Kuall Rice 2.3.0 KRAD Guide

Table of Contents

L ADOUE KRAD ..ottt ettt e et e ettt e e e e e bbb a e e 1
Overview Of the RICE PrOJECEccouuiiiiii e 1
RICE ODJECLIVES ...ttt ettt et e e 1
RICE MENOUOIOGY ... eeeeei ettt e e e eeaans 2
RICE MOTUIES ...t 3
RICE DEPIOYMENLS ...ttt ettt e e e e 4
USEr EXPENENCE LOL ...ttt ettt ettt ettt et eaaas 5
Increasing sKillsin Ul devElOpMENTiiiiiiii e 6
KRAD - Common User Interface ArtifactScccuviiiiiiiiiiiiii e 7
Accessibility with WCAG 2.0 and ARIA ... 8
Introduction — What are WCAG 2.0 and ARIA? ... 8
WECAG 2.0 OVEIVIBIW ..ottt ettt e e e et e e et e e e e eaa s 9
Accessibility Code ChECKEISiiiiii e 9
What should developers pay attention to in creating accessible applications with
K R A D 7 ettt e e e e et bt aaaeaeeaaa 9
ARIA OVEIVIBIW ...ttt ettt e et e et e e e 10
Adding ARIA t0 @n appliCaLIONuuuiiiiiiiieieii e 11
2. GEING SEAITEAceeeei et et ettt e s 14
KRAD ATCHITECIUNE ... ettt ettt e et e et e e et e e e e e eees 14
SPIING BEANS ... 14
CoNfigUIALION SYSEEM ...ttt e e 15
Bean CONfIQUIELIONiiiiiieeeei et 15
Primitive PrOpEITIES it 16
COHBCLIONS ...ttt ettt e et e e e e s 17
OthEr ODJECES ..ottt et e e e 18
Compound Property INAIMESuuiiiiiiieee e 20
THE P-NAIMESDACEeuieiiiii ettt e e ettt e et e e ena e eees 20
BEAN ParENTSoeeiiicce e 21
BEAN COMEAINETSceiitieeeeet ettt e et e e e et e e et e e e e 22
BBAN SCOPE ... vttt 23
The Development ENVIFONMENTco.uuiiiiii e 24
NEW PrOJECE SEIUD ... ceeerieeeeit ettt ettt ettt ettt et et et e b e e e e e e e ennas 27
Project Structure and Configuration FileSooiiviiiiiiiii e 29
Configuring Your Rice APPlICALIONoiiiiiiiieiiii e 30
Importing into Eclipse and Starting the APoovviiiieii e 30
Setup for KRAD DevelOPMENTeiieiiieiiii et e 32
OUr SAMPIE APPHICELIONeeieit ettt et e e e e e e e eeee 33
3. DAA ODJECES ...ttt ettt ettt e s 34
Data Objects and BUSINESS ODJECESuiiiitiieeiiit et ettt e e e e 34
Data OBJECLSeeeiieeeeii et 34
BUSINESS OIJECES ...ttt e et e e 35
Special BUSINESS ODJECESueiiiiiieeiiiii ettt 36
O S [111 ST SO TPPTRTR 37
OB XML METADATA et e et e e e 38
CLASS DESCRIPTORS ..ottt 38
FIELD DESCRIPTORSottt e e 39
DATATYPE CONVERSION ..ottt 39
RICE CUSTOM DATATYPES ...t 40
OTHER FIELD DESCRIPTOR ATTRIBUTEScoiiiiiiiiiiiieceiii e 41
REFERENCE DESCRIPTORS ..ottt ettt 42
COllECION DESCITPIONSeeetie ettt ettt e e e e 44

Kuali Rice 2.3.0 KRAD Guide

4, The Data DICHONAIYuiiiiiieiii ettt e e e e e e e e e e e et e e e et e e et e eeannas 47
Introduction to the Data DICtIONAIYc.uuieiuiiiiiei e e e e e e e e e e e e ees 47
ALITDULE DEFINITIONS .ovuiieii e e e e e e ae e 47
Data Object and Business Object ENtHESiviiiiiiiii e 49
Relationship and Collection DEfiNItIONSc.iiiiiiiiiiiceeec e e e 50
L0000 (1 =11 £ PP 50

Simple ConStraint PrOPErtiESuiiii e e e e 50
Validation PatterNScoveieieeiii e e 52
Custom Validation PalterNScuuuiiiiiiieee et e e e 55
PrerequiSite CONSLIAINTScvu.iiie e e e e e e e e e e e e e e et e e eaaeee 55
MUSE OCCUF CONSLIAINES ...eevtteeeeiiise et e et e e et e et e e et e e et e e e e at e e e eaen s 56
L0 S Sl O] L 1 = 11 £ PP 57
State-based Validation and CONSIraiNESuieiiiiiiieiiiiiieeen e 58
Data DICHONAIY SEIVICES .uuiii it eiiie et et e e e e e e e e e et e e e e et e e et e e et eeaaeeaanaens 62
The DATAOBJECTMETADATASERVICEoviiiiiiiii et 62
Extending the Data DIiCHIONGIYeiuiiiiii e e e e e e e e e e e e e eeees 62
5. INtroduction t0 the UIF ... e e et e e e e e eaeen 63
OVENVIEW OF the UIF ... e e e et e eeeat e aee 63
UIF Goal: RICh Ul SUPPOIT ...t e e e e e e e et e e e e eaaees 63
UIF Goal: More Layout FIEXibilitycccouiiiiiiiii e 63
UIF Goal: Easy to Customize and EXtendcccoevviiiiiiiiiiiiiin e, 64
UIF Goal: Improved Configuration and TOOlINGccoevuiiiiiieiiiieeie e eeie e 64
L0 1T B Tox 0] 4 7= Y/ PP 64
The UIF @and UIM ..ottt e e 64
(©0 0010700 01 D= o o P 65
Parts of @ COMPONENLoiuniiiiiie e e e e e anes 65
Customizing and Extending the UIF ..o 67
Building Templates With FreeMarkercccouuiiiiiiiiii i 70
Variahle MarkUp ...ooee e e e 70
R = T N DT = Y o= P 73
(O00] 011 {0 S = 1 1= LS P 74
1000] 0112 (A= 1010 [1V o o1 PP 75
INVOKING IMIBETOSiveciii et e e e e e e e e e et e st e e et e e et eeanaas 77
Other FEatures Of IMECTOSuuiiiiiii et e et 77
2T PP 78
INCIUAING FTL FIlES .ovniii e e aaas 80
CompOoNENt TEMPIBEESevvn e e e e e e e e e e e et e e e e e aaeee 80
Coarse-GrainNed Pal@MELErS covvuviieeiiii ettt e e et eeeaa s 80
The KRAD MaCro Libraryc.oiiiiii e e 82
LI 1] o= G231 = o (T PPN 82
The Component INEEITACE ... couuiii e e a s 84
Common ComponeNt ProPEiESccuuiiiiieiii e e e e e e e e e e e 84
o T o = 0| ST o] oo o AP 89
TYPES Of COMPONENLS ... eeuieieiieeiie e e e e e et e e e e e e e e et e et e et ean e et e et e et e eaaaenaaens 90
Content EIBMENESuiiiiiii e e e 90
@011 7o) 1SS 91
[T=: Lo L OSSP 92
10001 =] 1= PSPPSR 92
LAY o 1= 93
Composition and COMNLAINEISc.uuiiiiieiiiee e e e e e e e e e e e et e et e e e eeens 93
(O] o o0 = | ST 95
UIF BEAN FIES ettt e e e e et e e e et e e e e et s 96
UIF Configuration DEfiNItIONSoiiiuiieiiiieiii e e e e e e e e e 97
UIF Control DEfINITIONSuiiiiiiiieiiiiie et e e e e e 97

Kuali Rice 2.3.0 KRAD Guide

UIF Document DEfINITIONSieiiiiieeeii et e e e s 97

UIF Field DEfINITIONS ...ieiiiiieeccie et e e e et e e e e ae e 97

UIF Group DEfINITIONSuiiiicii e e e e e e e e e e eaaas 97

UIF Header FOOter DEfINITIONSoiveviieeiii et e e e e eenes 97

UIF Incident Report DEfiNItiONScouuniiiiiiiiii e e e 97

UIF INQUIrY DEFINITIONS ...ovuiiicci e e e e e e e e eaaeeaen 97

UIF Layout Managers DEfINITIONSccuuiiiiiiiiicc e e e 97

UIF LOOKUP DEfINITIONSvuiiiii e e e e e e e e eeas 98

UIF Maintenance DEfiNITIONSoovieuuiiiiiiie e e e e e 98

UIF RICE DEFINITIONS ..ttt e e e e 98

UIF View Page DEfiNItIONScooviiiiii e e e e 98

UIF Widget DEfINITIONSuuiiiiciiii e e e e e e e e e e e e e eaens 98
StYHNG AN thEMES ... 98
VL= T A I 1= 02T PP 98
MOAITYING THEMES ... e e e e aens 99

Base Styles and COnVENLIONSuiiiiiiiiiicie e e e e e eaaas 100

Fluid SKINNINg SYStEMiiiiii e e s 102
KRAD SPring EXIENSIONSciiiiiiiiiiii et e e e e e e e e e e et e e et eeaaeeaaneees 102
LV T= 0TI @ o L= 1o o [104

6. Fields and Content ElEMENTSc.uuiiiiiiiie i e e e et e e 106
1= Lo B I o= £ S SUPPR R SPPPN 106
(@1 0= g = o1 I @)10 1N 107
Other Field Label OPLioNSuiiiiiiiiiiiciie e e e 108
BASE BEANSceniiiiii i 109

Data Fields and INPUt FIEIASoiiiniiiii e 110
[= = o PSP 110

1T 1 T = o N 111
DEFAUIT VEIUES ... e 112
Alternate and Additional Display Propertiesccoovvviiiiiiiiciiiiicie e, 113
Additional Display Properties for List<String> fieldsccooooiiiiiiiiiiiiiin e, 115
Additional Display Properties for Input Fields with Widgets..........cocccoviviiiiiiiieeinnnnns 115

[= 2 11 0 [T 116
Property EQITOrSiiii e 117
COoMPIEX PathS .. ceniii e 119

Data Dictionary BaCKingccuuiiiiiiiiiiiiiii e e e e e e e e e 124
BN/ 0130 O] 511 (o) = 127
L30T o0) G PR 127

T = SO 128

[1T (0 < o PP 128

L2 S o PP 129
LIPS 130
= T = NPT 131

S o] 1= 132
MUItI-VEIUE CONLIOIS ..vviiiiii e e e 133

[N 11 BT (0 o 141

LU L PR 141
Disabling Controls and Tabbingccuuiiiiieiiiici e e 144
Hooking up LOOKUPS @and INQUITIESuuiiii e e e e e e e e e e 145
Automatic Lookups and INQUITIESccuuiiiiieiiieeie e e e e 147
INPUL FIEIO IMEBSSA0ES .vuiiiiieii e e e e e e e e e e e e e e e e et e e e e e ean s 149
Field Queries and Informational PropertieSc.uoveiuiciiiiiiiii e 150
Field ArDULE QUENY ...cvveiii e e e e e e e aaaas 151

= o IS T oo (== AV o o= 156
Other Data and Input Field Propertiesocuuiiiiiiiiii e e e 158

Kuali Rice 2.3.0 KRAD Guide

ACtion and ACHON FIEIDuuiiiiii e 159
Action Even and AcCtion Parametersoviveiiiiiiiiiiie et 162

Field Focus and ANCROIING ... ccouiiiiii e e e e 164
DISDIEA .. e 165
Space and SPACce FIEldoovniii 166
ValidationMessages CONtENt ElEMENTocviiiiiiii e e e 167
(€1 o1 Tl Y= Lo PP 172
= 00T PP PT TP UPPTRPPN 173
Image and IMage FIEldooiiii e 174
Link and Link FIEIOuniiiiiieece et e e et e e eeaaens 176
MESSAGE FIEIA ..o 177
e Y L= oL @0) = | 178
Component RICh MESSA0E TAOS +...vvvuevvriiiiiieiiieeeii e e e e e e e e e e e e e e e aaaas 179

€ (0 oS PP 182
L] (011 o 1= PP 182
Page Decomposition With GIOUPScc.uuiiiiiiiiieiii e e e e e e e e 183
[=0 L= £ OPPRTSPPRN 187
[00 (< £ PRSPPI 190
Introduction t0 Layout ManaQEr'Sciuuneiiiieiiii e e e e e e e e e e e e e e e aaas 192
Group LayOUt IMaNAGENSvueiiiiete et e e e e e e e e e e e e e e e et e e ans 194
LT Lo [I o1 | 194

(2 T0) Q= Y011 | P 199

(OSSN € To [I o1 | 203

= o I] (0 < 207
[T (0T o T 209
N E= Y7o (o g 1 (01U o P 210
(00 11= ot (o] o0 o1 210
Collection OBJEC ClaSS ...cvuiiiiiiiiii e e e e e aaa s 211

o (o T PP 212
Collection Add Blank LiNecocuuuiiiiiiiiieiiiie e e 213
Collection Add Via LighthoXccouviiiiiiiiiii e e 213

[T TC Y o 1o PP 214
Validated LiNe ACHONSuiiiiiiiieeiiii et e e e e e et e e eatneeeees 216
Collection Action ColUMN SEQUENCEccvvuiiiiiieiiieiiie e e e e e e e e e e e e aanees 216
SUBCOHECHIONS ..t e e e e e e e e e e st s 217
Collection Group BUITAErooiiiiiiii e e e e 218

I To 01 1= o F=X 1 (01U o 218
COMPONENT PrOtOLYIES ... vuiei ittt e e e e e e e et e et e e e anaen 221
Collection LayOut MBNAGETSccuuueiiiieiiiieeeiee e e e e e e e e e e e et e e et e e st s e sanaeean e eannaaannaaes 221
LI o L= I 0T PPN 222
DISCIOSUIE ... et e et e e et e e et e e eanen 236
SCrOHADIE .. 236

LSV AY T [0 = PN 238
LAY o 1= 238
JQUErY PIUging @and OPLiONSuueiiieiiiiee e et e e e e e e e e e e e e e et e e e e ean e eeen 238
TYPES Of WIGELS .. ovviiieiiciii e e e e e e e e e e et e e et e e et e eaaaees 239
2T g=o (o1 01001 oL SRR 239
DALEPICKET ...t 239

[0 11 €= L o 1 240
DISCIOSUIE ...ttt e e et e et e e e et n e e e aa e e eaaen 240

HE D e et aaa e aae 241

0o O T P 242
LIgNt0X . 242

L@ 0 Lo T = 243

Vi

Kuali Rice 2.3.0 KRAD Guide

RICNTADIE et e e e e e e 243

ST 00 1= 244
[0z 0015 U o (o 1= P 244

L= £ PP 245

1. PP 246
1070 1 11 TN 252
Creating @ NEW WIGELcoovniiii e e e e e e e e e e e eees 254
[0 8= YA = Vo 1 o TP 254

= 1 BT [0 T O PN 254
FreeMarker TEMPIAEuuiiii i e e 255
JAVASCIIPE FUNCLION ..oevecii e e e e e e e e e e e eaaeees 256
Spring Beans DEfiNITIONSuiiiiiiiiiii e e e e e e e e eaaes 256

9. THE VB ettt ettt e e ettt e et e et s 258
Putting It Together With VIEWSoiiiiii e 258
The VIieW COMPONENTcovuiiiiei e et e e e e e e e e e e e e e e e et e e st e e eanaeeanneees 258

[N F= Y7o = (o o P 261
2T g=o (o1 0100 oL PSP 262
BreadCrumbBITEM ... 262
BreadCrumbOPLIONSciiicii e e 263
ParentLocation breadCrumbsuuiiiiiiiii i 264
Path-based BreadCrumbsuuiiiiiiiiieee e 265
Understanding Breadcrumb Rendering ordercocooveiiiiiiiiiiiinccie e 266

R L= TV 310 =] oo PP 266
ReqUESLING @ VIBW INSLANCEcvviiiiiieie et e e e e e e e e e e aaes 266
VieW REQUESE PalaMELENScuuuiiiiieiiiie e e e e e e e e e e e e e e e e e et e e et e e et e eaneeeen 267
THE VIBIW SEIVICE ..ovviiiiiiii e e e e et e e et e e e e e 268
The View Lifecycle and View HEPEr SEIVICESuiviiiiiiiiciieec e 268
DT 1 1< - 1 o] o [P 269
Application Header and FOOLENooiiiiiiiiiicii e 269
Sticky Headers AN FOOLEN'Suiiii i e e e e e e e e e e e een 270
Sticky Header OPtioNSiiiiiiiiii e e e e e e e e e e e e 270
SHCKY FOOLEr OPLIONS .. eeviiiiiieii e e e e e e e e e e e e e e e e e e eees 271
Building APPlICAioN IMENUSc.uuiiiiiii e e e e e e e e e e e e aa s 271
LN U114 1o g2 o] o [P 271
0 A @ 1o] 110 g T= I 1o o N 274
(@001 [0] 7= N o o | o2 274
Presentation Controllers and AULhONZErSooviiiiiiiii e 274
Configuration With EXPIrESSIONSciuuiiiiieeiiecii et e e e e e e et e e e e e e e eens 274
S0 T o = P 274
COMPONENT CONEEXE ..vuitiiiee e e e e ans 276
Built-In and Custom FUNCLIONSiiiiiiiiiiiiie e 276
CUSEOM VATADIES ... e 277
ComponeNnt MOGITIEISiiiii e e e e 277
Property REPIGCENSt e e e 278
COlECHON FITEIS .ouiiiiiii et e et e e et e e e aa e e eneans 278
L0010 LIS T T oo« A 279
Overriding with the ViewHEIPerSErviCe ..o 279
Component FINAlIZatioNiiiiiii e e 279
Group TNITIAlIZBEIONuiii e e e e e e e e et e e e eaes 280

The COMPONENt FACLOIYiiiiiiiii e e e e e e aaa s 280
COopying COMPONENLSuiiiieiiieiii e e e e e et e et e e e e e e e st e e et e eaa e ean e eeaeeennnas 280

O T o S Lo [= 11 == PSPPI 282
Progressive DISCIOSUIEuuiiii e e e e e e e e e e eaes 282
(009107010 0| 1 == = 1 [P 282

Vii

Kuali Rice 2.3.0 KRAD Guide

Disable 0N USEr ACHON ...uuiiiiiiiiee e et e e e e et e eeeate e eaee 283
F A Qo 1) oL PP 284
[T 01100 <GP 285
Working in the Client With JQUETYo.uiiiiiiiii e e e 285
Data ALIIDULES ... 285
Configuring Event Handlingccouiiiiiiiiii e 286
RV 2= T = 1 o o PP 287
Client Side Validationoooviuiiiiiiiie e 287
Server SIAE Validationcoceuuniiiiiiiieeiii e 287
Validation MESSAgES ...uuiivieiiiieiii e e e e e e e e e e e e e e e e e e 287

F N = L 1] o1 (0)Y/= 111= 01 =P 288
LU PSP 290
2 o 010 1= £ P 291
Introduction t0 SPriNG MV C ...eeiii e e e 291
L000] 011 7] 1= £ PR 291
Controller ANNOLALIONSieiiiii e et e et e e et e eaeae s 291
110 (07 o 0] 1= PP 291
Spring Views and the Common UIF VIEWoiiiiiiiiii e 291
S o] o R 1= o 291
Binding and Validationc.oeiiiiiiiiii e 291
Property EQITOrSiiii e 291
Security and Maskingcoueeiiieiii e e e e e e e e 291

Bean Wrapper and ObjectPropertyUtilScoviiiii i 291

FOMM BEANS ...ttt et e et e e e e e e e e 201
UifControllerBase and UIfFOMMBESEviiiiiiiiiiiiiie et e e e eeenns 292
Connecting the Controller with the VIewccoooiiiiiiiii e, 292
[T oo P 292
USING DialogS iN @ VIBW .uuuiiiiicii e e e e e e e e e e e ees 292
Creating a Dialog Group FOr @ VIEBWccvvuiiiiiiiie e 293
Managing Dialogs from a Controllercoiviiiiiiiiii e 294
Invoking a Dialog Entirely fromthe Clientccooiiiiiiiiiii e, 295
Pre-Defined Dialog GrOUPScvvuueiiiieiiieiiiee e e e e e e e e e e e et e e st eeaaeaannees 295
Customizing Dialog GIOUPScvvuueiiieeiieeeiie et e e e e e e e e e e e et e et e e e e eanas 295
Error, Info, and Warning MESSBgEScciuuieiiiieiiiieeeie et e e e e e e e e e e e e e e e e e eeeen 295
GIOWIS e et a e e aee 295

(o= oo g I o =0 To (1T o 296
Session Support and the USEr SESSIONivviiiii e e e e 296
Servlet CONfIQUIBLIONcuuiii e e e e e e e e e e e e et e e e e e eenaas 296
G T YA Y/ o= 297
VAV g =TI AT A Y =N 297
VIEW TYPE INAEXING ..uiiiiieiii et e e e e e e e e et e e et e e et eeaneees 297
[0 T0 W o IRV A T= TV I/ o= TP 297
[0 T0) W o IRV AT 297
Lookupable and Lookupablelmplccoiiiiiiiii e 298
LOOKUPSEAICNSEIVICE ... i e e e e e eeas 298
Lookup ACHION aNd FOMMoouiiiicc e e e e e 298
Customizing the LOOKUP VIBWocuniii e e e e 298

T Lo O TE YA T= TV 1Y o= T 299
1o O TH Y Y= P 299
Inquirable and Inquirablelmplooiiiii 299
Customizing the INQUITY VIBWoiii e e e 299
MaINtENANCE VIEBW TYP .uuiiiiiiii e e e e e e e e et e e e e et e e et e e et e eaneees 300
Maintenance DOCUMENT ENTYovvuiiii e e e e e e e e e e eaaees 300
MEINEENANCE VIBW ...ttt et e e et e e et e e e et s e e e eatn s e e e eatnneeeees 300

Kuali Rice 2.3.0 KRAD Guide

Comparable and Maintenance Editcoiviiiiiiii i 301
Maintainable and Maintainablelmplcooooiiiiiii 301
Maintenance ACtion and FOMMooouuuiiiiiie e 301

The MaintenanCe LIfECYCIEuiiiii e 301
Customizing Maintenance DOCUMENESiiivieiiii e e e e e e e eaaas 302
TranSaCtioNal ViEW Ty DB oovu i e e e e e e e e e e e et e e et e et e e aaneaeens 302
Document Objects and MapPiNgScvuueeinieiii e ee e e e e e e e e e e eaae e 302
Transactional DOCUMENt ENEIYiiinii e 302
DOCUMENE VIBIW .ottt ettt e et s e e et s e e e et s e e eett e e e eantneeaees 302
Document Action and FOrM BaSeccuvuiiiiiiiiiciiie e 302

The DOCUMENT SEIVICE ...oevvviieieii et e e e e 302
Document Authorizer and Presentation CONtrolleroovevvvviiieiiiiinieiiiiineecciie, 302
Request Setting of Fields to Read-ONlYccooviiiiiiiiiii e 302
WIHtiNG BUSINESS RUIESuiiiiiici e e e e e e e anas 302
Notes and AHAChMENTSuuiii e eaens 303
Creating @ NEW VIBW TYPE covuuiiiii i et e e e e e e e e e e et e et e e e e ean s 303
L . 1227 PP 303
[1A= OO 303
Groups and ROIEScouiie e 304
Roles: Differentiating among principalsccoceviiiiiiiiiiii e, 305

L= 0 4TSS o] PP 306
[LT 11 1= PSP 308
Documents and DOCUMENE TYPES ..uuvvuneiiiieiii e ee e e e e e e e e e e e e e e eaaaas 309

KIM and KEW together: Responsibilitiesccocvviiiiiiiiii e 311
DOCUMENT SEAICHING ..vuiiiicii e 316
V=SS o SR Y= YA Y] oY 319
=SS o (I AT Y PN 319

T4, PEITOIMMANCE «.eeuiie ettt ettt et ettt et e e et et et e e ea e e et e e e e ean e aeen 321
Table Collection Performance OPtioNScc.uviiiiiiiii e e e e 321
When to use Ajax retrieval for detailscooooiiiiiiiiiiii 321
When t0 USe [0Cal JSON QaEA ... ovevvinieieiii e e et e eeaeen 322
When to USe SErVer-side PagiNgccvueieueiiiee e e e e e 323
When to Use LightTableovveiii e 323

T == g o = To I oo 1T 0o N 325
R E o [T aTe I T 1o =T 325
LR BT v= W @ o] = o £ PN 325
g1 [0 ot (' o PP 325
Installation and ConfiguIationcc.uiiiiiiieiiii e 325

USEN GUITE ...ueeeiii et ettt e et e e et r e e e e et n e e e et neeeeatnneeeentnneeaenes 328

Rice Dictionary Validatorc.uoiiiiiiiiiii e e e e e e aa e 341
g1 [0 ot (' o PP 341
Installation and Configurationcc.uiiiiiiiiiiii e e 341

USEN GUITE ...ttt ettt e e et e e ettt e e e ettt e e e ea bt eeeeatn s e e eentnneeaenes 342

RiCe DICtionary SChHEMAuuiiii i e e aaes 344
g1 [0 ot ' o PP 344
Setting UP thE RDS ... e e e e 345

List of Figures

1.1. Service Based ArChItECIUNEcciiii et 3
1.2, Ul ProCeSS MEIUMTY ...cevuueeiiitiee et e ettt ettt ettt e ettt e e e et e et et e e e e ebbreeeeneaeeees 6
2.1 KRAD FIamMEWOIKS ...ttt ettt e et e e e e e e ae s 14
2.2. BEAN FACIOMES ...ttt ettt 23
2.3. IMpPOrt NEW ProjeCt ECHPSE ...uuiiiiiieeeee ettt e e e e 31
2.4, SEleCting ProjeCt ECHPSEoiiii e 31
3.1 BUIAING BIOCKS ...ttt ettt 45
4.1. State-based Validation SErVEr EITOISuuiiiiiiiiec e 61
5.1 BUIAING BIOCKS ...ttt ettt e e e e 66
5.2. BUIAING BIOCKS ...ttt ettt et et e e 68
5.3. BUIAING BIOCKS ...ttt e et e e e e e s 70
5.4. KRAD RENAENTNG PIrOCESS ciiiitiieeiiit ettt e ettt ettt e e ettt e ettt e e ettt e e e et e e e enaaeaeen 82
5.5. KRAD CONAINET PAMSciiiiieiiii ettt ettt ettt e et e e e 92
5.6. KRAD Component HI€rarChyuuiiiiiinioiiiii e e e M
5.7. KRAD INtellij PrOJECt PaNEiiiiiiiiei et 96
6.1. 18DEIPlacemMeNt OPLIONSueeiiiii ettt ettt e e e 108
6.2. Data FIEld LaDElooeeiiiii e e 110
6.3, INPUE FIEIT ..ot ettt e e e e 111
6.4. Data FIEld LaDEooeeiiieiii e e e 114
6.5. ChecklOX CONTIOloouiiiiiii et 127
B.6. FIlE CONLIOeeiieeeie ettt e e e e e e e e e 128
6.7. Watermark CONIOlooiiiii ettt et e e 131
B.8. DA CONIOleeeite ettt ettt et e e ettt e ettt e e ettt e e e ee e e e erb e eees 131
6.9. Text EXPand CONLIOLuuuiiiiiti ettt e e et e et e e et e e e eeba e eeees 131
6.10. TEXLATEA CONIOleettieieiit ettt ettt ettt et et e e et e e e eba s 132
B.11. SPINNET CONIOl ...eeiteee ettt ettt et e ettt e ettt e ettt e e e e et n e e e ent e e eeenbaeeeens 133
6.12. ChecklBOXGIOUP CONIOL ittt 137
B.13. SEIECE CONIOl ...ttt ettt ettt e et e eeeaa s 138
6.14. MUIti SEIECE CONMIONieiit ettt e e s 139
6.15. OPLONLISE CONEIOLceiitiee ettt ettt e e e e e enees 140
6.16. Navigation OptioNLiSt CONIOluiiieieieeiiii e 141
6.17. KIM Group CONIO .. .ceetieeiitiie ettt ettt e et e et e e e et e e e e et e e eeba e eeenes 142
6.18. Disabled State CONLIOLuuieeiii ettt et e e e e s 144
6.19. QUICKFINAB! HOOK ... ieeeeiiee et e e et e e e e ean s 146
6.20. Quickfinder HOOK EX8MPIE it 146
6.21. Standard Inquiry, REa0 ONIYcoouiiiiiiiiiiiii e 147
6.22. Input Field With CONratint TEXEcceertiieeiii e 150
6.23. Two Informational Properties EXamplecooeuiiiiiiiiii e 151
B.24. BULION LEVEIS ...t ettt e e 160
6.25. BULEONS TOOIDEueeiiii ettt ettt e e et e ettt e e e et eeeene e eeeees 162
6.26. QUICKFINAEr WIHGELcoeetiiiiii e e e e e 162
B.27. ACHION LINK ...ttt et e 162
6.28. Enabled and Disabled BUIONSuiiiiiiieiiiii e 165
6.29. ValidationMessages fOr @PaJEcovuuniiiii e 170
6.30. ValidationMesSages fOr @ SECHIONiiieeei i 170
6.31. ValidationMessages for an INPUEFTEId ... 171
6.32. IMage WIth @t TEXE ...ceeiii e ettt et eenb e eees 174
6.33. IMage With CULIING TEXEceeeeeieieii et e e e e eneas 175
6.34. Link Component EXaMPIE oo 176
6.35. MESSATE FTEIA ... e 177
7.1, ONE LAGE BOX ..ovniiiiiieiiee ittt 184

Kuali Rice 2.3.0 KRAD Guide

T2 FUIL VIBIW PagE .. ceiiiiiiiiii ettt e e e e e e e e et e e et e et e et e e et e eaneees 184
PSR L (o= = o 1o PP 185
T4 VErtiCal SUDSECIIONSieiiiiiieeiiii et e e e e et s e e e eatn e e e eatn s e e eeaenaaeaes 185
7.5. CONCEPLUAl GIrOUPINGS .vuuevtneetnetiieeiteeettaeeetee et ee st eeat e satee st ae st s esttaeeaneeateesanaeennaaes 186
7.6. Header Text EXAMPIEcovn it e e e e e e e e e e e e et e e 189
7.7. Additional Header EXAMPIES ... covuiii et 189
7.8. Group FOOLEr EXAMPIEciiicii e e e e e e e e e e aaa s 191
R R € o U o N I o | 194
48 0 I o [- Yo | PR 194
7.11. Grid Layout EXAMPIES ... i 195
7.12. ROW, COl SPaAN LayOULuuiiiiieiiii e e e e s e e e et e e e e st e e e e e et e e st e e et e e eaaeeeanes 197
7.13. ROW, Col SPan EXamMPIecuuiiiiiiiei e e e 197
7.14. HOrizontal BOX LAYOULcivuiieiieeiiis et e e aaneaeanes 199
7.15. BOX LAYOUL MaNBOEE ..ouieiiiiieie et e et e e e e et e et e e e et e e ans 200
7.16. FiXed CSS GIid LAYOULcouiiiiiieiiieeie e e e e e e e e e e e e e e e e e e et e e et e e et e e e eeanns 204
7.17. Grid Group CheCkOXcouuiiiiiiciie e e e e 207
7.18. NEStEd FIEld GrOUPS ... cvviiiiii et e e e e e e e e e e et e e e e e et e eaaaees 208
7.19. Collection Add Blank Line Example - TableLayout with TOP add line placement 213
7.20. Collection Add Via Lightbox Example - TableLayout with TOP add line placement 214
7.21. Collection Action Column Placement EXamplecooviiiiiiiiiiiii e, 217
7.22. Tabhle LayOut IMBNGOETceevniiiiieei e eee e e e e e e e e e e e e e e e e e et e e e e e e st e e eaaneaaanaees 222
7.23. ROW DELAIIS ...oeviieiiii et e et e et e et e s 225
7.24. Stacked Layout ManNaQESciuueeiii e et e e e e e e e e e e e e e e e et e e et e e et e e e e eean s 233
7.25. SCrOH@aDle SECLIONvvuiiiiii e 237
9.1. BreadCrumbs APPEAIAINCEuuiiiiieiiieeei et e e e e e e et e e r e 262
9.2. siblingBreadcrumbComponent after Clicking arroWveviviiiiiieciiiece e e 263
LS G I U I V=" o 11 o P 267
9.4. REQUESIRESPDONSEFIOWiiiiiii e e e e e e e e e e 269
12.1. Header TeXt EXAMPIEivei i e e e e e e e e e e et e e e e e aaneees 292
350 I 1o W o Y =1 PPN 297
13.2. MAINEENANCE VIBW ...iiiiiieieiie ettt e et e e et e e et e e e eaan e e e e et e eeennnns 300
G B (o 1= o= o PP 305
13.4. Rol€ SCreen, QUAITIENS .. cuuu i e e e e e e e e e e aa s 306
T = g 1TSS o g T o [0 307
13.6. CUSLOM DOC SEAICK ..iiviiiiiiii ettt et e et e e e et e e e et n e e e et e e e ennens 316
T A === o (I AT 320

Xi

List of Tables

2.1. Supported Databhases URLSccuuuiiiiiieiiii ettt e e e 25
2.2, Credted FIlES ..o 29
2.3. Required Configuration Propertiesc.uuuiiieiiieiiiii et 30
3.1. IDBC TYPES 10 JAVA TYPE ...ieiieietie ettt et et e e e e e 39
3.2. Custom Data Types and OJIB CONVEITENScouuuueeiiiiieeteiie e et et e et e e e e eneaes 40
5.1. MacCro Parameter COMIACESc.uuiiirieiiiieiii ettt e e e e e 81
6.1. State OptionNS EXAMPIE ... oottt 133
8.1. BreadCrumb PrOPEITIESu ittt ettt 239
8.2. DAEPICKES OPIONSeeetteteiti ettt ettt ettt e e et e e et e et e e ena s 240
8.3. DIreCtiNQUITY PrOPEITIES i eiiiti ettt et et e e et e e eabe e eees 240
8.4. DiSClOSUIE PrOPEITIES ... eiiiei ettt ettt et e e et e e e ab e e e naa s 240
8.5, HEIP PrOPEITIES ..ttt 241
8.6. INQUITY PrOPEITIES ... ittt ettt e e e e e e eaanas 242
8.7. LighthioX PrOpEITiESoeeeiieii et 242
8.8. LighthioX OpPiONSceeiiieiiii et 242
8.9. QUICKFINGEY PrOPEItIES ittt et e e et e e e eaens 243
8.10. RIChTaDIE PrOPErtiES ... ettt 243
8.11. RICh TaDIE OPLIONS ... ettt ettt e et e et e e e et aeeeenaaeeees 244
8.12. SUQGGESE PrOPEITIES ...ttt ettt e 244
8.13. SUQGESE OPIONS ...ttt ettt ettt et e e et 244
8.14. SUQQESE PrOPEITIES ...ttt ettt et e e et 244
8.15. TOOItIP PrOPEITIES ... ettt e e e e eeaans 252
8.16. TOOILIP OPLIONS ...ttt ettt ettt e e e e et e et e e et eeena s 253
9.1, TOOIIP PrOPEITIES ...ttt ettt e e e e et e eeeaan s 263
9.2, TOOIIP PrOPEITIES ...ttt ettt e e e e et e e enan s 265
15.1. RICE TOOING: RDS ..ottt e e e e 349

Xii

Chapter 1. About KRAD

Overview of the Rice Project

Before diving into the exciting new Rice 2.0 KRAD framework and all its technical details, let's take a
brief look at how the effort was formed and the general Kuali ecosystem in which it exists.

KRAD (Kuali Rapid Application Development) is a module within the Kuali Rice project. The Rice
project provides the technical infrastructure for which the Kuali projects and other non-Kuali institutional
applications are built. This infrastructure includes a set of middleware solutions such as Workflow and
Identify Management, along with the development framework portion that includes the KNS (Kuali
Nervous System) and its next generation replacement KRAD.

The use of Rice for project development allows applications to build and evolve much more quickly. The
reasons for this are as follows:

1. By isolating many common technical concerns, application developers can focus their time on solving
the business problems that are unique to their application.

2. Developers have acommon paradigm for building functionality across all modules and projects
3. Sharing of technical solutions allows for the underlying tooling to evolve more easily
4. Software built using Rice allows for easy integration

In addition to the technical benefits, use of Rice across projects gives a greater user experience. The user
interacts with the applications in a consistent manner and can more quickly learn new areas.

Rice Objectives

There are two primary objectives of the Rice project:
1. Support the needs of the other Kuali applications
2. Promote adoption of Rice as the middleware/framework solution across higher education

Decisions for the Rice roadmap in addition to other work items are made by committees made up of
representatives from the Kuali projects and institutions. These committees are the following:

» Application Roadmap Committee (ARC): The Application Roadmap Committee is responsible for
goal-setting, and prioritizing high-level application architecture for integration of Kuali application
projects, and for an evolving roadmap for the future. This group defines overall ownership of shared
services among the Kuali projects. The group defines work and prioritiesfor Rice and cross application
projects. This group works with the projects to coordinate working teams.

» Kuali Application Integration Working Group (KAI): Under the direction of the Kuali Application
Roadmap Committee, the Kuali Application Integration Work Group recommends the strategic
functional direction for integration between the Kuali Community systems and the facilitation of the
integration of future Kuali systems.

e Technology Roadmap Committee (TRC): Responsible for goal-setting, for high-level technical
architecture and tools, and for an evolving road map for the future. This replaces the current KTC

About KRAD

and focuses on creating a technology direction over time. This Committee recognizes the challenges
inherent in different timing for the applications which causes technology to get out of synch, and
this Committee addresses those challenges by creating a road map for the evolution of the projects to
common technologies when feasible. It is suggested that this Committee provide a semi-annual formal
presentation to the Rice Project Board and to the Kuali Foundation Board.

e Kuali Technical Integration Working Group: The Kuali Technology Integration (KTI) working
group performs an executive steering function for the TRC. It receives and formulates technology
enhancement requests and proposals for Rice and performs initial research and analysis of the requests
and makes recommendations to the TRC on the relative priority and timing of the requests. The KTl
also triages and makes decisions on technology issues.

Rice Methodology

Community Source Model

Rice is committed to the community source development model and to the value of collaboration in
producing a quality product that serves interested institutions well.

Iterative Development

The Rice development methodology is a lightweight, iterative approach to development that focuses on
individual components that can be quickly developed and integrated into a larger application. Frequent
communication and interaction with users is required in order for this methodology to succeed. By
simplifying the development process and emphasizing frequent testing and feedback, the software product
has a much greater likelihood of meeting the user's needs.

Not Invented Here

Riceleverages existing open source solutions that meet the needs of the Kuali projects. That is, Rice avoids
'Reinventing the Wheel' where possible.

Loosely-Coupled Components

Thearchitecture of Rice containsaset of distributed, loosely-coupled componentsand servicesthat provide
distinct business functionality. The components are designed for building a Rice application into three
layers: Presentation, Business, and Persistence Layer.

Service Oriented Architecture (SOA)

Access to the Rice components and functionality is provided using a Service Oriented Architecture. This
means applications make use of Rice services with well-defined APIs to business functionality. Access
to the services is provided with the Kuali Service Bus (KSB) which provides interoperability for Rice
and the other Kuali projects. In addition, the Rice services are exposed via SOAP (Simple Object Access
Protocol) Web Services allowing access from non Kuali based applications. Rice comes with reference
implementationsfor all services. However, implementations can easily be changed to meet the needs of the
implementing institution. The SOA architecture is depicted in Figure 1.1, “ Service Based Architecture”.

About KRAD

Figure 1.1. Service Based Architecture

Service Based Architecture

@
O
m

T

2

=

o

<

(=]

Service Interface

Rice Modules

Rice is comprised of a set of high-level modules that encompass the application functionality. Each of
these modules contains a set of service interfaces and components (known as the APl module), and a set
of reference implementations (known as the implementation module). As of the Rice 2.0 release, these
modulesinclude:

« Kuali Enterprise Notification (KEN): Kuali Enterprise Notification (KEN) acts as a broker for
al university business related communications by allowing end-users and other systems to push
informative messages to the campus community in a secure and consistent manner. All notifications
are processed asynchronously and are delivered to asingle list where other messages such as workflow
related items (KEW action items) also reside. In addition, end-users can configure their profile to have
certain types of messages delivered to other end points such as email, mobile phones, etc.

» Kuali Enterprise Workflow (KEW): Kuai Enterprise Workflow provides a common routing and
approval engine that facilitates the automation of electronic processes across the enterprise. The
workflow product was built by and for higher education, soit is particularly well suited to route mediated
transactions across departmental boundaries. Workflow facilitates distribution of processes out into the
organizationsto eliminate paper processes and shadow feeder systems. In addition to facilitating routing
and approva workflow can also automate process-to-process related flows. Each process instance is
assigned aunique identifier that is global across the organization. Workflow keeps a permanent record
of all processes and their participants for auditing purposes.

* Kuali Identity Management (KIM): Kuai ldentity Management (KIM) provides central identity
and access management services. It also provides management features for Identity, Groups, Roles,
Permissions, and their relationships with each other. All integration with KIM is through a simple and
consistent service APl (Java or Web Services). The services are implemented as a general-purpose
solution that could be leveraged by both Kuali and non-Kuali applications alike.

Furthermore, the KIM services are architected in such away to allow for the reference implementations
to be swapped out for custom implementations that integrate with other 3rd party Identity and Access

About KRAD

Management solutions. The various services can be swapped out independently of each other. For
example, many institutions may have adirectory solution for identity, but may not have a central group
or permission system. In cases like this, the Identity Service implementation can be replaced while the
reference implementations for the other services can remain intact.

» Kuali Nervous System (KNS): The Kuali Nervous System (KNS) is a software development
framework aimed at alowing developers to quickly build web-based business applications in an
efficient and agile fashion. KNS is an abstracted layer of "glue" code that provides developers easy
integration with the other Rice components. In this scope, KNS provides features to developers for
dynamically generating user interfacesthat allow end usersto search, view detailsabout records, interact
electronically with business processes, and much more. KNS adds visual, functional, and architectural
consistency to any system that isbuilt with it, hel ping to ensure easier and more efficient maintainability
of your software.

» Kuali Rapid Application Development (KRAD): Kuali Rapid Application Development (KRAD) is
aframework that eases the development of enterprise web applications by providing reusable solutions
and tooling that enables devel opersto build in arapid and agile fashion. KRAD isacompl ete framework
for web devel opers that providesinfrastructure in all the major areas of an application (client, business,
and data), and integrates with other modules of the Rice middleware project. In future releases, KNS
will be absorbed into and replaced by KRAD.

e Kuali Rules Management System (KRMS): Kuali Rule Management System (KRMS) is a common
rules engine for defining decision logic, commonly referred to as business rules. KRMS facilitates the
creation and maintenance of rules outside of an application for rapid update and flexible implementation
that can be shared across applications.

» Kuali ServiceBus(KSB): Kuali Service Bus(KSB) isasimple service busgeared towards easy service
integration in an SOA architecture. In aworld of difficult to use service bus products KSB focuses on
ease of use and integration.

Rice Deployments

Rice provides various options for how it can be deployed and integrated with other applications. Each of
these deployment modes has advantages and disadvantages which require the needs of the application to
be considered. The following is abrief description of each option:

» Bundled Mode: The simplest and quickest way to use Rice with your application isto use the bundlied
mode. In bundled mode, al of Rice is deployed with the application. This includes the services, web
content, and database. In this mode there is no client-server interaction since the Rice server is also
the client!

Generally the bundled mode is used only for quick start prototyping or testing and is not recommended
for a production deployment. The biggest disadvantage to this mode is each bundled application
maintains its own Rice data (workflow data such as inboxes is a good example to think of).

» StandaloneRice Server: Therecommended deployment mode for Riceisto create astandal one server.
In this mode one or more clustered Rice instances act as a server for one or more clients. Applications
share Rice data (such as action list, document search) and a common service bus registry through the
server.

Within the standalone server mode there are various client configurations supported. These
configurations are:

« Embedded Workflow Engine: Within the standalone server deployment mode applications can
choose to embed the workflow engine. This moves workflow processing from the Rice server to

About KRAD

within the client application. The workflow engine then interacts with the standal one server using the
KSB or by directly talking to the database.

Embedding the workflow engine has several advantages. One due to the limitations of transactional
processing, when workflow processing occurs on the server it is not maintained within the sameclient
transaction. Moving the processing to the client allows the processing to be transactional. Second the
processing is faster due to direct database communication. Finally, this allows the entire system to
scale better since the processing is distributed.

« Embedded | dentity Services: In the pure standal one server mode each call to aRice serviceis made
through the service bus to a remote server. In some cases this can become a burden on performance.
Theidentity management services in Rice represent one such case, as an application generally needs
to perform many callsto perform authorization checks.

To help with this problem Rice supports embedding the identity management services in the client
application. Thisis similar to the embedded workflow engine where the embedded Rice components
interact directly with the database. This significantly improves performance of the application.

« Java Thin Clients and Web Services. The last deployment options are at the opposite end of the
bundled mode. With these deployments no Rice components are depl oyed with the application. These
are known as the Java thin client and the Web Services client.

In the thin client, a Java application consumes the Rice services remotely (without the use of the
Kuali Service Bus). Thisisgenerally only useful with the Rice KEW (Workflow) services. The Web
Services client is similar except the application can be non-Java based and interacts with Rice using
web services. Both of these deployments are good for applications needing only use of the workflow
module. However it does contain some of the disadvantages as explained in the embedded workflow
engine deployment.

Note

Development Framework: Note in standalone server mode even though the Rice services
and web content are deployed on the server, to use the Rice devel opment framework the KRAD
framework and web modules must be deployed with the application.

User Experience 101

Designing a good user interface is an art, but there are development process aspects that are highly
correlated with projects and brands that are loved by users. We cover two of those here, one having to
do with the use of common user interface (Ul) artifacts and the other having to do with the teamwork
and user engagement model. Figure 1.2, “Ul Process Maturity” shows the Aspects of Ul Devel opment
Process Maturity.

About KRAD

Figure 1.2. Ul Process Maturity

ASPECTS OF Ul DEVELOPMENT PROCESS MATURITY

Common | Lt

Artifacts

Common Ul controls & frameworks All key projects using the process / model
Users evaluating continuously

|structured methodology, sampling control and
non-biasing approach)

Common Ul templates / models . R R
; Ul design process & team collaboration model in place

Some projects using
Some user involvement

Comman Ul guidelines /

objectives

No design process formalized -

Ul task flow & design done while executing
Free design space across feature teams No user involvement
No Ul guidance or review , no commeonality

Immature

Teamwork
Aspects

Though "afoolish consistency isthe hobgoblin of little minds* (quote attributed to Ralph Waldo Emerson
in his essay entitled "Self-reliance"), consistency within an application and across applications used in
tandem isan important aspect, depended on by users. Today's users are constantly multi-tasking, and they
carry their learning from one part of an application to another. Random differences across an application
typically snag these users, requiring them to think about the Ul rather than focus on their task: they have
to remember which strategy applies in which part of the user interface, rather than just fluidly moving
through their tasks.

But consistency doesn't fetter innovation either, in teams that have produced leading software. Rather,
these people/teams have worked out ways to speed the adoption of winning Ul innovations across their
features and developers, moving al the affected features to the new Ul aspect at the right point in the
process. Sometimes this could mean delaying a new Ul feature, if only one team can migrate their code
toitintimefor arelease — or delaying aversion in order to provide al developers the time to move their
codetoit. Not all differences will create these types of usage "snags’, but they can be reliably predicted
through task analysis and good user engagement.

Increasing skills in Ul development

Phase 0: In teams that are just forming or in the early phase of software development maturity, there is
typically no Ul guidance or review. The design space is 100% open across devel opers and feature teams
-- there is higher danger of meaninglessinconsistencies (as opposed to intentional ones). Developersdon't
disagree with each other's approaches, they simply aren't aware of them and, if they were, they'd be able
to quickly converge to a common approach. This can create transfer of learning problems for users, and
requires more developer time and more UX and QA time to find and fix Ul problems and, ultimately,
produces more code that has to be maintained.

About KRAD

Phase 1: In teams that have formed and taken the first steps to organize and manage their user interface
efforts, there are common Ul guidelines. Today, in addition to the KRAD framework of controls, you can
take alook at the Kuali Student project's User Interaction Model that documents the design components,
design patterns, and style guide they will use. This covers the type of common Ul guidelines shown in
the preceding figure, particularly helpful for where there is not yet acommon Ul control or template that
developerscan use. Thesetypesof guidelinesare also helpful for guiding when to use a particular control,
or to make any customization choices available with that control — and are a recommended part of any
project. Kuali projects are free to use this as amodel or create their own.

Phase 2: In the next step in growing a user interface design leadership process, teams create common Ul
templates/ models, which enable"lighter-weight" effortsto design and code. TheUX effortisup-front and
the benefit is inherited by all developers and feature teams afterward. There are multi-disciplinary team
members collaborating with developers, including business analysts and UX staff trained in Ul design.
Consultations and collaboration across feature teams help span Ul boundaries and ensure consistency.

Phase 3: Inthefinal stage of maturation in user interface design management, usersare engaged throughout
the process with al feature teams, providing input through controlled user evaluations (rigorous research
methodology, no pressure/ biasing). Managing UX isahabit at this point, part of the devel opment culture.

Roles and rewards are in place, but there is momentum, the engine runs on its own steam, developers
are championing the collaboration process.

KRAD - Common User Interface Artifacts

KRAD aimsto provide common Ul controls, making it easier for devel opersto achieve consistency across
an application, and across ateam of developersworking on different parts of an application. Examples of
the Ul controls can be seen in the Rice Test Drive on the KRAD tab (log in with the user name equal to
one of the following: admin, quickstart, adminl, admin2, supervisrsupervisor, or director - these provide
varying levels of permissions).

Rice 2.0 KRAD is the first version, so with each successive version, more Ul aspects will move from
a design guideline stage, where every developer has to read and apply a guideline, to a design template
stage, that each devel oper can use and follow, and, ultimately, to areusable Ul control that each devel oper
can use.

RECAP

» Designing a good user interface is an art, but there are development process aspects that are highly
correlated with projects and brands that are loved by users. We covered two of those here, one having
to do with the use of common user interface (Ul) artifacts and the other having to do with the teamwork
and user engagement model.

» Consistency within an application and across applications used in tandem is an important aspect,
depended on by users. Inteamsthat have formed and taken thefirst steps to organize and manage their
user interface efforts, there are common Ul guidelines. The Kuali Student project has created a User
Interaction Model that documents the design components, design patterns, and style guide they will use.
Kuali projects are free to use this asamodel or create their own.

» KRAD ams to provide common Ul controls, making it easier for developers to achieve consistency
across an application, and across ateam of devel opersworking on different parts of an application. Rice
2.0KRAD isthefirst version, so with each successive version, more Ul aspectswill movefrom adesign
guideline stage, where every devel oper hasto read and apply aguideline, to adesign template stage, that
each devel oper can use and follow, and, ultimately, to areusable Ul control that each devel oper can use.

* Inthefinal stage of maturation in user interface design management, users are also engaged throughout
the process with all feature teams, providing input through controlled user evaluations. Managing UX

https://wiki.kuali.org/display/STUDENT/User+Interaction+Model
http://demo.rice.kuali.org/portal.do?selectedTab=krad
https://wiki.kuali.org/display/STUDENT/User+Interaction+Model
https://wiki.kuali.org/display/STUDENT/User+Interaction+Model

About KRAD

isahabit and part of the development culture at this point - there is momentum, the engine runs on itits
own steam, devel opers champion the collaboration process.

Accessibility with WCAG 2.0 and ARIA
Introduction — What are WCAG 2.0 and ARIA?

There are two accessibility guidelines that apply to web applications:. WCAG 2.0 (Web Content
Accessibility Guidelines) and ARIA (Accessible Rich Internet Applications). WCAG 2.0 setsthe baseline
for web page content, while ARIA builds upon this baseline, to enable richer, more dynamic interaction
with web content (developed with Ajax, HTML, JavaScript, and other technologies).

Tip

Who produces the accessibility standards? The World Wide Web Consortium (W3C) is
considered to be the main international standards organization for the World Wide Web. The
W3C has established the open standards for HTML, XML, XHTML, CSS, DOM, CGI, WCAG
and many other aspects. The Web Accessibility Initiative (WAI) is the part of the W3C that
coordinates and devel ops the open accessibility standards, including WCAG 2.0, and ARIA 1.0.

» WCAG 2.0 became the recommended standard in December 2008 (see step 5 in the information box
that follows) and is still the current standard in 2012.

* ARIA became a candidate recommendation in January 2011 (see step 3 in the information box that
follows). Most browsers across the industry are already implementing (see example compatibility
tables: MozillaFAQ table, "Can | use" table). ARIA tagsdon't create problemsin browsers that don't
support them — they are simply ignored by these older browsers. The ARIA candidate is projected to
become the proposed recommendation this spring, 2012 (to move to step 4 in the information box that
follows).

« HTML5, discussed in the previous section, also relates to accessibility in addition to its focus on
mobility. The HTML5 guidelines are not as far along in the draft process as ARIA, but one of the
goals is to make the ARIA attributes into standard features in HTML5 — in addition to providing
additional semantic structure enrichment (accessibility depends on conveying the semantics). The
HTML5 guidelines were issued as a last call working draft in May 2011 (see step 2 below), with the
review period closing in August 2011. Even though it has not yet entered the call for implementation
level, browsershave al ready begun to build in support (see http://html5accessibility.com/). Itisexpected
to go through another last call based on the extent of the review comments.

Tip

What isthereview processfor standards? 5 "maturity levels":
1. First Public Working Draft (out for public review and comment)

2. Last Call Working Draft (revised based on the comments, last chancefor comments). HTML5
ishere and expected to be re-issued again at thislevel based on the comments!

3. Call for implementation of Candidate Recommendation (this is like a 'beta)). ARIA ishere
and expected to moveto #4 in spring 2012!

4. Cal for Review of Proposed Recommendation (last review before finalization)

5. W3C Recommendation (considered to be the open web standard). WCAG 2.0 ishere!

http://www.w3.org/WAI/guid-tech.html
http://www.w3.org/WAI/WCAG20/quickref/Overview.php
http://www.w3.org/WAI/intro/aria#is
https://developer.mozilla.org/en/Accessibility/Web_applications_and_ARIA_FAQ
http://caniuse.com/wai-aria
http://html5accessibility.com/

About KRAD

WCAG 2.0 Overview

WCAG 2.0isamature standard, though itisnew to many of us. (If thiscontent isfamiliar toyou, you could

jump directly to the ARIA section that followsthis.) WCAG 2.0 isan update to WCAG 1.0, which wasfor

static web pages only (could not require jScript). Running without javascript is no longer a requirement.
WCAG 2.0 recognizes the web as an interactive space, not solely for passive reading.

There are 12 guidelines, organized under 4 principles. perceivable, operable, understandable, and robust.
For each of the 12 guidelines, there are testable success criteria, at each of these levels: A (must have),
AA (should have), and AAA (may have).

Comprehensive information is available from the W3C here, about how to meet WCAG 2.0.

Accessibility Code Checkers

There are many free accessibility code checkers, and it is recommended that devel opers check their code
with one of these tools. For example, hereisashort list of accessibility checkers you could consider:

» ACCprobe
» AChecker

* Adesigner

» Ainspector
« FAE (Uofl)

* Open Ajax Alliance

» Total Validator
« WAVE

A more comprehensive list of code-checkersis available at http://www.w3.org/WAI/ER/tools/compl ete.

What should developers pay attention to in creating
accessible applications with KRAD?

The KRAD team did an extensive baseline evaluation to understand where the KNS and new KRAD
framework stand on these criteria, and made several changes. For example,

» The standard language tag was added to KRAD. This supports level A criteria 3.1.1, in the
Under standable category: "The default human language of each web page can be programmatically-
determined.”

» Buttons, which were formerly images of text in KNS, were changed to text buttons with
background images. This supports level A criteria 1.4.3 and 1.4.4, in the Perceivable category:
"Contrast ratio of at least 4.5:1" (inherits high contract setting) and "Text can be resized up to 200%
without assistive technologies' (inherits low DPl/large font settings). This also supports level AA
criterial.4.5, inthis same category: "Text used instead of images of text except for customizableimages
(by user) and essentia images (logotype)".

Several other bugs were fixed and changes made, including adding alt-text in many places.

http://www.w3.org/WAI/WCAG20/quickref/Overview.php
http://accessibility.linuxfoundation.org/a11yweb/util/accprobe/
http://achecker.ca/checker/index.php
http://www.eclipse.org/actf/downloads/tools/aDesigner/
http://code.google.com/p/ainspector/
http://fae.cita.uiuc.edu/
http://oaa-accessibility.org/
http://totalvalidator.com/
http://wave.webaim.org/
http://www.w3.org/WAI/ER/tools/complete

About KRAD

Our intent moving forward isto invest in making KRAD's UIF accessible, enabling applications built with
the framework to inherit the benefit. The first version of KRAD, in Rice 2.0, meets most of the A-level
criteria, and many of the AA criteria, and in the areas where it does not meet, there are requirements listed
for Rice 2.2 to bring us up to compliance.

The good news isthat applications can resolve most of the aspects where Rice 2.0 KRAD doesn't yet have
the built-in accessibility support for you to inherit, and there will be additional support in Rice 2.2 KRAD.

Following are 7 areas that application developers using Rice 2.0 KRAD should consider in their
applications:

e Tables, tabs, and field group semantics. Even before we build thisinto the UIF in Rice 2.2 KRAD,
applications can implement the fixes for these areas, documented in the requirements related to table
semantics, tab semantics, and fieldset-legends. This affects level A criteria 1.3.1, in the Perceivable
category: "Information, structure & relationships can be programmatically determined or are available
in text."

e Standard keyboard support. This affects level A criteria 2.1.1, in the Operable category: "All
functionality & info is operable through a keyboard interface w/o requiring specific timings for
individual keystrokes."

e Standard " Jump to main content" links. This affectslevel A criteria2.4.1 in the Operable category:
"Provide away to bypass blocks of content that are repeated on multiple pages." A simple code snippet
example that fixes thisfollows.

<div id="accessibility">

Junp to Navi gation

Junp to Mi nContent
</ di v>

» Pagetitles. This affects level A criteria 2.4.2 in the Operable category: "Web pages have titles that
describe topic or purpose.” Also, KULRICE-5688 is related to this, though not technically a "page”,
the iframe title default is currently = "edoc", which default should be changed to "main content” and
updated by the application when they populate it.

* Link titles. This affects level A criteria 2.4.4 in the Operable category: "The purpose of each link
can be determined from the link text alone or from the link text together with its programmatically-
determined link context." Specifically, when alink will open anew browser tab or window, that should
be conveyed to the user in link title text (e.g., "Opens new browser tab — link title text").

