ref="basi cAuthenticati onService" />
</ bean>
» Add the following config parameters to a secure file that isloaded when the application is started.
<par am nane="Wor kf | owDocunent Act i onsSer vi ce. user nane" >user name</ par an>

<par am nane="Wor kf | owDocunent Act i onsSer vi ce. passwor d" >pw</ par an>

» To verify the new service can be called, it can be tested using atool such as soapUl. Hereis an example
call which will invoke the method logAnnotation on Wor kflowDocumentActionsSer vicel mpl.

<soapenv: Envel ope xm ns: soapenv="http://schemas. xm soap. or g/ soap/ envel ope/ "
xm ns:v2="http://rice.kuali.org/kew v2_0">
<soapenv: Header >
<wsse: Security xm ns:wsse="http://docs. oasi s-open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss- wssecuri ty-
ext-1.0.xsd"
soapenv: nust Under st and="1">
<wsse: User nameToken xml ns: wsu=
"http://docs. oasi s-open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-wssecurity-utility-1.0.xsd"
wsu: | d=" User nanmeToken- 1815911473" >
<wsse: User nane>user nanme</ wsse: User name>

21

Security

10 <wsse: Password Type=

11 "http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss- user name- t oken-
profile-1. 0#Passwor dText " >pw</ wsse: Passwor d>

12 </ wsse: User nameToken>

13 </ wsse: Security>

14 </ soapenv: Header >
15 <soapenv: Body>

16 <v2: | ogAnnot ati on>

17 <v2: docunent | d>123456</ v2: docunent | d>

18 <v2: princi pal | d>adm n</v2: princi pal | d>

19 <v2:annot ati on>Add this annotation pl ease. </v2:annotati on>
20 </v2:| ogAnnot ati on>

21 <soapenv: Body>
22 </ soapenv: Envel ope>

22

Chapter 8. Detalls of Supported Service
Protocols

Java Rice Client

As Consumer

If configured for the KSB, a Java Rice Client can invoke any service in the KSB Registry using these
protocols:

1. Synchronously
* SOAP WS p2p using KSB Spring configuration
» Javacall if it iswithin the same VM
» Spring HTTP Remoting

2. Asynchronously

» Messaging Queues — As a Consumer, a Java Rice Client can invoke a one-shot deal for calling a
K SB-registered service asynchronously

» Java, SOAP, Spring HTTP Remoting

» Messaging Topics- AsaConsumer listening to atopic, the Java Rice Client will receive a broadcast
message

As Producer

You can register Spring-defined services in the KSB Registry through the KSB Configurer. Consumers
can call these services as described in other sections.

Any Java Client

As Consumer

A Java Client, regardless of whether or not it's a Rice Client configured for the KSB, can invoke any
web service:

1. AsaSOAP WS p2p using a straight-up WS call through CXF, Axis, etc. If the external web serviceis
not registered on the KSB, the Java client must discover the service on its own.

2. Through Javaif they are within the same JVM

3. Through Spring HTTP Remoting; you must know the endpoint URL of the service.

As Producer

1. Currently, you can't leverage the KSB and its registry for exposing any of its services. It is possible to
bring up the registry and register services without the rest of the KSB.

23

Details of Supported Service Protocols

2. A JavaClient can expose its web services directly using XFire (CXF), Axis, €etc.

3. You can bring up only the registry for discovery. However, the registry can't be a'service;' it can only
be a piece of code talking to a database.

Non-Java/Non-Rice Client

As Consumer

A non-Java/non-Rice Client that knows nothing about the KSB or its registry can only invoke web
services synchronously using:

» SOAP WS p2p using straight-up WS call through native language-specific WS libs

 Discovery cannot be handled by leveraging the KSB Registry at thistime.

As Producer

1. Currently cannot register services on KSB in registry

2. Can till produce services, but they can't be called leveraging the KSB; clients need to discover and
invoke the services directly (on their own).

KSB Registry as a Service

As of the 2.0 version of Rice, the ServiceRegistry is now itself a service. In order to bring the registry
online for the client application, the application needs to configure a URL similar to the following:

1 <param nanme="ri ce. ksh. regi stry. serviceUr|l">http://| ocal host: 8080/ kr - dev/ renoti ng/ servi ceRegi st rySoap</
par an>

Currently, this connector is only configured to understand a SOAP interface to the service registry which
is secured by digital signatures. Thisisthe only type of interface to the registry that the standal one server
currently publishes. Additionally, only asingle URL to the registry can be configured at the current time.
If someone wants to do load balancing amongst potential registry endpoints, then a hardware or software
load balancer could be configured to do this.

24

Chapter 9. Configuring the KSB Client
In Spring

Overview

1
2
3
4
5]
6
7
8

9
10
11

TheKuali Service Bus (KSB) isinstalled asaKuali Rice (Rice) Module using Spring. Hereisan example
XML snippet showing how to configure Rice and KSB using Spring:

<beans>
<bean i d="coreConfigurer" class="org.kuali.rice.core.inpl.config.nodul e.CoreConfigurer">
<property nanme="dataSource" ref="riceDataSource${connection. pool.inpl}" />
<property name="nonTransacti onal Dat aSource" ref="riceNonTransacti onal Dat aSource" />
<property nanme="transacti onManager" ref="transacti onManager ${connecti on. pool .inpl}" />
<property name="user Transacti on" ref="jtaUser Transacti on" />
</ bean>

<bean i d="ksbConfigurer" class="org.kuali.rice.ksbh.messagi ng.confi g. KSBConfi gurer"/>
</ beans>

Spring Property Configuration

©OoO~NOOO~WNE

The KSBTestHarnessSpring.xml located in the project folder under /ksb/src/test/resources/ is a good
starting place to explore KSB configuration in depth. The first thing the file does is use a
PropertyPlaceholderConfigurer to bring tokensinto the Spring filefor runtime configuration. The source of
the tokensisthe xml file: ksb-test-config.xml located in the /ksb/src/test/resourcess META-INF directory.

<bean id="config" class="org. kuali.rice.core.config.spring.ConfigFactoryBean">
<property name="configLocations">
<list>
<val ue>cl asspat h: META- | NF/ ksb-t est-confi g. xm </ val ue>
</list>
</ property>
</ bean>
<bean cl ass="org. spri ngfranewor k. beans. fact ory. confi g. Met hodl nvoki ngFact or yBean" >

<property name="stati cMethod"
ue="org. kuali.rice.core.inpl.config.property.Configlnitializer.initialize"/>
<property name="arguments">
<list>
<ref bean="config"/>
</list>
</ property>
</ bean>
<bean cl ass="org. spri ngfranewor k. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property name="properties" val ue="#{config.getProperties()}" />
</ bean>

Note

» Properties are passed into the Rice configurer directly. These could be props loaded from
Spring and injected into the bean directly.

 You could use the Rice configuration subsystem for configuration.

25

Configuring the KSB Client in Spring

e A JTA TransactionManager and UserTransaction are also being injected into the
CoreConfigurer.

As mentioned above, this allows tokens to be used in the Spring file. If you are not familiar with tokens,
they look like thisin the Spring file: ${ datasource.pool.maxSize}

Let'stake alook at the ksh-test-config.xml file:

1 <config>

2 <par am nanme="confi g. | ocati on">cl asspat h: META- | NF/ conmon- der by- connect i on- confi g. xnl </ par an>
3 <par am nanme="confi g. | ocati on">cl asspat h: META- | NF/ conmon- confi g-t est -1 ocati ons. xm </ par an®>
4 <param nanme="cl i ent 1.l ocati on">/ssd/j enki ns/ wor kspace/rice-2.5-site-deploy/src/test/clients/
Test d i ent 1</ par an>
5 <param nanme="cl i ent 2. | ocati on" >/ ssd/j enki ns/ wor kspace/ rice-2.5-site-depl oy/src/test/clients/
Test d i ent 2</ par an>
6 <par am nanme="ksb. cl i ent 1. port">9913</ par an>
7 <par am nanme="ksb. cl i ent 2. port">9914</ par an>
8 <par am nanme="ksb. t est har ness. port " >9915</ par an>
9 <par am nane="t hr eadPool . si ze" >1</ par an>
10 <par am nanme="t hr eadPool . f et chFr equency" >3000</ par an>
11 <par am nanme="bus. r ef resh. r at e" >3000</ par an>
12 <par am nane="bam enabl ed" >t r ue</ par an»
13 <param nanme="transaction. ti meout " >3600</ par an>
14 <par am nane="keystore. al i as">ri ce<par an>
15 <par am nane="keyst or e. passwor d" >keyst or epass</ par an>
16 <par am nane="keystore. fil e">/ ssd/jenki ns/workspace/rice-2.5-site-depl oy/src/test/resources/keystore/
ri cekeyst or e</ par an>
17 <par am nane="use. cl ear Dat abaseLi f ecycl e" >t r ue</ par an»>
18 <par am nane="use. sql Dat aLoader Li f ecycl e" >t r ue</ par an»>
19 <!-- bus nessaging props -->
20 <par am nane="nessage. del i very" >synchr onous</ par an>
21 <par am nane="nessage. per si st ence" >t rue</ par an>
22 <par am nane="useQuart zDat abase" >f al se</ par an>
23 <par am name="confi g. | ocati on">${addi ti onal . confi g. | ocati ons} </ par an»
24 <par am nanme="confi g. | ocation">${al t.config. | ocation}</paranm>

25 </config>

Thisisan XML file for configuring key value pairs. When used in conjunction with Spring tokenization
and the PropertyPlaceHolderConfigurer bean, the parameter name must be equal to the key value in the
Spring file so that the properties propagate successfully.

