Kuali Rice 2.3.0-M1-SNAPSHOT
Client Developer Guide

Kuali Rice 2.3.0-M1-SNAPSHOT Client Developer Guide

Some of the documentation in this guide has not been updated to reflect changes for 2.3.0-M1-SNAPSHQOT. If you find a problem, please report in
Jira[UG.html#reporting_rice_jira] and set the component to Documentation. Indicate the guide and section that hasthe problem in the Jira. Thanks
for your help in improving the documentation!

UG.html#reporting_rice_jira
UG.html#reporting_rice_jira
UG.html#reporting_rice_jira

Table of Contents

T (G = TSSO PP 1
What is the Kuali SErVICE BUS?cooviiiiiii e 1
FEALUMES ..o 1
BeaAN-BASEA SEIVICES ... it 2
Overview of Supported Service ProtOCOISuuuiiiiiiiiiiiii e 3
MESSAZE QUEUEeeeeiitee ettt ettt ettt ettt e et e et 3
CUITENt NOTE TNFO ...t 4
Message Filter and FELChoooiiiie e 4
Documents Currently in ROULE QUEUEccouuuniiiiii et 6
[V AP P TP PP PUPPPTRRPPPPN 6
THIEA POOI ... e ettt 8
SEIVICE REJISINY .ttt ettt et 9
QUAEITZ . ettt a e ans 10
SECUNTY M@NAGEIMENT ... eieet et et e e et e e e e e e 11
P G = TSP TPUUPRPPTTIN 13
HOW 10 USE ThE KSB ...t 13
INEFOTUCTION ...ttt et e e e e et e e e e 13

BeaN Based SEIVICESccoveiiiiiii ettt 13
DIagram NOESeiiiiii ettt et ettt ettt e et e e e e e eenaas 13
Details of Supported Service ProtOCOIScvvvuuieiiiiii e 14
JAVA RICE CHENE ..t e b 14

ANY JAVA CHENE ..eeeeee ettt e e e s 14
NON-JaVaINON-RICE CHENLceiiiiieiiii e 15

KSB REJISIIY 85 @ SEIVICE ...uuiiiiiii ettt ettt e 15
Configuring the KSB Client iN SPringcoovevueiiiieece et 15
OVEIVIBIV .ottt e et e ettt e et e ab e e e e nb e e e enanns 15
Spring Property CONfigUIaLioNieieeiueieii e eeeeans 15
SPring JTA CONFIQUIBLIONceevuneiiiiie ettt e eneas 17

Put JTA and the Rice Config object in the CoreConfigurerccouviiieiiiiineerennnnnn. 17
Configuring KSB WithOUt JTA ... 17
WEDXMI CONFIQUIBLTON ...t 18
Configuration ParameELErScoeuuuiiiiii et 19
KSBCONfIQUIEr PrOPEITIES ... ittt ettt et e s 21

KISB CONTIQUIET <.ttt ettt et e e e e e e et e eeenanns 21
Configuring QUANZ fOr KSB ... it 24
QUAZ SCREAUIING ...ttt r et e s 24
Acquiring and Invoking Services Deployed on KSBcooiiiiiiiiiiiiii e 24
SErVICE INVOCELTON OVEIVIEWciieiii ittt e e ettt ettt e et e e e e e 24
Acquiring and invoking a service direCtlyovviiiiiiiiiiiii e 25
Acquiring and invoking a Service USING MESSAGINGuueeverenereriiaeeeiineeeeniaeeeninnnns 26
Getting responses from service calls made with messagingocoevviiieiiiiinieiiiinnnnn. 27

= 1011 PP TPPPPTPUPPPIN 28
Service Call TaIlOVED ... oo 28
Fallover With QUEUES e e ee e 28
Fallover WIth tOPICSeuu ittt 28

KSB EXCEPLION MESSBGING ..cevvtneieiiiieieetie ettt ettt ettt e et e e e et eeenb e e enaans 28
KSB MeSSaging ParadigimSuuiiiiiieeiiii ettt ettt e e e e e e e e eens 29
QUELIES ...t ettt ettt e e e e 29

LI oo TP TUPPTTRN 29
MESSAgE FEIChEY ... e 29

LOBA BABINCING ... ceettueeeette ettt ettt ettt ettt e ettt e et e et et e e e e e e e aeen 30

Kuali Rice 2.3.0-M1-SNAPSHOT

Client Developer Guide

(@ o)1= o = (= 1270 1] 0o 30
PUblishing SErVICES t0 KSB .. .iuuiiiiii i e e e e e e 30
S 21001 1T U = 30
SEIVICE EXPOMEN ...iiiniii e 30
CallbackSErVIiCEEXPOIEYiiii e e e e e e e e 31
ServiceDEfiNItION PrOPEITIEScvve i e e e e e e 32
ServiceNameSpaceURI/MESSAgEENTITYcovvuiiiiiiiiiieiie e 33
SOAPSENVICEDEFINITION ..uiiiiiiiiieeeeei et e e e e eaenns 33
JaVaSErVICEDEFINITION L...iiiiii e 33
PUbliShiNG RICE SEIVICESuuiiiiii e e e e e e e eaes 33

The ReSOUrCEL0B0Er SEACKoiiiviiiieiii e a e 34
L@ T PP 34
Accessing and overriding Rice services and beans from Springc.ccoeeeviveviinenennnn. 35

KSB Security -- STILL NEEDS TO BE REVIEWED!!!! ... 36
L@ T PP 36
(0110 (= 0 1T ES 1Y/ 0= 36
Credential SSOUICEiiiiiii ettt e e e e et e e e e et e e e eate e e eestnaeeaees 36

KSB connector and eXPOrter COOEuiiunieiiii e i e e e e e e e e e e e eaens 37
SECUNLY AN KEYSIOIESivviieii et e e et e e e e e e e e et e e et e e e e eee 37

Basi CAULNENtI CaLIONSEIVICE .. .oiivviie et e et e e e e e eeees 38
Queue and TOPIC INVOCALONcuuueiiieiiii e e e e e e e e e e e e et e e et e e et e e et e e et e eanaees 39
(@018 010 o= o) o [P 40

LI] o o2 017/ 1 Lo o IS PPN 40

KSB ParaMeters e 40
COrE PalaMELEN'See ettt e et e e e e e e e e e anes 40

KSB Configurer ProPEriESivvi it e e e e e e e e 43
JAX-RS / RESTTUI SEIVICES ..oevviiiiiiiiii ettt ettt e et e e aa e e eaanns 43
1002 Y- PP 44

A SIMPIE EXAMPIE .un e 44
COMPOSITE SEIVICES ...ivviiiiiiieii et e e e e e e e e e e et e e et eeat e e aaeaeens 45
Additional Service Definition Propertiescoccuveviiiiiiiicii e 46
L1105 S 48

List of Figures

L1 KUAH SEIVICE BUS ...ttt e e e e 1
1.2, SUPPOIted SErVICE PrOTOCOISceveueiiiiii ettt ettt ettt e e e e et e eeneens 3
1.3. Message Queue: Documents Currently 1N ROULEc..uuiiiiiiiiiiii e 4
1.4, MESSA0E FlTEr SCIEEN ..ottt e s 5
1.5. Execute Message Filter: Confirmation SCIrEENviieeuiiiiiiii et 5
1.6. Documents 1N ROULE QUEUEiuniii ettt e e e e e e e e eaaas 6
1.7. Requeue Documents; ConfirMation SCIrEENcocuuuieiiiiiieiiii et eeeees 8
1.8. Thread Pool AdMINISLration PAgEcc.uuiiiiiiiiie e 9
1.9, SEIVICE REGISIEIY ottt ettt 10
1.10. Service REGSIENY RESUITS ...ttt e e e e e 10
1.11. EXCeption ROULING QUEUEcooutieiiiit ettt e et et e e et e et e e e e et e e e e eae e eeeee 11
1,12, Create KEYSIOMEveri ettt et ettt et e et 12
1.13. Create Keystore: File SECHONuiiiiiiieeci e 12
1.14. Create Keystore: EXisting Keystore SECHONcc..vuiiiiiiiiiieiiii e 12
2.1. Overview of Supported Service ProtOCOISuuuiiiiiiieiiii et 13
2.2. GlODEl RESOUICE LOBOENcoeieiieieii ettt ettt e e 34

List of Tables

1.1
1.2
13
1.4.
15
1.6
1.7.
18.
1.9
2.1,
2.2,
2.3.
24,
2.5.
2.6.

Message Filter Screen: ALDULES ..o 5
Documents Currently in Route Queue: AttHDULESooooiiiiiiii e 6
MESSAE: ATLITDULES ...t ettt e e et e e e e e e e e e 7
Payload: ATIHDULES ... et e e eaaas 7
Edit SCreen: AIIDULEScouii et 7
Edit SCreen: LINKSooueieiiii ettt et e e et e e e e e e e eee 8
Thread Pool: ATHDULESiie e e 9
Exception Routing QUeUE: ATIDULESiiiiiieeei e 11
Existing Keystore Entries: AtrDULESviiiiiiieiii e 12
KSB Configuration ParamELErScciiuuiieiiii ettt et 19
Properties of the ServiceDefiNitionoouuiiiiiiii e 26
ServiceDefiNition Propertiescoouu i 32
SOAPSEINVICEDEFTNITION ...ttt e e 33
JaVaSErVICEDEFINITIONceeete et e e e e e e e 33
COrE PaIAIMELENSieeeeei ettt ettt et e e et e 40

Vi

Chapter 1. KSB

What is the Kuali Service Bus?

TheKuai Service Bus (KSB) isalightweight service bus designed to allow devel opersto quickly develop
and deploy services for remote and local consumption. At the heart of the KSB isa serviceregistry. This
registry isalisting of all services available for consumption on the bus. Theregistry provides the bus with
the information necessary to achieve load balancing, failover, and more.

Figure1.1. Kuali Service Bus

Java
@ i ‘& ﬁ @ POJO ¢ @
BRIDGES: EXPORTERS: Java Services on the bus can be made available via
Way to export connectors export protocols

P

1 SECURITY LAYER TRANSFORMATION
I SERVICE BUS BACKBONE uier
+ Bus traffic - digitally « JMS and/or KSB messaging
o « Orchestration via BPEL or KEW
+ AuthN/AuthZ on a per

service basis * Service registry

Y ou can deploy servicesto the bus using Spring or programmatically. Services must be named when they
are deployed to the bus. Services are acquired from the bus using their name.

Features

¢ Transactional Asynchronous M essaging - Y ou can call services asynchronously to support a fire and
forget' model of calling services. Messaging participates in existing JTA transactions, so that messages
are not sent until the currently running transaction is committed and are not sent if the transaction is
rolled back. Y ou can increase the performance of service calling code because you are not waiting for
aresponse.

¢ Synchronous Messaging - Call any service on the bus using a request response paradigm.

¢ Queue Style M essaging - Supports executing Java services using message queues. When amessage is
sent to a queue, only one of the services listening for messages on the queue is given the message.

KSB

e Topic Style Messaging - Supports executing Java services using messaging topics. When amessageis
sent to atopic, all servicesthat are listening for messages on the topic receive the message.

e Quality of Service - Determines how queues and topics handle messages that have problems. Time to
live is supported, giving the message a configured amount of time to be handled successfully before
exception handling isinvoked for that message type. M essages can be given anumber of retry attempts
before exception handling isinvoked. The delay separating each call increases. Exception handlers can
be registered with each queue and topic for custom behavior when messagesfail and Quality of Service
limits have been reached.

» Discovery - Services are automatically discovered along the bus by service name. End-point URLs are
not needed to connect to services.

» Reliability - Should problems arise, messages sent to services via queues or synchronous calls
automatically fail-over to any other services bound to the same name on the bus. Services that are not
available are removed from the bus until they come back online, at which time they will be rediscovered

for messaging.

» Persisted Callback - Callback objects can be sent with any message. This object will be called each
time the message is received with the response of the service (think topic as opposed to queue). In this
way, we can deploy services for messaging that actually return values.

e Primitive Business Activity Monitoring - If turned on, each call to every service, including the
parameters pass into that service, is recorded. This feature can be turned on and off at runtime.

e Spring-Based I ntegration - KSB isdesigned with Spring-based integration in mind. A typical scenario
is making an existing Spring-based POJO available for remote asynchronous calls.

e Programmatic Based I ntegration - KSB can be configured programmatically if Spring configuration
is not desired. Services can aso be added and removed from the bus programmatically at runtime.

Bean-Based Services

Typically, KSB programming is centered on exposing Spring-configured beansto other calling code using
anumber of different protocols. Using this paradigm the client devel oper and the organization can rapidly
build and consume services, often a daunting challenge using other buses.

KSB

Overview of Supported Service Protocols

Figure 1.2. Supported Service Protocols

SOAP WS
r p2p il
| SOAP Service/Registry Enhancements:

- serviceto register externa web

service (WSDL) in KSE registry

- service 1o query registry

- callback mechanism so that clients
will know when something in registry
changes

SOAP WS
p2p

ColdFusion
(non-Rice
Client)

PHP
(non-Rice
Clienty

Mot Yet Avallable
Not Yet Avallable Call services in R:_gistry
| ASYNC via |
Topics or Queues

| - I
KSB -
| I
SOA_F‘ Ws 7
p2p , |
Call services in Registry
| ASYNC via |
Topics or Queues
[/ |

Rice Client
Java SOAP WS

p2p

Thisdrawing is conceptual and not representative of true deployment architecture. Essentially, the KSB is
aregistry with service-calling behavior on the client end (Javaclient). All policies and behaviors (async as
opposed to sync) are coordinated on the client. The client offers some very attractive messaging features:

Synchronization of message sending with currently running transaction (meaning all messages sent
during atransaction are ONLY sent if the transaction is successfully committed)

Failover - If acall to a service comes back with a 404 (or various other network-related errors), it will
try to call other services of the same name on the bus. Thisisfor both sync and async calls.

Load balancing - Clients will round-robin call services of the same name on the bus. Proxy instances,
however, are bound to single machines if you want to keep a line of communication open to a single
machine for long periods of time.

Topicsand Queues

Persistent messages - When using message persistence a message cannot be lost. It will be persisted
until it is sent.

Message Driven Service Execution - Bind standard JavaBean services to messaging queues for
message driven beans.

Message Queue

Use the Message Queue section to administer the KNS message queuing system. You can find it on the
Administration menu.

KSB

It has three main sections. Current Node Info, the message filter and fetch section, and the Documents
currently in route queue section.

Figure 1.3. Message Queue: Documents Currently In Route

X workflow Refresh pane

Current Node Info

Message I0: ||
Service Mame: ||
Service Namespace; I
1P Mumber: | [
Queue Status: | ﬂ
App Specific Ualu;e | |

App Specfic Value [
e
Filkar I
50 Execute Message Fetcher

Documents currently in route queue: 4
4 items retrieved, displaying all items

Messoge Service Message pn yher Quene Queye Queue
Queue Id Name Entity Status | Priority Date
2340 {TRAVEL }BlanketapproveProcessorService TRAVEL 129.79.44.31 | EXCEPTION 4 04:43 PM 0B/11/2008 04:
63 { TRAVEL } DocumentRoutingService TRAVEL 129.79.44.31 | EXCEPTION S 01:21 PM 12/22/2008
62 { TRAVEL }DocumentRoutingService TRAVEL 129.79 31 | EXCEPTION 01:09 PM 2008 01:00

61 { TRAVEL }DocumentRoutingService TRAVEL | 129.79.44,31 | EXCEPTION 5 01:04 PM 12/22/2008

4 tams retrieved, displaying all items

Copyright 200%-2007 The Kuali Fount
y copyriohted

an, Al ights reserved
Portions of Kuali Rice are copyrighted by othar partins as describad

srved,
in the Acknowlsdamants screan.

Current Node Info

» |P Address: Thisvalue equals the IP address of the machine: Rice

» message.persistence: If true, then messageswill be persisted to the datastore. Otherwise, they will only
be stored in memory. |If message persistence is not turned on and the server is shutdown while there are
still messages in queue, those messages will be lost. For a production environment, it is recommended
that message persistence be set to true.

» message.delivery: Can be set to either "synchronous' or "async". If thisis set to synchronous, then

messages that are sent in an asynchronous fashion using the KSB application interface (API) will be

sent synchronously. Thisis useful in certain development and unit testing scenarios. For a production
environment, it is recommended that message delivery be set to async.

» message.off: If set to "true" then asynchronous messages will not be sent. In the case that message
persistence is turned on, they will be persisted in the message store and can even be picked up later
using the Message Fetcher. However, if message persistence is turned off, these messages will be lost.
This can be useful in certain debugging or testing scenarios.

Message Filter and Fetch

The message filter and fetch section of the Message Queue screen lets you search for, filter, and/or isolate
messages in the Documents in route queue. To use the Message Filter section, enter your criteriaand click
the Filter button:

KSB

Figure 1.4. Message Filter Screen

Message ID:
Service Name:
Service Namespace:
IP Number:

Queue Status: -

App Specific Value
1:

App Specific Value
2:

Table 1.1. Message Filter Screen: Attributes

Field Description

Message ID A unique 5-digit message queue identification number

Service Name The name of the service

Application ID The service container's identifier

1P Number The message initiator's | P address

Queue Status Y ou can sort documents by the queue status. The queue status may be:

.

QUEUED: The message is waiting for aworker thread to pick it up
ROUTING: A worker is currently working on the message.

EXCEPTION: There is a problem with the message and the route
manager will ignoreit. EXCEPTION statusistypically set manually by
the administrator to suspend a route queue entry until a problem can be
diagnosed.

App Specific Value 1

The specific vaue of a document

App Specific Value 2

The specific value of adocument

Filter Button

Click to execute the search filter

The Execute Message Fetcher button retrieves all the messages in the route queue. You can adjust the
number of messages requested by entering anumber in the field | eft of the button.

When you click the Execute Message Fetcher button, a dialog box appears, confirming that you want to

execute this command:

Figure 1.5. Execute M essage Filter: Confirmation Screen

The page at https://test.kuali.org says:

you sure you want to do this?

This will execute the Message Fetcher which will grab all messages in the queue with this
machine's service namespace and ip address and queue them up to be processed again. Are

] l Cancel

KSB displays the results of a search and/or filter at the bottom of the page in the Documents currently

in route queue table.

KSB

Figure 1.6. Documents | n Route Queue

Hessage
Queue
1d

Documents currently in route queue: 5

5 items retrieved, displaying all items.

2487 {TRAVEL} DocumentRoutingService
2340 {TRAVEL}BlanketApproveProcessorService
63 {TRAVEL}DocumentRoutingService
62 {TRAVEL} DocumentRoutingService

61 {TRAVEL} DocumentRoutingService

S items retrieved, displaying all items.

Entity
TRAVEL
TRAVEL
TRAVEL
TRAVEL

TRAVEL

el IP Number

129.79.44.31

129.79.44.31

129.79.44.31

129.79.44.31

129.79.44.31

Dueue
Status

EXCEPTION
EXCEPTION
EXCEPTION
EXCEPTION

EXCEPTION

Prigrity Date Date Count Value 1 Value 2
5 u;.?;;f.fzazﬂs D‘J;.a?'_ 'rigla ! 2281
4 08/ 1172008 oa/11/2008 ! i
- 13/33/2008 12/3372008 ! 2884
- 13/33/2008 122372608 ! 2683
- 13/33/2008 12/23/2608 ! 2882

ReQueue
View Edit
ReQueye

Documents Currently in Route Queue

View

Table 1.2. Documents Currently in Route Queue: Attributes

Field

Message Queue ID

A unique 5-digit message queue identification number. Thisisthe sameas
the Message I D in the Message Filter section.

Service Name The name of the service

Message Entity

1P Number The message initiator's | P address

Queue Status Y ou can sort documents by the queue status. The queue status may be:

* QUEUED: The message is waiting for aworker thread to pick it up

* ROUTING: A worker is currently working on the message.

