Kuall Rice 2.3.0-M1-
SNAPSHOT KRAD Guide

Kuali Rice 2.3.0-M1-SNAPSHOT KRAD Guide

Table of Contents

L ADOUE KRAD ..ottt ettt e et e ettt e e e e e bbb a e e 1
Overview Of the RICE PrOJECEccouuiiiiii e 1
RICE ODJECLIVES ...ttt ettt et e e 1
RICE MENOUOIOGY ... eeeeei ettt e e e eeaans 2
RICE MOTUIES ...t 3
RICE DEPIOYMENLS ...ttt ettt e e e e 4
USEr EXPENENCE LOL ...ttt ettt ettt ettt et eaaas 5
Increasing sKillsin Ul devElOpMENTiiiiiiii e 6
KRAD - Common User Interface ArtifactScccuviiiiiiiiiiiiii e 7
Accessibility with WCAG 2.0 and ARIA ... 8
Introduction — What are WCAG 2.0 and ARIA? ... 8
WECAG 2.0 OVEIVIBIW ..ottt ettt e e e et e e et e e e e eaa s 9
Accessibility Code ChECKEISiiiiii e 9
What should developers pay attention to in creating accessible applications with
K R A D 7 ettt e e e e et bt aaaeaeeaaa 9
ARIA OVEIVIBIW ...ttt ettt e et e et e e e 11
Adding ARIA t0 @n appliCaLIONuuuiiiiiiiieieii e 11
2. GEING SEAITEAceeeei et et ettt e s 14
KRAD ATCHITECIUNE ... ettt ettt e et e et e e et e e e e e eees 14
SPIING BEANS ... 14
CoNfigUIALION SYSEEM ...ttt e e 15
Bean CONfIQUIELIONiiiiiieeeei et 15
Primitive PrOpEITIES it 16
COHBCLIONS ...ttt ettt e et e e e e s 17
OthEr ODJECES ..ottt et e e e 18
Compound Property INAIMESuuiiiiiiieee e 19
THE P-NAIMESDACEeuieiiiii ettt e e ettt e et e e ena e eees 20
BEAN ParENTSoeeiiicce e 20
BEAN COMEAINETSceiitieeeeet ettt e et e e e et e e et e e e e 21
BBAN SCOPE ... vttt 22
The Development ENVIFONMENTco.uuiiiiii e 23
NEW PrOJECE SEIUD ... ceeerieeeeit ettt ettt ettt ettt et et et e b e e e e e e e ennas 26
Project Structure and Configuration FileSooiiviiiiiiiii e 28
Configuring Your Rice APPlICALIONoiiiiiiiieiiii e 29
Importing into Eclipse and Starting the APoovviiiieii e 29
Setup for KRAD DevelOPMENTeiieiiieiiii et e 31
OUr SAMPIE APPHICELIONeeieit ettt et e e e e e e e eeee 32
3. DAA ODJECES ...ttt ettt ettt e s 33
Data Objects and BUSINESS ODJECESuiiiitiieeiiit et ettt e e e e 33
Data OBJECLSeeeiieeeeii et 33
BUSINESS OIJECES ...ttt e et e e 34
Special BUSINESS ODJECESueiiiiiieeiiiii ettt 35
O S [111 ST SO TPPTRTR 37
OB XML METADATA et e et e e e 37
CLASS DESCRIPTORS ..ottt 37
FIELD DESCRIPTORSottt e e 38
DATATYPE CONVERSION ..ottt 38
RICE CUSTOM DATATYPES ...t 39
OTHER FIELD DESCRIPTOR ATTRIBUTEScoiiiiiiiiiiiieceiii e 40
REFERENCE DESCRIPTORS ..ottt ettt 41
COllECION DESCITPIONSeeetie ettt ettt e e e e 42

Kuali Rice 2.3.0-M1-
SNAPSHOT KRAD Guide

4, The Data DICHONAIYuiiiiiieiii ettt e e e e e e e e e e e et e e e et e e et e eeannas 45
Introduction to the Data DICtIONAIYc.uuieiuiiiiiei e e e e e e e e e e e e ees 45
ALITDULE DEFINITIONS .ovuiieii e e e e e e ae e 45
Data Object and Business Object ENtHESiviiiiiiiii e 46
Relationship and Collection DEfiNItIONSc.iiiiiiiiiiiceeec e e e 48
L0000 (1 =11 £ PP 48

Simple ConStraint PrOPErtiESuiiii e e e e 48
Validation PatterNScoveieieeiii e e 50
Custom Validation PalterNScuuuiiiiiiieee et e e e 53
PrerequiSite CONSLIAINTScvu.iiie e e e e e e e e e e e e e e et e e eaaeee 53
MUSE OCCUF CONSLIAINES ...eevtteeeeiiise et e et e e et e et e e et e e et e e e e at e e e eaen s 54
L0 S Sl O] L 1 = 11 £ PP 55
State-based Validation and CONSIraiNESuieiiiiiiieiiiiiieeen e 56
Data DICHONAIY SEIVICES .uuiii it eiiie et et e e e e e e e e e et e e e e et e e et e e et eeaaeeaanaens 59
The DATAOBJECTMETADATASERVICEoviiiiiiiii et 59
Extending the Data DIiCHIONGIYeiuiiiiii e e e e e e e e e e e e e eeees 60
5. INtroduction t0 the UIF ... e e et e e e e e eaeen 61
OVENVIEW OF the UIF ... e e e et e eeeat e aee 61
UIF Goal: RICh Ul SUPPOIT ...t e e e e e e e et e e e e eaaees 61
UIF Goal: More Layout FIEXibilitycccouiiiiiiiii e 61
UIF Goal: Easy to Customize and EXtendcccoevviiiiiiiiiiiiiin e, 62
UIF Goal: Improved Configuration and TOOlINGccoevuiiiiiieiiiieeie e eeie e 62
L0 1T B Tox 0] 4 7= Y/ PP 62
The UIF @and UIM ..ottt e e 62
(©0 0010700 01 D= o o P 63
Parts of @ COMPONENLoiuniiiiiie e e e e e anes 63
Customizing and Extending the UIF ..o 65
Building Templates With FreeMarkercccouuiiiiiiiiii i 68
Variahle MarkUp ...ooee e e e 68
R = T N DT = Y o= P 70
(O00] 011 {0 S = 1 1= LS P 71
1000] 0112 (A= 1010 [1V o o1 PP 72
INVOKING IMIBETOSiveciii et e e e e e e e e e et e st e e et e e et eeanaas 73
Other FEatures Of IMECTOSuuiiiiiii et e et 74
2T PP 75
INCIUAING FTL FIlES .ovniii e e aaas 76
CompOoNENt TEMPIBEESevvn e e e e e e e e e e e et e e e e e aaeee 76
Coarse-GrainNed Pal@MELErS covvuviieeiiii ettt e e et eeeaa s 77
The KRAD MaCro Libraryc.oiiiiii e e 78
LI 1] o= G231 = o (T PPN 78
The Component INEEITACE ... couuiii e e a s 80
Common ComponeNt ProPEiESccuuiiiiieiii e e e e e e e e e e e 80
o T o = 0| ST o] oo o AP 85
TYPES Of COMPONENLS ... eeuieieiieeiie e e e e e et e e e e e e e e et e et e et ean e et e et e et e eaaaenaaens 86
Content EIBMENESuiiiiiii e e e 86
@011 7o) 1SS 87
[T=: Lo L OSSP 87
10001 =] 1= PSPPSR 88
LAY o 1= 89
Composition and COMNLAINEISc.uuiiiiieiiiee e e e e e e e e e e e et e et e e e eeens 89
(O] o o0 = | ST 90
UIF BEAN FIES ettt e e e e et e e e et e e e e et s 92
UIF Configuration DEfiNItIONSoiiiuiieiiiieiii e e e e e e e e e 92
UIF Control DEfINITIONSuiiiiiiiieiiiiie et e e e e e 93

Kuali Rice 2.3.0-M1-
SNAPSHOT KRAD Guide

UIF Document DEfINITIONSieiiiiieeeii et e e e s 93

UIF Field DEfINITIONS ...ieiiiiieeccie et e e e et e e e e ae e 93

UIF Group DEfINITIONSuiiiicii e e e e e e e e e e eaaas 93

UIF Header FOOter DEfINITIONSoiveviieeiii et e e e e eenes 93

UIF Incident Report DEfiNItiONScouuniiiiiiiiii e e e 93

UIF INQUIrY DEFINITIONS ...ovuiiicci e e e e e e e e eaaeeaen 93

UIF Layout Managers DEfINITIONSccuuiiiiiiiiicc e e e 93

UIF LOOKUP DEfINITIONSvuiiiii e e e e e e e e eeas 93

UIF Maintenance DEfiNITIONSoovieuuiiiiiiie e e e e e 93

UIF RICE DEFINITIONS ..ttt e e e e 94

UIF View Page DEfiNItIONScooviiiiii e e e e 94

UIF Widget DEfINITIONSuuiiiiciiii e e e e e e e e e e e e e eaens 94
StYHNG AN thEMES ... 94
VL= T A I 1= 02T PP 94
MOAITYING THEMES ... e e e e aens 95

Base Styles and CONVENLIONSc.uuiiiiiieiiiici e e e e e e eaa s 96

Fluid SKIiNNiNg SYStEMiiiiii e e e aa s 97
KRAD SPring EXIENSIONSciiiiiiiiieiiii e ee e e e e e e e e e e et e e e et e e eaneeeees 98
V= 0TI @ o =1 oo PPN 99

6. Fields and Content ElEMENTSc.uuiiiiiiiie i e e e et e e 101
1= Lo B I o= £ S SUPPR R SPPPN 101
(@1 0= g = o1 I @)10 1N 102
Other Field Label OPLioNSuiiiiiiiiiiiciie e e e 103
BASE BEANSceniiiiii i 103

Data Fields and INPUt FIEIASoiiiniiiii e 104
[= = o PSP 104

1T 1 T = o N 105
DEFAUIT VEIUES ... e 106
Alternate and Additional Display Propertiesccoovvviiiiiiiiciiiiicie e, 107
Additional Display Properties for List<String> fieldsccooooiiiiiiiiiiiiiin e, 108