» Parsing standards: Thisaffectslevel A criteria4.1.1in the Robust category: "In content implemented
using markup languages, elements have complete start and end tags, elements are nested according to
their specifications, elements do not contain duplicate attributes, & 1Ds are unique (except where specs
allow these features).” The W3C has code validators you can use to find and fix violations. See http://
www.w3.0rg/QA/Tools/. Seeaso thelist of accessibility code checkersin the previous material.

* Name, role and value. This affects level A criteria 4.1.2 in the Robust category: "For al Ul
components, the name & role can be programmatically determined; states, properties & values set by
the user can be programmatically set; and notification of changes to these items is available to user
agents, including assistive technologies." The new ARIA guidelines make it easier to address these
criteria, and we'll look at these guidelines next.

ARIA Overview

The new ARIA guidelines enable interactive web applications to be accessible — you no longer have to
create an aternate version without jScript. ARIA represents an extension to both HTML and XHTML,

10

http://www.w3.org/QA/Tools/
http://www.w3.org/QA/Tools/

About KRAD

providing new attributes to dynamically convey how interactive features (controls, widgets, Ajax live
regions, and events) relate to each other and what is their current state. The goal is to make these into
standard featuresin HTML5.

From the WAI-ARIA Primer:

" Authors of JavaScript-generated content do not want to limit themselves to using standard tag el ements
that define the actual user interface element such astables, ordered lists, etc. Rather, they make extensive
use of elements such as DIV tags in which they dynamically apply a user interface (UI) through the use of
style sheets and dynamic content changes. HTML DIV tags provide no semantic information. For example,
authors may define a DIV as the start of a pop-up menu or even an ordered list. However, no HTML
mechanism exists to:

* |dentify the role of the DIV as a pop-up menu
 Alert assistive technology when these elements have focus
» Convey accessibility property information, such as whether the pop-up menuis collapsed or expanded

 Definewhat actions can be formed on the element other than through a device-dependent meansthrough
the event handler type (onmouseover, onclick, etc.)

In short, JavaScript needs an accessibility architecture to write to such that a solution can be mapped to
the accessibility frameworks on the native platform by the user agent.”

ARIA gives us several new constructs to do this, to dynamically convey how interactive features relate
to each other and what istheir current state:

* New "Roles’ (Role="") to describe:

* thetype of widget ("menu," "treeitem,” "dlider,” and "progressmeter")
« the structure of atable or page (headings, regions, grids)
* New properties —to define and describe:
« the state of awidget or control
« the state of "live" regions on a page that will receive updates, and how/when to handle those

« drag-and-drop sources and targets

» New keyboard support techniques for navigating among web objects and events

Adding ARIA to an application

Thereis a 7-step process recommended when applying ARIA to web application code (steps drawn from
thein WAI-ARIA Primer, examples supplied by thistraining module):

1. Rely on native markup when possible. For example, if thereisanative HTML method that works well
for grouping controls (fieldset & legend), use that instead of creating adiv with arole to group them.

2. Apply appropriate ARIA roles. There are dozens more ARIA roles, but here are a few examples, to
convey the idea:

» Widget roles: button, checkbox, dialog, link, radio, tab, tooltip, treeitem

» Document structure roles: document, group, heading, presentation, region

11

http://www.w3.org/TR/wai-aria-primer/
http://www.w3.org/TR/wai-aria-primer/
http://www.w3.org/TR/wai-aria/roles#roles_categorization
http://www.w3.org/TR/wai-aria/roles#widget_roles
http://www.w3.org/TR/wai-aria/roles#document_structure_roles

About KRAD

» Landmark roles: application, banner, form, main, menu, navigation, search

Note

Assigning the role="presentation” to any native markup means that the semantics of the
markup will not be conveyed to assistive technologies (it isfor visual presentation only). This
can be useful, for example, when a table is used for layout purposes (when the table row/
column structure is not relevant).

If thereisno landmark rolethat fitsthe need, authors can define their own customregions. Any
role can be marked aria-live, which means that it will receive updates, its state will change.

Changes within live regions automatically get passed through to assistive technologies, so
these are accessible.

3. Preserve semantic structure. Preserve DOM hierarchy, form logical groups, assign landmark roles.

4. Build relationships. For example, use aria-describedby to identify the element that describes the
object, and use aria-|abelledby to identify the element that labels the object. For more information, see
WAI-ARIA relationships.

5. Set statesand propertiesin responseto events. After you've created the elements with their rolesin

your code-base, be sure you add the code to change the state and property in responseto user interaction.

For example, when something is selected, when something is expanded, and so on. For example,
make sure the appropriate tab is marked active in the tablist structure and others are marked inactive.

6. Support keyboard navigation. Now with ARIA, the tabindex attribute can be applied to any
displayable HTML element, making it easier to add items on a page into the keyboard tab order. You
can either use aroving tabindex or the aria-activedescendant property. For more details, see WAI-ARIA
- Keyboard support.

7. Synchronize the visual interface with the accessible interface. Make sure that ARIA states are
synchronized with the visual interface and vice-versa. For example, make sure that aria-selected items
inherit a visual treatment for selected state, that ARIA infocus items inherit a visual treatment for in-
focus state, that aria-required items are marked visually with arequired indicator, and so on.

RECAP

There are four major "take-aways" in this accessibility section:

e There aretwo accessibility guidelines that apply to web applications, created by the W3C:
* WCAG 2.0 (Web Content Accessibility Guidelines) —afinalized standard in 2008.
* ARIA (Accessible Rich Internet Applications) — a candidate standard (beta) in 2011.

» Therearemany free accessibility code checkers, and it isrecommended that devel opers check their code
with one of these tools. Seethe linksto tools in the previous pages.

* KRAD isinvesting in accessibility and applications developed with KRAD will be able to inherit this
benefit in Rice 2.2. Applications developed with Rice 2.0 KRAD should give attention to 7 areas in
WCAG 2.0, with fixes discussed for these 7 areas in the previous pages.

» ARIA represents an extension to both HTML and XHTML, providing new attributes to dynamically
convey how interactive features (controls, widgets, Ajax live regions, and events) relate to each other
and what istheir current state.

12

http://www.w3.org/TR/wai-aria/roles#landmark_roles
http://www.w3.org/TR/2010/WD-wai-aria-20100916/states_and_properties#attrs_relationships
http://www.w3.org/TR/2010/WD-wai-aria-practices-20100916/#keyboard
http://www.w3.org/TR/2010/WD-wai-aria-practices-20100916/#keyboard

About KRAD

» There are new "roles" and properties to define states, new drag-and-drop semantics and expanded
support for enabling keyboard access.

e Thereisarecommended 7-step process for adding ARIA to an application.
» Thegoa isto make these into standard featuresin HTMLS5.

See details and links in the previous pages.

13

Chapter 2. Getting Started
KRAD Architecture

Figure 2.1. KRAD Frameworks

Recap

KRAD Frameworks

Persistance.
Framework

» KRAD is a complete framework for application development, covering all the application layers
(Presentation, Business, and Data)

» KRAD iscomprised of the following feature areas:

Persistence Framework — Provides services and other utilitiesfor persisting data. Central to al of this
is the Business Object.

Data Dictionary — Repository of XML metadata that describes data objects and their attributes. This
can be used to configure common Ul attributes along with other things such as validation.

Document Framework — Provides the ability to create '‘e-docs that are integrated with the KEW
module for workflow and the KIM module for authorization. In addition to the integration the
framework, it also provides several reusable pieces for creating new documents.

Business Rules — Code based Rules framework that can be used to writing business rules
corresponding to events that occur on a document. Future plans include integration with the new
KRMS module.

Ul Framework (UIF) — Framework for building Web based user interfaces using a components that
are configured with XML. Most of the KRAD training is focused on this area.

Inquiry, Lookup, Maintenance — 'Pre-built' views complete with a backend implementation that can
be quickly configured to create new search screens, screens that display data for information, and
screens that allow table data to be maintained.

Spring Beans

Spring providesthe foundation for much of the KRAD functionality. Many Spring offerings are consumed
throughout the module, including data sources/templates, dependency management, transaction support,
remoting, EL, and Spring MV C. In addition to the typical ways of using Spring, KRAD usesits powerful
configuration system as a basis for building declarative frameworks. Developers use much of KRAD by
interacting with this configuration system. Thissection will give an overview of using Spring configuration
and discussitsrolein KRAD.

14

Getting Started

Configuration System

Bean

~NOoO O~ WNRE

B WN P

Spring provides a configuration system that allows us to configure how to instantiate, configure, and
assembl e objects in our application. Furthermore, this configuration can take place outside of Java code.
Assimpleasit might sound, thisisavery powerful construct that has changed many aspects of application
development. An application of this includes configuring the dependencies for an object (other objects it
dependson). Thisisknown asInversion of Control, the opposite of the object getting its own dependencies
(for example with a Servicel ocator for service dependencies).

KRAD aong with the rest of Rice use this feature of Spring to set dependencies such as services, DAOs,
and data sources. This gives applications built with Rice much greater flexibility, as the implementations
for these dependencies can be changed and configured for us with the Spring configuration.

Besides setting other object dependencies, the Spring configuration can be used to set values for primitive
properties (String, Integer, Boolean ...). In addition, we can instruct Spring on how to set the property
value, whether it be by a standard setter, constructor argument, or annotated method. Essentially Spring
allowsusto giveaformulafor creating and populating an object instance completely outside of code. This
so called formulais known as the bean configuration.

Configuration

Spring supports various methods for bean configuration, the most common of these being XML. Each
XML file must adhere to the Spring bean doctype and is sometimes referred to as'Spring Bean XML'. The
following is the shows the doctype definition for the 3.1 release:

<beans xm ns="http://ww. spri ngfranmework. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
xm ns: beans="http://ww. spri ngframewor k. or g/ schema/ beans"

XSi

schemaLocati on="htt p://wmv. spri ngframewor k. or g/ schena/ beans
ht t p: // www. spri ngf ramewor k. or g/ schema/ beans/ spri ng- beans- 3. 1. xsd" >

Note this sets up use for the bean namespace. Spring provides many other XML namespaces that are used
for various purposes. If one of these are used, the corresponding definition must be declared with the bean
doctype. One of these other namespaces, the 'p' namespace, will be covered later on in this section.

Oncewehaveour XML file setup, we can begin specifying the bean configuration. Each filemay contain as
many bean configurationsaswelike (wewill seelater on certain best practicesfor Spring file organization).
To start anew bean configuration, we use the bean tag:

<bean i d="address" cl ass="edu. nmyedu. sanpl e. Addr ess" >

</ bean>

Aswe will seein a hit, the bean configuration is loading into a container managed by Spring. In order
to identify a bean configuration, we must give it a unique name using the id attribute. In addition we see
here an attribute named class. Recall the purpose of the bean configuration isto construct and populate an
object, so we must tell Spring what type of object we want created

Bean Names

Spring alows us to name our bean using the id attribute or the name attribute, or both. In
addition, we can give multiple names in the name attribute that can be used to identify the bean

15

Getting Started

configuration. If al that is not enough, Spring has an alias tag that can be used to give another
name for a bean. Best practice for Rice applications is to use the id attribute to specify the main
name, and then use the other attributes if needed.

Primitive Properties

The above definition is perfectly acceptable and would result in Spring creating a new Address object.
However, now let's add some property configuration. In order to do this, we must know the available
properties on our Address object:

public class Address {
private String street;
private String city;
private String state;
/I getters and setters

}

We see Address has three properties we can configure. To specify avalue for one of these properties, we
can use the property tag. When using the property tag we must specify the name attribute which must
match the property name of the class we want to populate, and then the value attribute which is the value
we wish to inject.

<bean i d="address" cl ass="edu. nmyedu. sanpl e. Addr ess" >
<property name="street" value="197 H St"/>
<property name="city" val ue="Bl oom ngton"/>
<property name="state" value="IN'/>

</ bean>

NOoO O WNBE

The above configuration is equivalent to the following Java code:

Addr ess address = new Address();
address.setStreet("197 H St");
address. setCity("Bl oom ngton");
address.setState("IN');

OTdWNPRE

Notice that in order for Spring to instantiate our object with the above bean configuration, we needed to
have a default no-argument constructor. However, if our class requires a constructor argument, that's no
problem. We can use the constructor-arg tag to specify the values for the arguments. Suppose our Address
classlooks like the following:

public class Address {

private String street;

private String city;

private String state;

public Address(String street, String city, String state) {
this.street = street;
this.city = city;
this.state = state;

QCQOWOoWO~NOUAWNEPRE

=

16

Getting Started

11

13

~NO O WNPRE

/1 getters and setters

We can then use the constructor-arg tag so Spring can pass the appropriate arguments for instantiation:

<bean i d="address" cl ass="edu. myedu. sanpl e. Addr ess" >
<constructor-arg index="0" value="197 H St"/>

<constructor-arg i ndex="1" val ue="Bl oom ngton"/>

<constructor-arg i ndex="2" val ue="IN'/>
></ bean>

Note when specifying the constructor-arg, we indicating the order the argument should be given to the
constructor using the index attribute. Spring supports other mechanisms for matching the arguments, such
as matching by the argument class type.

Property Editors

When specifying avalue for aproperty, Spring will use PropertyEditor classesto do the datatype
conversion. By default, conversion of Strings to Numbers and Booleans work without any
additional configuration. Additional property editors are provided for other conversions (such as
Date), and in addition custom property editors can be created. However, these must be configured
for use with the bean factory. See the full Spring documentation for more information

Collections

[N

O~NO O~ WNPR

abhWN P

In order to populate a property type that is a collection, we must use some additional tags provided by
Spring. These tags correspond to the type of Collection we want to create: list, map, set, or properties.

Suppose we have the following property of type List<String>:

private List<String> phoneNunbers;

We can then configure this property in our bean configuration as follows:

<property name="phoneNunbers" >
<list>
<val ue>812- 333- 9090</ val ue>
<val ue>812- 444- 9900</ val ue>
</list>
</ property>

Notice that instead of using the value attribute, we are using the body of the property tag to specify the
property value. We then use the list tag to specify we want to create a List collection type. Finaly, we
configure entries for the List using the value tag. Thisis equivalent to the following Java code;

Li st<String> phoneNunbers = new ArraylList<String>();
phoneNunber s. add("812- 333-9090") ;
phoneNunber s. add(" 812- 444-9900") ;

17

Getting Started

W NP

O~NO O~ WNPR

Now let's take alook at a Map example. Suppose we had the following property with type Map<String,
String>:

private Map<String, String> stateCodeNanes;

Our corresponding property configuration would look as follows:

<property name="st at eCodeNanmes" >
<map>

<entry key="IN' val ue="Indi ana"/>
<entry key="OH' val ue="Cnhi 0"/ >
</ map>

</ property>

Here we use the map tag to indicate a Map collection type should be created. Then we specify entries for
the map using the entry tag. This requires us to specify the entry key and entry value using the key and
value attributes respectively.

Java Generics

It is a good practice to use Java generics with Collections. Spring will use this information to
perform datatype conversion asit doesfor primitive types. Without the generic type information,
this conversion cannot be performed.

Other Objects

NOoO O~ WNPRP

As mentioned previously, we can use the bean configuration to specify values for primitive and collection
property types, along with properties of other object types. These are known as dependencies of the object
to other objects. Since these are properties holding other objects, which themselves have properties which
we can specify using bean configuration, we associate these objects by referencing beans. In Spring this
is called bean collaboration.

For referencing other bean definitions Spring provides the ref tag. The ref tag can be used by specifying
the bean, local, or parent attributes. All of these attributes take as a value the id for the bean you wish
to reference (matching either the actual id value given on the bean, or one of its names or aliases). The
difference between these attributes pertains to container and scoping rules (discussed later on). The most
common case with Rice is to use the bean attribute.

For example, in our Address objects, let's now change the state property (of type String) to type State.
The State classis asfollows:

private class State {
private String stateCode;
private String stateNane;

/] getter and setters

And our Address class now looks like:

18

Getting Started

00 ~NO O WN

COWWOW~NOOUTDN~WNLPR

[y

©OoO~NOOUA_WNRE

©oO~NOOUTOAWNPR

©CO~NOOTOD~WNPE

public class Address {
private String street;
private String city;
private State state;
/'l getters and setters
}
First we can create one or more new bean configurations for our State object:
<bean id="state-IN' class="edu.nmyedu. sanpl e. State">
<property name="st at eCode" val ue="IN'/>
<property name="st at eName" val ue="Indi ana"/ >
</ bean>
<bean id="state-OH' cl ass="edu. myedu. sanpl e. State">
<property nanme="st at eCode" val ue="CH"'/>
<property name="stat eNanme" val ue="Chi o"/>
</ bean>

Now in our bean configuration for Address, we can reference one of these state bean configurations using
the ref tag:

<bean i d="address" cl ass="edu. myedu. sanpl e. Addr ess" >
<property name="street" value="197 H St"/>
<property name="city" val ue="Bl oom ngton"/>
<property nane="state">
<ref bean="state-IN'/>
</ property>
</ bean>

In Java code, this would be:

Addr ess address = new Address();
address. setStreet("197 H St");
address. set G ty("Bl oom ngton");
State state = new State();
state. set StateCode("IN');

state. set St at eNane("1 ndi ana");
address. setState(state);

If we wanted to change our address to use the OH state code instead, we simply change the bean attribute
on the ref tag:

<bean i d="address" cl ass="edu. nmyedu. sanpl e. Addr ess" >
<property nanme="street" value="197 H St"/>
<property name="city" val ue="Bl oom ngton"/>
<property name="state">
<ref bean="state-OH'/>
</ property>
</ bean>

In addition to referencing other bean definitions for setting object properties, Spring gives us an option
to construct the bean inline (so called "Inner Beans"). These beans do not require an id attribute to be
specified, and as a consequence and not accessible for reference by other bean configurations. We create

19

Getting Started

these inner bean configurations exactly aswe do other bean configurations. The only differenceisthey do
not need an id attribute (as stated), and the bean tag falls within a property tag.

To seethisin action, let's suppose we did not any bean configurations for State in our XML. Using inner
beans, we can accomplish the same result:

1
2 <bean id="address" class="edu. nyedu. sanpl e. Addr ess" >
3 <property name="street" value="197 H St"/>
4 <property nanme="city" val ue="Bl oom ngton"/>
5 <property name="state">
6 <bean cl ass="edu. nyedu. sanpl e. St ate">
7 <property nanme="stateCode" val ue="IN'/>
8 <property name="stateNarme" val ue="Indi ana"/ >
9 </ bean>
10 </ property>

11 </ bean>

-
N

Inner Beans

Inner Beans are sometimes referred to as " Anonymous Beans'. Aswe will see in a bit, the bean
configuration isloaded into acontainer managed by Spring. Beanswith theid attribute given have
aunique name within the container and can be referenced and retrieved from the container. Inner
beans are only available within the context of their parent bean configuration. It is not possible
to directly retrieve information about an inner bean from the container.

Compound Property Names

As of Spring version 3.0, we can configure so called 'Compound' property names. This is a basically a
shortcut for setting a property on areference (nested) object. Let's again take the example of the Address
classwith a property of type State. We saw earlier how we can use bean references or inner beansto create
and populate the State object for the Address property. Using component property names, we can sets
property values on the State object using the property tag without a nested bean tag:

<bean i d="address" class="edu. nyedu. sanpl e. Addr ess" >
<property name="street" value="197 H St"/>
<property nanme="city" val ue="Bl oom ngton"/>
<property name="state.stateCode" val ue="IN'/>

</ bean>

~NOoO O~ WNPRE

In order for thisto work, the State object must have been already constructed (with the Address constructor,
bean inheritance, or other means). If the state object is null, a NullPointerException will be thrown when
Spring tries to set the stateCode property.

The P-Namespace

Aswe have seen and will continueto see, the use of XML configuration for constructing objects has many
benefits. However, one drawback isthe XML is much more verbose than code. To help with this problem,
Spring introduces the 'p' XML namespace. This namespace essentially adds the ability to specify property
values as attributes on the bean tag instead of the inner property tags. The attribute name given with the
p namespace should match the name of the property to popul ate.

For example, our previous bean configuration for address can be rewritten as:

20

Getting Started

1
2 <bean id="address" cl ass="edu. nyedu. sanpl e. Address" p:street="197 H St" p:city="Bl oom ngton" p:state="IN'/>
3

Using the p namespace we can also configure references to other beans. The syntax for doing thisis to
add '-ref' after the property name.

1

2 <bean id="address" cl ass="edu. nmyedu. sanpl e. Address" p:street="197 H St" p:city="Bl oom ngton" p:state-
ref="state-IN'/>

3

Here Spring will look for a bean configuration with id equal to "state-IN", and use the object constructed
from that bean configuration to set the state property on Address.

With the p-namespace we can also set compound property names such as 'state.stateCode’. Using the p-
namespace for setting property valuesis limited however. For instance, there is no mechanism for setting
collection property types.

Bean Parents

Bean configuration can be inherited for another configuring another bean using the parent attribute on the
bean tag. The value for the parent attribute is the id or name for the bean which configuration should be
inherited from. Configuration such asthe class, property and constructor arguments, initialization methods,
and so on, will be inherited for the child definition. The child bean definition can override the inherited
configuration, and add to it.

As an example let's assume we have a Car class defined as follows:

1
2 public class Car {
3 private String make;
4 private String conpany;
5 private String color;
6}
7
We can then define bean definitions as follows:
1
2 <bean id="fordCar" cl ass="edu. nmyedu. sanpl e.Car" p: conpany="Ford"/>
3 <bean i d="bl ueFusi on" parent="fordCar" p: make="Fusi on" p:col or="Blue"/>
4 <bean id="redFusi on" parent="fordCar" p: make="Fusion" p:col or="Red"/>
5 <bean i d="bl ueEscape" parent="bl ueFusi on" p: make="Escape"/>
6

Notice for the three child beans we did not have to specify the class attribute since it is inherited from
the parent. In the 'blueFusion’ and 'redFusion’ beans we are extending the 'fordCar' bean to specify the car
make and color. For the 'blueEscape’ bean we extend 'blueFusion’ to override the make property. Thereis
no restriction on the number of levels the bean inheritance can have.

Circular Dependencies

Be careful not to introduce circular dependencies when using bean inheritance. For example,
<bean id="a" parent="h"/> and <bean id="b" parent="a"/>.

21

Getting Started

When a bean configuration isinherited that includes property configuration for a collection class, we must
explicitly indicate to merge the entries. Thisis done by adding merge="true" to the collection tag.

1
2 <bean id="address" class="edu. nyedu. sanpl e. Addr ess" >
3 <property name="phoneNunbers">
4 <list>
5 <val ue>812- 333- 9090</ val ue>
6 <val ue>812- 444-9877</ val ue>
7 </list>
8 </ property>
9 </ bean>
10
11 <bean id="j oesAddress" parent="address">
12 <property name="phoneNunbers">
13 <list merge="true">
14 <val ue>333- 122- 4000</ val ue>
15 </list>
16 </ property>

17 </ bean>

With the merge attribute set to true, Joe's address will have three phone numbers configured. Taking the
merge attribute off (or setting to false) will result in Joe only having one configured phone number.

Overriding Bean Definitions

Spring also alows us to override the configuration of a bean by creating another bean with the
sameid (or name). For example, if <bean id="Fo0" is configured twice, the onethat isloaded last
will be used. The order in which the bean configuration is loaded depends on the configuration
(order of files). This functionality is important to how Rice and the other Kuali applications
provide a great deal of flexibility. An institution implementing the project can specify one or
more 'institutional’ spring files. Thesefiles areloaded after the project Spring files, thus any beans
within the institutional files with the same id as a bean in the project Spring files will override.
This alows changing beans such as service implementations without modifying a project file.
However, be careful that you do not override a bean you did not intend to!

Bean Containers

So far we have looked at how we can use XML to provide bean configuration. Now let's look at how
Spring uses that information to manage our objects.

The objects created from the bean configuration are managed within a container. An application may
contain more than one bean container, depending on configuration. A bean container is associated with
a set of bean configurations, loaded from a set of XML files (or other configuration mechanism if used).
Through code, we can then ask for an object from the container through the container interface.

Requesting Container Objects

Typical ways of requesting an object from the container are by type or id. For requesting by
type, we can use the interface for the object we want. In the case of Services, this would be the
service implementation. Thisisvery important as our application code does not have to have any
knowledge of the implementation. In addition to type, we can also request an abject by its bean
configuration id or name.

One type of bean container Spring provides is an ApplicationContext. This container is associated with
an application or a module of the application and provides services, resources, and other objects for that
application/module. The application context is initialized when the application starts up and maintained

22

Getting Started

throughout the application lifecycle. In Rice, each module has an associated ApplicationContext that is
configured and initialized with the Rice Configurers.

Figure 2.2. Bean Factories

Your Business Objects (POJOs)

The Spring

Configuration Container

Metadata

Fully configured system
Ready for Use

In addition to the application contexts, other bean factories can be maintained by an application. For
example, as we will learn about in Chapter 4, the KRAD Data Dictionary module maintains a bean
factory that holds the dictionary metadata. A set of XML files provides the bean configuration for the
datadictionary. These XML files are separate from the ones that provide configuration for the application
context containers.

Bean Scope

For the objects Spring creates for us, we can define a Scope. The scope specifies how long the created
object should live. To specify the scope for a bean, we use the scope attribute on the bean tag.

1
2 <bean i d="MBean" class="..." scope="singleton">
3

The default scope for a bean is 'singleton’. An object with scope singleton is created only once per bean
container. When requests are made to obtain an object for the correspond bean, the same object instance
is aways returned. By default, the singleton object is created during container initialization, however we
may add lazy-init="true" to the bean tag to indicate that the object should not be created until a request
for the object is made.

Another scope we can use is 'prototype’. When a bean is marked with a scope of prototype, a new
object instance is created for each request. Prototype objects are not created initially during container
initialization.

Choosing Bean Scope

Deciding whether to use singleton or prototype scope usually depends on whether our object
maintains state. If an object maintains state, we should use scope prototype so that it is thread
safe. For stateless objects (such as services), we should use the singleton prototype.

Besides the singleton and prototype scopes, Spring also provides the request, session, and global session
scopes. Furthermore, you can create your own scope!

Recap

* Spring provides a configuration mechanism that allows us to define a 'recipe’ for creating instances of
aclass.

23

Getting Started

» We can use XML to provide bean configurations. A bean configuration is given using the bean tag,
and includes an id attribute to uniquely identify the bean and a class attribute to indicate the class for
the object to create.

» Using the property tag we can configure property values for primitive types and collections. We can
also configure dependencies of the object (which are properties of other object types) using the ref tag
or inner beans.

» The ability to configure dependencies external to the parent object is the Inversion of Control pattern.
» We can use the p-namespace as a shortcut for configuring properties.

 Spring allows usto inherit bean configuration using the parent attribute. The configuration inherited by
the child bean definition can be overridden and added to.

* Inorder to merge inherited collection configuration, we must specify merge="true".

» The objects created by Spring are managed within a container. Generally there is a container for the
whole application or each application module. In addition, containers can be created for other purposes.

» The bean scope defines how long the created object will live. The default scope of singleton meansonly
one object will be created and shared throughout the application lifecycle. With a scope of prototype, a
new object instance will be created each time arequest is made to the container.

The Development Environment

Developing a Rice application is essentially no different than other J2EE applications. Any tool that can
be used for creating J2EE apps can be used for a Rice app. Essentially Rice is a set of libraries that are
used with your project (like many other libraries a J2EE app includes) and configured for your needs.

The essential tools for developing a project are:

I DE (I ntegrated Development Environment) — Thisisthetool you will useto devel oper the source code
and resources for your project. It can be a simple text editor if you want, however it is recommended to
use one of the Java IDE tools available. Of these Eclipse, Intellij, and NetBeans are the most popular in
today's market. Any of these will be fine for developing a Rice project. However, as we will learn about
next, Rice provides its own tooling to help getting started with Eclipse. Eclipse is chosen due to its high
use and that it is afree open source tool. The latest releaseis 'Indigo’ and can be downloaded here;

http://www.eclipse.org/downl oads/packages/eclipse-ide-j ava-ee-devel opers/indigosr2

Database — Rice applications can use a MySql or Oracle database for persisting application data. Rice
itself will use the database for supporting the various Rice modules (workflow, identity management, and
so on). Within the Rice distribution datasets are provided that can be used to create the initial database
schema. You can choose to load the 'bootstrap' dataset, which provides the baseline data needed to run
Rice, or the 'demo' dataset which adds additional demo data (such as example KIM data and workflow
doc types).

Although it is possible to provide a shared database for development, it is recommended for productivity
reasons for each developer to have a local database installed. Both MySQL and Oracle provide freely
available databases for development. Currently Rice has been tested with the following versions:

* Oracle

» Oracle Database 10g

24

http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/indigosr2

Getting Started

* Oracle Database 11g
« Oracle Express Edition (XE)
Use the Oracle JDBC Driver to connect to these databases.

Ensure that the Oracle database you intend to use encodes character datain a UTF variant by default. For
Oracle XE, this entails downloading the "Universal" flavor of the binary, which uses AL32UTF8.

« MySQL
« MySQL 5.1+

Note for our chosen database we must also download the corresponding database driver. Thisisajar file
we will need to make available to our web container for connecting to the database.

These supported databases can be downloaded with the following URLs:

Table 2.1. Supported Databases URL s

Software Download Location

Oracle Standard and Enterprise Editions http://www.oracle.com/technetwork/database/enterpri se-edition/
downloads/index.html

Oracle Express Edition http://www.oracle.com/technetwork/database/express-edition/
downl oads/index.html

Oracle JDBC DB Driver http://www.oracle.com/technetwork/database/features/jdbc/
index-091264.html

MySQL http://www.mysgl.com/downl oads/

MySQL Connector/J JDBC Driver http://www.mysgl.com/downl oads/connector/j/

Note for working with a MySQL database the MySQL Workbench (available for free download) is very
useful and can save time for those new to MySQL.

Once the database provider is installed, we can then load one of the provided datasets using the Kuali
ImpEx tool. The ImpEx tool is a Kuali-developed application which is based on Apache Torque. It reads
in database structure and datafrom XML filesin aplatform independent way and then createsthe resulting
database in either Oracle or MySQL . To use this tool we simply provide configuration about the location
of the source dataset, along with connectivity information for our target database. Thisis done by creating
a properties file named 'impex-build.properties’ in the user home directory. Once the configuration is
complete, we can invoke the tool using ant or maven and our database will be created.

Supported Databases

Rice strives hard to be database independent. It should be entirely possible to run with other
database vendors such as Sybase, Microsoft SQL Server, or DB2. However, these databases are
not promoted due to lack of testing by the Rice team. In addition, the Rice CM team is working
towards supporting in memory databases such as Derby or H2. These would be mostly used for
quick start devel opment purposes and demonstrations.

JDK — In order to support compilation of the application source code a JDK must be installed. Note that
this must be the JDK and not a Java Runtime Environment — JRE. Rice requires a JDK version of 1.6.x or
1.7.x. Additionally, Rice has only been tested with the Sun JDK implementation. Therefore use of other
implementations such as OpenJDK may have problems.

For machines running Windows, JDK 6 can be downloaded at the following URL:

25

http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html
http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html
http://www.oracle.com/technetwork/database/express-edition/downloads/index.html
http://www.oracle.com/technetwork/database/express-edition/downloads/index.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.mysql.com/downloads/
http://www.mysql.com/downloads/connector/j/

Getting Started

http://www.oracl e.com/technetwork/javaljavase/downl oads/index.html

If you are on a Mac, then Java 6 should aready be installed if you are up to date with the latest updates
from Apple.

Y ou will also want to set up your JAVA_HOME environment variable to point to theinstallation directory
of your JDK. In both Windows and Mac environments, the java executable program should aready be on
your path. But if itisnot, you will want to include JAVA_HOME/bin inyour PATH environment variable.

In order to verify that your JDK has been installed successfully, open a command prompt and type the
following:

1 java -version

Y ou should see output similar to the following:

1 java version "1.7.0_10"
2 Java(TM SE Runtime Environment (build 1.7.0_10-b18)
3 Java HotSpot (TM Cient VM (build 23.6-b04, m xed node)

If you receive an error indicating that the "java' command could not be found, please ensure that the java
command is on your machine's PATH environment variable.

Maven - Maven is the primary build tool used by the Kuali Rice project. Maven is based on a project
object model (POM) that defines various standards and conventions surrounding the organization of a
project. This facilitates a set of standard build goals and lifecycle phases (such as compile, test, package,
etc.). Mavenisparticularly helpful in terms of dependency management. When building aRice application
using Maven, all of the dependent libraries will be pulled in automatically.

It is not required for Rice enabled applications to be Maven projects. Again, Rice is essentially a set of
jarsthat can be used with an application. However, using Maven simplifies the setup process greatly. For
exampl e, applications not using Rice must pull in and manage all of thethird party librariesthat are needed
by Rice. That hasan impact not only oninitial project setup, but also each timethat application isupgraded
to anew Rice version.

To download version 3 of Maven, use the following link:

http://maven.apache.org/downl oad.html

Y ou will want to set your M2_HOME environment variable to point to the location where you unzipped
Maven. Y ou will additionally want to include M2_HOME/bin in your PATH environment variable so that
maven can be executed from the command line without having to specify the full path.

Finally, to prevent potential out of memory errors when compiling Rice with Maven, you should set your
MAVEN_OPTS environment to avalue like the following:

1
2 MAVEN_OPTS="- Xnx1024m - XX: MaxPer nSi ze=768nt
3

In order to verify that Maven has been installed successfully and is available on the path, open acommand
prompt and type the following:

1
2 nvn -version

26

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/download.html

Getting Started

Y ou should see output like the following:

Apache Maven 3.0.4 (r1232337; 2012-01-17 03: 44: 56- 0500)
Maven hone: /usr/local / maven

B WN P

If you receive an error indicating that the "mvn" command could not be found, please ensure that the
directory that includes the mvn executable (M2_HOME/bin) is on your machine's PATH environment
variable.

Servlet Container — In order to run our Rice application we need have a servlet container. The serviet
container serves the web requests for a J2EE application. There are many containers avail able for use, but
Tomcat is most commonly used. Kuali Rice 2.0 supports the following Tomcat version:

e Tomcat 6 (Servlet APl 2.5, ISP 2.1)
e Tomcat 7 (Servlet API 3.0, JSP 2.2)
For downloading and install instructions visit the Apache Tomcat site;

http://tomcat.apache.org/

For development purposes you can also choose to use an embedded application container such as Jetty.
The Rice project provides a sample Jetty Server that can be used for your project. The next section will
cover thisin more detail.

New Project Setup

Now let'slook at creating a new Rice enabled project. To do this, we will use atool from the Rice project
that performs most of the initial bootstrapping. Thetool isincluded within the Rice project. Therefore, we
need to start by downloading the Rice 2.0 release. The Rice distribution can be downloaded at:

http://kuali.org/download

Or the project may be checked out through Subversion with the following repository location:

https.//svn.kuali.org/repos/rice

Note the full project must be checked out, not just the tool. The tool createstheinitial artifacts by copying
from the Rice working copy.

The Rice project contents should be placed into a folder in the local file system. A standard practice is
to create atop level directory named 'java, followed by a'projects directory, and then a directory named
'rice’ that contains the actual project (‘/javal/projects/rice).

The particular tool we will be using was written in Groovy, therefore we need to download the Groovy
runtime. This can be downloaded at the following URL:

http://groovy.codehaus.org/Downl oad

Install instructions are also available on the above site. For users of Windows, a Windows-Installer can
be downloaded which will install Groovy and perform any necessary configuration (including add groovy
to your path).

27

http://tomcat.apache.org/
http://kuali.org/download
https://svn.kuali.org/repos/rice
http://groovy.codehaus.org/Download

Getting Started

1

Once groovy isinstalled we are ready to run the create project script. Start up a console (on Windows you
can use the PowerShell) and change into the directory that contains the Rice project (e.g. ‘/java/projects
rice'). From the root project folder, change into the scripts folder. Thisfolder should contain a file named
'createproject.groovy’.

There are a few options supported by the create project script, but let's start with the most basic way of
running. The command we will giveis:

2 groovy createproject.groovy -name PROJECT_NAME

3

[N

©OoO~NOOUOA_WNRE

First we are invoking the groovy executable (this assumes groovy is on your path, if not the full path
to the groovy executable needs to be specified). Groovy then expects the name of the script we want to
run, which is'creatproject.groovy'. Next we specify the one required argument for the create project script
which is the name for the project we want to create. Assuming we want to create a new project named
'MyRiceApp', the command would be the following:

groovy createproject.groovy -nane M/Ri ceApp

After typing the command hit enter to start the script. Y ou should then see a prompt as follows:

WARNI NG

This programwi || delete the followi ng directory and replace it

with a new project:
/'j aval proj ect s/ MyRi ceApp

It will also create or replace the following files in USER HOVE:
1) C:\Users\jkneal . ADS/ kual i / mai n/ dev/ MyRi ceApp- confi g. xm
2) C:\Users\jkneal .ADS/ kual i/ main/dev/rice. keystore

If this is not what you want, please supply nore infornation:
usage: groovy createproject -nane PROJECT_NAME [-pdir PRAJECT_DIR] [-rdir RICE_ DIR] [-ndir MAVEN_HOVE]

Do you want to continue (yes/no)?

Type 'yes and then enter to resume the program. Y ou will then see logging output from the script about
various files being created, the maven build, and finally printed instructions, and how to complete the
project setup.

Notice we did not tell the script where to put our new project, nor where to find the Rice project. Thisis
because the script defaults to the project location of ‘/java/projects’. If wewant our project to be generated
in adifferent location, we can do so by passing the directory path with the '-pdir' argument:

groovy createproject.groovy -name MyRiceApp —pdir /home/myapps

The project directory given will be the parent for the project folder. The script will create another folder
within this with the same name as the given project name.

Similarly, if our source Rice project isin another directory, we can specify that using the "-rdir' argument:

28

Getting Started

2 groovy createproject.groovy -name M/Ri ceApp -rdir /hone/ nyapps/rice
3

Unlike this project directory argument, this does specify the full path to the project (nothing will be
appended).

Finally, the create project script gives us a couple more options for the project generation. We can include
the Rice sampleapp in our project by passing the —sampleapp flag:

=

2 groovy createproject.groovy -name M/Ri ceApp —sanpl eapp
3

Having the various examples of the sampleapp can be very useful in particular if doing development with
the KRAD framework.

Lastly, we can have a project generated that is setup to go against a standalone Rice instance. To do this
we pass the —standal one flag:

=

2 groovy createproject.groovy -name MR ceApp -standal one
3

Project Structure and Configuration Files

The result of running the create project script is a new maven based Rice client project. Thisincludes the
directory structures for building out your application, along with the necessary configuration files. Let's
start by looking at the directories that were created.

Project Root (eg /javalprojects/myapp’) — This is the root folder that was created to hold all the project
contents. Within this folder you will find three sub-folders, a'.classpath’, '.project’, 'instructions.txt', and
‘pom.xml’ file.

.Settings — This folder contains settings configuration for the Eclipse IDE

src— Thisfolder isfor the application source files and resources. Within thisfolder is the standard maven
directory breakdown:

 src/main/java— Contains Java source code

* src/main/resources — Contains resource files (XML and other resources)

* src/main/webapp — Contains the application web content (JSP, tags, images, CSS, Script)
target — This folder holds the build output such as generated classes and wars.

Along with the directories several files are created. These are asfollows:

Table2.2. Created Files

File Description

classpath Eclipse file for managing the application classpath
project Eclipse project file

pom.xml Maven Project File

29

Getting Started

File Description

{ project} -RiceDataSourceSpringBeans.xml* Spring XML file containing Rice data source configurations

{project} -RiceJTASpringBeans.xml* Spring XML file containing JTA transaction configuration

{ project} -RiceSpringBeans.xml* Spring XML file containing the Rice module Configurers

SpringBeans.xml* Spring XML file for Application beans

{ project} -SampleA ppM odul eBeans.xml* Spring XML filefor Sample App beans (only created if —sampleapp option
was given)

OJB-repository-sampleapp.xml* OJB configuration file for the Sample App (only created if —sampleapp
option was given)

META-INF/A project} -config.xml* Default Rice configuration properties

src/main/webapp/WEB-INF/web.xml Standard web deployment descriptor for J2EE applications

* All of these files are located within the src/main/resources directory

In addition to the files created within the project, two files are created in the '{ user home} /kuali/main/dev'
folder. These include:

» {project}-config.xml — Configuration file for application. This is where the settings for the database
and other configurations are given.

* rice.keystore — Provides a secure key for consuming secured services running on a Rice server

Configuring Your Rice Application

Next, we need to provide some configuration for our application that is custom to our environment (for
example, database connectivity). We can do this by modifying the properties available in {project} -
config.xml (located in the /kuali/main/dev folder in user home).

Although there are many configuration properties available for customization, the following are required
for getting started:

Table 2.3. Required Configuration Properties

Parameter Description Example
datasource.url JDBC URL of database to connect to jdbc:oracle:thin: @loca host: 1521: X E

jdbc:mysql://local host:3306/kuldemo

datasource.username User name for connecting to the server database | rice

datasource.password Password for connecting to the server database

datasource.obj.platform Name of OJB platform to use for the database | Oracle9i or MySQL

datasource.platform Rice platform implementation for the database | org.kuali.rice.core.database.platform.OraclePlatform
datasource.drive.name JDBC driver for the database oracle.jdbc.driver.OracleDriver

com.mysql.jdbc.Driver

Importing into Eclipse and Starting the App

Now we have our project setup and are ready to begin development. Note at this point that the application
is completely runnable. We could do a maven deploy, copy the generated war to our tomcat server, and
start up the application. However we are going to first import our project to Eclipse so that we will be
ready to further develop the application code.

Navigate to the Eclipse installation directory. There you should find an executable named 'eclipse.exe€’.
Once thisfileisfound double click it to start the IDE. When Eclipse starts up for the first time, it will ask
you to choose a workspace. Thisis a directory that Eclipse places newly created projects, and will also

30

Getting Started

read current projects from. A standard within the community is to use /java/projects for your working
space. Note you can select the checkbox to use the directory as your default and Eclipse will not prompt
on the next startup.

Eclipse Memory

It is generally needed and recommended to allocate additional VM memory for the Eclipse
runtime. This can be done by opening up the file named 'eclipse.ini' that exists in the root
installation directory. At the end of the file you specify VM arguments as follows:

e vmargs
e XmsA0m
e Xmx512m

The amount of memory allocated depends on the host machine. The above settings are for a
machine with 4g of memory.

When working with Eclipsefor thefirst time, there are additional pluginsyou will likely want to get. None
of these are required by Rice and depend on your institutional development environment and how you plan
to create your project. However, most projects today use SVN or GIT for source code control. Therefore
an additional Eclipse plugin is needed for communicating with the repository. Also if you have chosen to
use Maven (or used the create project script) the Eclipse Maven plugin will be very useful aswell.

To bring a new project into eclipse, select the File-Import menu option. This should bring up a dialog as
show in the example below.

Figure 2.3. Import New Project Eclipse

e
Select

For the import source select 'Existing Projects info Workspace'. This should bring up a dialog that looks
like the exampl e below.

Figure 2.4. Selecting Project Eclipse

31

Getting Started

Here click the 'Browse' button to locate the directory for the project. After selecting the project location
click the 'Finish' button. Eclipse will then import the project contents and you are ready to begin coding!

To run our project we again have many options. One of theseisto deploy to an external servlet container
such as Tomcat. Using the Eclipse Web Tools platform, we can configure a Tomcat server and control all
the deployments, startups, and shutdowns from Eclipse.

Another approach is to use a Jetty Server. Rice provides a JettyServer class that can be used to launch
Jetty and host an application. To use this we just need to create an Eclipse launch configuration which
will run the server as a Java main class, and provide arguments for the deployment (such as context, web
app location and so on).

Setup for KRAD Development

O~NO O~ WNPRE

To begin using the Rice development framework, we must first configure an application module. This
information tells the KRAD framework where to find resources for our module (such as dictionary and
OJB files) along with other metadata about our module. We could choose to have one module for our
whole application, or break into many modules (if using maven each KRAD module generally corresponds
with a maven module).

To configure a module we create a M oduleConfiguration. A ModuleConfiguration is a bean wired in
Spring XML specifying the following information:

» The modul€'s namespace

» The DataDictionary filesto load

The OJB repository filesto load
* The package prefix of data objectsin this module
 Externalizable business object definitions

The following is an example module configuration bean:

<bean i d="sanpl eAppMdul eConfi gurati on" class="org. kuali.rice.kns.bo. Mdul eConfi guration">
<property name="nanmespaceCode" val ue="KR- SAP"/>
<property name="initializeDataD ctionary" val ue="true"/>
<property name="dat aDi cti onaryPackages" >

</ bean>

<list>
<val ue>edu/ sanpl eu/ travel / dat adi cti onary</ val ue>
</list>

</ property>
<property name="dat abaseRepositoryFil ePat hs">

<list>
<val ue>QJB-r eposi t ory- sanpl eapp. xm </ val ue>
</list>

</ property>
<property name="packagePrefixes">
<list>
<val ue>edu. sanpl eu. travel </ val ue>
</list>
</ property>

Note in particular here the dataDictionaryPackages property. This is where the framework will pick
up data dictionary files for loading (which we will be using a lot in this training manual). We can
specify individual files or directories. If adirectory is given, then XML files added to that directory will
automatically get picked up and loaded on application startup.

32

Getting Started

When the Rice enabled application is started, the configuration for each module will be read and, in some
cases such as the dictionary and OJB, used to initialize services.

After we have our module configuration, we then need to configure amodul e service. Thisisaservice that
will provide metadata for our module. Responsibilities of the module service include determining whether
adata object belongsto amodule, and if the object is external to the application (in which case the module
service will also provide links for the object'slookup and inquiry). If we don't need to customize amodule
service (which is the case if the module has external data objects), then we can simply use the provide
service base and set the nested module configuration property to our module bean:

1

2 <bean i d="sanpl eAppModul eServi ce" class="org. kuali.rice.krad.service.inpl.Mdul eServi ceBase">
3 <property name="nodul eConfi guration" ref="sanpl eAppMddul eConfi guration"/>

4 </ bean>

5

Our Sample Application

Throughout this training manual several exercises will be presented, giving you the opportunity to work
hands on with KRAD. For compl eting these exercises, you will use the project provided with the training
thumb drive, which isanew Rice enabled client application (with the sample app content). The exercises
will ask you towork in one of two areas. Thefirstisageneral 'labs areathat hasno real functional purpose.
Basically, thisisaplayground for trying various ideas presented. Then, you will work on putting the skills
together for building a sports application! Thiswill have all the ingredients of an enterprise application
along with a more modern and rich Ul.

Within the project, you will mostly be working in:
 src/main/javacorg.krtrain.labs — source code for labs

* src/main/java:org.krtrain.sports — source code for sports
 src/main/resources/org/krtrain/labs — resource files for labs

* src/main/resources/org/krtrain/sports — resource files for sports

* src/main/webapp/krtrain —web content for both labs and sports

33

Chapter 3. Data Objects

Data Objects and Business Objects
Data Objects

Webegin our training for the Kuali Rapid Application Development framework with the data accesslayer.
Enterprise applications generally have alarge number of CRUD (Create Read Update Delete) operations;
therefore, the access of data is a very important concern of development. KRAD builds on top of other
toolsto provide general facilities that greatly reduce the devel opment time. These facilities are known as
the KRAD Persistence Framework.

Thefoundation of the KRAD Persistence Framework isthe third party ORM (Object Relational Mapping)
tool. ORM tools target the persistence of data with arelational database. This is achieved by mapping a
Javaobject that containsthe datato one or more database tables. When a persi stence operation isrequested,
the ORM tool performs the work of trandating the request along with the corresponding object(s) to the
necessary DML statement. This provides a great advantage to the application as it generally requires no
database dependent code (database specific code might be required in certain cases). More information on
particular ORM tooling will be provided in the sections'OJB Primer' and 'Using JPA'.

In order to prepare our application for persisting data using an ORM tool, we must build the objects that
will hold the application data. From the established data model, we can determine the objects needed using
a mapping strategy. Although the strategies and options available depend on the ORM solution we are
using, generally we have the following mapping options:

1. Onetableto one object
2. One table to multiple objects (polymorphism)
3. Multiple tables to one object

Once we have determined how an object will relate with its database table(s), each object property is
associated with a table column through configuration. This configuration will also give the ORM tool
information on data type conversion and constraints. The final piece to our object mapping is specifying
any relationships. Thisincludes one-to-one, one-to-many, and many-to-many relationships.

Tip
Referential Integrity: It is not required to have referential integrity set up in the database for
relationships declared for the persistent metadata. However, it isgenerally good practiceto do so.

Now let's set aside the mapping concerns and have a closer look at our 'data’ objects. Technically, these
objects are not complex at all. First, they must adhere to the POJO (Plain Old Java Object) and JavaBean
guidelines. These guidelines are as follows:

1. Is Serializable (implements the java.io. Serializable interface)
2. Has ano-arg constructor

3. Provides property getter and setter methods using the conventional (get{ PropertyName} for getter,
set{ PropertyName} for setter, and is{ PropertyName} for Booleans)

In addition to the 'primitive’ property types a data object may contain, a data object may also be composed
of nested data objects (representing a one-to-one relationship), or acollection of data objects (representing
aone-to-many relationship).

Data Objects

Tip
Rel at ed Data Obj ect s: Itisimportant to setup the related data object properties. As we

will see later on, the framework can take care of many things for us automatically based on the
metadata derived from these relationships.

Next, well that's it! However, as we will see in just a bit, in order to take advantage of the additional
persistence features KRAD provides, there is one additional thing we need to add.

KRAD refers to any object that provides data as a 'Data Object'. Data objects provide a very centra role
in an enterprise application. Within the suggested KRAD architecture, they are not bound to just the data
access layer, but can freely move between the other application layers aswell. This meanswe can use data
objectsin our services, and we can use them to build our user interfaces.

Tip

' Dat a Obj ect' : The'Data Object' term can refer to objects that are mapped to a persistence
mechanism, but also might not be. For example, it might be an object whose datais assembled by
aservicecall, whichin turninteractswith other persisted objects or other services. Thisflexibility

is important for allowing other KRAD modules to be used with a variety of data sources and
strategies.

Best Practice: Keep dataobjectssimple! Try to avoid introducing any businesslogic or presentation logic
into the objects.

Business Objects

A specia type of data object in KRAD is known as a Business Object. These are data objects that
implement the interface org.kuali.rice.krad.bo.BusinessObject. There are two primary types of business
object: those that persist to the database and those that do not. Those business objects that do persist to the
database should implement the org.kuali.rice.krad.bo.PersistableBusinessObject interface. This interface
adds persistence related methods that are invoked throughout the framework.

Generally, when creating anew dataobject, it ismore convenient to extend one of the provided base classes
that implement the necessary interfaces. For persistable objects, this base class is org.kuali.rice.krad.bo.
PersistableBusinessObjectBase. Within this base class, default implementations for the persistable
methods exist along with properties for the common fields required for al persisted objects. These are
described in more detail later on in this section. Business objects that do not persist to the database can
extend org.kuali.rice.krad.bo. TransientBusinessObjectBase.

Tip
Transi ent Busi ness bjects: Transient business objects were necessary in earlier
versions of Rice, dueto the framework requiring all objects to be business objects (including the

Ul generation). With version 2.0 of Rice and KRAD, this restriction no longer exists; therefore
thereisreally no need for the transient business object concept.

In order to take advantage of all thefeatures KRAD provides, it isrecommended that all persistable objects
(and therefore tables) contain two properties:

1. Version Number — This property holds a version for the record that is maintained by the ORM tool to
perform optimistic locking. The number isinitialy set to 0. Each time the record is updated, the version
number is incremented. Before updating the record, the ORM tool performs a comparison between
the version number on the data object, and the version number of the record in the database. If they
are different, the tool knows the record has been updated since the record was pulled and throws an
optimistic lock exception.

35

Data Objects

2. Object Id — This property holds a GUID value for each record in the database. This is used in the
framework as an alternate key for the record. Example usages of the object id include the notes and
attachments framework. Notes are associated with arecord by its object id. Another exampleisitsuse
within the multi-value lookup framework. Selected records are identified and retrieved based on their
unique object ids.

Special Business Objects

Additional functionality exists for a few specia types of business objects. One of these specia typesis
business objectsthat have an active status. That is, each record has a state of active (which generally means
the record is valid for using) or inactive (meaning the record should not be used due to being old or not
currently valid). Objects of this type should implement the I nactivatable interface. This interface requires
the methods isActive() and setActive(Boolean active) to be implemented.

The simplest form of inactivatable business objects are those that maintain a single field that indicates
the active status as a Boolean field. Another common case is that of an active date range (also known as
effective dating). These objects maintain two fields that work together for determining the active status.
This first of these fields is the active begin date which indicates the date on which the record becomes
active. Thisfield can have anull value indicating the record is active for all dates before the end date. The
second field is the active end date which indicates the date on which the record becomes inactive. This
field can have anull value indicating the record has no inactive date set.

Record is activeif:

1 (activeFronDate == null ||
2 asOfDate >= activeFronDate.getMIlis()) & (activeToDate == null ||
3 asOfDate < activeToDate.getMIlis());

where the asOfDate is the current date or a date we wish to simulate the active check for.

For inactivatable business objects that use effective dating, the
org.kuali.rice.krad.bo.InactivatableFromTolmpl class can be extended which holds the necessary
propertiesand implementsthel ogic necessary to determinethe active status (notethat thisclassimplements
the Inactivatable and I nactivatableFromTo interfaces).

When an object is marked asinactivatable, KRAD will give us some nice features for handling the active
status:

» Validation of active statusfor foreign key fields

Aswe will seelater on in the section '‘Automatic Validation', KRAD can perform alot of the common
validation tasks for us. One of these is known as default existence checks. This is validation that is
performed on one or more user inputted fields to verify the value given exists in the related database
table. To perform this validation, the framework uses the configured relationship for the inputted fields
(inputted fields are the foreign keys). In addition to performing the existence checks, we can ask for
the active status to be verified as well. If the record exists but the active flag is false, an error message
will be displayed to the user.

* Inactivation Blocking

Changing the active status for a record to false (or inactive) is known as inactivation. Problems with
data integrity can occur if we inactivate a record that is referenced (by a foreign key relationship) by
another active record. For these cases we want to ensure the record with the relationship is inactivated
before the related record. Using afeature known as | nactivation Blocking we can disallow the user from
inactivating a record when this condition exists.

36

Data Objects

Inactive Collection Row Filtering

When displaying a collection with the UIF (User Interface Framework) whose items implement the
Inactivatableinterface, afilter ispresented allow the user to view all recordsor only thosethat are active.

Key Value Finders

Ul controls like the select and radio group can get their option values from a class known as
KeyValueFinder (more onthisin Types of Controls). For easy building of these option classes, the UIF
provides a generic configurable KeyV alueFinder that will excludeinactive records from the options list
if the option providing class implements Inactivatable.

Another specia type of business objects are code/name objects. These objects all contain a field
that represents a code, and a field that gives the name for that code (or description). In many
cases these are the only two fields present. Business objects of this type should implement
the org.kuali.rice.krad.bo.KualiCode interface (or extend org.kuali.rice.krad.bo.KualiCodeBase). When
presenting code values that have arelated object of type KualiCode, the framework will do translation to
display the name or the code and name.

Tip
Planned Feature

Code Table: In the future KRAD will provide the facilities for storing KualiCode objectsin a
single code table. This will allow new codes to be created quickly (without the need for a table

and mapping).

RECAP

OJB

Data objects are standard JavaBeans that hold application data. Generally, the data from these objects
is persisted to the database with use of an ORM tooal.

Metadata provides the mapping between a data object class and a database table. Each object property
is mapped to a table field, and one-to-one, one-to-many, and many-to-many relationships can be
configured.

Data objects are a central piece to the KRAD framework. These objects and their metadata are used to
provide features such as inquiries, lookups, maintenance, and validation.

A business object is a specia kind of data object that provides properties and methods for persistence
and other framework functionality.

All persistable data objects should have the version number and object id properties.
Business objects that have an active status implement the Inactivatable interface.
KRAD provides additional functionality for inactivatable objects.

KualiCode represents a business object that has a code and name property.

Primer

Apache ObJectRelationalBridge (OJB) is an Object/Relational mapping tool that alows transparent

persistence for Java Objects against relational databases. OJB takes care of building and executing all the
necessary database statements (SQL) for managing the persistence of an application's data. This not only

37

http://db.apache.org/ojb/

Data Objects

saves a lot of development time, but also alows for easier support of multiple database vendors. This
section will cover the basics of OJB necessary for KRAD development.

Tip

The OJB Project: OJB is a'dead' project, meaning no active work is being done to enhance the
codebase. Riceis in the process of migrating from OJB to JPA (Java Persistence Architecture)
with aHibernate backend. Thetimeline for completion of that work isin 2013 with the rel ease of
Rice2.3. Itispossible currently to use JPA in aRice application, however some of the persistence
features provided need to be implemented by the application.

We make use of OJB with XML that provides the mapping metadata. Generally each application module
has one or more files that contain this XML. These files are picked up through the module configuration

(see New Project Setup):
1 <bean id="sanpl eAppMdul eConfiguration" class="org. kuali.rice.krad. bo. Modul eConfi guration">
2 ce
3 <property name="dat abaseRepositoryFil ePat hs">
4 <list>
5 <val ue>QJB-r eposi t ory- sanpl eapp. xm </ val ue>
6 </list>
7 </ property>
8 </ bean>

OJB XML METADATA

All OJB files must begin with the standard XML declaration, and then the OJB doctype tag (root element):

<?xm version="1.0" encodi ng="UTF-8"?>
<descriptor-repository version="1.0">

A WN P

</ descriptor-repository>

Next, our OJB file must contain a jdbc-connection-descriptor which configures the database connection
OJB will use for the contained mappings:

1 <j dbc-connection-descri ptor
2 jcd-alias="dataSource" default-connection="false"
3 jdbc-1evel ="3.0" eager-rel ease="fal se" batch-npde="fal se" useAut oConmi t ="0"
4 i gnor eAut oConmi t Excepti ons="f al se"> <obj ect-cache
5 cl ass="org. apache. oj b. br oker. cache. Obj ect CachePer Broker | npl " />
6 <sequence- manager
cl assNane="org. kual i . ri ce. core. framework. persi stence. oj b. Confi gur abl eSequenceManager ">
7 <attribute attribute-name="property.prefix" attribute- val ue="datasource. ojb. sequenceManager" />
8 </ sequence- manager >
9 </jdbc-connection-descri ptor>

Note that jcd-alias="dataSource" refers to the name of the data source configured in spring bean XML.
Also note the use of the Rice ConfigurableSequenceManager. This allows configuration through the Rice
configuration API of the sequence for a property (such as starting sequence value).

CLASS DESCRIPTORS

New data object mappings are added to OJB by adding aclass-descriptor tag. One or more class descriptors
can be added to an OJB file after the jdbc-connection-descriptor. With the class descriptor, we must specify
the fully qualified java class for mapping with the class attribute and the database table name with the
table attribute:

38

http://www.oracle.com/technetwork/articles/javaee/jpa-137156.html

Data Objects

1 <cl ass-descriptor class="org.kuali.rice.krad.denpo.travel.account. Travel Account" tabl e="TRV_ACCT">
2 o
3 </cl ass-descriptor>

FIELD DESCRIPTORS

Now that we have our object-table mapping with the class descriptor, we can start mapping the primitive
fields of our object using a field-descriptor tag. We place the field descriptors inside our class descriptor,
indicating they all belong to that class. With the field descriptor we must specify the property hame using
the name attribute, and the table column name using the column attribute. In addition, we need to specify
the JDBC type for the table column using the jdbc-type attribute. This indicates to OJB how it should
convert the value between the database and object layers.