Spring JTA Configuration

When doing persistent messaging it is best practice to use JTA as your transaction manager. This
ensures that the messages you are sending are synchronized with the current executed transaction in your
application. It also allows message persistence to be put in adifferent database than the application'slogic
if needed. Currently, KSBTestHarnessSpring.xml uses JOTM to configure JTA without an application
server. Bitronix is another JTA product that could be used in Rice and you could consider using it instead
of JOTM. Below isthe bean definition for JOTM that you can find in Spring:

1 <bean id="jotni' class="org.springfranmework.transaction.jta.JotnfFactoryBean">

2 <property name="defaul t Ti meout" val ue="${transaction.timeout}"/>
3
4 </ bean>

5 <bean i d="dat aSource" class="org. kuali.rice. database. XAPool Dat aSour ce" >

6 <property name="transacti onManager" ref="jotn' />
7 <property name="driverd assNanme" val ue="${dat asource. driver.nnane}" />
8 <property name="url" val ue="${datasource.url}" />
9 <property name="naxSi ze" val ue="${dat asour ce. pool . nexSi ze}" />
10 <property name="m nSi ze" val ue="${dat asour ce. pool . m nSi ze}" />
11 <property name="nmaxWait" val ue="${dat asource. pool . mex\Vait}" />
12 <property name="val i dati onQuery" val ue="${dat asource. pool . val i dati onQuery}" />
13 <property name="usernane" val ue="${dat asource. usernane}" />
14 <property name="password" val ue="${datasource. password}" />

26

Configuring the KSB Client in Spring

15
16 </ bean>

Bittronix's configuration is similar. Datasources for both ae set up in
org.kuali.rice.core.RiceDataSourceSpringBeans.xml. If using JOTM, use the Rice XAPoolDataSource
class as your data source because it addresses some bugs in the StandardXAPoolDataSource, which
extends from this class.

Put JTA and the Rice Config object in the
CoreConfigurer

Next, you must inject the JOTM into the RiceConfigurer:

1 <bean id="rice" class="org.kuali.rice.core.inpl.config.nodule.CoreConfigurer">
2 <property name="dat aSource" ref="dataSource" />

3 <property name="transacti onManager" ref="jotnt />

4 <property name="user Transaction" ref="jotm' />

5 <...nore.../>

Configuring JTA from an appserver is no different, except the TransactionManager and UserTransaction
are going to be fetched using a JINDI FactoryBean from Spring.

Note

You set the serviceNamespace property in the example above by injecting the name into the
RiceConfigurer. You can do thisinstead of setting the property in the configuration system.

Configuring KSB without JTA

Y ou can configure KSB by injecting a PlatformTransactionManager into the KSBConfigurer.

» This eliminates the need for JTA. Behind the scenes, KSB uses Apache's OJB as its Object Relational
Mapping.

» Before you can use PlatformTransactionManager, you must have a client application set up the OJB
so that KSB can useit.

Thisis agood option if you are an OJB shop and you want to continue using your current setup without
introducing JTA into your stack. Normally, when a JTA transaction is found, the message is not sent until
the transaction commits. In this case, the message is sent immediately.

Let's take alook at the KSBTestHarnessNoJtaSporing.xml file. Instead of JTA, the following transaction
and DataSource configuration is declared:

<bean i d="o0j bConfigurer" class="org.springnodul es.orm oj b. support.Local g bConfigurer" />

<bean i d="transacti onManager" cl ass="org. spri ngnodul es. orm oj b. Per si st enceBr oker Tr ansact i onManager " >
<property name="j cdAl i as" val ue="dataSource" />
</ bean>

©OoO~NOUOA_WNRE

<bean i d="dat aSource" cl ass="org. spri ngframework.j dbc. dat asource. Dri ver Manager Dat aSour ce" >

27

Configuring the KSB Client in Spring

<property name="driverd assName">

<val ue>${ dat asour ce. dri ver. nane} </ val ue>
</ property>
<property name="url">

<val ue>${dat asource. url } </ val ue>
</ property>
<property name="user name">

<val ue>${ dat asour ce. user nane} </ val ue>
</ property>
<property name="password">

<val ue>${ dat asour ce. passwor d} </ val ue>
</ property>

22 </ bean>

The RiceNoJtaOJB.properties file needs to include the Rice connection factory property value:

Connect i onFactoryd ass=org. kual i . ri ce. core. framework. persi stence. oj b. Ri ceDat aSour ceConnecti onFactory

e

POOWWO~NOOUON™WNPR

Often, the DataSource is pulled from JNDI using a Spring FactoryBean. Next, we inject the DataSource
and transactionManager (now a Spring PlatformTransactionM anager).

<bean id="rice" class="org.kuali.rice.core.inpl.config.nodul e.CoreConfigurer">
<property name="dat aSource" ref="dataSource" />
<property name="nonTransacti onal Dat aSour ce" ref="dataSource" />

</ bean

<bean i d="ksbConfigurer" class="org.kuali.rice.ksbh.messagi ng. confi g. KSBConfi gurer">
<property name="pl at f or milr ansacti onManager" ref="transacti onManager" />
<... nore ...[>

</ bean>

Notice that the transactionManager isinjected into the KSBConfigurer directly. Thisisbecause only KSB,
and not Rice, supportsthistypeof configuration. The DataSourceisinjected normally. When doing this, the
OJB setupisentirely inthe hands of the client application. That doesn't mean anything morethan providing
an OJB.properties object at theroot of the classpath so OJB can load itself. KSB will automatically register
its mappings with OJB, so they don't need to be included in the repository.xml file.

web.xml| Configuration

PP

POOWWO~NOUONMWNEPR

To allow externa bus clients to invoke services on the bus-connected node, you must configure the
K SBDispatcherServlet in the web applications web.xml file. For example:

<servl et>
<servl et - name>r enot i ng</ servl et - name>
<servl et-class>org. kual i . ri ce. ksb. messagi ng. servl et. KSBDi spat cher Servl et </ servl et - cl ass>
<l oad- on- st art up>1</| oad- on- st art up>
</ servl et>
<servl et - mappi ng>
<servl et - name>r enot i ng</ servl et - name>
<url -pattern>/renoting/*</url-pattern>
</ servl et - mappi ng>

Thisallowsbus-exposed servicesto be accessed at aURL likehttp://your localip: 8080/myapp/r emoting/
[K SB:service name]. Notice how this URL corresponds to the configured serviceServletUr| property on
the KSBConfigurer.

28

Configuring the KSB Client in Spring

Configuration Parameters

The service bus leverages the Rice configuration system for its configuration. Here is acomprehensive set
of configuration parameters that you can use to configure the Kuali Service Bus:

Table9.1. KSB Configuration Parameters

Parameter Required Default Value
bam.enabled Whether Business Action Messaging is enabled | false
bus.refresh.rate How often the service bus will update the|60

servicesit has deployed in minutes.
dev.mode no false
message.persistence no true
message.delivery no asynch
message.of f no false
ksh.mode The mode that KSB will run in; choices are| LOCAL

"local", "embedded"”, or "remote”.
ksb.url The base URL of KSB services and pages. $ application.url} /ksb
RouteQueue.maxRetryAttempts no 5
RouteQueue.timel ncrement no 5000
Routing.lmmediateExceptionRouting no false
RouteQueue.maxRetryAttemptsOverride no None
rice.ksb.batch.mode A service bus mode suitable for running batch | false

jobs: it, like the KSB dev mode, runs only local

services.
riceksb.struts.config.files The struts-config.xml configuration file that the | /ksb/WEB-INF/struts-config.xml

KSB portion of the Rice application will use.
rice.ksb.web.forceEnable no false
threadPool .size The size of the KSB thread pool. 5
useQuartzDatabase no true
ksh.org.quartz.* no None
rice.ksb.config.allowSelfSignedSSL no false

dev.mode

Indicates whether this node should export and consume services from the entire service bus. If set to true,
then the machine will not register its services in the global service registry. Instead, it can only consume
services that it has available locally. In addition to this, other nodes on the service bus will not be able to
"see" this node and will therefore not forward any messagesto it.

message.persistence

If true, then messages will be persisted to the datastore. Otherwise, they will only be stored in memory.
If message persistenceis not turned on and the server is shutdown while there are still messages that need
to be sent, those messages will be lost. For a production environment, it is recommended that you set
message.persistence to true.

message.delivery

Can be set to either synchronous or asynchronous. If this is set to synchronous, then messages that are
sent in an asynchronous fashion using the KSB API will instead be sent synchronously. Thisis useful in
certain devel opment and unit testing scenarios. For a production environment, it is recommended that you
set message delivery to asynchronous.