[= 2 11 0 [T 110
Property EQITOrSiiii e 110
COoMPIEX PathS .. ceniii e 112

Data Dictionary BaCKingccuuiiiiiiiiiiiiiii e e e e e e e e e 116
BN/ 0130 O] 511 (o) = 119
L30T o0) G PR 119

T = SO 120

[1T (0 < o PP 121
LIPS 121
= T = NPT 123

S o] 1= 124
MUItI-VAIUE CONLIOIS ..vviiiiii e e e s 124
Disabling Controls and Tabbingccuuiiiiiiiiiii e e 133
Hooking up LOOKUPS @and INQUITIESuuiiii e e e e e e e e e e 134
Automatic Lookups and INQUITIESceuuiiiiiieiii e e e e 136
INPUL FIEIO IMEBSSA0ES .vuiiiiieii et e e e e e e e e e e e e e e et e e e e e ean s 138
Field Queries and Informational PropertieScc.oveiiieiiiiiiiii e 139
Field AriDULE QUENY ...ceieiii e e e e e e eaaas 140

= o IS T oo (== AV o o= 144
Other Data and Input Field Propertiesoouiiiiiiiii i 146
ACtion and ACHON FIEIAuuiiiii e 147
Action Even and ACtion Parametersoveveviiiiiiiiieeciin et 150
Field Focus and ANCROIINGcouuiiiiii e e e e 152
DR o] = o S PTP 153

Kuali Rice 2.3.0-M1-
SNAPSHOT KRAD Guide

Space and SPACce FIEldoovniii 154
ValidationMessages CONtENt ElEMENToiviiiiiiiieiie e e e e 155
(€1 o1 Tl Y= Lo SR 159
= 00T PP PT TP UPPTRPPN 161
Image and IMage FIEldooiiii e 161
Link and Link FIEIOuniiiiiieece et e e et e e eeaaens 163
MESSAGE FIEIA ..o 164
e Y L= L @0) = | 165
Component RICH MESSA0E TAOS +...vvvuiiriiiiiieiiie e e e e e e e e e e e e e eaaaas 166

€ (0 oS PP 169
L] (011 o 1= PP 169
Page Decomposition With GIOUPScc.uiiiiiiiiieii e e e e e e e e e e e 170
[=0 L= £ OPPRTSPPRN 174
[00 (< £ PRSPPI 177
Introduction t0 Layout ManaQEr'Sciuuneiiiieiiii e e e e e e e e e e e e e e e aaas 178
Group LayOUt IMaNAGENSvueiiiiete et e e e e e e e e e e e e e e e et e e ans 180
LT Lo B I o1 | 181

(2 T0) Q= Y011 | 185

= o I] {0 < 191
[T 1 (0T o T 192
N E= Y7o (o L 1 (01U o P 193
(00 11= ot (o] o0 o1 193
Collection OBJECE ClaSS ...vvuiiiiieiii e e e e e aaa s 195

o (o T PP 195
Collection Add Blank LiNecocuuuiiiiiiiiieiiiie e e 196
Collection Add Via LighthoXccouviiiiiiiiiii e e 197

[T TC Y o 1o PP 197
Validated LiNe ACHONSuiiiiiiiieeiiii et et e et e e et e e e eat e eeees 199
Collection Action ColUMN SEQUENCEccvvuiiiiieiiieeiie e e e e e e e e e e aanees 199
SUBCOHECHIONS .. e e e e e e e e e e st s 200
Collection Group BUITAESroiiiiiiii e e 201
COMPONENT PrOtOLYIES ...ttt e e e e e e e et e aeanaen 203
Collection LayOut MBNAGETSccuuueiiiieiiiieeeiee e e e e e e e e e e e et e e et e e st s e sanaeean e eannaaannaaes 203
LI o L= I 0T PPN 203
DISCIOSUIE ...t e et e e et e e et e e e aa e e eaaen 215
SCrOHADIE .. 215

ST AY T [0 = PN 217
LAY o 1= 217
JQUErY PIUgins @and OPLiONSuucieieiiiieiii e e e e e et e e e e e e e et e e e e ean e eaen 217
TYPES Of WIGELS ...ovviiiiiiciii e et e e e e e e e e e e e et e e et eeaaeees 218
2T g=o (o1 01001 o LSS PR 218
DALEPICKET ...t 218

[0 11 €= L o 1 219
DISCIOSUIE ...ttt e e e e et e e e et e e e aa e eaaen 219

HE D e et aaa e aae 220

0o 0 T P 220
LIgNt0X . 221

L@ 0 Lo o = 221
RICNTADIE et e e e e e e e 222

RSl 00 1= 222

L= PSP 223

1. PP 223
1070 11 TN 229
Creating @ NEW WIQELcovniii e e e e e e e e e eaaeees 231

Vi

Kuali Rice 2.3.0-M1-
SNAPSHOT KRAD Guide

[0 8= YA = Vo 1 o TP 231

= 1 BV [0 T O PN 232
FreeMarker TEMPIAEuuiiii i e e 232
JAVASCIIPE FUNCHION ..oeveiii e e e e e e e e e e e eaneees 233
Spring Beans DEfiNITIONSiiiiiiiiii e e e e e eaaes 233

9. THE VB ettt ettt e e ettt e et e et s 235
Putting It Together With VIEWSuiiii e 235
The VIieW COMPONENTcovuiiiiei e et e e e e e e e e e e e e e e e et e e st e e eanaeeanneees 235

[N F= Y7o = (o o P 238
R L= TV 1o =t oo P 239
ReqUESLING @ VIBW INSLANCEcvviiiii e e e e e e e e e e aaes 239
VieW REQUESE PalraMELEScuuuiiiiieiii e e e e e e et e e e e e e e e e e e e st e e et e e e e eaneeeen 240
THE VIBIW SEIVICE ..ovviiiiiiiii et e e e et e e et e e e e aa e 240
The View Lifecycle and View HEPEr SEIVICESc.uuiviiiiiiii e 240
DT 1 1< v 1 o] o [P 242
Application Header and FOOLENooiiiiiiiiiiii e e 242
Building APPlICAioN IMENUScoouiiiiiiiiii e e e e e e e e e e an s 242
QL 011410 g2 o] o [P 242
0 A @ 1o] 110 g T= I 1o o N 244
(@007 [N 0] 7= N o o | o2 244
Presentation Controllers and AULhONZErSooviiiiiiii e 244
Configuration With EXPIrESSIONSciuuiiiiii e e e e e e e e e e e e e e e e eens 244
SPING EL v 244
COMPONENT CONEEXE ..vuiviiie e e e e e e ans 246
Built-In and Custom FUNCLIONSviiiiiiiiiiiis e 246
CUSEOM VATADIES ... s 247
ComponeNnt MOGITIEISiiiici e e e e e e 247
Property REPIGCENSt e 247
(@0 1= o) I T | (= = PSPPSR 248
L0010 LIS T T oo o A 248
Overriding with the ViewHEIPerSErviCeoouviiiiiiii e 248
Component FINAlIZatioNooiiiiii e e 249
Group TNITIAlIZAEIONuiii e e e e e e e e e e eees 249

The COMPONENt FACLOIYoiiiiiiii e e e e e aaa s 249
Copying COMPONENLSuiivieiiieiii et e e e e e e et e e e e e e e st e e et e ean e ean e eaaneeennnas 250

O T o A Lo [= 11 == PSPPI 251
Progressive DISCIOSUIEuuiiii e e e e e e e e e eees 251
(000107010 = 0| 1 == = 1 [P 251
Disable 0N USEr ACHON ...uuiiiiiiii ittt e e e e e et e eeeatenaeeee 252
F A QA o 1 o oL PP 253
[T 01100)< GRS 254
Working in the Client With JQUETYcc.uuiiiiiiiii e e 254
Data ALIIDULES ... 254
Configuring Event Handlingcccouiiiiiiiii e e 255
RV 2= o = 1 o o PP 256
Client Side Validationcoooiuiiiiiii e 256
Server SIAE Validationccoeuuiiiiiii e 256
Validation MESSAgES ...uuiivueiiii e e et e e e e e e e e e e e e e e e e 256

F N = L]0 1(0)Y/= 111= 01 =P 257
LU PSP 258
2 0o 1o 1= £ 259
Introduction t0 SPriNG MV C ...eeiii e e e 259
L000] 011 7] 1= =P 259
Controller ANNOLALIONSiieiiiiiee e e e e et e e et e e e e et 259

Vii

Kuali Rice 2.3.0-M1-
SNAPSHOT KRAD Guide

110 (07 o 0] 1= PP 259
Spring Views and the Common UIF VIeWoiiiiiiiiiin e 259
S o] o 1= o 259
Binding and Validationoiiiiiiiiiiii e 259

Property EQITOrSiiii e 259

Security and Maskingcouueiiiiiii e e e e e 259

Bean Wrapper and ObjectPropertyUtilScoiiiiii i 259
FOMM BEANS ...ttt ettt et e et e e e e 259
UifControllerBase and UIfFOMMBESEiiiiiiiiiiiiiiiie et e e et e e e eeeens 260

Connecting the Controller with the VIewccoooiiiiiiiii e, 260
[T oo PP 260

USING DialogS iN @ VIBW .uuuiiiiicii e e e e e e e et e e ees 260

Creating a Dialog Group FOr @ VWccovviiiiiieie e 261

Managing Dialogs from a Controllercoiviiiiiiiiii e 262

Invoking a Dialog Entirely fromthe Clientccooiiiiiiiiiii e, 263

Pre-Defined Dialog GrOUPScevuueiiiieiiiieeiie e e e e e e e et e e e e e et e e et e e e eaannees 263

Customizing Dialog GIOUPScvvuneiiieeiieeiiie e e e e e e e e e e e et e e et e et e e aaeeeenas 263
Error, Info, and Warning MESSAgESccvuuieiiiieiiiieeie et e e e e e e e e e e e e e s e eanaeeeen 263