1 <field-descriptor name="nane" col um="acct_nanme" jdbc-type="VARCHAR' />

Some common jdbc types and their corresponding Javatype are as follows:

Table3.1. JDBC Typesto Java Type

JDBC Type JavaType
VARCHAR String

NUMERIC BigDecimal
DECIMAL BigDecimal
INTEGER int

BIGINT long

DOUBLE double

DATE javasgl.Date
TIMESTAMP javasgl. Timestamp
CLOB clob

DATATYPE CONVERSION

Based on the given jdbc type, OJB can then convert the database val ue to the appropriate type for the base
Javatypes. However, KRAD provides some additional datatypes, and applications may develop their own
as well. In these cases, OJB will not be able to convert the value itself. However, OJB does provide a
conversion facility that we can hook into and perform the necessary conversion.

We must create a class that implements the 0oJB interface
org.apache.ojb.broker.access ayer.conversions.FieldConversion. This requires us to then implement two
methods. The first is named javaToSql and is invoked to convert the custom Java type to one of the Java
types supported by OJB. The second method is named sglToJava and is invoked to convert the value
coming from the database to our custom type. In short, OJB will perform the standard conversion based
on the table above, then invoke our converter class to convert from the base Java type to the custom type.

public class Q bKual i Deci nal Fi el dConversion i nmpl enents Fiel dConversion {
private static final |ong serial VersionU D = 2450111778124335242L;

| **

* @ee Fiel dConversi on#j avaToSql (Obj ect)
*/

public Cbject javaToSqgl (Object source) {
Obj ect converted = source;
if (source instanceof KualiDecinal) {
converted = ((KualiDecimal) source).bigDeci mal Val ue();
}

39

Data Objects

return converted;

}
| **

* @ee Fiel dConversi on#sqgl ToJava(Qbj ect)
*
/

public Object sqgl ToJava(Object source) {
bj ect converted = source;
if (source instanceof BigDecinal) {
converted = new Kual i Deci mal ((Bi gDeci mal) source);
} return converted;

Thisisan example of aconverter provided by KRAD for the custom KualiDecimal type. In thejavaToSql
method, we are converting the KualiDecimal to a BigDecimal, which OJB can then convert to the JDBC
type. In the sgl ToJava method, we take the BigDecimal value coming from the database and create a new
KualiDecimal type.

Once we have a converter class (or one is provided), we need to tell OJB to use it by specifying the full
class name for the converter on the field descriptor using the conversion attribute:

1 <field-descriptor name="price"
2 col um="PRI CE" j dbc-type="DECI MAL"
3
conversion="org. kual i.rice.core.framework. persi stence. oj b. conversi on. § bKual i Deci nal Fi el dConversi on"/ >

It is necessary to add the conversion attribute for each property that has a custom type.

RICE CUSTOM DATATYPES

Rice provides the following custom data types and OJB converters:

Table 3.2. Custom Data Types and OJB Converters

Datatype Purpose Converter

KualiDecimal Provides a standard paradigm for handling | OjbKualiDecimalFieldConversion
BigDecimal

Kualilnteger Provides a standard paradigm for handling | OjbKualilntegerFieldConversion
Biglnteger

KualiPercent Essentially the same as KualiDecimal with the| OjbKualilntegerFieldConversion
addition of extra constructors

Thesethree datatypes provide astandard way of handling scale and rounding. In the case of KualiDecimal,
the scaleis set to 2, and the rounding behavior is'Round Half Up'. Kualilnteger has a scale of 0, and uses
'Round Half Up' rounding as well (for operations with decimal types).

Tip
Round Hal f Up: Round Half Up isacommon rounding strategy in particular within financial
applications. To calculate the rounded value, we add 0.5 to the value and then use the floor

function (largest integer that does not exceed value). For example, 23.5 rounds to 24, 23.4 round
to 23, -23.5 rounds to -23, -23.6 rounds to -24.

In addition to the convertors provided by Ricefor the custom datatypes, afew additional special convertors
are provided.

The first of these is OjbCharBooleanConversion. A typical practice in legacy systems (before the
introduction of database Boolean types) is to represent a Boolean by a single character string. Some

40

Data Objects

common mappings are 'T' for true : 'F for false, or "Y' for true : 'N' for false. The Rice Boolean converter
can be specified for a field to convert these string values to the correct Boolean property type. Other
variations of the Boolean converter exist for other mapping strategiessuchas'1' : '0", 'A": 'I', 'true' : 'false,
and 'yes : 'no'.

Finally, Rice provides a converter for encrypting secure database contents. The name of this converter is
OjbKualiEncryptDecryptFieldConversion. Thisconverter relies on the EncryptionService implementation
to perform the encryption. Values are encrypted for storing in the database and then decrypted for object
population.

OTHER FIELD DESCRIPTOR ATTRIBUTES

1
2
3
4

B WNPE

All field descriptors must have the name, column, and jdbc-type attributes. In addition to these we can
make use of other OJB attributes to provide further column information.

Foremost among these is the primarykey attribute. This attribute simply takes a Boolean value of true (by
default false for al columns) to indicate the column for the field descriptor is a primary key. All class
descriptors must have at least one field descriptor with the primarykey="true" attribute. OJB uses the
primary key information in many places, including determining whether to do aninsert or update statement
(see 'The BusinessObjectService' for more information). In addition, primary keys are used for linking
relationships.

Compound keys are configured by adding the primarykey="true" attribute to more than one field:

<cl ass-descriptor class="org.kuali.rice.kew doctype. Docunent TypePol i cy" tabl e="KREW DOC_TYP_PLCY_RELN T">
<fiel d-descriptor nanme="docunent Typel d" col um="DOC_TYP_I D' jdbc-type="VARCHAR' primarykey="true"/>
<fiel d-descriptor name="policyNane" col um="DOC_PLCY_NM' jdbc-type="VARCHAR' pri marykey="true"/>

A single primary key field can also be a surrogate key for which a sequence is used to generate the key
values. We can indicate to OJB that the primary key is a sequence using the autoincrement and sequence-
name attributes:

<cl ass-descriptor cl ass="edu. sanpl eu. bookst ore. bo. Book" tabl e="BK_BOOK_T">
<fiel d-descriptor name="id" col um="BOOK_I D' jdbc-type="BI G NT" primarykey="true" autoincrement="true"
sequence- nane="BK_BOOK_ID_S" />

In this class descriptor for Book, we have a primary key field named 'id'. Furthermore, the values for the
book id field are generated by a sequence named 'BK_BOOK_ID_S. When OJB performs an insert on
the BK_BOOK_T table, it will retrieve the next value from the book id sequence and use it as theid for
the new record.

Tip

Sequence Nane: Requiredness of the sequence-name attribute depends on the sequence
manager being used (configured through the jdbc-connection-descriptor). OJB supports severa
sequence managers that have different strategies for generating the ID (some not requiring an
actual database sequence). However, the recommendation is to use the provided Rice sequence
manager which does rely on a database sequence.

Now that we have our primary key fields set, recall the recommendation that all persisted objects carry the
version number and object id properties. We can map these properties with the follow field descriptors:

1 <field-descriptor name="versi onNunber" col utm="VER_NBR"' j dbc-type="BI G NT" | ocking="true" />

41

Data Objects

2 <field-descriptor name="objectld" colum="0BJ_ID"' jdbc-type="VARCHAR' indexed="true" />

Note the locking and indexed attributes. The locking attribute tells OJB to use this column to perform
optimistic locking and only one field descriptor may have this attribute set to true. The indexed attribute
indicates to OJB that we have a database index on this field. OJB can then use that information for
optimizing queries.

REFERENCE DESCRIPTORS

After mapping all of the class primitive fields using field descriptors, we must then map our relationships
to other data objects. In code, these relationships are properties just like the primitive fields that persist
to table columns. However, the difference with these properties is their type is another data object (in the
case of 1-1) or acollection of other data objects (in the case of 1-many).

First, let's take the case of 1-1 relationships. To map these we use the reference-descriptor tag. A class
descriptor can contain one or more reference-descriptor tags. When using a reference descriptor tag we
must specify the name attribute which holds the name of the property we are describing (similar to the
name attribute in a field descriptor). Then we must specify the class of the related object using the class-
ref attribute.

For exampl e, suppose we had the following property in our Book data object that references a BookType:

public class Book extends Persistabl eBusi ness(bj ect Base {

private BookType bookType

Our corresponding reference descriptor will then be:

1 <reference-descriptor name="bookType" class-ref="edu. sanpl eu. bookst or e. bo. BookType"/ >

WN P

We are not quite finished though with our reference descriptor. OJB can now determine we have aforeign
key relationship from Book to BookType, and it knows the primary key fields for BookType, but which
fields of Book are the actual foreign keys? To fill in this information, within our reference descriptor we
must add a foreign key field for each primary key field of BookType.

<ref erence-descri ptor name="bookType" cl ass-ref="edu. sanpl eu. bookst ore. bo. BookType" >
<foreignkey field-ref="typeCode" />
</ reference-descriptor>

When using the foreignkey tag, we must specify the field-ref attribute whose value isthe name of thefield
in the class holding the relationship (in this case Book) that is the foreign key. The number of foreignkey
tags must match the number of primary key fieldsin our class descriptor. Note aso the order the foreign
keysare declared must match the order in which they join to the primary keys. For example, if our reference
target class has primary key fields code and subCode, and we have foreign keys fkCode and fkSubCode,
the following configuration would be incorrect:

<reference-descriptor name="subCode" cl ass-ref="edu.sanpl eu. SubCode" >
<foreignkey field-ref="fkSubCode"/>
<foreignkey field-ref="fkCode" />

</ reference-descriptor>

Here the order of foreign keys is reversed which will cause OJB to join the fkSubCode with code, and
fkCode with subCode.

42

Data Objects

Similar to thefield descriptor, OJB provides additional attributeswe can specify for areference descriptor.
Three of these attributes are prefixed with 'auto-' and designate how OJB should handle the reference
during retrieve, update (or insert), and delete operations. The first of these is the auto-retrieve attribute,
and indicates whether the reference should be retrieved when the main (or parent) object is retrieved.
The attribute can be specified as 'false’ (reference should not be retrieved) or 'true’ (reference will be
retrieved). When auto-retrieve=false is specified, the reference object will be null on the main object after
retrieval. OJB provides mechanisms for retrieving the reference through code, which will be discussed in
the upcoming section 'Reference Refreshing'.

The auto-update attribute specifies whether the reference object should be updated when an update is done
on the main object. This attribute can have a value of 'none' — meaning no update should happen for the
reference—and 'object' — meaning the reference record should be updated with the main object. In addition,
an option of 'link' can be specified, which isjust relevant for one-to-many relationships. This performs an
update on the indirection table, but not the actual reference table.

Thefinal auto attribute is auto-del ete, which indicates whether the reference object should be deleted when
the main object is deleted. Similar to auto-update, 'non€, 'link’, or ‘object’ can be given for the value.

Care must be taken when setting the auto-retrieve attribute. Having the reference ready without having
to make an extra call is a great programming convenience. However, performance can suffer due to the
time required to initially load the reference objects with the main object, in particular for objects with
several relationships. Furthermore, optimizing the auto-retrieve setting can be difficult, due to it being a
global setting, and the devel oper often not knowing when the reference data will be needed. Don't worry
though; OJB has another attribute we can use! This attribute is named proxy and can have avalue of 'true
or 'false' (the default). Adding proxy=true to our reference descriptor allows OJB to use lazy loading for
our reference. Essentially, this allows us to use the reference when needed without making an additional
call, but the full record is not loaded initially with the main object which will help performance. To make
this work, OJB will initially create a proxy object for the property value. When a method is invoked on
the proxy object (such as a getter or setter), OJB will fetch the record and populate the reference object.

Tip

Using Proxies: Note that using proxy=true changes when the reference object is loaded, and
works best for cases where the reference record is often not needed. For caseswhere the reference
record is usually needed, loading up front with the main object is a better choice. In particular,
proxies can lead to issues with alarge number of SQL calls being made when generating the U.

Using the proxy attribute on a reference can aso cause issues with code logic. Recall that OJB
will not attempt to retrieve the reference upfront when proxy=trueis given, and setsthe value for
our reference property to the proxy. One side effect of thisisthat doing a standard null check on
areference object can give us false information.

For example, suppose we do a null check on our bookType reference and if not null return the
name of the book type:

if ((book !'= null) && (book.getBookType() != null)) {
return book. get BookType(). get Nanme();
}

In this example, it is possible to get a NullPointerException on our return statement! This is
because initially OJB has set the book Type property to the Proxy object, which is not null. When
we invoke the getName() property, OJB will then attempt to execute the retrieval of the book
type. Now it is possible that book type does not exist, which will cause the bookType object to
be null. Then invoking getName() on a null will cause the Null PointerException.

43

Data Objects

Collection Descriptors

Similar to the reference descriptor, the collection descriptor maps a reference (nested) data object in the
database. However, collection descriptors are used for one-to-many relationships where the property is
alList type.

To map these we use the collection-descriptor tag. A class descriptor can contain one or more collection-
descriptor tags. When using a collection descriptor tag, we must specify the name attribute which holdsthe
name of the property we are describing (similar to the name attribute n reference descriptor). Then we must
specify the class of the related object using the class-ref attribute (again similar to reference descriptor).

For example, suppose we had the following property in our Book data object that references a List of
Authors:

public class Book extends Persistabl eBusi ness(bj ect Base {

private List<Author> authors

Our corresponding collection descriptor will then be:

1 <col l ection-descriptor name="aut hors" class-ref="edu. sanpl eu. bookst or e. bo. Aut hor"/ >

When configuring acollection descriptor, the foreign key direction goesfrom the target classto the source.
That is, we need to specify the field in the target class (in this case Author) that maps to the primary key
of the source class (Book). Thisis done using the inverse-foreignkey tag:

1 <col l ection-descriptor name="bookType" cl ass-ref="edu. sanpl eu. bookst ore. bo. Aut hor">
2 <inverse-foreignkey field-ref="bookld" />
3 </collection-descriptor>

The collection descriptor supports the same auto-x attributes we saw in reference descriptor. Figure 3.1,
“Building Blocks’ gives a picture of the reference and collection descriptors

Data Objects

Figure 3.1. Building Blocks

OJB Descriptors

Business Object
prop

Class Dysseniplor

Filed Descriptor|s)

prop

prop
ref

Referance Descripbor

Business Object
;jlr'|:;||_';-
;jr'lj:l_';u
HiQp
List <ref> Collecton

RECAP

Table

PE Column
Coolumn

FK Column

Table

PK Column
Column
Column

Table

PE Calurmin
Coolurmn

FK Colurmin

Table

PE Column
Column
Colurmn

« OJB isan Object/Relational mapping tool that allows transparent persistence of Java objects.

« Because OJB is not active, the Rice project is converting to JPA.

¢ Object mappings are defined with XML in OJB files.

e These XML files are picked up through the module configuration.

¢ A classdescriptor isatag that maps a Java object to a database table.

« A OJB file can contain one or more class descriptors.

¢ A field descriptor isatag nested within a class descriptor that maps a property of the object to acolumn.

¢ On the field descriptor we must specify the jdbc-type so OJB knows how to convert the data (both

directions).

¢ OJB does not know how to convert custom data types such as KualiDecimal.

« Inthese cases, we need to implement a FieldConversion class that performs the conversion of data.

45

Data Objects

Rice provides the following OJB field convertors:

* OjbKualiDecimal FieldConversion —used to convert between aKualiDecimal and aJavaBigDecimal.
« OjbKualilntegerFieldConversion — used to convert between a Kualilnteger and a Java Biglnteger.

» OjbKualiPercentFieldConversion — used to convert between a KualiPercent and a Java BigDecimal.

« OjbCharBooleanConversion — used to convert between varchar fields (‘'T-F, '1- 0, 'yes-no', 'true-
false") and boolean types.

* QjbKualiEncryptDecryptFieldConversion — used to encrypt/decrypt the field value.
On the field descriptor we can also specify the attributes:
o primarykey —indicatesthe field isa primary key.

 autoincrement, sequence-name—indicatesthefield value should be auto- incremented using the given
sequence name.

» indexed — indicates there is an index on the column.

A reference descriptor is atag within a class descriptor that maps a one-to-one rel ationship between the
class and another mapped class.

When configuring a reference descriptor we must specify the foreign key field(s).

On the reference descriptor we can also specify the attributes:

* auto-retrieve — indicates whether the reference object should be retrieved when the parent object is.
 auto-update — indicates whether the reference object should be updated when the parent object is.

« auto-delete — indicates whether the reference object should be del eted when the parent object is.

proxy —indicates the reference object should be proxied, meaning it will be fetched when needed (when
amethod isinvoked).

A collection descriptor is atag within a class descriptor that maps a one-to-many relationship between
the class and another mapped class.

When configuring a reference descriptor we must specify the inverse foreign key field(s).

46

Chapter 4. The Data Dictionary

Introduction to the Data Dictionary

The datadictionary isthe main repository for metadata storage and provides the glue to combining classes
related to a single piece of functionality. The data dictionary is specified in XML and alows for quick
changesto be madeto functionality. The DataDictionary files use the Spring Framework for configuration,
so the notation and parsing operation will match that of the files that define the module configurers.

The contents of the data dictionary are defined by two sets of vocabularies; the 'business object' and the
‘document’ data.

Recap

e The DataDictionary is arepository of metadata primarily describing data objects and their properties
* Metadata is provided through Spring bean XML

e Useof Spring allowsfor easy overriding by implementers

» Datadictionary files are configured through the module configuration

» Much functionality provided by the KRAD frameworks rely on the metadata provided by the data
dictionary

* In addition to describing data objects, the data dictionary is aso used to configure framework behavior
(for example 'business rule class)

e The data dictionary beans are loaded into a separate Spring bean container whose information can be
accessed through the Data Dictionary Service

Attribute Definitions

©oO~NOOUTOAWNPR

Attribute definitions are used to provide metadata about the attributes (i.e. fields) of abusiness object. The
following is a sampling of attribute definitions from the Campusimpl business object data dictionary file:

<bean i d="Canpus- canpusCode- par ent Bean" abstract="true" parent="AttributeDefinition">
<property name="forceUppercase" value="true"/>
<property nanme="shortLabel " val ue="Canpus Code"/>
<property nanme="validationPattern">
<bean parent="Al phaNunericVal i dationPattern"/>
</ property>
<property name="required" value="true"/>
<property name="control ">
<bean parent="Text Control Definition" p:size="2"/>
</ property>
<property name="summary" val ue="Canpus Code"/>
<property nanme="nanme" val ue="canpusCode"/>
<property nanme="|abel " val ue="Canpus Code"/>
<property name="description" val ue="The code uniquely identifying a particular canpus."/>
</ bean>

47

The Data Dictionary

In client applications, it is common that several business objects share a field representing the same type
of data. For example, a country's postal code may occur in many different tables. In these circumstances,
the use of a parent bean reference (parent="Country-postal CountryCode") definition allows the reuse of
parts of a standard definition from the "master" business object. For instance, the Statelmpl business
object (business object data dictionary file State.xml) references the postal CountryCode property of the
Countrylmpl (business object data dictionary file Country.xml). Because the postal CountryCode fieldsin
Statelmpl and Countrylmpl are identical, a simple attribute definition bean in the Business Object data
dictionary file (State.xml) can be used:

[N

2 <bean id="Stat e- post al CountryCode" parent="Country-postal CountryCode- parent Bean"/>

The definition of the Country-postal CountryCode-parentBean bean is seen inside the Country.xml file (for
the Countrylmpl business object):

1
2 <bean i d="Country- postal CountryCode- parent Bean" abstract="true" parent="AttributeDefinition">
3 <property name="nanme" val ue="postal CountryCode"/>
4 <property nanme="forceUppercase" val ue="true"/>
5 <property name="| abel " val ue="Country Code"/>
6 <property name="shortLabel " val ue="Country Code"/>
7 <property name="maxLength" val ue="2"/>
8 <property name="val i dati onPattern">
9 <bean parent="Al phaNurericVal i dati onPattern"/>
10 </ property>
11 <property name="required" value="true"/>
12 <property nanme="control ">
13 <bean parent="Text Control Definition" p:size="2"/>
14 </ property>
15 <property name="summary" val ue="Postal Country Code"/>
16 <property name="description" val ue="The code uniquely identify a country."/>
17 </ bean>
18
Recap

» An Attribute Definition provides metadata about a single data object property
 Created with a bean whose parent is "AttributeDefinition" (or another attribute definition bean)
 Propertiesthat can be configured include:

« name (required) — name of the property on the data object the definition describes

« |abel —labdl text to use when rendering the property

« shortLabel —short label text to use when rendering the property

« minLength/maxL ength — min and max length avalue for this property can have

» required — whether a value for this property is always required (usually refers to persistence
reguiredness)

« validationPattern — a validation constraint that appliesto any property value
« controlField (and control) — the control component to use by default when rendering the property

» summary/description — help information for the property

48

The Data Dictionary

Data Object and Business Object Entries

Data Object entries provide the KRAD framework extrametadata about a data object which isnot provided
by the persistence mapping or the class itself.

The data object entry contains information about:

» Descriptive labels for each attribute in the data object (data dictionary terminology uses the term
"attribute” to refer to fields with getter/setter methods)

» Primary keys for the data object

M etadata about each attribute
How input fields on HTML pages should be rendered for an attribute (e.g. textbox, drop down, etc.)

Relationships and collections that exists for the data object

The following is an example of a data object entry:

1
2 <bean i d="Book" parent="Book- parentBean"/>
3 <bean i d="Book- parent Bean" abstract="true" parent="DataCbjectEntry">
4 <property name="dat albj ect Cl ass" val ue="edu. sanpl eu. bookst or e. bo. Book"/ >
5 <property name="obj ect Label " val ue="Book"/>
6 <property name="col | ecti ons">
7 <list>
8 <bean parent="Col | ecti onDefinition" p:name="authors" p:|abel ="Authors" p:shortLabel =" Aut hors"
9 p: el ement Label =" Aut hor "/ >
10 </list>
11 </ property>
12 <property name="attributes">
13 <list>
14 <ref bean="Book-id"/>
15 <ref bean="Book-title"/>
16 <ref bean="Book-typeCode"/>
17 <ref bean="Book-isbn"/>
18 <ref bean="Book- publisher"/>
19 <ref bean="Book-publicati onDate"/>
20 <ref bean="Book-price"/>
21 <ref bean="Book-rating"/>
22 <ref bean="Book-bookType-nanme"/>
23 </list>
24 </ property>
25 <property name="titleAttribute" value="id"/>
26 <property name="pri naryKeys">
27 <list>
28 <val ue>i d</ val ue>
29 </list>
30 </ property>
31 </bean>
32
Rec ap

» A Data Object (or Business Object) Entry provides metadata about a data object

 Created with a bean whose parent is "DataObjectEntry” (or extending another data object entry bean)

* Propertiesthat can be configured include:

« dataObjectClass(required) — full classname for the data object being described

49

The Data Dictionary

» objectLabel —label text to use when rendering a data object record

« dataObjectClass(required) — full classname for the data object being described

« objectLabel —label text to use when rendering a data object record

e primaryKeys—list of property names that make up the primary keys

« titleAttribute — name of the property to use as arecord identifier

« attributes—list of attribute definitions for properties contained in the data object

« relationships/collections — list of relationship (1-1) and collection (1-many) definitions for the data
object

Relationship and Collection Definitions

Coming Soon!

Constraints

Constraints define what the acceptable values for afield are.

Thereareavariety of constraintsthat can be defined at either the InputField level or the AttributeDefinition
level. These constraints go by the exact same property name at both levels. Keep in mind that constraints
defined at the InputField level always override those at the AttributeDefinition level (when the field is
backed by an AttributeDefinition).

Constraints are applied during a process called Validation. Validation can occur on the client during user
input, on the server during a submit process, or both. By default, client-side validation is on and server-
sidevalidation is off for FormViewsin Rice 2.0.

Some constraints mimic those that werein available in the Rice KNS framework and go by similar names.
To help identify which constraints are new and should be used to build KRAD compatible InputFields and
AttributeDefinitions, the constraints are all followed by a suffix in both their bean and java class names
of "Constraint".

All constraints are enforced client-side during validation, unless noted below.

Simple Constraint Properties
Requi r ed
Property: required
Values: trueif required otherwise false

When afield isrequired, the field must have some input value for it to be considered valid

1
2 <bean parent="Uif-InputField" p:required="true" p:propertyNane="fieldl">...</bean>

M nLengt h

50

The Data Dictionary

Property: minLength

Vaues: integer, O or greater

When aminLength is set, the input value's character length cannot be less than minLength.
MaxLengt h

Property: maxLength

Values: integer - O or greater

When amaxL ength is set, theinput value's character length cannot be greater than maxL ength. MaxL ength
should be set to a greater value than minLength (if set).

1
2 <bean parent="Uif-InputField" p:mnLength="1" p: maxLengt h="8" p: propertyNane="fiel d1">...</bean>

Excl usi veM n
Property: exclusiveMin
Values: String representing a number or date value

When exclusiveMinis set to a number, and the input's value is anumber, that number must be greater than
exclusiveMin. If exclusiveMinis set to adate, and the input's valueis adate, that date must be greater than
exclusiveMin. Note that for dates, exclusiveMin validation is not enforced client-side, but the DatePicker
widget will limit date selection based on this value (though the widget will limit min inclusively - not
exclusively - so values should still be checked server-side).

I ncl usi veMax
Property: inclusiveMax
Values: String representing a number or date value

When inclusiveMax is set to a number and the input's value is a number, that number must be less than,
or equal to, inclusiveMax. If inclusiveMax is set to adate and the input's value is adate, that date must be
less than, or equal to, inclusiveMax. Note that for dates, inclusiveMax validation is not enforced client-
side, but the DatePicker widget will limit date selection based on this value.

1
2 <bean parent="Uif-InputField" p:exclusiveMn="0" p:inclusiveMax="500" p: propertyName="fiel d1>...</bean>

dat aType
Property: dataType

Vaues: STRING, MARKUP, DATE, TRUNCATED_DATE, BOOLEAN, INTEGER, FLOAT,
DOUBLE, LONG, DATETIME

When dataTypeis set to one of the above types, it checksto seeif the input's value can be converted into
that type. Thisis not enforced client-side and can only be enforced during server-side validation.

1
2 <bean parent="Uif-InputField" p:dataType="1NTEGER' p: propertyNanme="fiel d1">...</bean>

51

The Data Dictionary

m nCccur s/ maxQccur s

Thisconstraint isnot yet fully supported. The name and location may changein the future. Futureintended
useisto constrain total collection itemsin a collection.

SimpleConstraint

The SimpleConstraint class is a constraint that contains all of the simple constraint properties (identified
above) within it. These are:

* required

» maxLength

* minLength

» exclusiveMin

* inclusiveMax

 dataType

* minOccurg/maxOccurs

The SimpleContraint is used within InputField to store the settings you can set directly through its simple
constraint properties. SimpleConstraint itself can aso be set directly on the InputField bean, and will

override al settings that may have been set through a simple constraint property on InputField. Beyond
this usage, SimpleConstraint's main roleis to allow the usage of simple constraints in CaseConstraints.

Complex Constraints

Therest of the constraints allow more complex validation to occur on input values. All of these constraints
allow the setting of a messageK ey property if you would like to redefine the message that is shown when
validation encounters an error. By default, all complex constraints already have amessage predefined with
parameters generated for that message, and it is recommended you use the already defined messages in
most cases, except for a few when noted below. The base beans for all of the following constraints are
defined in DataDictionaryBaseTypes.xml.

Validation Patterns

~NOoO O~ WNPRE

VdidCharacterConstraints allow you to constrain the alowed input on a field to a set
combination of characters by using regex (Regular Expressions). There are a variety of predefined
VaidCharacterConstraints availablein KRAD, but the ability to easily create your ownisavailable aswell
using standard regex. A ValidCharacterConstraint is set through the validCharacterConstraint property on
either an InputField or AttributeDefinition. This constraint mimics, but enhances, constraints availablein
the original KNS called ValidationPatterns. However, do not use ValidationPatternsin KRAD asthey are
deprecated and no longer used.

<bean parent="Uif-InputField" p:propertyNanme="fiel d62">
<property nanme="val i dCharactersConstrai nt">

<bean parent="Al phaNuneri cPatternConstraint" />

</ property>

</ bean>

52

The Data Dictionary

The predefined beans for VaidCharacterConstraint are:
Al phaNureri cPat t er nConst r ai nt

Only alphabetic and numeric characters allowed.

Al phaPat t er nConstr ai nt

Only alphabetic characters allowed.

AnyChar act er Pat t er nConst r ai nt

Only keyboard characters are allowed. Specifically, these are ASCII characters x21 through X7E in
hexadecimal. Whitespace is not allowed by default, unless enabled through the allowWhitespace flag.

Char set Pat t er nConst r ai nt

Allows any characters set through its validCharacters property.
Numrer i cPat t er nConst r ai nt

Only numeric characters allowed.

Al phaNumer i cW t hBasi cPunc

Only alphabetic and numeric characters with whitespace, question marks, exclamation points, periods,
parentheses, double quotes, apostrophes, forward slashes, dashes, colons, and semi-colons alowed. This
isan additional configuration of AlphaNumericPatternConstraint with some "allow" flags turned on.

Al phaW t hBasi cPunc

Only alphabetic characters with whitespace, question marks, exclamation points, periods, parentheses,
double quotes, apostrophes, forward slashes, dashes, colons, and semi-colonsallowed. Thisisan additional
configuration of AlphaPatternConstraint with some "alow" flags turned on.

Nunmeri cWt hQper at ors

Only numeric characters with whitespace, asterisks, pluses, periods, parentheses, forward slashes, dashes,
and equals signs, dashes alowed. This is an additional configuration of NumericPatternConstraint with
some "allow" flags turned on.

Fi xedPoi nt Pat t er nConstr ai nt

Only alows a numeric value where the precision property represents the maximum number of
numbers allowed, and scale represents the maximum numbers after the decimal point. For example, a
FixedPointPatternConstraint with precision 5 and scale 2 would alow: 2, 555, 555.11; but would not allow:
111.222, 1.222, 5555 (this is actually the value 5555.00, so it is not allowed).

I nt eger Pat t er nConst r ai nt

Allows any valid integer (but does not restrict length or range). There are optional flags for alowing
negative integers, only negative integers, or not allowing zero as input.

Dat ePat t er nConst r ai nt

Allows any date to be input that is a valid date in the system. Any format defined in the configuration
parameter "STRING_TO_DATE_FORMATS" is allowed.

Basi cDat ePat t er nConst r ai nt

53

The Data Dictionary

Allows a subset of the default date formats defined by DatePatternConstraint. These formats represent
the most common input for date values: MM/dd/yy, MM/ddlyyyy, MM-dd-yy, and MM-dd-yyyy. It is
recommended that this constraint be used on fields which use the DatePicker widget.

Confi gur ati onBasedRegexPat t er nConst r ai nt

The following constraints are configurations of the ConfigurationBasedRegexPatternConstraint
which have a patternConstraintkKey that is used to retrieve a regex pattern by key in
ApplicationResources.properties (or any other imported properties file). This differs from the above
ValidCharactersConstraints because those generate their regex based on flags and options set on them.
These constraints can easily have their functionality modified by changing the regex they use in any
imported propertiesfile.

Custom Regex Constraints

Y ou can easily define your own ConfigurationBasedRegexPatternContraint bean by setting your
own messageK ey and patternConstraintK ey to something that you have defined in a properties
file.

Fl oat i ngPoi nt Pat t er nConstr ai nt
patternConstraintK ey: validationPatternRegex.fl oatingPoint

Allows any valid floating point value (does not limit length or range). In other words, any number which
may include a decimal point.

PhoneNunber Pat t er nConst r ai nt

patternConstraintK ey: validationPatternRegex.phoneNumber

Allows any valid US phone number in this format: ##-#H-#HHH:.

Ti mePat t er nConst r ai nt

patternConstraintK ey: validationPatternRegex.timel2

Allows any valid timein 12 hour format, seconds and leading Os are optional.
Ti me24HPat t er nConst r ai nt

patternConstraintK ey: validationPatternRegex.time24

Allows any valid time in 24 hour format, seconds and leading Os are optional.
Ur | Pat t er nConst r ai nt

patternConstraintK ey: validationPatternRegex.url

Allows any valid url; the prefixes http://, https://, or ftp:// are required.

NoWhi t espacePat t er nConst r ai nt

patternConstraintK ey: validationPatternRegex.noWhitespace

Any characters except for whitespace are allowed.

JavaC assPatt er nConstr ai nt

patternConstraintK ey: validationPatternRegex.javaClass

54

The Data Dictionary

Only values that would be valid java class names are allowed.
Emai | Addr essPat t er nConstr ai nt
patternConstraintK ey: validationPatternRegex.email Address
Only valid email addresses are allowed.

Ti mest anpPat t er nConst r ai nt

patternConstraintK ey: validationPatternRegex.timestamp
Only valid timestamp values are alowed.

Year Pat t er nConst r ai nt

patternConstraintK ey: validationPatternRegex.year

Any year from the 1600s to the 2100s is allowed.

Mont hPat t er nConst r ai nt

patternConstraintK ey: validationPatternRegex.month

Any valid month, by number, is allowed.

Zi pcodePat t er nConst r ai nt

patternConstraintK ey: validationPatternRegex.zipcode

Any valid US zip code, with or without its 4 number postfix, is allowed.

Custom Validation Patterns

In addition to the above defined VaidCharacterConstraints, you can define your own
VdidCharactersConstraint by defining the regex property "value' directly. This is an additional
configuration option, similar to defining a custom ConfigurationBasedRegexPatternConstraint,
the only difference being that the regex value is defined at the bean level and in a
ConfigurationBasedRegexPatternConstraint it is defined in an imported properties file. Both custom
configurations must have a messageK ey defined.

<bean parent="Ui f-InputField" p:instructional Text="customvalid characters
constraint - this one accepts only 1 al pha character followed by a period and
then followed by a nunber (a.8, b.0, etc)" p:propertyNane="fieldl">
<property name="val i dChar act ersConstrai nt">
<bean parent="Val i dCharactersConstraint" p:value=""[a-zA-Z]\.[0-9]$"
p: messageKey="val i dati on. aDot Nunirest "/ >
</ property>
</ bean>

COWWO~NOUD™WNPRE

[y

Prerequisite Constraints

A prerequisite constraint defines what fields must be filled out with this field (the field that the
PrerequisiteConstraint is defined on). When this field is filled out, it requires the field set in the
"propertyName" property of the PrerequisiteConstraint to be filled out as aresult.

55

The Data Dictionary

QCQOWoWO~NOOUAWNEPRE

=

During client-side validation, whether that field comes after or before that field isirrelevant, asthe Ul will
only natify the user when appropriate. For example, if you haven't yet visited afield that is now required,
the user will only be notified of an error after they havefirst visited this newly required field and have not
filled it out. Alternatively, if the field that is now required comes before the field that requiresiit, the user
will be notified immediately. These mechanisms are set up to prevent the Ul from showing errors before
the user had a chance to interact with the corresponding field within the overall page flow.

A field can have any number of PrerequisiteConstraints in their "dependencyConstraints’ property.

<bean parent="Uif-InputField p:propertyName="fieldl" >
<property name="dependencyConstraints">

<list>
<bean parent="PrerequisiteConstraint" p:propertyNane="field7"/>
<bean parent="PrerequisiteConstraint" p:propertyNane="field8"/>
</list>

</ property>

Prerequisite Constraints

A useful and common technique isto put a prerequisite constraint on both fields that may require
each other (example case: a measurement requires both a value and a unit, neither make sense
without the other).

Must Occur Constraints

©OoO~NOUOA_WNRE

MustOccurConstraint is used to identify fields that are required before thisfield can be filled out. Thisis
different from PrerequisiteConstraints because the number of fields required from a different set of fields
can be defined.

The MustOccurConstraint's min and max properties define how many PrerequisiteConstraints (defined
in its "prerequisiteConstraints’ property) in combination with the MustOccurConstraints (defined its
"mustOccurConstraints’ property) must be satisfied for this MustOccurConstraint to pass. Essentialy,
either a satisfied PrerequisiteConstraint or a satisfied MustOccurConstraint counts as one toward the min/
max.

The following MustOccurConstraint is valid when field11 has a value, or is valid when both field12 and
field13 hasavalue (min="2" and max="2" in the nested M ustOccursConstraint enforces that both must be
filled out). However, in this case, filling out all threefieldsis also valid because of min="1" and max="2"
on the top level constraint (there is one PrerequisiteConstraint and one MustOccursConstraint at the top
level). Alternatively, setting amax="1" at the top level would make this constraint only allow one of the
two conditions to be satisfied (otherwise, it would be invalid).

<bean parent="Uif-InputField" p:propertyName="fieldl">
<property name="nust Cccur Constrai nts">

<list>
<bean parent ="Mist Qccur Constrai nt">
<property name="mn" val ue="1" />

<property name="nmax" val ue="2" />
<property name="prerequisiteConstraints">

<list>
<bean parent="PrerequisiteConstraint" p:propertyNane="fieldl1"/>
</list>

</ property>
<property name="nust Cccur Constrai nts">
<list>
<bean parent="Mist Qccur Constrai nt">

56

The Data Dictionary

16 <property name="mn" val ue="2" />

17 <property name="nmax" val ue="2" />

18 <property name="prerequisiteConstraints">

19 <list>

20 <bean parent="PrerequisiteConstraint" p:propertyNane="fieldl2" />
21 <bean parent="PrerequisiteConstraint" p:propertyNane="field13" />
22 </list>

23 </ property>

24 </ bean>

25 </list>

26 </ property>

27 </ bean>

28 </list>

29 </ property>

30 </bean>

31

Must Occurs Constraint M essage

Because of the complexity that some MustOccurConstraints can achieve, the message generated
by MustOccurConstraint by default may not always be accurate or easy to understand. It is
recommended that you define your own messageK ey for complex MustOccurConstraints.

Case Constraints

A CaseConstraint provides the ability to only apply a certain constraint when a defined case/condition
is satisfied. The constraint or constraints used can be any of the above constraints, in addition to nesting
another CaseConstraint within itself.

CaseConstraint has the following properties:
propertyName - the name of the field the case is using in the condition.

operator - the name of the operator to use in the condition. By default, this operator is EQUALS.
Other operators available are NOT_EQUAL, GREATER_THAN_EQUAL, LESS THAN_EQUAL,
GREATER_THAN, LESS THAN, andHAS VALUE (thefield defined in propertyNamejust hasto have
any valueto trigger the case constraint when HAS VALUE is used).

caseSensitive - set thisto true if the condition should be caseSensitive when comparing values.

WhenConstraint list - alist of WhenConstraints which define the values for the condition to be satisfied.
If one of the values in the "values' property satisfies the condition, the constraint defined in this
WhenConstraint is applied to this field. Note that the value can also be the value of another field defined
by the "valuePath" property — however, this does not work client-side in thisrelease. The WhenConstraint
also defines the "constraint” to be applied if the condition is satisfied with that value.

In order to define an "ANDed" CaseConstraint, nest another CaseConstraint into a WhenConstraint
property. Alternatively, defining multiple WhenConstraints define an "ORed" CaseConstraint. Also, to
apply multiple constraints for one value use multiple WhenConstraints with the same value defined.

The following code makes field1 required when field2 is equal to "valueA" or "valueB". It also makes
field1 only allow aphanumeric input when field2 is equal to "valueA".

<bean parent="Uif-InputField" p:propertyName="fieldl">
<property name="caseConstraint">
<bean parent="CaseConstraint">
<property name="propertyNanme" val ue="field2" />
<property name="whenConstraint">
<list>

~NOoO O WNE

57

The Data Dictionary

8 <bean parent ="WhenConstraint">
9 <property name="val ues">
10 <list>
11 <val ue>val ueA</ val ue>
12 <val ue>val ueB</ val ue>
13 </list>
14 </ property>
15 <property name="constraint">
16 <bean parent="Requi redConstraint" />
17 </ property>
18 </ bean>
19 <bean parent ="WhenConstraint">
20 <property name="val ue" val ue="val ueA" />
21 <property name="constraint">
22 <bean parent="Al phaNuneri cPatternConstraint" />
23 </ property>
24 </ bean>
25 </list>
26 </ property>
27 </ bean>
28 </ property>

29 </ bean>

State-based Validation and Constraints

State-Based Validation allows you to change what validations (in other words, what Constraints) are
applied to an object's fields as it moves through states over time, through user interaction, or any other
mechanism that may affect a "state”" of an object. One example of statesin practice is workflow status.

If you do not setup states, the view is considered stateless and all Constraints that you setup will apply at
all times (note: this behavior is unchanged from prior releases).

Tosetup state-based validation you must set the stateM apping property with a StateM apping obj ect.
The object MUST include a list of states and these states MUST be in order that the states are
changed.

In addition to the states themselves, you can define a map for specifying what the state's name will bein
the text of validation messages. The map st at eNaneMessageKeyMap takes the state asakey and a
messageK ey as avalue for its entries. The messageKey is used to retrieve the human readable version of
the message from the ConfigurationService.

The st at ePr opert yName property of StateMapping allows you to specify the name/path to the
property on the form which represents the state. By default thisis set to "state”" (meaning on the root form
UifFormBase, stateMapping will use the "state" property to determine the state of the object). This can be
changed to anything and is used with the new property of View called stateObjectBindingPath (the path
to the "state" property will be determined as stateObjectBindingPath + statePropertyName).

The cust onCl i ent Si deVal i dat i onSt at es property is used strictly to define what state the
client-side validation (see corresponding section) should useto validate during user interaction. By defaullt,
client-side validation will always validate against the "n+1" state. What that means is that client-side
validation will always validate against the NEXT state (if one exists, otherwise the current state) of the
object because that is what the user istrying to get to.

To change this behavior the customClientSideV alidationStates map can be used to define what client-side
validation will be used at each state. Its entries take the state of the object as the key and the state you want
the client-side validation to validate against at that state as the value. States which don't have a custom
client-side validation state default to the "n+1" case, as normal.

Example of stateMapping with some of these properties set (note that state names themselves are for
exampl e purposes only):

58

The Data Dictionary

1 <property nane="st at eMappi ng">

2 <bean parent =" St at eMappi ng" >

3 <property name="states">

4 <list>

5 <val ue>st at el</ val ue>

6 <val ue>st at e2</ val ue>

7 <val ue>st at e3</ val ue>

8 <val ue>st at e4</ val ue>

9 <val ue>st at e5</ val ue>
10 </list>
11 </ property>
12 <property name="stat eNameMessageKeyMap" >
13 <map>
14 <entry key="statel" val ue="deno.statel"/>
15 <entry key="state2" val ue="deno. state2"/>
16 <entry key="state3" val ue="deno. state3"/>
17 <entry key="state4" val ue="deno. state4"/>
18 <entry key="state5" val ue="deno. state5"/>
19 </ map>
20 </ property>
21 <property name="custonCl i entSi deVal i dati onSt at es" >
22 <map>
23 <entry key="statel" val ue="state3"/>
24 </ map>
25 </ property>
26 </ bean>
27 </ property>

This example has 5 states, it defines a message key for each state, and for client-side validation when the
view's object isin "statel" the client will validate against "state3" (it will also validate against "state3"
in "state2" as normal). It is retrieving the current state of the object from the "state" property at the root
of the form (default).

StateM apping also has some hel per methods that can be called:
« get Current St at e retrieves what is the current state of the object this stateMapping is for

e get Next State which gets the next expected state (this does not take into account
customClientSideV alidationStates).

After you have the StateM apping object defined, you need to define states on your validation constraints
to use state-based validation.

Defining Constraint state Information

Constraints without states defined falback to "stateless' and will always apply for all states.
BaseConstraints now have aproperty called states. Thisrepresentsthelist of states at which that constraint
applies. If the list is empty or null, the constraint will apply at every state. If the list contains at least 1
item, the constraint will apply at ONLY the states specified. To limit the amount of xml required when
entering states, there are some helper patterns allowed in thislist. These are:

" +": when entering a state name followed by a plus sign, this means the constraint is applied to that state
and every state afterwards. Examples. "statel+", "[+"

">": used for ranges. The constraint will apply from one state to another state, and every state in between.
Examples. "statel>state3", "1>S"

Of course, you can just list single states by name in the list aswell.
These patterns can be mixed in the list itself. Example: p:states="statel, state3>stated, state6+"

In addition, other than determining if the constraint applies at a specific state or not, Constraints can also
change fundamentally over time. An example of this may be that what is allowed to be input in afield

59

The Data Dictionary

becomes stricter over state transitions. To accomplish this, constraints (BaseConstraint.java) now have a
property calledconst r ai nt St at eOver ri des which containsalist of replacementsfor the constraint
they are configured on. Constraintsin thislist must be compatible with the constraint they arereplacing; for
example, ValidCharacterConstraints should only be replaced with other ValidCharacterConstraints (and
itschild classes), etc. Overridesthat do not match or are not valid siblings/children classes of the constraint
they are overriding will throw an exception.

Constraints in this list MUST have the states at which they apply defined; the replacement will
override the constraint they are configured on at the states they specify. Overrides which do not
have states specified will throw an exception.

Rules for constraintStateOverrides:

» Overrides, if configured, always take precedence over their parent when they apply. If no overrides
match the state, or if the constraintStateOverrides list is empty, the parent constraint will apply (if it
is applicable for the state).

« If there are there are 2 overrides that both apply at the same state, the last on the list will always take
precedence.

State-based Validation at the Controller

Whiletheclient-side validation is automatic (alwaysvalidates against "n+1" unless configured otherwise),
the server-side validation is completely up to the implementer. If you would like to validate your View
(or dternatively DataDictionaryEntry), there are methods provided to do so. The main point is that server
validation is NOT automatic and is application controlled. These new state-based validation methods are
(some overloaded version not noted here):

For ViewValidationService (should be used for KRAD views):

» validateView Vi ew view) - Thisisthe main validation method that should be used when
validating Views. This method validates against the current state if state based validation is setup.

« val i dateVi em Vi ewvi ew, Vi ewbdel nodel, String forcedValidationState)
- Vadlidate the view against the specific validationState instead of the default (current state). If
forcedValidationState is null, validates against the current state, if state-based validation is setup.

» val i dat eVi ewAgai nst Next St at e(Vi ew vi ew, Vi ewbdel nodel) -Validatetheview
againgt the next state based on the order of the states in the view's StateMapping. This will validate
against current state + 1. If there is no next state, this will validate against the current state.

e val i dat eVi ewSi nul ati on(Vi ew vi ew, Vi ewModel nodel) - Simulate view validation
- thiswill run all validations against all states from the current state to the last state in the list of states
in the view's stateM apping. Validation errorsreceived for the current state will be added as errorsto the
MessageMap. Validation errors for future states will be warnings.

For DictionaryValidationSer vice (recommended only when you don't have aview. Also note that state-
based validation only works for DataDictionaryEntry backed objects with StateM appings setup):

e val i dat e(Obj ect obj ect) —Validates against the current state (if state-based validation is set
up).

» val i dat eAgai nst St at e(Obj ect object, String validationState) - vaidates
against the state specified by validationState.

« val i dat eAgai nst Next St at e(Cbj ect obj ect) —validates against the next state as defined
by the state mapping.

60

The Data Dictionary

What isdonein response to validation errorsis also completely up to the implementation of the controller
logic (it is recommended you halt action and return back the same view passed in, this will automatically
display the discovered validation errors for the user).

Example of validating and checking errors (this simple example only changes the state on successful
validation):

//inside a controller nethod
KRADSer vi ceLocat or Web. get Vi ewVal i dati onServi ce().val i dateVi em(form get PostedView), form "state2");
i f(!d obal Vari abl es. get MessageMap() . hasErrors()){

//do whatever you need to do on after a successful

//validation here (save, submt, etc)

formsetState("state2");

}

return get U FModel AndVi ew(formn;

©O~NOOUTOD~WNPR

Figure4.1. State-based Validation Server Errors

@ This page has 3 errors

* Field 1: For State 2, Field 1 is a required field
* Field 2: For State 2, Field 2 is a required field
* Field 3: For State 2, Field 3 is a required field.

State

state1

Field1*

Required for stateZ on
Field 2 *

Required for state? and after

In this image, you may notice the "**" indicator. In KRAD, this means the field is required for the next
state.

State-based Validation helper beans

There are afew beans available for use to help with a couple aspects of state based validation:
» St at eMappi ng - base StateMapping bean to parent from, defaults statePropertyName to "state”

o Wor kf | owSt at eMappi ng - suggested workflow StateMapping bean properties, for use with
documents. Important: use only if you know your state-based validation is tied directly to workflow
status.

61

The Data Dictionary

e Ui f-StateBased- Requi redl nstructi onsMessage - message that indicates that "**"
means required for the next state. May be enhanced in the future to tell the user what the actual next
stateis.

Data Dictionary Services

Coming Soon!

The DATAOBJECTMETADATASERVICE

Coming Soon!

Extending the Data Dictionary

Coming Soon!

62

Chapter 5. Introduction to the UIF

Overview of the UIF

The KRAD User Interface Framework (UIF) alows application developers to rapidly create rich and
powerful user interfaces. KRAD builds on concepts of the KNS (Kuali Nervous System) and the KS
(Kuali Student) UIF to create aframework capable of generating modern Web 2.0 interfaceswith asimple
declarative configuration. In the next few chapters, we will explore the architecture and features of the
UIF, and also see some of the exciting possibilities for future growth!

Asmentioned in'A Need for KNS Version 2', the KRAD effort was spawned based on the need to expand
the current Rice development framework for meeting requirements of the Kuali Student project. Although
the Rice KNS module has many great concepts that had worked well up to date, it was determined that
in order to meet the new requirements and to continue making overall improvements, portions of the
framework would need to be redesigned and rewritten. The majority of thiswork focused on Ul generation,
with some enhancements to other feature areas of the KNS. The following lists the primary goals of this
effort:

UIF Goal: Rich Ul Support

Over the past few years, web-based user interfaces have taken off. Many of these technologies have
leveraged browser-based JavaScript and Cascading Style Sheetsto createimpressive effectsor to radically
increase interactivity by communicating with a web-server in between the normal request/response page
cycle. Because of these huge advances, today's web application users have much higher expectations of
interactivity.

The KRAD UIF ams to alow the development of rich web interfaces by offering a variety of rich
components and behavior. This includes components like lightbox, suggest boxes, menu/tabs, and grid
(table) features. Some of the 'behavioral' features include partial page refreshes, progressive disclosure,
client-side validation, and AJAX queries. This is just a subset of the way that richer user interface
functionality is offered by KRAD. Chapters 8 and 11 cover these features and morein detail.

UIF Goal: More Layout Flexibility

One of the features of the Nervous System users pick up on quickly is the fact that so many screens can
be generated purely through configuration. A business object lookup and inquiry, as well as the screen
for maintenance documents: al can be generated entirely from an XML file. Freeing developers from
having to concern themselves with the particulars of the HTML generation for these screens makes the
user interface of Kuali applications more consistent, to say nothing of the boost to developer productivity
it gives.

However, there were other screens which could not be so easily generated. Transactional documents
depended on perhaps several JSP files, supported by hierarchies of traditional taglets. Non-document
screens had to be coded in JSP as well. The KNS provided a standard library of taglets - such as
documentPage, tab, html Control Attribute, and so on - which eased the devel opment task a bit, but the hard
fact was that developers still had to spend much more time coding these pages.

It should therefore be of little surprise that one of KRAD's major goals is improving this situation.
If transactional documents and non-document screens could make use of the Rich Ul support through
configuration, that would make it much easier to devel op theseincredibly important pieces of functionality.

63

Introduction to the UIF

However, as any KNS developer knows, transactional documents are much more flexible than lookups
or maintenance documents. Maintenance documents are almost always stacks of two or four columns,
perhaps broken up by a standard sub-collection interface. Conversely, atransactional document can look
like practically anything.

UIF Goal: Easy to Customize and Extend

We have all had the experience of working with development frameworks to meet some specia need that
the framework did not provide ‘out of the box'. In many cases, this is a painful process, requiring the
developer to get inside the 'black box' and figure out many intricate details of the framework. Furthermore,
once a solution isfound, it might require we modify the core of the framework, causing maintenance and
upgrade issues.

Similar issues were encountered when using the Rice KNS framework. In particular, the use of tags was
problematic, in that there was no way to customize tag | ogic without breaking the upgrade path. In addition,
the objects used for Ul modeling were not extensible or customizable without modifying the Rice code.
Therefore, an important goal for the UIF is to allow new Ul features to be added, and current features to
be modified without modifying Rice code. As we will see later, this is accomplished using a component
framework and the power of Spring bean configuration.

UIF Goal: Improved Configuration and Tooling

A lot of user feedback about the Kuali Nervous System centered on the repetitive tasks of setting up
configuration. Every business object has an object-relational mapping and an entry in the data dictionary;
that entry is made up of field configurations, which gets tediously long fairly quickly. And then there's
building the corresponding Java code to be the actual business object. Even more pieces are added to this
recipe when attempting to put together a document.

KRAD isadopting aseries of design principlesto alleviate some of thework required for thisconfiguration.
KRAD intends to introduce a series of simple-to-use tools to generate configuration based on defaults,
letting devel opers focus on tweaking the configuration to match business logic.

KRAD isalso simplifying configuration in general. Theideaof "convention over configuration” will mean
that standard defaults will be provided for what had to be manually configured before. These defaults can
be overridden, but if they fit the needs of the application, no further configuration will be necessary. This
will cut down ahuge amount on the "XML push-ups" required by KRAD application developers, but still
provide a great deal of flexibility.

UIF Dictionary

The UIF builds on the KNS concept of using Spring bean XML to build Uls. XML files are created to
configure and assemble UIF objects (called components). These files are then processed and loaded into
the Data Dictionary container.

More Information: Although the UIF configuration is loaded into the same container as the Data
Dictionary, conceptually we think of them as separate. A current practice within Rice isto have aresource
directory for data dictionary files, and a resource directory for UIF files (per module). In addition, care
was taken to allow for separate containersto be created (if desired at some point).

The UIF and UIM

We will see that technically, using the UIF is very easy, since most things can be accomplished by a
simple XML configuration. However, there is a challenge in knowing how to put the pieces together.

64

Introduction to the UIF

To accomplish the amount of flexibility necessary, the UIF introduces a lot of concepts that will take
sometimeto learn. Taken al together, these form alanguage for how Rice developers and UX leads will
discuss, prototype, and finally build user interfaces. To help with this process, the UIM (User Interaction
Model) was developed. The UIM is a collection of pages that document how to best make use of the
UIF functionality. Such things as when to use one component over ancther, various configurations of a
component, and overall UX concerns are documented within the UIM. Investing time to read through the
UIM will help devel opers get up to speed with the UIF much quicker.

Y ou canfind thelatest version of the UIM at thefollowing URL: https://wiki.kuali.org/display/STUDENT/
User+lnteraction+Mode

Recap

» The UIF (User Interface Framework) isthe KRAD module used to generate User Interfaces
* Goalsof theUIF are;

¢ Rich Ul Support

* More Layout Flexibility

 Easy to Customize and Extend

 Improved Configuration and Tooling

e The UIM (User Interaction Model) is documentation on how page developers should use the UIF for
designing views

Component Design

Parts

Centra to all of the UIF is the component framework. Components provide the mechanism for which
functionality is implemented in a customizable and extensible fashion. In short, they are the bread and
butter of KRAD!

So what is a component? A component to KRAD is anything that can be used to build aweb page. Many
of these have a visual presence on the screen, such as text. However, some do not, and instead provide
behavior with a script. Treating all these as components, gives us a uniform approach to developing the
UIFframework, in addition to providing avery customizable and easy to contribute modality. This section
will explore the design of components from a high level. Later on in this chapter, we will learn about the
varioustypes of components, and in chapters 6-9 we will look at the specific components KRAD provides
out of the box.

of a Component

A component is made up of three different artifacts (see Figure 5.1, “Building Blocks™). Thefirst of these
is a Java class. The Java class defines the properties and behavior the component can have. As we will
see later on, the properties are what we can use to configure the component, while the behavior includes
things such as how the component interacts with other components. As with any class, the properties can
be primitive or collection types, or types of other objects. In this case of a component, these objects may
be other components. Therefore components can be nested (or a composition). In addition, components
may extend from other componentsto inherit properties and behavior. Thisforms acomponent hierarchy.
The component class may exist anywhere on the class path.

65

https://wiki.kuali.org/display/STUDENT/User+Interaction+Model
https://wiki.kuali.org/display/STUDENT/User+Interaction+Model

Introduction to the UIF

A WN P

[N

Figure5.1. Building Blocks

JSP
Template

The second artifact for acomponent isitsrendering template. ThetemplateisaFreeMarker filethat renders
HTML/JS contents for the component instance. The template is an optional artifact. Components may
'self-render’, which means the component object will be invoked to return the HTML/JS contents (note
FreeMarker content cannot be used in this mode). However, most UIF components use templates as they
are much easier and cleaner to implement. We will learn all about templates in the next section.

The final piece of a component is its Spring bean definition. Spring bean XML is the mechanism by
which devel opers configure and assemble UIF components. Creating a bean definition for the component
(sometimes known asthe 'base’ definition) allows usto specify defaultsfor properties, in additionto giving
the component aunique namewithin the bean container (notethat it woul d be possible to use the component
without a base definition, but then the class would have to be specified each timeit is used).

One important property that is configured with the base definition is the template. The template property
(available on al components) is the path to the template FreeMarker file that will render the component.
Specifying the template through the bean configuration provides loose coupling of the component class
and template. Thisisvery important to the flexibility of the system. The template can be located anywhere
in the web root for the application.

The base component definition also does a couple more things for us. One of these is setting up the
component with scope prototype. All UIF components maintain state, so they must be marked as prototype
within Spring. Finaly, it is recommended the base definition be setup with an abstract parent bean. This
setup looks like the following:

<bean i d="conponent Name" par ent =" conponent Name- par ent Bean"/ >
<bean i d="conponent Name- par ent Bean" abstract="true" cl ass="edu. myedu. Sanpl e. Conponent" scope="prototype">

</ bean>

This alows the base definition to be changed without having to copy the entire original configuration.
Recall that Spring allows usto override abean definition by specifying abean with the sameid. Therefore,
if an ingtitution wanted to change the default property for a component, they would simply include the
following in theinstitutional spring files:

<bean i d="conponent Nane" par ent =" conponent Nane- par ent Bean" >
<property name="propertyNane" val ue="overrideVal ue"/>

</ bean>

66

Introduction to the UIF

Without the abstract parent bean, all of the initial property configuration would need to be copied (since
setting the parent to "componentName" would cause a circular dependency).