« EXCEPTION: There is a problem with the message and the route
manager will ignoreit. EXCEPTION statusistypically set manually by
the administrator to suspend aroute queue entry until a problem can be
diagnosed.

Queue Priority The priority of the entry in the queue. Entries with the smallest number
are processed first.

Queue Date The date on which the queue entry should be processed. If the queue
checker runs and discovers entries that have a queue date that are equal to
or earlier than the current time, it processes them. The approximate time
at which this screenshot was taken 4:53 PM.

Expiration Date

Retry Count

App Specific Value 1

App Specific Value 2

Actions

Click alink in thisfield to:
* View: View the detail message report
« Edit: Edit the settings of a Message Entry

« ReQueue: Enforce the routing process

When you click View in the Actions menu, KSB displays information about that message. Most of the
initial information isthe same asthat displayed in the Documents currently in route queue table. Additional

information on the View screen:

e Message

Table 1.3. Message: Attributes

Field Description

Application ID: The service container's identifier
Method Name:

Payload

Table 1.4. Payload: Attributes

Field Description

Payload Class The class of the Payload

Method Name The name of the method used in this document
ignoreStoreAndForward A true and false indicator that ignores the store functions and forwards

the message

Servicel nfo.messageEntryld

A unique 4-digit message entry identification number

Servicel nfo.ServiceNamespace

The application

Servicelnfo.serverlp

The server's |P address

Servicelnfo.ServiceName

The name of the service

Servicel nfo.endpointUrl

The web address of the service

Servicelnfo.queue

A true and false indicator that activates the queue or topic function:

« "True" uses the Queue method, which sends the message to one
contact at atime

« "False" usesthe Topic method, which sendsthe messageto all contacts
at once

Servicelnfo.alive

A true and false indicator that shows the activity state of the document

Servicelnfo.priority

The priority of the entry for execution. Entries with the smallest number
are processed first

Servicelnfo.retryAttempts

How many times KSB will try to resend the message

Servicelnfo.millisToLive

An expiration indicator:

« 1 means the message never expires

Servicel nfo.messageExceptionHandler

This provides areference the service can use to call back.

Servicelnfo.serviceclass

The name of the service class

Servicel nfo.busSecurity A true and false indicator that assigns the security function
Servicelnfo.credentialsType The credential type of the document

Arguments The argument of this document

Edit

When you click Edit in the Actions menu, KSB displays the editable fields for that message. Fields

on the Edit screen:

Table 1.5. Edit Screen: Attributes

Field Description

Queue Priority Change the queue priority by entering a positive number. A smaller
number has higher priority for execution.

Queue Status Change the status to Queued, Routing, or Exception.

Retry Count Change the number of times KSB will retry.

IP Number Change theinitiator's | P address.

Service Name Change the name of the service.

Message Entity

Change the message entity.

KSB

Field Description

Method Name Change the method.

App Specific Value 1 Change the information for the specific value 1.
App Specific Value 2 Change the information for the specific value 2.

Functional links on the Edit page:

Table 1.6. Edit Screen: Links

Field Description
Save Changes Save the information you just changed.
Save Changes and Resubmit Save the information you changed and resubmit the message.
Save and Forward Save the message and send it to the next contact.
Delete Delete the message.
Reset Reload the previous settings. This undoes the changes that you made on
this screen, as long as you haven't yet saved them.
Clear Message Clear dl information fields on this page.
* ReQueue

When you click ReQueue in the Actions menu, KSB displays this pop-up message:

Figure 1.7. Requeue Documents: Confirmation Screen

The page at https://test.kuali.org says_ g

0_ Are you sure you want to ReQueue this message?

The QueueDate will be reset to today and the Retry set to zero.

‘ OK ‘ I Cancel

Thread Pool

Thread pool is a feature that improves overall system performance by creating a pool of threads which
can be independently used by the system to execute multiple tasks at the same time. A task can execute
immediately if there is athread in the pool that is available. If no thread is available, the task waits for a
thread to become avail able from the pool before executing.

The Thread Pool screen is accessed from the Administration menu. It tells you the current state of
the Thread Pool and allows you to change four parameters for the Thread Pool. The core pool size, the
maximum pool size, the RouteQueue.Timel ncrement and the RouteQueue.maxRetryAttempts.

KSB

Figure 1.8. Thread Pool Administration Page

Core Pool Size: 5
Maximum Pool Size: 5
Pool Size: 5

Active Count: 0

Largest Pool Size: 5

Keep Alive Time: 60000
Task Count: 112
Completed Task Count: 112

RouteQueue.Timelncrement: 5000
RouteQueue.maxRetryAttempts: 5

Execute Across All Servers with Service Namespace RICE

Table1.7. Thread Pool: Attributes

Field

Description

Core Pool Size

A positive number equal to the core number of threads in the pool

Maximum Pool Size

A positive number equal to the maximum number of threads in the pool;
when the Core Pool Sizeislarger than the Maximum Pool Size, Maximum
Pool Size automatically sets the pool size equal to the Core Pool Size

Pool Size

The current number of threads in the pool

Active Count

The approximate number of threads that are actively executing tasks

Largest Pool Size

Maximum number of threads allowed in the Thread Pool

Keep Alive Time The amount of time which threads in excess of the core pool size
may remain idle before being terminated; measured in milliseconds; for
example, 60,000 milliseconds = 60 seconds

Task Count Number of tasks that have been scheduled for execution

Completed Task Count Number of tasks that have completed execution

Execute Across All Serverswith Application ID RICE

When you click this checkbox, then click the Update button, the update
isapplied across all servers.

Update button

Service Registry

Click the Update button to execute the changes you entered in the editable
fields above.

The Service Registry lists published and temporary services that are available for the local machine. You
cannot configure the service registry here; thisis only information about the registry.

Display this page by clicking the Service Registry link on the Rice Administration page.

At the top of the page, the Current Node Info table shows the settings and configuration of the local

machine:

The returned table of servicesis divided into three sections:

1. Published Services: Servicesin use by the local machine

2. Published Temp Services: Temporary services that are the result of Object Remoting. For more
information about Object Remoting, please refer to the Object Remoting section of the KSB portion

of the Technical Reference Guide.
3. All Registry Services

KSB

This screen print shows the top of a Service Registry page, with the Current Node I nfo table and the
beginning of the Published Servicestable, aswell as the refresh link and button:

Figure 1.9. Service Registery

Xworkflow reiresheae

M »

Current Node Info |

IP Address: £5.60.44.250
Service Namespace: RICE
dev.mode: false

Refresh Service Registry]

Published Services:
Service

Service Name Endpoint URL 1P Number Alive
| Namespace |
ImmediateEmailService http://65.60.44.250:8080/kr-dev/remoting/ImmediateEmailService RICE 65.60.44.250 | true
wardHandle http://65.60.44.250:8080/ kr-dev/remoting/ vice-forwar RICE | 65.60.44.250 | true
oscocheNoluﬂcamns:rvuce http://65.60.44.250:8080/kr-dev, 9/0SC RICE | 65.60.44.250 | true
OSCach vice-for http://65.60.44.250:8080/kr-dev/ ing/OSCach vice-forwardHandl RICE 65.60.44.250 | true
RuleCacheProcessorService http://65.60.44.250:8080/kr-dev/remoting/RuleCacheProcessorService RICE 65.60.44.250 true
RuleCacheProcessorService-forwardHandler http://65.60.44.250:8080/kr-dev/remoting/RuleCacheProcessorService-forwardHandler RICE 65.60.44.250 | true
group shipCh vice http://65.60.44.250:8080/ kr-dev/remoting/WorkgroupMembershipChangeService RICE 65.60.44.250 | true
Norkgrouphlarnis " vice-for F!:r:\:.:;’.:::.:r:]d;::.250:EOEWkr-dev!mmuilnga’nun kgroup vice RICE 65.60.44.250 | true
{KIM}activePrincipalRoleTypeService http://65.60.44.250:8080/kr-dev/remoting/activePrincipalRoleTypeService RICE 65.60.44.250 | true
{KIM}activerr leTypeService-forwardHandl F‘:&ﬁf_:&:&;‘e‘:‘ZSD:EOSWk"d" g leTypeService- RICE 65.60.44.250 | true
{KIM}documentEditorRoleTypeService http://65.60.44.250:8080/kr-dev/remoting/documentEditorRoleTypeService RICE 65.60.44.250 | true
(KIM)d RoleTypeser F!:rr\:.:;’.:’_::-:r:ld;::-ZSO:EOEWkr-d\:v ting RoleTypeService- RICE 65.60.44.250 | true
{KIM}documentOpenerRoleTypeService http://65.60.44.250: 8080/ kr-dev/remoting/documentOpenerRoleTypeService RICE 65.60.44.250 | true
To update the list of published services, use either the Refresh Page link in the header at the top of the
n H H "n
page or the "Refresh Service Registry" button.
This screen print shows the point on a Service Registry page where KSB displays a notation that there are
no published temporary services and the beginning of the All Registry Servicestable:
Published Services: i
Service Name Endpaint URL
{TRAVEL isamplefinnPeaple FlawTy peService hibng e e | rioe . kgl ora re mso ire i f me
{ itmzfrice . ouall.ongioorefvE D) componentSeryice hitpfidey | rice, Wonli ora re by som Dy
{ Wito- i rice. ouall.orgicore /v 0hcoreServiceCacheAdminSersioe hitpaffdey | rice kusll gradremotinad somp,
.: Hitpali rige, kuallcrgioor v U AamEEpacE Sarvcn hiRE oy} riog, kpall, grgl remabireg B b,
(ks i rbkee kuali.gsaleare vl BaarameterBopsiibary Servide hiE S fdew | riee, kuali gral remalicsd e e
(it rioe ouall. osgu'oone v DstyleRbe posibory Service hiap e e | rboe . Ka i oral e st

{mttpzfifrice. uali.ongiken'vZ_0}sendsotificationSe rvice
{ Fitps i rice. oyl orgikewiv 2 [Fachonnvascatonlusus
{Fits 0} acton Limbluis

higp:ffcey | rice, ksl

hizp

QgL re et

fire kuallGergr kg v amilatniard lnrsarrcy s ew L rieE, ka il gral remst

firice. kuali.crafkew!vd Olactanlaifervioe dew i riee kol

Lt rboe oua . orgikewivE D hactonRequestDerived Ro ke Ty e S e mate hap e ey | rbee Wgn o et
LRt rioe wusll.orgrkew'vid 0 hadhocReviewPermissonTypEbery o hiRp ey L s, ksl gl e mol
{ Bitpsdfrice, kuall orgrkewrivd{ bdooumentAlribudelndegingl hapue hip:ffdee | rioe, kuali grgl remat

{Bttpsfirkon kuall eoakaw/vy O} dscumentDrchaitrationivgss hitg: L rioe, kual
Please note, you may have permissions that allow you to click on a row's Endpoint URL to view the
WSDL fielsassoicated with the given service. In Internet Explorer or Firefox, thisWSDL will be displayed
normally in a separate window. In Google Chrome or Safari, however, you will need to click the link then

right click to view the frame source to see the WSDL due to current restrictsin Chrome and Safari.

Quartz

TheKuali Service Bus (K SB) uses Quartz to schedule delayed tasks, including retry attempts for messages
that cannot be sent thefirst time. By default, K SB uses an embedded quartz schedul er that can be configured
by passing parameters starting with "ksb.org.quartz." into the Rice configuration.

10

W
Celi BB
el R
Grl e e e

Feld S0 D
TRl BB
CeRl B0A

Gralrematingrlions

KSB

You can inject a custom quartz scheduler if the application is already running one. See the Technical
Reference Guide for KSB, Configuring Quartz for KSB for more information.

Quartz is also known as the Exception Routing Queue.

Figure 1.11. Exception Routing Queue

Xworkflow gefresh eage

3 items retrieved, displaying all items.

lob Name lob Group Rescription
MessageProcessinglobDetail | o iE" Job that handise ::‘\;r‘;;;f;:g:;vﬂ;[-;;'v and
Daily Email BE:::lI\I
Weekly Email BE::I::

3 items retrieved, displaying all items.

Time to execute EullName
Wed May 27 08:15:40 KCB-
COT 2009 Delivery.MessageProcessinglobDetail
Thu May 28 01:00:00

COT 2009 Email Batch.Daily Email
Mon Jun 01 02:00:00
COT 2009 Email Batch.Weekly Email

Copyright 2005-2007 The Kuali Foundation. All rights reserved.
Portions of Kuali Rice are copyrighted by other parties as described in the Acknowledgments screen.

Actions
Put in message
aueue
Put in message
queus
Pyl in message
Queus

When you click the Quartz link on the Kuali Rice Portal Administration page, KSB displays the screen
shown above. The contents of the table can be sorted in ascending or descending order by clicking on a
column title. This technique worksfor all columns except Actions. The table contains thisinformation on

each job that is scheduled:

Table 1.8. Exception Routing Queue: Attributes

Field Description

Job Name Unique name for the job

Job Group Classification of the job

Description Text description of what this job does

Time to execute The scheduled date and time for the job to occur

FullName A more descriptive Job Name

Actions Put in message queue effectively is a button that takes that message out of
quartz and sends it back into the KSB to be retried without waiting until
the scheduled time.

Security Management

For client applicationsto consume secured services hosted from a standal one Rice server, the implementer
must generate akeystorein KSB. KSB security relies on the creation of akeystore using the VM keytool.

11

KSB

Figure 1.12. Create Keystore

cuali

RICE*‘ﬁ

Administration

action list doc search

Logged in User: admin u

Xworkflow gefreshpage

Create new Client Keystore file:

Desired Alias (must be unique from list below):
Password (will be used for keys as well as keystore):
Re-Enter Password:

create clear fields

Existing Keystore Entries:

One item retrieved.
Alias Create Date

One item retrieved.

rice 01:59 PM 10/10/2007

Private Key

Copyright 2005-2007 The Kuali Foundation. All rights reserved.
Portions of Kuali Rice are copyrighted by other parties as described in the Acknowledaments screen.

Actions

To create anew Client Keystore file, complete all threefields and click the create button that isjust below

the fields:

Figure 1.13. Create Keystore: File Section

Create new Client Keystore file:

create

Desired Alias (must be unique from list below):
Password (will be used for keys as well as keystore):
Re-Enter Password:

clear fields

The Desired Alias (name for the new keystore you are creating) must be unique among your keystores.
KSB automatically displays alist of existing Keystore entries for your reference below the Create new
Client Keystorefile table. The datain thislist can be sorted in ascending or descending order by clicking

the column heading for any column except Actions.

Figure 1.14. Create Keystore: Existing Keystor e Section

Existing I%ystore Entries:

One item retrieved.

Alas

One item retrieved.

Create Date
rice 01:59 PM 10/10/2007

Ivpe | Actions
Private Key

Table 1.9. Existing Keystore Entries: Attributes

Field Description

Alias Keystore name

Create Date Date and time the keystore was created
Type Thetype of keystore

Actions

12

Chapter 2. KSB
How to Use the KSB

Introduction

Bean

TheKuali Service Bus (KSB) isalightweight service bus designed to allow devel opersto quickly develop
and deploy services for remote and local consumption. Y ou can deploy services to the bus using Spring
or programmatically. Services must be named when they are deployed to the bus. Services are acquired
from the bus using their name.

At the heart of the KSB is a service registry. This registry is a listing of all services available for
consumption on the bus. The registry provides the bus with the information necessary to achieve load
balancing, failover and more.

Based Services

Typically, KSB programming is centered on exposing Spring-configured beansto other calling code using
anumber of different protocols. Using this paradigm the client devel oper and the organization can rapidly
build and consume services, often a daunting challenge using other buses.

Figure 2.1. Overview of Supported Service Protocols

SOAPWS _

- I
o ry Enl
- Ser
sei
s ColdFusion
SOAP WS Rice Client
(non-Rice i 'en something in registn (non-Rice in == s o
7
v

.
'SOAP WS SOAP WS
P2 p2p

! T~/ Vi

‘ KSB

SOAP WS
oe SOAP WS
p2p

1
'
'

‘ ’

\]

|

. ______soaPws

p2p

Diagram Notes

This drawing is conceptual and not representative of a true deployment architecture. Essentially, the
KSB is aregistry with service calling behavior on the client end (Java client). All policies and behaviors
(Asynchronous as opposed to Synchronous) are coordinated on the client. The client offers some very
attractive messaging features:

» Synchronization of message sending with currently running transaction (meaning all messages sent
during atransaction are ONLY sent if the transaction is successfully committed)

» Failover - If acall to aservice comes back with a 404 (or various other network-related errors), it will
try to call other services of the same name on the bus. Thisis for both sync and async calls.

» Load balancing - Clients will round-robin call services of the same name on the bus. Proxy instances,
however, are bound to single machines if you want to keep a line of communication open to asingle
machine for long periods of time.

13

KSB

e Topicsand Queues

» Persistent messages - When using message persistence a message cannot be lost. It will be persisted
until it is sent.

Details of Supported Service Protocols

Java Rice Client

As Consumer

If configured for the KSB, a Java Rice Client can invoke any service in the KSB Registry using these
protocols:;

1. Synchronously
» SOAP WS p2p using KSB Spring configuration
» Javacall if it iswithin the same VM
* Spring HTTP Remoting

2. Asynchronously

» Messaging Queues — As a Consumer, a Java Rice Client can invoke a one-shot deal for calling a
K SB-registered service asynchronously

» Java, SOAP, Spring HTTP Remoting

» Messaging Topics- AsaConsumer listening to atopic, the Java Rice Client will receive a broadcast
message

As Producer

You can register Spring-defined services in the KSB Registry through the KSB Configurer. Consumers
can call these services as described in other sections.

Any Java Client

As Consumer

A Java Client, regardless of whether or not it's a Rice Client configured for the KSB, can invoke any
web service:

1. AsaSOAP WS p2p using a straight-up WS call through CXF, Axis, etc. If the external web serviceis
not registered on the KSB, the Java client must discover the service on its own.

2. Through Javaif they are within the same JVM

3. Through Spring HTTP Remoting; you must know the endpoint URL of the service.

As Producer

1. Currently, you can't leverage the KSB and its registry for exposing any of its services. It is possible to
bring up the registry and register services without the rest of the KSB.

14

KSB

2. A JavaClient can expose its web services directly using XFire (CXF), Axis, €etc.

3. You can bring up only the registry for discovery. However, the registry can't be a'service;' it can only
be a piece of code talking to a database.

Non-Java/Non-Rice Client

As Consumer

A non-Java/non-Rice Client that knows nothing about the KSB or its registry can only invoke web
services synchronously using:

» SOAP WS p2p using straight-up WS call through native language-specific WS libs

 Discovery cannot be handled by leveraging the KSB Registry at thistime.

As Producer
1. Currently cannot register services on KSB in registry

2. Can till produce services, but they can't be called leveraging the KSB; clients need to discover and
invoke the services directly (on their own).

KSB Registry as a Service

As of the 2.0 version of Rice, the ServiceRegistry is now itself a service. In order to bring the registry
online for the client application, the application needs to configure a URL similar to the following:

<param nane="rice. ksb.regi stry. serviceUr|">http://1ocal host: 8080/ kr-dev/renpting/servi ceRegi strySoap</ par an»

Currently, this connector is only configured to understand a SOAP interface to the service registry which
is secured by digital signatures. Thisisthe only type of interface to the registry that the standal one server
currently publishes. Additionally, only asingle URL to the registry can be configured at the current time.
If someone wants to do load balancing amongst potential registry endpoints, then a hardware or software
load balancer could be configured to do this.