GIOWIS et a et e e e aee 263
(o= oo g I o =0 To (1T o P 263
Session Support and the USEr SESSIONiviiiiiii e e e e 263
Servlet CONfIQUIBLIONcuuiii e e e e e e e e e e e e et e e e e e eenaas 264

G AT YA Y/ o= 265
VAV g =TI AT A Y =N 265
VIEW TYPE INAEXING ..uiiiiieiiiei e e e e e e e e e et e e et e e et eeaneees 265
[0 T0 W o IRV AT= TV I/ o= TP 265

[0 T0) W o BV AT 265

Lookupable and Lookupablelmplccoiiiiiiii e 266

LOOKUPSEArCNSEIVICE ... iiieicii e e e e e e e eeeas 266

Lookup ACHION aNd FOMMouuii e e e eaes 266

Customizing the LOOKUP VIBWccueiii i e e 266
T Lo O TE AN A T= TV 1Y o T 267

1o O TE Y Y= 267

Inquirable and Inquirablelmplooiiiiii s 267

Customizing the INQUITY VIBWoiiiiiii e e e e 267
MaINtENANCE VIEBW TV .uuiiiiiiii e e e e e e e e e e et e e et e et e e et e e et e eaneees 268

Maintenance DOCUMENT ENTYivvuiiii e e e e e e e e aaaees 268

MEINEENANCE VIBW ..iiiiiiii et e et e e ettt n e e e et s e e e eatn s e e eantnneeeees 268

Comparable and Maintenance Editc.cooiiiiiiiiiiii e 269

Maintainable and Maintainablelmplccoooiiiiiii 269

Maintenance ACtion and FOMMooouuuiieiiiii e 269

The Maintenance LIfECYCIEo e 269

Customizing Maintenance DOCUMENESiiiviieiiiieeii e e e e e e e e eanas 269
TranSaClioNal ViEW Ty DB ovvuiiiii it e e e e e e e e e e e et e e et e et e e aaeeeens 269

Document Objects and MapPiNgSccuuveinieiii e e e e e e e e e e e eane e 269

Transactional DOCUMENt ENEIYiiinii e e 270

DOCUMENE VIBIW .ottt e ettt e et e e e ettt e e e et aeeeett e e e eettaeeaees 270

Document Action and FOrM BaSecccuuiiiiiiiiiiiiie e 270

The DOCUMENT SEIVICE . .eeeviiieiei et e et e e e 270

Document Authorizer and Presentation CONtrolleroovvvvviiiieiiiiinieiiiineeeciie, 270
Request Setting of Fields to Read-ONlYccoovniiiiiiiiii e e 270
WIHtiNG BUSINESS RUIESuiiiiiici e e e e e e e e e aaas 270
Notes and AHAChMENTSuuiii e eeaees 270
Creating @ NEW VIBW TYPE covuuiiiii i et et e e e e e e et e e e e e e eanas 270

Kuali Rice 2.3.0-M1-
SNAPSHOT KRAD Guide

Y 111 270
[1A= OO 271
Groups and ROIEScoviii e 271
Roles: Differentiating among principalsccoceiviiiiiiiii i, 272
L= 0 4TSS o] PP 274

T = T o 1= SR 276
Documents and DOCUMENE TYPES ..uuivuniiiiieiiiiee e e e e e e e e e st e e e eanaes 276
KIM and KEW together: Responsibilitiesccocvviiiiiiiiii e 279
DOCUMENT SEAICHING ..vuiiiici e e e s 283

V=SS o SR AT VA Y] oY 286
=SS o (I AT PN 286

A = g o = o To I oo 1T 0o PN 288

(R T [T aTe [T 170 =T 288

LR BT v= W @ o] = o ¢S 288
g1 [0 ot (' o PP 288
Installation and Configurationcccuiiiiiiieiiii e e 288
USEN GUITE ...ttt ettt e ettt e e et e e e e et s e e e e st s e e e eatn s e eeeatnneeaenes 291

Rice Dictionary Validatorc..oiiiiiiiiii e e e e e 305
g1 [0 ot (' o PP 305
Installation and Configurationcc.uiieiiiieiiii e 306
USEN GUITE ...ttt ettt e ettt e e et e e e e et s e e e e st s e e e eatn s e eeeatnneeaenes 306

RiCe DICtionary SChHEMAvuiiii i e 309
g1 [0 ot (' o PP 309
Setting UP thE RDS ... e e e e 310

List of Figures

N o [0 £ RSP PTPPPPTRUPPIN 3
1.2, Ul ProCeSS MEIUMTY ...cevuueeiiitiee et e ettt ettt ettt e ettt e e e et e et et e e e e ebbreeeeneaeeees 6
2.1 KRAD FIamMEWOIKS ...ttt ettt e et e e e e e e ae s 14
2.2. BEAN FACIOMES ...ttt ettt 22
2.3. IMpPOrt NEW ProjeCt ECHPSE ...uuiiiiiieeeee ettt e e e e 30
2.4, SEleCting ProjeCt ECHPSEoiiii e 30
4.1. State-based Validation SErVEr EITOISuuiiiiiiiiec e 59
5.1. KRAD RENAENTNG PIrOCESS ... ciiiitieieiii ettt ettt ettt ettt e ettt e e e et neeeeaa e eaeees 78
5.2. KRAD CONAINEN PAITSiiiiitieeieii ettt et e et e e et e e e e e e enees 88
5.3. KRAD Component HI€rarChyuuieiiiiuioiiiiiee et e e 90
5.4. KRAD INtellij PrOJECt PaNEiiieiiiieieii ettt e e e 92
6.1. 18DEIPlacemMeNt OPLIONSueeiiiii ettt ettt e e e 103
6.2. Data FIEld LaDElooeeiiiii e e 105
6.3. Data FIEld LaDEooeeiiiiiii e 107
6.4. CheckBOX CONTIOLouuiiiiiii e 119
B.5. FlE CONLIOL ...t ettt e et e e 120
6.6. Watermark CONIOlcooiitiiiiii e e 122
B.7. DAE CONIOl ... ettt ettt ettt e e et e ettt e e et et n e e e en b reeeenbnaaeees 123
6.8. Text EXPand CONLIOIc.uuuiiiiiii ettt ettt e e e e et e e eeba e eeees 123
6.9, TEXLATEA CONLIOI ... ettt ettt e e e e e 124
6.10. SPINNET CONIOl ...eeete ettt ettt et e e e e ettt e ettt e e et et e e e eatn e et ent e e eeeneaeeeen 124
6.11. ChecklBBOXGIOUP CONIOlieiiiti ettt e 128
B.12. SEIECE CONIOl ...ttt ettt et ettt e et e e e ena s 129
6.13. MUIti SEIECE CONLION ...ttt ettt e e e e s 130
6.14. KIM Group CONIOLceetieiiiti ettt ettt e et e e et e e e et e e e eeba e eeenns 131
6.15. Disabled State CONIOLuuieiiiie ettt et e e e e s 133
6.16. QUICKFINAE! HOOKieeeeiee et e e e e e et e e e ean s 135
6.17. Quickfinder HOOK EX8MPIE ... 135
6.18. Standard Inquiry, REa0 ONIYcoouuiiiiiiiiiiiii e 136
6.19. Input Field With CONratint TEXEcceereieeiiii e 139
6.20. Two Informational Properties EXamplecooouiiiiiiiiiiii e 140
B.21. BULION LEVEIS ...ttt ettt et 149
6.22. BULEONS TOOIDEIu ittt ettt e ettt e ettt e e e et e e e e ena e eeeees 150
6.23. QUICKFINAEr WIHGELceeeii it e e e enb e 150
B.24. ACHION LINK ...t et 150
6.25. Enabled and Disabled BUIONSiiiiiiieiiiii e e 153
6.26. ValidationMessages fOr @PaJEcovuuniiiii e 158
6.27. ValidationMesSages fOr @ SECHIONiiieeiieiiiit e 158
6.28. ValidationMessages for an INPUEFTEId ... 158
6.29. IMage WIth @t TEXE ...ceeeti ettt et e et e e e e eeees 162
6.30. IMage With CULIING TEXEceeeeiieiiii et e eeees 162
6.31. Link Component EXaMPIEcooiiiiiiiii et 163
6.32. MESSATE FTEIA ... e 164
7.1, ONE LAGE BOX ..ovniiiiiieiiee ittt 171
T.2. FUIL VIBW PAOE ..ttt et e e et e e e et e e e et e eeenes 171
7.3, VETICE SECHIONS ...ttt e e e e s 172
T4 VertiCal SUDSECIIONS ... ceieiiiieiiit et e et e e 172
7.5. CONCEPLUBI GIOUDINGS ... eevtneeeetteeeeett e eeeett e e eett e e e ettt s e e eettaeeeeat s e e eent s e eeebtaeeeennnaeeees 173
7.6. Header Text EXAMPIEoun et 176
7.7. Additional Header EXAMPIESoiiiiiiiiiii e 176
7.8. Group FOOEr EXAMPIE ... ittt 177