When defining base definitionswe are not limited to just one. In many cases, it isuseful to providedifferent
configurations of acomponent as different bean configurations. For example, one component wewill learn
about is the TextControl. The text control renders a HTML input of type text and has a size property,
which configures the display size for the input. First, we might setup a bean definition that looks like the
following:

1 <bean id="Uif-TextControl" parent="Uif-Text Control -parentBean"/>
2 <bean id="Ui f-Text Control - parent Bean" abstract="true"
class="org. kuali.rice.krad.uif.control.TextControl" scope="prototype">

3 <property name="tenpl ate" val ue="/krad/ WEB-|I NF/ftl/conponents/control/text.ftl"/>
4 <property name="si ze" val ue="30"/>
5 </ bean>

The control can then be used by bean references or inner beans:

=

<property nanme="control ">
2 <bean parent="Uif-Text Control" p:size="10"/>
</ property>

w

Notice here we are overriding the size property because we need a small input. Seeing this, we might
decide we want to have astandard size for small, medium, and large inputs. Therefore we set the following
bean configurations:

1 <bean id="Uif-TextControl" parent="Uif-Text Control -parentBean"/>
2 <beani d="Ui f - Text Control - par ent Bean" abstract="true"
class="org. kuali.rice.krad.uif.control.TextControl" scope="prototype">
3 <property name="t enpl ate" val ue="/krad/ WEB-I NF/ftl|/conponents/control/text.ftl"/>
4 <property name="size" val ue="30"/>
5 </ bean>
6 <bean id="Uif-Small Text Control" parent="Uif-Smal | Text Control - par ent Bean"/ >
7 <bean id="Uif-Smal | Text Control - parent Bean" abstract="true" parent="Uif-TextControl ">
8 <property name="size" value="10 "/>
9 </ bean>
10 <bean id="Uif- Medi unifext Control " parent="Ui f - Medi unText Cont r ol - par ent Bean"/ >
11 <bean id="Uif- Medi unifext Control - parent Bean" abstract="true" parent="Uif- Text Control ">
12 <property name="size" value="30 "/>
13 </ bean>
14 <bean id="Uif-LargeText Control" parent="Uif-LargeText Control - par ent Bean"/ >
15 <bean i d="Uif-LargeText Control - parent Bean" abstract="true" parent="Uif-TextControl ">
16 <property name="size" val ue="100 "/>
17 </ bean>

Now when we need asmall text control, we can reference the 'Uif-Small TextControl' bean and not specify
the size:

[N

<property nanme="control ">
2 <bean parent="Uif-Smal | Text Control "/ >
3 </property>

Many of the components provided by the UIF have multiple base bean definitions.

Customizing and Extending the UIF

We know that amajor goal of the UIF isto provide a high level of flexibility. Furthermore, we have seen
the central concept of components. So how does this component design achieve our goal ?

67

Introduction to the UIF

Toanswer thisquestion, let'sfirst take alook at what criteriawe should look for in ahighly flexible system.
1. Can we customize al parts of the system, or are there places that are 'unreachable'?

2. If we can customize something, can we do that outside of the original codebase so that we do not hinder
our upgrade path?

3. What level of understanding do we need to customize the system? Is each customization different?
Doesit require usto get deep inside the black box?

4. Can we add to the system? If so, do those additions act asfirst class citizens, or require some alternate
approach to use?

Recall besidesthe base 'plumbing' of the UIF, aset of componentsis provided to build pages with. Each of
these components brings a piece of functionality to the framework. Thuswe can think of them as 'building
blocks for the framework as shown in Figure 5.2, “Building Blocks’.

Figure 5.2. Building Blocks

Now let's suppose we want to customize a 'core’ component. To do this, we simply change one of the
component parts (class, bean, or template). We saw previously how we can change the bean configuration
for acomponent by providing another bean configuration with the sameid. Using the abstract parent bean,
we can inherit al of the original configuration and then change or add configuration as needed.

For an example of this, let's use the UIF 'required’ message field which has the following definition:

1 <bean i d="Uif- RequiredMessage" parent="Uif-RequiredMessage- par ent Bean"/ >
2 <bean id="Uif-Requi redMessage- par ent Bean" abstract="true" parent="Uif-MessageFi el d"

3 scope="prototype" p:nmessageText="*" p:nmessageType="REQUI RED"'>
4 ...
5 </ bean>

68

Introduction to the UIF

We decide for our application we want the required message to actually display the text required’ instead
of the configured asterisk. To do thisweinclude abean with the sameid in our application (or institutional
spring) file:

1 <bean id="Uif-Requi redMessage" parent="Uif-Requi redMessage- par ent Bean" p: messageText="required" />

Now everywhere the required message field is used the text ‘required’ will display instead of **'.
Tip

Adding Spring Filess Adding Spring files to the container can be done using
the KRADConfigurer.

Next let's consider the component template. Remember the template is a FreeMarker file located in the
web root (or classpath) and generates the HTML/JS contents for the component. If we wish to change this
rendering, we can create another template in aweb location of our choosing.

Depending on the level of customization we need to implement, we might start by copying the current
template contents, or create onefrom scratch. One we have the templatethat rendersthe component how we
want, then we override the bean configuration as described previously and override the template property
specifying the location for the new template. Besides the source location for the template, there is the
templateName property which specifies a name for the template in the host language (the name by which
the template is invoked). This must be unique, so that when overridding a template, we must also give a
unique name for the template (unless we are overriding the base bean definition itself):

1 <bean i d="Uif-TextControl" parent="Uif-Text Control - parent Bean"/ >
2 <bean id="Uif-TextControl -parentBean" abstract="true"
class="org. kuali.rice.krad.uif.control.TextControl" scope="prototype">

3 <property name="tenpl ate" val ue="/krad/ WEB-| NF/ftl/conponents/control/text.ftl"/>
4 <property name="tenpl at eNane" val ue="uif_text"/>

5 <property name="size" val ue="30"/>

6 </ bean>

7 <bean id="Uif-TextControl" parent="Uif-Text Control -parent Bean">

8 <property name="tenpl ate" val ue="/nyapp/ WEB-| NF/ftl/conmponents/text.ftl"/>

9 <property name="tenpl at eNane" val ue="nyapp_text"/>

10 </ bean>

Thelast part of the component we have to customizeisthe Javaclassitself. Modifying the Javaclasswould
allow us to add new properties and behavior to the component. For this, we can create a new class that
extends the origina component class. This new class can be anywhere in the classpath. New properties
can be made available by adding propertiesto our extension class (with getters and setters). Customization
of behavior can be modified by overriding the various lifecycle methods. These methods will be covered
in Chapter 9. Once we have the new class, we associate it with the component by again overriding the
bean definition:

1 <bean id="Uif-TextControl" parent="Uif-Text Control -parentBean"/>
2 <bean id="Ui f-Text Control - parent Bean" abstract="true"
class="org. kuali.rice.krad.uif.control.TextControl" scope="prototype">

3 <property name="tenpl ate" val ue="/krad/ WEB-I NF/ftl/conponents/control/text.ftl"/>

4 <property name="si ze" val ue="30"/>

5 </ bean>

6 <bean id="Ui f-TextControl" parent="U f-Text Control - parent Bean" cl ass="edu. myedu. Sanpl e. Text Control ">
7 <property name="additi onal Property" val ue="foo"/>

8 </ bean>

Now that we have seen how to customize acomponent, how do we go about adding anew component? We
can add a component using the same process we saw for customization. The difference between adding
and customizing are:

69

Introduction to the UIF

1. Wewill create a new base Spring definition (not overriding an existing)

2. The Javaclass will not extend a core component, but one of the provided base classes (described later

on in this chapter)

Essentially we need to create the three artifacts for the component just like the core components. Once
created, using custom components is no different than using the provided components. Therefore as
depicted in Figure 5.3, “Building Blocks’, core and custom components work together as part of the
framework.

Figure 5.3. Building Blocks

Component Building Blocks

no

woys

java
Object

Tip

Planned Feature

Component 'Drop In": Inthefuture KRAD might support aplugin facility for 'dropping' in new
components. A component 'bundle’ could be downloaded and dropped into the plugin directory,
eliminating the need to copy the base bean definition, template file, and Java class.

RECAP

Components are acentral pieceto the UIF and are critical for customizing and extending the framework
Each component is made up of three parts:

» Java Class — defines the properties and behavior

* FreeMarker Template — renders HTML/JS content for a component instance

« XML Definition(s) —provides default propertiesfor acomponent (including thetemplate) and assigns
an ID for using the component

KRAD provides several components for use 'Out of the Box'

We can customize a component by changing its bean definition, writing a new template, or extending
the Java class to add properties or behavior

We can create our own components by creating the three necessary artifacts (outside of the Rice code)

Building Templates with FreeMarker

Variable Markup

Given that the goal of the UIF is to produce web pages (HTML, Image, and JS content); the component
template provides a very important role. This section will help us understand templates better, and how
they are built using the FreeMarker templating engine.

70

Introduction to the UIF

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

Before looking at templates in KRAD, let's step back and think about the job of building a web Ul
framework. We know web pages are rendered by a browser from HTML markup, along with other
resources such as script and image files. So ultimately, the result from our framework is this markup that
will be streamed back as the response to a request by the user. This is the output of the framework. The
input to the framework will be XML configuration provided by an application devel oper. So how do these
get connected?

Based on our Spring knowledge, we know the XML metadatawill get used to create Objectsin the Spring
container, so these objects' instances now contain the devel oper's configuration. We can then expose these
objectsto the FreeMarker templates, which will combine the object values with static contents to produce
the resulting markup (see Figure 5.1, “Building Blocks”).

Templates within KRAD are created using the FreeMarker framework. FreeMarker is a templating
framework that allows template files to be assembled at runtime. To create a template in FreeMarker,
we start by creating a file with extension .ftl. This can be anywhere in the application web directory or

classpath.

Now we can add static HTML content (just like creating an HTML page) along with dynamic content
using the FreeMarker language:

<head><title>${Kual i Formtitle}</title></head>
<body>
<t abl e>

<tr>

<td col span="2">${Kual i For m header } </t d>
</[tr>
<tr>

<t d>${ menu} </ t d>

<t d>${ body} </ t d>
</[tr>
<tr>

<td col span="2">${Kual i Form f oot er} </t d>
</[tr>

</tabl e>
</ body>

17 </htm >

Notice within this file the use of '${}' notation. Thisis known as an interpolation, and is where data will
be inserted. This data comes from a model we expose to FreeMarker before rendering the templates. The
model isamap of objects that can be referenced within the FreeMarker templates. The map key givesthe
name by which the object isidentified. In KRAD, one object that is exposed by default isthe form object.
This object is awrapper for all the data that needs to be present for rendering the page, and is given the
identifier '‘KualiForm'.

Other objects exposed through the model are:

* The Http Request Object exposed with identifier 'request'

» The Rice UserSession object exposed with identifier ‘userSession'

* A Map of Rice configuration parameters exposed with identifier '‘ConfigProperties
Tip
Spring ModelAndView

The web tier of KRAD is implemented using the Spring MV C framework. Spring provides an
object named Model AndView that we build and return from our controller methods. The model

71

Introduction to the UIF

part of this object serves the same purpose as the FreeMarker modedl. In fact, when using the
freemarker view resolver, Spring pulls the model out of this object for configuring FreeMarker.
Therefore, for exposing additional objects in the templates, we can add those objects to the
ModelAndView object we return.

Now supposewewant to pull out part of our FreeMarker content into a separatefile, so that it can be reused
between different templates. First we create another file with .ftl extension. Let's call this file body.ftl.
Now we add the FreeMarker content to our template file:

1 <h2> This is the page body </h2>
2 ${Kual i For m body}

Next, we can bring in the contents of body.ftl into our main template by using the FreeMarker directive
namedi ncl ude. To usetheinclude directive we specify the absolute or relative path to the template file
that should be included using the path attribute:

1 <htm >
2 <head><title>${Kuali Formtitle}</title></head>
3 <body>
4 <t abl e>
5 <tr>
6 <td col span="2">${Kual i For m header } </ t d>
7 </tr>
8 <tr>
9 <t d>${ menu} </ t d>
10 <t d>
11 <#i ncl ude path="body.ftl"/>
12 </td>
13 </tr>
14 <tr>
15 <td col span="2">${Kual i Form f oot er} </t d>
16 </tr>
17 </t abl e>
18 </ body>
19 </htm >

I nterpolations may also contain expressions (see below). For example, we can add two numeric properties
together and render the result as follows:

1 ${Kual i For m nunPropl + Kual i For m nunProp2}

With FreeMarker we are not limited to just reading properties from the model, but also may invoke
methods! Thisis done using the method name within the expression, followed by list of valuesto send as
parameters. The parameter values may reference another model property or variable:

1 ${Kuali FormretrieveTaxAnount (taxNunber, 'T')}

In addition to accessing dynamic data within the model, we can create new dynamic variables within the
template. To create anew variabletheassi gn directiveisused. Following the assign keyword, the name
and value for the variable are given separated by an equal:

1 <#assign nyVar="Hello!"/>

Similar to model properties, the value for a variable can be written to the output stream using the ${}
notation:

72

Introduction to the UIF

1 <td>${nyVar}</td> <#-- prints <td>Hello!</td> -->

When assigning a variable value, we may also use an expression. Freemarker supports all of the standard
expression operators. The only notable difference is Freemarker does not support the alpha operator
representation (‘ed’, 'ne, 'It', 'or'). Operators are specified with the usua '==', ''=', '& &", '||' and so on. The
one exception in Freemarker isfor *>','<','’>="'<=" operators, the alpha operator can be given aswell. The
full list of expression operatorsis found here.

Let's take a simple case of addition as an example:

1 <#assign groupOneTot al =50/ >
2 <#tassi gn groupTwoTot al =100/ >
3 <#assi gn total BothG oups=groupOneTotal + groupTwoTotal />

Tip

Watch out for Nulls!

When a variable or property expression is null, by default FreeMarker will not convert to an
empty string but instead throw an exception. To prevent FreeMarker from throwing an exception

(and instead output nothing) an exclamation mark must be added after the variable. For example:
H variable!}

FreeMarker DataTypes

A WN P

When working with model properties or variables, it is important to know the underlying datatype.
The datatype determines how the variable can be used within the markup (for example in expressions,
interpolations, and passing macro parameters).

The datatypes used by FreeMarker are String, Number, Boolean, and Date (Scalars); Hash, Sequence, and
Callection (Containers); Methods and Custom Directives (Subroutines); and Node.

Tip
Java Objects

Note that model properties that represent Objects are treated as a Hash in FreeMarker. This goes
for the model itself that is exposed for rendering.

Datatypes are implied by FreeMarker in one of two ways. For model properties, the datatype is derived
from the underlying Javatype. For variables, the datatype will be derived based on the assigned value. All
string values must be quoted. If value is not quoted, the datatype will be determined based on the format.
The keywords true and false are used to indicate a boolean type.

<#assign var="Hel |l 0"/> <#-- string datatype -->

<#assign var=3/> <#-- nuneric datatype -->

<#assi gn var=true/ > <#-- bool ean datatype -->

<#assi gn conp=nodel . conp/ > <#-- assum ng nodel .conp is object, hash datatype -->

Interpolations may only be used for variables/propertiesthat are scalars. FreeMarker converts number and
date typesto astring format based on the environment settings. Bool ean types must be explicity converted
to a string using the built-in "?string'.

73

http://freemarker.sourceforge.net/docs/dgui_template_exp.html

Introduction to the UIF

©OoO~NOOUAWNRE

<#macr o

When passing parameter values for macro invocations, we must also be aware of the datatypes expected
by the macro. Passing a quoted parameter val ue where the macro expects a number or boolean will cause
an error. In the following example, the macro with name 'grid' expects a parameter named ‘rowCount' of
type number:

grid rowCount >

</ #macr o>

I ncorrect Invocation
<@rid rowCount="3"/>

Correct

I nvocat i on

<@rid rowCount =3/>

Control Statements

~NOoO g~ WNPRE

NO O WNE

FreeMarker allows us to conditionally evaluate a block of markup, or to evaluate a block of markup
multiple times through the use of control statements. A control statement isimplemented using one of the
following directives:

if, else, elsaif

We can conditionally evaluate a block using the if directive. Following the if or elseif directive is an
expression to evaluate. If the expression evaluates to true, the corresponding block will be included,
otherwise the block given by the else directive (or the next expression) is evaluated if an elseif directive
follows. The general syntax is as follows:

<#i f expressionl>
/'l bl ock

<#el sei f expression 2>
/'l bl ock

<#el sei f expression n>
/'l bl ock

</ #if>

In the following example we have a variable named col Count which holds an integer:

<#i f col Count == 1>
/1 block 1

<#tel sei f col Count == 2>
/1 block 2

<ttel se>

/1 block 3

</ #if>

In this example, we first check if the variable colCount is equal to 1, if so block 1 is evaluated. If not,
we check whether colCount is equal to 2 and if so evaluate block 2. If neither conditions are true, block
3 will be evaluated.

list

Thelist directive allows usto loop through avariable (or model property) which isasequence (array) type
and evaluate a block within each iteration. Thisis a useful control statement for rendering items like a
table or repeated sections. The list directive is used by specifying the variable/model name followed by a
variable to expose each item under. The general syntax is as follows:

74

Introduction to the UIF

=

=

=

<#l i st sequenceName as iten>
/1 bl ock
</ #list>

Let's take an example where we assume we have amodel property named ‘foods that isa List. Within the
list body, the item being iterated over will be exposed with the variable 'food":

<#l i st foods as food>
Nanme: ${food. nane}, Type: ${food.type}
</ #list>

If the datatype to iterate over is a Map, we can iterate using the list directive to iterate over the keys of
the map like the following example:

<#l i st map?keys as parn»

${ map[par nj }
</[#list>

Here the loop variable gives the key for the map entry we are iterating over.

In addition to the loop variable exposed by thelist directive, two additional variables are exposed. Thefirst
givestheindex for theitem and isretrieved by adding '_index' to the loop variable. The second indicates
whether there are more items to iterate over and isretrieved by adding'_has next' to the loop variable.

Finally, the br eak directive existsto exit thelist directive early, asthe following example demonistrates:

<#list seq as x>

${x}

<#if x = "spring"><#break></#if>
</#list>

Context and Macros

A WN P

By default, templates that are executed (by include directives) all belong to the same namespace. This
means each template has access to read and write the same variables. A change to the value of avariable
in one template, will change the value of the variable in another. This namespace shared by templatesis
known as the global namespace.

To execute FTL code in a separate namespace, FreeMarker allows the creation of Macr os. Macros are
created using the macro directive and are given a name that can be used for invocation. For example, we
can change our previous body.ftl to become a macro as follows:

<#tmacr o body>
<h2> This is the page body </h2>
${ Kual i For m body}

</ #macr o>

The name for the macro follows the #macro keyword. In this example we have hamed our macro 'body".
Between the macro start and end tag we can add FreeM arker content just aswewould for ageneral template
file. Each time the macro is invoked, this FreeMarker content will be evaluated. Therefore macros give
us away to reuse FreeMarker markup.

75

Introduction to the UIF

Within the macro we can define new variables. As with a general template, we can use the assi gn
directiveto create avariable in the global namespace. However, since amacro hasits own namespace, we
can create a variable that is scoped to it as well. Thisis done using thel ocal directive. The syntax for
using the local directive isthe same as the assign directive.

1 <#macro body>
2 <#l ocal locVar="is only visible within macro"/>
3 <#nmacro>

If aglobal variable exists with the same name, the local variable will override within the context of the
macro.

Macros may parameterizethe content by accepting parameters. These parameters are given when the macro
isinvoked and are used within the macro body for evaluating the final output. Each parameter has a name
by which it is identified. Therefore, to declare macro parameters, we simply list their identifying names
on the macro directive after the macro name. Each parameter name is separated by a space:

1 <#macro macroName parnl parnR parnB parmd ...>

Within the macro the parameters become local variables. We can print the parameter value to the output
stream, use in a conditional statement, or use in any other way supported by variables. For example, let's
add a header, bodyContent, and footer parameter to our body macro:

1 <#macro body header bodyContent footer>
2 <body>
3 <t abl e>
4 <tr>
5 <td col span="2">${header}</td>
6 </tr>
7 <tr>
8 <t d>${menu} </t d>
9 <t d>
10 ${ bodyCont ent }
11 </td>
12 </tr>
13 <tr>
14 <td col span="2">${footer}</td>
15 </tr>
16 </t abl e>
17 </ body>

18 </ #macr o>

Noticein this example we are writing out the values of the given macro parametersusing the ${} notation.
Our body macro serves as awrapper for the content.

For each macro parameter we can also specify whether avalue is required to be given by the caller, and if
not a default value to use. A default value isindicated by placing an equal sign after the parameter name,
followed by the default value (which can be an expression). If a default valueis not given, the parameter
is assumed to be required. All required parameters must be given before parameters that have defaults.
Let'stake alook at an example:

1 <#macro body bodyContent header="Header One" footer="">
2 ...

Here we have changed the body macro to make the bodyContent a required parameter, but not the header
or footer. If the header parameter is not specified by the caller, it will have a value of "Header One".
Likewise, if the footer is not given, it will have avalue of the empty string.

76

Introduction to the UIF

Invoking Macros

=

When a macro is loaded, it becomes a variable within the associated namespace. The macro name
(identifier given after the macro declaration) becomes the variable name, and the assigned namespace is
derived from the surrounding namespace of the FreeMarker file (see Including FTL Files).

If the macro belongs to the global namespace, it can be invoked with the text '<%' followed by the macro
name. Any parameter values are then given after the macro name (separated by a space). Each parameter
specification includes the parameter name, followed by the equal sign, followed by the parameter value
(which can be an expression). The macro invocation is completed with the closing greater than sign.

As an example, let's invoke our body macro created in the previous section, passing a value for the
'‘bodyContent' parameter:

<@ody bodyContent="Hell o KRAD World!"/>

or

<#assign content="Hell o KRAD Wrld!"/>
<@ody bodyCont ent =cont ent/ >

<@vyapp

When the macro is associated with a namespace, we must specify the namespace before the macro name,
using a dot to separate each. Let's assume our body macro was associated with the namespace 'myapp'.
We would then invoke the macro as follows:

. body bodyCont ent =cont ent/ >

Other Features of Macros

O~NO T WNPEP

<#nmacr o
<t d>

Macros are very powerful constructs that allow great flexibility! Up to this point we have invoked macros
by simply passing parameter values. A macro may aso allow us to pass FreeMarker markup within the
body of the macro tag. The macro can then render this content in one or more locations of the macro. To
indicate where this content should be rendered, we use the nest ed directive. The nested directive may
be used more than once within the macro definition:

wr apTd>

<#tnest ed/ >

</td>

</ #macr o>

I nvocat i on:
<@w apTd>
<#i f render Header >
${ header}
<ttel se>
${footer}
</ #if>
</ @w apTd>

<t d>

Assuming renderHeader is true, and the header variable is 'Header Onée', the following would be output:

77

Introduction to the UIF

N

Header One
3 </td>

Another feature available for macros is varargs (variable number of arguments). To indicate a macro
accepts a variable number of arguments, the last parameter declaration must end with *...":

1 <#macro | oop parns...>

2 <#l i st param keys as key>
3 ${ parnf key] }

4 </ #list>

5 <#nmacro>

6

7 Invocation:

8

9

<@oop parnl parn@/>
<@oop parml parn2 parn8/>

The parameter 'parms becomes a hash, where the name for each additional parameter is the hash key and
the corresponding parameter value the hash value. The macro may include other named parameters that
are listed before the varargs declaration.

Finally, FreeMarker provides the ability to create macro functions. These are macros that will run not
to render output, but to calculate and return a value. These are created using the f unct i on directive.
The function directive is used the same as the macro with afew exceptions. First the function directiveis
assumed to return avalue. Any variable that is created within the function (or a global variable) may be
returned using the r et ur n directive. The return directive is used by giving the variable name after the
return keyword (we also may return an expression that will be evaluated as the function return value).

Let's build an example function that returns the max of two numbers:

<#f uncti on max nunber 1 nunber 2>
<#i f nunmberl > nunber2>
<#return nunberl1/>
<t#el se>
<#return nunber 2/ >
</ #if>
<#f uncti on>

~NO O WNBE

Functions also differ from Macrosin how they are called. Recall functionsreturn avalue, therefore we can
use them anywhere a value is expected. This includes within an interpolation, an expression, or variable
assignment. In addition, passing parameter valuesis done using function syntax '(parmi, parm2, ...)' rather
than key/value pairs. The following shows examples of invoking the max function above:

1 ${max(nunberl1, nunber2)}

2 <#tassi gn maxNumemex(nunber 1, nunber2)/>

3 <#if nunber3 > max(nunberl, nunber2)>

4 /1 bl ock

5 </#if>
Similar to macros, functions may be associated with a non-global namespace. When this is so, the
namespace must be given before the function name, and a colon separates each.

Freemarker provides several utility functions called Built-Ins that can be applied to a variable or
expression. The built-ins that can be used depend on the underlying datatype, as shown by the grouping

78

Introduction to the UIF

below. To invoke abuilt-in, we add the question character ('?) after the variable (or expression), followed
by the built-in name and any parameters. The following shows the general form:

1 ${soneVari abl e?buil t| n(parns)}

The return value of the built-in invocation becomes the value for the expression:

1 <#assign nanme='Joe Smth'/>
2 Rice <#-- prints 'Joe Smth' -->
3 ${name?upper _case} <#-- prints 'JCE SMTH -->

The following are other examples of built-ins provided.
Sring Built-Ins

substring(from, toExclusive) - Returns a substring of a given string starting at the given from index up
to the given toExclusive index.

html - Escapes html markup

js_string - Escapes the string according to JavaScript string literals

length - Returns the number of charactersin the string

lower_case - Lower casesthe string

left_pad(length) - Left pads the string with spaces until it reaches the given length
right_pad(length) - Same as | eft pad, but pads with spaces to the right
contains(substring) - Returns true if the string contains the given substring
matches(regex) - Return true if the string matches the given regular expression

replace(stringToReplace, replacement) - Replaces all occurances of stringToReplace in the string with the
given replacement string

split(splitString) - Splits a string into an array on occurances of the given splitString parameter
starts with(string) - Returns true if the string starts with the given string parameter

trim - Removes leading and trailing whitespace

upper_case - Upper cases the string

Boolean Built-Ins

string - Converts the boolean to a string using "true” astrue and "false" asfalse

string("yes", "no") - Converts the boolean to a string using the first string parameter if the boolean istrue,
and the second string parameter if the boolean isfalse

Other Built-Ins

has_content - Returns true if the variable is not null and is not empty (meaning if the variable has asize
or length)

79

Introduction to the UIF

Including FTL Files

A template file may pull markup from another template file using the i ncl ude directive. The include
directive takes the path to the file as an argument, which may be expressed as arelative or absolute path:

1 <#include '../footer.ftl"'/>
2 <#include '/krad/tenpl ates/footer.ftl"'/>

FreeMarker al so supportsasecond way of including templatefilesfor the purposeof library (or namespace)
creation. Thisisdoneusingthei nport directive. Again, we must give the path to the file as an argument.
We can aso give an additiona argument that will identify the namespace the template contents should
be associated with. In the next example we include a freemarker template file that contains several macro
definitions, and associate them with the namespace 'myapp":

1 <#inmport 'nyapp.ftl' as 'nyapp' />

All the macros contained in myapp.ftl will be associated with the myapp namespace and must be invoked
through that namespace. Note when using import, any output generated by the included template will be
ignored.

Component Templates

Each component within the KRAD UIF has a template file that defines a macro for rendering the
component. The template location and the macro name are then configured with the component definition.
Each time an instance of the component is encountered, the macro will be invoked with the component
instance.

Generally, the component macros do the following:
1. Insert values from the component properties with static markup

2. Invoke rendering for child components

Coarse-Grained Parameters

Animportant consideration when setting up a macro is how to setup the parameters. To help explain this,
let's take alook at a sample text control:

1 <@pring.input id="${id}" path="${path}" disabl ed="${disabl ed}" size="${size}" maxl ength="${maxLength}"/>

This snippet isinvoking a spring input macro, which will then output the HTML input tag. We see some of
the attributes this macro provides areid, path, disabled, size, and maxlength. Since thistemplateis generic
(inthe sensethat it should render al instances of the TextControl) the values for these attributes need to be
variable. Now based on our knowledge of macros, we can create an input macro which will allow valuesfor
these variables (or attributes) to be specified by the calling template. Thiswould look like the following:

1 <#macro uif_input id path disabled size naxLengt h>
2 <@pring:input id="${id}" path="${path}" disabl ed="${disabled}" size="${size}" maxl ength="${nmaxLength}"/>

3 </ #macr o>

80

Introduction to the UIF

The calling template would then be:

1 <@if_input id="$%${conponent.id}" path="${conponent.path}" di sabl ed="${conponent.di sabl ed}"
2 size="${conponent. si ze}" maxLengt h="${conponent . naxLengt h}"/>

Here the component variable is the component instance that has been exported to the page.

Now let's suppose that a developer wishes to override the component class and template to provide a
‘readonly’ property. The template now looks like this:

1 <#macro uif_input id path disabled size nmaxLength readOnly>

2 <@pring.input id="${id}" path="${path}" disabl ed="${disabled}" size="${size}" maxlength="3${maxLength}"
3 readOnl y="${readOnl y}"/ >

4 </ #macr o>

In order for the readonly attribute to be passed in, the developer must also change the calling template and
pass the corresponding component property value. This not only adds to the amount of work required for
customizing a component, but also leads to general maintenance issues within the framework.

To solvethis problem, KRAD passes the full component to the templates and not theindividual properties
of the component. Passing the full component makes changes our original macro to:

1 <#macro uif_input conponent>

2 <@pring.input id="${conmponent.id}" path="${conponent.path}" di sabl ed="${conponent. di sabl ed}"
si ze="${conponent . si ze}"/>

3 </ #macr o>

Now for the custom template, we simply make use of the new property without any changes to the calling
template:

1 <#macro uif_input conponent>

2 <@pring.input id="${conmponent.id}" path="${conponent.path}" disabl ed="${conponent. di sabl ed}"
si ze="${ conponent . si ze}"

3 readOnl y="${ conponent . readOnl y}"/>

4 </ #macr o>

In addition to providing more template flexibility, using the course grained parameters gives us auniform
way of invoking templates (as we will see in a hit, the framework provides a generic macro that can be
used to render any component). Depending on the type of component, other parameters may be sent as
well. The standard macro contracts are as follows:

Table5.1. Macro Parameter Contracts

Component Type Macro Parameters

View view: the view component instance
Group group: the group component instance
Field field: the field component instance
Element element: the element component instance
Control control: the control component instance

field: the input field component instance

Widget widget: the widget component instance
parent: the component instance that contains the widget
additional parameters depending on widget

Layout Manager items: the group'sitems
manager: the layout manager instance
container: the container instance the layout manager is associated with

81

Introduction to the UIF

Note that the macro parameter that contains the component instance is exposed under different
names (group, field, element, ...), depending on the component type. The name is specified by the
get Conponent TypeName() method on the component.

The KRAD Macro Library

KRAD also comes with macros that provide utility functions for creating templates. These can be
referenced by the component macros to help with building content. For example, the div and span macros
generate the corresponding HTML tags with standard attributes (such asid and class). These macros are
exposed under the krad namespace, and are available by default to all component templates. The following
shows an example of using the script wrapper tag:

1 <@krad.script value="alert('hello);"/>

Template Macro

1

In Chapter 8 we will learn how to assemble UIF componentsinto a View. The View is a component itsel f
that, among other things, encapsulates al other components for our Ul. It can also be thought of asatree
of components. The rendering processes starts by invoking the configured view template macro. The view
template macro then in turn renders its child components, and so on, until the complete tree has been
traversed. Therefore, the responsibility of a template is to not only render the necessary markup, but to
invoke rendering for its child components. To help with this, KRAD provides the template macro.

The template macro requires the component parameter to be specified. Thisis the child component that
should be rendered:

2 <@rad.tenpl ate conponent=chi | dConponent/ >

3

Thetemplate macro will then createthe call for invoking the component macro, and passing the component
parameter (and any additional parameters). Figure 5.4, “KRAD Rendering Process’ depicts the rendering
process.

Figure 5.4. KRAD Rendering Process

The Rendering Process

Component Template(s)
View Template

Component

FreeMarker
Java Template
Object

Besides invoking the template for the child component, the template macro performs the following:
1. Setup progressive rendering or component refresh
2. Output content from self-rendering components

3. Generate event script (onblur, onchage, ...)

82

Introduction to the UIF

. Generate component tooltip script

Templates dynamically create HTML markup based on the components.
Templates within KRAD are created using the FreeMarker framework.
Within templates we can use the interpolation syntax '${}' to output dynamic values.

By default the UIF Form object, request object, user session, and configuration properties are made
available to templates.

FreeMarker supports all the standard expressions for variable assignment, logic tests, and interpol ation.
FreeMarker allows us to create variables within the template using the assi gn directive.

FreeMarker has the following datatypes: String, Number, Boolean, Date, Hash, Sequence, Collection,
Method, and Node.

FreeMarker provides thei f , el se, el sei f control directive for conditionally including template
content.

FreeMarker providesthel i st control directive for looping over template content one or more times.

Macros provide the ability to create reusable template content that can be parameterized and create
variablesin alocal namespace.

Macros are created using the #macro directive, followed by a name for the macro, followed by zero
or more parameter names. The template content that should be rendered when the macro isinvoked is
given between the opening and closing #macro tags.

Variables created within a macro that should have local scope are created using thel ocal directive.

Default values can be specified for parameters by adding an equal and then the default value after the
parameter name. If a parameter does not have a default value defined it becomes arequired parameter.

Macros are invoked using the'@' symbol followed by the macro name. Parameter values are given after
the macro name with key=value pairs (parameterName=parameterValue).

When the macro i s associated with anamespace, we must specify the namespace before the macro name,
using adot to separate each.

Macros can render content passed through the invocation body using the nest ed directive.

A type of macro that returnsavalueisafunction. Functions are created using thef unct i on directive
and return avalue using ther et ur n directive.

Freemarker provides several utility functions called Built-Ins that can be applied to a variable or
expression.

A template file may pull markup from another template file using thei ncl ude directive.

Each component within the KRAD UIF has a template file that defines a macro for rendering the
component.

Each component macro receives the component instance as a parameter.

83

Introduction to the UIF

e Thetemplate macro can be used to invoke rendering of a component.

The Component Interface

Over the next few sections, we will look deeper into UIF components and the properties they have. These
components are defined by their Java class. The class declares how a component can be used and how it
works with other components. Asin all object-oriented designs, these classes model the domain objects
in our problem area, which is building web pages! Thus the component classes found should be mostly
familiar to anyone who has worked with the web (controls, labels, containers, buttons, links, ...).

To become a UIF component, a class must implement the org.kuali.rice.krad.uif.component. Component
interface. This interface defines standard getters/setters for properties all components should have, in
addition to methods that are invoked during the view lifecycle. Along with the Component interface,
the abstract implementation org.kuali.rice.krad.uif.component.ComponentBase is provided which can be
extended to build new components. Other than default implementations for lifecycle methods which we
will explore later, this classis essentialy a POJO (Plain Old Java Object) for the common properties.

Common Component Properties

We have already learned about one very important property that all components have — the template and
template name. The template is the path to the FreeMarker file that will perform the rendering process
(creating of HTML markup) for the component. The template name is the name of the macro by which
the rendering can beinvoked. Now let's look at some other properties that we get from ComponentBase:

Id — All components must have a unique identifier within aview. Thisid plays acritical role both server
sideand ontheclient. Onthe server, theid isused to pull acomponent fromitscontaining view. A view can
contain many components that are deeply nested. Iterating through thistree to find a particular component
can require a lot of coding and add up to many wasted cycles. With the id we can 'index’ the view such
that a component can be retrieved in asingle call.

On the client, the id becomes even more important. Asis the case for many of the server side component
properties, the id is used to populate the id attribute on the HTML element. This results in unique ids
for all elements on the page. These ids can then be referenced by a script created by the framework or
by the developer. Furthermore, it is also possible to build CSS based on the ids (although this is not the
recommended strategy).

For generating the id values, there are a few options KRAD provides. First, the id can be assigned by the
developer, or it can by generated by the framework. Manual assignment can furthermore be done in one
of two ways. Thefirst isto set the id by using the bean property tag. For example:

1 <bean par ent =" Conponent " >

2

<property name="id" val ue="ks34"/>

The second way to manual assign the component id is by using the bean id attribute:

1 <bean id="ks34" parent="Conponent">

Since the id bean attribute is already required in most beans (top level beans), it is often most convenient
to take this approach. If both the bean id attribute and the id property are specified, the id property value
will be used.

Note that when a bean inherits a bean definition, an id specified with the property tag will be inherited,
while theid attribute of the bean tag will not.

Introduction to the UIF

<bean i d="ks34" parent="Conponent">

</ bean>

<!-- this bean will not have a configured id -->
<bean parent="ks34">

O~NO O WNPRE

</ bean>

If anidisnot configured by one of the above mechanisms, the framework will generate and assign aunique
id for the component. Ids are generated using a sequence that startsat 1 each timethe view lifecycleisrun
(each request), and prefixed with 'u'. For example, the first few generated ids would be 'ul’, 'u2', and 'u3'.

The component ids are assigned by the framework at the beginning of the lifecycle (the ‘initialize
phase). This guarantees all components will have an id throughout the view lifecycle (important for
script generation in addition to many other things). There is one twist, however. Some components are
dynamically created while processing the view data (the ‘applyModel’ phase). For example, al collection
row fields cannot be created until the collection dataisavailable. In these cases, the configured component
represents a ‘prototype’ for creating the dynamic components. The prototype will have an id that was
manually or automatically assigned. For creating the dynamic component, the prototypeis copied and then
adjusted. This means the id value will be copied as well. In order to give the copy a unique id, the id is
suffixed. In the example of collection rows, each id is suffixed with theline (10, 'l1', '12'...). For example,
if the prototype has an id of 'u5S6', the field in the first collection line will have id 'u56_10', in the second
'us56_11', and so on. Other id suffixes used in the framework will be discussed in the various component
sections.

Tip

Factory 1d: Another property we find on ComponentBaseisf act or yl d. Thisis used to hold
the original id for components that are copies of prototypes (dynamically) created. The property
is necessary when we need to get a new instance of component using the ComponentFactory.
Because the component was dynamically created, the ComponentFactory is not aware of it.
However, it is aware of its prototype. Using the factoryld, we can get a new instance of the
prototype and then adjust as necessary.

Title— For most components, we can specify the title property. This property gives extrainformation for
the component that will be available in the user interface. This is an example of a property that many
components have, but is used differently between components. For example, one of the component types
we will learn about in the next section is a Cont ai ner . Components generally begin with a header
(using the HTML header tag) and use the title property for the header text. Other types of components
include Fi el ds and Cont r ol s. The component types use the title property as the title attribute on the
corresponding element they produce:

1 <elenment title="conponent title property value"/>

Thetitle attribute value is most often shown as a tooltip when the user hovers over the element.

Titl e Property: Thereasonwe say title property can be specified for 'most' componentsisthat there
are some that do not use this. Since the overwhelming majority do, it was added to ComponentBase for
convenience.

Render —Therender property isaBoolean that indicates whether the HTM L markup should be generated
for the component. When this is set to false, the configured template will not be invoked during the
rendering process. By using conditional expressions to set the render property, we can make our view

85

Introduction to the UIF

much more dynamic. Essentially the render property allows usto display or not display acomponent based
on runtime conditions.

For example in the following configuration only field1 will be rendered:

1 <bean parent="Uif-InputField"

2
3

p: propertyName="fi el d1"/> <bean parent="Ui f-1nput Fi el d"
p: propertyName="fi el d2" p:render="fal se"/>

Thedefault valuefor render istrue, soif therender property isnot specified the component will berendered.

Hi dden — The hidden property is similar to the render property in that it configures whether or not
the component is displayed. However, when a component is hidden (and render is set to true), the
corresponding template will be invoked to generate markup. The content isthen surrounded with adiv that
contains a style of display none. This keeps the content from being visible. The content can be displayed
by changing the CSS display style through script. This provides a mechanism for toggling the display of
a component on the client. Later on, we will learn about jQuery, which among many other things, allows
usto flip the visibility of an element by invoking the show or hide function.

ReadOnl y —Itis common to use the UIF for building forms that will collect data and perform a process
on behalf of the user. There are avariety of components, such as controls and widgets, that allow the user
to input data. These components have a state of editable (user input is allowed) or read only (user input is
not alowed). To indicate acomponent should bein the read only state we can set the readOnly property to
true. Again, thisisaproperty that expressions are generally used for that setsthe state based on acondition.

Since it varies how components allow user input, the impact of setting a component as read only varies.
For example, read-only controls simply display the control value as HTML text. An action field, on the
other hand (button, link, image), will not render when set to read only.

Mor e | nf o: Components such as controls and action fields also support the disabled property. When
these components are disabled they are in aread only state (no user input is allowed), however they are
presented differently. Although the disabled appearance can be modified, generally the component appears
asit does when editable (for example the actual control or button appears) but appears dimmed. The UIM
provide guidelines for when to use disabled over readOnly.

By default, the component base bean definitions have the readOnly property set as a condition on the read
only status of the parent. Recall that our View represents a tree of components, where each component
contains zero or more child components. This is often referred to as a parent-child relationship. All
components with the exception of the View have a parent. Thus if the parent is read only, the child will
be aswell.

One example of the parent-child relationships is the Container component. The purpose of a container
is to hold other components and provide a layout. Therefore, the components in the container are
child components, and the container is the parent component. Setting the container component as
read only will make all components within the container read only. This is a convenient feature that
simplifies configuration. For example, if we needed to make a group of fields read only, we can add
the readOnly="true" property to the container component instead of adding the property to each field.
Furthermore, sincethe View contains all the components, we can add readOnly="true" to make our entire
web page read only.

Some views are always read only. One example of thisis the Inquiry view which displays information
about a data object instance. The InquiryView base bean has the readOnly property set to true. Therefore
all components added to aview of thistype will be read only without having to specify the property.

Requi r ed —When acomponent allows user input, the required property indicates whether the user must
provide a value (or complete the input/action). This is most typically used with input fields that have a

86

Introduction to the UIF

control, but can also be used with a container (group) to indicate a section must be completed (fields in
the section must have input). Other components may use the required attribute in away that is appropriate
for the component.

In the case of input fields, setting required to true will do a couple of things. First, a message will be
displayed to the user indicating if it is required (by default an asterisk *'). Second, the framework will
perform validation client side and/or server side that checks a value was given. If the value is empty, an
error message is created and presented to the user.

Style and Style C asses —KRAD provides alot of flexibility to make your web applications
look great! All UIF components have a configured style class that performs the visual treatment. These
style classes are provided within the CSS files that come with KRAD. However, if needed, using the style
properties we can add or override CSS configuration for each component.

Inline style configuration can be specified using the style property. The value is then placed as the style
attribute value for the corresponding HTML element. Likewise, style classes can be specified using the
styleClasses property. Thisproperty isalist typewith each list item specifying astyle class. The configured
style classes are concatenated into a string using a space delimiter, then output as the class attribute value
for the corresponding element.

Progressi ve and Ref r esh — Component base contains several propertiesthat relate to configuring
progressive disclosure or component refresh functionality. Thisis covered in detail in Chapter 11.

O der — KRAD adds some ahilities to the Spring configuration system, including more control over
collection merging. In a base bean definition that contains a collection, each component in the collection
can have an order specified. When inheriting the collection property in child beans, components can be
specified with the same order to replaceitemsin the parent list or given an order that inserts the component
between two items of the parent collection. Thisfeaturein covered in more detail at the end of this chapter.

Tip

Read Onl y: Asstated above, thefeature of read only inheritanceisdone by setting an expression
on the readOnly property which isinherited. This configuration is as follows:

1 <property nanme="readOnly" val ue="@#parent.readOnly}"/>

However, the readOnly property can be overridden to specify another condition, or to explicitly
make the component editable. This can be useful for cases when afew of the child components
need to be editable, but the majority should beread only. We can set the parent asreadOnly="true"
which will make all child components read only. Then we can add readOnly="false" to the few
components that should be editable.

Skip In Tab O der —By default, tabbing will follow the natural order of the elements and include
each element that can accept focus. When needed, the element corresponding to the KRAD component
can be taken out of the tab order (will not be tabbed to) by setting the skiplnTabOrder Boolean to true.
An example of where this might be needed is a widget. The widget might contain several elements that
work together as one focusable item. Within the item, keyboard shortcuts can be provided for navigating
to the various elements. The user can simply tab again to get out of the widget (instead of having to tab
possibly several times).

More finely grained control over the tabbing order can be configured as well using the tablndex property
of Control.

Finalize Method To Call - Although you can do a great number of things using XML,
you also have the option of assembling components with code. One way to invoke code is with the

87

Introduction to the UIF

finalizeMethodToCall. Thisisthe name of amethod on the ViewHel perServicelmpl that should be called
during the finalize phase of the view lifecycle. Standard arguments to this method are the component
instance and the model (view data). Two additional properties, finalizeM ethodAdditional Arguments and
finalizeMethodInvoker, exist for greater flexibility oninvoking amethod. Code support iscovered in detail
in Chapter 10.

Sel f - Render and Render Qut put —Asdescribed in the section on templates and Apache Tiles,
most components are rendered by a FreeMarker file that combines parameters from the components with
static content to produce HTML markup. Components may render without a template by generating the
markup through code. This is done by setting the selfRender flag to true. When this flag is turned on,
instead of invoking atemplate, the method getRenderOutput will be invoked on the component instance
to return the markup that should be output.

Tip

Sel f - Render ed Cont ent : The markup returned by a self-rendered component may not
include dynamic markup (FreeMarker content). The string is written directly to the response
without going through FreeMarker processing, therefore only HTML markup must be returned.

Conponent Security —KRAD alowsfor fine-grained security to be defined, which integrates with
the KIM (Kuali Identity Management) module. Security restrictions are indicated by setting a flag on an
org. kuali.rice.krad. ui f.conmponent. Conponent Securi ty instance. When aflagis set,
the framework will check aKIM permission (setup for that restriction type) and, if not granted to the user,
therestriction will be activated. Particul ar security flagswill be discussed whilelooking at each component.

Conponent Modi fi er s — Component modifiers are classes that can be configured on a component
to modify its properties through code. A component may have one or more component modifiers that
get applied in the order they are configured. Modifiers can be useful in many cases. For example, the
maintenance framework supports a comparison view where an ‘old' and 'new’ field is presented for each
field. To achieve this, a component modifier was created that reads the configured group fields copying
each to make the 'old' field. Then a base bean was created with the component modifier configured. All
maintenance groups then extend this bean and inherit the comparison feature.

Component modifiers can aso have a condition that determines whether it should run (the
runCondi t i on). In the example of the maintenance modifier, we only want to show the comparison
when doing an edit operation (not for a new or copy). Therefore, the run condition is setup to check that
the maintenance action is edit. The framework will evaluate this condition and only invoke the modifier
if the condition succeeds.

There are many other things that can be done with component modifiers which will be covered in Chapter
10.

Tenpl ate Opti ons — Besides the properties a component class has, some component templates
support options that can be configured using thet enpl at eCpt i ons map. These can be thought of as
'pass-through' parameters since the component classis not aware of them.

Template options are used primarily with Widgets that invoke ajQuery plugin. All jQuery plugins have a
standard options map (or object since thisis JavaScript) that configures the plugin options. This options
map is created from the template options.

Tip

Tenpl at e Opti ons: The generic template options map allows parameters to be added by
the template without modifying the class. This can be useful when creating custom templates
with options not originally supported by the component. In addition, this allows us to change our

88

Introduction to the UIF

plugin implementations more easily. The options for the new plugin can be configured through
the XML without having to change the class.

Property Repl acer s —Another tool provided by the UIF for component configuration are property
replacers. A property replacer allows us to exchange the value for a bean (component) property based on
a condition. For example, we can change the control for afield from atext control to a checkbox control
if some condition istrue. Or, we might want to change out acomplete list of container fields with another.
In asense, property replacers give us the capability to have if statementsin our XML.

A component may have one or more property replacers defined. In addition, one or more property replacers
can be configured for the same property. Each property replacer whose condition passes will be applied,
so the order in which they are configured can matter. Property replacers will be covered in Chapter 10.

Cont ext — One very powerful feature of the UIF is the ability to use EL (Expression Language)
statements in XML. The expressions are evaluated using the Spring EL framework. Spring EL allows us
to define variables that can be referenced within the expressions. The UIF provides these variables from
the component context map.

Each entry of the context map represents a variable, where the map key is the name of the variable (how
it will be referenced in the expression), and the map value is the value Spring should use for the variable.
The framework adds standard variables to the context for all components. Some examples include the
'view' and '‘component' variables. Additional variables are added based on the component. For example,
components within a collection group receive the variables 'line' and 'index' for referring to the current
line. Finally, custom variables can be added to the context either through the XML configuration for a
component, or by code. More information on expressions will be covered in Chapter 10.

Script Event Support

In addition to implementing the Component interface, ComponentBase implements the
org.kuali.rice.krad.uif.component.ScriptEventSupport interface. This alows a component to specify
whether a given jQuery event is supported, and to retrieve or set the JavaScript code for that event.
For example, let's take the onblur event. If a component supports this event, it will implement the
getSupportsOnBlur method and return true. Script for the onblur event can then be set through the XML
by using the onBlurScript property. Finally, when rendering the component, the template tag will retrieve
the onBlurScript and associate with the onblur event. A listing of all events and examples will be given
in Chapter 11.

Recap

» A UIF Component is anything that can be used to build the application user interface.

* To become a UIF component, a class must implement the interface
org.kuali.rice.krad.uif.component.Component.

» The component interface defines properties and behaviors all components must provide.

» Components can extend org.kuali.rice.krad.uif.component.ComponentBase which provides properties
and default implementations for the component interface.

* The id property is a unique identifier for the component which can be assigned in the xml with the
property tag or by the bean id attribute.

e The component id is used as the id for the element that is generated from the component. On the client
it can be used for scripting and styling.

89

Introduction to the UIF

» Therender property specifies whether html output for the component should be generated. When set to
false the component template is not invoked.

» The render property along with expressions give us the ability to conditionally determine how a page
will be displayed.

» For components that allow the user to interact with them, such as form controls, the readOnly property
can be set to not allow user interaction.

» By default, the read-only state is inherited by a component from its parent. This allows usto easily set
agroup of components or the entire page as read-only.

« Any component can be styled by using the style and styleClasses properties. The style property allows
an inline style to be applied, while the styleClasses allows us to apply one or more css classes to the
component.

» Component base contains properties for configuring progressive disclosure and component refresh
functionality.

* Although many things can be accomplished just with xml, code can be used to set the component state
by specifying afinalize method to call.

» Components can output their html marked directly instead of using atemplate. Thisis done by setting
the selfRender property to true.

» Component modifiers are classes that perform a modification on component state. One or more
modifiers can be configured for a component.

* In addition to the properties defined by a component, the template can have options that are passed
through using the template options map.

* Property replacers can be used to replace the value for a component property based on a condition.

* All components hold a context map which contains variables that can be used for expressions that are
evaluated for properties of that component.

» Components can indicate that they support a jQuery (JavaScript) event which allows script to be
configured for that event.

Types of Components

Within the UIF component landscape, there are groupings of components which share similar properties
and behaviors. With each component grouping, the framework provides an interface (extending
Component) and base class. This allows sharing of properties and behavior for components within these
groupings. In particular, the base classes areimportant for the view processing, known astheview lifecycle.

Another way to think of these component types is how we use them to build our web page. Recall that
each component is rendered to produce HTML markup (including script), thus our components are really
amodel HTML. Therefore, to understand the how the component groupings are formed, it is helpful to
first breakdown the various HTML tags and how they are assembled.

Content Elements

HTML provides us tags (known as 'elements’) we can specify that will be read by the browser to render
some type of content. Examples of thisinclude:

90

Introduction to the UIF

e <a>tag - Defines a hyperlink

 <hutton> tag - Defines a clickable button

» <hl1>to <h6> tag - DefinesHTML headings

» tag - Defines an image

» <label> tag - Defines alabel for an input element

As we see by the tag descriptions, these tags and others like them generate some content that is visible
to the user. The components that represent these tags (or will render these tags) are known as Content

Elements. The following is a mapping of the above tags to its UIF component:

e <a> - ActionLink

<button> - ActionButton

<h1> to <h6> - Header

e - Image

<label> - Label

Controls

A special type of content element is one that allows the user to provide data input. These elements are
known as Form Elements or Controls. Controls are only valid within an HTML form which will collect
the data and post to a configured server location. Controls come in different types that determine how the
user can provide data. Some HTML control examples are as follows:

* <input> - acontrol that allowsthe user to input data by typing the value. Several different types of input
controls are provided which are configured by using the type attribute. Some available types include
‘checkbox', 'file', 'hidden’, 'image’, ‘radio’, 'submit’, and 'text'.

* <textarea> - aspecial type of input that renders a multi-line text input

» <select> - acontrol that allows the user to select avalue from alist of options

Within the UIF, these types of components are also known as controls. Unlike the previous content

elements, there is not a one-to-one mapping between the tag and control component. Instead, the UIF

provides a component for each input type. Some examples include:

* <input type="text"> - TextControl

* <input type="file"> - FileControl

* <input type="checkbox"> - CheckboxControl

» <textarea> - TextAreaControl

» <sglect> - SelectControl

Controls all implement the org.kuali.rice.krad.uif.control.Control interface, which has the base class
org.kuali.rice.krad.uif.control.Control Base.

91

Introduction to the UIF

Fields

Besides the various content elements HTML provides us, we also can use tags that allow us to group
content for layout purposes. One such element is the span. The span element defines a section of the
document and includes one or more content elements. Essentially, it is awrapper for other elements.

Spansarevery important for layout purposes. They giveustheability to put together morethan one element
and have it treated as a 'block’ in the layout being employed. A good example of thisis the pairing of a
label and control, where the label should appear above the contral. If we wanted several of these pairings
toaigninahorizontal row, we would need to resort to atable. Wrapping each pairing in aspan, however,
tells the browser these elements work together and should take up one place in the layout. Furthermore,
the default display property for span elementsisinline, so additional spanswill align in ahorizontal row.

Inthe UIF, these span wrappersare known asFields. Thereare several different Field components provided
which have preset content elements, therefore, you don't have to do the work of composing a content
element with aField. Some examplesinclude;

* InputField — Field that contains a control, information text, and several other elements
» ActionField — Field that contains an action button or action link
» LinkField —Field that contains alink

In addition to wrapping content elements, the Field component also provides a label. This is a label for
the span contents, and its placement is configurable.

All Fields implement the org.kuali.ricekrad.uif.field.Field interface, which has the base class
org.kuali.rice.krad.uif .field.FieldBase.

Containers

So far in this section, we learned about the basic HTML content elements and the span wrapper. We could
write a page with these elements, and the browser would render it based on the order of these elements
and their styling. However, in many cases we want to form larger groupings with their own layouts. For
this, HTML provides the div element.

The div element is similar to span in that it wraps elements. However, div elements are generally used to
divide larger sections of the page and can include content elements, along with the span element. The UIF
generates the div element using the G- oup component.

The group component isan implementation of amore genera type of UIF component named Cont ai ner .
The main job of container componentsisto hold a configured list of components and render them using a
layout. A container isdivided into three parts: the header, the body, and the footer. Generally, these appear
in the user interface as show by Figure 5.5, “KRAD Container Parts’.

Figure5.5. KRAD Container Parts

Container Parts

Header

Body.
(Container Items)

Footer.

Besides the group component, another type of container isaView. Views do many thingsin the framework
that will be discussed throughout this manual, including the container duty. A view instance actually

92

Introduction to the UIF

contains all other components of an interface. That is, aview is at the root of the component tree and is
not contained within any other component. In addition, the container items we configure for a view must
be groups (conceptually known as 'Pages).

Containers may restrict the types of componentsthey can hold. For example, KRAD providesaLinkGroup
which is a type of group that only alows link components to be configured. Generally, these containers
restrict the components they can hold so that they can provide more specialized properties and behavior.

Tip

How do groups differ from fields? A field produces a span that wraps content elements, and a
group produces adiv element that wraps both content and span elements. They seem very similar!
Theimportant differenceisafield isapreset composition of elementswith a preset layout, while
the group component and itslayout can be configured. It ishelpful tothink of thefield components
as our palette to choose from, and the group component as our canvas!

Widgets

Today we havethe ability to do alot morein our web applications, beyond using thebasic HTML elements.
With the use of JavaScript and frameworks such as jQuery, we can have features such as menus, tabs,
trees, and dialogs in our user interface. These features are achieved by composing the HTML elements
with script. Within the UIF, components that generate such content are known as Widgets.

Tip

Widget Templates: Although the majority of delivered widgets use jQuery, a widget template
may invoke any script method or make use of other frameworks.

Thisisacomponent typethat hasalot of variety. However, the commonality iswetypically create widgets
not by rendering HTML elements and attributes, but instead by invoking script. To be more specific, most
widget templates invoke ajQuery plugin passing in parameters from the templateOptions map.

We can also think of widgets as client side components. Unlike the other UIF components that generate
their HTML markup server side, widgets generate content on the client during page load. Widgets are
explained further in Chapter 8.

Composition and Containers

Just as HTML elements can be composed, so can the UIF components. These compositions can be fixed
based on the property type, or variable. For example, the LinkField is a fixed composition of a Link
component with the Field component:

public class LinkField extends Fiel dBase {
b‘ri.vate Li nk i nk;
An example of a variable composition is the Group container with the items list that can accept any

component:

public class G oup extends ConponentBase {

private List<Conmponent> itens;

93

Introduction to the UIF

Althoughit is possibleto have any composition of components between the varioustypes, there are certain
guidelines:

* Fixed Composition
« All components can be composed of groups, fields, elements, and widgets
* Input fields can be composed of controls
» Variable Composition (Container)
* Viewsaretop level components and may not be contained in other components
« A View can contain one or more groups

< A Group can contain one or more groups, one or more fields, and one or more content elements with
the exception of controls

¢ Groups and views may NOT contain widgets
» Groups and views may NOT contain controls

The below figure depicts the composition of components.

Figure 5.6. KRAD Component Hierarchy

Component Hierarchy

Recap

» The UIF contains groupings of components that have similar properties and behavior

» Each component grouping has an interface and base class

» Content elements are components that generate an html content element

* A control isaspecial type of element component that allows the user to provide data input

A field isacomponent that wraps one or more content elementsin adiv

Fields have an associated |abel

A container is a component that holds other components and applies a layout

A container is divided into three parts: header, body, and footer

» A groupisatype of container that generates a div and lays out its components using a layout manager
» A view isthetop most component and, among many things, holds groups known as pages

» A widget is a component that invokes a script to create the Ul elements client side

94

Introduction to the UIF

e Widgets are typically implemented using jQuery

» Components may be composed with components of other types

UIF Constants

Besides the component classes, the UIF contains other services and utility classes that are helpful to be
aware of. One of these is the UifConstants class. This contains constants that are used throughout the
UIF. Some of these are constants that represent configuration options, while others are used by the code.
For those that can be used for configuration, the constant can be referenced using an expression and the
'‘UifConstants variable. For example @{#Uif Constants.Placement.LEFT} refersto the LEFT enum value
in the UifConstants class.