29

Configuring the KSB Client in Spring

Note

It is strongly recommended that you set message.delivery to asynchronous for all cases except
for when implementing automated tests or short-lived programs that interact with the service bus.

message.off

If set to true, then asynchronous messages will not be sent. In the case that message persistence is turned
on, they will be persisted in the message store and can even be picked up later using the Message Fetcher.
However, if message persistence is turned off, these messages will be lost. This can be useful in certain
debugging or testing scenarios.

RouteQueue.maxRetryAttempts

Setsthe default number of retriesthat will be executed if amessage failsto be sent. Y ou can also customize
thisretry count for a specific service (see Exposing Services on the Bus).

RouteQueue.timelncrement

Sets the default time increment between retry attempts. As with RouteQueue.maxRetryAttempts, you can
also configure this at the service level.

Routing.ImmediateExceptionRouting

If set to true, then messagesthat fail to be sent will not beretried. Instead, their M essageExceptionHandl er
will beinvoked immediately.

RouteQueue.maxRetryAttemptsOverride

If set with anumber, it will temporarily set theretry attemptsfor ALL servicesgoing into exception routing.
You can set the number arbitrarily high to prevent all messages in a node from making it to exception
routing if they are having trouble. The message.off param produces the same result.

useQuartzDatabase
When using the embedded Quartz scheduler started by the KSB, indicates whether that Quartz scheduler

should storeits entriesin the database. If thisistrue, then the appropriate Quartz properties should be set
aswell. (See ksh.org.quartz.* below).

ksb.org.quartz.*

Can be used to pass Quartz properties to the embedded Quartz scheduler. See the configuration
documentation on the Quartz site. Essentially, any property prefixed with ksb.org.quartz. will have the
"ksh." portion stripped and will be sent as configuration parameters to the embedded Quartz scheduler.

rice.ksb.config.allowSelfSignedSSL

If true, then the buswill allow communication using the https protocol between machineswith self-signed
certificates. By default, thisis not permitted and if attempted you will receive an error message like this:

30

http://www.quartz-scheduler.org/

Configuring the KSB Client in Spring

Note

Itis best practice to only set thisto 'true’ in non-production environments!

rice.ksb.web.forceEnable

publish the KSB user interface components (such as the Message Queue, Thread Pool, Service Registry
screens) even when the ksh.mode is not set to local.

KSBConfigurer Properties

In addition to the configuration parameters that you can specify using the Rice configuration system, the
K SBConfigurer bean itself has some properties that can be injected in order to configure it:

exceptionMessagingScheduler
By default, KSB uses an embedded Quartz scheduler for scheduling the retry of messages that fail to be

sent. If desired, a Quartz scheduler can instead be injected into the KSBConfigurer and it will use that
scheduler instead. See Quartz Scheduling for more detail.

messageDataSource

Specifies the javax.sgl.DataSource to use for storing the asynchronous message queue. If not specified,
this defaults to the DataSource injected into the RiceConfigurer.

If this DataSource isinjected, then the registryDataSource must also be injected and vice-versa.
nonTransactionalMessageDataSource
Specifies the javax.sgl.DataSource to use that matches the messageDataSource property. This datasource

instance must not be transactional. If not specified, this defaults to the nonTransactional DataSource
injected into the RiceConfigurer.

registryDataSource

Specifies the javax.sgl.DataSource to use for reading and writing from the Service Registry. If not
specified, this defaults to the DataSource injected into the RiceConfigurer.

If this DataSource is injected, then the messageDataSource must also be injected and vice-versa.

services

Specifiesalist of Java service definitions relating to SOAP to use as part of messaging.

KSB Configurer

The application needs to do one more thing to begin publishing services to the bus. Configure the
KSBConfigurer object. This can be done using Spring or programmatically. We'll use Spring because it's
the easiest way to get things configured:

1 <bean id="jotn class="org.springfranmework.transaction.jta.JotnfFactoryBean">

31

Configuring the KSB Client in Spring

2 <property name="defaul t Ti meout" val ue="${transaction.ti meout}"/>
3 </ bean>
4
5
6
7 <bean id="dataSource" class=" org.kuali.rice.core.database. XAPool Dat aSource ">
8 <property name="transacti onManager" ref="jotnl/>
9 <property name="driver C assName" val ue="oracl e.jdbc.driver.OacleDriver"/>
10 <property name="nmaxSi ze" val ue="25"/>
11 <property name="m nSi ze" val ue="2"/>
12 <property name="nmaxWait" val ue="5000"/>
13 <property name="val i dati onQuery" val ue="select 1 from dual"/>
14 <property name="url" val ue="j dbc: oracl e: t hi n: @OCALHOST: 1521: XE"/ >
15 <property name="usernanme" val ue="nyapp"/>
16 <property name="password" val ue="password"/>
17 </ bean>
18
19

20 <bean id="nonTransacti onal Dat aSource" cl ass="org. apache. commons. dbcp. Basi cDat aSour ce" destroy-
net hod="cl ose" >

21 <property name="driverd assNanme" val ue="oracle.jdbc.driver.OacleDriver"/>
22 <property name="url" val ue="j dbc: oracl e: t hi n: @OCALHOST: 1521: XE"/ >

23 <property name="nmaxActive" val ue="50"/>

24 <property name="minldle" value="7"/>

25 <property name="initial Size" value="7"/>

26 <property name="val i dati onQuery" val ue="select 1 from dual"/>

27 <property name="usernanme" val ue="nyapp"/>

28 <property name="password" val ue="password"/>

29 <property name="accessToUnder|yi ngConnecti onAl | owed" val ue="true"/>

30 </bean>

31

32 <bean id="coreConfigurer" class="org. kuali.rice.core.inpl.config.nodule.CoreConfigurer">
33 <property name="dat aSource" ref="datasource" />

34 <property name="nonTransacti onal Dat aSour ce" ref="nonTransacti onal Dat aSource" />
35 <property name="transacti onManager" ref="jotnt />

36 <property name="user Transaction" ref="jotm' />

37 </ bean>

38

39 <bean id="ksbConfigurer" class="org. kuali.rice.ksb. messagi ng. config. KSBConfigurer"/>

The application is now ready to deploy servicesto the bus. Let's take aquick ook at the Spring file above
and what's going on there: The following configures JOTM, which is currently required to run KSB.

1 <bean id="jotnm class="org.springfranmework.transaction.jta.JotnFactoryBean" />

Next, we configure the XAPool DataSource and the non transactional BasicDataSource. This is pretty
much standard data source configuration stuff. The X APoolDataSource is configured through Spring and
not JNDI so it can take advantage of JTOM. Servlet containers, which don't support JTA, require this
configuration step so the datasource will use JTA.