Kuali Rice 2.3.0-M1-
SNAPSHOT KRAD Guide

8 € o U o N I o | 180
48 0 I o [- Yo 0 | PP 181
7.11. Grid Layout EXAMPIES ... i 181
7.12. ROW, COl SPaAN LayOULuuiiiiieiiii e e e e s e e e et e e e e st e e e e e et e e st e e et e e eaaeeeanes 183
7.13. ROW, Col SPan EXamMPIecuuiiiiiiei e e e 183
7.14. HOrizontal BOX LAYOULcivuniiiieeis e e e e e e e e e e e e e e et e e et e e e et e e eaneeeanes 186
7.15. BOX LAYOUL MaNBOEE ..ouieiiiiieie et e et e e e e et e et e e e et e e ans 186
7.16. Grid Group CheCKOXcouuiiiiiicie e e e e aaa s 191
7.17. NEStE FIEld GrOUPS ... ovviiiii e e e e e e e e e e e e e e e e e e aaaaees 192
7.18. Collection Add Blank Line Example - TableLayout with TOP add line placement 196
7.19. Caollection Add Via Lightbox Example - TableLayout with TOP add line placement 197
7.20. Collection Action Column Placement EXampleccouviiiiiiiiiiii e, 200
7.21. Tabhle LayOut IMBNAOETccvvniiiiieiii et e e e e et r e e e e e e e e e e et e e et e e et e e et e e eaaneeannaees 204
7.22. ROW DELAIIS ...ovviiiiiii et e e e e e e et e et e s 205
7.23. Stacked Layout MaNaQESciuueeiii e e e e e e e e e e e e e e e et e et e e et e e et e ean s 212
7.24. SCrOH@Dle SECHIONvuieiiiii e 216
LS L U V=" o 11 o P 239
9.2. REQUESIRESPONSEFIOWiiiiiii e e e e e e e e e ean e 241
12.1. Header TeXt EXAMPIEivei i e e e e e e e e e et e e e e e aaneees 260
50 I 1o W o Y =1 PPN 265
13.2. MAINEENANCE VIBW ...iiiiiieieiie ettt s et e e e e e et e e e et n e e e eat e e e eaan e e e ennnns 268
G R S (o 1= o= o PP 273
13.4. Role SCreen, QUAITIENS .. cvui it e e e e e e e e aa s 273
T = g 1TSS o g T o [0 274
13.6. CUSLOM DOC SEAICK ..iiitteiiiii et e et et e e e et e e e e r e e e et e e e eanens 283
13,7, MESSA0E VB ittt ittt et et et et e e et et e e et e e 287

Xi

List of Tables

2.1. Supported Databhases URLSccuuuiiiiiieiiii ettt e e e 24
2.2, Credted FIlES ..o 28
2.3. Required Configuration Propertiesc.uuuiiieiiieiiiii et 29
3.1. IDBC TYPES 10 JAVA TYPE ...ieiieietie ettt et et e e e e e 38
3.2. Custom Data Types and OJIB CONVEITENScouuuueeiiiiieeteiie e et et e et e e e e eneaes 39
5.1. MacCro Parameter COMIACESc.uuiiirieiiiieiii ettt e e e e e 77
6.1. State OptionNS EXAMPIE ... oottt 125
8.1. BreadCrumb PrOPEITIESu ittt ettt 218
8.2. DAEPICKES OPIONSeeetteteiti ettt ettt ettt e e et e e et e et e e ena s 219
8.3. DIreCtiNQUITY PrOPEITIES i eiiiti ettt et et e e et e e eabe e eees 219
8.4. DiSClOSUIE PrOPEITIES ... eiiiei ettt ettt et e e et e e e ab e e e naa s 219
8.5, HEIP PrOPEITIES ..ttt 220
8.6. INQUITY PrOPEITIES ... ittt ettt e e e e e e eaanas 221
8.7. LighthioX PrOpEITiESoeeeiieii et 221
8.8. LighthioX OpPiONSceeiiieiiii et 221
8.9. QUICKFINGEY PrOPEItIES ittt et e e et e e e eaens 222
8.10. RIChTaDIE PrOPErtiES ... ettt 222
8.11. RICh TaDIE OPLIONS ... ettt ettt e et e et e e e et aeeeenaaeeees 222
8.12. SUQGGESE PrOPEITIES ...ttt ettt e 223
8.13. SUQGESE OPIONS ...ttt ettt ettt et e e et 223
8.14. TOOItIP PrOPEITIES ... ettt e e e e e 230
8.15. TOOILIP OPLIONS ...ttt ettt e e et e e et e et e e e s 230
14.1. RICE TOOING: RDS ...ttt e b 314

Xii

Chapter 1. About KRAD

Overview of the Rice Project

Before diving into the exciting new Rice 2.0 KRAD framework and all its technical details, let’s take a
brief look at how the effort was formed and the general Kuali ecosystem in which it exists.

KRAD (Kuali Rapid Application Development) is a module within the Kuali Rice project. The Rice
project provides the technical infrastructure for which the Kuali projects and other non-Kuali institutional
applications are built. This infrastructure includes a set of middleware solutions such as Workflow and
Identify Management, along with the development framework portion that includes the KNS (Kuali
Nervous System) and its next generation replacement KRAD.

The use of Rice for project development allows applications to build and evolve much more quickly. The
reasons for this are as follows:

1. By isolating many common technical concerns, application developers can focus their time on solving
the business problems that are unique to their application.

2. Developers have acommon paradigm for building functionality across all modules and projects
3. Sharing of technical solutions allows for the underlying tooling to evolve more easily
4. Software built using Rice allows for easy integration

In addition to the technical benefits, use of Rice across projects gives a greater user experience. The user
interacts with the applications in a consistent manner and can more quickly learn new areas.

Rice Objectives

There are two primary objectives of the Rice project:
1. Support the needs of the other Kuali applications
2. Promote adoption of Rice as the middleware/framework solution across higher education

Decisions for the Rice roadmap in addition to other work items are made by committees made up of
representatives from the Kuali projects and institutions. These committees are the following:

» Application Roadmap Committee (ARC): The Application Roadmap Committee is responsible for
goal-setting, and prioritizing high-level application architecture for integration of Kuali application
projects, and for an evolving roadmap for the future. This group defines overall ownership of shared
services among the Kuali projects. The group defines work and prioritiesfor Rice and cross application
projects. This group works with the projects to coordinate working teams.

» Kuali Application Integration Working Group (KAI): Under the direction of the Kuali Application
Roadmap Committee, the Kuali Application Integration Work Group recommends the strategic
functional direction for integration between the Kuali Community systems and the facilitation of the
integration of future Kuali systems.

e Technology Roadmap Committee (TRC): Responsible for goal-setting, for high-level technical
architecture and tools, and for an evolving road map for the future. This replaces the current KTC

About KRAD

and focuses on creating a technology direction over time. This Committee recognizes the challenges
inherent in different timing for the applications which causes technology to get out of synch, and
this Committee addresses those challenges by creating a road map for the evolution of the projects to
common technologies when feasible. It is suggested that this Committee provide a semi-annual formal
presentation to the Rice Project Board and to the Kuali Foundation Board.

e Kuali Technical Integration Working Group: The Kuali Technology Integration (KTI) working
group performs an executive steering function for the TRC. It receives and formulates technology
enhancement requests and proposals for Rice and performs initial research and analysis of the requests
and makes recommendations to the TRC on the relative priority and timing of the requests. The KTl
also triages and makes decisions on technology issues.

Rice Methodology

Community Source Model

Rice is committed to the community source development model and to the value of collaboration in
producing a quality product that serves interested institutions well.

Iterative Development

The Rice development methodology is a lightweight, iterative approach to development that focuses on
individual components that can be quickly developed and integrated into a larger application. Frequent
communication and interaction with users is required in order for this methodology to succeed. By
simplifying the development process and emphasizing frequent testing and feedback, the software product
has a much greater likelihood of meeting the user's needs.

Not Invented Here

Riceleverages existing open source solutions that meet the needs of the Kuali projects. That is, Rice avoids
‘Reinventing the Wheel” where possible.

Loosely-Coupled Components

Thearchitecture of Rice containsaset of distributed, loosely-coupled componentsand servicesthat provide
distinct business functionality. The components are designed for building a Rice application into three
layers: Presentation, Business, and Persistence Layer.

Service Oriented Architecture (SOA)

Access to the Rice components and functionality is provided using a Service Oriented Architecture. This
means applications make use of Rice services with well-defined APIs to business functionality. Access
to the services is provided with the Kuali Service Bus (KSB) which provides interoperability for Rice
and the other Kuali projects. In addition, the Rice services are exposed via SOAP (Simple Object Access
Protocol) Web Services allowing access from non Kuali based applications. Rice comes with reference
implementations for all services. However, implementations can easily be changed to meet the needs of
the implementing institution. The SOA architecture is depicted in Figure 1.

About KRAD

Figure1.1. Figurel

Service Based Architecture

@
O
m

T

2

=

o

<

(=]

Service Interface

Rice Modules

Rice is comprised of a set of high-level modules that encompass the application functionality. Each of
these modules contains a set of service interfaces and components (known as the APl module), and a set
of reference implementations (known as the implementation module). As of the Rice 2.0 release, these
modulesinclude:

« Kuali Enterprise Notification (KEN): Kuali Enterprise Notification (KEN) acts as a broker for
al university business related communications by allowing end-users and other systems to push
informative messages to the campus community in a secure and consistent manner. All notifications
are processed asynchronously and are delivered to asingle list where other messages such as workflow
related items (KEW action items) also reside. In addition, end-users can configure their profile to have
certain types of messages delivered to other end points such as email, mobile phones, etc.

» Kuali Enterprise Workflow (KEW): Kuai Enterprise Workflow provides a common routing and
approval engine that facilitates the automation of electronic processes across the enterprise. The
workflow product was built by and for higher education, soit is particularly well suited to route mediated
transactions across departmental boundaries. Workflow facilitates distribution of processes out into the
organizationsto eliminate paper processes and shadow feeder systems. In addition to facilitating routing
and approva workflow can also automate process-to-process related flows. Each process instance is
assigned aunique identifier that is global across the organization. Workflow keeps a permanent record
of all processes and their participants for auditing purposes.

* Kuali Identity Management (KIM): Kuai ldentity Management (KIM) provides central identity
and access management services. It also provides management features for Identity, Groups, Roles,
Permissions, and their relationships with each other. All integration with KIM is through a simple and
consistent service APl (Java or Web Services). The services are implemented as a general-purpose
solution that could be leveraged by both Kuali and non-Kuali applications alike.

Furthermore, the KIM services are architected in such away to allow for the reference implementations
to be swapped out for custom implementations that integrate with other 3rd party Identity and Access

About KRAD

Management solutions. The various services can be swapped out independently of each other. For
example, many institutions may have adirectory solution for identity, but may not have a central group
or permission system. In cases like this, the Identity Service implementation can be replaced while the
reference implementations for the other services can remain intact.