Posi t i on —ThePosition enumhasvaluesBOTTOM, LEFT, RIGHT, and TOP. Thisisused to configure
where an element should be placed in relation to another. One use of thisis for the field label. We can
choose to put the label to the left of the contained field element, on top, to the right, or on the bottom.

Ori entati on — The Orientation enum has values HORIZONTAL and VERTICAL. This is used
primarily by the Box layout manager to configure whether the elements should be aligned in a horizontal
or vertical row.

Vi ew Type —TheView Type enum givesthe available types of view. A View Type (discussed in 13) is
a subclass of the View or FormView components that provides specialized behavior. The out of the box
view types are DEFAULT, DOCUMENT, INQUIRY, LOOKUP, MAINTENANCE, and INCIDENT.

Control Type — The Control Type enum gives the available controls and is used primarily when
creating components through code.

Wor kfl ow Acti on — The Workflow Action enum gives available workflow document actions and
is used primarily within the Document controllers. Vaues are SAVE, ROUTE, BLANKETAPPROVE,
APPROVE, DISAPPROVE, CANCEL, FYI, and ACKNOWLEDGE.

Met hod To Call Nanmes —Thisisan inner constants class that specifies the name of methodToCall
parameter values (which map to controller names).

Acti on Event s —Thisisan inner constants class that specifies action event names. Action events are
away of grouping types of actions that can then be used for logic or authorization. An example action
event is"addLine".

Id Suffixes —Thisisan inner constants class that declares id suffixes that are used throughout the
framework.

Vi ew Phases — This is an inner constants class that names the three view phases. INITIALIZE,
APPLY_MODEL, and FINALIZE.

Vi ew St at us — Thisis an inner constants class that names the three view states: C (CREATED), |
(INITIALIZED), and F (FINAL).

Cont ext Vari abl es Nanes —Thisisaninner constants class that holds the namesfor variables that
can be used in expressions. These variables are listed in Appendix E.

Ref resh Cal | er Types —Thisisaninner constants class that holds names of refresh callers. These
can be used in return methods to determine what type of view called the refresh. Values are LOOKUP,
MULTI_VALUE_LOOKUP, and QUESTION.

EL Pl acehol der Prefix and Suffi x —These constants specify the placeholders that indicate
an expression in the XML.

95

Introduction to the UIF

Bi ndi ng Prefi xes —These constants specify prefixesthat can be used within expressionsfor binding
paths. Options are covered in Chapter 10.

Other Constant Files - In addition to UifConstants, there are the following constant files:

CssConstants — Constants for CSS strings

UifParameters — Constants for request parameter names. Some examples include methodToCall,
formKey, viewld, and pageld.

UifPropertyPaths — Constants for property binding paths.

KRADConstants— General constantsfor the KRAD module. These constants can bereferenced in XML
by using the Constants variable.

UifConstants provides enums and constant classes for configuration and code strings

UifParameters contains constants for request parameter names

KradConstants provides constants for the KRAD module

UifConstants can be referenced in XML by wusing the UifConstants variable

(@{#UifConstants.constantname}), likewise KradConstants can be referenced using the Constants
variable (@{ Constants.constantname}).

UIF Bean Files

Aswe learned in the UIF overview, each component has at |east one base Spring bean definition and in
many cases has more than one. KRAD ships with several base beans that are divided into files for better
management and easier browsing. All of these 'base bean' files are located in the resource folder (src/
main/resources) of the KRAD web module. Within the resources folder they are contained in the package
org.kuali.rice.krad.uif. The below screen shot shows this package in the Intellij project pane.

Figure5.7. KRAD Intéllij Project Pane

skrad [rice-krad]

1k [rice-krad-app-framework]

1k [rice-krad-web-framework]

96

Introduction to the UIF

UIF Configuration Definitions

This file contains bean definitions that are related to component configuration. That is, the beans don't
represent components, but classes that are used to configure a component. Some examples include
component modifiers, history, binding info, and filters.

UIF Control Definitions

This file contains bean definitions for control components. Examples include TextControl,
CheckboxControl, FileControl, and the SelectControl.

UIF Document Definitions

Thisfile contains bean definitionsthat are related to the Document view type. Thisincludesthe Document
View bean, common document group and field beans.

UIF Field Definitions

This file contains bean definitions for the various field components. Examples include DataField,
InputField, ActionField, and ImageField.

UIF Group Definitions

This file contains bean definitions for the various group components. Multiple bean definitions
are provided for the group component that configure different layout managers. Examples include
Vertical BoxGroup and Horizontal BoxGroup. In addition, bean definitions exist for the group level (page,
section, and sub-section). Finally beans exist for the disclosure option and special types of groups like
the TreeGroup.

UIF Header Footer Definitions

Thisfile contains bean definitionsfor header and footer groups. Headers and footers are defined for various
group levels (page, section, and sub-section), along with collection groups. Finally the basic hl through
h6 header components are defined.

UIF Incident Report Definitions

Thisfile contains bean definitions that are related to the incident report view.

UIF Inquiry Definitions

This file contains bean definitions that are related to the Inquiry view. This includes the Inquiry View
bean, and definitions for inquiry groups.

UIF Layout Managers Definitions

Thisfile contains bean definitions for the provided layout managers. In addition, common layout manager
configurations are provided as separate beans.

97

Introduction to the UIF

UIF Lookup Definitions

This file contains bean definitions for the Lookup view. This includes the Lookup View bean, and
definitions for lookup groups.

UIF Maintenance Definitions

Thisfile contains bean definitions for the Maintenance view. This includes the Maintenance View bean,
and definitions for the maintenance groups.

UIF Rice Definitions

This file contains bean definitions for other Rice modules. Examples include the KIM person and KIM
Group controls.

UIF View Page Definitions

This file contains bean definitions for the various view and page components. This includes the default
View, Form View, and Page beans. Also included is the configuration for the base theme.

UIF Widget Definitions

This file contains bean definitions for the various widget components. Examples include DatePicker,
Lightbox, Breadcrumbs, and Tree.

Note that afull listing of beans contained in the above filesis given in Appendix A.

Recap

» The UIF provides several bean definitions that are divided into files based on type

Styling and themes

KRAD doesn't stop with just rendering the HTML markup, but also provides CSS to make your web
applications look great! With the 2.0 release, you can choose to use one of two |ook-and—feels (known as
Thenes). Each theme has been created with default styling for all the delivered components. However, if
you wish to change styling or create new components, all the hooks are provided for doing so. This section
will explore the themes and how custom styling can be added.

View Theme

The UIF provides the class org.kuali.rice.krad.uif.view.ViewTheme which contains a list of style sheet
and script file paths. The ViewThemeisthen set asaproperty of the View and its corresponding properties
arereferenced when rendering the HTML CSSand Script links. Thus, it provides the base theme (or 'Look
and Feel") for our page.

In XML, view themes can be created using the 'Uif-ViewTheme' bean:

1 <bean i d="U f- WThene" parent="Uf-Vi ewThene">

98

Introduction to the UIF

2 <property name="styl esheets">

3 <list>

4 <val ue>/ css/ nmy. css</ val ue>
5 -

6 </list>

7 </ property>

8 <property name="j sFil es">

9 <list>

10 <val ue>/script/my.js</val ue>
11 -

12 </list>

13 </ property>

14 </ bean>

The 2.0 version of KRAD comes with two themes that can be used. The first of these is based on the
previous KNS devel opment framework and aimsto achievethe samelook. The main reason for devel oping
this theme is so that existing application screens can be converted to KRAD while some remain in the
KNS. The look and feel was updated to not use images (including the buttons); it also has various other
improvements that allow for easier visual treatment (for instance changing the color scheme).

The second theme is based on the Kuali Student open look with modifications for KRAD. By

default, this is the theme configured in the base view definition. Both themes are defined in
Ui f Vi ewPageDefinitions. xm .

Tip

Planned Feature: Dense Theme - For the 2.2 release, anew theme will be devel oped for KRAD
that will be the replacement for the KNS (legacy) theme.

Modifying Themes

Themescan easily be modified on an application basis, view basis, or component basis. There aretwo ways
to modify atheme. First, we can create additional style sheets and script files that are included with our
views. Thesefiles may set anywhere within the application web directory, or they can be accessed through
adifferent web server. To add the additional files, we use the additional CssFiles and additi onal ScriptFiles
properties on the view component:

1 <bean id="MyView' parent="Uif-FornView' >

2 ce

3 <property nanme="additional CssFiles">

4 <list>

5 <val ue>/ css/ nyVi ew. css<val ue> <val ue>http://server.conm css/ myVi ew. css</val ue>
6 </list>

7 </ property>

8 <property nanme="additional ScriptFiles">

9 <list>

10 <val ue>/ script/nyVi ew. j s</ val ue>

11 <val ue>http://server.com script/nyVi ew. js</val ue>
12 </list>

13 </ property>

14 </ bean>

Using bean inheritance, we can setup anew base view with the additional CSS and/or script filesthat other
views inherit. Furthermore, individual views can add files as needed.

Within the additional style sheets, we can override the provided style classes (see 'Base Styles and
Conventions), or add new style classes. For example, we might want to add a new style classto al input
fields, or buttons, or a new component we have devel oped. Once we have defined the style class, we must
then associate it with a component. We can do this by using the styleClasses property.

99

Introduction to the UIF

1
2
3
4
5
6
7
8

1 <button id="M/ActionButton" class="uif-primryActionButton custonStyl eC ass"

1

The styleClasses property is provided for all components, and holds a list of class names that should be
applied for that component. We can configure this property using the Spring list tag:

<bean i d="MyActionButton" parent="Uif-PrimaryActi onButton">

<property name="styl eC asses">
<list nmerge="true">
<val ue>cust ontt yl eCl ass<val ue>
</list>
</ property>
</ bean>

Recall that in order to inherit collection configuration from a parent bean, we must using the Spring tags

and add merge="true". It is recommended that the default style classes always be inherited.

The configured styleClasses are then specified as the class attribute on the rendered HTML element:

>

Notice the uif-primaryActionButton class. This was inherited from the Uif-PrimaryActionButton bean.

The second way to modify themesisby providing inline styling information. Thisisaccomplished by using
the style property that is available on all components. This property is then used to set the corresponding
style attribute on the rendered HTML element (known asinline styling).

<bean parent="Ui f-BoxG oupSecti on" p:style="border:

2 ...

Base Styles and Conventions

©OoO~NOOOA_WNPRE

1px; "

>

All of the provided components have astyle class configured by default. These style classes are configured
in the base bean definition(s) for the component. Similar to the naming convention employed for the bean
ids (starting with 'Uif-"), the class names al begin with 'uif-". After the prefix, the class names closely
match the bean name (with the exception of casing). As an example let's look at a few of the provided

action definitions;

<bean id="Uif-Actionl mage" ...
<property name="styl ed asses">
<list merge="true">
<val ue>ui f - acti onl mage</ val ue>
</list>
</ property>

<bean id="Uif-PrimaryActi onButton" ...
<property name="styl eCl asses" >
<list merge="true">
<val ue>ui f - pri maryActi onBut t on</ val ue>
</list>
</ property>

<bean i d="Uif- Secondar yActi onButton" ...
<property name="styl eCl asses" >
<list merge="true">
<val ue>ui f - secondar yAct i onBut t on</ val ue>
</list>
</ property>

<bean id="Uif-ActionLink" ...
<property name="styl eCl asses" >
<list merge="true">

100

Introduction to the UIF

25

27

1
2
3
4
5
6

<val ue>ui f-acti onLi nk</ val ue>
</list>
</ property>

Notice the style class configured for each bean.

In addition to providing the style class per component, the base beans are al so setup to inherit classes from
the parent (with the merge="true"). A good example of thisis the stacked collection group section:

<bean i d="Uif-StackedCol | ecti onSecti on" parent="Uif-StackedCol | ecti onG oup" >
<property name="styl eCl asses">
<list merge="true">
<val ue>ui f - st ackedCol | ecti onSecti on</ val ue>
</list>
</ property>

As in the previous examples, we are applying a style class for the component named 'uif-
stackedCollectionSection’. Now, let's walk up the bean hierarchy and look at the style classes we are
adding:

1 <bean id="Uif-StackedCol | ecti onG oup" parent="Uif-CollectionG oupBase">
2 <property name="styl eCl asses">
3 <list merge="true">
4 <val ue>ui f - st ackedCol | ecti onG oup</ val ue>
5 </list>
6 </ property>
7
8 <bean id="Uif-CollectionG oupBase" parent="U f-G oupBase"/>
9 <property name="styl eCl asses">
10 <list merge="true">
11 <val ue>ui f - col | ecti onGr oup</ val ue>
12 </list>
13 </ property>
14
15 <bean id="Ui f- G oupBase" >
16 <property name="styl eCl asses">
17 <list>
18 <val ue>ui f - gr oup</ val ue>
19 </list>
20 </ property>
So we can see the combined list of style classes applied will be 'uif-group uif-collectionGroup uif-
stackedCollectionGroup uif-stackedCollectionSection'. This gives us a tremendous amount of flexibility
for styling, sincewe have many levelsat which to define styling. We can configure styling that appliesto all
groups (uif-group), then all collection groups (uif-collectionGroup), then al collection groupsthat havethe
stacked layout (uif-stackedCollectionGroup) and finally all collection groups with stacked layoutsthat are
rendered at the section level (uif-stackedCollectionSection). At each level, we can add or modify styling.
Suppose we had declared the following styles in our CSSfile:
ui f-group {

}

paddi ng : 10px;
margin : 10px;

ui f-collectionGoup {

}

paddi ng : 20px;

ui f - stackedCol | ecti onGroup {

}

border : 1px;

101

Introduction to the UIF

The applied styling for the generated element will then have a padding 20px, margin 10px, and border 1px.

Tip

Do we need all these style classes? As you have likely determined by now, there are a lot of
these bean definitions provided by KRAD, and therefore that means there are many style classes
applied. Many of these style classes do not have a corresponding definition within the CSSfiles.
However, they are provided to give greater flexibility for custom CSS. For example, suppose the
default theme did not add styling for action link. Therefore, a style class was not declared in the
bean. Now a KRAD application wishes to add styling for action links. They would first need
to override the bean definition to add the class for the component. Instead with it already being
provided, they can just add the declaration in their custom style sheets without any modifications
to the application code!

Fluid Skinning System

KRAD aso comes bundled with the Fluid Skinning System (http://www.fluidproject.org/). The skinning
system contains a set of CSS files with classes that can be used for styling and layout. For example, there
are many useful classesfor text styling (size, color). Any of these may be used by adding the classnamein
the styleClasses property. More information on using Fluid for CSS layouts will be covered in Chapter 7.

Recap

A base set of CSS and script filesis configured in a view theme object, which is then set on the view
component

KRAD provides two themes in the 2.0 release. One is alegacy theme based on the KNS framework.
The second is a new theme based on the KNS open look and feel

Additional CSS and script files can be added to the view using the additionalCssFiles and
additional ScriptFiles properties

A list of style classes that should be applied are configured on the component using the styleClasses
property

Inline styles can be declared for a component using the style property
Each UIF base bean has a style class configured by default. Each class name begins with ‘'UIF-'
Style classes are inherited by parent bean definitions resulting in multiple applied classes

The multiple style classes provide flexibility to configure styling at different levels (corresponding to
the bean inheritance)

KRAD includes the fluid skinning system which can be used for additional styling needs and CSS
layouts

KRAD Spring Extensions

KRAD implements afew extensionsto the Spring configuration system that allow for easier configuration
of collections and more flexibility on merging. As we saw in Chapter 1, configuring collections requires
the use of specia Spring tags. These additional tags add alot to the overall verboseness of the XML, and
the time spent writing it. KRAD helps with this problem by allowing List and Map values to be specified
as a string using established delimiters.

102

http://www.fluidproject.org/

Introduction to the UIF

For populating a list with a single string value the individual entries are delimited using a comma. For
example:

p:listProperty="itenl,itenR,itenB"
or
1 <property nanme="listProperty" value="itenl,itenR,itenB"/>

is equivalent to:

1 <property name="1listProperty">
2 <list>

3 <val ue>i teml</ val ue>

4 <val ue>i t en2</ val ue>

5 <val ue>i t enB8</ val ue>

6 </list>

7 <l property>

As a consequence of using the comma delimiters, list entries that contain a comma may not use the
shorthand configuration, but must instead using the Spring list tag.

Maps can also be populated using the shorthand string configuration. Similar to a list, each entry is
delimited by a comma. For each entry, the key and value parts are separated using a colon. For example:

p: mapProperty="keyl: val uel, key2: val ue2, key3: val ue3"
or
1 <property name="napProperty" val ue="key1l:val uel, key2: val ue2, key3: val ue3" />
is equivalent to:

1 <property name="napProperty">

2 <map>

3 <entry key="keyl" val ue="val uel"/>
4 <entry key="key2" val ue="val ue2"/>
5 <entry key="key3" val ue="val ue3"/>
6 </ map>
7 </ property>

If any of the map keys or values contains a comma or colon, we must use the Map tag instead of the
shorthand configuration.

When using the shorthand notation, two other limitations should be understood. The first isthat when this
isused on achild bean, any entries specified on aparent bean will be overridden. That is, thisislikeleaving
the merge attribute of the collection tag, or specifying merge="false". Therefore, when entries need to be
merged with the parent bean definition, the Spring collection tags must be used.

The second limitation is with generics (Java 1.5). When populating a collection, Spring will read
generic information to determine how to convert the configured value. For example, suppose we had a
List<Integer> property type. Spring will then attempt to convert each list value to an Integer type. When
using the shorthand string configuration, no type conversion on the entries is performed. Therefore, only
collections of string type are supported (for example List<String> or just List).

103

Introduction to the UIF

Tip

Property Value Type Conversion: The shorthand configuration being described here was
implemented using a feature of Spring that allows us to specify PropertyEditor classes that can
be used to convert values configured in the XML. A PropertyEditor is a core Javainterface that
isinvoked to convert a value of one type to another type. Two property editor implementations
were created and configured with the bean container. The first converting a String to List, and
the second converting a String to Map. Property editors are also used to provide formatting of
valuesinthe Ul. Thiswill be discussed in Chapter 6.

Merge Ordering

1
2
3
4
5
6
7
8
9
0

1

When inheriting configuration from a parent bean definition (using the parent attribute), we can merge
collection entries from the child to parent definition by adding merge="true" to the collection tag. Spring
performsthe merging by adding the entries on the child definition to the end of the entries of the parent. For
example, if our parent bean specifies entries 'item1’ and 'item4', then the child specifies items 'item3' and
'item5', the resulting collection will have entrieswith the following order: 'item?','item4','item3''item5'. In
the majority of casesthisisfine. However, when the order of itemswithin the collection make afunctional
difference, only being able to merge entries at the end of the collection can be a hindrance.

Within the UIF, many collections do represent a case where the order matters. One example is the Group
component which has alist of component items and a Layout Manager. These items will be rendered on
the page based on the order in which they appear in the collection.

Therefore a property named 'order' was added to all components (ComponentBase) that can be used to
declare where the component should be placed in the collection when merging.

To make use of this functionality, we must first setup the collection items in the base bean to have an
order value:

<bean i d="M/Page" parent="Uif-Page">

<property name="itens">
<list>
<bean id="Sectionl" parent="Uif-GidSection" p:order="100">
<bean id="Section2" parent="Uif-GidSection" p:order="200">
<bean i d="Section3" parent="Uif-GidSection" p:order="300">
</list>
</ property>
<property name="itenOrderi ngSequence" val ue="101"/>

Notice a couple of things here. First, the order was specified for each item such that there is a range of
integers that fall between each (<100, 100-200, 200-300, >300). The second is the property value of 101
for itemOrderingSequence.

Now, let's assume we want to create a page that extends from 'MyPage'. For our page, we heed to add two
sections. However, when these sections are rendered, the first section should be between 'Section1' and
'Section?', and our second section should be after 'Section3'. This can be done as follows:

<bean i d="Anot her Page" parent="M/Page">

<property name="itens">
<list nmerge="true">
<bean i d="Section4" parent="Uif-GidSection">
<bean id="Section5" parent="Uif-GidSection" p:order="320">
</list>
</ property>

104

Introduction to the UIF

That's it! So what happened? First, we need to understand the rules of merging when the order property
isgiven:

1. If acomponent item does not have an order value, it will be assigned a value starting with the specified

itemOrderingSequence. This sequence gets incremented by one each time it is used to assign an order
value.

. The combined collection of itemsis then sorted by ascending order values.

. If an item from the child bean has the same order as an item from the parent bean, it will replace that

item.

Applying these rules to our example we see that 'Section4' will get an assigned order value or '101', thus
it will be placed between 'Sectionl' and 'Section2' which have order values of 100 and 200 respectively.
Finally 'Section5' will be placed after 'Section3' sinceit has an order of 320 which is greater than 300. The
final ordering is'Sectionl, Sectiond, Section2, Section3, Section5'.

Recap

KRAD provides extensions to spring that allow for easier configuration of collections and more
flexibility

List and map property values can be specified using a string value

For lists, each entry is delimited using a comma

For maps, each entry is delimited using a comma, with each key/value pair delimited using a colon
Shorthand string configuration cannot be used if merging is required

Shorthand string configuration cannot be used if list or map entry types are non-string

For lists of components, the order property can be given to control where in the merged list the
component will be placed

Component items from a parent bean can be overridden with a child item by using the same order value

105

Chapter 6. Fields and Content
Elements

Throughout the next few chapters, we will be taking a detailed look at the component types and the
individual components available out of the box with KRAD. We will start small and work our way up
to the entire view. By the end of this section, you will be armed with knowledge you can use to create a
wide variety of rich web interfaces!

In this chapter, we will look at the Content Element and Field component types. These form the palette
from which we can paint our page. Content elements are componentsthat will generate an HTML element
tag. Their properties are generally used to populate an available attribute of the HMTL tag. Therefore, if
you are familiar with the base set of HTML tag, learning these components should be no problem!

The Field component typeis awrapper. It is associated with the HTML span tag that allows usto enclose
one or more elements, and treat them as one unit for layout purposes. The field also allows us to declare
alabel which will be presented with the field block. For convenience, KRAD includes field components
that have present elements included. This allows for easy bundling in a group and applying a layout to
the set of fields. If a span is not needed, the elements can be directly configured in a group and rendered
using the configured layout manager.

So to learn more about what we can do with elements and fields, let's take a look at each component we
have in these types.

Field Labels

One commonly used content element we have is the Label component. As you might have guessed, this
component will render an HTML Label element. To create a new label component, we create a new bean
with parent="Uif-Label":

1 <bean parent="Uif-Label" ... >

Thelabel component isone of thesimplest to use, sincethere arefew propertieswhich it accepts. However,
there is one required property — the label text! Thisis the actual text that will appear on the screen as the
label. To specify this, we can use the label Text property:

1 <bean parent="Uif-Label " p:|abel Text="Book Title"/>

1 <l abel

In most cases, thisis all we need to do! The resulting HTML will look like the following:

i d="66_l abel ">Fi el d Label </ | abel >

Wait, where did the id come from? Recall that all components extend ComponentBase which provides
several properties for us, including the id property. If not specified, the framework will generate an id
for us automatically and use it for the element id attribute. We can specify a different id in either of the
following two ways:

1 <bean id="nyl abel " parent="Uif-Label" p:|abel Text="Book Title"/>

106

Fields and Content Elements

1 <bean parent="Uif-Label" p:id="nyl abel" p:|abel Text="Book Title"/>

In addition to the id property provided by ComponentBase, there are many others we might want to use.
Some that might be useful for the label component include title, style, and styleClasses.

When generating a label, it is a best practice (for accessibility reasons) to also specify the for attribute.
The vaue for this attribute is the id of the element for which the label applies. On the label component,
we can configure this value using the label ForComponentld property:

1 <bean parent="Uif-Label " p:|abel Text="Book Title" p:|abel For Conponent|d="bookTitle"/>

However, thisis usually not necessary. Instead of creating the label component directly, we can let the
field component create one for us. The field component provides some assistance to us for configuring
the label and associating it with a component. To understand this, first let's ook at the generic FieldBase
class from which al fields extend:

public class Fiel dBase extends Conponent Base i nplenents Field {
private Label fieldLabel;

B WN P

}

We see the field base encapsulates a label component. Thus when creating a field component we can set
the label component properties using the spring nested syntax (dot notation)

1 <bean parent="Uif-DataField' p:fieldLabel.label Text="My Data Field" ... >
Since the label is bundled within the field which is a wrapper for another component, the
label ForComponentld property will be automatically set (to the id of that wrapped component).

The Field component also provides a more convenient way of setting the label text. Instead of using the
nested notation of ‘fieldLabel.label Text', we can simply set the 'label’ property:

1 <bean parent="Uif-DataField" p:label="My Data Field" ... >

The given value will then be set on the label property of the nested label component.

Other Label Options

In addition to the properties described previously, the label component offers the following properties:

r ender Col on —Thisindicates whether a colon should be rendered after the label text. For example, the
label text of 'Foo' will result in 'Foo:" being rendered.

requi r edMessage — Thisis amessage component that will be rendered with the label to indicate that
the element associated with the label (generally a contral) is required. By default, the message text is
configured to be " but can be changed on a global or case by case basis.

1 <bean parent="Uif-DataField" p:label ="M/ Data Field" p:label.requiredMessage="required"/>

Like all components, the required message will be displayed if its render property is true. Therefore we
can set the required message to not display as follows:

107

Fields and Content Elements

1 <bean parent="Uif-DataField" p:label="My Data Field" p:label.requiredMessage. render="fal se"/>

However, we typically want to display the required message when the component the label is associated
withisrequired. Thisisagain whereour Field component providesvalue. Thefield will look at the required
property (on all components) of thewrapped component, and, if set to true, will then set therender property
to true for the label's required message. Likewise, if the component's required property isfalse, the render
property on the required message will be set to false. Therefore these two properties are synced.

Automatic Setting of Properties?

In this section we have mentioned a few cases where the field component will automatically set
values for us based on a condition. Where does this happen? Well in code of course! Besides
simply holding the property values for us, the component class can also perform logic which are
invoked during the view lifecycle. Therefore, if we wanted to change the component behavior,
we would need to create a new class and then override the base bean definition as described.

requi r edMessagePl acenent —Alongwith the required message, thelabel component also provides
a required message placement option. This indicates where the required message should be rendered in
relation to the label text. The type for this property is org.kuali.rice.krad.uif.Uif Constants.Position, which

isan enum for the four possible positions (LEFT, TOP, RIGHT, BOTTOM). However, in the case of the
required message, only the LEFT and RIGHT positions are supported.

Other Field Label Options

Thefield also provides some additional properties that related to the label. These are:

| abel Pl acenent — Similar to the requiredMessagePlacement of the label component, this property
is of type Position. It indicates where the label should be placed in relation to the other field content (the
wrapped component(s)). The LEFT, TOP, or RIGHT position may be specified:

1 <bean parent="Uif-DataField" p:label="My Data Field" p:l|abel Pl acenent="LEFT"/>
1 <bean parent="Uif-DataField' p:label ="M Data Field" p:l|abel Placenent="TOP"/>

1 <bean parent="Uif-DataField" p:label="My Data Field" p:|abel Pl acenent="RI GHT"/ >

These three configurations are shown in Figure 6.1, “label Placement Options’.

Figure 6.1. labelPlacement Options

LeftField Label
Top Field Label

Right Field Label

short Label —Onthefield component, we can also configure an alternate 'short’ label. When necessary,
the short label can be pulled instead of the standard 'long' label. For example, the table layout manager in
KRAD will use the short |abel for the table headers.

108

Fields and Content Elements

1 <bean parent="Uif-DataField" p:label="My Data Field" p:shortlLabel ="MW Fld"/>

Base Beans

With the various configuration options such as what to render and where, it can overwhelming. We
certainly do not want to think through each setting for every field we create. To help with this, base beans
are provided sensible defaults based on the label placement. These beans exist for the data field and input
field (two most commonly used fields).

Uif-DataField — Default which sets label placement to left, render colon as true, and required message
placement to right

Uif-DataField-Label Top — Sets label placement as top, render colon as false, and required message
placement to right

Uif-DataField-LabelRight — Sets label placement to right, render colon as false, and required message
placement to left

Similar beans exist for the Uif-InputField. To use one of the label configurations, we simply change our
parent bean:

1 <bean parent="Uif- Dat aFi el d- Label Top" p:|abel Text="My Data Field" />

Recap

» Thelink content element component renders an html label tag
» Thetext for the label is specified using thel abel Text property

» Thel abel For Conponent | d property on alabel specifies the component id the label is associated
with

» Generaly we don't need to create label components ourselves, but instead configure them through a
field component

« Labelscan also include arequired message that indicates the field associated with the label hasrequired
input

» Thefield component will automatically set the for property on the label, along with setting the required
message field component's render flag to true if the field is required

» On the label component we can specify whether a colon should be added with the r ender Col on
Boolean

» On the label component we can also specify whether the required message appears to the left or right
of thelabel using ther equi r edMessagePl acenent property

» Thefield component allows us to specify where the label is placed in relation to the field contents. The
options are left, top, or right

e The field component allows us to specify a short label that can be used instead of the 'long' 1abel by
some layout managers (for example the table layout manager)

109

Fields and Content Elements

» Base beans are provided for data and input fields that have different configurations for a label. The
render colon and requirement message placement properties are set based on the label placement

Data Fields and Input Fields

Two fields that are used often in enterprise applications are the DataField and InputField. Generally,
enterprise applications have alarge amount of datainput and output. ThislO isperformed usingan HTML
Form. The properties that back the form (provide and accept the data) are stored on a model. For our
purposes now, we can think of the model as a simple JavaBean (more information will be given in the
section 'Data Binding'). When we need to display one of these properties using KRAD, we configure a
DataField or InputField.

Data Field

A DataField isused to display a property value from the model asread-only. When we say read-only, this
means the value is displayed as static text on the page and the user cannot change its value. To create a
data field we specify a new bean with parent="Uif-DataField":

1 <bean parent="U f-DataField" ... >

When configuring adatafield for our view, we must associateit with aproperty onthemodel object. Thisis
accomplished using the propertyName property. For example, suppose we had the following model object:

public class BookForm {
private String bookld;
private String bookTitle;
Il getters/setters

}

~NOoO O~ WNPRE

To create adatafield for the bookld property, our configuration would be as follows:
<bean parent="Uif-DataField" p:propertyName="bookld" p:label="Book"/>

Recall from the previous section that our data field includes alabel element and, by default, is configured
to be placed to the left of the field content. Therefore, the result of thiswill appear asin Figure 6.2, “Data
Field Label”.

Figure6.2. Data Field L abel

Book: 3

The given property name can be a nested path. For an example of this, suppose now our model is the
following:

public class BookForm {
private Book book;

/] getters/setters

}

public class Book {
private String bookld;
private String bookTitle;

CQOWoWO~NOUAWNEPRE

=

110

Fields and Content Elements

11}
12

To display the bookld now, our property name should be "book.bookld". This is the same as doing
getBook().getBookld(). More complex situations will be covered in the section 'Data Binding .

Input Field

An Input Field extends from the Data Field and gives edit capability. This means the user can change the
value for the associated property and submit it back using the HTML form. Values are edited using an
HTML control which is represented in KRAD with a Control content element. We will learn all about the
various types of controls later on in this chapter.

To create anew input field, we specify a new bean with parent="Uif-InputField":

1 <bean parent="Uif-lInputField" ... >

Now since input field is also a data field, we must specify the property it is associated with using the
propertyName property:

1 <bean parent="Uif-InputField" p:propertyName="bookld"/>

Furthermore, since we have an input field and want to allow the user to change the value, we need to
configure acontrol component to use. We set the control component for theinput field using thecont r ol

property:
1
2 <bean parent="Uif-InputField" p:propertyName="bookld" p:|abel ="Book">
3 <property nanme="control ">
4 <bean parent="Uif-Text Control "/ >
5 </ property>
6 </ bean>

The control component is a new object, not a primitive. Therefore, we use a bean or ref tag to provide
the value. In this example, we are using the text control whose bean id is 'Uif-TextControl'. If needed, we
could set properties on the text control component using the p namespace or nested property tags.

In Figure 6.3, “Input Field” we see the result of the above input field configuration.

Figure6.3. Input Field

Boolk:

Therendered HTML for our input field will be the following:

1 <input id="u66" nanme="bookld" class="uif-control uif-textControl valid" tabindex="0" type="text" val ue=""
size="30" aria-invalid="fal se">

Where did all these attributes come from? Since we didn't assign an id, the framework generated one for
us and outputted asthe element id. Next, the propertyName given for the input field was used as the name
attribute on the tag. This is important for binding the data which will be discussed in the section 'Data

111

Fields and Content Elements

Binding'. The 'Uif-TextControl' bean that was used for the control property included a default size of ‘30,
and also includes the style classes 'uif-control' and 'uif-textControl'. Finally, the framework set a tabindex
for us (this happens to be the first field on the page) and added aria markup for accessibility. Don't worry
if thisall doesn't make sense now, we'll see all these properties many more times!

Data and Input Fields

Whenever this training manual refers to a data field, the same will also apply to input fields (by
inheritance). However the reverseis not aways true.

Default Values

Through configuration of the data field, we can aso initialize the backing property of the model. The
value specified will then be set as the property value when the model isinitialized. Chapter 12 will cover
how the model getsinitialized along with other concerns of the lifecycle. In terms of default values, it is
important just to know that the model gets created for a new request to a view (such as a request from
the portal or other application menu) and, once created, is reused throughout the conversation (series of
posts on the same view). Generally for initia requests we do not need to perform alot of business logic.
That is, usually we just want to display the view for the user to begin completing. Being able to set default
values that will display on the initial view is convenient in that we don't have to override the controller
method to do the same in code.

There are three properties available on a data field that allows us to configure a default value. The first
is the property 'defaultVaue', which takes the actual value to use. For example, suppose we want to set a
default value of '2012' for the bookY ear property. Thiswould be done as follows:

1 <bean parent="Uif-DataFi el d" p: propertyNane="bookYear" p:defaultVal ue="2012"/>

Thisis equivalent to code:

bookFor m set BookYear ("2012");

The default value given must be convertible to the property type without a custom property editor.

A very powerful feature we will be looking at later on in this training manual is the Spring Expression
Language (EL). KRAD allows you to use expressions for most component properties, including the
defaultVaue. There are many things you can do with EL, but to give you ataste here are a couple:

1 <bean parent="Uif-DataFi el d' p:propertyNanme="bookYear" p:defaultVal ue="@ 2010 + 2}"/>
1 <bean parent="Uif-DataFi el d" p: propertyNanme="bookYear" p:defaultVal ue="@bookld < 1000 ? 2011 : 2012}"/>

1 <bean parent="Uif-DataFi el d' p:propertyNanme="bookTitle" p:defaultVal ue="New Book for @ bookYear}"/>

The second way to configure default values is by setting the 'defaultValues property (notice the 's' on
the end). This property provides the ability to set multiple default values. For example, if you wanted to
default items with values of either 2 or 3 you could add the following.

1 <property nane="defaul t Val ues" >

112

Fields and Content Elements

<list>

<val ue>2</ val ue>
<val ue>3</val ue>
</list>

</ property>

~NOoO O WN

The third way to configure a default value is by setting the def aul t Val ueFi nder d ass
property. This is the full class name for the «class that implements the
org. kual i .rice. krad. val uefi nder. Val ueFi nder interface. This interface is very simple
with just the one method:

public String getVal ue();

Implementations of this can be made to determine the default value in whatever manner necessary.
Previous to KRAD, this was helpful for retrieving the default value from a system parameter. However,
with KRAD EL, you can do thiswith the defaultV alue property using the get Par mfunction.

Let's create a default value finder class that calls a service to retrieve the value. Our finder class would

be setup like:
1
2 package edu. nyedu. sanpl e;
3 public class BookCopyri ght Year Val ueFi nder i npl ements Val ueFi nder {
4 public String getValue() {
5 return get BookService(). get Def aul t Copyri ght Year () ;
6 }
7
8 Prot ect ed BookServi ce get BookService() {
9 Servi ceLocat or. get BookServi ce() ;
10 }
11 }

12

We would then configure the data field to use our value finder class like this:

1 <bean parent="Uif-DataFi el d' p:propertyNanme="bookYear"
2 p: def aul t Val ueFi nder Cl ass="edu. nyedu. sanpl e. BookCopyri ght Year Val ueFi nder"/ >

One additional note that should be made regarding default values is for collection group fields. Data or
Input fields declared in these groups behave differently from the standard group, in that for each collection
line that exists in the model, a new set of fields is created. When configuring a default value (by either
mechanism) for a collection field, the value is picked up each time anew lineis created (as aresult of an
add line request). Thusit is adefault value for the collection line.

Alternate and Additional Display Properties

In certain situations, it is necessary to change the display of a data or input field when it is read only.
For example, we might want to display additional information along with the value of the property, or
we might want to display a different property value. This can be accomplished using the alternate and
additional display propertiesthat are available on datafield (and therefore input field through inheritance).

Asisthe case throughout much of the UIF, thereis more than one way to accomplish this. Thefirst method
we can use isto directly configure the alternate or additional value that should be displayed. Thisis done
using the readOnlyDisplayReplacement and readOnlyDisplay Suffix properties respectively. For example,
instead of displaying the value for the bookld property, we want to display the string 'ld Val":

113

Fields and Content Elements

1 <bean parent="Uif-InputField" p:propertyName="bookld" p:readOnlyDi spl ayRepl acenent="1d Val "/ >

Thiswould result in the text 'Id Val' being displayed (along with the field 1abel).

Now, if we decide we just want to append the'ld Val' string the actual value of the bookld property, our
configuration would then be:

1 <bean parent="Uif-InputField" p:propertyNanme="bookld" p:readOnlyDi splaySuffix="1d Val"/>

Assuming the bookld is'3', thiswould result in the text '3 *-* Id Va' being displayed as shown below.

Figure 6.4. Data Field Label

Where did the *-* come from? KRAD inserts this fixed delimiter between the property value
and the additional display value. Currently this can only be changed by modifying the template;
however, thiswill be customizable in the future.

This has limited benefits by itself, but as mentioned earlier, KRAD alows us to use expressions to set

avalue. With EL we can display one or more other property values, perform operations and functions,
and mix in static text!

1 <bean parent="Uif-InputField" p:propertyNane="bookld" p:readOnlyDi splaySuffix="with title @bookTitle}"/>
Again assuming the bookld is'3" and bookTitle is 'Dogs and Cats), thiswould result in the text '3 *-* with
title Dogs and Cats' being displayed.

Often, there is a need to display another property value as the alternate or additional display value. For
example, when we have an id or code field (that generally doesn't have any meaning to the user), it is
preferred to display the name instead of the code (or in addition to it). For these cases, you can simply
configure the readOnlyDisplayReplacementPropertyName or readOnlyDisplaySuffixPropertyName
properties with the name of the property whose value should be used:

1 <bean parent="Uif-InputField" p:propertyNanme="bookld" p:readOnlyDi spl ayRepl acenent PropertyNane="bookTitle"/
>

Assuming bookTitleis'Dogs and Cats), this would result in the text 'Dogs and Cats.

1 <bean parent="Uif-InputField" p:propertyNane="bookld" p:readOnl yDi spl aySuffi xPropertyName ="bookTitle"/>

Assuming bookld is'3' and bookTitleis'Dogs and Cats, thiswould result in thetext '3*-* Dogsand Cats.
Alternate/Additional Display and Input Field

The aternate and additional display values are only used when the field is read-only. But an
input field allows the user to edit the value, so does it make sense to configure these properties
for an input field? The answer is yes! An input field has a readOnly property (inherited form

114

Fields and Content Elements

ComponentBase) which dictates whether the control is rendered. If there are conditions which
set this property to true, then the control will not render and the value will be displayed as text.

Additional Display Properties for List<String> fields

When afield is of type List<String> and the readOnly property is set to true, there are afew more options
that you can take advantage of to change how thisdatais displayed. By default thisvalueswill be output in
acommaand space (", ") separated list, but thiscan be changed withther eadOnl yLi st Di spl ayType
property of DataField (and child type InputField). The following options are allowed:

o "DELIMITED" - list will be output with delimiters between each item defined by
readOnl yLi st Del i mi t er (which can be any text or html you would like)

* "BREAK" - list will be output with breaks between each item
e "OL" - list will be output in ordered list format (numbered)
e "UL" - list will be output in unordered list format (bulleted)

The following would put a dash with spaces between each item of thelist:

<bean parent="Ui f- I nput Fi el d- Label Top" p: propertyNanme="fi el d120" p:|abel ="Alternate Delimter"
p:instructional Text="CheckboxG oupControl using an optionsFinder" p:w dth="auto"

1
2
3 p: readOnl yLi st Di spl ayType="DELI M TED" p:readOnl yListDelimter=" - ">
4

The result would be something like this"Valuel - Value? - Vaue3"

Empty list alternate readOnly display

If your List<String> field isempty, the DataField will simply display nothing asathevaluefor the
list. Inorder to display something instead, indicating that thelist isempty, you can use a SpringEL
expression with ther eadOnl yDi spl ayRepl acenment property asfollows:

p: readOnl yDi spl ayRepl acenent =" @ #enpt yLi st (fi el d115)?' No Options Selected :''}

Thiswould display 'No Options Selected' when the list is empty.

Note the OR; this means that ther eadOnl yDi spl ayRepl acement property is blank when
thelist isnot empty. Thisis required because we want the list to display with the options we may
have set inr eadOnl yLi st Di spl ayType instead of an alternate replacement for when the
list does contain values. The readOnlyListDisplayType logic performs a check make sure that
readOnlyDisplayReplacement is null or blank before processing - if it was set that content would
be used instead!

Additional Display Properties for Input Fields with
Widgets

For certain widgets (i.e. quickfinder, date picker, spinner, etc) a user can interact through the widget or
enter a value directly into the input field. In some cases it may be desirable to allow changes to these
widgets through its controls. In order to do so set the wi dget | nput Onl y property of the InputField
to true. This will cause the value of the widget to become read only while the widget controls are fully
functional.

115

Fields and Content Elements

The following would put a dash with spaces between each item of thelist:

1 <bean parent="Uif-InputField" p:propertyName="author" p:wi dgetlnputOnly="true">

2 ...

Recap

The Data Field and Input Field components are used to perform data |O

These components are used within an HTML form, corresponding to the KRAD form view component
Data and input fields are associated with a property on the model object (object providing the data)

A datafield is used to give aread-only display of a property value

A datafield is created with a bean whose parent is 'Uif-DataField'

The model property associated with the datafield is specified using the pr oper t yNane property
The property name can refer to a property on a nested object using the dot notation

Aninput field adds edit capability for a property's value

A input field is created with a bean whose parent is 'Uif-InputField'

The input field contains a control element component which is used to set the property vaue (for
example, atext control)

We can set a default value with the def aul t Val ue property. A static value can be given or an
expression which uses data from the model or a provided variable

Default values can also be set by creating a class that implementsthe Val ueFi nder interface

The value finder classis configured for use with the field using the def aul t Val ueFi nder d ass
property

Default values for fields with a collection group are used to initialize properties on new lines for the
collection (after the add action has been taken)

In some cases when the dstate is read-only we might need to display the vaue for
another property instead of the field's property, or display the value in addition to
it. This is done by using the readOnl yDi spl ayRepl acenent PropertyNane and
readOnl yDi spl aySuf fi xPropert yNane properties

User interaction can by restricted to the widget controls by setting thewi dget | nput Onl y property

Data Binding

The purpose for our data and input fields is to perform 10 between the user interface and our application
model (or domain objects). The population of data between these two layersis known as the data binding
process.

The binding process is mostly handled for us with the use of the Spring MV C framework (in previous
versions on Rice with the KNS this was handled by the Struts framework). In the majority of cases, all
we need to do is correctly point to our property in the model. Sounds easy, right? In cases such as our
BookForm example, it is. However, model objects (also called form objects) can contain nested data

116

Fields and Content Elements

objects that go down several levels and include collection structures such as List and Map. In order to
correctly push and pull the value, Spring needsto know the full 'path’ of the property relative to the model.

To understand this better, let'stake alook at how Spring performs the binding process. First, let's take the
outgoing direction (data from model outputted to the page). We know from the previous sections we must
specify apropertyName for the dataand input fields. In the case of theinput field, an input HTML element
will be generated within the input field template. However, thisis not generated directly but instead uses
a helper tag provided by the Spring framework:

1 <@pring.input id="${control.id}" path="${fiel d.bindinglnfo.bindingPath}" ... >

Notice the path attribute (disregard the value for now). Thisis an attribute of the Spring input macro that
specifies the path to the property that thisinput should be associated with. Spring will do two things with
this information. First, it will retrieve the value for that property from the model and set it as the value
attribute for the input macro. Next, it will use the path given as the value for the name attribute (if you are
wondering, the id attribute just gets passed through to the id attribute for the HTML tag). Assuming we
had a property path of 'bookld' with value '3, the resulting HTML input would be as follows:

1 <input id="u3" nane="bookld" value="3" ... >

The value of '3" will then appear inside the rendered text box. All other controls types work in asimilar
manner.

In the case of adatafield, or when the input field is read only, the Spring bind macro is used. This tells
Spring to pull the value for the given property and stick the value into a FreeMarker variable (page or
request scope). We can then write out that value to a stream which resultsin the static text being displayed.

1
2 <@pring. bind path="${fiel d.bi ndi ngl nfo. bi ndi ngPat h}">${ st at us. val ue}</ @pri ng. bi nd>${ st at us. val ue}
3

Now let's look at the incoming direction. This is data contained in the HTML form (with the controls)
that we wish to populate onto the model. Recall that when we used the Spring tag, our property path was
used for the name attribute value. When the page is submitted, the browser will use the name attribute
as the corresponding name of the request parameter. The request parameter value will then be the value
that was set on the control.

Onthe server, Spring will then iterate through the request parameter map, and attempt to find a property on
themodel that matchesthe request parameter key. If amatch is made, the corresponding request parameter
valueis set as the value of the property. That'sit! Our binding is complete. Therefore, as long as we have
configured the property name to match a property on our model (nested or not), Spring will take care of
the rest.

Property Editors

When binding the data between the JSP page and the model, Spring will again invoke registered Property
Editors to perform the necessary type conversion. All values within the interface are treated as Strings.
When going from or to a property type, other than the primitive types or String type, a property editor
must be used.

Spring provides out-of-the-box property editors for common Java types that are registered by default
(registrationisthe process of configuring the Spring container to useaproperty editor). Also, someoptional
property editor implementations are provided that can be used. These include: ByteArrayPropertyEditor,

117

Fields and Content Elements

©OoO~NOOUOA_WNRE

ClassEditor, CustomBooleanEditor, CustomCollectionEditor, CustomDateEditor, CustomNumberEditor,
FileEditor, InputStreamEditor, LocaleEditor, PatternEditor, PropertiesEditor, StringTrimmerEditor, and
URLEditor.

In addition to the provided Spring property editors, KRAD provides a set that can be used with the custom
Kuali types (such as KualiDecimal and Kualilnteger) and other common formatting practices. These
include:

Ui f Bool eanEdi t or — Formats any of the strings "/truelyes/y/on/1/" to the Boolean true, and any of
the strings "/false/no/n/off/0/" to Boolean false. Conversely, the Boolean true is formatted as the string
"yes" and the Boolean false is formatted as the string "no".

Ui f CurrencyEdi t or — Used for converting between a KualiDecimal and a string. The string is
formatted using commas and to two decimal places.

Ui f Dat eEdi tor — Used for converting between a javautil.Date and a string. The Rice
Dat eTi meSer vi ce isused to perform the string formatting and for parsing the string to create a date
object.

Ui f Kual i I nt eger Edi t or —Used for converting between a Kualilnteger and a string. The string is
formatted using commas and to zero decimal places.

Ui f Per cent ageEdi t or — Used for converting between a KualiPercent and a string. Formatting is
similar to UifCurrencyEditor.

Ui f Ti mest anpEdi t or — Used for converting between a java.sgl.Timestamp and a string. The Rice
DateTimeService is used to perform the string formatting and Timestamp creation.

These property editors, along with Spring editors, are registered with Spring by property type. This means
whenever Spring encounters the associated type for the property being bound to, it will use the registered
property editor. For example, the UifCurrencyEditor is registered with the KualiDecimal type. Thus, when
binding to a property with type KualiDecimal, the UifCurrencyEditor will be used.

If needed, KRAD allows you to also specify a property editor to use for a data field. This might be
needed to support a custom data type or to perform custom formatting (formatting refers to the process
of rendering a String from an object). To create a new property editor, a class must be created that
implements the PropertyEditor interface. The easiest way to do thisisto extend the Spring provided class
java.beans.PropertyEditorSupport, and then override the getAsText() and setAsText(String text) methods.

package edu. sanpl eu. deno. ki t chensi nk;
public class Ul TestPropertyEditor extends PropertyEditorSupport inplenments Serializable {
private static final |ong serial VersionU D = -4113846709722954737L;

| **

* @ee java. beans. PropertyEdit or Support #get AsText ()

*/

@verride
public String getAsText() {

bj ect obj = this.getValue();

if (obj == null) {
return null;
}

String displayValue = obj.toString();
if (displayValue.length() > 3) {
di splayValue = StringUtils.substring(displayVvalue, 0, 3) + "-" +

StringUtils. substring(displayValue, 3);

20
21
22

}

return displayVal ue;

118

Fields and Content Elements

}
/**
* @ee java. beans. PropertyEditor Support#set AsText (j ava. | ang. Stri ng)
*
/
@verride
public void setAsText(String text) {
String value = text;
if (StringUils.contains(value, "-")) {
value = StringUtils.replaceOnce(val ue, "-", "");

}

t hi s. set Val ue(val ue);

The two methods implemented here correspond to the two directions: outgoing to the page (to string), and
incoming to the model (to object). The getAsText() method is invoked to build the string that should be
displayed. We can use the getValue() method provided by the base class to get current object, then build
the string and return. The setAsText(String text) method is used to build the object from the String. After
we have constructed the object, we can call the setVaue method to set the object that will be used for
the model property value.

Once we have the property editor class created, we can configure it to be used with our data field by
specifying the full class name in the propertyEditor property:

1 <bean parent="Uif-DataFi el d"
p: proper t yName="bookl d" p: propertyEditor="edu. sanpl eu. deno. ki t chensi nk. U Test PropertyEdi tor"/>

Likewise the property editor can be specified for an input field:

1 <bean parent="Uif-InputField"
p: propertyName="bookl d" p: propertyEditor="edu. sanpl eu. deno. ki t chensi nk. Ul Test PropertyEdi tor"/>

Complex Paths

©oO~NOOUTOAWNPR

So far, we have used examples where the property was either directly on the model (form) object, or one
level down. Now let's look at more complex paths for binding that include many levels of nesting and
collection properties.

L et's assume we have the following objects:

public class TestForm {

}

private String fieldl;
private Test1Cbject test1Cbject;

public class Test1Object {

}

private String tiField;
private Test2Chject test2Cbject;
private List<Test20bject> test2List;

public class Test2bject {

}

private String t2Field;
private Map<String, String> t2Mp;

119

Fields and Content Elements

Some exampl e paths for these properties would be:

Fieldl on TestForm— "fieldl"

Each time we go into a nested object, we use a dot:

T1iFi el d on Test1Chject = "test1CObject.t1Field"

T2Fi el d on Test2Obj ect — "test1(bject.test2ject.t2Field"

The path for a collection field must specify the item index using the brackets [] and the index within the
brackets:

T2Fi el d on TestlList — "test1(bject.test2List[0].t2Field",
"test1Object.test2List[1].t2Field", "test1lObject.test2List[2].t2Field", ..

For binding to a map we again use the brackets with the map key within the brackets and quoted:

T2Map on Test2Cbj ect — "test1(hject.test2ject.t2Map[’ keyl']",
"test1Obj ect.test20bj ect. t 2Map[' key2']"

We can continue forming paths for objects that are nested at deeper levels by adding additional dotsto the
path. In this way, we can form the path and set the propertyName value for any model property:

=

<bean parent="Uif - Dat aFi el d"
2 p: propertyName="t est 10bj ect . t est 20bj ect . t 2Fi el d">

Now suppose Test20bject had alarge set of fields we wanted to display. We could configure al of them
just asin the previous example:

1 <bean parent="Uif-DataFi el d' p:propertyName="test10bject.test20ject.t2Fi el d1">

1 <bean parent="Uif-DataFi el d' p:propertyNanme="test1C0bject.test20bject.t2Fi el d2">

1 <bean parent="Uif-DataFiel d" p:propertyNane="test1Object.test20bject.t2Fiel d3">

Thisis, however, very tedious and repetitive. Luckily, the UIF provides a class named Bi ndi ngl nf o
for which a property exists on adatafield. This class separates the path into three parts. Thefirst is called
the binding object path. This is the path to a data object on the model. The second is called the binding
prefix, and the third part is the binding name.

Thebinding nameisusually the same asthe given property name, and will be synced if not set. Thebinding
prefix is then a prefix to add before the binding name (property name). Finally, the full path is formed
by joining the prefix and name to the object path. This is known as the binding path and is invoked by
the templates to set the Spring path attribute. Please note the binding prefix is optional and not always
beneficia to use.

120

Fields and Content Elements

A WN P

Let'sbreakdown the path "test1Object.test20bject.t2Field1" from the previous example. A good candidate
for the object path is "test1Object.test20bject”. That just leaves "t2Field1" so thereisnot really aneed for
abinding prefix. Therefore, our configuration would be:

<bean parent="Uif-DataField" p: bindingl nfo.bindingObjectPath="test10Obj ect.test20bj ect"
p:propertyName="t2Field1">

We could aso configure out datafield as follows:

<bean parent="Uif-DataField" p:bindinglnfo.bindingObjectPath="test10bject"
p:bindingl nfo.bindByNamePrefix="test20bject" p:propertyName="t2Field1">

You might be wondering what the KRAD designers were thinking at this point. This doesn't seem to
remove the repetition, and in fact, it is much more verbose! On an individual field level, that is true. The
benefit is that we can put multiple fields which share similar paths together into a group.

We will learn all about the Group component in the next chapter, but two properties that exist are
fieldBindByNamePrefix and fieldBindingObjectPath. When one or both of these properties are configured
on the group, the value will be taken and set on corresponding binding info property for each group field.

For example:

<bean parent="Uif-Vertical BoxG oup" p:fiel dBi ndi nglbj ect Pat h="t est 1Cbj ect.test2Cbj ect">
<property name="itemns">
<list>
<bean parent="Ui f - Dat aFi el d" p: propertyNanme="t 2Fi el d1" >
<bean parent="Ui f-Dat aFi el d" p: propertyNanme="t 2Fi el d2" >
<bean parent="Uif-Dat aFi el d" p: propertyNanme="t 2Fi el d3" >
</list>
</ property>
</ bean>

This will result in "test1Object.test20bject” being set as the bindinglnfo.bindingObjectPath for each of
the three contained fields. Now that's better!

But KRAD goes one step further! We can also specify a default object binding path for the entire
view. Thisis done by setting the defaultBindingObjectPath property on the View component. This will
set the binding object path for al fields (and collection groups) if it not already set (we can override
if necessary). This is very useful in particular for the various view types provided. One example is
the MaintenanceView. This view targets the maintenance of a data object instance. This data object
instance is found in the model with path ‘document.newM aintainableObject.dataObect'. Since typically
all these views do are present all data for a particular record to be edited, we just need to specify
the properties of the data object we want to present. The maintenance view makes this easy for us by
setting " document.newM ai ntai nableObj ect.dataObject” asthe defaultBindingObjectPath. Therefore, when
specifying the view fields, we just need to specify the property name relative to the data object:

<bean parent="Uif- I nputFi el d" p:propertyName="nunber"/>
<bean parent="Uif-InputFi el d" p:propertyNanme="nanme"/>

A WN P

Which would result in binding paths:

' docunent . newMai nt ai nabl eObj ect . dat aCbect . nunber"
* docurent . newMai nt ai nabl eObj ect . dat aCbect . nane’

121

Fields and Content Elements

Bean Reuse

Separating out the object path or binding prefix also allows for more reuse. For example, when
extending a group bean, it is a simple property change to modify the binding object path or
prefix. However, if the object path and prefix is embedded on the property name for each field
in the group, the child bean would need to override the entire itemslist and duplicate all the field
information.

The data and input field components implement the interface
org. kuali.rice.krad. ui f.conmponent . Dat aBi ndi ng. Thisindicatesto the framework that
the component binds to the model, and provides the binding info and property name properties. The other
component that implementsthisinterfaceisthe CollectionGroup. A collection groupisagroup that iterates
over amodel collection and presents fields for each line. Therefore, when configuring a collection group,
we must point it to the property that holds the collection. Thisis done exactly the same as for data fields,
using the propertyName property and the bindinglnfo property. For example:

1 <bean parent="Uif-Tabl eCol | ecti onG oup" p:propertyNane="nycol |l ection" ... >

1

Onething to note is how the binding path for the fields within the collection group isformed. Thesefields
will automatically receive a binding prefix that is the path for the collection line. This path includes the
collection path plus the line index: "mycollection[0]", "mycollection[1]". Therefore the fields specified
within the collection are relative to the line (data object for the collection). This would be the same as

setting the fieldBindByNamePrefix property on a standard group component.

Finally, there are a couple other properties on the binding info class that are helpful to know about. The
first of these is the bindToMap property. This is necessary when our property name (or binding name)
is actually a Map key. Recall in these cases that we need to use the special bracket notation. When this
property is true, the binding path will be formed using the object path, binding prefix, then the brackets
with the binding name in quotes.

2 <bean parent="Uif-DataFi el d" p:bindi ngl nfo. bi ndi nglbj ect Pat h="t est 1(bj ect . t est 2Cbj ect "
p: bi ndi ngl nf o. bi ndByNanePr ef i x="t 2Map" p: bi ndi ngl nf o. bi ndToMap="true" p: propertyNanme="keyl">

Thiswould result in the following binding path:
"test10bject.test20bject.t2Map['key1]"

Another useful property on binding info isthe bi ndToFor mproperty. Thisis essentially an indicator to
not add on any binding object path (either from the view or a group). The binding prefix is still added,
if specified.

For example:

<bean parent="Uif-Vertical BoxG oup" p:fiel dBi ndi ngObj ect Pat h="t est 10bj ect.test20bj ect">
<property name="itens">

<list>

<bean parent="Uif- Dat aFi el d* p: propertyNanme="t 2Fi el d1" >

<bean parent="Uif- Dat aFi el d* p: propertyName="fi el d1" p: bi ndi ngl nf 0. bi ndToFor n¥"t rue" >
</list>

</ property>

</ bean>

The binding path for the first data field would be "test10bject.test20bject.t2Field1”, but the binding path
for the second data field will only be "field1", due to the bindToForm property being set to true.