1 <bean id="dataSource" class=" org. kuali.rice.core.database. XAPool Dat aSource ">
2 <property name="transacti onManager" ref="jotn{/>

3 <property name="driverd assNanme" val ue="oracle.jdbc.driver.OacleDriver"/>
4 <property name="url" val ue="j dbc: oracl e: t hi n: @ OCALHOST: 1521: XE"/ >

5 <property name="nexSi ze" val ue="25"/>

6 <property name="m nSi ze" val ue="2"/>

7 <property name="nmaxWait" val ue="5000"/>

8 <property name="val i dati onQuery" val ue="select 1 from dual"/>

9 <property name="usernane" val ue="nyapp"/>

10 <property name="password" val ue="password"/>
11 </ bean>
12

13 <bean i d="nonTransacti onal Dat aSour ce" cl ass="org. apache. conmons. dbcp. Basi cDat aSour ce" destroy-
net hod="cl ose" >

14 <property name="driverC assNane" val ue="oracle.jdbc.driver. O acleDriver"/>
15 <property name="url" val ue="j dbc: oracl e: t hi n: @ OCALHOST: 1521: XE"/ >

16 <property name="naxActive" val ue="50"/>

17 <property name="minldle" val ue="7"/>

18 <property name="initial Size" val ue="7"/>

19 <property name="val i dati onQuery" val ue="select 1 from dual"/>

32

Configuring the KSB Client in Spring

20 <property name="usernanme" val ue="nyapp"/>
21 <property name="password" val ue="password"/>
22 <property name="accessToUnder|yi ngConnecti onAl | owed" val ue="true"/>

23 </ bean>

Next, we configure the bus:

<bean id="rice" class="org.kuali.rice.core.config. CoreConfigurer">
<property nanme="dat aSource" ref="dataSource" />
<property name="nonTransacti onal Dat aSour ce" ref="nonTransacti onal Dat aSour ce" />
<property name="transacti onManager" ref="jotn />
<property name="user Transaction" ref="jotnm />
</ bean>

<bean id="ksbConfigurer" class="org. kuali.rice.ksbh. nessagi ng. confi g. KSBConfi gurer">
<property name="regi stryDat aSource" ref="dataSource" />

10 <property name="banDat aSource" ref="dataSource" />

11 <property nanme="nessageDat aSour ce" ref="dataSource" />

12 <property name="nonTransacti onal MessageDat aSour ce" ref="nonTransacti onal Dat aSource" />

13 </ bean>

©OoO~NOOUO~WNRE

We are injecting JOTM, and the datasources. The injection of the KSBConfigurer class into the
ksbConfigurer property tells this instance of Rice to start the Service Bus. The final necessary step is
making sure the configuration parameter ‘application.id' is set properly to some value that will identify all
services deployed from this node as a member of this node.

At this point, the application is configured to use the bus, both for publishing services and to send
messages to services. Usually, applications will publish services on the bus using the KSBConfigurer or
the SoapServiceExporter classes. See Acquiring and invoking services for more detail.

Implications of "synchronous" vs. "asynchronous"
Message Delivery

Asnoted in Configuration Parameters, it ispossi bl eto configure message delivery to run asynchronously or
synchronoudly. It isimported to understand that asynchronous messing should be used in almost all cases.

Asynchronous messing will result in messages being sent in a separate thread after the original transaction
that requested the message to be sent is committed. Thisis the appropriate behavior in a "fire-and-forget"
messaging model. The option to configure message deliver as synchronous was added for two reasons:

1. To dlow for the implementation of automated unit tests which could perform various tests without
having to right "polling” code to wait for asynchronous messing to complete.

2. For short-lived programs (such as batch programs) which need to send messages. This allows for a
guarantee that all messages will be sent prior to the application being terminated.

The second caseisthe only case where synchronous messaging should be used in aproduction setting, and
even then it should be used with care. Synchronous message processing in Rice currently hasthefollowing
major differences from asynchronous messaging that need to be understood:

1. Order of Execution

2. Exception Handling

Order of Execution

In asynchronous messaging, messages are queued up until the end of the transaction, and then sent after
the transaction is committed (technically, they are sent when the transaction is committed).

33

Configuring the KSB Client in Spring

In synchronous messaging, messages are processed immediately when they are "sent”. Thisresultsin a
different ordering of execution when using these two different messaging models.

Exception Handling

In asynchronous messaging, whenever there is a failure processing a message, an exception handler is
invoked. Recovery from such failures can include resending the message multiple times, or recording and
handling the error in some other way. Since al of this is happening after the origina transaction was
committed, it does not affect the original processing which invoked the sending of the message.

With synchronous messaging, since the message processing is invoked immediately and the calling code
blocks until the processing is complete, any errors raised during messaging will be thrown back up to
the calling code. This means that if you are writing something like a batch program which relies on
synchronous messaging, you must be aware of this and add code to handle any errorsif you want to deal
with them gracefully.

Another implication of this is that message exception handlers will not be invoked in this case.
Additionally, because an exception is being thrown, thiswill typically trigger arollback in any transaction
that the calling code is running. So transactional issues must be dealt with as well. For example, if the
failure of a single message shouldn't cause the sending of al messages in a batch job to fail, then each
message will need to be sent in it's own transaction, and errors handled appropriately.

Chapter 10. Configuring Quartz for
KSB

Quartz Scheduling

TheKuali Service Bus (KSB) uses Quartz to schedule delayed tasks, including retry attempts for messages
that cannot be sent thefirst time. By default, KSB usesan embedded quartz schedul er that can be configured
by passing parameters starting with "ksb.org.quartz." into the Rice configuration.

If the application is aready running a quartz scheduler, you can inject a custom quartz scheduler using
code like this:

1 <bean cl ass="org. kual i.rice. ksb. messagi ng. confi g. KSBConfi gurer">

2 ce

3 <property name="excepti onMessagi ngSchedul er">

4 <bean cl ass="org. spri ngframewor k. schedul i ng. quart z. Schedul er Fact or yBean" >
5 ce

6 </ bean>

7 </ property>

8 </ bean>

When you do this, KSB will not create an embedded scheduler but will instead use the one provided.

35

Chapter 11. Acquiring and Invoking
Services Deployed on KSB

Service invocation overview

1. Acquired and called directly
* Automatic Failover
* No Persistence
* Direct cal - Request/Response
2. Acquired and called through the MessageHel per
* Automatic Failover
» Message Persistence
» KSB Exception Messaging
* Callback Mechanisms

In the examples below, notice that the client codeisunawar e of the protocol with which theunderlying
serviceisdeployed. Given aconnector for agiven protocol and acompatible service definition, you could
move a service to different protocols as access needs change without affecting dependent client code.

Acquiring and invoking a service directly

The easiest way to call a service isto grab it and invoke it directly. This uses a direct request/response
pattern and what you see is what you get. You will wait for the processing the call takes on the other
side plus the cost of the remote connection time. Any exceptions thrown will come across the wirein a
protocol-acceptable way.

This code acquires a SOAP-based service and callsiit:

QNarre servi ceName = new QNanme("t est NameSpace", "soap-repeat Topic");

SOAPSer vi ce soapServi ce = (SOAPServi ce) @ obal ResourcelLoader. get Servi ce(servi ceNane) ;
soapServi ce. doTheThi ng("hel | 0");

The SOAPService interface needs to be in the client classpath and bindable to the WSDL. The easiest
way to achieve thisin Javaisto create a bean that is exported as a SOAP service. Thisis the server-side
service declaration in a Spring file:

<bean id="ksbConfigurer" class="org. kuali.rice.ksb. nessagi ng. confi g. KSBConfi gurer">

1
2 R
3 <property nane="services">

4 <list>

5 <bean cl ass="org. kuali.rice.ksb. api . bus. support. SoapServi ceDefinition">
6 <property nanme="service">

7 <ref bean="soapService" />

8 </ property>

36

Acquiring and Invoking

Services Deployed on KSB

9 <property name="| ocal Servi ceName" val ue="soap-repeat Topi c" />
10 <property name="servi ceNameSpaceURl " val ue="t est NaneSpace" />
11 <property name="priority" value="3" />
12 <property name="queue" val ue="fal se" />
13 <property name="retryAttenpts" value="1" />
14 </ bean>
15 R
16 </list>

17 </ property>
18 </ bean>

This declaration exposes the bean soapService on the bus as a SOAP available service. The Web Service
Definition Language is available at the serviceServletUrl + serviceNameSpaceURI + loca ServiceName
+ 2wsdl.