» Kuali Nervous System (KNS): The Kuali Nervous System (KNS) is a software development
framework aimed at alowing developers to quickly build web-based business applications in an
efficient and agile fashion. KNS is an abstracted layer of "glue" code that provides developers easy
integration with the other Rice components. In this scope, KNS provides features to developers for
dynamically generating user interfacesthat allow end usersto search, view detailsabout records, interact
electronically with business processes, and much more. KNS adds visual, functional, and architectural
consistency to any system that isbuilt with it, hel ping to ensure easier and more efficient maintainability
of your software.

» Kuali Rapid Application Development (KRAD): Kuali Rapid Application Development (KRAD) is
aframework that eases the development of enterprise web applications by providing reusable solutions
and tooling that enables devel opersto build in arapid and agile fashion. KRAD isacompl ete framework
for web devel opers that providesinfrastructure in all the major areas of an application (client, business,
and data), and integrates with other modules of the Rice middleware project. In future releases, KNS
will be absorbed into and replaced by KRAD.

e Kuali Rules Management System (KRMS): Kuali Rule Management System (KRMS) is a common
rules engine for defining decision logic, commonly referred to as business rules. KRMS facilitates the
creation and maintenance of rules outside of an application for rapid update and flexible implementation
that can be shared across applications.

» Kuali ServiceBus(KSB): Kuali Service Bus(KSB) isasimple service busgeared towards easy service
integration in an SOA architecture. In aworld of difficult to use service bus products KSB focuses on
ease of use and integration.

Rice Deployments

Rice provides various options for how it can be deployed and integrated with other applications. Each of
these deployment modes has advantages and disadvantages which require the needs of the application to
be considered. The following is abrief description of each option:

» Bundled Mode: The simplest and quickest way to use Rice with your application isto use the bundlied
mode. In bundled mode, al of Rice is deployed with the application. This includes the services, web
content, and database. In this mode there is no client-server interaction since the Rice server is also
the client!

Generally the bundled mode is used only for quick start prototyping or testing and is not recommended
for a production deployment. The biggest disadvantage to this mode is each bundled application
maintains its own Rice data (workflow data such as inboxes is a good example to think of).

» StandaloneRice Server: Therecommended deployment mode for Riceisto create astandal one server.
In this mode one or more clustered Rice instances act as a server for one or more clients. Applications
share Rice data (such as action list, document search) and a common service bus registry through the
server.

Within the standalone server mode there are various client configurations supported. These
configurations are:

« Embedded Workflow Engine: Within the standalone server deployment mode applications can
choose to embed the workflow engine. This moves workflow processing from the Rice server to

About KRAD

within the client application. The workflow engine then interacts with the standal one server using the
KSB or by directly talking to the database.

Embedding the workflow engine has several advantages. One due to the limitations of transactional
processing, when workflow processing occurs on the server it is not maintained within the sameclient
transaction. Moving the processing to the client allows the processing to be transactional. Second the
processing is faster due to direct database communication. Finally, this allows the entire system to
scale better since the processing is distributed.

« Embedded | dentity Services: In the pure standal one server mode each call to aRice serviceis made
through the service bus to a remote server. In some cases this can become a burden on performance.
Theidentity management services in Rice represent one such case, as an application generally needs
to perform many callsto perform authorization checks.

To help with this problem Rice supports embedding the identity management services in the client
application. Thisis similar to the embedded workflow engine where the embedded Rice components
interact directly with the database. This significantly improves performance of the application.

« Java Thin Clients and Web Services. The last deployment options are at the opposite end of the
bundled mode. With these deployments no Rice components are depl oyed with the application. These
are known as the Java thin client and the Web Services client.

In the thin client, a Java application consumes the Rice services remotely (without the use of the
Kuali Service Bus). Thisisgenerally only useful with the Rice KEW (Workflow) services. The Web
Services client is similar except the application can be non-Java based and interacts with Rice using
web services. Both of these deployments are good for applications needing only use of the workflow
module. However it does contain some of the disadvantages as explained in the embedded workflow
engine deployment.

Note

Development Framework: Note in standalone server mode even though the Rice services
and web content are deployed on the server, to use the Rice devel opment framework the KRAD
framework and web modules must be deployed with the application.

User Experience 101

Designing a good user interface is an art, but there are development process aspects that are highly
correlated with projects and brands that are loved by users. We cover two of those here, one having to
do with the use of common user interface (Ul) artifacts and the other having to do with the teamwork and
user engagement model. Figure 2 shows the Aspects of Ul Development Process Maturity.

About KRAD

Figure 1.2. Ul Process Maturity

ASPECTS OF Ul DEVELOPMENT PROCESS MATURITY

Common | Lt

Artifacts

All key projects using the process / model
Users evaluating continuously

|structured methodology, sampling control and
non-biasing approach)

Common Ul controls & frameworks

Common Ul templates / models . R R
; Ul design process & team collaboration model in place

Some projects using
Some user involvement

Commeon Ul guidelines [objectives

No design process formalized -

Ul task flow & design done while executing
Free design space across feature teams No user involvement
No Ul guidance or review , no commeonality

Immature

Teamwork
Aspects

Though “afoolish consistency isthe hobgoblin of little minds” (quote attributed to Ralph Waldo Emerson
in his essay entitled “ Self-reliance”), consistency within an application and across applications used in
tandem isan important aspect, depended on by users. Today’ s usersare constantly multi-tasking, and they
carry their learning from one part of an application to another. Random differences across an application
typically snag these users, requiring them to think about the Ul rather than focus on their task: they have
to remember which strategy applies in which part of the user interface, rather than just fluidly moving
through their tasks.

But consistency doesn’t fetter innovation either, in teams that have produced leading software. Rather,
these people/teams have worked out ways to speed the adoption of winning Ul innovations across their
features and developers, moving al the affected features to the new Ul aspect at the right point in the
process. Sometimes this could mean delaying a new Ul feature, if only one team can migrate their code
toitintimefor arelease — or delaying aversion in order to provide al developers the time to move their
codetoit. Not al differences will create these types of usage “snags’, but they can be reliably predicted
through task analysis and good user engagement.

Increasing skills in Ul development

Phase 0: In teams that are just forming or in the early phase of software development maturity, there is
typically no Ul guidance or review. The design space is 100% open across devel opers and feature teams --
there is higher danger of meaningless inconsistencies (as opposed to intentional ones). Developers don’t
disagree with each other’ s approaches, they smply aren’t aware of them and, if they were, they’d be able
to quickly converge to a common approach. This can create transfer of learning problems for users, and
requires more developer time and more UX and QA time to find and fix Ul problems and, ultimately,
produces more code that has to be maintained.

About KRAD

Phase 1: In teams that have formed and taken the first steps to organize and manage their user interface
efforts, there are common Ul guidelines. Today, in addition to the KRAD framework of controls, you
can take a look at the Kuali Student project’s User Interaction Model [https://wiki.kuali.org/display/
STUDENT/User+Interaction+Model] that documents the design components, design patterns, and style
guide they will use. This covers the type of common Ul guidelines shown in the preceding figure,
particularly helpful for where there is not yet a common Ul control or template that developers can use.

These types of guidelines are also helpful for guiding when to use a particular control, or to make any
customization choices available with that control — and are a recommended part of any project. Kuali
projects are free to use this as amodel or create their own.

Phase 2: In the next step in growing a user interface design leadership process, teams create common Ul
templates/ models, which enable“ lighter-weight” effortsto design and code. TheUX effortisup-frontand
the benefit is inherited by all developers and feature teams afterward. There are multi-disciplinary team
members collaborating with developers, including business analysts and UX staff trained in Ul design.
Consultations and collaboration across feature teams help span Ul boundaries and ensure consistency.

Phase 3: Inthefinal stage of maturation in user interface design management, usersare engaged throughout
the process with al feature teams, providing input through controlled user evaluations (rigorous research
methodology, no pressure/ biasing). Managing UX isahabit at this point, part of the devel opment culture.

Roles and rewards are in place, but there is momentum, the engine runs on its own steam, developers
are championing the collaboration process.

KRAD - Common User Interface Artifacts

KRAD aimsto provide common Ul controls, making it easier for devel opersto achieve consistency across
an application, and across ateam of developersworking on different parts of an application. Examples of
the Ul controls can be seen inthe Rice Test Drive [http://demo.rice.kuali.org/portal .do?sel ected Tab=krad)]
on the KRAD tab (log in with the user name equal to one of the following: admin, quickstart, adminl,
admin2, supervisrsupervisor, or director - these provide varying levels of permissions).

Rice 2.0 KRAD is the first version, so with each successive version, more Ul aspects will move from
a design guideline stage, where every developer has to read and apply a guideline, to a design template
stage, that each devel oper can use and follow, and, ultimately, to areusable Ul control that each devel oper
can use.

RECAP

» Designing a good user interface is an art, but there are development process aspects that are highly
correlated with projects and brands that are loved by users. We covered two of those here, one having
to do with the use of common user interface (Ul) artifacts and the other having to do with the teamwork
and user engagement model.

» Consistency within an application and across applications used in tandem is an important aspect,
depended on by users. Inteamsthat have formed and taken thefirst steps to organize and manage their
user interface efforts, there are common Ul guidelines. The Kuali Student project has created a User
Interaction Model [https://wiki.kuali.org/display/STUDENT/User+Interaction+Model] that documents
the design components, design patterns, and style guide they will use. Kuali projects are freeto usethis
asamodel or create their own.

» KRAD aims to provide common Ul controls, making it easier for developers to achieve consistency
across an application, and across ateam of devel opersworking on different parts of an application. Rice
2.0KRAD isthefirst version, so with each successive version, more Ul aspectswill movefrom adesign
guideline stage, where every devel oper hasto read and apply aguideline, to adesign template stage, that
each developer can use and follow, and, ultimately, to areusable Ul control that each developer can use.

https://wiki.kuali.org/display/STUDENT/User+Interaction+Model
https://wiki.kuali.org/display/STUDENT/User+Interaction+Model
https://wiki.kuali.org/display/STUDENT/User+Interaction+Model
http://demo.rice.kuali.org/portal.do?selectedTab=krad
http://demo.rice.kuali.org/portal.do?selectedTab=krad
https://wiki.kuali.org/display/STUDENT/User+Interaction+Model
https://wiki.kuali.org/display/STUDENT/User+Interaction+Model
https://wiki.kuali.org/display/STUDENT/User+Interaction+Model

About KRAD

« Inthefinal stage of maturation in user interface design management, users are also engaged throughout
the process with all feature teams, providing input through controlled user evaluations. Managing UX
isahabit and part of the development culture at this point - there is momentum, the engine runs on itits
own steam, devel opers champion the collaboration process.