Configuring the KSB Client in Spring

Overview

The Kuali Service Bus (KSB) isinstalled asaKuali Rice (Rice) Module using Spring. Hereisan example
XML snippet showing how to configure Rice and KSB using Spring:

<beans>

<bean id="coreConfigurer" class="org.kuali.rice.core.inpl.config.nodule.CoreConfigurer">
<property nanme="dat aSource" ref="riceDataSource${connection.pool.inpl}" />
<property name="nonTransacti onal Dat aSource" ref="riceNonTransacti onal Dat aSource" />
<property name="transacti onManager" ref="transacti onManager ${connecti on. pool .inpl}" />
<property name="user Transacti on" ref="jtaUser Transacti on" />

</ bean>

<bean i d="ksbConfigurer" class="org.kuali.rice.ksbh.messagi ng.confi g. KSBConfi gurer"/>
</ beans>

Spring Property Configuration

The KSBTestHarnessSoring.xml located in the project folder under /ksb/src/test/resources is a good
starting place to explore KSB configuration in depth. The first thing the file does is use a

15

KSB

PropertyPlaceholderConfigurer to bring tokensinto the Spring filefor runtime configuration. The source of
the tokens isthe xml file: ksb-test-config.xml located in the /ksh/src/test/resourcess META-INF directory.

<bean id="config" class="org. kuali.rice.core.config.spring.ConfigFactoryBean">
<property name="configLocations">
<list>
<val ue>cl asspat h: META- | NF/ ksb-t est-confi g. xm </ val ue>
</list>
</ property>
</ bean>

<bean cl ass="org. spri ngfranewor k. beans. fact ory. confi g. Met hodl nvoki ngFact or yBean" >
<property name="staticMethod"
value="org. kuali.rice.core.inpl.config.property.Configlnitializer.initialize"/>
<property name="argunments">
<list>
<ref bean="config"/>
</list>
</ property>
</ bean>

<bean cl ass="org. spri ngfranewor k. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property name="properties" val ue="#{config.getProperties()}" />

</ bean>
Note
* Properties are passed into the Rice configurer directly. These could be props loaded from
Spring and injected into the bean directly.
* You could use the Rice configuration subsystem for configuration.
« A JTA TransactionManager and UserTransaction are also being injected into the
CoreConfigurer.
As mentioned above, this allows tokens to be used in the Spring file. If you are not familiar with tokens,
they look like thisin the Spring file: ${ datasource.pool.maxSize}
Let'stake alook at the ksb-test-config.xml file:
<confi g>

<par am nane="confi g. | ocati on">cl asspat h: META- | NF/ conmon- der by- connect i on- confi g. xml </ par an>

<par am nane="confi g. | ocati on">cl asspat h: META- | NF/ conmon- confi g-test -1 ocati ons. xm </ par an®>

<param nane="cl i ent 1.l ocation">/var/lib/jenkins/workspace/rice-2.3-site-deploy/src/test/clients/
Test d i ent 1</ par an®

<param nane="cl i ent 2. | ocati on">/var/|ib/jenki ns/workspace/rice-2.3-site-deploy/src/test/clients/
Test d i ent 2</ par an®

<par am nane="ksb. cl i ent 1. port">9913</ par an>

<par am nane="ksb. cl i ent 2. port">9914</ par an>

<par am nane="ksb. t est har ness. port " >9915</ par an>

<par am name="t hr eadPool . si ze" >1</ par an>

<par am nane="t hr eadPool . f et chFr equency" >3000</ par an>

<par am name="bus. r ef resh. r at e">3000</ par an>

<par am name="bam enabl ed" >t r ue</ par an»

<par am name="transaction. ti meout " >3600</ par an»

<par am nane="keystore. al i as">ri ce<par an>

<par am nane="keyst or e. passwor d" >keyst or epass</ par an>

<par am nane="keystore.file">/var/lib/jenkins/workspace/rice-2.3-site-depl oy/src/test/resources/keystore/
ri cekeyst or e</ par an>

<par am nane="keystore. |l ocation">/var/lib/jenkins/workspace/rice-2.3-site-deploy/src/test/resources/
keyst ore/ ri cekeyst or e</ par an>

<par am name="use. cl ear Dat abaseLi f ecycl e" >t r ue</ par an»

<par am nane="use. sql Dat aLoader Li f ecycl e" >t r ue</ par an»

<!-- bus nessaging props -->

<par am nane="nessage. del i very" >synchr onous</ par an>

<par am nane="nessage. per si st ence" >t rue</ par an>

<par am name="useQuart zDat abase" >f al se</ par an>

<par am nane="confi g. | ocati on">${addi ti onal . confi g. | ocations}</ paranm>

<par am name="confi g. |l ocation">${al t.config.|ocation}</paranm
</ config>

16

KSB

Thisisan XML file for configuring key value pairs. When used in conjunction with Spring tokenization
and the PropertyPlaceHolderConfigurer bean, the parameter name must be equal to the key value in the
Spring file so that the properties propagate successfully.

Spring JTA Configuration

When doing persistent messaging it is best practice to use JTA as your transaction manager. This
ensures that the messages you are sending are synchronized with the current executed transaction in your
application. It also allows message persistence to be put in adifferent database than the application’slogic
if needed. Currently, KSBTestHarnessSpring.xml uses JOTM to configure JTA without an application
server. Bitronix is another JTA product that could be used in Rice and you could consider using it instead
of JOTM. Below isthe bean definition for JOTM that you can find in Spring:

<bean id="jotni' class="org.springframework.transaction.jta.JotnFactoryBean">
<property name="defaul t Ti meout” val ue="${transaction.timeout}"/>

</ bean>

<bean i d="dat aSource" class="org. kual i.rice. database. XAPool Dat aSour ce" >
<property name="transacti onManager" ref="jotn />
<property name="driverC assNane" val ue="${dat asource.driver.nane}" />
<property name="url" val ue="${datasource.url}" />
<property name="naxSi ze" val ue="${datasource. pool . rexSi ze}" />
<property name="m nSi ze" val ue="${datasource. pool . nm nSize}" />
<property name="nmaxWit" val ue="${datasource. pool . mex\ait}" />
<property name="val i dati onQuery" val ue="${dat asource. pool . val i dati onQuery}" />
<property name="usernane" val ue="${dat asource. usernanme}" />
<property name="password" val ue="${dat asource. password}" />

</ bean>

Bittronix’s configuration is similar. Datasources for both ae set up in
org.kuali.rice.core.RiceDataSourceSpringBeans.xml. If using JOTM, use the Rice XAPoolDataSource
class as your data source because it addresses some bugs in the StandardX APoolDataSource, which
extends from this class.

Put JTA and the Rice Config object in the
CoreConfigurer

Next, you must inject the JOTM into the RiceConfigurer:
<bean id="rice" class="org.kuali.rice.core.inpl.config.nodul e. CoreConfigurer">
<property name="dat aSource" ref="dataSource" />
<property name="transacti onManager" ref="jotnt />

<property name="user Transaction" ref="jotm />
<...nore.../>

Configuring JTA from an appserver is no different, except the TransactionManager and UserTransaction
are going to be fetched using a JINDI FactoryBean from Spring.

Note

You set the serviceNamespace property in the example above by injecting the name into the
RiceConfigurer. You can do thisinstead of setting the property in the configuration system.

Configuring KSB without JTA

Y ou can configure KSB by injecting a PlatformTransactionManager into the KSBConfigurer.

 This eliminates the need for JTA. Behind the scenes, KSB uses Apache's OJB as its Object Relational
Mapping.

17

KSB

» Before you can use PlatformTransactionManager, you must have a client application set up the OJB
so that KSB can useit.

Thisisagood option if you are an OJB shop and you want to continue using your current setup without
introducing JTA into your stack. Normally, when a JTA transaction is found, the message is not sent until
the transaction commits. In this case, the message is sent immediately.

Let's take a look at the KSBTestHarnessNoJtaSporing.xml file. Instead of JTA, the following transaction
and DataSource configuration is declared:

<bean i d="oj bConfigurer" class="org.springnodul es.orm oj b. support.Local g bConfigurer" />

<bean id="transacti onManager" class="org. springnodul es. orm oj b. Persi st enceBr oker Tr ansact i onManager " >
<property nanme="jcdAlias" val ue="dataSource" />
</ bean>

<bean i d="dat aSource" cl ass="org. spri ngfranmework.jdbc. dat asource. Dri ver Manager Dat aSour ce" >
<property nanme="driverd assName">
<val ue>${ dat asour ce. dri ver. nane} </ val ue>
</ property>
<property name="url">
<val ue>${ dat asource. url } </ val ue>
</ property>
<property name="user name">
<val ue>${ dat asour ce. user nane} </ val ue>
</ property>
<property nanme="password">
<val ue>${ dat asour ce. passwor d} </ val ue>
</ property>
</ bean>

The RiceNoJtaOJB.properties file needs to include the Rice connection factory property value:

Connect i onFactoryd ass=org. kual i . ri ce. core. framework. persi stence. oj b. Ri ceDat aSour ceConnecti onFactory

Often, the DataSource is pulled from JNDI using a Spring FactoryBean. Next, we inject the DataSource
and transactionManager (now a Spring PlatformTransactionManager).
<bean id="rice" class="org.kuali.rice.core.inpl.config.nodul e.CoreConfigurer">

<property name="dat aSource" ref="dataSource" />
<property name="nonTransacti onal Dat aSour ce" ref="dataSource" />

</ bean

<bean i d="ksbConfigurer" class="org.kuali.rice.ksb.messagi ng.config. KSBConfi gurer">
<property name="pl atf ormlransacti onManager" ref="transacti onManager" />
<... nore .../>

</ bean>

Notice that the transactionManager isinjected into the KSBConfigurer directly. Thisisbecause only KSB,
and not Rice, supportsthistypeof configuration. The DataSourceisinjected normally. When doing this, the
0OJB setupisentirely inthe hands of the client application. That doesn't mean anything more than providing
an OJB.properties object at theroot of the classpath so OJB can load itself. KSB will automatically register
its mappings with OJB, so they don't need to be included in the repository.xml file.

web.xml Configuration

To alow external bus clients to invoke services on the bus-connected node, you must configure the
K SBDispatcherServlet in the web applications web.xml file. For example:
<servl et>
<servl et - name>r enot i ng</ ser vl et - nane>

<servl et-class>org. kuali.rice.ksb. nessagi ng. servl et. KSBDi spat cher Servl et </ servl et-cl ass>
<l oad- on- st artup>1</| oad- on-startup>

</servl et >

18

KSB

<servl et - mappi ng>
<servl et - name>r enot i ng</ servl et - nanme>
<url-pattern>/renoting/*</url-pattern>
</ servl et - mappi ng>

Thisallowsbus-exposed servicesto be accessed at aURL likehttp://your localip: 8080/myapp/r emoting/
[K SB:service name]. Notice how this URL corresponds to the configured serviceServletUr| property on
the KSBConfigurer.

Configuration Parameters

The service bus leverages the Rice configuration system for its configuration. Here is acomprehensive set
of configuration parameters that you can use to configure the Kuali Service Bus:

Table2.1. KSB Configuration Parameters

Parameter Required Default Value
bam.enabled Whether Business Action Messaging is enabled | false
bus.refresh.rate How often the service bus will update the|60

services it has deployed in minutes.
dev.mode no false
message.persistence no true
message.delivery no asynch
message.off no false
ksb.mode The mode that KSB will run in; choices are| LOCAL

"local", "embedded", or "remote”.
ksh.url The base URL of KSB services and pages. ¥ application.url} /ksb
RouteQueue.maxRetryAttempts no 5
RouteQueue.timel ncrement no 5000
Routing.lmmediateExceptionRouting no false
RouteQueue.maxRetryAttemptsOverride no None
rice.ksb.batch.mode A service bus mode suitable for running batch | false

jobs; it, like the KSB dev mode, runs only local

services.
rice.ksb.struts.config.files The struts-config.xml configuration file that the | /ksb/WEB-INF/struts-config.xml

KSB portion of the Rice application will use.
rice.ksb.web.forceEnable no false
threadPool .size The size of the KSB thread pool. 5
useQuartzDatabase no true
ksb.org.quartz.* no None
rice.ksb.config.allowSelfSignedSSL no false

dev.mode

Indicates whether this node should export and consume services from the entire service bus. If set to true,
then the machine will not register its services in the global service registry. Instead, it can only consume
services that it has available locally. In addition to this, other nodes on the service bus will not be able to
"see" this node and will therefore not forward any messagesto it.

message.persistence

If true, then messages will be persisted to the datastore. Otherwise, they will only be stored in memory.
If message persistenceis not turned on and the server is shutdown while there are still messages that need
to be sent, those messages will be lost. For a production environment, it is recommended that you set
message.persistence to true.

19

KSB

message.delivery
Can be set to either synchronous or asynchronous. If this is set to synchronous, then messages that are
sent in an asynchronous fashion using the KSB API will instead be sent synchronoudly. Thisis useful in

certain devel opment and unit testing scenarios. For a production environment, it is recommended that you
set message delivery to asynchronous.

Note

It is strongly recommended that you set message.delivery to asynchronous for al cases except
for when implementing automated tests or short-lived programsthat interact with the service bus.

message.off
If set to true, then asynchronous messages will not be sent. In the case that message persistence is turned
on, they will be persisted in the message store and can even be picked up later using the Message Fetcher.

However, if message persistence is turned off, these messages will be lost. This can be useful in certain
debugging or testing scenarios.

RouteQueue.maxRetryAttempts

Setsthe default number of retriesthat will be executed if amessage failsto be sent. Y ou can also customize
thisretry count for a specific service (see Exposing Services on the Bus).

RouteQueue.timelncrement

Sets the default time increment between retry attempts. As with RouteQueue.maxRetryAttempts, you can
also configure this at the service level.

Routing.ImmediateExceptionRouting

If set to true, then messagesthat fail to be sent will not beretried. Instead, their M essageExceptionHandl er
will beinvoked immediately.

RouteQueue.maxRetryAttemptsOverride

If set with anumber, it will temporarily set theretry attemptsfor ALL servicesgoing into exception routing.
You can set the number arbitrarily high to prevent all messages in a node from making it to exception
routing if they are having trouble. The message.off param produces the same result.

useQuartzDatabase

When using the embedded Quartz scheduler started by the KSB, indicates whether that Quartz scheduler
should storeits entriesin the database. If thisistrue, then the appropriate Quartz properties should be set
aswell. (See ksh.org.quartz.* below).

ksb.org.quartz.*

Can be used to pass Quartz properties to the embedded Quartz scheduler. See the configuration
documentation on the Quartz site [http://www.quartz-scheduler.org/]. Essentially, any property prefixed
with ksh.org.quartz. will have the "ksb." portion stripped and will be sent as configuration parameters to
the embedded Quartz scheduler.

20

http://www.quartz-scheduler.org/
http://www.quartz-scheduler.org/

KSB

rice.ksb.config.allowSelfSignedSSL

If true, then the buswill allow communication using the https protocol between machineswith self-signed
certificates. By default, thisis not permitted and if attempted you will receive an error message like this:

Note

It is best practice to only set thisto 'true’ in non-production environments!

rice.ksb.web.forceEnable

publish the KSB user interface components (such as the Message Queue, Thread Pool, Service Registry
screens) even when the ksh.mode is not set to local.

KSBConfigurer Properties

In addition to the configuration parameters that you can specify using the Rice configuration system, the
KSBConfigurer bean itself has some properties that can be injected in order to configure it:

exceptionMessagingScheduler

By default, KSB uses an embedded Quartz scheduler for scheduling the retry of messages that fail to be
sent. If desired, a Quartz scheduler can instead be injected into the KSBConfigurer and it will use that
scheduler instead. See Quartz Scheduling for more detail.

messageDataSource

Specifies the javax.sgl.DataSource to use for storing the asynchronous message queue. If not specified,
this defaults to the DataSource injected into the RiceConfigurer.

If this DataSource is injected, then the registryDataSource must also be injected and vice-versa.

nonTransactionalMessageDataSource

Specifies the javax.sgl.DataSource to use that matches the messageDataSource property. This datasource
instance must not be transactional. If not specified, this defaults to the nonTransactional DataSource
injected into the RiceConfigurer.

registryDataSource

Specifies the javax.sgl.DataSource to use for reading and writing from the Service Registry. If not
specified, this defaults to the DataSource injected into the RiceConfigurer.

If this DataSource is injected, then the messageDataSource must also be injected and vice-versa.

services

Specifies alist of Java service definitions relating to SOAP to use as part of messaging.

KSB Configurer

The application needs to do one more thing to begin publishing services to the bus: Configure the
K SBConfigurer abject. This can be done using Spring or programmatically. We'll use Spring because it's
the easiest way to get things configured:

<bean id="jotni' class="org.springframework.transaction.jta.JotnFactoryBean">

21

KSB

<property name="defaul t Ti meout" val ue="${transaction.timeout}"/>
</ bean>

<bean i d="dataSource" class=" org.kuali.rice.core.database. XAPool Dat aSource ">

<property name="transacti onManager" ref="jotn/>
<property name="driverd assNanme" val ue="oracle.jdbc.driver.OacleDriver"/>
<property name="nmaxSi ze" val ue="25"/>
<property name="m nSi ze" val ue="2"/>
<property name="maxWait" val ue="5000"/>
<property name="val i dati onQuery" val ue="select 1 from dual"/>
<property name="url" val ue="j dbc: oracl e: t hi n: @ OCALHOST: 1521: XE"/ >
<property name="usernanme" val ue="nyapp"/>
<property name="password" val ue="password"/>
</ bean>

<bean i d="nonTransacti onal Dat aSour ce" cl ass="org. apache. commons. dbcp. Basi cDat aSour ce" destroy-nmet hod="cl ose">

<property name="driverd assName" val ue="oracle.jdbc.driver.OacleDriver"/>
<property name="url" val ue="j dbc: oracl e: t hi n: @Q OCALHOST: 1521: XE"/ >
<property name="maxActive" val ue="50"/>

<property name="mnldl e" val ue="7"/>

<property name="initial Size" value="7"/>

<property name="val i dati onQuery" val ue="select 1 fromdual"/>

<property name="usernanme" val ue="nyapp"/>

<property
<property

nanme="password" val ue="password"/>
nanme="accessToUnder | yi ngConnecti onAl | oned" val ue="true"/>

</ bean>

<bean id="coreConfigurer" class="org.kuali.rice.core.inpl.config.nodule.CoreConfigurer">

<property name="dat aSource" ref="datasource" />
<property name="nonTransacti onal Dat aSour ce" ref="nonTransacti onal Dat aSour ce" />
<property name="transacti onManager" ref="jotnt />
<property name="user Transaction" ref="jotm' />
</ bean>

<bean id="ksbConfigurer" class="org. kuali.rice.ksb.nessagi ng. confi g. KSBConfi gurer"/>

The application is now ready to deploy servicesto the bus. Let's take aquick look at the Spring file above
and what's going on there: The following configures JOTM, which is currently required to run KSB.

<bean id="jotm class="org.springframework.transaction.jta.JotnFactoryBean" />

Next, we configure the XAPool DataSource and the non transactional BasicDataSource. This is pretty
much standard data source configuration stuff. The X APoolDataSource is configured through Spring and
not JNDI so it can take advantage of JTOM. Servlet containers, which don't support JTA, require this
configuration step so the datasource will use JTA.