This next code snippet acquires and calls a Java base service:

EchoServi ce echoServi ce = (EchoServi ce)d obal Resour ceLoader . get Servi ce(new QNane("TestCl 1", "echoService"));
String echoVal ue = "echoVal ue";
String result = echoService. echo(echoVal ue);

Again, the interface is al that is required to make the call. Thisis the server-side service declaration that
deploys a bean using Spring's Httplnvoker as the underlying transport:

1 <bean i d="ksbConfigurer" class="org. kuali.rice.ksb. messagi ng. confi g. KSBConfi gurer">
2 ...
3 <property name="services">
4 <list>
5 <bean cl ass="org. kuali.rice. ksbh. api . bus. support. SoapServi ceDefi nition">
6 <property nanme="service" ref="echoService" />
7 <property name="servicelnterface"
val ue="org. kual i . ri ce. ksh. messagi ng. r enot edser vi ces. EchoServi ce" />
8 <property nanme="I| ocal Servi ceNane" val ue="soap-echoServi ce" />
9 <property name="busSecurity" val ue="fal se"></property>
10 </ bean>
11 .
12 </list>

13 </property>
14 </ bean>

Below is a description of each property on the ServiceDefinition (JavaServiceDefinition and
SOAPServiceDefinition):

Table 11.1. Properties of the ServiceDefinition

property required default description
busSecurity no yes (JavaServiceDefinition), no | For Java-based services, message is digitally
(SOAPServiceDefinition) signed before calling the service and verified

at the node hosting the service. For SOAP
services, WSSAJ is used to digitally sign the
SOAP request/response in accordance with the
WS Security specification. More info on Bus
Security here.

local ServiceName yes none Thelocal name of the QName that makes up the
complete service name.

messageExceptionHandler no DefaultM essageExceptionHandler Name of the MessageExceptionHandler that is
called when a service call fails. This is called
after theretryAttempts or millisToLive policy of
the service or Node has been met.

millisToLive no none Used instead of retryAttempts. Only considered
in case of error when invoking service. Defines
how long the message should continue to be
tried before being put into KSB Exception
Messaging.

37

Acquiring and Invoking
Services Deployed on KSB

property required default description

priority no 5 Only applies when asynchronous messaging is
enabled. Thelower the priority is, the sooner the
message will be executed. For example, if 100
priority 10 messages are waiting for invocation
and a priority 5 message is sent, the priority 5
message will be executed first.

queue no true If true, the service will behave like a queue in
that there is only one real service call when a
message is sent.

If false, the service will behave like atopic. All
beans bound to the service name will be sent a
message When amessage is sent to the service.

Use queues for operations you only want to
happen once (for example, to route adocument).
Use topics for notifications across a cluster (for
example, to invaidate cache entry).

retryAttempts no 7 Determines the number of times a service can
beinvoked before being put into KSB Exception
Messaging (the error state)

service yes none The bean to be exposed for invocation on the bus

serviceEndPoint no serviceServletUrl + serviceName This can be explicitly set to create an alternate
service end point, different from the one the bus
automatically creates.

serviceName yes serviceNameSpaceURI + |local ServiceName | If local ServiceName and serviceNameSpaceURI
are omitted, the QName of the service. This can
be used instead of the local ServiceName and
serviceNameSpaceURI convenience methods.

serviceNameSpaceURI no messageEntity property or message.entity | The namespaceURI of the QName that makes
config param is used up the complete service name. If setto"" (blank
string) the property is NOT included in the
construction of the QName representing the
service and the service name will just be the
local ServiceName with no namespace.

Acquiring and invoking a service using
messaging
To make acal to a service through messaging, acquire the service by its name using the M essageHel per:

Nane serviceNane = new QNane("test AppsShar edQueue", "sharedQueue");

KEWBanpl eJavaSer vi ce testJavaAsyncService = (KEWsanpl eJavaSer vi ce)
KsbApi Servi ceLocat or. get MessageHel per (). get Servi ceAsynchr onousl y(servi ceNane) ;

At this point, the testJavaAsyncService can be called like a normal JavaBean:

test JavaAsyncServi ce. i nvoke(new C i ent AppSer vi ceShar edPayl oadObj (" nessage content”, false));

Because this is a queue, a single message is sent to one of the beans bound to the service name
new QName("testAppsSharedQueue”, "sharedQueue”). That 'message’ is the call 'invoke' and it takes a
ClientAppServiceSharedPayloadObj. Typically, messaging is done asynchronously. Messages are sent
when the currently running JTA transaction is committed - that is, the messaging layer automatically
synchronizeswith the current transaction. So, using JTA, even though the aboveis coded in linewith code,
invocation is normally delayed until the transaction surrounding the logic at runtime is committed.

When not using JTA, the message is sent asynchronously (by a different thread of execution), but it's sent
ASAP.

38

Acquiring and Invoking
Services Deployed on KSB

To review, the requirements to use a service that is exposed to the bus on a different machine are;
1. The service name
2. Theinterface to which to cast the returned service proxy object

3. The ExceptionM essageHandler required by the service in case invocation fails

Note

Typically, service providers give clients a JAR with this content or organizationsmaintain aJAR
with this content.

To complete the example: Below is the Spring configuration used to expose this service to the bus. This
is taken from the file TestClient1SpringBeans.xml:

1 <I'-- bean declaration -->
2 <bean i d="sharedQueue" class=" org.kuali.rice.ksb.testclientl.dientApplSharedQueue" />

<bean id="ksbConfigurer" class="org. kuali.rice.ksb. nessagi ng. confi g. KSBConfi gurer">

<list>
<bean cl ass=" org. kuali.rice. ksb. nessagi ng. JavaSer vi ceDefi ni tion">

3

4

5 ce

6 <property name="servi ces">

7

8

9 <property name="service" ref="sharedQueue" />

10 <property name="I| ocal Servi ceName" val ue="sharedQueue" />

11 <property name="servi ceNameSpaceURI " val ue="t est AppsShar edQueue" />
12 </ bean>

13 <... nmore .../>

14 </list>

15 </ property>
16 </bean>

Thisis located in the Spring file of the application exposing the service (in other words, the location in
which the actual invocation will occur). The client does not need a Spring configuration to invoke the
service.

There are two messaging call paradigms, called Topics and Queues. When any number of services is
declared a Topic, then those services areinvoked at least once or multiple times. If any number of services
is declared a Queue, then one and only one service name will be invoked.

Getting responses from service calls made
with messaging

You can use Callback objects to get responses from service calls made using messaging. Acquiring a
service for use with a Callback:

QNarre servi ceName = new QNanme("Testd 1", "testXm AsyncService");
Si npl eCal | back cal | back = new Si npl eCal | back() ;
KSBXM_Ser vi ce test Xm AsyncServi ce = (KSBXM.Ser vi ce)
KsbApi Ser vi ceLocat or . get MessageHel per () . get Servi ceAsynchr onousl y(servi ceNane, cal |l back);

t est Xml AsyncServi ce. i nvoke("nessage content");

When the service is invoked asynchronously, the AsynchronousCallback object's (the SimpleCallback
class above) callback method is called.

39

Acquiring and Invoking
Services Deployed on KSB

When message persistence is turned on, this object is serialized with any method call made through the
messaging API. Take into consideration that this object (and the result of a method call) may survive

machine restart and therefore it's recommended that you NOT depend on certain transient in-memory
resources.

40

Chapter 12. Failover

Service call failover

Failover works the same whether making direct service calls or using messaging.

Services exported to the bus have automatic failover from the client's perspective. For example, if service
A isdeployed on machines 1 and 2 and aclient happensto get aproxy that pointsto machine 1 but machine
1 crashes, the KSB will automatically detect that the exception isaresult of some network issue and direct
the call to machine 2. KSB then removes machine 1 from the registry so new clientsto the bus don't try to
acquire the service. When machine 1 returns to the network it will register itself with the service registry
and therefore the bus.

When a message calls a service, the failover rules determine which service KSB assigns (topic or queue)
to the message.

Failover with queues

Because queues require only one call between all beans bound to the queue, if asingle call to aqueuefails,
failover to the next bean occurs. If successful, the call is done. If it is not successful, it continues until a
suitable bean is found. If none is found, the message is marked for retry later. Eventually, the message
either goes to KSB exception messaging or successfully completes.

Failover with topics

If amachinein atopicisunavailable, afailed call to that machine will continueto beretried until that call
is successful or that call goesinto KSB exception messaging.

41

Chapter 13. KSB Exception Messaging

Exception Messaging is the set of services and configuration options that handle messages that cannot
be delivered successfully. Exception Messaging is primarily used by configuring your service using
the properties outlined in KSB Module Configuration. When services are configured to use message
persistence and there is a problem invoking a service, the persisted message or service call isrelied upon
to make another call to that service until the call is either:

1. Successful
2. Certain configuration policies have been met and the message goes into the Exception state

The Exception state means that KSB can't doing anything more with this message. The message will not
invoke properly. That generally means that some sort of technical intervention is required by both the
consumer and the provider of the service to determine what the problem is.

All Exception behavior is configurable at the service level by setting the name of the class to be used as
M essageExceptionHandler. This class determines what to do when a client of a service cannot invoke a
message. The DefaultM essageExceptionHandler is enough to meet most requirements.

When a message is put into the Exception state, KSB puts it back into the message store and marks it
with a status of 'E'". At that point, it is up to the person responsible for monitoring this node on the bus to
determine what to do with the message.

Because the node exposing the service configures the M essageExceptionHandler, any clients depending
on the service need that MessageExceptionHandler and any dependent code and configuration.