Accessibility with WCAG 2.0 and ARIA
Introduction — What are WCAG 2.0 and ARIA?

There are two accessibility guidelines that apply to web applications. WCAG 2.0 (Web Content
Accessibility Guidelines) and ARIA (Accessible Rich Internet Applications). WCAG 2.0 setsthe baseline
for web page content, while ARIA builds upon this baseline, to enable richer, more dynamic interaction
with web content (developed with Ajax, HTML, JavaScript, and other technologies).

Tip

Who produces the accessibility standards? The World Wide Web Consortium (W3C) is
considered to be the main international standards organization for the World Wide Web. The
W3C has established the open standards for HTML, XML, XHTML, CSS, DOM, CGI, WCAG
and many other aspects. The Web Accessibility Initiative (WALI) [http://www.w3.org/WAI/guid-

tech.html] is the part of the W3C that coordinates and devel ops the open accessibility standards,
including WCAG 2.0, and ARIA 1.0.

« WCAG 2.0 [http://www.w3.org/WAI/WCAG20/quickref/Overview.php] became the recommended
standard in December 2008 (see step 5 in the information box that follows) and is till the current
standard in 2012.

* ARIA [http://www.w3.org/WAI/intro/ariatis] became a candidate recommendation in January 2011
(see step 3 in the information box that follows). Most browsers across the industry are already
implementing (see example compatibility tables: _Mozilla FAQ table [https://devel oper.mozilla.org/
en/Accessibility/Web_applications_and ARIA_FAQ], "Can | use" table [http://caniuse.com/wai-
arig]). ARIA tagsdon't create problemsin browsers that don’t support them —they are simply ignored
by these older browsers. The ARIA candidate is projected to become the proposed recommendation
this spring, 2012 (to move to step 4 in the information box that follows).

« HTMLY5, discussed in the previous section, also relates to accessibility in addition to its focus on
mobility. The HTMLS5 guidelines are not as far along in the draft process as ARIA, but one of the
goals is to make the ARIA attributes into standard features in HTML5 — in addition to providing
additional semantic structure enrichment (accessibility depends on conveying the semantics). The
HTML5 guidelines were issued as a last call working draft in May 2011 (see step 2 below), with the
review period closing in August 2011. Even though it has not yet entered the call for implementation
level, browsershave already begun to build in support (see http://html5accessibility.com/). Itisexpected
to go through another last call based on the extent of the review comments.

Tip

What isthe review processfor standards? 5 “maturity levels’:

1. First Public Working Draft (out for public review and comment)

2. Last Call Working Draft (revised based on the comments, last chancefor comments). HTML5
ishere and expected to be re-issued again at thislevel based on the comments!

3. Call for implementation of Candidate Recommendation (thisislike a ‘beta’). ARIA ishere
and expected to moveto #4 in spring 2012!

http://www.w3.org/WAI/guid-tech.html
http://www.w3.org/WAI/guid-tech.html
http://www.w3.org/WAI/guid-tech.html
http://www.w3.org/WAI/WCAG20/quickref/Overview.php
http://www.w3.org/WAI/WCAG20/quickref/Overview.php
http://www.w3.org/WAI/intro/aria#is
http://www.w3.org/WAI/intro/aria#is
https://developer.mozilla.org/en/Accessibility/Web_applications_and_ARIA_FAQ
https://developer.mozilla.org/en/Accessibility/Web_applications_and_ARIA_FAQ
https://developer.mozilla.org/en/Accessibility/Web_applications_and_ARIA_FAQ
http://caniuse.com/wai-aria
http://caniuse.com/wai-aria
http://caniuse.com/wai-aria
http://html5accessibility.com/

About KRAD

4. Call for Review of Proposed Recommendation (last review before finalization)

5. W3C Recommendation (considered to be the open web standard). WCAG 2.0 is here!

WCAG 2.0 Overview

WCAG 2.0isamature standard, though it isnew to many of us. (If thiscontent isfamiliar toyou, you could

jump directly to the ARIA section that followsthis.) WCAG 2.0 isan update to WCAG 1.0, which wasfor

static web pages only (could not require jScript). Running without javascript is no longer a requirement.
WCAG 2.0 recognizes the web as an interactive space, not solely for passive reading.

There are 12 guidelines, organized under 4 principles: perceivable, operable, understandable, and robust.
For each of the 12 guidelines, there are testable success criteria, at each of these levels: A (must have),
AA (should have), and AAA (may have).

Comprehensive information is available from the W3C here, about how to meet WCAG 2.0 [http://
www.w3.0rg/WAI/WCA G20/quickref/Overview.php].

Accessibility Code Checkers

There are many free accessibility code checkers, and it is recommended that devel opers check their code
with one of these tools. For example, hereisashort list of accessibility checkers you could consider:

» ACCprobe [http://accessibility.linuxfoundation.org/allyweb/util/accprobe/]
» AChecker [http://achecker.ca/checker/index.php]

e Adesigner [http://www.eclipse.org/actf/downloads/tools/aDesigner/]

» Ainspector [http://code.google.com/p/ainspector/]

* FAE (U of 1) [http://fae.cita.uiuc.edu/]

* Open Ajax Alliance [http://oaa-accessibility.org/]

e Total Validator [http://totalvalidator.com/]
* WAVE [http://wave.webaim.org/]

A more comprehensive list of code-checkersis available at http://www.w3.org/WAI/ER/tools/compl ete.

What should developers pay attention to in creating
accessible applications with KRAD?

The KRAD team did an extensive baseline evaluation to understand where the KNS and new KRAD
framework stand on these criteria, and made several changes. For example,

* The standard language tag was added to KRAD. This supports level A criteria 3.1.1, in the
Under standable category: “The default human language of each web page can be programmatically-
determined.”

e Buttons, which were formerly images of text in KNS, were changed to text buttons with
background images. This supports level A criteria 1.4.3 and 1.4.4, in the Perceivable category:
“Contrast ratio of at least 4.5:1" (inherits high contract setting) and “ Text can be resized up to 200%

http://www.w3.org/WAI/WCAG20/quickref/Overview.php
http://www.w3.org/WAI/WCAG20/quickref/Overview.php
http://www.w3.org/WAI/WCAG20/quickref/Overview.php
http://accessibility.linuxfoundation.org/a11yweb/util/accprobe/
http://accessibility.linuxfoundation.org/a11yweb/util/accprobe/
http://achecker.ca/checker/index.php
http://achecker.ca/checker/index.php
http://www.eclipse.org/actf/downloads/tools/aDesigner/
http://www.eclipse.org/actf/downloads/tools/aDesigner/
http://code.google.com/p/ainspector/
http://code.google.com/p/ainspector/
http://fae.cita.uiuc.edu/
http://fae.cita.uiuc.edu/
http://oaa-accessibility.org/
http://oaa-accessibility.org/
http://totalvalidator.com/
http://totalvalidator.com/
http://wave.webaim.org/
http://wave.webaim.org/
http://www.w3.org/WAI/ER/tools/complete

About KRAD

without assistive technologies’ (inherits low DPI/large font settings). This also supports level AA
criterial.4.5, inthissame category: “ Text used instead of images of text except for customizableimages
(by user) and essential images (logotype)”.

Severa other bugs were fixed and changes made, including adding alt-text in many places.

Our intent moving forward isto invest in making KRAD’ s UIF accessible, enabling applications built with
the framework to inherit the benefit. The first version of KRAD, in Rice 2.0, meets most of the A-level
criteria, and many of the AA criteria, and in the areas where it does not meet, there are requirements listed
for Rice 2.2 to bring us up to compliance.

The good news is that applications can resolve most of the aspects where Rice 2.0 KRAD doesn’t yet have
the built-in accessibility support for you to inherit, and there will be additional support in Rice 2.2 KRAD.

Following are 7 areas that application developers using Rice 2.0 KRAD should consider in their
applications:

» Tables, tabs, and field group semantics. Even before we build thisinto the UIF in Rice 2.2 KRAD,
applications can implement the fixes for these areas, documented in the requirements related to table
semantics, tab semantics, and fieldset-legends. This affects level A criteria 1.3.1, in the Perceivable
category: “Information, structure & relationships can be programmatically determined or are available
in text.”

» Standard keyboard support. This affects level A criteria 2.1.1, in the Operable category: “All
functionality & info is operable through a keyboard interface w/o requiring specific timings for
individual keystrokes.”

e Standard “Jump to main content” links. This affectslevel A criteria2.4.1 in the Operable category:
“Provide away to bypass blocks of content that are repeated on multiple pages.” A simple code snippet
example that fixes thisfollows.
<div id="accessibility">
Junp to Navigation

Junp to Mi nContent
</ di v>

» Pagetitles. This affects level A criteria 2.4.2 in the Operable category: “Web pages have titles that
describe topic or purpose.” Also, KULRICE-5688 is related to this, though not technically a “page”,
the iframe title default is currently = “edoc”, which default should be changed to “main content” and
updated by the application when they populate it.

e Link titles. This affects level A criteria 2.4.4 in the Operable category: “The purpose of each link
can be determined from the link text alone or from the link text together with its programmatically-
determined link context.” Specifically, when alink will open anew browser tab or window, that should
be conveyed to the user in link title text (e.g., “ Opens new browser tab — link title text™).

» Parsing standards: Thisaffectslevel A criteria4.1.1inthe Robust category: “In content implemented
using markup languages, elements have complete start and end tags, elements are nested according to
their specifications, elements do not contain duplicate attributes, & 1Ds are unique (except where specs
alow thesefeatures).” The W3C has code validators you can use to find and fix violations. See http://
www.w3.0rg/QA/Tools/. Seealso thelist of accessibility code checkersin the previous material.