122

Fields and Content Elements

Recap

The process of populating the model from an HTTP request and outputting values to the response from
the moddl is referred to as data binding

The Spring MV C framework performs the binding process

For theincoming direction (request to model), Spring looksfor request parametersthat match a property
name on the model (starting from the top object and using dot notation for nested objects)

For the outgoing direction (model to response), we use the provided Spring JSP tags, and specify the
path attribute to the property whose value should be outputted

The Spring tags in KRAD have the namespaces's and ‘form'’

When a conversion between data types is needed (for example String to Date), Spring uses a
Pr opert yEdi t or . Spring comes with default property editors for basic Java types and additional
editors that can be used as needed. In addition KRAD provides property editors which include:

* UifBooleanEditor

« UifCurrencyEditor

 UifDateEditor

 UifKualilntegerEditor

« UifPercentageEditor

 UifTimestampEditor

Using the data field propertyEditor property, custom editors can be associated with a property for
binding (this includes using one of the provided editors, or creating a custom editor)

Complex property paths are created in the following manner:

e Each time a nested object is encountered in the path, it is separated by a dot (eg
'nestedObj ect.nestedObj ect2.property”)

< A property on a List type is specified using the collection path, then the line index inside brackets
(eg 'collectionPath[index] . property")

« A Map property is specified using the map path, then the map key in quotes and inside a bracket (eg
'mapPath['key'].property")

When configuring multiple fields that belong to the same nested object (or list or map), it can be tedious
to specify the full path each time. To help with this, KRAD provides the Bindinglnfo object. This can
be used to set the following properties:

* bindingObjectPath — Path to the parent data object
« bindByNamePrefix — Prefix to add after the object path and before the binding name (property name)
Since specifying the bindingObjectPath for each field does not realy help with the verbosity, the

fi el dBi ndi ngCbj ect Pat h on the parent Group can be used instead. Likewise, the group
component containsthef i el dBi ndByNamePr ef i x property

123

Fields and Content Elements

e We can set a default object path for the entire view using the view component property
def aul t Bi ndi ngQObj ect Pat h

» Separating the property name into an object path helps with the reusability of bean configuration

» The Bindinglnfo object also contains the property bi ndToMap which is used to indicate the property
isamap key (which impacts how the final binding path isformed). In addition, we can set the property
bindToForm to true which means we do not want any binding object path (coming from the group or
the view) to be prepended

Data Dictionary Backing

©OoO~NOOOA_WNRE

In Chapter 4, welearned about the data dictionary and attribute definition entries. We learned that we could
define alabel, control, and certain other propertiesin the attribute definition that will drive the rendering
of that attribute wherever it appears in the Ul. So how does this work with the data fields?

First, as we have seen, we can configure everything we need directly on the data fields; therefore, the UIF
does not require the data dictionary to be used. However, the UIF does have a process for determining and
using an attribute definition for backing a data or input field. What this meansisif an attribute definition
is found, the properties specified on the definition will be used as defaults for the data field. If the same
property is specified on the datafield, it will override the value from the attribute definition.

For example, suppose we have the following data object entry and attribute definition:

<bean i d="Travel Account" parent="DataCbj ect Entry">
<property name="dat aCbj ect O ass" val ue="org. kual i . rice. krad. denp. travel . account. Travel Account"/ >

<property name="attributes">

<list>
<ref bean="Travel Account - nunber"/ >
</list>

</ property>

</ bean>

<bean i d="Travel Account - nunber" parent="AttributeDefinition">
<property name="nanme" val ue="nunber"/>
<property name="| abel " val ue="Travel Account Number"/>
<property name="shortLabel " val ue="Travel Account Nunber"/>
<property name="forceUppercase" val ue="fal se"/>
<property name="maxLength" val ue="10"/>
<property name="constraint Text" val ue="Mist be 10 digits"/>
<property name="val i dati onPattern">

<bean parent="AnyCharacterVal i dati onPattern"/>

</ property>
<property name="control Fi el d">

<bean parent="Uif-Text Control" p:size="10"/>

</ property>

And we have the following input field which the previous attribute definition is backing:

1 <bean parent="Uif-InputField" p:propertyNane="nunber" p:|abel ="New Travel Account Nunber"
2 p:forceUppercase="true"/>

During the view lifecycleinitialize phase, the properties from the attribute definition are picked up and set
onto the input field (if not set). Note that the names do not always match exactly (for example the control
property of input field is fed from the controlField property of attribute definition). The above example
would result in an input field with the following state:

e Labd: "New Travel Account Number" (from the input field config)

124

Fields and Content Elements

N -

N -

POOWO~NOOUTODNMWNE

e

 Short Label: "Travel Account Number" (from the attr def config)

* Force Uppercase: true (from the input field config)

» Max Length: 10 (from the attr def config)

» Constraint Text: "Must be 10 digits" (from the attr def config)

» Validation Pattern: Any Character Validation (from the attr def config)
 Control: Text control with size 10 (from the attr def config)

An attribute definition can be linked manually through the data field configuration, or the framework will
attempt to find one based on the field binding path.

For manual configuration, we use the di cti onaryQbj ectEntry and
di cti onaryAttri but eNane properties. The dictionary object entry is the name of the entry in the
data dictionary for which the attribute definition belongs. This is generally the full class name of a data
object. The dictionary attribute name is then the value for the name attribute of the definition we want to
pick up. For our previous example this configuration would be as follows:

<bean parent="Uif-InputFi el d" p:propertyNanme="nunber"
p: di ctionaryQbj ect Entry="edu. sanpl eu. travel . bo. Travel Account" p:dictionaryAttributeNane="nunber"/>

We can aso leave off the dictionaryAttributeName, in which case the framework will default it to the
given propertyName:

<bean parent="Ui f-InputFi el d" p:propertyName="nunber"
p: di ctionaryQnbj ect Entry="edu. sanpl eu. travel . bo. Travel Account"/ >

If the dictionary properties are not set, the UIF will attempt to find an attribute definition with the binding
path. This works as follows:

1. The UIF takes the model class as the dictionary object entry (form class which is given on the view)
and the binding path as the dictionary attribute name. Is there an entry? If so, the UIF will useit. Else
it goesto step 2.

2. Isthe binding path nested (contains the dot separator)? If so, the UIF uses the name before the first dot
to get the corresponding object from the form by name. This will be the dictionary object entry. The
UIF usesthe part after thefirst dot asthe dictionary attribute name. Isthere an entry? If so, the UIF will
useit. If the path contains additional nesting, the UIF repeats this step (step 2).

Asan example let's take the following model:

package edu. nyedu. sanpl e;
public class Travel Form {
private Travel Account travel Account;

}

package edu. nyedu. sanpl e;
public class Travel Account {
private String nunber;

}

Now suppose we have the following input field:

125

Fields and Content Elements

1 <bean parent="Uif-InputField" p:propertyName="travel Account. nunber"/>

The UIF will first ask the data dictionary if it has an entry for 'edu.myedu.sample.TravelForm' and
attribute ‘travel Account.number’, if so that attribute definition will be used to populate the input
field. If not, it will then get the property type for 'travelAccount' from TravelForm. This is of type
edu.myedu.sample.TravelAccount. Therefore, it will ask the data dictionary if it has an entry for
‘edu'myedu.sample. Travel Account' and attribute 'number’, and if so that attribute definition will be used.
The process continues until an attribute definition is found or the binding path is no longer nested.

The one exception to the above rule is for fields in collection groups. Since the assumption is these are
properties on the data object for the collection lines, the framework begins by asking for entries for that
data object class and the property name of the field.

1
2 <bean parent="Ui f-Tabl eCol | ecti onG oup" p: propertyNanme="t est Obj ect 1. mycol | ecti on"
p: col | ecti onObj ect G ass="edu. nyedu. sanpl e. Test 3Mhj ect " >

3 <property name="itens">
4 <list>
5 I S<bean parent="Ui f- 1 nputFi el d p:propertyName="fiel dl"/>
6 o
7 </list>
8 </ property>
9 </ bean>
10
The binding path for our field here will be ‘testObjectl.mycollection[index].fieldl". In this case, the
framework asks the data dictionary for a definition with entry 'edu.myedu.sample.Test30bject’ and
attribute name ‘field1'. If the field propertyName is nested (or has a bindinglnfo.bindByNamePrefix
specified), and an entry was not found for the full name, the framework will recurse down the path as it
does for non-collection fields.
Recap

» We can default the properties for adata or input field from a data dictionary AttributeDefinition

« If an AttributeDefinition is used for a data field, the corresponding properties from the definition are
used if avalue for that property has not been specified for the field (in other words, we can override
any value on the attribute definition)

« We can explicitly associate an attribute definition with a data field using the properties
di cti onaryQhj ect Nane anddi cti onaryAttri but eNane

» Thedictionary object name gives the name of the data object entry in the data dictionary

» Thedictionary attribute nameisthe name of the property (the attribute definition 'name’) associated with
the attribute definition. If not given but the dictionary object name is, the propertyName configured on
the data field will be used

 For fields configured on collection groups, the dictionaryObjectName is automatically set to the
collectionObjectClass configured on the group

« If an attribute definition is not explicitly defined, the framework will attempt to discover an attribute
definition to use. This process involves performing substrings on the binding path (starting from the
object path and substringing on the dot) and making aseries of callsto determineif an attribute definition
exists for a given object entry and attribute name. This continues until a definition is found or until all
substrings of the binding path have been tried

126

Fields and Content Elements

Types of Controls

A very important type of content element isthe control. Control components are used withan HTML Form
to allow the user to interact with the data. The control holds one or more datavalues. These values arefirst
initialized when the page renders (known astheinitial value) and then can be changed by the user or script
(known as the current value). When the form is submitted, the controls have their name attribute paired
with their current value to form arequest parameter that is sent to the server.

Controls are wrapped with the input field component. As described in the beginning of this chapter, the
input field holds the pointer to the model property whose value will be used as the initial value of the
control. Theinput field a so contains other configurationsrelated to the control and itsvalue, such ashel per
widgets and validation constraints.

HTML controls have different types. Some of thesetypes are represented by different tag elements (such as
textarea and select), while variations of the input control are indicated with the type attribute (technically
these might all be considered input controls, but KRAD treats each type as a different control). In this
section, we will learn about the different types of controls and their UIF component representation.

Checkbox

NOoO b WNPRE

The Checkbox control renders an HTML input tag with type of "checkbox™. This control isused to toggle
the state of a property between two values (usually the Booleans true and false). The image shows an
example checkbox control.

Figure 6.5. Checkbox Control

Checkbox:
Single CheckboxContro |
/

To create a new checkbox control, we create a new bean with parent of 'Uif-CheckboxControl'. Controls
cannot be set on their own; they must be defined within an input field using the control property:

<bean parent="Ui f-InputField" p:propertyName="acceptl|ndicator" p:l|abel ="Accept?">
<property name="control ">

<bean parent="Ui f - CheckboxControl "/>

</ property>

</ bean>

The checkbox control has one custom property that can be set which is the value property. This can be
used to specify a string value that will be sent to the server when the checkbox is checked. If not set, the
default Boolean 'true’ will be sent.

Checkbox Request Parameters

It isimportant to note that browsers only send a request parameter for checkbox controlsif their
state is checked. That is, if the checkbox is not checked, no request parameter will be sent.
Therefore, if the value for a checkbox property was true before rendering the page, then the user
unsel ects the checkbox and submits. Unless specia logic isin place, the property will not be set
to false. KRAD uses the Spring checkbox tag which adds a hidden input that will indicate the

127

Fields and Content Elements

File

~NOoO g~ WNPRP

presence of a checkbox for each request, then if a corresponding checkbox parameter does not
exist, Spring will set the property to false. However when setting the value attribute for use with
anon-Boolean type, the reset logic must be taken care of by the developer.

The File control is used to allow the user to select a file from their file system whose contents will be
submitted with the form. The server can then make use of the file contents, or simply store the file on the
server (for example a note attachment).

To specify that afile control should be used, a bean with parent of 'Uif-FileControl' should be given:

<bean parent="Uif-InputField" p:propertyName="fil eUpl oad" p:|abel ="File Upl oad">
<property name="control ">

<bean parent="U f-FileControl"/>

</ property>

This control supports no custom properties (just the inherited component and base control properties). The
image below shows an example file control:

Figure 6.6. File Control

File Control:
Use to upload files

Choose File | No file chosen

In order to use the control, there are a couple of requirements for the backend. First, the backing
property must be of type org.springframework.web.multipart.MultipartFile. Thisis so Spring can set all
the necessary file information (name, content type, size, bytes). Many times, a pattern employed isto have
aproperty on the form with this type that is used for holding the upload, and then in a controller method,
the contents are pulled to populate a property with type File (or store the File object). The MultipartFile
class provides a convenient method for doing this called transferTo(java.io.Filefile).

The second requirement for uploading files is the HTML form encoding type "multipart/form-data’.
KRAD takes care of this by setting this as the encoding type for all forms.

Multipart Form

Always using the multipart form encoding (even when no file uploads are present) has an impact
on performance. An upcoming enhancement to KRAD will be to use this encoding only when a
file upload is present (with the use of script detection).

Hidden

The Hidden control is used to render an HTML input of type hidden. A hidden control isnot visible to the
user, therefore its value can only be changed by a script. These are often used to hold some state that is
needed when the page is posted back, or to provide data for scripting purposes.

To specify ahidden control should be used, a bean with parent of 'Uif-HiddenControl' should be given:

128

Fields and Content Elements

2 <bean parent="Uif-InputField" p:propertyName="hi ddenFiel d">
3 <property name="control ">
4 <bean parent="Uif - Hi ddenControl "/ >
5 </ property>
6
7
Request/Session State
All model data is stored with the user session and when a form is submitted, the request data
is overlaid. This means any model properties that were not present in the request will remain
untouched. This alleviates the need to write all state to the request (using hiddens) so that it is
not lost.
Using a hidden control is not the same as making the field state hidden (covered in Chapter 10). When
the field state is hidden, all of the field contents will be rendered (including a control that is possibly not
hidden) but not visible by default. The field contents can then be shown with a script once a condition is
met. With the hidden control, the other field contents (such as label and lookup) can still be visible. One
usage of the hidden control isto provide a field quickfinder (lookup icon) that forces the user to select a
value from the lookup instead of alowing them to type the value.
Min/Max Length
The input field control also has properties for setting min and max length. If the corresponding
properties on the control are not set, they will be synced with thefield settings. It can be necessary
to have adifferent setting for the control than the field due to formatting. The min and max length
settings for the control are used on the client, which isworking with the formatted value. On the
server, validation is performed against the model property value (unformatted) and usesthefield
length settings.
Password
The Password control rendersthe HTML input element with type of "password". Thisis asingle-line box
that allows the user to type a masked value.
To specify that a password control should be used, a bean with parent of 'Uif-PasswordControl' should
be given:
1
2 <bean parent="Uif-InputField" p:propertyName="password" p:|abel ="Password">
3 <property name="control ">
4 <bean parent="Uif-PasswordControl "/ >
5 </ property>
6
7

The password control supports the following properties:
si ze —Thisisthe display size for the control in number of characters.

maxLengt h — When avalueis given, this isthe maximum number of charactersin length the value can
have. If set, the browser will stop the user from entering more characters than allowed.

m nLengt h —When avaueis given, thisis the minimum number of charactersin length the value can
have. Note that thisis not supported by the HTML input tag itself, but is used by the KRAD validators
to check the value client side or server side.

129

Fields and Content Elements

Text

~NOoO g~ WNPR

The Text control rendersthe HTML input element with type of "text". Thisisasingle-line box that allows
the user to type the value.

To specify that atext control should be used, a bean with parent of 'Uif-TextControl' should be given:

<bean parent="Uif-InputField" p:propertyName="title" p:label="Title">
<property name="control ">

<bean parent="Uif- Text Control "/ >

</ property>

</ bean>

The text control supports the following properties:
si ze —Thisisthe display size for the control in number of characters.

maxLengt h —When avalue is given, this is the maximum number of characters in length the value can
have. If set, the browser will stop the user from entering more characters than allowed.

m nLengt h — When avalue is given, thisis the minimum number of charactersin length the value can
have. Note that this is not supported by the HTML input tag itself, but is used by the KRAD validators
to check the value client side or server side.

dat ePi cker —Thisisanested widget component that renders an icon next to the text input that can be
used to selected acalendar day. Like all components, the date picker will berendered if itsrender property
is set to true. Thiswidget and others are covered in Chapter 8.

wat er mar kText — Specifies text that will appear in the text control when the value is empty. Thisis
used to show example inputs to the user and is sometimes referred to as a placeholder (HTML 5). Once
the user beginsto input a value the watermark text is cleared.

t ext Expand — A Boolean type which indicates whether the text input can be expanded. When enabled,
an icon is rendered next to the text input that allows the user to click for getting a text area input that
allows more room for entering the value. Thisis useful if the maximum length for the field is longer than
the display size.

The UIF provides a handful of base beans for the text control that have various commonly used
configuration. These are as follows:

Ui f - Text Cont r ol — The default text control bean which sets the size to 30. None of the other text
control properties are set by default.

Ui f - Snal | Text Cont r ol —Similar to Uif-TextControl but setsthe sizeto 10 and appliesan additional
style class of 'uif-small TextControl'.

Ui f - Medi unmText Control — The same as Uif-TextControl except adds a style class of 'uif-
mediumTextControl'.

Ui f - Lar geText Cont rol — Similar to Uif-TextControl but sets the size to 100 and applies an
additional style class of 'uif-largeTextControl".

Ui f-CurrencyText Control — Same as Uif-TextControl except adds a style class of 'uif-
currencyControl'. This adds aright align style to the control useful for displaying currency.

130

Fields and Content Elements

Ui f - Dat eCont r ol —SameasUif-SmallTextControl with the data picker added and an additional style
class of 'uif-dateControl".

Below are various examples of using these beans and setting other properties:

1

2 <bean parent="Uif-InputField" p:propertyName="field" p:label="Field Label">

3 <property name="control ">

4 <bean parent="Ui f- Medi unControl " p:waternmarkText="1t"'s watermarked"/>
5 </ property>

6 </ bean>

7

Figure 6.7. Watermark Control

Field Label

With watermark text, and size="30"

1
2 <bean parent="Uif-InputField" p:propertyNane="field" p:|abel="Date 1">
8 <property name="control ">
4 <bean parent="Uif-DateControl"/>
5 </ property>
6 </ bean>
7
Figure 6.8. Date Control
Date 1
Default DateControl options
3
1
2 <bean parent="Uif-InputField" p:propertyName="field" p:label ="Field Label">
3 <property nanme="control ">
4 <bean parent="Ui f-Text Control" p:textExpand="true"/>
5 </ property>
6 </ bean>
7
Figure 6.9. Text Expand Control
Field Label
Text expand option
]
TextArea
The TextAreacontrol issimilar to the text control with the exception of providing multiple linesfor input.
This control is used for entering longer strings of data such as a description.
To specify atext area control should be used, abean with parent of 'Uif-TextAreaControl' should be given:
1

2 <bean parent="Uif-InputField" p:propertyNane="title" p:label="Title">

131

Fields and Content Elements

3 <property name="control ">

4 <bean parent="Uif-Text AreaControl "/ >
5 </ property>

6 </ bean>

7

The text area control supports the following properties:

r ows — Specifies the number of rows (or lines) the input should have. This determines the height of the
control.

col s — Specifies the width in characters the input should have.

maxLengt h — Similar to the text control, when avalue is given restricts the number to a certain number
of characters.

m nLengt h — When a value is given, requires the length be greater than or equal to a certain number
of characters.

t ext Expand - A Boolean type which indicates whether the text area input can be expanded.
wat er mar kText — Specifiestext that will appear in the text area control when the value is empty.

The UIF provides a handful of base beans for the text area control that have various commonly used
configuration. These are as follows:

Ui f - Text AreaControl -—Thedefault text areacontrol bean which sets rowsto 3, and cols to 40.

Ui f-Smal | Text AreaControl — Sets rows to 2 and cols to 35. Adds the style class 'uif-
small TextAreaControl'.

Ui f - Medi unifext AreaControl — Sets rows to 3 and cols to 40. Adds the style class 'uif-
mediumTextAreaControl'.

Ui f - Lar geText AreaControl - Sets rows to 6 and cols to 50. Adds the style class 'uif-
largeTextAreaControl'.

Below shows an example text area control.

Figure 6.10. TextArea Control

Field Label

Spinner

The Spinner control isaspecial text control that renders up and down arrows to the right of the control for
incrementing and decrementing the value. Thisisan example of a'decorated’ control. That is, HTML does
not support a Spinner control inherently, but we use JavaScript to provide the additional functionality.
This means the rendered content will be the input element with type of 'text’, with a script invocation to
add the spinner functionality.

Within the UIF, these script decorations are represented by awidget component. The widget is associated
with the component it works with. In this case, we extend the text control component and add the spinner
widget. The spinner widget will be covered in more detail in Chapter 8.

132

Fields and Content Elements

NOoO O WNPRE

To specify a spinner control should be used, a bean with parent of 'Uif-SpinnerControl* should be given:;

<bean parent="Ui f-InputFi el d" p:propertyName="count" p:|abel ="Spi nner Control">
<property nanme="control ">

<bean parent="Ui f - Spi nner Control "/ >

</ property>

Screen shot 13 shows the spinner control.

Figure 6.11. Spinner Control

Spinner Control:
Click the arrows on the right

0

Multi-Value Controls

Up to this point, the controls we have seen hold a single value. Next, we will look at
controls that can hold multiple values to choose from. Some also alow selecting multiple
values to be submitted. These components are known as multi-value controls and implement the
org.kuali.rice.krad.uif.control.MultiVaueControl interface.

Options

B WN PR

When using amulti-value control, we need to specify alist of options the control will present. Each option
has two parts: the option key and the option value. The key gives the value for the field that will be
submitted to the server when the option is chosen. The label is displayed to the user for that option. These
do not necessarily have to be different, but it is a useful feature to display afriendlier label for the value.

As an example, let's assume we need to render a control that presents the list of states as options. In our
model, the property expects the state code (two letter abbreviation). However, to help the user we want to
display the full name for each state. Our options would then look like the following:

Table6.1. State Options Example

Key Value
AL Alabama
CO Colorado
IN Indiana
OH Ohio

> Texas

To represent these options, Rice provides the KeyVal ue interface and the Concr et eKeyVal ue
implementation. This class provides a string property for the key and a string property for the value,
with corresponding getters and setters. Furthermore, for configuring key value objects within XML,
the bean with name 'Uif-KeyL abelPair' is provided (whose class is ConcreateKeyValue). The following
demonstrates creating the above list in Spring XML:

<property name="options">
<list>

<bean parent="Uif-KeyLabel Pair" p:key="AL" p:val ue="Al abana"/>

133

Fields and Content Elements

:val ue="Col orado"/ >
val ue="1ndi ana"/ >
val ue="Chi 0"/ >

val ue="Texas"/ >

<bean parent="Ui f - KeyLabel Pai " p: key="CO'

<bean parent="Ui f- KeyLabel Pai r" p:key="1N'

<bean parent="Uif-KeyLabel Pair" p:key="0H"

<bean parent="Ui f- KeyLabel Pair" p: key="TX"
</ property>

[SECR-IENEONG
HEEE

Key Value Finders

Hard-coding in the options works for some simple cases (like 'Yes, 'No' type options), however most of
the time the options need to be built up dynamically. This might require performing a database query to
retrieve code/name pairs, or invoking a service to retrieve the options. For this, asmall piece of code must
be written that implements the org.kuali.rice.krad.keyvalues.KeyVauesFinder interface. The easiest way
to implement akey value finder is to extend the base class org.kuali.rice.krad.keyvalues.KeyVauesBase.
When extending this base class, we must implement the following method:

public List<KeyVal ue> get KeyVal ues();

Hopefully, it is clear what we need to do here. As stated previously, each option is represented by a
KeyVaue object, sowereturn aList of KeyValue objects that will make up our options. How the method
isimplemented depends purely on the application logic needed. A common pattern isto query the database
to retrieve al records of a certain type, and then to use two fields from the record (usually the primary
key property and a description property) as the key and value. Here is an example from the Rice project
that is building up the options for state;

1
2 public List<KeyVal ue> get KeyVal ues() {
3 Li st <KeyVal ue> | abel s = new ArrayLi st <KeyVal ue>();
4 Li st <State> codes =
5 Locati onApi Servi ceLocat or. get StateServi ce().findAl | StateslnCountry(countryCode);
6
7 | abel s. add(new Concr et eKeyVal ue("", ""));
8 for (State state : codes) {
9 if(state.isActive()) {
10 | abel s. add(new Concr et eKeyVal ue(st at e. get Code(), state.getNane()));
11 }
12
13 return | abels;
14 }
15

Notice the construction of ConcreteK eyV alue objects using each state's code and name properties.

Once akey value finder class is created, it needs to be specified on the input field for which the options
should apply. This is done using the opt i onsFi nder or opti onsFi nder O ass properties. This
first of these takes an actual KeyValueFinder instance, so it will be an inner bean or bean reference in the
XML. Thisisuseful if areusable finder has been created that contains properties which can be configured.
For example, suppose our state finder had an option indicating whether inactive state codes should be
included. First, we could setup a base bean as follows:

1 <bean id="StateOpti onsFinder" class="org. kuali.rice.location.framework.state. StateVal uesFi nder"/>

Next, we can specify that the state finder should be used for an input field and configure the include
inactive option:

134

Fields and Content Elements

2 <bean parent="Uif-InputField" p:propertyNanme="stateCode">

3 <property name="optionsFi nder">

4 <bean parent="Stat eOpti onsFi nder" p:includel nactive="true"/>
5 </ property>

6 </ bean>

7

If our finder class does not have any options, or we just want to use the default, we can specify the class
using the optionskFinderClass property:

1 <bean parent="Uif-InputField" p:propertyNanme="stateCode"
2 p: opti onsFi nder Cl ass="org. kual i . rice. | ocation.framework. state. StateVal uesFi nder"/>

When the key valuefinder classis configured on aninput field, during the view lifecycleit will beinvoked
to build the options, which will then in turn be set on the options property of the control. If the options
property was already set on the control, it will not be overridden.

The KeyValueFinder classis actualy used not only in KRAD, but in various places throughout the Rice
project. In terms of building options for our controls, it has one big gap. Our getkeyVaues method takes
no parameters, so unless our model datais provided through some global variable, it is not possible to
conditionally build the options based on a model property value. Thisis a use case that comes up often.
For example, think of two dropdown controls, thefirst providing options for the food groups (Dairy, Fruit,
V egetables, and so on). The second dropdown should provide options for the particular foods within the
selected group of the first dropdown. Thus, our key value finder for the food dropdown needs to know
the current value for the food group.

To allow for this, KRAD extends the KeyValueFinder interface with
org.kuali.rice.krad.uif.control.UifKeyValuesFinder. One of the methods this interface adds is the
following:

public List<KeyVal ue> get KeyVal ues(Vi embdel nodel);

Notice we now have a getKeyVaues method that takes in the model from which we can get at our
application data. A base class named org.kuali.rice.krad.uif.control.UifKeyVauesFinderBase is provided
for creating new UIF key value finders. The following demonstrates implementing conditional logic for
building the options:

1

2 public class FoodKeyVal uesFi nder extends Ui fKeyVal uesFi nder Base {

3

4 @verride

5 public List<KeyVal ue> get KeyVal ues(Vi embdel nodel) {

6 Ui f Conponent sTest Form t est Form = (Ui f Conponent sTest For n) nodel ;

7

8 Li st <KeyVal ue> options = new

9 ArraylLi st <KeyVal ue>();
10
11 if (testForm get FoodG oup().equal s("Fruits")) {
12 options. add(new Concr et eKeyVal ue(" Appl es", "Apples"));
13 options. add(new Concr et eKeyVal ue(" Bananas", "Bananas"));
14 options. add(new Concr et eKeyVal ue(" Cherries", "Cherries"));
15 options. add(new Concr et eKeyVal ue(" Oranges", "Oranges"));
16 opti ons. add(new Concr et eKeyVal ue(" Pears", "Pears"));
17 } else if (testForm getFoodG oup().equal s("Vegetables")) {
18 opti ons. add(new Concr et eKeyVal ue("Beans", "Beans"));
19 opti ons. add(new Concr et eKeyVal ue("Broccoli", "Broccoli"));
20 opti ons. add(new Concr et eKeyVal ue(" Cabbage", "Cabbage"));
21 options. add(new Concr et eKeyVal ue("Carrots", "Carrots"));
22 options. add(new Concr et eKeyVal ue(" Cel ery", "Celery"));
23 options. add(new Concr et eKeyVal ue(" Corn", "Corn"));

135

Fields and Content Elements

24 opti ons. add(new Concr et eKeyVal ue(" Peas", "Peas"));
25 }

26

27 return options;

28 }

29 }

In this example, foodGroup, which is on our test form, holds the value for the selected food group. This
key value finder is then associated with the field that will display the available foods for that group:

<bean parent="Uif-InputFi el d" p:propertyName="food" p:|abel ="Foods"
p: opti onsFi nder Cl ass="edu. sanpl eu. travel . opti ons. FoodKeyVal uesFi nder" p:refreshWenChanged="fi el d88">
<property name="control ">
<bean parent="Ui f-DropdownControl "/>
</ property>
</ bean>

O~NO O~ WNPR

Notice the refreshwhenChanged property setting pointing to foodGroup. This is configuring refresh
behavior, which we will learn about in Chapter 11. When the value of the foodGroup control changes, it
will refresh our food control, which will then rebuild the options based on the new food group!

Besides making the model data available, the UIF key value finder also provides another convenience. In
some cases (depending on whether our field is required) we want to display ablank option for our control,
while others we do not (forcing a value to be selected). Y ou might have noticed in our state finder the
following line:

| abel s. add(new Concr et eKeyVal ue("", ""));

Thisis adding a blank option at the beginning of the options list. Previous to KRAD, if you then wanted
the same options on another screen but did not want to provide the blank option, a new key value finder
class would need to be created. The UifKeyVauesFinder makes this a ssmple configuration option with
the following method:

publ i ¢ bool ean i sAddBl ankOpti on();

When thisis set to true, the framework will add a blank option to the returned list of options from the key
value finder. Using the mechanism described above for setting key value finder properties, we can reuse
the same class in multiple places and configure whether a blank option should be added.

CheckboxGroup

The CheckboxGroup control is a multi-value control that presents each option as a checkbox. When a
checkbox is selected the corresponding option key will be selected as avalue. The checkbox group allows
the selection of multiple options, therefore multiple checkboxes for the group may be selected. The option
label for each checkbox is rendered to the right of the control.

The checkbox group control supports one custom property named delimiter. Thisis a string that will be
rendered between each checkbox (including the label). Two common options for this are the '& nbsp;' and
'</br>" strings. Notethisisthe HTML entity and tag and thus thefirst adds a space between each checkbox,
while the second adds alink break between each. These can be used to horizontally or vertically align the
checkboxes. KRAD provides base beansfor both these options named 'Uif-Horizontal CheckboxesControl'
and 'Uif-Vertical CheckboxesControl'.

136

Fields and Content Elements

©oO~NOTO~WNPRE

To specify a checkbox control should be used, a bean with parent of 'Uif-Horizontal CheckboxesControl'
or 'Uif-Vertical CheckboxesControl' should be given:

<bean parent="Uif-InputFi el d" p: propertyNanme="sel ect edOpts" p: | abel =" Checkboxes 1">
<property name="control ">

<bean parent="Uif-Vertical CheckboxesControl ">
<property name="options">
<list>
<bean parent="Ui f- KeyLabel Pair" p: key="0O1" p:val ue="Option 1"/>
<bean parent="Ui f- KeyLabel Pair" p: key="2" p:val ue="Option 2"/>
<bean parent="Ui f - KeyLabel Pair" p: key="03" p:val ue="Option 3"/>
</list>
</ property>
</ bean>

</ property>

Note we could also have chosen to configure the optionsFinder or optionsFinderClass on the input field
bean instead of configuring the options directly on the control.

Below shows the checkbox group contral.

Figure 6.12. CheckboxGroup Control

Checkboxes 1:
CheckboxGroupControl
Option 1
Option 2
Option 3

Since the checkbox group control allows selecting multiple values, our back model property must be a
List type of primitives (usualy string). For example:

private List<String> checkboxG oupProperty;

After the request data is bound to the model, each value that was checked will be an entry in the List.

RadioGroup

©OoO~NOOAWNRE

PR e
N~ O

The RadioGroup control is similar to the checkbox group control, with the exception of it only allowing
one value to be selected. Similar to the checkbox group, it supports the delimiter property and the UIF
provides two base beans for the space and line break delimiters.

To specify aradio control should be used, a bean with parent of 'Uif-Horizontal RadioControl' or 'Uif-
VerticalRadioControl' should be given:

<bean parent="Uif-InputField" p:propertyName="sel ectedOpt" p:|abel ="Radio 1">
<property name="control ">

<bean parent="Uif-Vertical Radi oControl ">
<property name="options">
<list>
<bean parent="Uif-KeyLabel Pair" p:key="0O1" p:value="COption 1"/>
<bean parent="Uif-KeyLabel Pair" p:key="2" p:value="COption 2"/>
<bean parent="Uif-KeyLabel Pair" p:key="Q38" p:value="COption 3"/>
</list>
</ property>
</ bean>

137

Fields and Content Elements

13 </ property>
14 </ bean>
15
Since the radio control only allows selection of one option, the back model property should be a non-
List type.
Select
The Select control is another variation of a multi-value control. The select control appears similar to the
text control, but with an arrow to display a dropdown list of options. The select control can be configured
to only allow one selection, or multiple.
To specify a select control should be used that allows only one value to be selected, a bean with parent
of 'Uif-DropdownControl' should be used:
1
2 <bean parent="Ui f-InputField" p:propertyName="sel ectedOpt" p:| abel ="Sel ect Control ">
3 <property name="control ">
4 <bean parent="Ui f-DropdownControl ">
5 <property name="options">
6 <list>
7 <bean parent="Uif-KeyLabel Pair" p:key="01" p:value="Option 1"/>
8 .
9 </list>
10 </ property>
11 </ bean>
12 </ property>
13 </ bean>
14
The back model property in this case should be a simple primitive (string, integer, ...).
Below shows the select control allowing only one selection.
Figure 6.13. Select Control
Select Control:
SelectControl using
Option 2 T|
To specify aselect control should be used that allows one or more valuesto be selected, a bean with parent
of 'Uif-Multi SelectControl' should be used:
1
2 <bean parent="Uif-InputField" p:propertyNane="sel ectedOpts" p:label="Multi Select Control">
3 <property name="control ">
4 <bean parent="Ui f-Milti Sel ect Control ">
5 <property name="options">
6 <list>
7 <bean parent="Ui f- KeyLabel Pair" p: key="0O1" p:val ue="Option 1"/>
8 o
9 </list>
10 </ property>
11 </ bean>
12 </ property>

13 </ bean>

Below shows the select control allowing multiple values to be selected.

138

Fields and Content Elements

Figure 6.14. Multi Select Control

Multi Select Control:
SelectControl with multiple="true"
Select1 «

Select 2

Select 3°

Select4 ~

The select control supports two custom properties. The first is the multiple property which is a boolean
indicating whether selection of more than one valueis allowed (set to true by the 'Uif-Multi SelectControl'
bean). The second property is named size and configures how many options should be visible to the user
without using the arrow. This dictates the vertical size of the control. As an example the select control
above was set to 4.

Location Select (Navigation Select)

Select controls have the ahility to be backed by alocation, which alows for navigation when an option is
selected. This should only be used for single Select controls. This control may be particularily useful in
configuring a siblingBreadcrumbComponent for a Breadcrumbltem (see "Breadcrumbs' section in "The
View").

Thisisset up the same way anormal Select control would be set up, except instead of using aUifKeyValue
object, a UifKeyValueL ocation object is used instead. The location property of this object is backed by
a Urlinfo object for ease of the configuration (minimal set-up of navigation information for Views and
controller mappings).

The following configuration demonstrates this usage:

1 <bean parent="Ui f-InputField" p:label =" Dropdown Navigation' p:instructional Text="Navi gate on
dr opdown sel ection"
2 p: wi dt h="aut 0" >
3 <property name="control ">
4 <bean parent="Ui f-DropdownControl ">
5 <property name="options">
6 <list>
7 <bean parent="Ui f-KeyVal ueLocati on" p: key="1" p:value="" p:location.href=""/>
8 <bean parent="Ui f - KeyVal ueLocati on" p: key="2" p:val ue="Kuali.org"
9 p:location. href="http://ww. kuali.org"/>
10 <bean parent="Uif-KeyVal ueLocati on" p: key="3" p:value="Jira"
11 p:location. href="https://jira. kuali.org"/>
12 <bean parent="Ui f - KeyVal ueLocati on" p: key="4" p:val ue="InputFi el d Denp"
13 p: 1 ocation. vi ew d="Deno- | nput Fi el d- Vi ew'
14 p: 1 ocation. controllerMappi ng="/kradsanpl eapp"/ >
15 </list>
16 </ property>
17 </ bean>
18 </ property>
19 </ bean>
OptionList

The OptionList control isa MultiVaueControl which is used for the display aread only list of key-value
pairs. It can be used to display those key-value pairs which were "selected" (when backed by with a
propertyName and setting the appropriate option) or to display all available key-value pairs configured by
the options (default). The values which are considered "selected” (whether all options are being render or
not) have an addiontal css style class when rendered defined by selecteditemCssClass property.

The main use case of this control isto display the available set of options available in an option list or to
display the ones that may have been selected previoudy (for display in aread-only View for example).

139

Fields and Content Elements

Thefollowing codedisplaysan OptionsList that only showsthe valueswhich match in the property defined

by propertyName:

1 <bean parent="Uif-InputField" p:label =" Option List'

2 p: propertyNane="opti onLi st Sel ecti on">

3 <property name="control ">

4 <bean parent="Ui f- OptionLi st Control ">

5 <property name="showOnl ySel ect ed" val ue="true"/>

6 <property nanme="options">

7 <list>

8 <bean parent="Ui f - KeyLabel Pair" p: key="1" p:val ue="Option 1"/>

9 <bean parent="Ui f - KeyLabel Pair" p: key="2" p:val ue="Option 2"/>
10 <bean parent="Ui f - KeyLabel Pair" p: key="3" p:val ue="Option 3"/>
11 <bean parent="Ui f - KeyLabel Pair" p: key="4" p:val ue="Option 4"/>
12 </list>
13 </ property>
14 </ bean>
15 </ property>
16 </ bean>

L ets assume that the optionListSelection property defined by propertyName only containsthe values 2 and
4, Since showOnlySelected is set to true, the result isaread-only control that will look like the following:

Figure 6.15. OptionList Control

Option List:
Option 2
Option 4

Though it is not apparent, the selected values also have a different css style class added. By default it is
not different from normal text and must be customized for your project needs, when applicable.

Navigation OptionList

Like alocation-backed Select control, an OptionList can also be backed by alist of UifKeyValuel ocation
beans for its options. This will output the OptionList as a list of links which the user can click. If
showOnlySelected flag is being used, only those links which match the value of the property defined by
propertyName of the field will be shown. Like alocation-backed Select contral, this control is useful for
use in the siblingBreadcrumbComponent property of a Breadcrumbltem.

The following configuration will output alist of links (note that no propertyName is being used here nor
the showOnlySelected property):

1 <bean parent="Uif-InputField" p:label="Nav Option List'>

2 <property name="control ">

3 <bean parent="Ui f- OptionLi st Control ">

4 <property name="options">

5 <list>

6 <bean parent="Uif- KeyVal ueLocation" p: key="1" p:val ue="Kuali . org"

7 p:location. href="http://ww.kuali.org"/>

8 <bean parent="Uif- KeyVal ueLocati on" p: key="2" p:val ue="Jira"

9 p:location. href="https://jira. kuali.org"/>

10 <bean parent="Uif- KeyVal ueLocati on" p: key="3" p:val ue="InputFi el d Denp"
11 p: l ocation. vi ewl d="Deno- | nput Fi el d- Vi ew'

12 p: | ocation. control | er Mappi ng="/ kr adsanpl eapp"/ >

13 </list>
14 </ property>
15 </ bean>
16 </ property>
17 </ bean>

140

Fields and Content Elements

That will look like the following;:

Figure 6.16. Navigation OptionList Control

Nav Option List:
Kuali.org

Jira

InputField Demo

KIM Group

1

The KIM Group control is not an actual different type of HTML control. Instead, it is a wrapper for the
text control that provides additional functionality related to selecting a KIM group. The KIM group and
KIM user entities are used often in Rice enabled applications; therefore, these controls are provided to
simplify the configuration.

The group control adds a quickfinder (lookup icon) to thetext control that is configured to invoke the KIM
group lookup. The lookup is configured to return the group id, namespace, and name. The namespace and
name fields can then be displayed as data or input fields, and the group id will be added as a hidden.

To usethe KIM group control abean with parent of 'Uif-KimGroupControl' should be given. The property
that backs the input field for which the control is configured is assumed to hold the group name. As usual
thisis configured using the propertyName property on input field. In order for the control to work properly,
we must then specify the properties that hold the group id and namespace:

2 <bean parent="Uif-InputField" p:propertyName="groupNanmespaceCode" p:| abel =" Namespace Code"/>
3 <bean parent="Uif-InputField" p:propertyName="groupNanme" p:| abel =" Nane">

4
5

<property name="control ">

<bean parent="Uif-Ki m& oupControl" p:groupl dPropertyName="groupl d"

p: namespaceCodePr oper t yNane="gr oupNarmespaceCode" / >

6

8

</ property>
7 </ bean>

Notice we are displaying the group namespace in an input field before the group name.

KIM User

1

The KIM User control is similar to the KIM Group control but instead of a KIM group, it allows us to
find a KIM User. This control does several things for us. Firgt, like the group control, it will configure a
quickfinder for our field that is configured to invoke the KIM User lookup. The lookup will then return
the principa id, principal name (username), and person name (full name). Also, like the group control, it
will automatically add the principal id asahidden field for us. In addition, it setsup afield query (covered
later on in this chapter) that displays the person name under the control on return from the lookup, or when
tabbing out of the control.

To usethe KIM User control, abean with parent of 'Uif-KimPersonControl' should be given. The property
that backs the input field for which the control is configured is assumed to hold the principal name. As
usual thisis configured using the propertyName property on input field. In order for the control to work
properly, we must then specify the properties that hold the principal id and the person name:

2 <bean parent="Uif-InputField" p:propertyNane="principal Name" p:|abel ="Person Nane" p:required="true">

141

Fields and Content Elements

3 <property name="control ">
<bean parent="Ui f- Ki nPersonControl " p:principal | dPropertyNanme="princi pal | d"
p: per sonNanePr oper t yNanme="per sonNane"/ >
5 </ property>

6 </ bean>
7

It acommon setup to carry the principal id as aprimitive field, with a nested Person object. In these cases,
it is not necessary to have a separate property for the principal name and person name, but instead the
properties on the nested person object can be used. For these cases, the user control provides a simpler
way to configure it by setting the personObjectPropertyName. This isthe name of the property that holds
the nested person object.

</ bean>

~NO O WNBE

<bean parent="Uif-InputField" p:propertyName="princi pal Name" p:|abel ="Person Nanme" p:required="true">
<property name="control ">
<bean parent="Uif-Ki nPersonControl " p: personChj ect PropertyNanme="person"/>
</ property>

Below shows the user control with the person name displayed:

Figure6.17. KIM Group Control

Recap

* Member

eric %

A control is atype of content element that allows the user to input data through the HTML form

A control has an initial value that comes from a model property, and can then be changed by the user
or script on behalf of the user

Whentheformissubmitted, thevaluefor each control issent asarequest parameter, wherethe parameter
name is the taken from the name attribute and the value is the actual control value

Controls are associated with an input field which holds a pointer to the property from which the control
value will be pulled

HTML controls have different types which are represented by different control componentsin KRAD

The Checkbox component is used to render an HTML input of type 'checkbox'. A checkbox is used
to toggle avalue (typically a boolean property with true or false values)

The Fi | e component is used to render an HTML input of type 'file.. This allows the user to select a
filefrom thelocal file system that will be uploaded to the server. The backing property for afile control
must be of type org.springframework.web.multipart.MultipartFile

The H dden component is used to render an HTML input of type 'hidden'. This control is not visible
to the user and therefore cannot be changed directly by the user (only by script)

The Text component is used to render an HTML input of type 'text'. Thisrenders asingle line text box
where the user can type avalue. This control supports the following options:

« size—The horizontal display size of the text box

142

Fields and Content Elements

» maxLength — The maximum number of the characters the user can enter (corresponding to the length
of the value)

¢ minLength — The minimum number of characters that are required for the value
 datePicker — A nested date picker widget that allows the user to select a date from a calendar

o watermarkText — Text that will appear in the control when there isno value. Thisis used to help the
user know the format for the value

« textExpand — A boolean that indicates whether the text expand widget should be enabled for the
control. This allows the user to click anicon and get an expanded text box

The UIF provides base beans that promote standard sizes for small, medium, and large text controls.
These include 'Uif-Small TextControl', 'Uif-MediumTextControl', and 'Uif-LargeTextControl'

The UIF also provides the bean 'Uif-DateControl* which is a text control with the date picker widget
enabled. Furthermore the bean 'Uif-Currency TextControl' can be used when the value is a currency

The TextArea component renders an HTML text areatag. This is a multi-line text box used for long
values. The text area components support the rows and cols properties, which determine the vertical
and horizontal display size of the control

The Spinner component rendersasan HTML input of type 'text' that is decorated with thejQuery Spinner
plugin. This alows the user to increment or decrement the value using a arrows rendered within the
text box

Multi-Value controls are controls which can present multiple values for selection and possibly allow
multiple values to be submitted for asingle field

When creating a multi-value control we must specify the options that should be available. These are
built by configuring instances of the Rice KeyValue interface (ConcreteK eyValue implementation)

KeyValue objects can be created in XML by using the bean 'Uif-KeyL abel Pair'
Thelist of KeyValues are associated with a control using the opt i ons property

Instead of specifying the options directly in the XML, we can create a class of
type org.kuali.rice.krad.keyvalues.KeyValuesFinder and implement the method List<KeyValue>
getkeyVaues(). This class is then configured on the input field using the property
opti onsFi nder O ass (or an object can be injected using the optionsFinder property)

The UIF provides a special key value finder org.kuali.rice.krad.uif.control.UifKeyValuesFinder that
alows conditional key values to be built based on the model

The CheckboxGr oup component is a multi-value control that presents the options as a set of
checkboxes

The checkbox group control supports a delimiter which will be rendered between each checkbox. The
UIF provides two beans with a delimiter set: 'Uif-Horizontal CheckboxesControl' (space delimiter) and
‘Uif-Vertical CheckboxesControl' (HTML break delimiter)

Checkbox group controls allow multiple values to be selected. Therefore the backing property must be
alisttype

The Radi oG oup component is similar to the checkbox group, with the exception of only alowing
one value to be selected

143

Fields and Content Elements

e TheSel ect component isamulti-value control that presents the options as a dropdown (arrow in the
text box that can be clicked to see the options)

» Select controls are created using the bean 'Uif-DropdownControl' for allowing a single value to be
selected or the bean 'Uif-Multi SelectControl’ for allowing multiple values to be selected

» The select control supports the si ze property which controls the number of options that are visible
without clicking the arrow

» Theselect and option list controls can be backed by a UifKeyValuel ocation ("Uif-KeyValuelL ocation")
objectsin their options which allow these controls to provide easy navigation to the user

» The Kl M& oup control isaspecial text control that is configured for inputting KIM group names

» TheKl MJser control isaspecial text control that is configured for inputting KIM users. It adds things
such as a quickfinder and field query

Disabling Controls and Tabbing

~NOoO g~ WNPRP

Besides the specific properties offered by the various controls, all control components inherit a couple of
properties from org.kuali.rice.krad.uif.control.ControlBase. Thefirst of theseisthet abl ndex property.
This property is an int type that is used to populate the tablndex attribute on the corresponding control
element tag. Thisis of course used by the browser to set the tabbing order between the form controls.

By default, the framework sets all tab indexes to 0. This means the tabbing will follow the natural order
of the page (the order the controls are laid out on the page). However, if needed a specific tab order can
be created by setting the tab index property for each control.

Theother property supported on all controlsisthedi sabl ed property with type Boolean. Thevaluegiven
for this property will be set as the attribute value for the disabled attribute of the corresponding control
element. Thisindicates to the browser that the user should not be allowed to interact with the control.

Similar to other properties, we can statically set thevalueto 'true or 'false’ inthe XML, or use an expression
to conditionally disable the control:

<bean parent="Uif-InputFi el d" p:propertyName="fruitName">
<property name="control ">

<bean parent="Uif-Text Control" p:disabled="@foodGoup ne 'Fruit'}"/>

</ property>

In this example, we are disabling the text control for 'Fruit Name' if the food group field is not 'Fruit'.
The following is an example text control that isin the disabled state:

Figure 6.18. Disabled State Control

Field Label
Disabled

Disabled or Read Only

Animportant UX issueiswhether to disable acontrol, or make the control read only. Both display
the current value and prevent the user from changing it. Generally, a disabled control is used
to temporarily disallow interaction based on a condition. It might be the result of a refreshed

144

Fields and Content Elements

component based on a change to data. Read only is often used to display a state that cannot be
changed based on the current data (for example user permissions, or a state that the user cannot
modify).

Recap

» All controls have the t abl ndex property which can be used to implement a custom tab order (Note
that this is not recommended, though, if not set, the framework will set the tab indexes based on the
natural order of the page)

» Controls aso support the di sabl ed property. This is a boolean that will disable the control so that
input isnot allowed (the control isstill rendered). Like most properties, the disabled property can contain
an expression to conditionally disable the control

Hooking up Lookups and Inquiries

The input field component also provides a couple of widgets we can configure that will help the user
with datainput. The first of these is the fieldL ookup property which is a nested widget component. This
widget component is called a Quickfinder. Quickfinder is aterm that was adopted in the KNS framework
to represent the icon next to a control that can be used to bring up alookup screen, search for avalue, and
return that value to the field. In KRAD, the quickfinder widget holds all the configuration for rendering
the icon along with the lookup request it makes.

All the options for quickfinder are covered in Chapter 8, but we will go over the essential ones here. To
understand these widget properties, we need to know a little bit about the lookup API. Essentially, this
is arequest based APl where communication is done via request parameters, of which the following are
required:

dat aObj ect Cl assNane — Lookup views (a specia 'type' of view) are associated with a data object
class. Thisis the class for the data object the search will be performed on. After the bean container is
loading, an indexing process is performed that maps data object classes to configured lookup views (see
‘View Type Indexing' in Chapter 13). Therefore, instead of passing in the unique view id to specify the
view we want, we can pass in the data object class name.

fi el dConver si ons — The purpose of using the lookup is to search for a particular value and return
that value to the form being completed. In order for the lookup framework to return the field back to us,
we must specify the name of the field on the data object class whose value we need, and the name of
the field on the calling view. Furthermore, we can choose to have the lookup return additional fields that
populate other form fields or informational properties (see 'Field Queries and Informational Properties).
These pairs of fields are known as 'field conversions.

The fieldConversions property is a Map. Each entry represents afield that will be returned back from the
lookup, with the entry key being the field name on the data object class, and the entry value being thefield
name on the calling view. It is helpful to think of this as afrom-to mapping. Pulling from the data object
field (map key) to the calling view field (map value).

To configure a quickfinder on an input field, we have two options. First, we can create an inner bean with
parent of 'Uif-QuickFinder' for the input field's fieldL ookup property:

<bean parent="Ui f-Input Fi el d" p: propertyName="docunent. nunber">
<property name="fi el dLookup">

<bean parent="Ui f- Qui ckFi nder" p:dataObject Cl assNane="edu. sanpl eu. travel . bo. Travel Account"
p: fi el dConver si ons="nunber: docunent . nunber"/ >

</ property>

</ bean>

145

Fields and Content Elements

In this example we have configured a quickfinder that will invoke the lookup view for Travel Account.
After theuser performsasearch and selectsarow (using the provided return valuelinks), the corresponding
number property value for the selected row will be returned and set in the document.number property for
our view (thefield for which the quickfinder is configured). Notice in this example we are using the map
shorthand configuration for the fieldConversions property.

An dternative configuration is to set the dataObjectClassName and fieldConversions properties directly
using nested notation. Note this only works if the bean we are inheriting from (or one of its parents has
configured) the parent property, else a NullPointerException will be thrown:

1 <bean parent="Uif-InputField" p:propertyName="docunent. nunber"
2 p: fi el dLookup. dat aObj ect C assNane="edu. sanpl eu. travel . bo. Travel Account"
3 p: fi el dLookup. fi el dConver si ons="nunber: docunent . nunber"/ >

Initializing Nested Components

It isacommon practice in the UIF for base beansto initialize and nest components. This allows
child beansto simply configure the needed properties on the nested component without having to
initialize the component itself. For example, the 'Uif-InputField' has the following property tag:

1

2 <property nanme="fi el dLookup">

3 <bean parent="Uif-Qui ckFi nder"/>
4 </ property>

If this was not provided, child beans would need to populate the fieldLookup property using a
nested bean instead of using the directed nested property notation.

Below we see the quickfinder icon (to the right of the text control) and the corresponding lookup view
that is presented when the user clickstheicon:

Figure 6.19. Quickfinder Hook

Figure 6.20. Quickfinder Hook Example

(=)
Travel Account Lookup
Travel Ace r: @)
B e ted:

a

146

Fields and Content Elements

Another widget provided by input field and data field components is the Inquiry component. The inquiry
is used to display additional information about the current field value, generally the associated database
record.

There are two different flavors of the inquiry, the 'standard' inquiry and the 'direct’ inquiry. The former
refers to an inquiry for a field that is read only (user is not alowed to change value). This inquiry
is configured with the fi el dl nqui ry property on data field. A direct inquiry refers to an inquiry
of afield that is editable (has a control for changing the value). This inquired is configured with the
fiel dDi rectl| nquiry property and is available on input fields only.

Both inquiries point to the Inquiry widget component. This widget holds the configuration for invoking
the inquiry view once the inquiry is triggered (alink for the standard and an icon for the direct). Inquiry
views are similar to lookup views. They are associated with a data object class and can be requested by
passing the data object class name. However, for inquiries we need to pass a vaue from the calling view
to theinquiry view, instead of the other way around (asisthe case for lookup views). These are the values
that will be used to retrieve the data for the inquiry view.

This configuration is done using the i nqui r yPar anet er s property on the Inquiry widget. Like the
Lookup's fieldConversions property, this holds a map where each entry is a mapping of fields between
the two views. The entry key is the name of the field in the calling view from which the value will be
pulled, and the entry key is the name of the field in the inquiry data object class for which the value will
be populated. Again we can think of this as afrom-to mapping.

To configure the standard inquiry we use a bean with parent of 'Uif-Inquiry'. For the direct inquiry, we
use a bean with parent of 'Uif-Directinquiry'.

1
2 <bean parent="Uif-InputFiel d" p:propertyName="docunent. nunber">
3 <property name="fiel dl nquiry">
4 <bean parent="Ui f-Inquiry" p:dataCbjectC assName="edu. sanpl eu. travel . bo. Travel Account"
5 p: i nqui ryPar anet er s="docunent . nunber : nunber "/ >
6 </ property>
7 <property name="fiel dD rectlnquiry">
8 <bean parent="Uif-Directlnquiry" p:dataCbjectC assName="edu. sanpl eu. travel . bo. Travel Account"
9 p: i nqui ryPar anet er s="docunent . nunber : nunber "/ >
10 </ property>

11 </ bean>

[y
N

We also have the option of using the nested property notation instead of using inner beans.

Below shows an example inquiry (standard inquiry for read only field), followed by an example direct
inquiry

Figure6.21. Standard Inquiry, Read Only

Direct Inguiry
Inquiry Click the button to perform an inquiry

al &

Automatic Lookups and Inquiries

For many instances where alookup or inquiry is desired, there is an underlying relationship in the model.
In Chapter 3, we learned how to represent one-to-one relationships in code (with nested data objects) and
then provide configuration to OJB using a reference descriptor. In Chapter 4, we learned about the data
dictionary and the ability to declare relationship definitions for our data object entry. These sources of
metadata are then consumed by the UIF to automatically configure lookups and inquiries for our fields!

147

Fields and Content Elements

For each data or input field, the framework will attempt to find a model relationship if two conditions are
met: one, we have not manually configured the lookup and inquiry; and two, the render flag for both is not
set to false. Setting the render flag to false on the fieldL ookup or fieldinquiry indicates to the framework
that we do not want them rendered regardless of the existence of arelationship.

The basic strategy for determining the existence of arelationship is as follows:
1. Determine a parent data object class for the fields property.

2. Query OJB metadata to get a class descriptor for the data object class, get any reference descriptors
the property participates in.

3. Query data dictionary metadata to get data object entries for the data object class, get any relationship
definitions the field participates in.

4. Of dl the relationships found in steps 2 and 3, filter out those where the target class does not support
the function (lookup or inquiry). For example, if the target data object classis Travel Account, but there
is no lookup view associated with that data object class, we do not consider that relationship.

5. Of the relationships remaining from step 4, choose the relationship which has the lowest cardinality
of foreign keys.

6. If arelationship was not found and the property name is nested, split the property name using the first
part of the path as the parent property and the remaining as the property name. Repeat the process
looking for arelationship. Note thisis similar to the process of finding a back data dictionary entry.

This is a complicated process and not all details are important as a user of KRAD. However, the first
step is critical to understand and deserves more explanation. The determination of the parent data object
class drives the metadata picked up by the framework and therefore where the rel ationships will be found.
Recall thethree partsto the fields binding path: the object path, binding prefix, and binding name (property
name). The framework will use the object path and prefix as the path to the parent object (everything
except the property name). Then it will get the type for the property from the model which is used as the
data object class.

Data Object M etadata

Many areas of the UIF (including the above widgets) use metadata from the OJB repository
and Data Dictionary together. They use a service named DataObjectM etaDataService which is
afacade for both sources of metadata.

A couple of things should be noted about the automatic lookups and inquiries. First, if no relationship is
found, the render flag on the widget will be set to false. Second, recall for the lookup and inquiry, we
need to configure field mappings (fieldConversions and inquiryParameters). The framework builds these
mappings from the fields that participate in the relationship.

Recap

» The input field component provides the quickfinder widget to allow the user to search for a value to
enter. Thisis configured using the fieldL ookup property

» The quickfinder can be configured by creating an inner bean with parent 'Uif-Quickfinder' or setting
options using the nested notation (fieldL ookup.property)

» Thebasic options for a quickfinder are:

« dataObjectClassName— Thefull class namefor the data object whose lookup view should be rendered

148

Fields and Content Elements

« fieldConversions — A mapping of properties on the lookup data object to properties in the calling
view. When aresult row is selected from the lookup, the values for the configured lookup data object
fields will be returned to their associated view properties

« lookupParameters— A mapping of propertiesfrom the calling view to search fields for the data object.
When the quickfinder is selected, the values for the configured view properties will be pulled and
populated into the search fields

» Theinput field also provides the Inquiry widget. This alows the user to see detail associated with the
current value. This comesin two flavors, asimple inquiry (presented as alink) for read only state, and
adirect inquiry (used by clicking an icon) to inquire on the current value of a control

e The inquiry widget is configured using the input fields fieldlnquiry and
fiel dDi rectl nquiry properties

» Theinquiry can be configured by creating an inner bean with parent 'Uif-Inquiry’ or 'Uif-DirectInquiry'.
We can also use nested notation to set properties (fieldinquiry.property or fieldDirectinquiry.property)

» Thebasic optionsfor an inquiry are:
« dataObjectClassName — Full class name for the data object whose inquiry view should be rendered

* inquiryParameters— A mapping of properties from the calling view to properties on the inquiry data
object. When the inquiry is selected, the values for the view properties will be pulled and sent with
the inquiry as request parameters for the corresponding inquiry properties. This generally becomes
the critiera for the record selection (and is generally the primary keys for the data object)

 If aquickfinder or inquiry is not explicity configured, the framework will attempt to hook these up
automatically. Thisis done using the DataObjectM etaDataService which will find relationships for the

property

» We can turn off automatic quickfinders or inquiries by setting the render property to false

Input Field Messages

For views that are not used often (such as a student page) or complex or unclear fields, it is helpful to
provideinstructional text within thefield. These messages provide additional information that helpsclarify
the intended use.