<bean i d="dat aSource" class=" org. kuali.rice.core.database. XAPool Dat aSour ce ">

<property name="transacti onManager" ref="jotn{/>
<property name="driverd assNanme" val ue="oracle.jdbc.driver.OacleDriver"/>
<property name="url" val ue="j dbc: oracl e: t hi n: @OCALHOST: 1521: XE"/ >
<property name="nexSi ze" val ue="25"/>
<property name="m nSi ze" val ue="2"/>
<property name="maxWait" val ue="5000"/>
<property name="val i dati onQuery" val ue="select 1 from dual"/>
<property name="usernane" val ue="nyapp"/>
<property name="password" val ue="password"/>
</ bean>

<bean i d="nonTransacti onal Dat aSour ce" cl ass="org. apache. conmons. dbcp. Basi cDat aSour ce" destroy-net hod="cl ose" >

<property name="driverd assNanme" val ue="oracl e.jdbc.driver.OacleDriver"/>
<property name="url" val ue="j dbc: oracl e: t hi n: @OCALHOST: 1521: XE"/ >
<property name="nmaxActive" val ue="50"/>
<property name="mnldl e" value="7"/>
<property name="initial Size" value="7"/>
<property nanme="val i dati onQuery" val ue="select 1 from dual"/>
<property name="usernane" val ue="nyapp"/>
<property name="password" val ue="password"/>
<property name="accessToUnder|yi ngConnecti onAl | owed" val ue="true"/>
</ bean>

Next, we configure the bus:

22

KSB

<bean id="rice" class="org.kuali.rice.core.config. CoreConfigurer">
<property name="dat aSource" ref="dataSource" />
<property name="nonTransacti onal Dat aSour ce" ref="nonTransacti onal Dat aSour ce" />
<property name="transacti onManager" ref="jotnt />
<property name="user Transaction" ref="jotm' />

</ bean>

<bean id="ksbConfigurer" class="org. kuali.rice.ksb. nessagi ng. confi g. KSBConfi gurer">
<property name="regi stryDat aSource" ref="dataSource" />
<property name="banDat aSour ce" ref="dataSource" />
<property name="nessageDat aSource" ref="dataSource" />
<property name="nonTransacti onal MessageDat aSour ce" ref="nonTransacti onal Dat aSource" />

</ bean>

We are injecting JOTM, and the datasources. The injection of the KSBConfigurer class into the
ksbConfigurer property tells this instance of Rice to start the Service Bus. The final necessary step is
making sure the configuration parameter ‘application.id' is set properly to some value that will identify all
services deployed from this node as a member of this node.

At this point, the application is configured to use the bus, both for publishing services and to send
messages to services. Usually, applications will publish services on the bus using the KSBConfigurer or
the SoapServiceExporter classes. See Acquiring and invoking services for more detail.

Implications of “synchronous” vs. “asynchronous” Message
Delivery

Asnoted in Configuration Parameters, it ispossibleto configure message delivery to run asynchronously or
synchronoudly. It isimported to understand that asynchronous messing should be used in almost all cases.

Asynchronous messing will result in messages being sent in a separate thread after the original transaction
that requested the message to be sent is committed. This isthe appropriate behavior in a“fire-and-forget”
messaging model. The option to configure message deliver as synchronous was added for two reasons:

1. To dlow for the implementation of automated unit tests which could perform various tests without
having to right “polling” code to wait for asynchronous messing to complete.

2. For short-lived programs (such as batch programs) which need to send messages. This allows for a
guarantee that all messages will be sent prior to the application being terminated.

The second caseisthe only case where synchronous messaging should be used in a production setting, and
even then it should be used with care. Synchronous message processing in Rice currently hasthefollowing
major differences from asynchronous messaging that need to be understood:

1. Order of Execution

2. Exception Handling

Order of Execution

In asynchronous messaging, messages are queued up until the end of the transaction, and then sent after
the transaction is committed (technically, they are sent when the transaction is committed).

In synchronous messaging, messages are processed immediately when they are “sent”. Thisresultsin a
different ordering of execution when using these two different messaging models.

Exception Handling

In asynchronous messaging, whenever there is a failure processing a message, an exception handler is
invoked. Recovery from such failures can include resending the message multiple times, or recording and
handling the error in some other way. Since al of this is happening after the original transaction was
committed, it does not affect the original processing which invoked the sending of the message.

23

KSB

With synchronous messaging, since the message processing is invoked immediately and the calling code
blocks until the processing is complete, any errors raised during messaging will be thrown back up to
the calling code. This means that if you are writing something like a batch program which relies on
synchronous messaging, you must be aware of this and add code to handle any errorsif you want to deal
with them gracefully.

Another implication of this is that message exception handlers will not be invoked in this case.
Additionally, because an exception is being thrown, thiswill typically trigger arollback in any transaction
that the calling code is running. So transactional issues must be dealt with as well. For example, if the
failure of a single message shouldn’t cause the sending of all messages in a batch job to fail, then each
message will need to be sent in it’s own transaction, and errors handled appropriately.

Configuring Quartz for KSB
Quartz Scheduling

The Kuali Service Bus (KSB) uses Quartz to schedule delayed tasks, including retry attempts for messages
that cannot be sent thefirst time. By default, KSB usesan embedded quartz schedul er that can be configured
by passing parameters starting with “ksh.org.quartz.” into the Rice configuration.

If the application is aready running a quartz scheduler, you can inject a custom quartz scheduler using
code likerthis:

<bean cl ass="org. kuali.rice. ksbh. nessagi ng. confi g. KSBConfi gurer">

<property name="exceptionMessagi ngSchedul er">

<bean cl ass="org. spri ngfranewor k. schedul i ng. quart z. Schedul er Fact or yBean" >

</ bean>

</ property>

</ bean>

When you do this, KSB will not create an embedded scheduler but will instead use the one provided.

Acquiring and Invoking Services Deployed on

KSB

Service invocation overview

1. Acquired and called directly
* Automatic Failover
* No Persistence
* Direct cal - Request/Response
2. Acquired and called through the MessageHel per
» Automatic Failover
» Message Persistence
» KSB Exception Messaging

o Callback Mechanisms

24

KSB

In the examples below, noticethat the client codeisunawar e of the protocol with which theunderlying
serviceisdeployed. Given aconnector for agiven protocol and acompatible service definition, you could
move a service to different protocols as access needs change without affecting dependent client code.

Acquiring and invoking a service directly

The easiest way to call a service isto grab it and invoke it directly. This uses a direct request/response
pattern and what you see is what you get. You will wait for the processing the call takes on the other
side plus the cost of the remote connection time. Any exceptions thrown will come across the wirein a
protocol-acceptable way.

This code acquires a SOAP-based service and callsit:
Narre servi ceName = new QName("t est NameSpace", "soap-repeatTopic");

SOAPSer vi ce soapServi ce = (SOAPServi ce) d obal Resour ceLoader. get Servi ce(servi ceNane)
soapServi ce. doTheThi ng("hell 0");

The SOAPService interface needs to be in the client classpath and bindable to the WSDL. The easiest
way to achieve thisin Javaisto create a bean that is exported as a SOAP service. Thisis the server-side
service declaration in a Spring file:

<bean id="ksbConfigurer" class="org. kuali.rice.ksb. nessagi ng. confi g. KSBConfi gurer">

<property name="services">
<list>

<bean cl ass="org. kual i.rice.ksb. api . bus. support. SoapServi ceDefinition">

<property name="service">
<ref bean="soapService" />

</ property>
<property name="| ocal Servi ceNane" val ue="soap-repeat Topi c" />
<property name="servi ceNaneSpaceURl " val ue="t est NaneSpace" />
<property name="priority" value="3" />
<property name="queue" val ue="fal se" />
<property name="retryAttenpts" value="1" />

</ bean>

</list>
</ property>
</ bean>

This declaration exposes the bean soapService on the bus as a SOAP available service. The Web Service
Definition Language is available at the serviceServietUrl + serviceNameSpaceURI + local ServiceName
+ 2wsdl.

This next code snippet acquires and calls a Java base service:

EchoServi ce echoServi ce = (EchoServi ce) d obal Resour ceLoader . get Servi ce(new QNane("Testd 1", "echoService"))
String echoVal ue = "echoVal ue"
String result = echoService. echo(echoVal ue)

Again, the interface is all that is required to make the call. Thisis the server-side service declaration that
deploys a bean using Spring’ s Httplnvoker as the underlying transport:

<bean id="ksbConfigurer" class="org. kuali.rice.ksh. nessagi ng. confi g. KSBConfi gurer">

<property name="services">
<list>
<bean cl ass="org. kual i .rice. ksb. api . bus. support. SoapSer vi ceDef i ni ti on">
<property name="service" ref="echoService" />
<property name="servicelnterface"
val ue="org. kual i . ri ce. ksh. messagi ng. r enot edser vi ces. EchoServi ce" />
<property name="I| ocal Servi ceName" val ue="soap-echoServi ce" />
<property name="busSecurity" val ue="fal se"></property>

</ bean>
</list>
</ property>

</ bean>

25

KSB

Below is a description of each property on the ServiceDefinition (JavaServiceDefinition and
SOAPServiceDefinition):

Table 2.2. Properties of the ServiceDefinition

property

required

default

description

busSecurity

no

yes (JavaServiceDefinition), no
(SOAPServiceDefinition)

For Java-based services, message is digitally
signed before calling the service and verified
at the node hosting the service. For SOAP
services, WSSAJ is used to digitaly sign the
SOAP request/response in accordance with the
WS Security specification. More info on Bus
Security here.

local ServiceName

yes

none

Thelocal name of the QName that makes up the
complete service name.

messageExceptionHandler no

DefaultM essageExceptionHandl er

Name of the MessageExceptionHandler that is
caled when a service call fails. Thisis called
after the retryAttempts or millisToLive policy
of the service or Node has been met.

millisToLive no

none

Used instead of retryAttempts. Only considered
in case of error when invoking service. Defines
how long the message should continue to be
tried before being put into KSB Exception
Messaging.

priority

no

Only applies when asynchronous messaging is
enabled. The lower the priority is, the sooner
the message will be executed. For example,
if 100 priority 10 messages are waiting for
invocation and a priority 5 message is sent, the
priority 5 message will be executed first.

queue

no

true

If true, the service will behave like a queue in
that there is only one real service call when a
message is sent.

If false, the service will behave like atopic. All
beans bound to the service name will be sent a
message When a message is sent to the service.

Use queues for operations you only want
to happen once (for example, to route a
document). Usetopicsfor notificationsacrossa
cluster (for example, to invalidate cache entry).

retryAttempts no

Determines the number of times a service
can be invoked before being put into KSB
Exception Messaging (the error state)

service

yes

none

The bean to be exposed for invocation on the
bus

serviceEndPoint no

serviceServletUrl + serviceName

This can be explicitly set to create an alternate
serviceend point, different from the onethe bus
automatically creates.

serviceName

yes

serviceNameSpaceURI + local ServiceName

If local ServiceName and
serviceNameSpaceURI are omitted, the QName
of the service. This can be used instead of the
local ServiceName and serviceNameSpaceURI
convenience methods.

serviceNameSpaceURI no

messageEntity property or
config param is used

message.entity

The namespaceURI of the QName that makes
up the complete servicename. If setto"" (blank
string) the property is NOT included in the
construction of the QName representing the
service and the service name will just be the
local ServiceName with no namespace.

Acquiring and invoking a service using messaging

To make acall to a service through messaging, acquire the service by its name using the M essageHel per:

QNarre servi ceNanme =

new QNane("t est AppsShar edQueue",

"shar edQueue");

26

KSB

KEWBanpl eJavaSer vi ce testJavaAsyncServi ce = (KEWsanpl eJavaSer vi ce)
KsbApi Servi ceLocat or . get MessageHel per (). get Servi ceAsynchr onousl y(servi ceNane) ;

At this point, the testJavaA syncService can be called like anormal JavaBean:

t est JavaAsyncServi ce. i nvoke(new d i ent AppSer vi ceShar edPayl oadObj (" nessage content", false));

Because this is a queue, a single message is sent to one of the beans bound to the service name
new QName("testAppsSharedQueue”, "sharedQueue”). That 'message’ is the call 'invoke' and it takes a
ClientAppServiceSharedPayloadObj. Typically, messaging is done asynchronously. Messages are sent
when the currently running JTA transaction is committed - that is, the messaging layer automatically
synchronizeswith the current transaction. So, using JTA, even though the aboveiscoded in line with code,
invocation is normally delayed until the transaction surrounding the logic at runtime is committed.

When not using JTA, the message is sent asynchronously (by a different thread of execution), but it's sent
ASAP.

To review, the requirements to use a service that is exposed to the bus on a different machine are:
1. The service name
2. Theinterface to which to cast the returned service proxy object

3. The ExceptionMessageHandler required by the service in case invocation fails

Note

Typically, service providers give clients a JAR with this content or organizations maintain aJAR
with this content.

To complete the example: Below is the Spring configuration used to expose this service to the bus. This
is taken from the file TestClient1SpringBeans.xml:

<!-- bean declaration -->
<bean i d="sharedQueue" class=" org.kuali.rice.ksb.testclientl.dientApplSharedQueue" />

<bean i d="ksbConfigurer" class="org.kuali.rice.ksb.messagi ng.confi g. KSBConfi gurer">

<property name="services">
<list>
<bean cl ass=" org. kuali.rice.ksh. messagi ng. JavaServi ceDefinition">
<property name="servi ce" ref="sharedQueue" />
<property name="| ocal Servi ceName" val ue="shar edQueue" />
<property name="servi ceNameSpaceURI " val ue="t est AppsShar edQueue" />
</ bean>
<... nore .../>
</list>
</ property>
</ bean>

Thisis located in the Spring file of the application exposing the service (in other words, the location in
which the actual invocation will occur). The client does not need a Spring configuration to invoke the
service.

There are two messaging call paradigms, called Topics and Queues. When any number of services is
declared a Topic, then those services areinvoked at least once or multiple times. If any number of services
is declared a Queue, then one and only one service name will be invoked.

Getting responses from service calls made with
messaging

You can use Callback objects to get responses from service calls made using messaging. Acquiring a
service for use with a Callback:

27

KSB

QNarre servi ceName = new QName(" Testd 1", "testXm AsyncService");
Si npl eCal | back cal | back = new Si npl eCal | back() ;
KSBXM_Ser vi ce test Xm AsyncServi ce = (KSBXM.Ser vi ce)
KsbApi Ser vi ceLocat or . get MessageHel per (). get Servi ceAsynchr onousl y(servi ceNane, cal | back);

t est Xml AsyncSer vi ce. i nvoke(" nessage content");

When the service is invoked asynchronously, the AsynchronousCallback object's (the SimpleCallback
class above) callback method is called.

When message persistence is turned on, this object is serialized with any method call made through the
messaging API. Take into consideration that this object (and the result of a method call) may survive
machine restart and therefore it’s recommended that you NOT depend on certain transient in-memory
resources.

Failover

Service call failover

Failover works the same whether making direct service calls or using messaging.

Services exported to the bus have automatic failover from the client’ s perspective. For example, if service
A isdeployed on machines 1 and 2 and aclient happensto get aproxy that pointsto machine 1 but machine
1 crashes, the KSB will automatically detect that the exception isaresult of some network issue and direct
the call to machine 2. KSB then removes machine 1 from the registry so new clients to the bus don't try to
acquire the service. When machine 1 returnsto the network it will register itself with the service registry
and therefore the bus.

When a message calls a service, the failover rules determine which service KSB assigns (topic or queue)
to the message.

Failover with queues

Because queues require only one call between all beans bound to the queue, if asingle call to aqueuefails,
failover to the next bean occurs. If successful, the call is done. If it is not successful, it continues until a
suitable bean is found. If none is found, the message is marked for retry later. Eventually, the message
either goes to KSB exception messaging or successfully completes.

Failover with topics

KSB

If amachinein atopicisunavailable, afailed call to that machine will continue to beretried until that call
is successful or that call goesinto KSB exception messaging.

Exception Messaging

Exception Messaging is the set of services and configuration options that handle messages that cannot
be delivered successfully. Exception Messaging is primarily used by configuring your service using
the properties outlined in KSB Module Configuration. When services are configured to use message
persistence and there is a problem invoking a service, the persisted message or service call isrelied upon
to make another call to that service until the cal is either:

1. Successful

2. Certain configuration policies have been met and the message goes into the Exception state

28

KSB

KSB

The Exception state means that KSB can't doing anything more with this message. The message will not
invoke properly. That generally means that some sort of technical intervention is required by both the
consumer and the provider of the service to determine what the problemiis.

All Exception behavior is configurable at the service level by setting the name of the class to be used as
MessageExceptionHandler. This class determines what to do when a client of a service cannot invoke a
message. The DefaultM essageExceptionHandler is enough to meet most requirements.

When a message is put into the Exception state, KSB puts it back into the message store and marks it
with a status of 'E'. At that point, it is up to the person responsible for monitoring this node on the bus to
determine what to do with the message.

Because the node exposing the service configures the MessageExceptionHandler, any clients depending
on the service need that M essageExceptionHandler and any dependent code and configuration.

Messaging Paradigms

KSB supports two types of messaging paradigms,; Queues and Topics, and the differences are explained
below. These are very similar to JMS messaging concepts. An open source solution was not used for
K SB messaging because an open source JM S provider wasn't found that provided JTA synchronization,
discovery, failover, and load balancing. Many claim such features, but when put to the test in real world
scenarios (i.e., machines going down and coming back up, databases failing, network connectivity issues);
none managed to reliably deliver messages.

The advantage here is that we can apply these messaging concepts to any support protocol with which
we can communicate.

Queues

When any number of services is bound to a queue and a method is invoked, one and only one service
gets the invocation.

Topics

When any number of services is bound to a topic and a method is invoked, all services are invoked AT
LEAST once or multiple times.

Message Fetcher

org.kuali.rice.ksh.messaging.MessageFetcher is a Runnable that needs to be configured by the client
application to retrieve stored messages from the database that weren’t processed when the node went down.
This can happen for many reasons. The machine can be under load and just crash.

When message persistence is enabled, a service that fails or throws an Exception stores preprocessed
messages in the database until they can be resent. This makes certain that a crash or emergency restart of
your machine will not result in message loss.

TheK SB doesnot automatically fetch all these messagesand attempt to invokethem when it starts, because
often the KSB is started when the services the messages are bound for are not yet started. For now, you
need to decide when to call the run method on the M essageFetcher. Becauseit'sa Runnable, you could also
put the MessageFetcher in the KSBThreadPool that is available on the KSBServicel ocator. You could
wrap it inaTimerTask, etc. All that isrequired isthis:

29

KSB

new MessageFet cher ((Integer) null).run()

Unfortunately, the cast to Integer is required. The MessageFetcher also has a constructor that takes along
variable as a parameter. This can be used to pull any message in the message store and put it in memory
for invocation. Integer is afetch size; null means al.

Load Balancing

L oad balancing between service calsis automatic. If there are multiple nodes that expose services of the
same name, clientswill randomly acquire proxies to each endpoint bound to that name.

Object Remoting

Asof Rice 2.0, Object remoting support has been removed.

Publishing Services to KSB

You can publish Services on the service bus either by configuring them directly in the application's
K SBConfigurer module definition, or by using the PropertyConditional ServiceBusExporter bean. In either
case, a ServiceDefinition is provided that specifies various bus settings and the target Spring bean.

KSBConfigurer

A service can be exposed by explicitly registering it with the KSBConfigurer module, services property:

<bean cl ass="org. kuali.rice. ksbh. nessagi ng. confi g. KSBConfi gurer">
<property name="serviceServletUl" val ue="${base url}/MYAPP/renoting/" />

<property nanme="services">
<list>
<bean cl ass="org. kuali.rice. ksb. api . bus. support. SoapServi ceDefi nition">
<property name="service">
<ref bean="nySoapService" />
</ property>
<property name="servicel nterface"><val ue>org. nyapp. servi ces. MySOAPSer vi ce</ val ue></ property>
<property nanme="I| ocal Servi ceNanme" val ue="nyExposedSoapService" />
</ bean>
<bean cl ass="org. kuali.rice. ksb. api . bus. support. JavaServi ceDefinition">
<property name="service">
<ref bean="myJavaService" />
</ property>
<property name="servicelnterface">
<val ue>or g. myapp. servi ces. MyJavaSer vi ce</ val ue></ property>
<property nanme="I| ocal Servi ceNanme" val ue="nyExposedJavaService" />
</ bean>

Service Exporter

You can aso publish Services in any context using the ServiceBusExporter (or
PropertyConditional ServiceBusExporter) bean. Note that KSBConfigurer must also be defined in your
RiceConfigurer.