* Name, role and value. This affects level A criteria 4.1.2 in the Robust category: “For al Ul
components, the name & role can be programmatically determined; states, properties & values set by
the user can be programmatically set; and notification of changes to these items is available to user
agents, including assistive technologies.” The new ARIA guidelines make it easier to address these
criteria, and we'll look at these guidelines next.

10

http://www.w3.org/QA/Tools/
http://www.w3.org/QA/Tools/

About KRAD

ARIA Overview

The new ARIA guidelines enable interactive web applications to be accessible — you no longer have to
create an aternate version without jScript. ARIA represents an extension to both HTML and XHTML,
providing new attributes to dynamically convey how interactive features (controls, widgets, Ajax live
regions, and events) relate to each other and what is their current state. The goal is to make these into
standard featuresin HTMLS5.

From the WAI-ARIA Primer [http://www.w3.org/TR/wai-aria-primer/]:

“ Authors of JavaScript-generated content do not want to limit themselves to using standard tag elements
that define the actual user interface element such astables, ordered lists, etc. Rather, they make extensive
use of elements such as DIV tags in which they dynamically apply a user interface (UI) through the use of
style sheets and dynamic content changes. HTML DIV tags provide no semantic information. For example,
authors may define a DIV as the start of a pop-up menu or even an ordered list. However, no HTML
mechanism exists to:

* |dentify the role of the DIV as a pop-up menu
* Alert assistive technology when these elements have focus
 Convey accessibility property information, such as whether the pop-up menu is collapsed or expanded

 Definewnhat actions can be formed on the element other than through a device-dependent meansthrough
the event handler type (onmouseover, onclick, etc.)

In short, JavaScript needs an accessibility architecture to write to such that a solution can be mapped to
the accessibility frameworks on the native platform by the user agent.”

ARIA gives us several hew constructs to do this, to dynamically convey how interactive features relate
to each other and what istheir current state:

* New “Roles’ (Role="") to describe:

* thetype of widget ("menu," "treeitem,” "dlider,” and "progressmeter")
« the structure of atable or page (headings, regions, grids)
» New properties—to define and describe:
« the state of awidget or control
« the state of “live” regions on a page that will receive updates, and how/when to handle those

« drag-and-drop sources and targets

» New keyboard support techniques for navigating among web objects and events

Adding ARIA to an application

Thereis a 7-step process recommended when applying ARIA to web application code (steps drawn from
the in WAI-ARIA Primer [http://www.w3.org/TR/wai-aria-primer/], examples supplied by this training
module):

1. Rely on native markup when possible. For example, if thereisanative HTML method that works well
for grouping controls (fieldset & legend), use that instead of creating adiv with arole to group them.

11

http://www.w3.org/TR/wai-aria-primer/
http://www.w3.org/TR/wai-aria-primer/
http://www.w3.org/TR/wai-aria-primer/
http://www.w3.org/TR/wai-aria-primer/

About KRAD

2. Apply appropriate ARIA roles. There are dozens more ARIA roles [http://www.w3.org/TR/wai-arial/
rolestiroles_categorization], but here are afew examples, to convey the idea:

» Widget roles [http://www.w3.0rg/TR/wai-aria/rolestwidget_roles]: button, checkbox, dialog, link,
radio, tab, tooltip, treeitem

e Document structure roles [http://www.w3.org/TR/wai-aria/rolest#document_structure roles]:
document, group, heading, presentation, region

» Landmark roles [http://www.w3.0rg/TR/wai-aria/rolestlandmark_roles]: application, banner, form,
main, menu, navigation, search

Note

Assigning the role="presentation” to any native markup means that the semantics of the
markup will not be conveyed to assistive technologies (it isfor visual presentation only). This
can be useful, for example, when a table is used for layout purposes (when the table row/
column structure is not relevant).

If thereisno landmark rolethat fits the need, authors can define their own custom regions. Any
role can be marked aria-live, which means that it will receive updates, its state will change.

Changes within live regions automatically get passed through to assistive technologies, so
these are accessible.

3. Preserve semantic structure. Preserve DOM hierarchy, form logical groups, assign landmark roles.

4. Build relationships. For example, use aria-describedby to identify the element that describes
the object, and use aria-labelledby to identify the element that labels the object. For more
information, see WAI-ARIA relationships [http://www.w3.0rg/TR/2010/WD-wai-aria-20100916/
states and_propertiestattrs relationships).

5. Set statesand propertiesin response to events. After you' ve created the elements with their rolesin

your code-base, be sure you add the code to change the state and property in response to user interaction.

For example, when something is selected, when something is expanded, and so on. For example,
make sure the appropriate tab is marked active in the tablist structure and others are marked inactive.

6. Support keyboard navigation. Now with ARIA, the tabindex attribute can be applied to any
displayable HTML element, making it easier to add items on a page into the keyboard tab order. You
can either use aroving tabindex or the aria-activedescendant property. For more details, see WAI-ARIA
- Keyboard support [http://www.w3.org/TR/2010/WD-wai-aria-practices-20100916/#keyboard].

7. Synchronize the visual interface with the accessible interface. Make sure that ARIA states are
synchronized with the visual interface and vice-versa. For example, make sure that aria-selected items
inherit avisual treatment for selected state, that ARIA infocus items inherit a visual treatment for in-
focus state, that aria-required items are marked visually with arequired indicator, and so on.

RECAP

There are four major “take-aways’ in this accessibility section:
» There aretwo accessibility guidelines that apply to web applications, created by the W3C:
« WCAG 2.0 (Web Content Accessibility Guidelines) — afinalized standard in 2008.

* ARIA (Accessible Rich Internet Applications) — a candidate standard (beta) in 2011.

12

http://www.w3.org/TR/wai-aria/roles#roles_categorization
http://www.w3.org/TR/wai-aria/roles#roles_categorization
http://www.w3.org/TR/wai-aria/roles#roles_categorization
http://www.w3.org/TR/wai-aria/roles#widget_roles
http://www.w3.org/TR/wai-aria/roles#widget_roles
http://www.w3.org/TR/wai-aria/roles#document_structure_roles
http://www.w3.org/TR/wai-aria/roles#document_structure_roles
http://www.w3.org/TR/wai-aria/roles#landmark_roles
http://www.w3.org/TR/wai-aria/roles#landmark_roles
http://www.w3.org/TR/2010/WD-wai-aria-20100916/states_and_properties#attrs_relationships
http://www.w3.org/TR/2010/WD-wai-aria-20100916/states_and_properties#attrs_relationships
http://www.w3.org/TR/2010/WD-wai-aria-20100916/states_and_properties#attrs_relationships
http://www.w3.org/TR/2010/WD-wai-aria-practices-20100916/#keyboard
http://www.w3.org/TR/2010/WD-wai-aria-practices-20100916/#keyboard
http://www.w3.org/TR/2010/WD-wai-aria-practices-20100916/#keyboard

About KRAD

» Therearemany free accessibility code checkers, and it isrecommended that devel opers check their code
with one of these tools. Seethe linksto tools in the previous pages.

* KRAD isinvesting in accessibility and applications developed with KRAD will be able to inherit this
benefit in Rice 2.2. Applications developed with Rice 2.0 KRAD should give attention to 7 areas in
WCAG 2.0, with fixes discussed for these 7 areas in the previous pages.

* ARIA represents an extension to both HTML and XHTML, providing new attributes to dynamically
convey how interactive features (controls, widgets, Ajax live regions, and events) relate to each other
and what is their current state.

» There are new “roles’ and properties to define states, new drag-and-drop semantics and expanded
support for enabling keyboard access.

e Thereisarecommended 7-step process for adding ARIA to an application.
* Thegoa isto make these into standard featuresin HTMLS5.

See details and links in the previous pages.

13

Chapter 2. Getting Started
KRAD Architecture

Figure 2.1. KRAD Frameworks

Recap

KRAD Frameworks

Persistance.
Framework

» KRAD is a complete framework for application development, covering all the application layers
(Presentation, Business, and Data)

» KRAD iscomprised of the following feature areas:

Persistence Framework — Provides services and other utilitiesfor persisting data. Central to al of this
is the Business Object.

Data Dictionary — Repository of XML metadata that describes data objects and their attributes. This
can be used to configure common Ul attributes along with other things such as validation.

Document Framework — Provides the ability to create ‘e-docs’ that are integrated with the KEW
module for workflow and the KIM module for authorization. In addition to the integration the
framework, it also provides several reusable pieces for creating new documents.

Business Rules — Code based Rules framework that can be used to writing business rules
corresponding to events that occur on a document. Future plans include integration with the new
KRMS module.

Ul Framework (UIF) — Framework for building Web based user interfaces using a components that
are configured with XML. Most of the KRAD training is focused on this area.

Inquiry, Lookup, Maintenance —‘ Pre-built’ views complete with a backend implementation that can
be quickly configured to create new search screens, screens that display data for information, and
screens that allow table data to be maintained.

Spring Beans

Spring providesthe foundation for much of the KRAD functionality. Many Spring offerings are consumed
throughout the module, including data sources/templates, dependency management, transaction support,
remoting, EL, and Spring MV C. In addition to the typical ways of using Spring, KRAD usesits powerful
configuration system as a basis for building declarative frameworks. Developers use much of KRAD by
interacting with this configuration system. Thissection will give an overview of using Spring configuration
and discussitsrolein KRAD.

14

Getting Started

Configuration System

Spring provides a configuration system that alows us to configure how to instantiate, configure, and
assembl e objects in our application. Furthermore, this configuration can take place outside of Java code.
Assimpleasit might sound, thisisavery powerful construct that has changed many aspects of application
development. An application of this includes configuring the dependencies for an object (other objects it
dependson). Thisisknown asInversion of Control, the opposite of the object getting its own dependencies
(for example with a Servicel ocator for service dependencies).

KRAD aong with the rest of Rice use this feature of Spring to set dependencies such as services, DAOs,
and data sources. This gives applications built with Rice much greater flexibility, as the implementations
for these dependencies can be changed and configured for us with the Spring configuration.