42

Chapter 14. KSB Messaging Paradigms

KSB supports two types of messaging paradigms; Queues and Topics, and the differences are explained
below. These are very similar to JIMS messaging concepts. An open source solution was not used for
KSB messaging because an open source JM S provider wasn't found that provided JTA synchronization,
discovery, failover, and load balancing. Many claim such features, but when put to the test in real world
scenarios (i.e., machines going down and coming back up, databasesfailing, network connectivity issues);
none managed to reliably deliver messages.

The advantage here is that we can apply these messaging concepts to any support protocol with which
we can communicate.

Queues

When any number of services is bound to a queue and a method is invoked, one and only one service
gets the invocation.

Topics

When any number of services is bound to atopic and a method is invoked, all services are invoked AT
LEAST once or multiple times.

Message Fetcher

org.kuali.rice.ksh.messaging.MessageFetcher is a Runnable that needs to be configured by the client
application to retrieve stored messages from the database that weren't processed when the node went down.
This can happen for many reasons. The machine can be under load and just crash.

When message persistence is enabled, a service that fails or throws an Exception stores preprocessed
messages in the database until they can be resent. This makes certain that a crash or emergency restart of
your machine will not result in message loss.

TheKSB doesnot automatically fetch all these messagesand attempt to invokethem when it starts, because
often the KSB is started when the services the messages are bound for are not yet started. For now, you
need to decide when to call the run method on the M essageFetcher. Becauseit'saRunnable, you could also
put the MessageFetcher in the KSBThreadPool that is available on the KSBServicel ocator. You could
wrapitinaTimerTask, etc. All that isrequired isthis:

new MessageFet cher ((Integer) null).run()

Unfortunately, the cast to Integer is required. The MessageFetcher also has a constructor that takesalong
variable as a parameter. This can be used to pull any message in the message store and put it in memory
for invocation. Integer is afetch size; null meansal.

43

Chapter 15. Load Balancing

Load balancing between service calls is automatic. If there are multiple nodes that expose services of the
same name, clients will randomly acquire proxies to each endpoint bound to that name.

Chapter 16. Object Remoting

As of Rice 2.0, Object remoting support has been removed.

45

Chapter 17. Publishing Services to
KSB

You can publish Services on the service bus either by configuring them directly in the application's
K SBConfigurer module definition, or by using the PropertyConditional ServiceBusExporter bean. In either
case, a ServiceDefinition is provided that specifies various bus settings and the target Spring bean.

KSBConfigurer

A service can be exposed by explicitly registering it with the KSBConfigurer module, services property:

<bean cl ass="org. kuali.rice. ksbh. nessagi ng. confi g. KSBConfi gurer">
<property name="serviceServletUl" val ue="${base url}/MYAPP/renoting/" />

1

2

3 .

4 <property name="services">

5 <list>

6 <bean cl ass="org. kuali.rice. ksb. api . bus. support. SoapServi ceDefi niti on">
7 <property name="service">

8 <ref bean="nySoapService" />

9 </ property>

10 <property name="servicel nterface"><val ue>org. nyapp. servi ces. MySOAPSer vi ce</ val ue></ property>
11 <property nanme="I| ocal Servi ceNanme" val ue="nyExposedSoapService" />
12 </ bean>

13 <bean cl ass="org. kuali.rice. ksb. api . bus. support. JavaServi ceDefinition">
14 <property name="service">

15 <ref bean="nmyJavaService" />

16 </ property>

17 <property name="servicelnterface">

18 <val ue>or g. myapp. servi ces. MyJavaSer vi ce</ val ue></ property>

19 <property nanme="I| ocal Servi ceNanme" val ue="nyExposedJavaService" />
20 </ bean>

21

Service Exporter

You can aso publish Services in any context using the ServiceBusExporter (or
PropertyConditional ServiceBusExporter) bean. Note that KSBConfigurer must also be defined in your
RiceConfigurer.

1 <bean i d="nyapp. servi ceBus"
2 class="org. kuali.rice.core. framework. resour cel oader. A obal Resour ceLoader Ser vi ceFact or yBean" >
3 <property name="servi ceNane" val ue="rice. ksb. servi ceBus"/>
4 </bean>
5
6 <bean i d="nmyAppServi ceExporter"
7 class="org. kual i.rice. ksb. api . bus. support. Servi ceBusExporter"
8 abstract="true">
9 <property name="servi ceBus" ref="nyapp.serviceBus"/>
10 </ bean>
11
12 <bean id="nyJavaService. exporter" parent="myAppServi ceExporter">
13 <property name="servi ceDefinition">
14 <bean cl ass="org. kual i .rice. ksb. api . bus. support. JavaSer vi ceDef i ni ti on">
15 <property name="service">
16 <ref bean="nyJavaService" />
17 </ property>
18 <property name="servicelnterface">
19 <val ue>or g. nyapp. servi ces. MyJavaSer vi ce</ val ue>
20 </ property>
21 <property name="|ocal Servi ceNarme" val ue="nyExposedJavaService" />
22 </ bean>

46

Publishing Servicesto KSB

23 </ property>

24 </ bean>

25

26 <bean i d="nySoapService.exporter" parent="nyAppServi ceExporter">

27 <property name="servi ceDefinition">

28 <bean cl ass="org. kuali.rice. ksb. api . bus. support. SoapServi ceDefi niti on">
29 <property name="service">

30 <ref bean="nySoapService" />

31 </ property>

32 <property name="servicelnterface">

33 <val ue>or g. myapp. servi ces. My/SOAPSer vi ce</ val ue>

34 </ property>

35 <property name="I| ocal Servi ceName" val ue="nyExposedSoapService" />
36 </ bean>

37 </ property>

38

39 </bean>

CallbackServiceExporter

The term "Callback Service" refers to services that client applications write and configure and which are
used by various modules of Rice including KIM, KEW, and KRMS. Because of the naming convention
on these, they are often referred to as "Type Services'. These include:

* KIM
* RoleTypeService
e PermissionTypeService
e GroupTypeService
e etc.

* KRMS

ActionTypeService

* PropositionTypeService

AgendaTypeService
e etc.
« KEW
» PeopleFlowTypeService

These are typically called back into from the Rice Standalone Server when needing information for
rendering of various components in the server-side user interface. Additionally, in some cases they can
also be used to provide custom processing hooks for different components of the various Kuali Rice
frameworks.

Version Compatibility for Callback Services

Callback services (like all servicesin Rice) can be evolved over time and across versions. This means that
new functionality might be added to them. Since the Rice Standalone Server interacts with these services
remotely, it really needs to know what version of a particular callback service that the client application
is running. They also must be published as the appropriate type of service endpoint that the standalone

47

Publishing Servicesto KSB

server knows how to talk to (i.e. SOAP instead of Java Serialization). Thankfully, the KSB serviceregistry
can store metadata about a service which includes the service version. However, in order to for this to
work properly the client application must be sure they publish the service with a version that matches the
version of Rice they are using.

In order to make this easier on client applications, a helper has been implemented which can be used for

this purpose in Rice.

Callback Service Exporter Helper

There is a helper
export these callback
org. kuali.rice. ksh. api.

class which can be
services onto the Kudli

used
Service
bus. support. Cal | backServi ceExporter. This is a class

by client
Bus.

applications to
The class s

which can be wired up inside of a Spring context in order to publish a callback service to the KSB with
the appropriate Rice version. The version of Rice is packaged up into the Rice jarsinside of afile called
common-config-defaults.xml and it uses the version that matches the version of Rice in the POM when

the jar was packaged.

Typical configuration might look like the following:

<bean i d="sanpl eAppPeopl eFl owTypeSer vi ce. exporter"

class="org. kuali.rice. ksb. api . bus. support. Cal | backServi ceExporter"

p: servi ceBus-ref="rice. ksb. servi ceBus"

p: servi ceNameSpaceURl ="http://rice. kual i . org/ sanpl e- app"
p: | ocal Servi ceNane="sanpl eAppPeopl eFl owTypeSer vi ce"

1
2
3
4 p: cal | backSer vi ce-r ef =" sanpl eAppPeopl eFl owTypeSer vi ce"
5
6
7

p: servi cel nterface="org. kuali.rice. kew. framework. peopl ef | ow. Peopl eFl owTypeServi ce"/ >

The javadocs for Cal | backSer vi ceExpor t er provide more detail on the options for publishing of

callback services.

ServiceDefinition properties

ServiceDefinitions define how the service is published to the KSB. Currently KSB supports three types of

services: Java RPC (via serialization over HTTP), SOAP, and JMS.