<bean i d="nyapp. servi ceBus"
class="org. kuali.rice.core.framework. resour cel oader. d obal Resour ceLoader Ser vi ceFact or yBean" >
<property name="servi ceName" val ue="rice. ksh. servi ceBus"/>
</ bean>

<bean i d="nyAppServi ceExporter"
class="org. kuali.rice. ksb. api . bus. support. Servi ceBusExporter"
abstract="true">
<property name="servi ceBus" ref="nyapp. serviceBus"/>

30

KSB

</ bean>

<bean i d="myJavaServi ce. exporter" parent="nmyAppServi ceExporter">
<property name="servi ceDefinition">
<bean cl ass="org. kuali.rice. ksb. api . bus. support. JavaServi ceDefinition">
<property name="service">
<ref bean="nyJavaService" />
</ property>
<property name="servicelnterface">
<val ue>or g. myapp. servi ces. MyJavaSer vi ce</ val ue>
</ property>
<property name="| ocal Servi ceNane" val ue="nmyExposedJavaService" />
</ bean>
</ property>
</ bean>

<bean i d="nmySoapServi ce. exporter" parent="nmyAppServi ceExporter">
<property name="servi ceDefinition">
<bean cl ass="org. kual i.rice. ksb. api . bus. support. SoapServi ceDefi nition">
<property name="service">
<ref bean="nySoapService" />
</ property>
<property name="servicelnterface">
<val ue>or g. myapp. servi ces. MySOAPSer vi ce</ val ue>
</ property>
<property name="| ocal Servi ceNane" val ue="nyExposedSoapService" />
</ bean>
</ property>

</ bean>

CallbackServiceExporter

The term "Callback Service" refers to services that client applications write and configure and which are
used by various modules of Rice including KIM, KEW, and KRMS. Because of the naming convention
on these, they are often referred to as "Type Services'. These include:

 KIM
* RoleTypeService
* PermissionTypeService
» GroupTypeService
e etc.

* KRMS

ActionTypeService

¢ PropositionTypeService

AgendaTypeService
e etc.
« KEW
» PeopleFlowTypeService

These are typically called back into from the Rice Standalone Server when needing information for
rendering of various components in the server-side user interface. Additionally, in some cases they can
also be used to provide custom processing hooks for different components of the various Kuali Rice
frameworks.

31

KSB

Version Compatibility for Callback Services

Callback services (like al servicesin Rice) can be evolved over time and across versions. This means that
new functionality might be added to them. Since the Rice Standalone Server interacts with these services
remotely, it really needs to know what version of a particular callback service that the client application
is running. They also must be published as the appropriate type of service endpoint that the standalone
server knows how to talk to (i.e. SOAPinstead of Java Serialization). Thankfully, the KSB serviceregistry
can store metadata about a service which includes the service version. However, in order to for this to
work properly the client application must be sure they publish the service with a version that matches the
version of Ricethey are using.

In order to make this easier on client applications, a helper has been implemented which can be used for
this purposein Rice.

Callback Service Exporter Helper

There is a helper class which can be wused by client applications to
export these callback services onto the Kuai Service Bus. The class s
org. kual i .rice. ksh. api . bus. support. Cal | backServi ceExporter. This is a class
which can be wired up inside of a Spring context in order to publish a callback service to the KSB with
the appropriate Rice version. The version of Rice is packaged up into the Rice jars inside of afile called
common-config-defaults.xml and it uses the version that matches the version of Rice in the POM when
the jar was packaged.
Typical configuration might look like the following:
<bean i d="sanpl eAppPeopl eFl owTypeServi ce. exporter"

class="org. kual i .rice. ksb. api . bus. support. Cal | backSer vi ceExporter"

p: servi ceBus-ref="rice. ksh. servi ceBus"

p: cal | backSer vi ce-r ef =" sanpl eAppPeopl eFl owTypeSer vi ce"

p: servi ceNameSpaceURl ="http://rice. kual i . or g/ sanpl e- app"

p: | ocal Servi ceName="sanpl eAppPeopl eFl owTypeSer vi ce"
p: servicel nterface="org. kuali.rice. kew framework. peopl ef | ow. Peopl eFl owTypeSer vi ce"/ >

The javadocs for Cal | backSer vi ceExport er provide more detail on the options for publishing of
callback services.

ServiceDefinition properties

ServiceDefinitions define how the service is published to the KSB. Currently KSB supports three types of
services: Java RPC (via serialization over HTTP), SOAP, and IMS.

Basic parameters

All service definitions support these properties:

Table 2.3. ServiceDefinition Properties

Property Description Required
Service The reference to the target service bean yes
local ServiceName The"local" part of the service name; together with a | yes

namespace this forms a qualified name, or QName

serviceNameSpaceURI The "namespace” part of the service name; together | Not required; if omitted, the
with alocal nameformsaqualified name, or QName | Cor e.currentContextConfig().getM essageEntity()
is used when exporting the service

serviceEndpoint URL at which the service can beinvoked by aremote | Not required; defaults to the serviceServletUrl
cal parameter defined in the Rice config

32

KSB

Property Description Required
retryAttempts Number of attemptstoretry the serviceinvocation on | Not required; defaultsto O
failure; for serviceswith side-effectsyou are advised
to omit this property
millisToLive Number of milliseconds the cal should persist | Not required; defaults to no limit (-1)
before resulting in failure
Priority Priority Not required; defaultsto 5
M essageExceptionHandler Reference to a MessageExceptionHandler that | Not required; default implementation handlesretries
should be invoked in case of exception and timeouts
busSecurity Whether to enable bus security for the service Not required; defaults to ON

ServiceNameSpaceURI/MessageEntity

ServiceNameSpaceURI is the same as the Message Entity that composes the qualified name under which
the service is exposed. When omitted, this namespace defaults to the message entity configured for Rice
(e.g., inthe RiceConfigurer), thereby qualifying the local name. Note: Although thisimplicit qualification
occurs during export, you must always specify an explicit message entity when acquiring a resource, for
example:

d obal Resour ceLoader . get Servi ce(new QName(" MYAPP", "nyExposedSoapService"))

SOAPServiceDefinition

Table 2.4. SOAPServiceDefinition

Property | Description | Required

servicelnterface The interface to expose and from which to generate the

WSDL

Not required; if omitted the first interface implemented by
the classis used

JavaServiceDefinition

Table 2.5. JavaServiceDefinition

Property Description Required

servicelnterface The interface to expose Not required; if omitted, all application-layer interfaces
implemented by the class are exposed

servicelnterfaces A list of interfaces to expose Not required; if omitted, all application-layer interfaces
implemented by the class are exposed

Publishing Rice services

We show how you can "import" Rice services into the client Spring application context in Configuring
KSB Client in Spring. Using this technique, you can also publish Rice services on the KSB:

<l-- inport a Rice service fromthe ResourcelLoader stack -->
<bean i d="nyapp. aRi ceServi ce"
class="org. kuali.rice.core.framework. resourcel oader. d obal Resour ceLoader Ser vi ceFact or yBean" >
<property name="servi ceName" val ue="aRi ceService"/>
</ bean

<l-- if Rice does not publish this service on the bus, one can explicitly publish it -->
<bean i d="nyAppServi ceExporter"
class="org. kuali.rice. ksb. api . bus. support. Servi ceBusExporter"
abstract="true">
<property name="servi ceBus" ref="nyapp. serviceBus"/>
</ bean>

<bean id="nyJavaService. exporter" parent="nyAppServi ceExporter">
<property name="servi ceDefinition">
<bean cl ass="org. kual i .rice. ksb. api . bus. support. JavaSer vi ceDef i ni ti on">

33

KSB

<property name="service">
<ref bean="aRi ceService" />
</ property>
<property name="servicelnterface" value="org.kuali.rice...Sonmelnterface" />
<property name="| ocal Servi ceName" val ue="aPubl i shedRi ceService" />
</ bean>
</ property>
</ bean>

Warning

Not all Rice services areintended for public use. Do not arbitrarily expose them on the bus

The ResourceLoader Stack

Overview

Riceis composed of a set of modules that provide distinct functionality and expose various services.

e Services in Rice are accessible by the Resourcel oader, which can be thought of as analogous to
Spring's BeanFactory interface. (In fact, Rice modules themselves back Resourcel oaders with Spring
bean factories.)

» Services can be acquired by name. (Rice adds severa additiona concepts, including qualification of
service names by namespaces.)

» When the RiceConfigurer isinstantiated, it constructs a Global Resourcel oader that is composed of
an initial RootResourcel.oader (which may be provided by the application via the RiceConfigurer), as
well as resource loaders supplied by each module:

Figure 2.2. Global Resource L oader

GlabiRetgurteloader

—] N —

R B i A ke

604 ¢

The GlobalResour cel. oader is the top-level entry point through which al application code should go to
obtain services. The getService call will iterate through each registered Resourcel oader, looking for the
service of the specified name. If the service is found, it is returned, but if it is not found, ultimately the
call will reach the RemoteResour cel oader. The Root Resourcel oader is registered by the KSB module
that exposes services that have been registered on the bus.

KSB

Accessing and overriding Rice services and beans from
Spring

ResourceLoaderFactoryBean

In addition to programmatically acquiring service references, you can also import Rice services into a
Spring context with the help of the GlobalResour cel oader Ser viceFactoryBean:

This bean is bean-name-aware and will produce a bean of the same name obtained from Rice's resource
loader stack. The bean can then be wired in Spring like any other bean.

Installing an application root resource loader

Applications can install their own root Resourcel oader to override beans defined by Rice. To do so,
inject a bean that implements the Resourcel oader interface into the RiceConfigurer rootResourcel oader
property. For example:

<l-- a Rice bean we want to override in our application -->
<bean i d="overriddenRi ceBean" class="ny. app. package. M/Ri ceServi cel npl "/ >

<!-- supplies services fromthis Spring context -->
<bean i d="appResour ceLoader" cl ass="org. kuali.rice.core.inpl.resourcel oader. SpringBeanFact oryResour ceLoader"/ >
<bean id="coreConfigurer" class="org. kuali.rice.core.inpl.config.nodule.CoreConfigurer">
<property nanme="dat aSource" ref="standal oneDat aSource" />
<property name="transacti onManager" ref="atom kosTransacti onManager" />
<property name="user Transaction" ref="atom kosUser Transaction" />
<property name="r oot Resour ceLoader" ref="appResourcelLoader"/>
</ bean>

Warning
Application Resour cel oader and Circular Dependencies

Be careful when mixing registration of an application root resourceloader and lookup of Rice
services through the Global Resourcel oader. If you are using an application resourcel oader to
override a Rice bean, but one of your application beans requires that bean to be injected during
startup, you may create a circular dependency. In this case, you will either have to make sure you
are not unintentionally exposing application beans (which may not yet have been fully initialized
by Spring) in the application resourceloader, or you will have to arrange for the GRL lookup
to occur lazily, after Spring initialization has completed (either programmatically or through a

proxy).
Overriding Rice services: Alternate method

A Rice-enabled webapp (including the Rice Standalone distribution) contains a multiple module
configurers, typically defined in an xml Spring context file. These load the Rice modules. Each module
hasits own Resourcel oader, which istypically backed by an XML Spring context file. Overriding and/or
setting global beans and/or services (such as data sources and transaction managers) is done as described
above. However, because in each module services can be injected into each other, overriding module
services involves overriding the respective modul€' s Spring context file.

The cleanest way to do thisis to set the rice.* .addtional SpringFiles to an accessible spring beans file that
overrides one or more spring beansin the existing modul€'s context. Each rice modul e has a corresponding
configuration parameter that can be pointed to afile that will override any existing services.

<param nane="ri ce. kew. addi ti onal Spri ngFi | es">cl asspat h: nyapp/ confi g/ MyAppKewOver ri deSpri ngBeans. xm </ par an>

<par am name="ri ce. ksb. addi ti onal Spri ngFi | es">cl asspat h: myapp/ confi g/ MyAppKsbOverri deSpri ngBeans. xni </ par an>

35

KSB

<param nane="ri ce. kr ns. addi ti onal Spri ngFi | es">cl asspat h: nyapp/ confi g/ M/AppKr nsOverri deSpri ngBeans. xnl </ par an>

<param nane="ri ce. ki m addi ti onal Spri ngFi | es">cl asspat h: nyapp/ confi g/ MyAppKi nOver ri deSpri ngBeans. xm </ par an>

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE beans PUBLIC "-//SPRI NG /DTD BEAN /EN' "http://ww. spri ngfranmework. org/ dt d/ spri ng- beans. dtd">

<!-- override of KNS encryption service -->
<beans>
<!-- override encryption services -->
<bean id="encryptionService" class="edu.ny.school . nyapp. service.inpl.MEncryptionServicelnpl" |azy-

init="true">
<property name="ci pher Al gorithnm' val ue="${encryption.cipherA g}"/>
<property name="keyAl gorithni val ue="${encryption. keyAl g}"/>
<property name="key" val ue="${encryption. key}"/>
<property name="enabl ed" val ue="${encryption. busEncryption}"/>
</ bean>

</ beans>

KSB Security -- STILL NEEDS TO BE
REVIEWED!!!!

Overview

Acegi handles the security layer for KSB. Acegi uses remote method invocation to hold the application’s
security context and to propagate this object through to the service layer.

Credentials types
There are several security types you can use to propagate the security context object:
* CAS
« USERNAME_PASSWORD
* JAAS
» X509

CredentialsSource

The CredentialsSource is an interface that helps obtain security credentials. It encapsulates the actual
source of credentials. The two ways to obtain the source are:

» X509CredentialsSource - X509 Certificate
» UsernamePasswordCredential sSource - Username and Password
KSB security: Server side configuration

Here is a code snippet that shows the changes needed to configure KSB security on the server side:

<bean id="ksbConfigurer" class="org. kuali.rice.ksb.nessagi ng. confi g. KSBConfi gurer">

<l-- Oher properties renoved -->
<property name="services">
<list>

<bean cl ass="org. kuali.rice. ksb. api . bus. support. SoapServi ceDefi niti on">
<property name="service">
<ref bean="soapService" />
</ property>
<property name="I| ocal Servi ceName" val ue="soaplLocal Nane"/ >

36

KSB

<property name="servi ceNameSpaceURl " val ue="soapNaneSpace"/ >

<property name="servicelnterface" val ue="org. kual i . ksh. exanpl es. SOAPEchoSer vi ce"/ >
<property name="priority" value="3"/>

<property name="retryAttenpts" value="1" />

<property name="busSecurity" val ue="fal se"></property>

<l-- Valid Values: CAS, KERBERCS -->
<property name="credential sType" val ue="CAS"/>

</ bean>

<bean cl ass="org. kuali.rice. ksb. api . bus. support. JavaServi ceDefinition">
<property name="service" ref="echoService"></property>
<property name="| ocal Servi ceNane" val ue="j avaLocal Nane" />
<property name="servi ceNameSpaceURl " val ue="j avaNaneSpace"/ >
<property name="servicelnterface" val ue="org. kual i . ksh. exanpl es. EchoSer vi ce"/ >
<property name="priority" value="5" />
<property name="retryAttenpts" value="1" />
<property name="busSecurity" value="true" />

<l-- Valid Values: CAS, KERBERCS -->
<property name="credential sType" val ue="CAS"/>

</ bean>
<l-- Oher services renoved -->
</list>
</ property>

</ bean>

KSB security: Client side configuration

<bean i d="cust onCredenti al sSour ceFact ory"
class="edu. nyinstituition.myapp.security.credentials.Credential sSourceFactory" />

<bean id="coreConfigurer" class="org. kuali.rice.core.inpl.config.nodule.CoreConfigurer">

<l-- Other properties renoved -->
<property name="credenti al sSourceFactory" ref="custonCredenti al sSourceFactory">
</ bean>

KSB connector and exporter code

Connectors
Connectors are used by a client to connect to a service that is usually exposed through the KSB registry.
The Service Connector factory provides abean that holds a proxy to aremote service with some contextual
information. Thefactory determinesthetype of proxy to invoke based on the servicedefinition. Theservice

definition used by the server is serialized to the database and de-serialized by the client. There are different
types of connectors supported by KSB, most notable are SOAP and Javaover HTTP.

Exporters

Services, when exported, can be secured using standard Acegi methods. A security manager and an
interceptor help organize the set of Business Objects that are exported.

Security and Keystores

Generating the Keystore
For client applications to be able to consume secured services hosted from a Rice server, the implementer

must generate a keystore. As an initial setup, KSB security relies on the creation of a keystore using the
JVM keytool asfollows:

Step 1: Create the Keystore

The first step is to create the keystore and generate a public-private key combination for the client
application. When using secured services on the KSB, we require the client applications transfer their

37

KSB

messages digitally signed so that Rice can verify the messages authenticity. Thisis why we must generate
these keys.

Generate your initial Rice keystore asfollows:

keyt ool -genkey -validity 9999 -alias rice -keyal g RSA -keystore rice. keystore -dnanme “"cn=rice" -keypass rlc3pw
-storepass rlc3pw

Caution

keypass and storepass should be the same.

ric3pw isthe password used for the provided example.

Step 2: Sign the Key

This generates the keystore in afile called "rice_keystore" in the current directory and generates an RSA
key with the alias of "rice". Since there is no certificate signing authority to sign our key, we must sign it
ourselves. To do this, execute the following command:

keytool -selfcert -validity 9999 -alias rice -keystore rice. keystore -keypass rlc3pw -storepass rlc3pw

Step 3: Generate the Certificate

After the application's certificate has been signed, we must export it so that it can be imported into the
Rice keystore. To export a certificate, execute the following command:

keytool -export -alias rice -file rice.cert -keystore rice.keystore -storepass rlc3pw

Step 4: Import Application Certificates

The client application's certificate can be imported using the following command:

keytool -inport -alias rice -file client.application.cert.file -keystore rice.keystore -storepass rilc3pw

The keystorefilewill end up deployed wherever your keystores are stored so hang on to both of these files
and don't lose them! Also, notice that we specified avalidity of 9999 days for the keystore and cert. This
is so you do not have to continually update these keystores. This will be determined by your computing
standards on how you handle key management.

Configure KSB to use the keystore

The following params are needed in the xml config to allow the ksb to use the keystore:

<param nanme="keystore.file">/usr/local/rice/rice.keystore</paran>
<par am name="keystore. al i as">ri ce</ par an»>
<par am name="keyst or e. passwor d" > password </ paranp

» keystorefile - isthe location of the keystore
» keystore.dias- isthe aias used in creating the keystore above

 keystore.password - thisis the password of the alias AND the keystore. This assumes that the keystore
isup in such away that these are the same.

BasicAuthenticationService

TheBasicAuthenticationSer vice allows services published on the KSB to be accessed securely with basic
authentication. As an example, here is how the Workflow Document Actions Service could be exposed
as a service with basic authentication.

38

KSB

» Add the following bean to a spring bean file that is loaded as a part of the KEW module.

<bean id="rice. kew. wor kf | owDocunent Acti onSer vi ceBasi cAut henti cati on. exporter"
par ent =" kewSer vi ceExporter" lazy-init="fal se">
<property name="servi ceDefinition">
<bean parent ="kewServi ce">
<property name="service">
<ref bean="rice. kew. wor kf | owDocunent Acti onsServi ce" />
</ property>
<property name="| ocal Servi ceNane"
val ue="wor kf | owDocurent Act i onsSer vi ce- basi cAut henti cation" />
<property name="busSecurity"
val ue="${ri ce. kew. wor kf | owDocurent Act i onsServi ce. secure}" />
<property name="basi cAut henti cati on" val ue="true" />
</ bean>
</ property>
</ bean>

» Add the following bean to a spring bean file that isloaded as a part of the KSB module.