Theinput field component has two types of standard messages that can be configured. Thefirst of theseis
known asinstructional text. Instructional text is used to indicate moreinformation about filling out afield
or how to complete atask using the Ul elements. An exampleof thisis"Completethisfield only if applying
for aoneyear loan". Instructional text is specified for an input field using the instructional Text property:

1 <bean parent="Uif-InputField" p:propertyNane="oneYear Ter n
2 p:instructional Text="Conplete this field only if applying for a one year |oan"/>

The instructional text appears by default above the control and has a style class named 'uif-
instructional M essage' applied. If the label placement istop, the instructional text will appear between the
label and the control.

Another type of message that can be configured on the input field is called constraint text. Constraint text
gives the user information about the required format of the data that must be entered, or other information

149

Fields and Content Elements

necessary for entering the data correctly. A constraint message can be configured using the constraintText
property as shown here:

1 <bean parent="Uif-InputField" p:propertyNane="oneYear Ternl' p:constraintText="Mst be formatted as 3
digits"/>

The constraint text appears by default under the control and has astyle class named 'uif-constraintM essage

applied.

Below shows an input field with instructional and constraint text.

Figure 6.22. Input Field with Contratint Text

Bank Id: | Fukdl 4

Recall from Chapter 4 these messages can aso be configured on the dictionary attribute definition. If an
attribute definition is found for the field, the instructional and constraint messages will be copied (unless
overridden).

Recap

* Input field provides message properties that can be specified to help clarify the purpose of aform field

e The first type of message is known as instructional text and is configured with the
i nstructi onal Text property

* Instructional text is meant to give information about how to complete afield or atask

» By default the instructional text appears above the input field control and has a style class of 'uif-
instructional M essage’

» The other type of message is known as constraint text and is configured with the const r ai nt Text
property

» Consgtraint text givesinformation about the format or other constraints for an inputted value

» By default the constraint text appears below the input field control and has a style class of 'uif-
constraintM essage’

» These messages can also be configured on the data dictionary attribute definition and inherited by the
input field

Field Queries and Informational Properties

Next let's take alook at some of the features available for providing the user dynamic information based
on the inputted field data. The information provided can vary based on what is relevant for a particular
field. Generally though, it is similar information as provided by the inquiry view, except we pick acouple
of important fields that are inserted directly into the page field (without the user having to take an action
and bring up alightbox or separate page).

To display dynamic information, first we need to setup placeholders or the properties that will hold the
information. These must be valid properties on the model (however for displaying a custom message, the
form is a great place to create 'dummy’ properties). To specify information properties, we configure the

150

Fields and Content Elements

informational DisplayPropertyNames property on DataField. This property isaList type, with each entry
giving the name for a property to display.

1 <bean parent="Uif-InputField" p:propertyNane="bookld" p:I|abel ="Book |d"
2 p: i nformati onal Di spl ayPr opertyNanmes="bookTi t| e, bookCopyri ght"/>

In this example we have an input field for the book id property, and we want to display the values for the
bookTitle and bookCopyright property with the field.

Informational display properties by default are rendered under the field control (or if read only under the
displayed value, and also if constraint text is present, then they will display below it). They are aways
displayed read only. The value for each property is placed with a span that receives a style class of 'uif-
informationalMessage'. Therefore, we can configure this style to change how the properties are displayed.
The default style uses the CSS display block style, making each property value appear on anew line.

Below gives a picture of this with two informational properties being displayed.

Figure 6.23. Two Informational Properties Example

Ajax Field Query
Displays additional information retrieved
a3

Field Attribute Query

Each time the field is rendered, the information display property values will be displayed. Thisis useful,
however, by itself itisnot 'dynamic'. That is, if the user then changes the value, the information properties
will not change to reflect the update. To make this happen, we need to associate a piece of functionality
called attribute query with our field.

An attribute query is represented by the class org.kuali.rice.krad.uif .field. AttributeQuery. This is not a
component, just aclass that configures behavior that can be added to the input field component. Basically,
this class provides propertiesfor configuring aquery to retrieve these information properties. It hassimilar
concepts to the lookup (quickfinder widget) with a more targeted purpose. There are two mechanisms for
configuring a query. The first involves configuring the necessary properties to allow the framework to
automatically perform a query. This involves the following attribute query properties:

dat aObj ect C assNanme — Name of the data object class the query will go against. The class given
must be mapped to the database (with ORM metadata) to support the automatic lookup. Thisfunctionsthe
same as the dataObjectClassName for the lookup view (or quickfinder widget).

qguer yFi el dMappi ng — A map type that holds the mappings of properties from the calling view to
properties on the data object class. Each entry represents one property mapping. The map key is the
property nameinthe calling view, and the map valueisthe property name on the dataobject class. Thiswill
usually include the property name of the field for which the query is configured (since we want to query
based on the value the user has inputted). We might need to passin additional properties from the view to
complete the query. This property functions similarly to the inquiryParameters on the inquiry widget.

Note this mapping is used to build criteria for the query. The values for the calling view properties are
retrieved and used to restrict the retrieved data object records based on the mapped data object fields. For
example, suppose we have the following query field mapping: "document.rentedBookl d:bookld" and the
value of the document.rentedBookld on our view is'3'. When the query is performed the following clause
will be created "where bookld = '3" (note the actual SQL is not constructed by KRAD, but created by
the OJB criteria object).

151

Fields and Content Elements

COWO~NOUDWNE

[y

r et ur nFi el dMappi ng — A map type that holds the mappings of properties from the data object class
to the calling view. Each entry represents one property mapping. The map key is the property name on the
data object class, and the map value is the property name on the calling view. We can use this property
to map properties on the data object class back to configured information display properties of the field.
However, it is not limited to that. We can also map properties of the data object class back to properties
that are separate fields (thus filling in the control value for those corresponding fields).

addi tional Criteria—A mapthat holds additional criteriafor the query. The criteria specified will
be added to the constructed criteriabased on query field mapping. The map key isthe name of the property
on the data object class the criteria should apply to, and the map value is the value for the criteria. All map
entries are joined using the AND clause. Note, the map value does support query characters as provided
by the lookup framework ('!' — not, '>' — greater than, '<' — less than, "*' —wildcard, and so on). In addition
for the map values, we can use expressions (‘@{}").

To hook up an attribute query with an input field we use the fi el dAttri but eQuery property.
We can then create an instance of the attribute query class by creating a bean with parent of 'Uif-
AttributeQueryConfig':

<bean parent="Ui f-InputFi el d" p:propertyNanme="rentedBookl d" p:|abel ="Book I|d"
p: i nformati onal Di spl ayPropertyNanmes="rent edBookTi t| e, rent edBookCopyri ght">
<property name="fiel dAttri bueQuery">
<bean parent="Ui f-Attri buteQueryConfi g" p: datalbj ect Cl assNanme="edu. sanpl eu. bookst or e. bo. Book"
p: quer yFi el dMappi ng="r ent edBookl d: bookl d"
p: returnFi el dMappi ng="bookTi t| e: rent edBookTi tl e, bookCopyri ght:rentedBookCopyri ght"/>
</ property>
</ bean>

In this example we have an input field for the rentedBookld property. We then setup a query that
will go against the Book data object, passing the value for rentedBookld as criteria for the bookld
property. From the resulting record, the bookTitle and bookCopyright property values will be copied to
the rentedBookTitle and rendedBookCopyright properties. These are configured as informational display
properties, therefore the updated values will display under the control for rentedBookl d.

Note the framework takes care of triggering the query (with the 'onblur' event), performing the query,
and updating the mapping return fields al client side (without a page post). It is expected the field
attribute query will return only one result. If more than one record is retrieved, the first record of the
hit list will be used. In the case of no matching records, a message will be rendered stating '{field
label} not found', where {field label} is the configured label. This message can be disabled by setting
fieldAttributeQuery.renderNotFoundMessage to false. In addition, attribute query contains a property
named returnM essageText that can be used to configure a message that will display with the results, or a
custom message in the case where no results are found.

The attribute query class also allows us to hook up a custom query that will be invoked to retrieve the
additional information. In this case, the devel oper writesthe actual code to perform the query (call another
service or whatever) and return the results. The framework will then take care of triggering the query and
handling the results (updating the values).

Thereisagreat deal of flexibility for invoking acustom query method. L et's start with the way that requires
theleast amount of configuration. First, we need to know alittle bit about the framework code, in particular
one service. The UIF invokes a service of type org.kuali.rice.krad.uif.service.ViewHel perService to
perform building of the view and many other Ul related functions. An implementation of this service
(ViewHelperServicelmpl) carries out this processing. The framework allows us to extend this service and
declare that one or more views should use the custom view helper. Thisis our gateway for code-based
customizations. So let's do it! The following sets up a custom view helper service:

152

Fields and Content Elements

1

2 package edu. nyedu. sanpl e;

3 public class CustonViewHel per Servi cel npl extends ViewHel per Servicel npl {

4}
Next we configure our view to use the custom view helper service. This is done by setting the
viewHel perServiceClass property on the view component (the View component is covered in complete
detail in Chapter 9):

1

2 <bean id="MView' parent="Uif-FornVi ew >

3 .

4 <property nanme="vi ewHel per Servi ced ass" val ue="edu. nyedu. sanpl e. Cust onVi ewHel per Servi cel npl "/ >

5 </ bean>

6

Now we have a place to put our custom query method. The signature of this method depends on the query
being performed, but there are afew guidelines:

1. The method parameters must correspond to fields on the view (for example, think of the
queryFieldMapping which is configured for the automatic query, essentially we will be pulling fields
from the view the same way, except passing them as arguments to the method).

2. The method must return a data object instance for which the return properties can be retrieved, or a
list of data objects (in the case of backing afield's suggest property), or an AttributeQueryResult. The
AttributeQueryResult is an object that gets returned back to the client and read to process the resullts. If
the method returns the data object, the framework will build the result object from that. However, the
result object can be built directly for custom needs.

To understand this better, let'stake an example. We will create amethod that will perform the same search
as our automatic book query example. The query will go against the Book data object and take in the book
id as a parameter:

public Book retrieveBookByl d(String bookld) {
Book foundBook;
/1 do query to find the book

return foundBook;

0O~NO O~ WNRE

Now we need to configure the attribute query for the book id input field. To specify the name of our method
that should be called, we use the quer yMet hodToCal | property provided by the AttributeQuery
class. Then we specify the arguments for our method using the quer y Met hodAr gunent Fi el dLi st
property. Note this property functions similarly to the queryFieldMapping, except we are not mapping
properties from the calling view to properties on a data object, but instead to method arguments. The
value for each property configured in the queryMethodArgumentFieldList list is retrieved and passed as
amethod argument in the order listed.

The final step is to configure the returnFieldMapping property. This is the same as when doing the
automatic query. It maps properties on the returned object (returned from the method) to properties on
the view.

1
2 <bean parent="Uif-InputField" p:propertyNane="rentedBookl d" p:|abel ="Book Id"
3 p:i nfornational Di spl ayPropertyNanes="rent edBookTi t| e, rent edBookCopyri ght ">

153

Fields and Content Elements

-

O ©O©Wo~NOO UM

CQOWWOW~NOUOMWNE

<property name="fiel dAttri bueQuery">

<bean parent="Uif-Attri buteQueryConfig" p:queryMethodToCall="retri eveBookByl d"
p: quer yMet hodAr gunment Fi el dLi st ="r ent edBookl d"
p: returnFi el dMappi ng="bookTi t| e: rent edBookTi t| e, bookCopyri ght:rentedBookCopyright"/>

</ property>

</ bean>

package

Here we configure the attribute query to invoke the 'retrieveBookByld' method. Since this is the only
configuration we gave, the framework assumes thisis on the view helper service. Next, we set the query
method argument list as 'rentedBooklId'. This means the value for the rentedBookl d (the backing property
for the field) will be pulled and sent as the first argument to our method. If we added another property; its
value would be passed as the second argument, and so on. Finally, we configure the return field mapping
to pull the bookTitle and bookCopyright properties from the data object returned from our method, and
copy those values to the rentedBookTitle and rentedBookCopyright properties on the view model.

In addition to calling methods on a custom view helper service, we can choose to call a method within
another class. This could be a static class method somewhere, or a method on another service configured
in the Spring container. To configure an aternate class, we use the quer yMet hodl nvoker Confi g
property on AttributeQuery.

Thetypefor this property is org.kuali.rice.krad.uif.component.M ethodl nvokerConfig. Thistypeisusedin
various places within KRAD to configure a method invocation (for exampl e setting component properties
through code which is covered in Chapter 10). The class that contains the query method can be specified
using one of the following three properties:

t ar get C ass — Fully qualified class that contains the method. A new instance of this class will be
created before the method isinvoked.

t ar get Obj ect —Object instance the method should be invoked on. Thisis useful for referencing other
Spring beans such as services.

st at i cMet hod — This configures a static method invocation and includes the class and method name
(e.g. 'edu.myedu.sample.QueryUtils.retrieveByld").

When using targetClass or targetObject, the method name can be configured by using the
gueryMethodToCall property on AttributeQuery, or by setting the t ar get Met hod property on
MethodinvokerConfig. If needed, the argument types can be specified using the ar gunrent Types
property (in the case of overloaded methods), or even more information (such as generics and so on) can
be configured using the met hodObj ect property.

Wow! That'salot of options. Let's |ook at a couple of examples.

First let's assume we have the following static method:

edu. nyedu. sanpl e;

public class QueryUtils {
public static Book retrieveBookByl d(String bookld) {

Book f oundBook;
/1 do query to find the book
return foundBook;

Our query configuration would then be as follows:

154

Fields and Content Elements

[N

©O~NOOTOD~WNPRE

PR
N~ O

COWONOUTDWNLE

=

CQOWOoO~NOOUAWNEPRE

=

<property name="fiel dAttri bueQuery">
<bean parent="Uif-AttributeQueryConfig"
p: quer yMet hodl nvoker Confi g. st ati cMet hod=
"edu. myedu. sanpl e. QueryUils.retri eveBookByl d"
p: returnFi el dvappi ng="bookTi t| e: rent edBookTi t| e,
bookCopyri ght : rent edBookCopyri ght"/ >
</ property>

Next assume we have a service that has our retrieveBookByld method, and we have the following Spring
bean:

<bean i d="BookServi ce" cl ass="edu. nyedu. sanpl e. BookServi cel npl "/ >

Our query configuration would then be as follows:

<property name="fiel dAttri bueQuery">
<bean parent="Ui f-AttributeQueryConfig"
p: quer yMet hodToCal | ="r et ri eveBookByl d"
p: returnFi el dMappi ng="bookTi t| e: rent edBookTitl e,
bookCopyri ght: rent edBookCopyri ght ">
<property name="queryMet hodl nvoker Confi g. t ar get Cbj ect ">
<ref bean="BookService"/>
</ property>
</ bean>
</ property>

Finally the case of a non-static class method:

package edu. nyedu. sanpl e;
public class QueryUtils {
public Book retrieveBookByld(String bookld) {
Book foundBook;
/1 do query to find the book
return foundBook;

Our query configuration would be as follows:

<property name="fiel dAttribueQuery">
<bean parent="U f-AttributeQueryConfig"

p: quer yMet hodToCal | ="retri eveBookByl d"
p: quer yMet hodl nvoker Confi g. t arget O ass=
"edu. myedu. sanpl e. QueryUtils"
p: returnFi el dMappi ng="bookTi t| e: rent edBookTi t!| e,
bookCopyri ght : r ent edBookCopyri ght "/ >

</ property>

Attribute Query Service

If you areinterested in learning more about the framework code supporting attribute queries, take
alook at org.kuali.rice.krad.uif.service AttributeQueryService and itsimplementation. All query
calls (from the controller) go through this service

155

Fields and Content Elements

Field Suggest Widget

O~NO O~ WNPRP

NOoO O~ WNPRE

The attribute query classisalso used for configuring the Suggest widget. The Suggest widget decoratesthe
standard text control to show the user options asthey are inputting text (al so known as auto-complete). The
Suggest widget itself provides configuration on the client side behavior (such as delay, minimum number
of charactersfor query, and so on). Thiswidget along with othersis covered in Chapter 8.

Theattribute query for thefield Suggest widget is configured much likethefield query. Theonly difference
isinstead of returning multiple fields from one record, we want to return values for one field only, but
potentially multiple records. These make up the optionsthe user seeswhen inputting avalue (similar to the
options provided by multi-value controls). In addition, the framework assumes that property from the data
object class maps back to the field we configured the suggest with, therefore, we do not have to specify
the returnFieldMapping.

We configure the Suggest widget using the input field's suggest property. This is the nested Suggest
widget, which contains a nested AttributeQuery in the suggestQuery property. The base bean for the
Suggest widget is'Uif-Suggest'. We again have the two mechanisms for configuring the query (automatic
with dataObjectClassName, or build our own query and specify queryMethodToCall). After we have
configured the data object or the query method, we can then specify the property name for the data object
classthat provides values using the suggest . val uePr opert yNane:

<bean parent="Uif-InputFi el d" p:propertyName="rent edBookTitle">
<property name="suggest">

<bean parent="Ui f-Suggest" p:val uePropertyNanme ="bookTitle"
p: suggest Query. dat aObj ect Cl assNanme="edu. nyedu. sanpl e. Book"/ >

</ property>
</ bean>

Since our query can now return multiple records, we should sort them so the field values appear in
ascending order to the user. This can be accomplished by specifying the property names to sort by with
the attribute query sor t Pr oper t yNames property:

<property name="suggest">
<bean parent="Ui f-Suggest" p:val uePropertyNanme ="bookTitle"

p: suggest Query. dat aObj ect Cl assNane="edu. nyedu. sanpl e. Book"
p: suggest Query. sort PropertyNanmes="bookTitle"/>

</ property>

In this example we are sorting the resulting Book data objects by their bookTitle property. The
sortPropertyNames property is a List type, therefore multiple columns to sort on can be given (using a
commafor the shorthand notation, or the Spring list tag).

Pathsfor Properties Configured with a Data Field

Throughout the past few sections we have discussed many properties on data and input field
that specify other model properties (such as the property mappings, informational properties,
additional/alternate display properties). Just like the property configured for thefield itself, these
are properties on the model the framework needs to pull (possibly set) a value from. Also just
like the field property, we need to know the full ‘path’ to the property from the root model object
(generally the form object). In the section on data binding we discussed how tedious it would
be to specify the full path for each field property (and in some cases like collection fields not

156

Fields and Content Elements

</ bean>

POOWO~NOUON~WNERE

e

Recap

even possible). The sameistruefor these other properties. Luckily, KRAD helps out with this by
automatically adjusting the paths for these property names. It does this by looking at the binding
info object for the field the various properties are associated with, and assuming they have the
same binding object path and prefix (if given).

For example, |et's assume we have the following input field:

<bean parent="Uif-InputFi el d" p:propertyNanme="bookl d"
p: readOnl yDi spl aySuf fi xPropertyName="bookTi tle"
p: i nformati onal Di spl ayPropertyNanes="bookTi t| e, bookCopyri ght">
<property name="fi el dLookup">
<bean parent="Uif- Qui ckfinder"

p: dat aCbj ect O assNane="edu. myedu. sanpl e. Book"
p: fi el dConversi ons="i d: bookl d"/ >

</ property>

Now assume this field belongs to a group where fieldBindingObjectPath is set to
‘document.newBook'. Thus the binding path for our field will be 'document.newBook.bookld'.
The paths for the additional display property, informational display properties, and quickfinder
field conversions will then be adjusted by prefixing 'document.newBook' to the path (eg
‘document.newBook.bookTitle"). If a property should not be adjusted (for example, using a
dummy form property), it can be prefixed with the string ‘#form." (eg '‘#form.holdBooklId'). When
the framework finds this, it will take the prefix off and do no further adjustment.

Field queries provide dynamic information for an inputted value

To support field queries the data field property i nf or mat i onDi spl ayPr opert yNanes can be

configured with alist of property names whose values should be displayed with the field

When the field is rendered, values for informational display properties will be rendered as well.
By default, each value appears on a line below the control and receives a style class of 'uif-

informational M essage’

To update information display properties dynamically (immediately after the user inputs or changesthe

field value) we can build afield attribute query

Field queries are supported by the class org.kuai.rice.krad.uif field.AttributeQuery. This holds

configuration for performing a query and mapping return values. Supported propertiesinclude:

 dataObjectClassName — Name of the data object class the query will be performed against. When

specified the framework will build a query against the data object

e queryFieldMapping - A map type that holds the mappings of properties from the calling view to

properties on the data object class. This becomes part of the query criteria

« returnFieldMapping — A map type that holds the mappings of properties from the data object classto
the calling view. The properties for the calling view may beinformational display properties, hidden

properties, or even other displayed field properties

* additional Criteria— A map that holds additional criteriafor the query.

» A field query is configured for an input field using thef i el dAt t ri but eQuery property

157

Fields and Content Elements

 An attribute query can be configured to invoke a custom method that will perform the query (such as
a service method). The basic steps for doing so are:

e Setquer yMet hodToCal | property to the name of the method that should be invoked (by default
this is assumed to be on the ViewHelperService implementation, for methods on other classes the
quer yMet hodl nvoker Conf i g property can be configured)

 Specify the method argument mapping with the quer yMet hodAr gunent Fi el dLi st property.
Thistakes alist of properties on the view that will map to method arguments in the order listed

« Finally, asin the case of the automatic query, configure ther et ur nFi el dMappi ng property to
map properties from the returned data object to properties on the view

» The Suggest widget performs an attribute query to show the user valid options as they are inputting
avalue. The widget is configured for an input field using the field's suggest property

» Thequery for afield's Suggest widget is completed in asimilar manner to the field attribute query, the
only difference being the property return. Instead of expecting one data object record to be returned
(from which multiple property values can be picked), the query can return one or more records, from
which we only care about one property (the property that is associated with the field's property)

» To configure the property on the returned data objects that maps to the input field we set
val uePr opert yNane

» Query results can be sorted by settingthesor t Pr oper t yNames property to the list of propertiesthe
sort should be performed on (note only ascending sort is supported at thistime)

Other Data and Input Field Properties

Y ou have likely realized by now the data and input field components are very busy! But we are not done
yet. There are afew more properties that can be used with these components:

readOnlyHidden — A Boolean property that indicates the value for the field should be written out as a
hidden when the field's state is read only. Thisis useful for cases where the user is not allowed to change
the value, but the value can be changed with script and thus needs to be posted with the form to update
the value server side.

hiddenPropertyNames — Specifies a list of property names whose values should be rendered as hidden
elementswith thefield. Each property specified will produce a hidden element. A common use case of this
isafield that does not hold the primary key (name or alternate key) and thus we want to keep the primary
key as ahidden. These hidden property names can be populated from alookup return or afield query. The
user control discussed earlier uses this functionality. The principal name is given in the text control and
the principal id isahidden. When aquery or lookup is performed, the name will display in the control and
the hidden id will be populated. Therefore on submit the primary key field will be populated on the model.

escapeHtmlInPropertyValue — A Boolean that indicates whether HTML markup should be escaped from
the display property value. If HTML (or XML) content needs to be displayed in the value and not
interrupted when rendering the page, this property should be set to true.

customV alidatorClass, validCharactersConstraint, caseConstraint, dependencyConstraints,
mustOccurConstraints, simpleConstraint (Input Field Only) — These are constraint properties that
configure validation for the input field. These are interrupted to perform client side validation along with
the ability to validate server side. Note these can also be inherited from an attribute definition. Chapter 4
covers each one of these constraint types.

158

Fields and Content Elements

performUppercase (Input Field Only) — A Boolean that indicates whether the user inputted value should
be uppercased. If set to true the value will be uppercased client side with the onblur event.

Recap

» Data Fields support the following additional properties:

* readOnl yH dden —Boolean that indicates the property value should be written out asahidden in
addition to being displayed when the field is read-only

e escapeHt m | nPropert yVal ue — A Boolean that indicates whether HTML content (markup)
within the property value should be escaped

e custonVal i datord ass, validCharactersConstraint, caseConstraint,
dependencyConstrai nts, nustQccurConstraints, sinpleConstraint (Input
Field Only) — These are constraint properties that configure validation for the input field

e perfor mJpper case (Input Field Only) — A Boolean that indi cates whether the user inputted value
should be uppercased

Action and Action Field

So far in this chapter we have looked at the data and input field components, which alow the user
to perform data 10 with our application. We will how move on to other types of content element
and field components that are offered by KRAD. The field component behaves the same as it did
before, essentially being a wrapper for the content element and providing a label. The various field
implementations essentially provide convenience methods for setting properties on the nested element
component. Therefore, we just need to focus on the different content elements available to us.

Thefirst element wewill ook at isthe Action component. Thiscomponent allowsthe user to take an action
on the view, such as submitting the data, requesting a new page, or invoking a server side or client side
process. There are afew different ways of representing the action in the Ul to the user. The most common
way is through an HTML button element (button tag). We can aso choose to invoke the action with an
image (HTML input element of type 'image’). Finally, we can use alink to invoke the action (HTML a
tag using script).

In the UIF the action component is represented by the class org.kuali.rice.krad.uif .field.ActionField. This
class contains propertiesthat configure the action that will be taken when the component isinvoked, along
with the presentation of the action within the view.

To configurethe action that will be taken, we have two strategies possible. Thefirst isto use standard form
posting that will submit the form and make a server side call. These callswill get processed by the Spring
MV C framework, which will invoke a class referred to as the Controller. In Chapter 12 we will cover the
detailsfor building controllers and other web layer artifacts, but for our purposes now we can think of this
as aclass with methods that get invoked to handle arequest from the client. The request URL (which was
constructed from the HTML form post URL) is used by Spring to determine the controller classto invoke.
Therefore, on our individual action components, we just need to configure the controller method to call.
Thisis done using the action component property methodToCall. The value given will be sent along with
the action request and used by Spring to determine the controller method to invoke.

The other possible action type is invoking a JavaScript method. This would be script developed by the
application and included in the view. The script may then perform some client side operation and finish,
or perform some operation and then in turn make a server call. When making the server call, the script
would be responsible for setting the sever side method to call. Invoking client side script is done by setting

159

Fields and Content Elements

the actionScript property. Note the value given for this property is assumed to be script code, and is bound
with the onclick event for the corresponding HTML element.

For example, we could give avaluelike p:actionScript="a ert('Hello World!");" which would simply show
the alert dialog and finish. We could a so invoke a method that is defined in one of our included script files
(through the view components additional ScriptFiles property): p:actionScript="doCal culateAndPost();".
This would invoke a script method named 'doCal culateAndPost'. Note multiple script statements can be
given within the string: "var i=0;var j=1;doMethod(i j);".

Now that we know how to configure the action that will occur, how do we create the action component
in XML, and specify how it will appear? Like al UIF components, we just need to know the base beans
we can use, and then create a new bean that inherits from one. The following beans are provided for the
action component:

Uif-Actionimage — Action component that is configured for an image action. That is it will render an
HTML input element of type'image’. This bean setsthe CSS style 'uif-actionlmage' on the image element.

Uif-PrimaryActionButton — Action component that is configured to render a button. The button element
can include text (the label) along with an image. This bean adds the CSS style 'uif-primaryActionButton'
on the button element.

Uif-SecondaryA ctionButton — Action component that is configured to render a button. This bean sets the
CSS style 'uif-secondaryActionButton' on the button element.

Uif-PrimaryActionButton-Small — Action component that is configured to render a button. This bean sets
the CSS style 'uif-primaryActionButton' and 'uif-small ActionButton' on the button element.

Uif-SecondaryActionButton-Small — Action component that is configured to render a button. This bean
sets the CSS style 'uif-secondaryActionButton' and ‘uif-small ActionButton' on the button element.

Uif-ActionLink — Action component that is configured to render alink. The link may contain text and an
image. This bean sets the CSS style 'uif-actionLink' on the link element.

Note the four beans that render a button are the same with the exception of the style class. These four
different style classes give the ability to have different button 'levels' that result in different 'weight' being
applied to the button visualy. For example a button the user is expected to use often should be given the
primary level, while once used less often should be given a secondary level (thusit is easier for them to
spot the former). Below the different button levels are shown.

Figure 6.24. Button Levels
Save

Save

Save

Button Rendering

In addition to rendering the HTML button element, KRAD uses the jQuery Button plugin to add
styling and behavior to the buttons. For more information on this plugin visit http://jqueryui.com/
demos/button/.

Let's look at some examples of creating buttons. Besides configuring the action, we generally want to
display alabel for the button (text that isdisplay on the button). To do thiswe set the actionL abel property:

160

http://jqueryui.com/demos/button/
http://jqueryui.com/demos/button/

Fields and Content Elements

1
2 <bean parent="Uif-PrimaryActi onButton" p:actionLabel ="Save" p: nmethodToCal | =" perf or nSave"/ >
3

In this example we have created an action button with the primary styling that will have alabel of 'Save'.
When the user clicks the button, the enclosing form will be submitted and a method named ‘performSave’
will be invoked on our controller. It's that easy!

Along with the button label we canincludeanimageicon. Thisisdone by configuring an Image component
that lives on the action component. The image component will be covered later on in this chapter, but we
can create one by simply giving the path to the image using the source property on Image. The image
component is nested on the action component with the actionlmage property and we can create a new
image component using the 'Uif-Image' bean:

<bean parent="Uif-Pri maryActi onButton" p:acti onLabel =" Save"
p: met hodToCal | =" per f or nSave" >
<property nanme="actionl mage">
<bean parent="Uif-I mage"
p: source="@#Confi gProperties['krad. externalizable.imges.url']}searchicon.png"/>
</ property>
</ bean>

©CO~NOOTODWNPE

Notice the use of the expression "#ConfigPropertieq'krad.externalizable.images.url']}" in the value for
the source property. ConfigPropertiesis avariable available for all expressionswhich holds propertiesthe
Rice application has been configured with. This variable is a map type, where the key is the name of the
configuration property, and the map value isthe value for the configuration property. The Rice application
comes with a set of configuration properties, one of which is the 'krad.externalizable.images.url' which
points to the directory in the web app which contains the KRAD images. The definition of this
configuration is:

1
2 <param name="kr ad. external i zabl e. i mages. url "overri de="f al se">${appl i cation.url}/krad/i mages/ </ par an»
3

This is referring to another configuration property named "application.url' (which could refer to others).
Ultimately this resolves to something like 'https://test.kuali.org/kr-krad/krad/images. This makes the
source for our image 'https://test.kuali.org/kr-krad/krad/images/searchicon.png’ which will be used by the
browser to fetch the image contents.

Configuration Properties:

Note the configuration properties are fed from the various '-config' XML files configured with
the application, including one that resides in the user home. Y ou can add your own application
properties and refer to them like above. Note aswell applications can configure other mechanisms
for picking up properties using the Rice configurers.

By default, the image will display to the left of the [abel text in the button. We can change this to one of
the other positions (top, right, bottom) by setting theact i onl magePl acenent property:

<bean parent="Ui f-PrimaryActionButton" p:actionLabel ="Save"
p: met hodToCal | =" per f or nSave" >
<property name="actionl mage" >
<bean parent="Uif- | mage"
p: sour ce="@#Confi gProperties['krad. externalizable.inmges.url']}searchicon.png"

oA WNPRE

161

Fields and Content Elements

p: acti onl magePl acenent =" Rl GHT"/ >
</ property>
</ bean>

O © 0~

Thefollowing Screen Shot isan exampl e taken from the KRM S modul e which uses the images and buttons
to create atoolbar.

Figure 6.25. Buttons Toolbar

To change our button to an image submit or alink, we just need to change the base bean:

1

2 <bean parent="Uif-Actionl nage" p:nethodToCal | =" perfornSave" >

3 <property name="actionl mage">

4 <bean parent="Uif- | mage"

5 p: source=" @ #Confi gProperties['krad. externalizable.inmages.url']}searchicon.png"/>
6 </ property>

7 </ bean>

8

Note since we are creating an image submit, an action label is not needed. Furthermore, the image
placement is not relevant. This example is actually used by the Quickfinder widget and is shown below.

Figure 6.26. Quickfinder Widget
R

Finally, an action link is configured like:

1 <bean parent="Uif-ActionLink" p:actionLabel ="Do Script" p:actionScript="doYourAj ax();"/>

Which is shown below.

Figure6.27. Action Link

Do Scrpt

Action Even and Action Parameters

Sometimes it can be useful to identify an action based on an event (functional, not technical such as
onclick) that we can use to make decisions when the action isinvoked. For example, one common action
screens must haveis the save operation. Thisisinvoked to save the current data on the client to the server.
Generally these are labeled as 'Save, but they don't have to be. For example the designer might choose to
label the action 'Save Document’, or 'Save Course'. Using the actionEvent property available on the Action
component, we can configure all these buttons as invoking a 'save' event:

1

2 <bean parent="Uif-PrimaryActi onButton" p:actionLabel ="Save Docunent" p: nmet hodToCal | =" saveDocunent "
p: acti onEvent ="save"/ >

8

4 <bean parent="Uif-PrimaryActi onButton" p:actionLabel ="Save Course" p:nethodToCal | =" saveCour se"
p: acti onEvent ="save"/ >

5

162

Fields and Content Elements

A WN P

B WNBE

©OoO~NOOUOA_WNRE

When an action is invoked, the corresponding action event value will be passed as a request parameter
along with the method to call. We can then inspect the request value (using the request object, or if our
model extends UifFormBase it provides the property for us) and perform the logic associated with the
event.

So exactly what could we do with this? One good use iswithin the business rules framework (discussed in
Chapter 13). Businessrules are written to respond to an event (arule event), thusthe action event name can
be mapped to arule event. Action events can also be useful within the view rendering logic. For example,
one use the UIF currently has is to determine when the add action has been taken for a collection. Since
the button could be labeled differently between collections and views, the framework determines if the
action requested was a collection 'add' by looking at the action event. It then sets up a script to perform
highlighting on the added row once the component refreshes.

Along with the method to call and action event parametersthat are sent for an action, there are caseswhere
we might need more information to complete a request. An example of this are actions that operate on a
collection line. These actions are likely available for each line (for instance the delete button), so if we
only invoke the deleteLine button or send in the 'delete’ action event, how will we know which ling(s) to
delete? Furthermore, if there are multiple collections on the page, how will we know which collection?

The framework allows us to specify additional request data that will be sent when an action is taken
using the actionParameters property. Thisis a map type where the key specifies the name for the request
parameter, and the map value the request parameter value. Let's assume we are configuring a button with
a collection group (covered in next chapter):

<bean parent="Ui f-PrimaryActi onButton" p:actionLabel ="del ete" p: methodToCal | ="del et eAccount”
p: actionParanet ers="chart: @#l i ne. chart Code}, account: @#l i ne. account Nunmber}"/>

Here we are using the shorthand map notation to setup two action parameters. The first will have name
‘chart’ and will be equal to the value for the chart code property on the current collection line (collections
make the '#line' variables available that refers to the current line instance for which the component is
being built). Likewise the second parameter will have name 'account' and will be equal to the value for
the account number property on the current line.

When the user takes the action and our controller method isinvoked, we will have request parameterswith
names ‘chart’ and ‘account’ that we can use to determine which account data object instance we should
delete. In Chapter 12 we will learn about a base form class our model can extend which does many things
for us. Among these is providing a map property populated with the action parameter sent in the request,
and a convenience method for getting the value of a parameter by name:

public Map<String, String> getActionParaneters();
public String getActionParamaterVal ue(String acti onParanet er Nane) ;

Thusin our controller method we can do the following:

publ i ¢ Mbdel AndVi ew del et eAccount (@bdel Attri bute("KualiForni') Ui fFornBase
ui fForm BindingResult result, HttpServletRequest request, HttpServletResponse response) {
Account For m account Form = (Account Form) ui f Form
String sel ectedChart Code = account Form get Acti onPar amat er Val ue("chart");
String sel ect edAccount Nunmber = account For m get Acti onPar amat er Val ue("account");
/| del ete account

163

Fields and Content Elements

10

Along with the action parameters we configure in XML, the framework will add parameters for us
automatically in certain situations. For example, any action component within a collection group will
receive a parameters 'sel ectedCollectionPath’ and 'sel ectedLinel ndex', which indicate the collection name
and line index the action took place on.

Field Focus and Anchoring

abdwN kP

g s WN P

1

An action component can occur anywhere in aview, including in the middle of page. In most cases after
an action is taken the user wants to continue completing the form at the location the action took place
(location of the button or link). In a page with lots of vertical scrolling, what we don't want to happen is
after the user clicks a button in the middle of the page, they are pushed back to the top on refresh and have
to scroll back down to their previous position. Therefore, we want to set anchor points that will be used
when the page refreshes after the action.

To set this up, the action component provides the jumpTol dAfterSubmit and jumpToNameA fterSubmit
properties. We can specify one of these propertiesto set the anchor position. For thejump to id, we specify
the id for a component on the view. This could be the button itself, a group (with a div element) or any
other field. For example, on the following button we are specifying the page should scroll back to the
button location on refresh:

<bean i d="del ete_button" parent="U f-PrimaryActi onButton" p:actionLabel ="del ete"
p: met hodToCal | =" del et eAccount "
p: j unpTol dAfter Submi t ="del ete_button"/>

If we want to scroll back to the location of a data or input field, we can specify the property name for the
field using the jJumpToNameAfterSubmit property:

<bean parent="Ui f-PrimaryActionButton" p:actionLabel ="del ete"
p: met hodToCal | =" del et eAccount "
p: j unpTol dAf t er Subm t =" newAccount . account Nunber "/ >

To scroll back to the top or bottom of the page, the keywords "TOP" or "BOTTOM" can be given for
thejump toid:

2 <bean parent="Uif-PrimaryActi onButton" p:actionLabel ="Save" p:nethodToCal | ="save"
p: j unpTol dAf t er Submi t =" TOP"/ >

3

Anchoring and Partial Page Refreshes:

KRAD supports refreshing parts of the page (components) for actions instead of always posting
thefull page. Thisisdonewith AJAX and replacing the DOM contents, therefore the user isnever
scrolled away from their current positions and setting an anchoring point is not necessary.

In addition to anchoring, we might want to set focus to a particular field after an action istaken. The UIF
includes an example of thisin the collection group. After the add action is taken, the focus is set back to
thefirst field on the collection add line.

164

Fields and Content Elements

We can configure the focused component using the focusOnl dAfterSubmit property. Thisistheid of the
field that should receive focus when the page (or component) refreshes. The keyword "FIRST" exists to
set focus to thefirst visible input field control on the view:

A WN P

<bean parent="Uif-PrimaryActionButton" p:actionLabel =" Save"
p: met hodToCal | ="save" p:focusOnl dAfter Submi t="Fl RST"/ >

Disabled

One other property on the action component that deserves mentioning is the disabled property. This
performs the same function as the disabled property on Control elements. When set to true, the button will
not allow the user to take the associated action.

Below shows two buttons. The first is enabled and the second is disabled.

Figure 6.28. Enabled and Disabled Buttons

Recap

enabled button

The Action component is a content element that allows the user to perform an action, such as posting
the form or performing a script function

Out of the box action components can be rendered as HTML button elements, links, or image submit
inputs

Types of actions fall into two categories:

* Server Requests — These are reguests made to the server to perform an action. In most cases thisis
part of aform submission, but can also be aget request. When configuring a server request, the action
property methodToCall must be given. This is the name of the method on the controller class that
should be invoked. Mapping of URL is covered in Chapter 9

 Client Side Requests— These are requests that execute a piece of JavaScript code (either a code block
or function call). The script to execute is configured using the action property actionScript. After the
script isfinished, it can simply return or make a server request on behalf of the user

Thelabel for an action is specified using the actionL abel property

An action button is built using one of the following parent beans. 'Uif-PrimaryActionButton', 'Uif-
SecondaryActionButton', 'Uif-PrimaryActionButton-Small’, or 'Uif-SecondaryActionButton-Small'.
The difference between these four beans is in the styling to indicate four different levels of buttons

An action link is built using the bean parent 'Uif-ActionLink'
An action image is built using the bean parent 'Uif-Actionlmage'
Using the #ConfigProperties EL variable is convenient for configuring image paths

In addition to displaying the action label, button and link actions can display an image. The image is
configured using the actionlmage property

165

Fields and Content Elements

By default an image configured for abutton displaysto the left of the label, however its position can be
changed to TOP, RIGHT, or BOTTOM by setting the property actionlmagePlacement (to be renamed
to actionlmagePosition)

 Actionsthat perform common server side actions (such as the save operation) but might have different
labels can be associated with an action event. Thisis configured using the actionEvent property

 Action events give the ability to determine the type of action requested without relying on alabel

* Incertain casesan action needsto send additional parametersthat clarify the action request. For example
collection line actions need to send the collection for which the action was chosen, and aso the line
number

» Parameters for actions are built using the actionParameters map. The map key is the name of the
parameter that will be sent when the action is selected, and the value is the parameter value that will
be submitted

 Action parameters can be configured in XML (or added through code). In addition the framework will
automatically add parameters in certain situations (for example actions configured for a collection line
will get the collection name and line index)

e Action parameters can easily be retrieved from a controller method by calling the form method
getActionParamaterV al ue(String actionParameterName)

e TheEL variable #line refers to the collection line data object the field is being rendered for
 Action components support configuring a focus element or anchor element for the page refresh

* For setting an anchor point, the properties jumpTol dAfterSubmit or jumpToNameA fterSubmit can be
used

» Thekeywords TOP and 'BOTTOM' can be used for the jumpTol dAfterSubmit property
» The element to focus on after arefresh is configured using the focusOnl dAfterSubmit property
 Like controls, actions can be disabled by setting the disabled property

» Some more properties have been added to the action component which are hooks that provide more
flexibility to the user

o preSubmitCall — This property is a script which needs to be invoked before the form is submitted.
The script should return aboolean indicating if the form should be submitted or not.

 gjaxSubmit — boolean property which indicates if the datais to be submitted via ajax or otherwise
« successCallback — This property is a script which will be invoked for successful gjax calls

« errorCallback — script which will beinvoked on error in gjax calls

Space and Space Field

Now for an easy one! One HTML entity that is useful for layout purposesis' ' (a space). To create
a space, we use the Space component. This component has no properties, and simply renders the '& nbsp;'
element. When putting together multiple content elements in a group, the space component can be used
to adjust the padding between each. To create a space component, we specify a bean with parent of 'Uif-

Space’:

166

Fields and Content Elements

1
2 <bean parent="Uif-Space"/>
3

Likewise the space field exists which wraps the space entity in a span. This can be used for rendering
empty 'blocks in the layout. To create a space field, we specify a bean with parent of 'Uif-SpaceField":

1
2 <bean parent="Uif-SpaceFiel d"/>
8

Recap

* The Space component can be used to render the HTML & nbsp; entity

» The Space Field component can be used to render a span with aspace. Thisis useful for creating blank
'dots in alayout

ValidationMessages content element

The ValidationM essages component is used to display validation errors and other types of messagesto the
user. Thisisthe general mechanism by which the application communicates to the user about the success
or failure of an action.

A ValidationM essages element is different in many ways from the previous components we have |ooked
at. First, we don't generally create new errors field components like we do data, input, and action fields.
Instead, these components are already constructed as properties of a container (both the View and Group)
and an Input Field. Therefore, all we need to do is configure them as needed.

In the next chapter we will learn about group nesting and how we form the conceptual groupings of the
view: a page, section, sub-section, and field group. Each of these groups contains a ValidationM essages
element that displays by default under the group header. It isimportant to understand these group 'levels
when configuring the associated ValidationM essages (although the framework attempts to set reasonable
defaults out of the box). A ValidationM essages element is also included for an Input field by default. This
isfor handling individual field level messagesfrom the server and messagesfrom the client sidevalidation.

Important - even though ValidationMessages are configured at the group level, validation messages
displayed to the user are only ever shown on the screen for what we consider "Sections'. Sections are
essentially groups that have a header. If a group does not have a header, it displays its messages at the
next available section. When no sections are present, messages are displayed at the "Page" level. Thus
configuring a ValidationM essages element for agroup without a header will result in no effect. Exception:
for the PageGroup case - if no header is defined, the framework will still show the messages at thislevel.
In addition to this, ValidationMessages for fields can only ever be configured for InputFields - because
other fields do not allow user input.

In order to understand how to configure a ValidationMessages element, we need to understand how
messages are added during application processing. To collect messages for a request, KRAD provides
the class org.kuali.rice.krad.util.MessageMap. This collects messages of type Error, Warning, and Info.
At the beginning of each request, a new message map is constructed and made available through the
org.kuali.rice.krad.util.Global Variables class as a static method. Therefore application code can get a
handle on the message map by calling GlobalV ariables.getM essageM ap(). This means the message map
does not have to be passed through all the application methods (made possible because the message map
is attached to the current thread).

167

Fields and Content Elements

When adding amessage to the message map, there are three pieces of datawe can specify. Thefirst tellsthe
framework what property or container the message is associated with. Associating the message allowsthe
framework to give abetter indication of the source of the error when rendering the page. When associating
amessage with a group or field, we need to give the id for the component. A message for an Input field
can also be associated by property name, but we need to give the full property path of this field (asis
done for binding). To display a general message at the page level that doesn't relate to your current page
content, the present keywords of 'GLOBAL_ERRORS, 'GLOBAL_WARNINGS, and 'GLOBAL_INFO'
exist for each of the message types.

The second piece of data we need to give is the property key for the message. In order to support
customizations and internalization, all messages are externalized from the code through a resource
bundle. In the current version of Rice, these messages are configured in property files, with one being
KRADA pplicationResources.properties.

We need to provide the key of the resource and the framework will resolve the actual message. The
final piece (not always necessary) is any arguments that are necessary for the message. With the use of
placeholders ({0}, '{1}", {2}), we can have variablesin our message that get replaced by the runtime data.
If the message contains one or more variables, the value for each must be given when adding the message.

To add a message to the message map, we can use one of the following methods based on the type of

message we want to add and how we want it associated (property or component):

1

2 public AutoPopul atingLi st <Error Message>
errorParaneters);

3

4 public AutoPopul ati ngLi st <Error Message>
nessagePar anet ers) ;

5

6 public AutoPopul ati ngLi st <Error Message>
nessagePar anet ers) ;

7

8 public AutoPopul ati ngLi st <Error Message>
errorParaneters);

9
10 public AutoPopul atingLi st <Error Message>
String... nmessageParaneters);
11

12 public AutoPopul atingLi st <Error Message>
nessagePar anet ers) ;

putError(String propertyNanme, String errorKey, String...

put Varni ng(String propertyNane, String nmessageKey, String...

putl nfo(String propertyNanme, String nessageKey, String...

put Error For Sectionld(String sectionld, String errorKey, String...

put Var ni ngFor Sectionld(String sectionld, String nessagekKey,

put I nf oFor Sectionld(String sectionld, String nmessageKey, String...

Note even though the last three methods named include 'Section’, they can be used for any UIF container.

Let's take some examples. Suppose we have the following Group definition:

13
1
2 <bean i d="BookDocunent Overvi ew' parent="
3 <property name="itens">
4 <list>
5
6
7
8 </list>
9 </ property>
10 </ bean>
11

U f-GidSection" p:title="Book Overview' >

<bean parent="Uif-InputField" p:propertyNanme="bookld"/>
<bean parent="Uif-InputField" p:propertyName="bookTitle"/>
<bean parent="Uif-InputFi el d" p:propertyName="author.name"/>

Now we want to have a business rule that says the author name cannot be 'Anonymous. First we add a
message to our application resources (properties file):

error.book.authorName.anonymous=Author name cannot be 'Anonymous’

168

Fields and Content Elements

Next we write application code to check the rule (see 'Writing Business Rules' in Chapter 13), and if the
rule fails we add an error message associated with the author name property:

if (isAnonymous) {
d obal Vari abl es. get MessageMap() . put Error ("aut hor. name", "error. book. aut hor Narme. anonynous") ;

g bhwN P

}

Since our message did not have any variables, we only needed to pass the property name and message key.
Note if there is a default binding object path on the view (or was added on the group), the property path
for our field would be '{ object path} .author.name'. The key we specify must then also include the object
path. The message map allows for asimilar concept of ‘auto-prefixing' the path asis done in the UIF. We
can make a call to the method addToErrorPath(String parentName) to specify a string that should prefix
any message keys added from that point on. We can then call removeFromErrorPath(String parentName)
to stop the prefixing. For example:

d obal Vari abl es. get MessageMap() . addToEr r or Pat h(" docunent . newBook") ;

/lresults in the full key of 'docunent.newBook.author. nane'

d obal Vari abl es. get MessageMap() . put Error ("aut hor. name", "error. book. aut hor Narme. anonynous") ;
/1 nore validation

d obal Vari abl es. get MessageMap() . r enoveFr onEr r or Pat h(" docurent . newBook") ;

©OoO~NOUA_WNRE

This is useful when doing severa validations on the same object. KRAD also takes advantage of thisin
certain places to automatically prefix the error paths. For example, in the document framework for events
that take place on the document, it will add the prefix ‘document'.

For one last example, let's assume we need to validate all three fields of the book overview group. Since
this doesn't redlly tie to one property in particular, we will just associate the error with the section. This
can be done asfollows:

1
2 if (mssingFieldvalue) {
3
d obal Vari abl es. get MessageMap() . put Error (" BookDocunent Over vi ew', "error. book. overvi ew. m si ngFi el dVal ue");
4}
5

Ok, so now that we know a little bit about how messages are added, let's go back to configuring the
VaidationM essages el ement.

If we want to then match on additional keys, we can add those usingthe addi t i onal KeysTolMat ch
property. ThisisalList typewhere each entry gives an additional property path or id to match on. Each one
of these can be defined with awildcard, aswell. So if we wanted to also include any messages associated
with the ‘author' property path, we can do so as follows:

1

2 <bean i d="BookDocument Overvi ew' parent="Uif-GidSection" p:title="Book Overvi ew'
3 p:errorsFiel d. addi ti onal KeysToMat ch="aut hor*" >

4 ..

5

The ValidationM essages object and its subclasses have several other properties we can configure which
include:

169

Fields and Content Elements

e di spl ayMessages (Al | evel s) —If true, error, warning, and info messages will be displayed
at this level. Otherwise, no messages for this ValidationM essages element will be displayed. Thisisa
global display on/off switch for all messages.

Other ValidationMessages elements of the screen react to the display flag being turned off at certain
levels: if display is off for an Input field, the next level up will display that field's full uncollapsed
message text; and if display is off at a section, the next section up will display those messages nested
in asublist.

» di spl ayFi el dLabel Wt hMessages (G oupValidati onMessage | evel) — Boolean
that indicates whether the field label should be displayed with messages that are associated with afield
in the Section level summary. When set to true, the message will be displayed as {Field Label} —
{Message}'. For example: 'Book Title— Must not be longer than 50 characters.".

» col | apseAddi ti onal Fi el dLi nkMessages (G oupVal i dati onMessage |evel) —
When collapseAdditional FieldLinkM essages is set to true, the messages generated on field links will
be summarized to limit the space they take up with an appendage similar to how [+n message type] is
appended for additional messages that are omitted. When thisflag is false, all messages will be part of
the link separated by a comma.

e useTooltip (Fieldvalidati onMessage | evel) —Whentrue, usethetooltip onfieldsto
display their relevant messages. When false, these messages will appear directly below the control.

Below shows ValidationMessages for various elements of a page which are configured with the default
settings and displaying multiple errors:

Figure 6.29. ValidationM essages for a Page

Standard Sections Page @ [e 9 errors]

@ The Page submission has 9 errors

¢ The "Section 1 Title " section has T errors
e The "Section 2 Title " section has 2 errors

Figure 6.30. ValidationM essages for a Section

v Section 1 Title @ [®7 errors]

» Field 1. Emorl Message Text Text Text Text Text Text Texdt Text Text Text Text Text Text Teoxdt Text Text Text Text

» Field 2: Error! Message Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text

* Field 3: Error! Message Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text

* Field 4: Errorl Message Texd Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text

» Hadio 1: Error] Message Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text

» Checkbox: Erorl Message Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text

» Checkboxes 1: Errorl Message Text Text Text Texd Text Text Text Text Text Text Text Text Text Text Text Text Text Texd

170

Fields and Content Elements

Figure 6.31. ValidationM essages for an InputField

N e e B LT, AT I'i'l!_-'_l'_ll.l::lﬁ_- 1™l 1™l 1™l 1™l 1™l 1™l 1™l 1™l

* Checkboxes 1. Erro ° Error! Message Text Text Text Text
Fields are direct children Text Text Text Text Text Text Text Text
Text Text Text Text Text Text
Fi'EI'd 1 * .-_,.l‘" I Is-1a .

Recap

e The ValidationMessages component displays validation messages and other information as part of a
reguest/response.

» ValidationMessages only really apply to 3 levels: Page, Section (any group with a header), and
InputFields.

» Groups can be nested to form conceptual groupings of the view such as page, section, sub-section, and
field groups. Thus we might want to configure the associated errors field depending on the grouping
level'.

» There are three types of messages that can be displayed: error, warning, and info.
* In application code, messages for each request are collected by a messageMap instance.

» To add a message we need to specify three arguments. The first part is the property path or component
id the message should be associated with. The second part is the key for the message in the resource
bundle, and the final part is any arguments for the message (message variables).

» We can add messages to the message map by first getting the instance with Global Variables, then using
one of the provided 'put’ methods.

» For ValidationMessages associated with a container or input field, the framework takes care of
automatically adding the component id or property path to the list of matchable keys.

» We can configure additional paths or ids to be matched on and displayed for that ValidationMessage
level by usingthe addi ti onal KeysToMat ch property.

» We can configure which areasto display messages at, and the framework will automatically determine
wherethe next available areaisto display thismessage. So amessage should never belost unlessdisplay
isoff for al levels.

» Thedi spl ayFi el dLabel Wt hMessages property determinesif field label's should be prepended
to messages matched to fields at the section level.

e The col | apseAddi ti onal Fi el dLi nkMessages property determines if the additional
messages beyond the first message associated with afield should be summarized at the section level.

171

Fields and Content Elements

e TheuseTool ti p property determines if the tooltip should be used to display messages at the field
level.

Generic Field

1
2
3
4
5]
6
7

1

<#macr

</ ul
</ #mac

So KRAD will do everything for you and you will never have to write a FreeMarker template right? In
most likelihood, no! Although the UIF is extremely flexible, being about to cover everything a visua
designer can come up with isnot practical. KRAD is meant to provide those common components that are
generaly applicable, and allowing Rice applications to extend where needed.

When agap is found, there are two routes that can be taken. One is that the application can fill the gap by
creating the component themselves (and possibly contributing back). In Chapter 5 we learned the general
guidelines for doing so. However, creating a new component might be overkill in some situations. For
example, we might need to add something that is really very specific to the use case, and it is unlikely
other placesin the application (or other applications) will find it useful. In these cases, we really just want
to get the job done and not spend extratime making it 'generic'.

KRAD allowsthisto be done by creating custom templates. These templates are not for renderingaKRAD
component, but instead a hook to implement any logic required. However, we still need to hook these
custom filesinto the view processing, so that they are invoked and rendered in the correct place. One way
we can do thisis by using the org.kuali.rice.krad.uif.field.GenericField component. The generic field has
no custom properties associated with it, nor does it have a default template. It does, however, contain the
inherited component and field base properties such asid, style, label, and so on. This givesyou the ability
to write a custom FreeMarker template that will act asafield.

Since there is no template provided by default, we must create one before using the generic field. Unlike
other component templates, there are really no rules to follow here; this can contain any content we like.
Let's assume we have created a FreeMarker file named 'bookQuestionnaire' in one of our application web
folders named '/myapp/ftl"

0 bookQuestionaire field>

What is your favorite book? <forminput path="questionnaire.favoriteBook"/>

<l i >What many books do you read a nonth? <forminput path="questionnaire.booksPerMnth"/></]i>
Do you wi sh you could read nore? <forminput path="questionnaire.readMrelndicator"/></1i>
>

ro>

To create a generic field with this FreeMarker file, we create a new bean with parent of 'Uif-
CustomTemplateField' and set the template and template name properties:

2 <bean parent="Uif-CustoniTenpl at eFi el d* p: tenpl ate="/nyapp/ftl/bookQuestionnaire.ftl"
p: t enpl at eName="bookQuesti onai re"/ >

3

1

If needed in multiple places, we can create atop level bean with anid:

2 <bean id="BookQuestionnaire" parent="Uif-Custonilenpl ateFi el d" p:tenplate="/nyapp/ftl/
bookQuestionnaire.ftl"

3

p: t enpl at eNane="bookQuesti onaire"/>

In this way, we can add as many custom templates as needed.

172

Fields and Content Elements

It isalso possible to parameterize our custom template using the templateOptions map property (recall this
is provided by ComponentBase). For example, if we wanted a parameter to determine whether or not we
ask the third question, we could do so asfollows:

1 <#macro bookQuestionaire field>

2 <#l ocal askReadMore=fiel d.tenpl ateOpti ons[' askReadMore']/>

3

4 What is your favorite book? <forminput path="questionnaire.favoriteBook"/>

5 <l i >How many books do you read a nonth? <forminput path="questionnaire.booksPerMnth"/>

6 <#i f askReadMore>

7 Do you wi sh you could read nore? <@pring.input path="questionnaire.readMorelndicator"/
></ i >

8 </ #if>

9

10 </ #macro>

Now to specify the variable setting, our bean will be:

/ TODO: need bean example here

Disadvantages of Generic Fields

A couple of things should be noted when building agenericfield. First, since we don't have actual
input field componentsfor any included input macros (or other form macros), we don't get certain
features such as custom property editors, default values, and so on. Ancther route to take for
custom templates is to use a Group (with al the fields configured) and write a custom template.
The custom template can then render a custom layout, add additional markup or whatever elseis
necessary, and invoke the template tag to render the individual fields.

e The Generic field component allows a custom FreeMarker template to be created and act as afield to
the framework

» The custom template can reside anywhere in the web module and may contain any content
» Generic field components can be created with a bean with parent 'Uif-CustomTemplateField'
» Custom templates can have variables that are passed using the templateOptions map proper

» Another way to implement custom templates is by configuring a group (with field items) that uses the
custom template. The template can then render a custom layout and other markup, then invoke the
template tag to render each field

Iframe

Although not needed as much these days with the capability of modern web applications, KRAD
nonethel ess provides the Iframe component for generating the HTML Iframe element. Iframes areinline
frames that can be used to embed another document (including cross-site).