Basic parameters

All service definitions support these properties:

Table 17.1. ServiceDefinition Properties

Property Description Required

Service The reference to the target service bean yes

local ServiceName The"local" part of the service name; together with a| yes
namespace this forms a qualified name, or QName

serviceNameSpaceURI The "namespace” part of the service name; together | Not required; if omitted, the
with alocal name forms aqualified name, or QName | Cor e.currentContextConfig().getM essageEntity()

is used when exporting the service

serviceEndpoint URL at which the service can beinvoked by aremote | Not required; defaults to the serviceServletUrl
call parameter defined in the Rice config

retryAttempts Number of attemptsto retry the serviceinvocation on | Not required; defaultsto O
failure; for services with side-effects you are advised
to omit this property

millisToLive Number of millisecondsthe call should persist before | Not required; defaults to no limit (-1)

resulting in failure

48

Publishing Servicesto KSB

Property Description Required

Priority Priority Not required; defaultsto 5

M essageExceptionHandler Reference to a MessageExceptionHandler that | Not required; default implementation handles retries
should be invoked in case of exception and timeouts

busSecurity Whether to enable bus security for the service Not required; defaultsto ON

ServiceNameSpaceURI/MessageEntity

ServiceNameSpaceURI is the same as the Message Entity that composes the qualified name under which
the service is exposed. When omitted, this namespace defaults to the message entity configured for Rice
(e.g., inthe RiceConfigurer), thereby qualifying thelocal name. Note: Although thisimplicit qualification
occurs during export, you must always specify an explicit message entity when acquiring a resource, for
example:

G obal Resour ceLoader . get Servi ce(new QName(" MYAPP", "nyExposedSoapService"))

SOAPServiceDefinition

Table 17.2. SOAPServiceDefinition

Property | Description | Required

servicelnterface The interface to expose and from which to generate the

WSDL

Not required; if omitted the first interface implemented by
the classis used

JavaServiceDefinition

Table 17.3. JavaSer viceDefinition

Property Description Required

servicelnterface The interface to expose Not required; if omitted, al application-layer interfaces
implemented by the class are exposed

servicelnterfaces A list of interfaces to expose Not required; if omitted, all application-layer interfaces
implemented by the class are exposed

Publishing Rice services

We show how you can "import" Rice services into the client Spring application context in Configuring
KSB Client in Spring. Using this technique, you can also publish Rice services on the KSB:

1 <I-- inport a Rice service fromthe ResourceLoader stack -->
2 <bean i d="nyapp. aRi ceServi ce"
class="org. kuali.rice.core.framework. resourcel oader. d obal Resour ceLoader Ser vi ceFact or yBean" >

3 <property name="servi ceName" val ue="aRi ceService"/>

4 </ bean

5

6

7 <!-- if Rice does not publish this service on the bus, one can explicitly publish it -->
8 <bean i d="nyAppServi ceExporter"

9 class="org. kual i.rice.ksb. api . bus. support. Servi ceBusExporter"
10 abstract="true">

11 <property name="servi ceBus" ref="nyapp. serviceBus"/>

12 </ bean>

13

14 <bean id="nyJavaService. exporter" parent="nyAppServi ceExporter">

15 <property name="servi ceDefinition">

49

Publishing Servicesto KSB

16 <bean cl ass="org. kuali.rice. ksb. api . bus. support. JavaServi ceDefinition">

17 <property name="service">

18 <ref bean="aRiceService" />

19 </ property>

20 <property name="servicelnterface" value="org.kuali.rice...Sonmelnterface" />
21 <property name="| ocal Servi ceName" val ue="aPubl i shedRi ceService" />

22 </ bean>

23 </ property>

24 </ bean>

Warning

Not all Rice services areintended for public use. Do not arbitrarily expose them on the bus

50

Chapter 18. The ResourcelLoader Stack

Overview

Riceis composed of a set of modules that provide distinct functionality and expose various services.

» Services in Rice are accessible by the Resourcel oader, which can be thought of as analogous to
Spring's BeanFactory interface. (In fact, Rice modules themselves back Resourcel oaders with Spring
bean factories.)

» Services can be acquired by name. (Rice adds severa additiona concepts, including qualification of
service names by namespaces.)

* When the RiceConfigurer isinstantiated, it constructs a Global Resourcel oader that is composed of
an initial RootResourcel.oader (which may be provided by the application via the RiceConfigurer), as
well as resource loaders supplied by each module:

Figure 18.1. Global Resour ce L oader

| GlobalResourceLoader

getService(...) . L.
—_— ServiceDefinition

exported on KSB

ServiceDefinition
exported on KSB

Root Resourceloader

Module 2 Resource Loader

ServiceDefinition
exported on KSB

Module N Resourceloader

o’
-
-

ServiceDefinition
exported on KSB

A, P, T T

?

The GlobalResour cel. oader is the top-level entry point through which all application code should go to
obtain services. The getService call will iterate through each registered Resourcel.oader, looking for the
service of the specified name. If the service is found, it is returned, but if it is not found, ultimately the
call will reach the RemoteResour cel. oader. The Root Resourcel oader is registered by the KSB module
that exposes services that have been registered on the bus.

51

The Resourcel oader Stack

Accessing and overriding Rice services and
beans from Spring

ResourcelLoaderFactoryBean

In addition to programmatically acquiring service references, you can also import Rice services into a
Spring context with the help of the GlobalResour cel oader Ser viceFactoryBean:

This bean is bean-name-aware and will produce a bean of the same name obtained from Rice's resource
loader stack. The bean can then be wired in Spring like any other bean.

Installing an application root resource loader

Applications can install their own root Resourcel oader to override beans defined by Rice. To do so,
inject a bean that implements the Resourcel oader interface into the RiceConfigurer rootResourcel oader
property. For example:

1 <!-- a Rice bean we want to override in our application -->

2 <bean id="overri ddenR ceBean" cl ass="nmny. app. package. \yRi ceServi cel npl "/ >
3

4 <I-- supplies services fromthis Spring context -->

5 <bean i d="appResour ceLoader"

class="org

.kuali.rice.core.inpl.resourcel oader. Spri ngBeanFact or yResour ceLoader"/ >

6 <bean id="coreConfigurer" class="org.kuali.rice.core.inpl.config.nodul e.CoreConfigurer">

7 <property nanme="dat aSource" ref="standal oneDataSource" />
8 <property name="transacti onManager" ref="atom kosTransacti onManager" />
9 <property name="user Transacti on" ref="atom kosUser Transacti on" />

10 <property name="r oot Resour ceLoader" ref="appResourcelLoader"/>

11 </ bean>

Warning

Application Resourcel. oader and Circular Dependencies

Be careful when mixing registration of an application root resourceloader and lookup of Rice
services through the Global Resourcel oader. If you are using an application resourcel oader to
override a Rice bean, but one of your application beans requires that bean to be injected during
startup, you may create acircular dependency. In this case, you will either have to make sure you
are not unintentionally exposing application beans (which may not yet have been fully initialized
by Spring) in the application resourceloader, or you will have to arrange for the GRL lookup
to occur lazily, after Spring initialization has completed (either programmatically or through a

proxy).

Overriding Rice services: Alternate method

A Rice-enabled webapp (including the Rice Standalone distribution) contains a multiple module
configurers, typically defined in an xml Spring context file. These load the Rice modules. Each module
has its own Resourcel oader, which is typically backed by an XML Spring context file. Overriding and/or
setting global beans and/or services (such as data sources and transaction managers) is done as described
above. However, because in each module services can be injected into each other, overriding module
services involves overriding the respective modul€'s Spring context file.

The cleanest way to do thisisto set the rice.* .addtional SpringFiles to an accessible spring beans file that
overrides one or more spring beansin the existing modul€'s context. Each rice modul e has a corresponding
configuration parameter that can be pointed to afile that will override any existing services.