<bean cl ass="org. kual i.rice.ksbh. servi ce. Basi cAut henti cati onCredenti al s">
<property name="servi ceNaneSpaceURl "
value="http://rice.kuali.org/kewv2_0" />
<property nanme="| ocal Servi ceNane"
val ue="wor kf | onDocurent Acti onsSer vi ce- basi cAut henti cation" />
<property nanme="user nane"
val ue="${ Wr kf | owDocunent Acti onsServi ce. user nane}" />
<property nanme="password"
val ue="${ Wr kf | owDocunent Act i onsServi ce. password}" />
<property name="aut henti cati onServi ce" ref="basi cAuthenticati onService" />
</ bean>

» Add the following config parameters to a secure file that isloaded when the application is started.

<par am nanme="Wor kf | owDocunent Act i onsSer vi ce. user nane" >user nane</ par an>
<par am nanme="Wor kf | owDocunent Act i onsSer vi ce. passwor d" >pw</ par an>

 To verify the new service can be called, it can be tested using atool such as soapUIl. Hereis an example
call which will invoke the method logAnnotation on Wor kflowDocumentA ctionsSer vicel mpl.

<soapenv: Envel ope xm ns: soapenv="http://schenmas. xm soap. or g/ soap/ envel ope/ "
xm ns:v2="http://rice. kuali.org/kew v2_0">
<soapenv: Header >
<wsse: Security xml ns:wsse="http://docs. oasi s-open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss- wssecuri ty-
secext - 1. 0. xsd"
soapenv: nust Under st and="1">
<wsse: User nameToken xml ns: wsu=
"http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-wssecurity-utility-1.0.xsd"
wsu: | d="User naneToken- 1815911473" >
<wsse: User name>user name</ wsse: User name>
<wsse: Password Type=
"http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss- user nane- t oken-
profile-1. 0#Passwor dText " >pw</ wsse: Passwor d>
</ wsse: User naneToken>
</ wsse: Security>
</ soapenv: Header >
<soapenv: Body>
<v2: | ogAnnot ati on>
<v2: docunent | d>123456</ v2: docunent | d>
<v2: princi pal | d>adm n</v2: princi pal | d>
<v2:annotation>Add this annotation pl ease. </v2:annotati on>
</v2: | ogAnnot ati on>
<soapenv: Body>
</ soapenv: Envel ope>

Queue and Topic invocation

When you deploy a service, you can configure it for queue or for topic invocation using the setQueue
property on the ServiceDefinition. The default is to register it as a queue-style service. The distinction
between queue and topic invocation occurs when there is more than one service registered under the same
QName.

39

KSB

Queue invocation

Remote service proxies obtained through the resource loader stack using get Service(QName) (ultimately
through the ServiceBus) are inherently synchronous. In the presence of multiple service registrations, the
ServiceBus will choose one at random.

When invoking services asynchronously through the M essageH el per, an asynchronous service call proxy
will be constructed with all available service definitions. The M essageSer vicel nvoker is called to invoke
each service. If the service is defined as a queue service, then the ServiceBus will be consulted in
a similar fashion to determine a single service to call. After the first queue service invocation the
M essageSer vicel nvoker will return.

Topic invocation

The simplest way to invoke a topic service is using the M essageHelper functions to invoke the service
asynchronously. As described above for an asynchronous queue invocation, an asynchronous service call
proxy will be constructed with the list of all of the services registered as a topic under the given name.
Each of these services will be independently obtained and invoked by the M essageSer vicel nvoker .

Invoking a topic synchronously, however, requires use of a synchronous service call proxy to aggregate
all of the topic's services. This functionality is not directly available viathe ServiceBus APl because the
ServiceBus acts as afacade for direct service invocation.

To invoke a topic synchronously, you can construct a SynchronousServiceCallProxy using
SynchronousSer viceCallProxy.createlnstance, passing the list of Endpoint obtained using
ServiceBus.getEndpoints(QName). This is done, for example, by MessageHelper mpl when the bus
has been forced into synchronous mode via the message.delivery config param.

The synchronous service call proxy isthe same as the asynchronous service call proxy, except that it does
not queue up theinvocation, it will invokeit blockingly. The same queue/topic distinctions described above
apply when you invoke atopic synchronously. Under the normal queue situation, use of the synchronous
service call proxy is not necessary because, as mentioned above, remote services obtained through the
ServiceBus are naturally synchronous. Y ou can see thisin the example below:

Li st <Endpoi nt > servi cesToProxy = KsbApi Servi ceLocat or. get Servi ceBus() . get Endpoi nt s(gnane) ;

SynchronousServi ceCal | Proxy sscp = return SynchronousServi ceCal | Proxy. creat el nstance(servi cesToProxy, call back,
context, valuel, value2);

KSB Parameters

Hereis acomprehensive set of configuration parameters used to configure the Kuali Service Bus.

Core Parameters

Table 2.6. Core Parameters

Core Description Default

serviceServletUrl URL that maps to the KSB Servlet. It handles incoming | ${ application.url}/remoting/
requests from the service bus.

rice.ksb.config.allowSelfSignedSSL Indicates if self-signed certificates are permitted for https | false
communication on the service bus

application.id Application identifier for client application

keystorefile Path to the keystore file to use for security

keystore.alias Alias of the standalone server's key

40

KSB

Core Description Default
keystore.password Password to access the keystore and the server's key

ksb.mode Mode in which to load the KSB module local

ksb.url The URL of the KSB web application H application.url} /ksb

rice.ksh.struts.config.files

Thefile that defines the struts context for the KRice KSB
struts module

/ksb/WEB-INF/struts-config.xml

dev.mode

If true, application will not publish or consume services
from the central service registry, but will maintain a local
copy of the registry. This is intended only for client
application development purposes.

false

bam.enabled

If true, will monitor and log the service calls made and
general business activity performed to the database.

Recommendation: Enable this only for testing purposes, as
there is a significant performance impact when enabled.

false

message.persistence

If true, messages are stored in the database until sent. If
false, they are stored in memory.

true

message.delivery

Specifies whether messages are sent synchronously are
asynchronously. Valid values are synchronous or async

async

message.of f

If set to true, then messageswill not be sent but will instead
pileupinthe message queue. I ntended for development and
debugging purposes only.

false

Routing.|mmediateExceptionRouting

If true, messages will go immediately to exception routing
if they fail, rather than being retried

false

RouteQueue.maxRetryAttempts

Default number of times to retry messages that fail to be
delivered successfully.

RouteQueue.maxRetryAttemptsOverride

If set, will override the max retry setting for ALL services,
even if they have their own custom retry setting.

ksh.org.quartz.*

Can define any property beginning with ksb.org.quartz and
itwill be passed to theinternal KSB quartz configuration as
aproperty beginning with org.quartz (more details below)

useQuartzDatabase

serviceServletUrl

If true, then Quartz scheduler in Rice will use a database-
backed job store; if false, then jobs will be stored in
memory

true

The URL that resolvesto the KSB servlet that handlesincoming requests from the service bus. All services
exported onto the service bus use this value to construct their endpoint URLs when they are published to
the service registry. See section below on configuring the KSBDispatcher Serviet. This parameter should
point to the absolute URL of where that servlet is mapped. It should include atrailing slash.

application.id

Anidentifier that indicates the name of the logical node on the service bus. If the application isrunning in
acluster, this should be the same for each machinein the cluster. Thisis used for namespacing of services,
among other things. All services exported from the client application onto the service bus use this value
as their default namespace unless otherwise specified.

keystore.file, keystore.alias, keystore.password

See the documentation below on keystore management.

ksb.mode

Mode in which to load the KSB module. Valid values are local and embedded. There is currently no
difference in how the KSB module loads based on these settings. It will alwaystry to load the KSB struts
module if a KualiActionServiet is configured.

41

KSB

ksb.url

The URL of the KSB web application screens

rice.ksb.struts.config.files

The file that defines the struts context for the KRice KSB struts module. The struts module is loaded
automatically if a KualiActionServiet is configured in the web.xml.

dev.mode

Indicates whether this node should export and consume services from the entire service bus. If set to false,
then the machine will not register its services in the global service registry. Instead, it can only consume
services that it has available locally. In addition to this, other nodes on the service bus will not be able to
"see" this node and will therefore not forward any messagesto it.

message.persistence

If true, then messages will be persisted to the datastore. Otherwise, they will only be stored in memory.
If message persistenceis not turned on and the server is shutdown while there are still messages that need
to be sent, those messages will be lost. For a production environment, it is recommended that message
persistence be set to true.

message.delivery

Can be set to either synchronous or async. If thisis set to synchronous, then messages that are sent in
an asynchronous fashion using the KSB APl will instead be sent synchronously. Thisis useful in certain
development and unit testing scenarios. For a production environment, it is recommended that message
delivery be set to async.

message.off
If set to true then asynchronous messages will not be sent. In the case that message persistence is turned
on, they will be persisted in the message store and can even be picked up later using the Message Fetcher.

However, if message persistence is turned off, these messages will be lost. This can be useful in certain
debugging or testing scenarios.

RouteQueue.maxRetryAttempts

Sets the default number of retries that will be executed if a message fails to be sent. This retry count can
also be customized for a specific service. (See Exposing Services on the Bus)

RouteQueue.timelncrement

Sets the default time increment between retry attempts. As with RouteQueue.maxRetryAttempts this can
also be configured at the service level.

RouteQueue.maxRetryAttemptsOverride

If set withanumber, it will temporarily set theretry attemptsfor ALL services going into exception routing.
A good way to prevent all messages in a node that is having trouble from making it to exception routing
is by setting the number arbitrarily high. The message.off param does the same thing.

42

KSB

Routing.ImmediateExceptionRouting

If set to true, then messagesthat fail to be sent will not bere-tried. Instead their MessageExceptionHandler
will beinvoked immediately.

useQuartzDatabase

When using the embedded Quartz scheduler started by the KSB, indicates whether that Quartz scheduler
should store its entries in the database. If thisis true, then the appropriate Quartz properties should be set
aswell (see ksh.org.quartz.* below).

ksb.org.quartz.*

Can be used to pass Quartz properties to the embedded Quartz scheduler. See the configuration
documentation on the Quartz site. Essentially, any property prefixed with ksb.org.quartz. will have the
"ksh." portion stripped and will be sent as configuration parameters to the embedded Quartz scheduler.

KSB Configurer Properties

In addition to the configuration parameters available in the KRice configuration system, the
KSBConfigurer bean has some properties that can be injected to configureit:

exceptionMessagingScheduler

By default, the KSB uses an embedded Quartz scheduler for scheduling the retry of messages that fail to
be sent. If desired, a Quartz scheduler can instead be injected into the KSBConfigurer and it will use that
scheduler instead. See Quartz Scheduling for more detail.

messageDataSource

Specifies the javax.sgl.DataSour ce to use for storing the asynchronous message queue. If not specified,
this defaults to the DataSource injected into the RiceConfigurer.

If this DataSource is injected, then the registryDataSource must also be injected, and vice-versa.
registryDataSource

Specifies the javax.sql.DataSour ce to use for reading and writing from the Service Registry. If not
specified, this defaults to the DataSource injected into the RiceConfigurer.

If this DataSource isinjected, then the messageDataSour ce must also be injected, and vice-versa.
overrideServices

See Acquiring and invoking services
Services

See Acquiring and invoking services

JAX-RS / RESTful services

Rice now alows alows RESTful (JAX-RS) services to be exported and consumed on the
Kuali Service Bus (KSB). For some background on REST, see http://en.wikipedia.org/wiki/
Representational_State Transfer.

43

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer

KSB

For details on JAX-RS, see JSR-311 [http://jcp.org/en/jsr/detail 2id=311].

Caveats

» The KSB does not currently support "busSecure" (digital signing of requests & responses) REST
services. Attempting to set a REST service's "busSecure" property to "true” will result in a
RiceRuntimeException being thrown. Rice can be customized to expose REST servicesin asecureway,
e.g. using SSL and an authentication mechanism such as client certificates, but that is beyond the scope
of this documentation.

« If the JAX-RS annotations on your resource class don't cover al of its public methods, then accessing

the non-annotated methods over the bus will result in an Exception being thrown.

A Simple Example

To expose a simple JAX-RS annotated service on the bus, you can follow this recipe for your spring

configuration (which comes from the Rice unit tests):
<!-- The service inplenentation you want to expose -->

<bean i d="basebal | CardCol | ecti onServi ce"
class="org. kuali.rice.ksh.testclientl. Basebal | CardCol | ecti onServicel npl"/>

<l-- The service definition which tells the KSB to expose our RESTful service -->
<bean cl ass="org. kual i .rice. ksb. messagi ng. RESTSer vi ceDefi ni ti on">
<property name="servi ceNameSpaceURl " val ue="test" />

<l-- as noted earlier, the servicePath property of RESTServiceDefinition can't be set here -->

<l-- The service to expose. Refers to the bean above -->
<property name="servi ce" ref="basebal | CardCol | ecti onService" />

<! -- The "Resource class", the class with the JAX-RS annotations on it. Could be the sane as the
<l-- service inplenmentation, or could be different, e.g. an interface or superclass -->

<property name="resourceC ass"
val ue="org. kual i . rice. ksb. nessagi ng. r enot edser vi ces. Basebal | Car dCol | ecti onServi ce" />

<l-- the name of the service, which will be part of the RESTful URLs used to access it -->
<property name="| ocal Servi ceNane" val ue="basebal | CardCol | ecti onServi ce" />
</ bean>

The following javainterface uses JAX-RS annotations to specify its RESTful interface:
/1 ...eliding package and inports

@ath("/")

public interface Basebal | CardCol | ecti onService {
@ET
public List<Baseball Card> getAll ();

| **

* gets a card by it's (arbitrary) identifier
*
/

@ET

@at h("/Basebal | Card/id/{id}")

publ i ¢ Basebal | Card get (@Pat hParan("id") Integer id);

/**
* gets all the cards in the collection with the given player nane
*
/

@ET
@Pat h("/ Basebal | Car d/ pl ayer Name/ { pl ayer Nanme} ")

http://jcp.org/en/jsr/detail?id=311
http://jcp.org/en/jsr/detail?id=311

KSB

public List<Basebal | Card> get (@Pat hPar an(" pl ayer Nane") String player Nane);

/**
* Add a card to the collection. This is a non-idenpotent nethod
* (because you can add nore than one of the same card), so we'll use @OCST
* @eturn the (arbitrary) nunerical identifier assigned to this card by the service
*/
@acsT

@Pat h("/ Basebal | Card")
public Integer add(Baseball Card card);

/**
* update the card for the given identifier. This will replace the card that was previously
* associated with that identifier.
*/

@ur

@at h("/Basebal | Card/id/{id}")

@onsunes("application/xm")

public void update(@Pat hParan("id") Integer id, Baseball Card card);

/**
* delete the card with the given identifier.
*/

@ELETE

@at h("/Basebal | Card/id/{id}")

public void del ete(@athParan("id") Integer id);

/**
* This method | acks JAX-RS annot ati ons
*
/
public void unannot at edMet hod() ;

Acquisition and use of this service over the KSB looks just like that of any other KSB service. In the
synchronous case:

Basebal | CardCol | ecti onServi ce basebal | CardCol | ecti on = (Basebal | CardCol | ecti onServi ce)
G obal Resour ceLoader . get Servi ce(new QNanme("test", "basebal | CardCol | ectionService");
)

Li st <Basebal | Card> al | \yM ckeyMant | es = basebal | CardCol | ection. get ("M ckey Mantle");
/1 basebal | CardCol | ecti on. <ot her service nethod>(...)
Il etc

Composite Services

Itisalso possibleto aggregate multiple Rice service implementationsinto asingle RESTful service where
requeststo different sub-paths off of the base service URL can be handled by different underlying services.
This may be desirable to expose a RESTful service that is more complex than could be cleanly factored
into asingle java service interface.

The configuration for a composite RESTfull service looks alittle bit different, and as might be expected
given the one-to-many mapping from RESTful service to java services, there are some caveats to using
that service over the KSB. Hereis a simple example of a composite service definition (which also comes
from the Rice unit tests):

<bean cl ass="org. kuali.rice. ksb. nessagi ng. RESTSer vi ceDefi ni ti on">
<property name="servi ceNanmeSpaceURl " val ue="test" />
<property name="I| ocal Servi ceNanme" val ue="kns" />
<property name="resources">
<list>
<ref bean="i nboxResource"/>
<ref bean="nmessageResource"/>
</list>
</ property>
<property name="servi cePath" value="/" />
</ bean>

45

KSB

<!-- the beans referenced above are just JAX-RS annotated Java services -->

<bean i d="i nboxResource" class="org. kuali.rice.ksb.testclientl.|nboxResourcelnpl">
<l-- ... eliding bean properties ... -->

</ bean>

<bean i d="nessageResource" class="org. kuali.rice.ksb.testclientl. MessageResourcel npl ">
<l-- ... eliding bean properties ... -->

</ bean>

As you can see in the bean definition above, the service name is kms, so the base service
url would by default (in a dev environment) be http://localhost:8080/kr-dev/remoting/kms/
. Acquiring a composite service such as this one on the KSB will actudly return you
a org.kuali.rice.ksh.messaging.serviceconnector s.Resour ceFacade, which allows you to get the
individual java servicesin acouple of ways, as shown in the following simple example:

Resour ceFacade knsService =

(Resour ceFacade) d obal Resour ceLoader . get Ser vi ce(
new QNanme(NAMESPACE, KMS_SERVI CE)) ;

I/ Get service by resource nane (url path)

I nboxResour ce i nboxResource = knsServi ce. get Resour ce("i nbox");

|/ Get service by resource class

MessageResour ce nmessageResource = knsServi ce. get Resour ce(MessageResour ce. cl ass);

Additional Service Definition Properties

There are some properties on the RESTServiceDefinition object that let you do more advanced
configuration:

Providers
JAX-RS Providers allow you to define:
» ExceptionMappers which will handle specific Exception types with specific Responses.

» MessageBodyReaders and MessageBodyWriters that will convert custom Java types to and from
streams.

» ContextResolver providers allow you to create special JAXBContexts for specific types, which will
gives you fine control over marshalling, unmarshalling, and validation.

The JAX-RS specification calls for classes annotated with @Provider to be automaticaly used in the
underlying implementation, but the CXF project which Rice uses under the hood does not (at the time of
this writing) support this configuration mechanism, so this configuration property is currently necessary.

Extension Mappings

Ordinarily you need to set your ACCEPT header to ask for a specific representation of a resource.
ExtensionMappings let you map certain file extensions to specific mediatypes for your RESTful service,
so your URLSs can then optionally specify a media type directly. For example you could map the .xml
extension to the media type text/xml, and then tag .xml on to the end of your resource URL to specify
that representation.

Language Mappings

language mappings allow you away to control the the Content-Language header, which lets you specify
which languages your service can accept and provide.

46

KSB

Additional Information

For more information on what these properties provide, it may be helpful to consult the JAX-RS
specification, or the CXF documentation.

47

Glossary
A

Action List

Action List Type

Action Request

Action Request Hierarchy

Action Requested

Action Taken

A list of the user's notification and workflow items. Also called the user's
Notification List. Clicking an item in the Action List displays details about that
notification, if the item is a natification, or displays that document, if it is a
workflow item. The user will usually load the document from their Action Listin
order to take the requested action against it, such as approving or acknowledging
the document.

Thistellsyou if the Action List item is a notification or a more specific workflow
request item. When the Action List item is a notification, the Action List Typeis
"Notification."

A request to a user or Workgroup to take action on a document. It designates the
type of action that is requested, which includes:

» Approve: requests an approve or disapprove action.

» Complete: requests a completion of the contents of a document. This action
request is displayed in the Action List after the user saves an incomplete
document.

» Acknowledge: requests an acknowledgment by the user that the document has
been opened - the doc will not leave the Action List until acknowledgment has
occurred; however, the document routing will not be held up and the document
will be permitted to transaction into the processed state if neccessary.