To create an iframe component, we need to create a new bean with parent of 'Uif-Iframe. The only
required property is the source property, which isthe URL (relative or full) for the document that should
be embedded.

For example, we can include the kuali.org webpage in our view asfollows:

173

Fields and Content Elements

2 <bean parent="Uif-Iframe" p:w dt h="800px" p: hei ght ="550px" p:source="http://ww.kuali.org"/>
3

Notice here we are also setting the width and height properties which are available on the iframe
component. This size the frame to the given dimensions.

The iframe component also provides a property named frameborder which can be used to provide asize
for a border around the frame. As is the case with al components, we have the standard properties such
asid, title, and styleClasses that can be set aswell.

Recap

» KRAD provides the iframe component for generating the html iframe elements
* Iframes can be used to embed other documents into the view
» We create an iframe component with a bean whose parent is 'Uif-Iframe’

» When creating an iframe component we must set the source property which gives the relative or full
URL to the document that should be embedded

» We can restrict the size of the displayed frame using the width and height properties

Image and Image Field

Moving along with the field and content element types, we find the Image and Image Field components.
Have a guess as to what these components render? Correct! They render the HTML img tag. Note the
Image component is used to render a static image on the page (not one that can be used to generate an
action; however script can be added to the image component if desired).

To use an image component we create a bean with parent of 'Uif-Image’. The image component requires
the sour ce property to be specified which is the relative or full URL to the image. If we wish to wrap
our image in a span and potentially also have a label, we can use the Image Field component which has
base bean name 'Uif-ImageField'. For example:

1

2 <bean parent="Uif-1nmageFi el d" p:label ="Inmage field with alt text" p:altText="pdf
3 inmage" p:source="@#ConfigProperties['krad.externalizable.imges.url']}pdf.png"/>
4

Here we are bringing in the pdf.png image with the source property. Recall earlier we discussed the
#ConfigProperties expression variable we can use to retrieve configuration parameters. Note also we are
setting a property name al t Text . Thisis text that will display if the image cannot be rendered, and it
isagood practice to always set this.

Below shows the result of the above configuration.

Figure 6.32. Image with alt Text

]
Image field with alt text:

174

Fields and Content Elements

There are additional messages we can configure to display with the Image component. These are known
as the caption header and cutline text (traditional newspaper terms). To specify caption header text we
use the captionHeaderText property. We can choose to have the caption display above or below the image
by setting the captionHeaderPlacementAbovel mage Boolean (defaults to true in base bean). Cutline text
givesasummary of theimage contents and is specified using the cutlineText property. Hereisan example
of using these properties:

<bean parent="Ui f-Image" p:altText="conputer progranm ng"
p: capti onHeader Text ="1 mage Caption Text" p:cutlineText="I1mage cutline text
here" p:styl eCl asses="kr-photo" p:source="conputer_progranm ng.jpg"/>

abdwN kP

Notice here we are al so setting the styleClasses property, which you will see in the next screen shot gives
rounded borders to our image.

The above configuration results in the following.

Figure 6.33. Image with Cutline Text

Image Caption Text

Image cutline text here

Along with the caption and cutline string properties, the image component contains a nested Header and
Message Field component corresponding to each. These nested components can be used to adjust the
styling applied along with other configuration (such as possible the header level).

Recap

» HTML Images can be rendered using the image or image field components

» We create image components with beans with parent of 'Uif-Image'

* Thesour ce property specifies the relative or full URL to the image

» Theal t Text property istext that will display when the image cannot be rendered

* We can add a caption to our image using the capt i onHeader Text property. The caption can
be rendered above or below the image by setting the capt i onHeader Pl acenent Abovel nage
property

175

Fields and Content Elements

 Finally we can add a summary of our imageusingthecut | i neText property. By default the cutline
text displays underneath the image

Link and Link Field

TheLink and Link Field components are used to generate the HTML a(link) tag. The atagisused to link
to another document (the primary mechanism of navigation in the web). Thelink is presented to use by a
label, which when clicked on will take the user to the linked page.

To create a link component, we create a bean with parent of 'Uif-Link'. We configure the linked source
using the hrefText property. As is the case for all URL resources, we can specify arelative or full URL.
Thelabel for the link (what the user will see) is given by the linkLabel property.

For an example let's build alink to the kuali.org website that displays the text 'Kuali Website' to the user.
Inthe XML thiswill be:

1
2 <bean parent="Uif-Link" p:hrefText="ww. kuali.org" p:linkText="Kuali Website"/>
3

Below shows the resulting link.

Figure 6.34. Link Component Example

Kuali Website

When using alink component we can al so choosethe frametarget thelinked document will openupin. This
isdone by setting thet ar get property and is used to populate the target attribute on the corresponding
element. Possible values are:

_blank - Opens the linked document in a new window or tab

_self - Opens the linked document in the same frame as it was clicked (thisis default)
_parent - Opens the linked document in the parent frame

_top - Opens the linked document in the full body of the window

By setting the | i ght Box property to "Uif-LightBox", the link will be opened in alightbox.

1

2 <bean parent="Ui f-Link" p:hrefText="www. kuali.org" p:linkText="Kuali Website"/>

3 <property name="|i ght Box">

4 <bean parent="Uif-Li ght Box"/>

5 </ property>

6 </ bean>

7
If wewant to put alink in afield, wecan usethe Link Field component with base bean name'Uif-LinkField'.
All of the above properties are available along with the field's [abel property.

Recap

e Thelink and link field components are used to render the html atag

176

Fields and Content Elements

e Thehtml atag provides alink to the user for navigating to another page
» We create link components using a bean with parent of Uif-Link or Uif-LinkField

» When building a link component, we specify the page that should be linked using the hr ef Text
property. This gives the relative or full URL to the page that should be linked

» Thelink label isthetext that displaysto the user. Thisisset using thel i nkLabel property

» We can configure the frame for which the linked document will open in using thet ar get property.
Values given include _blank (for new tab or window), _self (for same window), parent (for parent
frame), or _top (for top level/window frame)

Message Field

The last component we will look at in this chapter is the Message Field. In this case, there is no
corresponding HTML element tag. Instead, the message field is used to render static text with the HTML
markup.

A message field can be specified anywhere in the view to provide a custom message to the user. To create
amessage field component, we create a bean with parent of 'Uif-MessageField'. The message field only
has one custom property, the messageText. Thisisthe text that will make up the message:

1

2 <bean parent="Uif-MessageFi el d" p: messageText ="Message Field 1 Text"/>

3 <bean parent="Uif-MessageFi el d" p: messageText ="Message Field with expression text: '@fiel dg88}'"/>
4

Notice in the second message field we are using an expression to print out the value for property 'field88'.
Below shows the result

Figure 6.35. Message Field

Message Field 1 Text
Message Field with expression text: 'Fruits’

Over thischapter we have learned about various messagesthat can be configured as part of the components
(for example, instructional and constraint text on the input field). We generally set these by using a String
component property. However, the components also contain a MessageField component that can be used
to change the default styling (or other properties) for the message rendering. The String properties are
simply provided for convenience and, during the view processing, are copied to messageText property for
the corresponding message field.

Recap

» The message field component is used to generate static text
» We can create a message field component using a bean with parent of 'Uif-MessageField'

e Thetext for the messageis given with thenessageText property. the value can contain expressions
for dynamically building the message

177

Fields and Content Elements

Rich Message Content

Rich message content refer to functionality available in various components (above) which accept text.
Rich message functionality allows textual components to be more robust by providing the power to use
almost any KRAD component, html, image, link, or cssinline with the rest of the text.

Touserich messagefunctionality, you just haveto declaretext with the appropriatetag enclosed in brackets
"[1". This means that text that needs to use brackets in its content MUST use a backslash to escape that
character in text properties that expect the use of rich message functionality (example, "\[" and "\]").

Rich message tags can be also be wrapped within other tags allowing for a variety of combinations.

The following areas allow rich message content described by this section:

Uif-Message component — messageT ext property

Uif-Label component — label Text property

Uif-InputField — label, instructional Text, and constraintText properties
Uif-CheckboxControl - checkboxL abel

Uif-KeyLabelPair (used by radio and checkbox groups 'options’ property) — value property
Uif-HeaderBase (and children) — header Text property (support to be added)

Groups (Views, Pages, Sections) — instructional Text, and header Text (support to be added) properties.
Any validation messages from the server or set up through message configuration (reduced scope no
id or component index tag allowed)

Anywhere the Message component is used

The following KRAD rich message tags are supported (< > represents content to set):

[i d=<component id> propertyl=value property2=value] - insert component with id specified at that
location in the message. You can also set/override properties of the component referenced through
by specifying those additional properties (must be separated by spaces). Textual properties must be
wrapped in single quotes.

[n] - insert component at index n fromthei nl i neConponent list.

[<ht Mt ag and properties>][/<html tag>] - insert html content directly into the message content at
that location, without the need to escape the <> charactersin xml.

[col or =<html color code/name>][/color] - wrap content in color tags to make text that color in the
message. Thisis the same as wrapping the content in a span with color style set.

[css=<css classes>][/css| - apply css classes specified to the wrapped content . This is the same as
wrapping the content in a span with the class property set.

[I'i nk=<href src>][/link] - an easy way to create an anchor that will open in a new page to the href
specified. Thisisthe same as wrapping the content in an atag with the target set as"_blank".

[act i on=<action settings> data=<extra data>][/action] - create an action link inline without having to
specify acomponent by id or index. The options below MUST be in acomma separated list in the order
specified. Specify 1-4 always in this order — for example, options CANNOT be skipped if you would

178

Fields and Content Elements

like to only set methodToCall and gjaxSubmit, you must still set validateClientSide to its default value
(note: thisis parallel to how javascript functions with optional parameters are passed).

The options (in order) are:

* met hodToCal | (String)

e val i dat ed i ent Si de(boolean) - trueif not set

e aj axSubmi t (boolean) - trueif not set

e successCal | back(jsfunction or function declaration) - this only works when gjaxSubmit istrue
The tag would ook something like this:

[action=rret hodToCal | JAction[/action]

in most common cases. And in more complex cases:

[action=rret hodToCal | , true, true, funct i onName]Action[/action].

In addition to these settings, you can aso specify data to send to the server in this fashion (the space
is REQUIRED between settings and data):

[action=<action settings> dat a={ keyl: 'value 1', key2: val ue2}]
Note

Reminder: If the [] characters are needed in message text, they need to be declared with a
backslash escape character: "\[" and " \]"

Component Rich Message Tags

Note

These component options cannot be used for validation messages.

Component by id — this example gets the component named Demo-SampleMessagelnput, defined
elsewhere, by id:

1 <bean parent="Uif-Message">

2 <property name="nessageText"

3 val ue="Message getting conponent by id [id=Denp- Sanpl eMessagel nput] inside its
content"/>

4 </ bean>

Component by index in the inlineComponents list - can only be used with components that have an
inlineComponents property. These are Message, RadioControl, CheckboxesControl, and Label. In this
example component 0 is the first item in the inlineComponents list (Uif-InputField) and component 1 is
the second item (Uif-Link)

1 <bean parent="Uif-Message">

2 <property name="nmessageText"
3 val ue="Message with input [0] and link [1] inline"/>
4 <property name="inlineConponents"> <list> <bean parent="Uif-InputField" p:propertyNane="fiel d1"/>

<bean parent="Ui f-Link" p:href="http://ww.kuali.org" p:linkText="Kuali"/> </list> </property>
5 </ bean>

179

Fields and Content Elements

Html, Color, and css Rich Message Tags

Example that uses all 3 in one message (bold html tag, color for #F78C00 web color, and css to add the
class 'fl-text-underline' around that content)

1 <bean parent="Uif - Message" >

2 <property nane="nmessageText"

3 val ue="[b] Message[/b] using a [col or=#F78C00] [css='fl-text-underline']conbination[/
css] of different options[/color]" />

4

Link and Action Rich Message Tags

Example of alink inline with message content

1 <bean parent="Uif- Message">

2 <property name="nessageText"

3 value="Testing link tag [link="http://ww.kuali.org"]Link[/link]"/>
4 </ bean>

The main difference between link and action is that action calls a method on the controller — this mimics
the KRAD Action component's functionality. Example of an action that calls the "addErrors' method on
the controller:

1 <bean parent="Uif-Message" >

2 <property name="nessageText"

3 val ue="Testi ng nmet hodToCal | action [action=addErrors]Link Text[/action]"/>
4 </ bean>

Action that calls the "addErrors' method on the controller, turns off client-side validation, and passes an
some extra data to the controller (extralnfo with value 'some data):

1 <bean parent="Uif- Message" >

2 <property name="nmessageText"

3 val ue="Testing passing data [action=addErrors, fal se data={extralnfo: 'sone data'}]
4 addErrors[/action]"/>

5 </ bean>

Action using al available options — calling method "addErrors®, turning off client side validation,
gjaxSubmit on, and on success calling the function specified (which shows an alert with "Successful
Calback" init):

1 <bean parent="Uif - Message" >

2 <property nane="nmessageText"

3 val ue="Testing custom success cal | back [action=addErrors, fal se, true, function()
{alert('Successful Callback')}]addErrors[/action]"/>

4 </ bean>

5

Checkboxes and Radio Control Rich Message Usage

Example showing usage in CheckboxesControl (RadioControl usage would be very similar):

180

Fields and Content Elements

1 ..
2 <property nane="control ">
3 <bean parent="Uif-Vertical CheckboxesControl ">

4 <property name="inlineConponents"> <list> <bean parent="Uif-InputField" p:propertyName="fiel d19"/> <bean
parent="Ui f-I nput Fi el d" p: propertyNanme="fiel d20"/> </list> </property>

5 <property nanme="options">
6 <list>
7 <bean parent="Uif-KeyLabel Pair" p:key="1" p:val ue="A website: [0]"/>
8 <bean parent="Uif-KeyLabel Pair" p:key="2" p:value="A magazine: [1]"/>
9 <bean parent="Uif-KeyLabel Pair" p:key="3" p:value="[col or=blue]A Friend[/color]"/>

10 <bean parent="Uif-KeyLabel Pair" p:key="4" p:value="Q her: [id=Deno-Sanpl eMessagel nput2]"/

>

11 </list>

12 </ property>

13 </ bean>

14 </ property>

15

Other Rich Message Usages

Usagein InputField labels:

1 <bean parent="Uif-Input Fi el d- Label Top" p: propertyNane="fi el d100" p:|abel ="Label Wth [col or=green] Col or[/
color]"/>

Usage in instructiona Text (similar in other areas which are backed by the Message component in their

Java object):

1.

2 p:instructional Text="Testing [css="fl-text-underline']checkbox and radi o groups[/css] bel ow'

3.

4
Usage in CheckboxControl - also demonstrating the ability to override a property of the component
referenced by id (overriding propertyName with value 'field103):

1...

2 <bean parent="Ui f-InputFi el d- Label Top" p: propertyName="bFi el d1" p:| abel =" CheckboxControl ">

3 <property name="control ">

4 <bean parent="Ui f-CheckboxControl" p:checkboxLabel ="1, [i d=Deno- Sanpl eMessagel nput 4

propertyNanme='fiel d103'], agree to the ternms and conditions of this form'>

5 </ bean>

6 </ property>

7 <l bean>

8 .

181

Chapter 7. Groups

Groups

In the last chapter we learned a great deal about the Content Element and Field component types. These
types are essentially KRAD representations of the HTML content markup. They form the palate from
which to paint our picture.

In this chapter, we will move on to the Group component. This is one of the general Container typesin
KRAD. Theseallow usto bundle our fieldstogether and structure them for layout purposes. In other words,
they alow usto organize our content into the top most container, the view.

A group component is represented by the org.kuali.rice.krad.uif.container.Group class. Thisisthe'genera’
group component, meaning there are no restrictions on the types of fields or content elements we can put
into the group. Other special group types exist that allow only a subset of fields and elements. They do this
to target a more specify behavior. For example, the LinkGroup only supports adding Link components.
These group types have a class that extends the Group class and add properties specific to the behavior
or rendering they provide.

Besides holding fields and content elements, groups can also contain other groups. This means we can
nest groups within each other. Although a simple concept, it becomes very powerful in terms of building
our view. Essentially, we can break complete web page up into several group layers. This process will be
discussed morein the next section.

As we stated in the UIF Overview, there are common properties for al containers. The first of these
is, of course, the container ‘items. This is the list of components that belong to the container. By itself,
the items container just performs grouping of the components, it tells us nothing about how the items
should be arranged on the page. For thisinformation, an object called aL ayout Manager is associated with
the group. The layout manager encapsulates the information for how to arrange and decorate the items.
Therefore, the same group can be reused and presented in different ways without changing its associated
layout manager. A large part of this chapter will discuss the concept of layout managers and the particular
managers provided by KRAD out of the box.

The items that are rendered form the majority of the group's contents. However, we can configure
additional content before and after the container items. The before content isknown as the group's header,
while the after content is known as the group's footer. In code the corresponding objects found on group
are the Header and Footer groups. The Header component contains another group itself. But in addition
to containing a group with configurable items, it also generates a HTML header tag (h tag) using the
Header content element. The header generally indicates visually the beginning of the group presentation.
The footer is just a standard group. It adds nothing special and is ssmply known as the footer because it
falls after the main group content.

Thegroup aso alowsaninstructional text messageto be configured. Similar to theinput field instructional
message, this gives directions to the user for completing the form. However, this applies to the group as
awhole and not to an individual field. Finally, also similar to the input field, the group contains an errors
field component. Thisis used for presenting error/warning/info messages that apply to the group contents,
or to display message counts.

Thegroup template controls how these various pieces are rendered. Basically the rendering order is: header
group, instructional message, errors field, container items (delegate to layout manager), and footer.

Ok, so where's the beans? There are severa base beans provided for groups (they actually have their
own file 'UifGroupDefinitions.xml"). These correspond to various layout manager configurations and the
special types of groups. Therefore we will cover the beans with each subsequent section.

182

Groups

Recap

Group Base Bean

An abstract bean with name 'Uif-GroupBase' is provided from which all the group beans extend.
This sets the class, template, base style, errors field setup, and some disclosure options. The use
of abstract base beans is done throughout the framework to match the abstract classes. Included
in this is a top level bean named 'Uif-ComponentBase'. Therefore the bean hierarchy closely
resembl es the actual class hierarchy.

The group component allows us to bundle together components for layout purposes
The base group component is generic and can hold any field or content element

More special groups exist to extend agroup and restrict the type of componentsthat can be added. They
do so to target more specific behavior or rendering. An exampleisthe link group

Groups can nest within each other, therefore we can organize our entire view with groups

Groups have an associated object called alayout manger. The layout manager encapsulates information
on how to present the group's items

We can easily reuse a group and change its presentations by switching layout managers

Groups aso alow content to be added before and after the group items. The before content is configured
with a header group, and the after content with a group footer

Instructional text message can aso be configured for the group. It gives the users directions on how to
complete the set of fields within the group

Likeinput fields, groups have an associated errors group. This errors group displays error/warning/info
messages related to the group in general (or displays message counts)

The group template controls how the various group parts are rendered. The default template rendering
order is: header group, instructional message, errors field, group items (delegates to layout manager),
and the footer

Several group base beans are provided that correspond to various configurations with various layout
managers

Page Decomposition with Groups

Let'slook more closely at how we use groups to organize our user interface contentsinto one single view.
So far we have learned that the view and group components are container types. Let's think of a container
as an area of the screen enclosed by a box shape. With this in mind, we are going to work through the
process of reverse engineering an interface (assume we have amock or wireframe) into the view and group
containers.

First we start with one large box that will cover the entire interface (everything in the window, with the
exception of any application header or footer such as the portal wrapper).

183

Groups

Figure 7.1. One Large Box

New Tab wu
e a * 0 %@ %9

€@ chrome Mostvisited Apps

This top level box will be our view container. The view is always at the top of the hierarchy (not nested
within any other component). To do thefurther breakdown, we heed to know the parts of aview component.
Wewill cover thismore in The View section, but besides the standard container properties (header, footer,
items) we aso have a navigation and breadcrumbs component that take up space within the view 'box'.
In the 'classic' view template provided with KRAD, the navigation can be a left vertical menu, or atop
horizontal row of tabs. The view breadcrumbs are rendered at the top of the page, followed by the view
header. The view footer will be the very last thing rendered. Assuming our mock has all of these (which
we can take out as needed) let's then block off those areas:

Figure7.2. Full View Page
New Tab _Y

¢ a 0 %@ % 9 X

Breadcrumbs

View Header

Mavigation

View Footer

@ chrome Mostvisited Apps Recent

184

Groups

Notice after we mark off the pieces of the view we have an arealeft for content. Thisiswhere we can add
content with a Group component. This top level group (with view parent) is known as a Page and has
a base bean named 'Uif-Page’. Since each item in our view navigation will replace the page contents, we
can have multiple Page components associated with the view. These page components are thus configured
through the view's items list (from the Container interface).

At this point, we could start adding field or content elementsto our page group. However, unless our page
isvery simple, we likely want to provide further groupings on the page contents. Thiswill allow the user
to clearly seefieldsthat go together and provide a cleaner organization to our page. So to do this, we break
our page into a set of vertical boxes, each known as a section:

Figure 7.3. Vertical Sections

Here we see we have divided the page into three groups. A group at this level is known as aSect i on.
Again we could now add content to one or all of our sections, but there might be a case where we need to
divide again. Thuswe can break each section into a set of vertical boxes. These are known as sub-sections:

Figure 7.4. Vertical SubSections

The first section we have divided into two groups and likewise for the third section. A group at this level
iscalled aSub- Sect i on.

There are a couple of thingsthat should be noted from the example. First, each group breakdown (section,
sub-section) does not necessarily have the same height. The heights can vary based on the contents.

185

Groups

Furthermore, they do not necessarily have to stack vertically one on top of another. This depends on the
layout manager we use for the parent group. Finaly, the actual type of group (whether it the base group,
collection group, or whatever) does not matter. It is the level a which the group is at that makes the
difference in our conceptual naming. Below gives us another picture of the conceptual groupings.

Figure 7.5. Conceptual Groupings

View Page
Header Header Layout
" Manager
&
Section
Page >
Section
Section
Footer
Section Sub-Section
Layoul
Layout Header s
Maﬁ-ﬂgé‘fh‘ Ny p » " Manager

Field

- Field

Field

Footer

So what is the point of this? These are all just group components so why not just call them that? That is
a true point. However, recall we can have multiple bean definitions for the same component. Therefore,
the UIF provides a set of bean definitions with names that correspond to these levels. These do various
things for us. For example:

1. Set upthe correct header level for the corresponding group level. That way, by correctly using the group
levelsfor nesting, the generated headerswill reflect the nested group (will not end up with an h2 header
within a group with an h4 header).

2. Defaults for the group's errors field will be setup based on best practice.

3. Additional style classes are added for the group level so that padding and other visual treatments can
be given.

In generd, it gives us a hook to treat groups differently based on where they are at in the view. Besides
the technical benefits, these names help to create a language between page designers and developers for
working together to create the user interface.

186

Groups

Recap

L evels Past Sub-Section

Thereisnolimit enforced for how deep groups can nest. Therefore, if needed, you can nest groups
within a sub-section and further down. However, base beans are not provided in these cases, so
you need to take care to set the header levels, error configuration, and styling for these levels (or
develop the base beans to represent them).

Our entire interface can be broken down with the view component and a set of groups
We can decompose our page by drawing boxes and dividing

We start by drawing a box around the window content (excluding any application header and footer
such as portal navigation). This first box makes up the view content area

Besides the standard container parts (header, items, footer), the view also contains a navigation and
breadcrumbs component that takes up a 'box’ of the view

After boxing theview header, footer, navigation, and breadcrumbs, the remaining content areaisagroup
known as the page

If we have navigation, the page contents can change for each navigation link. Thusthe view can contain
multiple page components which are set in the view's items property

If we have a simple page, we can start adding fields directly to the page group. However, generally
we want make grouping of the page content. Thisis done by dividing the page into multiple groups. A
group at thislevel is known as a section

We can continue by dividing a section into groups. A group at thislevel is called a sub-section

Although these different levelsareall still group components, KRAD providesdifferent bean definitions
corresponding to the levels

Using the correct bean definition for alevel ensures the header order will be correct for nested headers.
In addition defaults for the associated errors fields at each level have been setup, and style classes are
provided to provide indenting and other visual cues

Y ou can nest groups down as many levels as needed. However when going past the sub-section level,
care needs to be taken to correctly set the header levels, error configuration, and styling

Headers

The Header component is used to render the various HTML header tags (h1, h2, h3, .. h6). Similar to
the errorsfield component, there are header component instances already associated with, and configured
for, containers (view and group). These are generally used to indicate the start of a container on the page
and to give atitle for that container. If needed, the header component can be used in other places of the
view aswell (for instance in agroup's items list). However, it is generally better to create nested groups
in those situations.

Besides rendering the HTML 'h' tag, the header element contains a nested group that can be used to add
field components. Thus with this group we can configure links or other content type to display within the
header part of the group.

187

Groups

N -

N -

[N

Header Container

HTML 5 providesthe header tag which ismeant to represent ablock of content that introducesthe
main content. This gives more semantic meaning than using just the div tag. The KRAD Header
component is morein line with the header tag than the h tag, although it generatesah tag aswell.

The Header content element contains two custom properties. The first of these is the header Text
property. This property gives the text that will display as the header. The second property
isheader Level . Thisisastring that corresponds to one of the header levels supported by HTML (‘hl,
'h2', .. 'h6").

Base bean definitions for the header components are found in UifHeaderFooterDefinitions.xml. For
the Header component, a base bean is provided for each of the header levels 1-6. These are named:
'Uif-HeaderOne', 'Uif-HeaderTwo', 'Uif-HeaderThree', 'Uif-HeaderFour', 'Uif-HeaderFive, and 'Uif-
HeaderSix'. To create a header component, we add a new bean using one of these as our parent. For
example:

<bean parent="Uif-Header One" p: header Text ="Bi g Header"/>

Thiswould result in the following HTML markup:

<hl cl ass="ui f - header " >Bi g Header </ h1>

The use of one of the other beans would change the h tag to the corresponding h tag for that level.

As mentioned at the start of this section, we generally work with header components through a container
(the view or group containers). Within the container is a nested header component. This allows usto not
only generate a header element, but also to configure content that will render within the header area. For
each container level, there are header component beans configured. However, instead of being named by
the header level, they are named by the container level they are associated with. These include:

Uif-ViewHeader — Header associated with the view container. Uses a header one and adds the style class
‘uif-viewHeader' to the group div.

Uif-PageHeader — Header associated with the page container. Uses a header two and adds the style class
‘uif-pageHeader' to the group div.

Uif-SectionHeader — Header associated with the section container. Uses a header three and adds the style
class 'uif-sectionHeader' to the group div.

Uif-SubSectionHeader — Header associated with the sub-section container. Uses a header four and adds
the style class 'uif-subSectionHeader' to the group div.

By default the header components are already initialized in the corresponding group definition. Therefore
we can use the nested syntax to set properties like in the following example:

<bean id="MySection" parent="Uif-Vertical BoxSecti on" p: header. header Text="Section 1 Title">

188

Groups

For specifying the header text, containers give us a special property named title. When thisis set, the value
will be pushed to the header Text property on the nested header element:

1
2 <bean i d="MySection" parent="Ui f-Vertical BoxSection" p:title="Section 1 Title">
3
The resulting header is shown below.
Figure7.6. Header Text Example
Now suppose we want to add other content to the header group. For example, we might want to display
links or buttonsto theright of the header text. We do this configuring the rightGroup header property with
a Uif-HeaderRightGroup bean:
1
2 <bean i d="MySection" parent="Uif-Vertical BoxSection" p:title="Section 1 Title">
3 <property name="header.right G oup">
4 <bean parent="Uif - Header Ri ght G oup" >
5 <itens>
6 <bean parent="Ui f-ActionLi nk" p:actionLabel ="copy" p: methodToCal | =" copy"/ >
7 <bean parent="Ui f-ActionLi nk" p:actionLabel ="edit" p:nmethodToCall="edit"/>
8 </items>
9 </ bean>
10 </ property>
11 </ bean>
12
Like the rightGroup header property, alowerGroup and upperGroup property are also available.
We can accomplish alot with the use of these header properties. The following Screen Shot showsacouple
more examples. In the first one, the standard view header for document views is used, which contains a
group that displays information about the document. The second header is a page header that contains
buttons for expanding or collapsing all the disclosure groups on the page (notice in this case there is no
actual header text) Besides of the different items, notice the difference in styling between the header areas
based on their associated container level.
Figure 7.7. Additional Header Examples
Travel Account Maintenance [I_T_t:m:m'"m:;: ‘:} . D:m:m!‘:am: I_TI-_E_:_\‘:LIIJ__._L_J B
Recap

e The header component is used to generate the various HTML header tags (h1, h2, h3..h6)

189

Groups

» We generally don't need to create a header component, since they are associated with a container and
initialized as a nested component. However, they can be added in other places (in the groups items for
instance) if needed

» Besides rendering the html header tag, the header component also contains a nested group. This group
can be used to display content (such as links or buttons) in the header area of the group

» The header element contains the properties headerText and headerL evel. The header text specifies the
actual text that will display asthe header. The header level corresponds with the html header level that
should be generated (h1-h6)

» The UIF provides base bean definitions for each of the six header levels. To create a header component
we use one of thesein our bean parent

 Also provided are header beans that correspond with each container level (view, page, section, sub-
section). In addition to setting the header level, these add a style class corresponding to the level so that
we can add different visual treatments (aview header will display differently than a section header)

» We can add itemsto the header by setting the rightGroup, lowerGroup or upperGroup header property.
Each property contains a group bean where components can be added.

Footers

Unlike the header areafor agroup, the footer does nothing special. Itis simply another group instance that
isrendered after the group'sitems. It is called afooter because of being rendered at the 'foot' of the group.
The actual component typeisjust a standard group (at least in the default group definition, subclasses of
agroup could have a subclass 'footer' group).

Since the footer is just a group, we can populate the property using any of the provided group beans.
However, there are a few group beans that are target the footer area. Generally since the footer group is
below the group's main content, it is a great place to add buttons, links, or other content that applies the
presented group. Inthe footer, wewant to just display this content, not another header and footer (sincethe
footer isagroup, it also has a nested header and footer, and the nesting can continue). The UIF provides
the following base bean for footer groups:

1

2 <bean id="Uif- Foot er Base" parent="Uif-Horizontal BoxG oup" scope="prototype">

3 <property name="styl eCl asses" val ue="uif-footer"/>

4 </ bean>

5
Notice the footer base bean extends 'Uif-HorizontalBoxGroup'. We will learn more about this bean later
on, but essentially it is a group definition with no header and footer (both set to render false) and using a
box layout with horizontal orientation. This means the items configured in the group will berendered in a
horizontal row. When setting the header property, we can create an inner bean that extends the footer base:

1

2 <bean i d="MyG oup" parent="Uif-Vertical BoxSection" p:title="My G oup">

3 <property name="footer">

4 <bean parent="Uif - Foot er Base" >

5 <property name="itenms>

6 <list>

7 <bean parent="Ui f-PrimaryActionButton" p:nmethodToCal | ="cal cul ate" p:actionLabel ="cal cul ate"/>

8 <bean parent="Ui f-PrimaryActionButton" p:nmethodToCal | ="clear" p:actionLabel ="clear"/>

9 </list>

10 </ property>
11 </ bean>

190

Groups

12 </ property>
13 </ bean>
14

In this example we have configured our group to have two buttons (‘calculate’ and 'clear’) by setting the
group's footer property. To set the property we used the provided footer base bean and added two action
components through the footer's items property. Below shows the "MyGroup” bean.

Figure 7.8. Group Footer Example

calculate clear |

It is common for the View and Page footers to have buttons. For these containers, the footer is already
initialized, and we can use the nested notation:

1

2 <bean i d="M/Page" parent="Uif-Page" p:title="M/ Page">

3 <property name="footer.itens>

4 <list>

5 <bean parent="Uif-PrimaryActionButton" p:nmethodToCal | ="save" p:actionLabel ="save"/>

6 <bean parent="Ui f-PrimaryActionButton" p:nmethodToCal | ="cancel " p:actionLabel ="cancel "/ >

7 </list>

8 </ property>

9 </ bean>

10

Common Button Groupings
If you have common button groupings, it ishelpful to create atop level bean (with anid) for those
so they can be reused. For example, the UIF provides the footer bean 'Uif-FormFooter' which
includes actions or save, close, and cancel. If these are the buttons you need, you can simply do
the following:

1

2 <bean i d="M/Page" parent="Uif-Page" p:title="M Page">

3 <property nanme="footer">

4 <bean parent="Uif- FornfFooter"/>

5 </ property>

6 </ bean>

7
The UIF aso contains a common footer for document views that contains the various workflow
actions.

» Thefooter issimply another group that is rendered at the 'foot' of a parent group
* Generdly in the footer we want to just display contents (not another header and footer)

» The footer is a great place to add buttons, links, or other content that apply to the whole group (for
example page buttons)

191

Groups

e The UIF provides a base bean named 'Uif-FooterBase' that uses a group configured to not render a
header and footer, and to use a horizontal box layout

» Sinceit is common to have footer contents for the view and page, afooter is aready initialized and we
cansimply setthef oot er. i t ens property

» Common button groups can be configured in afooter definition with anid so that they can bereused. The
UIF provides one such grouping for the standard save, close, and cancel actions named 'Uif-FormFooter'

Introduction to Layout Managers

[N

We know a group bundles together multiple components as a container, but the group itself has no
knowledge on how these components should be positioned on the page. Instead, KRAD provides an
object called aLayout Manager. For those who have devel oped applicationsin Javawith Swing, GWT, or
used the .Net Framework, the concept of Layout Managers will be familiar. Basically a Layout Manager
encapsulates an algorithm on how to position agroup of components by their relative positions. Y ou might
say it isthe blueprint for agroup'sitems.

To become a layout manager, a class must implement the
interface org.kuali.rice.krad.uif.layout.L ayoutManager, or extend the base class
org.kuali.rice.krad.uif.layout.LayoutManagerBase. A layout manager is not a Component itself (does not
implement the Component interface), however, it does have some of the same properties. These include:

id — A unique identifier for the layout manager instance. This is unique among al layout managers and
components of a view instance. If the layout manager renders some HTML element that needs to be
referenced client side, theid value can be used for the corresponding el ement id attribute. Theid assignment
for layout managers follows the same rules as components.

template — Unlike layout managers in Swing and others that build the layouts in code, the KRAD layout
managers operate through templates (although this is not required, a layout manger can build the layout
in code as well). These generally follow the basic pattern of:

1. Add starting markup (for example <table>)

2. Iterate through each of the groups items wrapping with markup and then invoking template tag (for
example <tr><td>template</td>..<td>templ ate</td></tr>

3. Add finishing markup (for example </table>)

Since layout managers use templates, they can be customized the same way as a component (switching
the template, extension and so on).

style and styleClasses — Similar to component, these properties hold style configuration or alist of style
classes that should be applied to alayout manager wrapper (for example adiv or table).

context —Map of context objectsthat can be used for expressions configured on layout manager properties

A layout manager by default supports any group instance. However, alayout manager can be built to only
support specific group types. One exampl e of thisisthelayout managersthat work with Collection Groups.
We will see these later on in the chapter. A layout manager can declare the type of group supported by
implementing (or overriding) the following method:

public O ass<? extends Container> get SupportedContainer();

192

Groups

For example, alayout manager may be setup to work only with TreeGroups as follows:

}

gabdwN P

public Cl ass<? extends Contai ner> get SupportedContai ner () {
return TreeG oup. cl ass;

In the rendering process, the layout managers will then invoke the rendering of the group's items. What
then invokes the layout manager? Well the group of course! Recall at the beginning of this chapter that
basic group template:

Render header

Render instructional text

Render errorsfield

Invoke layout manager passing group items

Render footer

Since the group template controls the invocation of the layout manager, a group template may choose to
not do so and instead layout the items itself. There are a couple examples of this we will learn about later
on in this chapter.

Moving on, let's learn more about these layout managers!

Recap

A group has no knowledge regarding the positioning of the components

KRAD provides the concept of layout mangers. This concept can also be seen in frameworks such as
Java Swing, GWT, and .NET

A layout manager encapsulates an algorithm on how to position a set of components by their relative
position. It is ablueprint for rendering the group'sitems

To become a layout manager, a class must implement the
interface org.kuali.rice.krad.uif.layout.LayoutManager, @ or extend the base class
org.kuali.rice.krad.uif .layout.LayoutM anagerBase

Layout managers are hot components, but share similar properties. These include:

¢ id —uniqueidentifier for the layout manager

« template — FreeMarker template file for the layout manager that performs the layout logic
 templateName — Name of the layout manager macro

 styleand style classes— CSS treatment for the layout manger wrapper (such as adiv or table)

 context —map of objects available for property expressions

A layout manager can support all general groups, or subsets by implementing the method
getSupportedContainer()

193

Groups

« Collection layout mangers are atype that only work with collection groups

¢ Thelayout manger isinvoked by the group template

Group Layout Managers

Let's begin our exploration of layout managers by looking at those that work with basic groups. That is,
we have a group containing items 1..n, that need to be positioned onto the page. Out of the box KRAD
provides two such layout managers, the Grid Layout and the Box Layout.

To help explain the algorithm employed by each layout manager, it is helpful to think of our 'box' areas
again. We know our default group template renders starting content (header, instructions), and theninvokes
the layout manger, and finally the footer. Therefore, the layout manager positions the group items in the
box between the group header and footer.

Figure 7.9. Group Layout

Header

Footer

Grid Layout

The Grid Layout manager divides the layout area into a grid (n by m blocks) and then places the group
components into the 'slots’ based on the order in which they are found in the group'sitems list. The most
important configuration property for this layout manager is the number of columns our grid should have.
For example, if we use a grid layout with number of columns equal to two, two items will be positioned
on each row. New rows will be created until al the items are positioned. Assuming we had five itemsin
our group, they would be positioned as shown here:

Figure 7.10. Grid Layout

The group layout manager can then be configured to meet any grid configuration. We could take our same
group of five items with a one column grid which would stack all the items on top of each other. Or we

194

Groups

=

w

=

w

~NOoO g~ WNPRE

could use a 5 column grid would be put al the items on one horizontal row. The next figure depicts the
general N columns by M rows layout.

Figure7.11. Grid Layout Examples

Grid Layout

3 Columns x 2 Rows

Component Component Component

Component Component Component

N Columns x M Rows

Component Component Component

Component Component Component.

The default template for the grid layout uses HTML tables to achieve the grid positioning. A single table
is created for the group items, with each item being rendered in a table cell (and table rows created as
necessary). Because tables are used, this is sometimes referred to as 'table based' layout, as opposed to
the Box Layout we will learn about next which is 'div based'. There are advantages and disadvantages to
the table layout. The advantages are easier alignment of content and the ability to do things such as row
and column span. The disadvantages are the table is 'non-fluid' (does not adjust as the window resizes)
and accessihility concerns. Many of the accessibility concerns are addressed in KRAD with the use of
ARIA (see Chapter 11).

The UIF provides a base bean named 'Uif-GridLayoutBase' that all grid layout beans should extend. This
bean configures the grid template, adds a style class of 'uif-gridLayout’, and sets defaults for some of the
grid properties we will learn about in a bit. We can create a new grid layout manger instance using this
as our bean parent:

<bean parent="Uif-Gi dLayout Base" p: nunber & Col ums="2"/>

The UIF aso provides beans preconfigured with the number of columns for typical cases. These
include 'Uif-TwoColumnGridLayout' (2 columns), 'Uif-FourColumnGridLayout' (4 columns), 'Uif-
SixColumnGridLayout' (6 columns). Therefore if we wanted a four column grid we can just do the
following:

<bean parent="Ui f- Four Col umG i dLayout"/>

To associate alayout manager with a group, we use the group property named | ayout Manager :

<bean i d="MyG oup" parent="Uif-G oupBase" p:title="Group with Gid Layout">
<property name="| ayout Manager" >

<bean parent="Ui f - Four Col umG i dLayout "/ >

</ property>

</ bean>

195

Groups

A WN P

This is made even easier for us though, because there are beans that extend 'Uif-GridBase' and have a
layout manger aready configured for us. These beans are:

Uif-GridGroup - General group configured with a grid layout. Also adds a style class of 'uif-gridGroup'
to the group component.

Uif-GridSection - Section level group configured with a grid layout. Also adds a style class of 'uif-
gridSection' to the group component.

Uif-GridSubSection - Sub-Section level group configured with a grid layout. Also adds a style class of
‘uif-gridSubSection' to the group component.

Using these beans we can rewrite our previous example as follows:

<bean i d="MyG oup" parent="Uf-GidGoup" p:title="Group with Gid Layout"
p: | ayout Manger . nunber O Col unrms="4"/>

Since the layoutManager property is initialized by the base bean, we can use nested notation to set the
numberOf Columns property. By default numberOf Columnsiis set to two.

Row, Col Span, Width

©O~NOOOD~WNPRE

NOoO O WNBRE

Since the grid layout manager creates an HTML table, it supports the row and col span options available
fromthetable cell element. These properties are not set on the layout manager, but instead set on the group
component itself using the properties col Span and rowSpan. The column span can be set to specify anitem
should take up more than one'slot'. That is, setting the span to two means the item will take up the position
of two slots. Therow spanissimilar, but the slotsare counted vertically instead of horizontally. Thusarow
span of two means an items will take up the vertical space of two items. Let's take the following example:

<bean i d="MyG oup" parent="Uf-GidGoup" p:title="Goup with Gid Layout"
p: | ayout Manager . nunmber O Col uims="3">

<property name="itens">

<list>

<bean parent="Uif-InputField" p:propertyName="fieldl" p:col Span="2"/>
<bean parent="Uif-InputFi el d" p:propertyName="fiel d2"/>

<bean parent="Uif-InputField" p:propertyName="fiel d3" p:rowSpan="2"/>
<bean parent="Uif-InputField" p:propertyName="fiel d4" p:col Span="2"/>
<bean parent="Uif-InputField" p:propertyName="fiel d5" p:col Span="2"/>
</list>

</ property>

</ bean>

This configuration would result in the following table structure:

<t abl e>

<tr><td col Span="2">fiel di</td><td>fiel d2</td></tr>

<tr><td rowSpan="2">fiel d3</td><td col Span="2">fiel d4</td></tr>
<tr><td col Span="2">fiel d5</td></tr>

</t abl e>

Note for items without the row or col span properties set, they receive a default of one. The following
figure shows the corresponding blocks for each item.

196

Groups

Figure 7.12. Row, Col Span L ayout

Using row and col span, along with the ability to nest grid groups (nested tables), we have a great amount
of flexibility in the layouts we can achieve. Below shows what a grid group with different row and col
spans looks like in the legacy ook and feel.

Figure 7.13. Row, Col Span Example

Test Group 3

Growp with G lavout and vanous colirow mans

ryn Label:

* Dank Mame: Dot vaL

Bank Route Number;

Bank Addrass:

As you might have noticed, the previous figures depict even widths for each cell. This is the default
behavior for the grid layout (the areawill be divided by the number of columns to set a percentage width
for each column). We can adjust the widths of each column by setting the width property on the group
items. For exampl e let's take the previous three column grid layout and set varying widthsfor the columns:

<bean i d="MyG oup" parent="Uf-GidGoup" p:title="Goup with Gid Layout"

p: propertyName="fiel d1" p:w dt h="50% />
p: propertyName="fiel d2" p:w dt h="25%/>/>
p: propertyName="fiel d3" p:w dt h="25%/>
p: propertyName="fiel d4"/>

p: propertyName="fiel d5"/ >

1
2
3 p: | ayout Manager . nunber O Col uims="3">
4 <property name="items">
5 <list>
6 <bean parent="U f- I nputFi el d"
7 <bean parent="Ui f- I nputFi el d"
8 <bean parent="Ui f- I nputFi el d"
9 <bean parent="U f- I nputFi el d"
10 <bean parent="Uf-InputFi el d"
11 </list>
12 </ property>
13 </ bean>
14

Here we are setting the first column to span 50% of the total table width, and 25% for the second and
third columns. Since we are only using three columns, we do not need to set the width on the remaining
group items (field4 and field5). Essentially we just need to set the widths for the first row. The width can
be given as a percentage of the table or a fixed width (for example pixels). For controlling the full table
width, we can apply a style setting (which will render as the style attribute on the table element) or add
astyle class to the layout manager.

Label Separator

When working with a grid layout it can be useful for alignment purposes to render the field label in a
separate column. Recall our discussion in Chapter 6 regarding fields and label positioning. Let's assume

197

Groups

O~NOO T~ WNPRE

we have agroup containing input fields with the label configured to render intheleft position (the default).
For this group we are using a grid layout configured with one column (therefore each field will stack
vertically). Our labels and controls will then look something like the following:

[abel One:

Second Label:

Third Field Label:

Here the field labels were chosen to be different lengths, which is likely to happen with real label text.
Notice with the variable label length, were the control begins varies from field to field and thus we do not
have alignment vertically. If we wereto put the labelsin their own column, the cell width would expand to
cover thelongest label, and our controlswould all start in the next column. Thuswe would have alignment:

Label One:

Second Label:

Third Field Label:

The framework provides the option for doing this through a Component Modifier. Component modifiers
are classesthat perform some modification to the component they are configured on. Each component may
have one or more such modifiers configured. Thusthey give us away to encapsul ate some functionality in
apiece of code that can be applied to multiple components, and in addition can be conditionally applied.
Chapter 10 covers this concept in more detail.

One component modifier provided with KRAD isthe Label Fiel dSeparateM odifier. This modifier operates
on a group component by iterating through the group items and pulling out the label as a separate item.
Thus, it appearsto the layout manager that we configured the label as a separate group item, and the layout
manager will then in turn render the label inits own cell. The Uif-GridGroup bean we have been working
with has this modifier configured by default:

<bean id="Uif-GidG oup" parent="U f-G oupBase" scope="prototype">

<property nanme="| ayout Manager" >

<bean parent="Ui f-Gi dLayout Base"/>

</ property>

<property name="conponent Modi fi ers">

<list>

<bean parent="Uif - Label Fi el dSepar at or- Modi fi er" p:runPhase="FI NALI ZE"/ >
</list>

</ property>

</ bean>

Notice this bean sets the componentModifiers list property adding the label field separator, whose UIF
bean is named 'Uif-Label FieldSeparator-Modifier'. The runPhase is one property modifiers have that

198

Groups

determineswhenintheview lifecyclethe modifier will be executed. Theavailablephasesare INITIALIZE,
APPLY_MODEL, and FINALIZE.

If we inherit from a bean with one or more modifiers configured, we can choose not to use the modifiers
by setting the property to null (using the Spring null tag):

<property name="conponent Modi fi ers">
<nul I />
</ property>

g s WN P

Other Grid Layout Options

The Grid Layout Manager also supports the following properties:

suppressLineWrapping — By default, once the configured number of columns is reached, the layout
manager will wrap to anew row. If this property is set to true, the layout manager will ignore the number
of columns property and instead continue to render al group itemsin onerow. Thisisuseful if the number
of group itemsis unknown and you wish to have them in asingle line. The number of columns property
does not need to be specified when using line wrap suppressing.

applyAlternatingRowsStyles — Boolean that indicates whether aternating row styles of 'odd' and 'even'
should be applied to each tr element. This allows aternating row styles that is common on data grids.

applyDefaultCellWidths — Boolean that indicates whether default widths should be calculated for each
cell. If set to true, the total width will be divided by number of columns to determine the default width as
a percentage for each cell. If the width is configured for an item, it will not be overridden.

renderAlternatingHeaderColumns — Boolean that indicates whether cells should alternate between table
header and table cells (th and td). Thisis generally set to true when using the label separator so the label
cells appear with different styling. The appropriate scopes are added by the framework (th with scope
equal to column for the header row, and th with scope equal to row for table headers within a data row).

Box Layout

Next, let's take alook at the other provided group layout, called the Box Layout. Unlike the grid layout,
which creates agrid of blocks, the box layout creates just a single row of blocksin either the horizontal or
vertical direction. It will keep creating blocksin adirection until all items of the group have been rendered.
The first item configured in the group will receive the first position, on to the last group item which will
receive the last position.

Within the layout area we can think of the box layout as dividing the area horizontally (in the case of
horizontal orientation):

Figure 7.14. Horizontal Box L ayout

ltem1 | tem2 | Item3 | ltemd | ltem 5

199

Groups

The box layout manager containsaproperty named orientation that determinesthe direction of therendered
items. Thevalid valuesfor this property are HORIZONTAL and VERTICAL. Thefollowing figure shows
an example of each orientation.

Figure 7.15. Box Layout Manager

Box Layout - Vertical

Component

Component

Component

Box Layout - Horizontal

Component Component Component

To accomplish these layouts the box manager uses CSS display styles. Recall our component types and
their HTML output:

Groups —div element
Field — span element
Content Element — content element

Each of theseinheritsthe style and styleClasses properties from ComponentBase. Therefore the box layout
manager manipul atesthese propertiesin code to achieve the desired layout through CSS. For the horizontal
orientation, the manager applies a style class of boxLayoutHorizontal ltem to each item. This adds a float
left to each item style making theitems align in ahorizontal row. For the vertical orientation, the manager
appliesastyleclassof boxLayoutV erticalltem. Thisstyleclasssimply addsadisplay style of block, making
each item wrap to anew row and the items stacking to form a vertical row.

Like grid layout, the box layout had advantages and disadvantages. One advantage is the ability for the
layout to adjust as the window resizes (items will automatically wrap down to new lines as needed instead

200

Groups

~NOoO O~ WNPRE

=

w

of forcing a scrollbar). With the increasing need to support mobile devices, this can be a big win. In
addition, div based |layouts are better for accessibility support. However, aligning content (such asthelabel/
control alignment in the grid layout) is much harder to accomplish. Furthermore, cross-browser rendering
issues occur more often than when using basic tables.

For XML configuration, the box layout manager has abase bean with name'Uif-BoxLayoutBase'. Thissets
the box layout template and adds the style class of 'uif-boxLayout'. Then, extending this, we have beans
for each orientation. First is'Uif-Horizontal BoxLayout', which sets the orientation as HORIZONTAL and
adds a style class of 'uif-horizontalBoxL ayout'. Likewise, there is a bean named 'Uif-V ertical BoxL ayout'
that sets the orientation to VERTICAL, and adds a style class of 'uif-verticalBoxLayout'. We can apply
one of these to a group as we did for the grid layout, using the group's layoutM anager property:

<bean i d="MyG oup" parent="Uif-G oupBase" p:title="Goup with Box Layout">
<property name="|ayout Manager" >

<bean parent="Uif-Vertical BoxLayout"/>

</ property>

</ bean>

However, the UIF again provides us with group definitions with box layouts aready configured. These
are asfollows:

Uif-VerticalBoxGroup — General group configured with avertical box layout. Adds a style class of 'uif-
verticalBoxGroup' to the group.

Uif-Vertical BoxSection — Section level group configured with avertical box layout. Adds a style class of
'Uif-Vertical BoxSection' to the group.

Uif-Vertical BoxSubSection — Sub-Section level group configured with avertical box layout. Adds astyle
class of 'Uif-VerticalBoxSubSection' to the group.

Uif-Horizontal BoxGroup - General group configured with a horizontal box layout. Adds a style class of
‘uif-horizontal BoxGroup' to the group.

Uif-HorizontalBoxSection - Section level group configured with a horizontal box layout. Adds a style
class of 'Uif-Vertical BoxSection' to the group.

Uif-Horizontal BoxSubSection - Sub-Section level group configured with a horizontal box layout. Adds a
style class of 'Uif-Vertical BoxSubSection' to the group.

Using these beans we can rewrite our previous example as:

<bean i d="MyG oup" parent="U f-Vertical BoxG oup" p:title="G oup with Box Layout"/>

When looking at the grid layout, the examples shown were al fields. Recall, though, that we can also nest
groups within groups, and, just like fields, they need a layout manager to position them. The box layout
manager is generally the layout of choice in this case. In particular, because groups such as section and
sub-section typically span the full width available, the vertical box layout is used to 'stack’ the groups.

Asan example let's build a page group with sections:

201

Groups

=

PO OWO~NOOUWN

<bean i d="Bookl nf oPage" parent="Uif-Page" p:title="Book Info">
<property name="itens">

<list>

<bean par ent =" Bookl nf oSecti on"/ >

<bean parent =" BookDet ai | sSecti on"/>

<bean par ent =" BookRef Secti on"/>

</list>

</ property>

</ bean>

Here we are creating a page with three items. Each item is a reference to another bean that is a section
group. How will these sections be positioned? It turns out that because it is so common for the sections
to be vertically stacked, that the default layout defined in Uif-Page is Uif-VerticalBoxLayout! Therefore
each section will divide the page vertically.

Sections and Sub-Sections

There is no requirement that sections and sub-sections divide the page verticaly. In fact, in our
previous example, we could override the layout manager to be UIF-HorizontalBoxLayout. This
would result in three section columns. We could furthermore override the layout manager for
each section using a horizontal layout, which would result in sub-section columns. Of course,
we can aso switch between horizontal and vertical layout between group levels, or use another
layout such as grid.

Other Box Layout Options

=

CQOWOoO~NOUA_WNPRE

The Box Layout Manager al so supports the following properties:

padding — The box layout essentially is just using CSS to perform layouts, and, using the style and
style classes properties, you can modify the CSS applied. However, the box layout provides a couple of
properties for convenience. The first of these is the paddi ng property. When positioning items side by
side, or one below another, atypical visual concern isthe padding (or space) between each item. Too little
space and the item content might run together as one, and too much will waste space and not look visually
appealing. Therefore, the padding can be set to specify the exact amount of space between each item. Note
the manager will take the value given and use it to set the corresponding CSS property (either padding-
right for horizontal layout or padding-bottom for vertical layout). The value can be afixed amount (px, pt,
cm, etc.) or as a percentage of the parent container. Note the default styles applied have a default setting
for padding that should be acceptable in most cases.

itemStyle and itemStyleClasses — These have similar purposes to the style and styleClasses properties we
have aready learned about. The difference in this case is the given style or class will be applied not to
the layout manager, but each group item that layout manager positions. Note that we could accomplish
the same thing by setting the style or styleClasses property on the group item itself; however, it is more
convenient to set in this one place instead of each item. Also, if we are inheriting a group and changing
the layout, setting the properties for each item would require us to redefine each item.

As an example hereis a group bean with the style classes set on each item:

<bean parent="Uif-Hori zont al BoxSecti on">

<property name="itens">

<list>

<bean parent="Uif-DataField" ...>
<property name="styl eCl asses" >
<list merge="true">

<val ue>f ssLayout | t enx/ val ue>
</list>

</ property>

202

Groups

11 </ bean>

12 <bean parent="Uif-DataField" ...>
13 <property name="styl ed asses">

14 <list nmerge="true">

15 <val ue>f ssLayout I t en</ val ue>

16 </list>

17 </ property>

18 </ bean>

19 <bean parent="Uif-DataField" ...>
20 <property name="styl ed asses">

21 <list merge="true">

22 <val ue>f ssLayout I t en</ val ue>

23 </list>

24 </ property>

25 </ bean>

26 </list>

27 </ property>

28 </ bean>

29

Since we want to keep the inherited style classes for Uif-DataField, we must use the Spring list tags with
merge="true". Now we can accomplish the same thing using the box layout manager's itemStyleClasses

property:
1
2 <bean parent="Ui f-Hori zont al BoxSecti on">
3 <property name="| ayout Manager.itenttyl eCl asses" val ue="fsslLayoutlteni/>
4 <property name="itens">
5 <list>
6 <bean parent="Uif-DataField" ...>
7 <bean parent="Uif-DataField" ...>
8 <bean parent="Uif-DataField" ...>
9 </list>
10 </ property>
11 </ property>
12 </ bean>
g

Since the layout manager property isinitialized by the parent bean, we can use the nested notation. Now
that is much better!

CSS Layouts

You can achieve many layouts using the box layout manager and using the styleClasses
properties. It is your gateway for doing CSS based layouts. In particular, KRAD comes bundled
with the Fluid CSS layout engine, which allows you to create various layouts by adding the
appropriate Fluid classes. Y ou can also explore such things as CSS3 grid layouts, or bring in other
CSS layout engines. For quick layout adjustments, just use the style property to specify a CSS
float value: p:style="float: right;".

Css Grid Layout

There exists one more group layout called the CssGridLayoutManager. This layout attempts to mimic the
look and field of the GridLayoutManager using divs. The layout will appear to be table-based without
being backed by the table, tr, and td elements in the DOM. This functionality is achieved by leveraging
the bootstrap css framework in KRAD.

To use css grid layout, set the colSpan property of components contained in the items of the group.
The layout will use this to add a the necessary css class for that item in the layout. Each "row" in the
CssGridLayout hasamaximum size of 9, if col Span is not defined for an item, that item will automatically
take up a full row. When a row contains items which equal 9 total, the next item in the group will be

203

Groups

placed on the next row. When an item exceeds the max size for a row, that item will become an item of
the next row.

The following figure shows what a CssGridL ayout backed group may look like:
Figure7.16. Fixed Css Grid Layout

Fixed Css Grid

Field 1 Field 2

Field 4 Field 5

In this example, the group will have 2 rows, the first row will contain the first 3 fields, and the second
row will contain the last 2 fields:

<bean parent="Uif - Fi xedCssGi dG oup" >
<property name="itens">
<list>
<bean parent="Uif- I nputFi el d- Label Top" p:label ="Field 1" p:col Span="3" p:instructional Text="This is
instructions”
p: propertyNanme="i nput Fi el d1"/ >

<bean parent="Uif- I nputFi el d- Label Top" p:|abel ="Field 2" p:col Span="3" p: propertyName="i nput Fi el d2"/>
<bean parent="Uif- I nputFi el d- Label Top" p:label ="Field 3" p:col Span="3" p: propertyName="i nput Fi el d3"/>
<bean parent="Uif- I nputFi el d- Label Top" p:|abel ="Field 4" p:col Span="4" p: propertyName="i nput Fi el d4"/>
<bean parent="Uif- I nputFi el d- Label Top" p:label ="Field 5" p:col Span="5" p: propertyNanme="i nput Fi el d5"/>
</list>

</ property>

</ bean>

In this example, the group will have 2 rows, the first field will take the entire row (because no colSpanis
supplied), and the second row will contain the last 2 fields:

<bean parent="Uif-Fi xedCssG i dG oup" >
<property name="itens">
<list>
<bean parent="Uif- I nput Fi el d- Label Top" p:label ="Field 1" p:propertyNane="inputFi el d6"/>
<bean parent="Ui f- I nput Fi el d- Label Top" p:|abel ="Field 2" p:col Span="6" p: propertyNanme="i nput Fi el d7"/>
<bean parent="Uif- I nput Fi el d- Label Top" p:label ="Field 3" p: "3
</list>
</ property>
</ bean>

The CssGridLayoutManager can either be fluid (items expand and retract with page size) or fixed (items
do not move or change when page size changes). Thisis defined by the beans available in the framework
a