52

The Resourcel oader Stack

1 <param nane="ri ce. kew. addi ti onal Spri ngFi | es">cl asspat h: nyapp/ confi g/ MyAppKewOver ri deSpri ngBeans. xnl </ par an>
2
3 <param name="ri ce. ksb. addi ti onal Spri ngFi | es" >cl asspat h: myapp/ confi g/ M/AppKsbQverri deSpri ngBeans. xni </ par an»>
4
5 <param name="ri ce. krs. addi ti onal Spri ngFi | es" >cl asspat h: myapp/ confi g/ MyAppKr nsOver ri deSpri ngBeans. xm </
par an»
6
7 <param name="ri ce. ki m addi ti onal Spri ngFi | es">cl asspat h: myapp/ confi g/ M/AppKi mOverri deSpri ngBeans. xmi </ par an»>
1 <?xm version="1.0" encodi ng="UTF-8"?>
2 <! DOCTYPE beans PUBLIC "-//SPRI NG /DTD BEAN /EN' "http://ww. spri ngframework. org/ dtd/ spring-beans. dtd">
3 <!I-- override of KNS encryption service -->
4 <beans>
5
6
7 <I-- override encryption services -->
8 <bean i d="encrypti onServi ce" class="edu. nmy.school . nyapp.service.inpl.MEncryptionServicelnpl" |azy-
init="true">

9 <property name="ci pher Al gorithni val ue="${encryption.cipherAl g}"/>

10 <property name="keyAl gorithnt val ue="${encryption. keyAl g}"/>

11 <property name="key" val ue="${encryption. key}"/>

12 <property name="enabl ed" val ue="${encryption. busEncryption}"/>

13 </ bean>

14

15 </ beans>

53

Chapter 19. Queue and Topic
Invocation

When you deploy a service, you can configure it for queue or for topic invocation using the setQueue
property on the ServiceDefinition. The default is to register it as a queue-style service. The distinction
between queue and topic invocation occurs when there is more than one service registered under the same
QName.

Queue invocation

Remote service proxies obtained through the resource loader stack using getService(QName) (ultimately
through the ServiceBus) are inherently synchronous. In the presence of multiple service registrations, the
ServiceBus will choose one at random.

When invoking services asynchronously through the M essageH el per, an asynchronous service call proxy
will be constructed with all available service definitions. The M essageSer vicel nvoker is called to invoke
each service. If the service is defined as a queue service, then the ServiceBus will be consulted in
a similar fashion to determine a single service to call. After the first queue service invocation the
M essageSer vicel nvoker will return.

Topic invocation

The simplest way to invoke a topic service is using the M essageHelper functions to invoke the service
asynchronously. As described above for an asynchronous queue invocation, an asynchronous service call
proxy will be constructed with the list of all of the services registered as a topic under the given name.
Each of these services will be independently obtained and invoked by the M essageSer vicel nvoker .

Invoking a topic synchronously, however, requires use of a synchronous service call proxy to aggregate
all of the topic's services. This functionality is not directly available viathe ServiceBus APl because the
ServiceBus acts as afacade for direct service invocation.

To invoke a topic synchronously, you can construct a SynchronousServiceCallProxy using
SynchronousServiceCallProxy.createlnstance, passing the list of Endpoint obtained using
ServiceBus.getEndpoints(QName). This is done, for example, by MessageHelper | mpl when the bus
has been forced into synchronous mode via the message.delivery config param.

The synchronous service call proxy isthe same as the asynchronous service call proxy, except that it does
not queue up theinvocation, it will invokeit blockingly. The same queue/topic distinctions described above
apply when you invoke atopic synchronously. Under the normal queue situation, use of the synchronous
service call proxy is not necessary because, as mentioned above, remote services obtained through the
ServiceBus are naturally synchronous. Y ou can see thisin the example below:

Li st <Endpoi nt > servi cesToProxy = KsbApi Servi ceLocat or. get Servi ceBus(). get Endpoi nt s(gnane) ;

SynchronousSer vi ceCal | Proxy sscp = return SynchronousServi ceCal | Proxy. creat el nstance(servi cesToProxy, call back,

cont ext,

val uel, val ue2);

Chapter 20. KSB Parameters

Here is a comprehensive set of configuration parameters used to configure the Kuali Service Bus.

Core Parameters

Table20.1. Core Parameters

Core

Description

Default

serviceServietUrl

URL that maps to the KSB Servlet. It handles incoming
requests from the service bus.

${ application.url} /remoting/

rice.ksb.config.allowSelfSignedSSL

Indicates if self-signed certificates are permitted for https
communication on the service bus

false

application.id Application identifier for client application

keystorefile Path to the keystore file to use for security

keystore.aias Alias of the standalone server's key

keystore.password Password to access the keystore and the server's key

ksb.mode Mode in which to load the KSB module local

ksb.url The URL of the KSB web application $ application.url} /ksb

riceksb.struts.config.files

The file that defines the struts context for the KRice KSB
struts module

/ksb/WEB-INF/struts-config.xml

dev.mode

If true, application will not publish or consume services
from the central service registry, but will maintain a local
copy of the registry. This is intended only for client
application development purposes.

false

bam.enabled

If true, will monitor and log the service calls made and
general business activity performed to the database.

Recommendation: Enable this only for testing purposes, as
there is a significant performance impact when enabled.

false

message.persistence

If true, messages are stored in the database until sent. If
false, they are stored in memory.

true

message.delivery

Specifies whether messages are sent synchronously are
asynchronously. Valid values are synchronous or async

async

message.of f

If set to true, then messageswill not be sent but will instead
pileupinthe message queue. Intended for development and
debugging purposes only.

false

Routing.lmmediateExceptionRouting

If true, messages will go immediately to exception routing
if they fail, rather than being retried

false

RouteQueue.maxRetryAttempts

Default number of times to retry messages that fail to be
delivered successfully.

RouteQueue.maxRetryAttemptsOverride

If set, will override the max retry setting for ALL services,
even if they have their own custom retry setting.

ksh.org.quartz.*

Can define any property beginning with ksh.org.quartzand
it will be passed to theinternal KSB quartz configuration as
a property beginning with org.quartz (more details bel ow)

useQuartzDatabase

serviceServletUrl

If true, then Quartz scheduler in Rice will use a database-
backed job store; if false, then jobs will be stored in
memory

true

The URL that resolvesto the K SB servlet that handlesincoming requests from the service bus. All services
exported onto the service bus use this value to construct their endpoint URLs when they are published to
the service registry. See section below on configuring the KSBDispatcher Serviet. This parameter should
point to the absolute URL of where that servlet is mapped. It should include atrailing slash.

55

KSB Parameters

application.id
Anidentifier that indicates the name of the logical node on the service bus. If the applicationisrunning in
acluster, this should be the same for each machinein the cluster. Thisisused for namespacing of services,

among other things. All services exported from the client application onto the service bus use this value
as their default namespace unless otherwise specified.

keystore.file, keystore.alias, keystore.password

See the documentation below on keystore management.

ksb.mode

Mode in which to load the KSB module. Valid values are local and embedded. There is currently no
difference in how the KSB module loads based on these settings. It will alwaystry to load the KSB struts
module if a KualiActionServiet is configured.

ksb.url

The URL of the KSB web application screens

rice.ksb.struts.config.files

The file that defines the struts context for the KRice KSB struts module. The struts module is loaded
automatically if a KualiActionServiet is configured in the web.xml.

dev.mode

I ndicates whether this node should export and consume services from the entire service bus. If set to false,
then the machine will not register its services in the global service registry. Instead, it can only consume
services that it has available locally. In addition to this, other nodes on the service bus will not be able to
"see" this node and will therefore not forward any messagesto it.

message.persistence

If true, then messages will be persisted to the datastore. Otherwise, they will only be stored in memory.
If message persistenceis not turned on and the server is shutdown while there are still messages that need
to be sent, those messages will be lost. For a production environment, it is recommended that message
persistence be set to true.

message.delivery

Can be set to either synchronous or async. If thisis set to synchronous, then messages that are sent in
an asynchronous fashion using the KSB API will instead be sent synchronously. Thisis useful in certain
development and unit testing scenarios. For a production environment, it is recommended that message
delivery be set to async.

message.off

If set to true then asynchronous messages will not be sent. In the case that message persistence is turned
on, they will be persisted in the message store and can even be picked up later using the Message Fetcher.

56

KSB Parameters

However, if message persistence is turned off, these messages will be lost. This can be useful in certain
debugging or testing scenarios.

RouteQueue.maxRetryAttempts

Sets the default number of retries that will be executed if a message fails to be sent. This retry count can
also be customized for a specific service. (See Exposing Services on the Bus)

RouteQueue.timelncrement

Sets the default time increment between retry attempts. As with RouteQueue.maxRetryAttempts this can
also be configured at the service level.

RouteQueue.maxRetryAttemptsOverride

If set withanumber, it will temporarily set theretry attemptsfor ALL servicesgoing into exception routing.
A good way to prevent all messages in a node that is having trouble from making it to exception routing
is by setting the number arbitrarily high. The message.off param does the same thing.

Routing.ImmediateExceptionRouting

If set to true, then messagesthat fail to be sent will not bere-tried. Instead their MessageExceptionHandler
will beinvoked immediately.

useQuartzDatabase
When using the embedded Quartz scheduler started by the KSB, indicates whether that Quartz scheduler

should storeits entries in the database. If thisis true, then the appropriate Quartz properties should be set
aswell (see ksh.org.quartz.* below