» FYI: anctification to the user regarding the document. Documents requesting
FY| can be cleared directly from the Action List. Even if a document has FY|
reguests remaining, it will still be permitted to transition into the FINAL state.

Action requests are hierarchical in nature and can have one parent and multiple
children.

Theaction one needsto take on adocument; also thetype of action that isrequested
by an Action Request. Actions that may be requested of a user are:

» Acknowledge: requests that the users states he or she has reviewed the
document.

» Approve: requests that the user either Approve or Disapprove a document.

» Complete: requests the user to enter additional information in a document so
that the content of the document is complete.

* FYI: intended to simply makes a user aware of the document.

An action taken on a document by a Reviewer in response to an Action Request.
The Action Taken may be:

» Acknowledged: Reviewer has viewed and acknowledged document.

» Approved: Reviewer has approved the action requested on document.

48

Glossary

Blanket Approved: Reviewer has requested a blanket approval up to aspecified
point in the route path on the document.

Canceled: Reviewer has canceled the document. The document will not be
routed to any more reviewers.

Cleared FY|: Reviewer has viewed the document and cleared all of his or her
pending FYI(s) on this document.

Completed: Reviewer has completed and supplied all data requested on
document.

Created Document: User has created a document

Disapproved: Reviewer has disapproved the document. The document will not
being routed to any subsequent reviewers for approval. Acknowledge Requests
are sent to previous approvers to inform them of the disapproval.

Logged Document: Reviewer has added a message to the Route Log of the
document.

Moved Document: Reviewer has moved the document either backward or
forward in its routing path.

Returned to Previous Node: Reviewer has returned the document to a previous
routing node. When a Reviewer does this, all the actions taken between the
current node and the return node are removed and all the pending requests on
the document are deactivated.

Routed Document: Reviewer has submitted the document to the workflow
engine for routing.

Saved: Reviewer has saved the document for later completion and routing.

Superuser Approved Document: Superuser has approved the entire document,
any remaining routing is cancelled.

Superuser Approved Node: Superuser has approved the document through all
nodes up to (but not including) a specific node. When the document getsto that
node, the normal Action Requests will be created.

Superuser Approved Request: Superuser has approved a single pending
Approve or Complete Action Request. The document then goes to the next
routing node.

Superuser Cancelled: Superuser has canceled the document. A Superuser can
cancel a document without a pending Action Request to him/her on the
document.

Superuser Disapproved: Superuser has disapproved the document. A Superuser
can disapprove a document without a pending Action Request to him/her on
the document.

49

Glossary

Activated
Activation

Activation Type

Active Indicator

Ad Hoc Routing

Annotation

Approve

Approver

Attachment

Attribute Type

Authentication

Authorization

Author Universal 1D

 Superuser Returned to Previous Node: Superuser has returned the document
to a previous routing node. A Superuser can do this without a pending Action
Request to him/her on the document.

The state of an action request when it is has been sent to auser’s Action List.
The process by which requests appear in auser's Action List

Defines how a route node handles activation of Action Requests. There are two
standard activation types:

e Sequential: Action Requests are activated one at a time based on routing
priority. The next Action Request isn't activated until the previous request is
satisfied.

» Pardle: All Action Requests at the route node are activated immediately,
regardless of priority

An indicator specifying whether an object in the system is active or not. Used as
an aternative to complete removal of an object.

A type of routing used to route a document to users or groups that are not in the
Routing path for that Document Type. When the Ad Hoc Routing is complete, the
routing returns to its normal path.

Optional comments added by a Reviewer when taking action. Intended to explain
or clarify the action taken or to advise subsequent Reviewers.

A type of workflow action button. Signifies that the document represents avalid
business transaction in accordance with institutional needs and policies in the
user's judgment. A single document may require approval from several users, at
multiple route levels, before it movesto final status.

The user who approves the document. As a document moves through Workflow,
it movesoneroute level at atime. An Approver operates at a particular route level
of the document.

The pathname of a related file to attach to a Note. Use the "Browse..." button to
open thefile dialog, select the file and automaticaly fill in the pathname.

Used to strongly type or categorize the values that can be stored for the various
attributes in the system (e.g., the value of the arbitrary key/value pairs that can be
defined and associated with a given parent object in the system).

The act of logging into the system. The Out of the box (OOTB) authenticaton
implementation in Rice does not require a password as it is intended for testing
puposesonly. Thisissomething that must be enabled aspart of animplementation.
Various authentication solutions exist, such as CAS or Shibboleth, that an
implementer may want to use depending on their needs.

Authorization is the permissions that an authenticated user has for performing
actionsin the system.

A free-form text field for the full name of the Author of the Note, expressed as
"Lastname, Firstname Initial"

50

Glossary

B

Base Rule Attribute

Blanket Approval

Blanket Approve Workgroup

Branch

Business Rule

C

Campus
Campus Type

Cancel

The standard fields that are defined and collected for every Routing Rule These
include:

» Active: A trueffase flag to indicate if the Routing Ruleis active. If false, then
the rule will not be evaluated during routing.

» Document Type: The Document Type to which the Routing Rule applies.

* From Date: The inclusive start date from which the Routing Rule will be
considered for a match.

» Force Action: atrue/false flag to indicate if the review should be forced to take
action again for the requests generated by thisrule, even if they had taken action
on the document previously.

» Name: the name of therule, this serves asaunique identifier for therule. If one
is not specified when the ruleis created, then it will be generated.

* Rule Template: The Rule Template used to create the Routing Rule.

» To Date: Theinclusive end date to which the Routing Rule will be considered
for amatch.

Authority that is given to designated Reviewerswho can approve a document to a
chosen route point. A Blanket Approval bypasses approvals that would otherwise
be required in the Routing For an authorized Reviewer, the Doc Handler typically
displaysthe Blanket Approval button along with the other options. When aBlanket
Approval is used, the Reviewers who are skipped are sent Acknowledge requests
to notify them that they were bypassed.

A workgroup that has the authority to Blanket Approve a document.

A path containing one or more Route Nodes that a document traverses during
routing. When a document enters a Split Node multiple branches can be created.
A Join Node joins multiple branches together.

1. Describes the operations, definitions and constraints that apply to an
organization in achieving its goals.

2. A restriction to a function for a business reason (such as making a specific
object code unavailable for a particular type of disbursement). Customizable
business rules are controlled by Parameters.

Identifies the different fiscal and physical operating entities of an institution.
Designates a campus as physical only, fiscal only or both.

A workflow action available to document initiators on documents that have not
yet been routed for approval. Denotes that the document is void and should be
disregarded. Canceled documents cannot be modified in any way and do not route
for approval.

51

Glossary

Canceled

CAS - Central Authentication
Service

Client

Client/Server

Close

Comma-separated value
Complete

Completed

Country Restricted Indicator

Creation Date

csv

D

Date Approved

Date Finaized

Deactivation

Delegate

Delegate Action List

A routing status. The document is denoted as void and should be disregarded.

http://www.jasig.org/cas - An open source authentication framework. Kuali Rice
provides support for integrating with CAS as an authentication provider (among
other authentication solutions) and also provides an implementation of a CAS
server that integrates with Kuali Identity Management.

A Java Application Program Interface (API) for interfacing with the Kuali
Enterprise Workflow Engine.

The use of one computer to request the services of another computer over a
network. The workstation in an organization will be used to initiate a business
transaction (e.g., abudget transfer). This workstation needs to gather information
from a remote database to process the transaction, and will eventually be used to
post new or changed information back onto that remote database. The workstation
isthus a Client and the remote computer that houses the database is the Server.

A workflow action available on documents in most statuses. Signifies that the
user wishes to exit the document. No changes to Action Requests, Route Logs or
document status occur as aresult of a Close action. If you initiate adocument and
close it without saving, it is the same as canceling that document.

A file format using commas as delimiters utilized in import and export
functionality.

A pending action request to a user to submit a saved document.
The action taken by a user or group in response to a reguest in order to finish
populating a document with information, as evidenced in the Document Route

Log.

Field used to indicate if a country is restricted from use in procurement. If there
is no value then thereis no restriction.

The date on which a document is created.

See comma-separ ated value

The date on which a document was most recently approved.

The date on which adocument entersthe FINAL state. At thispoint, all approvals
and acknowledgments are complete for the document.

The process by which requests are removed from a user's Action List
A user who has been registered to act on behalf of another user. The Delegate

acts with the full authority of the Delegator. Delegation may be either Primary
Delegation or Secondary Delegation.

A separate Action List for Delegate actions. When a Delegate selects a Delegator
for whomto act, an Action List of all documents sent to the Delegator is displayed.

52

http://www.jasig.org/cas

Glossary

Disapprove

Disapproved

Doc Handler

Doc Handler URL
Doc Nbr

Document

Document Id
Document Number

Document Operation

Document Search

Document Status

Document Title

Document Type

For both Primary and Secondary Delegation the Delegate may act on any of the
entries with the full authority of the Delegator.

A workflow action that allowsauser to indicate that adocument does not represent
a valid business transaction in that user's judgment. The initiator and previous
approvers will receive Acknowledgment requests indicating the document was
disapproved.

A status that indicates the document has been disapproved by an approver as a
valid transaction and it will not generate the originally intended transaction.

The Doc Handler is aweb interface that a Client uses for the appropriate display
of adocument. When a user opens a document from the Action List or Document
Search, the Doc Handler manages access permissions, content format, and user
options according to the requirements of the Client.

The URL for the Doc Handler.

See Document Number.

Also see E-Doc.

An electronic document containing information for a business transaction that is
routed for Actionsin KEW. It includes information such as Document ID, Type,
Title, Route Status, Initiator, Date Created, etc. In KEW, adocument typically has
XML content attached to it that is used to make routing decisions.

See Document Number.

A unique, sequential, system-assigned number for a document

A workflow screen that provides an interface for authorized users to manipulate
the XML and other data that defines a document in workflow. It alows you
to access and open a document by Document ID for the purpose of performing
operations on the document.

A web interface in which users can search for documents. Users may search by
a combination of document properties such as Document Type or Document 1D,
or by more specialized properties using the Detailed Search. Search results are
displayedin alist similar to an Action List.

See also Route Satus.

Thetitle given to the document when it was created. Depending on the Document
Type, thistitle may have been assigned by the Initiator or built automatically based
on the contents of the document. The Document Title is displayed in both the
Action List and Document Search.

The Document Type defines the routing definition and other properties for a set
of documents. Each document is an instance of a Document Type and conducts
the same type of business transaction as other instances of that Document Type.

Document Types have the following characteristics:

e They are specifications for a document that can be created in KEW

53

Glossary

Document Type Hierarchy

Document Type Label
Document Type Name

Document Type Policy

Drilldown

Dynamic Node

E

ECL

E-Doc
eDocLite

Embedded Client

Employee Status

Employee Type

e They contain identifying information as well as policies and other attributes

» They defines the Route Path executed for a document of that type (Process
Definition)

» They are hierarchical in nature may be part of a hierarchy of Document Types,
each of which inherits certain properties of its Parent Document Type.

» They are typically defined in XML, but certain properties can be maintained
from a graphical interface

A hierarchy of Document Type definitions. Document Types inherit certain
attributes from their parent Document Types. This hierarchy is also leveraged by
various pieces of the system, including the Rules engine when eval uating rule sets
and KIM when evaluating certain Document Type-based permissions.

The human-readabl e label assigned to a Document Type.
The assigned name of the document type. It must be unique.

These advise various checks and authorizations for instances of a Document Type
during the routing process.

A link that allows a user to access more detailed information about the current
data. These links typically take the user through a series of inquiries on different
business objects.

An advanced type of Route Node that can be used to generate complex routing
paths on the fly. Typically used whenever the route path of a document cannot be
statically defined and must be completely derived from document data.

1. Anacronym for Educational Community License.

2. All Kuali software and materia is available under the Educational Community
License and may be adopted by colleges and universities without licensing
fees. The open licensing approach a so provides opportunities for support and
implementation assistance from commercia affiliates.

An abbreviation for electronic documents, aso a shorthand reference to
documents created with eDoclL.ite.

A framework for quickly building workflow-enabled documents. Allows you to
define document screensin XML and render them using XSL style sheets.

A type of client that runs an embedded workflow engine.

Found on the Person Document; defines the employee's current employment
classification (for example, "A" for Active).

Found on the Person Document; defines the employee's position classification (for
example, "P" for Professional).

Glossary

Entity

Entity Attribute

Entity Type

Exception

Exception Messaging

Exception Routing

Extended Attributes

Extension Rule Attribute

F

Field Lookup

Final

Flexible Route Management

FlexRM (Flexible
Module)

An Entity record houses identity information for agiven Person, Process, System,
etc. Each Entity is categorized by its association with an Entity Type.

Entitieshave directory-likeinformation called Entity Attributesthat are associated
with them

Entity Attributes make up the identity information for an Entity record.

Provides categorization to Entities. For example, a“ System” could be considered
an Entity Type because something like a batch process may need to interfact with
the application.

A workflow routing status indicating that the document routed to an exception
gueue because workflow has encountered a system error when trying to process
the document.

The set of services and configuration options that are responsible for handling
messages when they cannot be successfully delivered. Exception Messaging is
set up when you configure KSB using the properties outlined in KSB Module
Configuration.

A type of routing used to handle error conditions that occur during the routing
of a document. A document goes into Exception Routing when the workflow
engine encounters an error or a situation where it cannot proceed, such as a
violation of a Document Type Policy or an error contacting external services.
When this occurs, the document is routed to the parties responsible for handling
these exception cases. This can be a group configured on the document or a
responsibility configured in KIM. Once one of these responsible parties has
reviewed the situation and approved the document, it will be resubmitted to the
workflow engine to attempt the processing again.

Custom, table-driven business object attributes that can be established by
implementing institutions.

One of the rule attributes added in the definition of a rule template that extends
beyond the base rule attributes to differentiate the routing rule. A Required
Extension Attribute has its "Required” field set to True in the rule template.
Otherwise, it isan Optional Extension Attribute. Extension attributes are typically
used to add additional fields that can be collected on arule. They also define the
logic for how those fields will be processed during rule evaluation.

The round magnifying glass icon found next to fields throughout the GUI that
allow the user to look up reference table information and display (and select from)
alist of valid values for that field.

A workflow routing status indicating that the document has been routed and has
no pending approval or acknowledgement requests.

A standard KEW routing scheme based on rules rather than dedicated table-based
routing.

The Route Module that performs the Routing for any Routing Rule is defined
through FlexRM. FlexRM generates Action Requests when a Rule matches the

55

Glossary

Force Action

Group

Group Attribute

H

Hierarchical Tree Structure

Initialized

Initiated

datavalue contained in adocument. An abbreviation of "Flexible Route Module."
A standard KEW routing schemethat isbased on rules rather than dedicated table-
based routing.

A trueffalse flag that indicates if previous Routing for approva will be ignored
when an Action Request is generated. The flag is used in multiple contexts where
requests are generated (e.g., rules, ad hoc routing). If Force Action is False, then
prior Actions taken by a user can satisfy newly generated requests. If it is True,
then the user needs to take another Action to satisfy the request.

A workflow action request that can be cleared from a user's Action List with
or without opening and viewing the document. A document with no pending
approval reguests but with pending Acknowledge requestsisin Processed status.
A document with no pending approval requests but with pending FY| requestsis
in Final status. See also Ad Hoc Routing and Action Request.

A Group has members that can be either Principals or other Groups (nested).
Groups essentially become away to organize Entities (via Principal relationships)
and other Groups within logical categories.

Groups can be given authorization to perform actions within applications by
assigning them as members of Roles.

Groupscan also havearbitrary identity information (i.e., Group Attributes hanging
from them. Group Attributes might be values for "Office Address,” "Group
Leader," etc.

Groups can be maintained at runtime through a user interface that is capable of
workflow.

Groups have directory-like information called Group Attributes hanging from
them. "Group Phone Number" and "Team Leader" are examples of Group
Attributes.

Group Attributes make up the identity information for a Group record.

Group Attributes can be maintained at runtime through a user interface that is
capable of workflow.

A hierarchical representation of datain agraphical form.

The state of an Action Request when it is first created but has not yet been
Activated (sent to auser’s Action List).

A workflow routing status indicating a document has been created but has not
yet been saved or routed. A Document Number is automatically assigned by the
system.

56

Glossary

Initiator

Inquiry

J

Join Node

K

KC - Kuali Coeus

KCA -
Affiliates

Kuali Commercid

KCB — Kuali Communications
Broker

KEN - Kuai Enterprise
Notification
KEW - Kuadi Enterprise
Workflow

KFS—Kuali Financial System

KIM -
Management

Kuali Identity

A user role for a person who creates (initiates or authors) a new document for
routing. Depending on the permissions associated with the Document Type, only
certain users may be able to initiate documents of that type.

A screen that allows a user to view information about a business object.

The point in the routing path where multiple branches are joined together. A Join
Node typically has a corresponding Split Node for which it joins the branches.

TODO

A designation provided to commercia affiliates who become part of the Kuali
Partners Program to provide for-fee guidance, support, implementation, and
integration services related to the Kuali software. Affiliates hold no ownership of
Kuali intellectual property, but are full KPP participants. Affiliates may provide
packaged versions of Kuali that provide value for installation or integration
beyond the basic Kuali software. Affiliates may also offer other types of training,
documentation, or hosting services.

KCB islogically related to KEN. It handles dispatching messages based on user
preferences (email, SMS, etc.).

A key component of the Enterprise Integration layer of the architecture
framework. Its features include:

» Automatic Message Generation and Logging
» Message integrity and delivery standards
 Délivery of notificationsto auser’s Action List

Kuali Enterprise Workflow is a general-purpose el ectronic routing infrastructure,
or workflow engine. It manages the creation, routing, and processing of electronic
documents (eDocs) necessary to complete a transaction. Other applications can
also use Kuali Enterprise Workflow to automate and regul ate the approval process
for the transactions or documents they create.

Deliversacomprehensive suite of functionality to servethefinancial system needs
of all Carnegie-Classinstitutions. An enhancement of the proven functionality of
Indiana University's Financial Information System (FIS), KFS meets GASB and
FASB standards while providing a strong control environment to keep pace with
advancesin both technol ogy and business. Modulesincludefinancial transactions,
genera ledger, chart of accounts, contracts and grants, purchasing/accounts
payable, labor distribution, budget, accounts receivable and capital assets.

A Kuali Rice module, Kuali Identity Management provides a standard API for
persons, groups, roles and permissions that can be implemented by an institution.
It also provdies an out of the box reference implementation that alows for a
university to use Kuali astheir Identity Management solution.

57

Glossary

KNS —Kuali Nervous System

KPP - Kuali Partners Program

KRAD - Kudi Rapid
Application Development
KRMS - Kuadi Rules
Management System

KS- Kuali Student

KSB —Kuali Service Bus

Kudli

Kuali Foundation

A core technical module composed of reusable code components that provide
the common, underlying infrastructure code and functionality that any module
may employ to perform its functions (for example, creating custom attributes,
attaching electronic images, uploading data from desktop applications, lookup/
search routines, and database interaction).

The Kuali Partners Program (KPP) is the means for organizations to get involved
in the Kuali software community and influence its future through voting rights to
determine software devel opment priorities. Membership dues pay staff to perform
Quality Assurance (QA) work, release engineering, packaging, documentation,
and other work to coordinate the timely enhancement and release of quality
software and other services valuableto the members. Partners are al so encouraged
to tender functional, technical, support or administrative staff members to the
Kuali Foundation for specific periods of time.

TODO

TODO

Deliversameansto support students and other users with astudent-centric system
that provides real-time, cost-effective, scalable support to help them identify
and achieve their goals while smplifying or eliminating administrative tasks.
The high-level entities of person (evolving roles-student, instructor, etc.), time
(nested units of time - semesters, terms, classes), learning unit (assigned to any
learning activity), learning result (grades, assessments, evaluations), learning
plan (intentions, activities, magjor, degree), and learning resources (instructors,
classrooms, equipment). The concierge function is a self-service information
sharing system that aligns information with needs and tasks to accomplish goals.
The support for integration of locally-devel oped processes provides flexibility for
any institution's needs.

Provides an out-of-the-box service architecture and runtime environment for Kuali
Applications. It is the cornerstone of the Service Oriented Architecture layer of
the architectural reference framework. The Kuali Service Bus consists of:

A servicesregistry and repository for identifying and instantiating services

Run time monitoring of messages

Support for synchronous and asynchronous service and message paradigms

1. Pronounced "ku-wah-le€". A partnership organization that produces a suite of
community-source, modular administrative software for Carnegie-class higher
education ingtitutions. See also Kuali Foundation

2. (n.) A humble kitchen wok that plays an important role in asuccessful kitchen.

Employs staff to coordinate partner efforts and to manage and protect the
Foundation's intellectual property. The Kuali Foundation manages a growing
portfolio of enterprise software applications for colleges and universities. A
lightweight Foundation staff coordinates the activities of Foundation members
for critical software development and coordination activities such as source code
control, release engineering, packaging, documentation, project management,

58

Glossary

Kudi Rice

L

Last Modified Date

M

Maintenance Document

Message

Message Queue

Namespace

Note Text

Notification Content

software testing and quality assurance, conference planning, and educating and
assisting members of the Kuali Partners program.

Provides an enterprise-class middleware suite of integrated products that allow
both Kuali and non-Kuali applications to be built in an agile fashion, such
that developers are able to react to end-user business requirements in an
efficient manner to produce high-quality business applications. Built with Service
Oriented Architecture (SOA) concepts in mind, KR enables developers to build
robust systems with common enterprise workflow functionality, customizable
and configurable user interfaces with a clean and universal look and fedl, and
genera notification features to allow for a consolidated list of work "action
items." All of this adds up to providing a re-usable development framework that
encourages a simplified approach to developing true business functionality as
modular applications.

The date on which the document was last modified (e.g., the date of the last action
taken, the last action request generated, the last status changed, etc.).

An e-doc used to establish and maintain atable record.

The full description of a notification message. Thisis a specific field that can be
filled out as part of the Simple Message or Event Message form. This can aso
be set by the programmatic interfaces when sending notifications from a client
system.

Allows administrators to monitor messages that are flowing through the Service
Bus. Messages can be edited, deleted or forwarded to other machines for
processing from this screen.

A Namespace is a way to scope both Permissions and Entity Attributes Each
Namespace instance is one level of scoping and is one record in the system.
For example, "KRA" or "KC" or "KFS" could be a Namespace. Or you could
further break those up into finer-grained Namespaces such that they would roughly
correlate to functional moduleswithin each application. Examples could be "KRA
Rolodex", "KC Grants', "KFS Chart of Accounts'.

Out of the box, the system is bootstrapped with numerous Rice namespaces
which correspond to the different modules. There is also a default namespace of
“KUALI".

Namespaces can be maintained at runtime through a maintenance document.

A free-form text field for the text of a Note

This section of a natification message which displays the actual full message for
the notification along with any other content-type-specific fields.

59

Glossary

Notification Message

O

OO0TB

Optimistic Locking

Optiona Rule Extension
Attribute

Org Doc #

Organization

Organization Code

P

Parameter Component Code
Parameter Description

Parameter Name
Parameter Type Code

Parameter Value

Parent Document Type

Parent Rule

Permission

The overall Notification item or Notification Message that a user sees when she
views the details of a natification in her Action List. A Notification Message
contains not only common elements such as Sender, Channel, and Title, but also
content-type-specific fields.

Stands for "out of the box" and refers to the base deliverable of a given feature
in the system.

A type of “locking” that is placed on a database row by a process to prevent
other processes from updating that row before the first process is complete. A
characteristic of this locking technique is that another user who wants to make
modifications at the same time as another user is permitted to, but the first one
who submits their changes will have them applied. Any subsequent changes will
result in the user being notified of the optimistic lock and their changes will not
be applied. This technique assumes that another update is unlikely.

An Extension Attribute that is not required in a Rule Template. It may or may
not be present in a Routing Rule created from the Template. It can be used as
a conditional element to aid in deciding if a Rule matches. These Attributes are
simply additional criteriafor the Rule matching process.

The originating document number.

Refers to a unit within the institution such as department, responsibility center,
campus, etc.

Represents aunique identifier assigned to units at many different levelswithin the
institution (for example, department, responsibility center, and campus).

Code identifying the parameter Component.
Thisfield houses the purpose of this parameter.

This will be used as the identifier for the parameter. Parameter values will be
accessed using this field and the namespace as the key.

Code identifying the parameter type. Parameter Type Code isthe primary key for
its' table.

Thisfield houses the actual value associated with the parameter.

A Document Type from which another Document Type derives. The child type can
inherit certain properties of the parent type, any of which it may override. A Parent
Document Type may have a parent as part of a hierarchy of document types.

A Routing Rulein KEW from which another Routing Rulederives. Thechild Rule
can inherit certain properties of the parent Rule, any of which it may override. A
Parent Rule may have a parent as part of a hierarchy of Rules.

Permissions represent fine grained actions that can be mapped to functionality
within a given system. Permissions are scoped to Namespace which roughly
correlate to modules or sections of functionality within a given system.

60

Glossary

Person Identifier

Person Role

Pessimistic Locking

Plugins

Post Processor

A developer would code authorization checks in their application against these
permissions.

Some examples would be; "canSave", "canView", "canEdit", etc.

Permissions are aggregated by Roles.

Permissions can be maintained at runtime through a user interface that is capable
of workflow; however, developers still need to code authorization checks against
them in their code, once they are set up in the system.

Attributes

1. Id - a system generated unique identifier that is the primary key for any
Permission record in the system

2. Name - the name of the permission; also a human understandable unique
identifier

3. Description - afull description of the purpose of the Permission record
4. Namespace - the reference to the associated Namespace
Relationships

1. Permission to Role - many to many; this relationship ties a Permission record
to aRole that is authorized for the Permission

2. Permission to Namespace - many to one; this relationship allows for scoping
of a Permission to a Namespace that contains functionality which keys its
authorization checking off of said

The username of an individual user who receives the document ad hoc for the
Action Requested

Creates or maintains the list used in selection of personnel when preparing the
Routing Form document.

A type of lock placed on a database row by a process to prevent other processes
from reading or updating that row until thefirst processisfinished. Thistechnique
assumes that another update is likely.

A plugin is a packaged set of code providing essential services that can be
deployed into the Rice standalone server. Plugins usually contains only classes
used in routing such as custom rules or searchable attributes, but can contain
client application specific services. They are usually used only by clients being
implemented by the * Thin Client’ method

A routing component that is notified by the workflow engine about various events
pertaining to the routing of a specific document (e.g., node transition, status
change, action taken). Theimplementation of aPost Processor istypically specific
to aparticular set of Document Types. When all required approvals are compl eted,
the engine notifiesthe Post Processor accordingly. At this point, the Post Processor
is responsible for completing the business transaction in the manner appropriate
to its Document Type.

61

Glossary

Posted Date/Time Stamp

Postal Code

Preferences

Primary Delegation

Principal

Processed

R

Recipient Type
Required Rule
Attribute
Responsibility
Responsibility Id
Responsible Party
Reviewer

Rice

Role

Extension

A free-formtext field that identifies the time and date at which the Notesis posted.
Defines zip code to city and state cross-references.

User optionsinan Action List for displaying thelist of documents. Userscan click
the Preferences button in the top margin of the Action List to display the Action
List Preferences screen. On the Preferences screen, users may change the columns
displayed, the background colors by Route Status, and the number of documents

displayed per page.

The Delegator turns over full authority to the Delegate. The Action Requests
for the Delegator only appear in the Action List of the Primary Delegate. The
Delegation must be registered in KEW or KIM to be in effect.

A Principal represents an Entity that can authenticate into the system. One can
roughly correlate aPrincipal to alogin username. Entitiescan existin KIM without
having permissions or authorization to do anything; therefore, a Principal must
exist and must be associated with an Entity in order for it to have access privileges.
All authorization that is not specific to Groupsistied to aPrincipal.

In other words, an Entity isfor identity whileaPrincipal isfor access management.

Also note that an Entity is allowed to have multiple Principals associated with
it. The use case typically given here is that a person may apply to a school and
receive one log in for the application system; however, once accepted, they may
receive their official login, but use the same identity information set up for their
Entity record.

A routing status indicating that the document has no pending approval requests
but still has one or more pending acknowledgement reguests.

Thetype of entity that is receiving an Action Reguest. Can be a user, workgroup,
or role.

An Extension Attribute that is required in a Rule Template. It will be present in
every Routing Rule created from the Template.

See Responsible Party.

A unique identifier representing a particular responsibility on a rule (or from a
route module Thisidentifier staysthe samefor aparticular responsibility no matter
how many times arule is modified.

The Reviewer defined on a routing rule that receives requests when the rule
is successfully executed. Each routing rule has one or more responsible parties
defined.

A user acting on adocument in his/her Action List and who hasreceived an Action
Request for the document.

An abbreviation for Kuali Rice.

Roles aggregate Permissions When Roles are given to Entities (via their
relationship with Principals) or Groups an authorization for all associated
Permissionsis granted.

62

Glossary

Route Header 1d

Route Log

Route Module

Route Node

Route Path

Route Status

Another name for the Document 1d.

Displays information about the routing of a document. The Route Log is usually
accessed from either the Action List or a Document Search. It displays general
document information about the document and a detailed list of Actions Taken
and pending Action Requests for the document. The Route Log can be considered
an audit trail for a document.

A routing component that the engine usesto generate action requests at aparticul ar
Route Node. FIexRM (Flexible Route Module) is a general Route Module that
is rule-based. Clients can define their own Route Modules that can conduct
specialized Routing based on routing tables or any other desired implementation.

Represents a step in the routing process of a document type. Route node
"instances" are created dynamically asadocument goesthroughitsrouting process
and can be defined to perform any function. The most common functions are to
generate Action Requests or to split or join the route path.

e Simple: do some arbitrary work

» Requests: generate action requests using a Route Module or the Rules engine

Split: split the route path into one or more paralléel branches

« Join: join one or more branches back together

 Sub Process: execute another route path inline

« Dynamic: generate a dynamic route path

The path a document follows during the routing process. Consists of a set of
route nodes and branches. The route path is defined as part of the document type
definition.

The status of a document in the course of its routing:

» Approved: These documents have been approved by all required reviewers and
are waiting additional postprocessing.

 Cancelled: These documents have been stopped. The document’ s initiator can
‘Cancel’ it before routing begins or a reviewer of the document can cancel it
after routing begins. When a document is cancelled, routing stops; it is not sent
to another Action List.

« Disapproved: These documents have been disapproved by at |east onereviewer.
Routing has stopped for these documents.

» Enroute: Routing is in progress on these documents and an action request is
waiting for someone to take action.

» Exception: A routing exception has occurred on this document. Someone from
the Exception Workgroup for this Document Type must take action on this
document, and it has been sent to the Action List of this workgroup.

 Final: All required approvals and all acknowledgements have been received on
these documents. No changes are allowed to a document that isin Final status.

63

Glossary

Routed By User

Routing

Routing Priority

Routing Rule

« Initiated: A user or aprocess has created this document, but it has not yet been
routed to anyone’ s Action List.

» Processed: These documents have been approved by all required users, and is
completed on them. They may be waiting for Acknowledgements. No further
action is needed on these documents.

» Saved: These documents have been saved for later work. An author (initiator)
can save a document before routing begins or areviewer can save a document
before he or she takes action on it. When someone saves a document, the
document goes on that person’s Action List.

The user who submits the document into routing. This is often the same as the
Initiator. However, for some types of documents they may be different.

The process of moving a document through its route path as defined in its
Document Type. Routing is executed and administered by the workflow engine.
This process will typicaly include generating Action Requests and processing
actionsfrom the userswho receive those requests. |n addition, the Routing process
includes callbacksto the Post Processor when there are changesin document state.

A number that indicatesthe routing priority; asmaller number has ahigher routing
priority. Routing priority is used to determine the order that requests are activated
on aroute node with sequential activation type.

A record that containsthe datafor the Rule Attributes specified in aRule Template
It is an instance of a Rule Template populated to determine the appropriate
Routing. The Rule includes the Base Attributes, Required Extension Attributes,
Responsible Party Attributes, and any Optional Extension Attributes that are
declared in the Rule Template. Rules are evaluated at certain pointsin the routing
process and, when they fire, can generate Action Requests to the responsible
parties that are defined on them.

Technical considerations for a Routing Rules are:
» Configured viaa GUI (or imported from XML)
 Created against a Rule Template and a Document Type

» The Rule Template and it’s list of Rule Attributes define what fields will be
collected in the Rule GUI

* Rules define the users, groups and/or roles who should receive action requests
» Available Action Request Types that Rules can route

e Complete

e Approve

» Acknowledge

* FYI

* During routing, Rule Evaluation Sets are “ selected” at each node. Default isto
select by Document Type and Rule Template defined on the Route Node

Glossary

Rule Attribute

Rule QuickLinks

Rule Template

* Rules match (or ‘fire’) based on the evaluation of data on the document and
data contained on theindividual rule

» Examples
« |f dollar amount isgreater than $10,000 then send an Approval request to Joe.

e If depatment is “HR” request an Acknowledgment from the
HR.Acknowledgers workgroup.

Rule attributes are acore KEW data el ement contained in adocument that controls
its Routing. It participatesin routing as part of a Rule Template and is responsible
for defining custom fields that can be rendered on a routing rule. It also defines
the logic for how rules that contain the attribute data are evaluated.

Technical considerations for a Rule Attribute are:

e They might be backed by a Java class to provide lookups and validations of
appropriate values.

 Define how a Routing Rule evaluates document data to determine whether or
not the rule data matches the document data.

» Definewhat datais collected on arule.

» Anattribute typically correspondsto one piece of dataon adocument (i.edollar
amount, department, organization, account, etc.).

e Can be written in Java or defined using XML (with matching done by XPath).
» Can have multiple GUI fields defined in asingle attribute.

A list of document groups with their document hierarchies and actions that can be
selected. For specific document types, you can create the rule delegate.

A Rule Template serves as a pattern or design for the routing rules. All of the
Rule Attributes that include both Required and _Optional_ are contained in the
Rule Template; it defines the structure of the routing rule of FlexRM. The Rule
Template is also used to associate certain Route Nodes on a document type to
routing rules.

Technical considerations for a Rule Templates are:
e They are acomposition of Rule Attributes

e Adding a‘Rol€’ attribute to a template allows for the use of the Role on any
rules created against the template

» When rule attributes are used for matching on rules, each attribute is associated
with the other attributes on the template using an implicit ‘and’ logic attributes

 Can be used to define various other aspects to be used by the rule creation GUI
such as rule data defaults (effective dates, ignore previous, available request

types, etc)

65

Glossary

Save

Saved

Searchable Attributes

Secondary Delegation

Service Registry

Simple Node

SOA

Special Condition Routing

Split Node
Spring

State

Status

A workflow action button that allows the Initiator of a document to save their
work and close the document. The document may be retrieved from theinitiator's
Action List for completion and routing at alater time.

A routing statusindicating the document has been started but not yet compl eted or
routed. The Save action alows the initiator of a document to save their work and
close the document. The document may be retrieved from the initiator's action list
for completion and routing at alater time.

Attributesthat can be defined to index certain pieces of dataon adocument so that
it can be searched from the Document Search screen.

Technical considerations for a Searchable Attributes are:
» They areresponsible for extracting and indexing document data for searching

e They alow for custom fields to be added to Document Search for documents
of a particular type

» They are configured as an attribute of a Document Type

» They can be written in Java or defined in XML by using Xpath to facilitate
matching

The Secondary Delegate acts as atemporary backup Delegator who acts with the
same authority as the primary Approver/the Delegator when the Delegator is not
available. Documents appear in the Action Lists of both the Delegator and the
Delegate. When either acts on the document, it disappears from both Action Lists.

Secondary Delegation is often configured for a range of dates and it must be
registered in KEW or KIM to bein effect.

Displaysaread-only view of all of the servicesthat are exposed on the Service Bus
and includesinformation about them (for example, IP Address, or Endpoint URL).

A type of node that can perform any function desired by the implementer. An
example implementation of a simple node is the node that generates Action
Requests from route modules.

An acronym for Service Oriented Architecture.

Thisisageneric term for additional route levelsthat might betriggered by various
attributes of atransaction. They can be based on the type of document, attributes of
the accounts being used, or other attributes of the transaction. They often represent
specia administrative approvals that may be required.

A node in the routing path that can split the route path into multiple branches.

The Spring Framework [http://www.springsource.org/] is an open source
application framework for the Java platform.

Defines U.S. Postal Service codes used to identify states.

On an Action List; also known as Route Status. The current location of the
document in its routing path.

66

http://www.springsource.org/
http://www.springsource.org/

Glossary

Submit

Superuser

Superuser Approval

Superuser Document Search

T

Thread pool

Title

URL

V

Viewer

W

Web Service Client

Wildcard

Workflow

A workflow action button used by the initiator of a document to begin workflow
routing for that transaction. It moves the document (through workflow) to the next
level of approval. Once adocument is submitted, it remainsin 'ENROUTE' status
until all approvals have taken place.

A user who has been given special permission to perform Superuser Approvas
and other Superuser actions on documents of a certain Document Type.

Authority given Superusers to approve a document of a chosen Route Node. A
Superuser Approval action bypasses approvals that would otherwise be required
in the Routing. It is available in Superuser Document Search. In most cases,
reviewers who are skipped are not sent Acknowledge Action Requests.

A special mode of Document Search that allows Superusers to access documents
in a specia Superuser mode and perform administrative functions on those
documents. Access to these documents is governed by the user's membership in
the Superuser Workgroup as defined on a particular Document Type.

A technique that improves overal system performance by creating a pool of
threadsto execute multiple tasks at the sametime. A task can execute immediately
if athread in the pool is available or else the task waits for a thread to become
available from the pool before executing.

A short summary of the notification message. This field can be filled out as part
of the Simple Message or Event Message form. In addition, this can be set by the
programmatic interfaces when sending notifications from a client system.

Thisfield is equivalent to the "Subject" field in an email.

An acronym for Uniform Resource Locator.

A person who can log in and use the application. This term is synonymous with
“Principal” in KIM. "Whereas Entity Id represents a unique Person, Principal 1d
represents a set of login information for that Person.”

A user(s) who views a document during the routing process. This includes users
who have action reguests generated to them on a document.

A type of client that connects to a standalone KEW server using Web Services.

A character that may be substituted for any of a defined subset of al possible
characters.

Electronic document routing, approval and tracking. Also known as Workflow
Services or Kuali Enterprise Workflow (KEW). The Kuali infrastructure service

67

Glossary

Workflow Engine

Workflow QuickLinks

XML

XML Ingester

XML RuleAttribute

that electronically routes an e-doc to its approvers in a prescribed sequence,
according to established business rules based on the e-doc content. See also Kuali
Enter prise Workflow.

The component of KEW that handles initiating and executing the route path of a
document.

A web interface that provides quick navigation to various functions in KEW.
These include:

* Quick EDoc Watch: Thelast five Actionstaken by thisuser. The user can select
and repeat these actions.

* Quick EDoc Search: Thelast five EDocs searched for by thisuser. The user can
select one and repeat that search.

* Quick Action List: Thelast five document types the user took action with. The
user can select one and repeat that action.

See also XML Ingester.

1. Anacronym for Extensible Markup Language.

2. Used for dataimport/export.

A workflow function that allows you to browse for and upload XML data

Similar in functionality to a RuleAttribute but built using XML only

68