Besides setting other object dependencies, the Spring configuration can be used to set values for primitive
properties (String, Integer, Boolean ...). In addition, we can instruct Spring on how to set the property
value, whether it be by a standard setter, constructor argument, or annotated method. Essentialy Spring
allowsusto giveaformulafor creating and populating an object instance completely outside of code. This
so called formulais known as the bean configuration.

Bean Configuration

Spring supports various methods for bean configuration, the most common of these being XML. Each
XML file must adhere to the Spring bean doctype and is sometimes referred to as ‘ Spring Bean XML'.
The following is the shows the doctype definition for the 3.1 release:

<beans xm ns="http://ww. spri ngframewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schena- i nst ance"
xm ns: beans="htt p: // ww. spri ngf ranmewor k. or g/ schema/ beans"
xsi : schemaLocati on="http://ww. spri ngframewor k. or g/ schema/ beans
htt p: // www. spri ngf ramewor k. or g/ schema/ beans/ spri ng- beans- 3. 1. xsd" >

Note this sets up use for the bean namespace. Spring provides many other XML namespaces that are used
for various purposes. If one of these are used, the corresponding definition must be declared with the bean
doctype. One of these other namespaces, the ‘p’ namespace, will be covered later on in this section.

Oncewe have our XML filesetup, we can begin specifying the bean configuration. Each filemay contain as
many bean configurationsaswelike (wewill seelater on certain best practicesfor Spring file organization).
To start a new bean configuration, we use the bean tag:

<bean i d="address" class="edu. nyedu. sanpl e. Address" >
</ bean>

As we will seein a hit, the bean configuration is loading into a container managed by Spring. In order
to identify a bean configuration, we must give it a unique name using the id attribute. In addition we see
here an attribute named class. Recall the purpose of the bean configuration isto construct and populate an
object, so we must tell Spring what type of object we want created

Bean Names

Spring alows us to name our bean using the id attribute or the name attribute, or both. In
addition, we can give multiple names in the name attribute that can be used to identify the bean
configuration. If al that is not enough, Spring has an alias tag that can be used to give another
name for a bean. Best practice for Rice applications is to use the id attribute to specify the main
name, and then use the other attributes if needed.

15

Getting Started

Primitive Properties

The above definition is perfectly acceptable and would result in Spring creating a new Address object.
However, now let's add some property configuration. In order to do this, we must know the available
properties on our Address object:

public class Address {
private String street;
private String city;
private String state;
/I getters and setters

}

We see Address has three properties we can configure. To specify avalue for one of these properties, we
can use the property tag. When using the property tag we must specify the name attribute which must
match the property name of the class we want to populate, and then the value attribute which is the value
we wish to inject.

<bean i d="address" cl ass="edu. myedu. sanpl e. Addr ess" >
<property name="street" value="197 H St"/>
<property name="city" val ue="Bl oom ngton"/>
<property name="state" value="IN'/>

</ bean>

Addr ess

addr ess.
address.
address.

The above configuration is equivalent to the following Java code:

address = new Address();
setStreet("197 H St");
set Gity("Bl oonmi ngton");
setState("IN');

Notice that in order for Spring to instantiate our object with the above bean configuration, we needed to
have a default no-argument constructor. However, if our class requires a constructor argument, that’s no
problem. We can use the constructor-arg tag to specify the values for the arguments. Suppose our Address
class looks like the following:

public class Address {
private String street;
private String city;
private String state;
public Address(String street, String city, String state) {

this.street = street;
this.city = city;
this.state = state;

/1 getters and setters

We can then use the constructor-arg tag so Spring can pass the appropriate arguments for instantiation:

<bean i d="address" cl ass="edu. nmyedu. sanpl e. Addr ess" >
<constructor-arg index="0" value="197 H St"/>

16

Getting Started

<constructor-arg i ndex="1" val ue="Bl oom ngton"/>
<constructor-arg i ndex="2" value="IN'/>
></ bean>

Note when specifying the constructor-arg, we indicating the order the argument should be given to the
constructor using the index attribute. Spring supports other mechanisms for matching the arguments, such
as matching by the argument class type.

Property Editors

When specifying avalue for aproperty, Spring will use PropertyEditor classesto do the datatype
conversion. By default, conversion of Strings to Numbers and Booleans work without any
additional configuration. Additional property editors are provided for other conversions (such as
Date), and in addition custom property editors can be created. However, these must be configured
for use with the bean factory. See the full Spring documentation for more information

Collections

In order to populate a property type that is a collection, we must use some additional tags provided by
Spring. These tags correspond to the type of Collection we want to create: list, map, set, or properties.

Suppose we have the following property of type List<String>:

private List<String> phoneNunbers;

We can then configure this property in our bean configuration as follows:;

<property name="phoneNunbers">
<list>
<val ue>812- 333-9090</ val ue>
<val ue>812- 444- 9900</ val ue>
</list>
</ property>

Notice that instead of using the value attribute, we are using the body of the property tag to specify the
property value. We then use the list tag to specify we want to create a List collection type. Finaly, we
configure entries for the List using the value tag. Thisis equivalent to the following Java code:

Li st<String> phoneNunbers = new ArraylList<String>();
phoneNunber s. add("812- 333-9090") ;
phoneNunber s. add(" 812- 444-9900") ;

Now let’s take alook at a Map example. Suppose we had the following property with type Map<String,
String>:

private Map<String, String> stateCodeNanes;

Our corresponding property configuration would look as follows:

<property name="st at eCodeNanes" >
<map>
<entry key="IN' val ue="Indi ana"/ >
<entry key="OH' val ue="Chio"/>
</ map>
</ property>

17

Getting Started

Here we use the map tag to indicate a Map collection type should be created. Then we specify entries for
the map using the entry tag. This requires us to specify the entry key and entry value using the key and
value attributes respectively.

Java Generics

It is a good practice to use Java generics with Collections. Spring will use this information to
perform datatype conversion asit doesfor primitive types. Without the generic typeinformation,
this conversion cannot be performed.

Other Objects

Asmentioned previously, we can use the bean configuration to specify values for primitive and collection
property types, along with properties of other object types. These are known as dependencies of the object
to other objects. Since these are properties holding other objects, which themselves have properties which
we can specify using bean configuration, we associate these objects by referencing beans. In Spring this
is called bean collaboration.

For referencing other bean definitions Spring provides the ref tag. The ref tag can be used by specifying
the bean, local, or parent attributes. All of these attributes take as a value the id for the bean you wish
to reference (matching either the actual id value given on the bean, or one of its names or aliases). The
difference between these attributes pertains to container and scoping rules (discussed later on). The most
common case with Rice is to use the bean attribute.

For example, in our Address objects, let's now change the state property (of type String) to type State.
The State classis asfollows:

private class State {
private String stateCode;
private String stateNane;
/] getter and setters

And our Address class now looks like:

public class Address {
private String street;
private String city;
private State state;
/1 getters and setters

First we can create one or more hew bean configurations for our State object:

<bean id="state-IN' class="edu. nyedu. sanpl e. State">
<property name="stateCode" val ue="IN'/>
<property name="stateNarme" val ue="Indi ana"/ >

</ bean>

<bean id="state-OH' class="edu. nyedu. sanpl e. State">
<property nanme="stateCode" val ue="CH"'/>
<property name="stateNanme" val ue="Chi 0"/ >

</ bean>

Now in our bean configuration for Address, we can reference one of these state bean configurations using
theref tag:

<bean i d="address" cl ass="edu. nyedu. sanpl e. Addr ess" >

18

Getting Started

<property name="street" value="197 H St"/>
<property name="city" val ue="Bl oom ngton"/>
<property nane="state">
<ref bean="state-IN'/>
</ property>
</ bean>

In Java code, this would be:

Address address = new Address();
address. setStreet("197 H St");
address. set G ty("Bl oom ngton");
State state = new State();
state. set StateCode("IN');

state. set Stat eNane(" | ndi ana");
address. set State(state);

If we wanted to change our address to use the OH state code instead, we simply change the bean attribute
on the ref tag:

<bean i d="address" class="edu. nyedu. sanpl e. Addr ess" >
<property name="street" value="197 H St"/>
<property nanme="city" val ue="Bl oom ngton"/>
<property name="state">
<ref bean="state-OH'/>
</ property>
</ bean>

In addition to referencing other bean definitions for setting object properties, Spring gives us an option
to construct the bean inline (so called "Inner Beans"). These beans do not require an id attribute to be
specified, and as a consequence and not accessible for reference by other bean configurations. We create
these inner bean configurations exactly aswe do other bean configurations. The only differenceisthey do
not need an id attribute (as stated), and the bean tag falls within a property tag.

To seethisin action, let’s suppose we did not any bean configurations for State in our XML. Using inner
beans, we can accomplish the same result:

<bean i d="address" cl ass="edu. nyedu. sanpl e. Addr ess" >
<property name="street" value="197 H St"/>
<property name="city" val ue="Bl oom ngton"/>
<property name="state">
<bean cl ass="edu. nyedu. sanpl e. St ate">
<property name="st at eCode" val ue="IN'/>
<property name="st at eName" val ue="Indi ana"/ >
</ bean>
</ property>
</ bean>

Inner Beans

Inner Beans are sometimes referred to as " Anonymous Beans'. Aswe will seein a bit, the bean
configuration isloaded into acontainer managed by Spring. Beanswith theid attribute given have
aunique name within the container and can be referenced and retrieved from the container. Inner
beans are only available within the context of their parent bean configuration. It is not possible
to directly retrieve information about an inner bean from the container.

Compound Property Names

As of Spring version 3.0, we can configure so called ‘Compound’ property names. Thisis abasically a
shortcut for setting a property on areference (nested) object. Let’s again take the example of the Address

19

Getting Started

classwith a property of type State. We saw earlier how we can use bean references or inner beansto create
and populate the State object for the Address property. Using component property names, we can sets
property values on the State object using the property tag without a nested bean tag:

<bean i d="address" cl ass="edu. myedu. sanpl e. Addr ess" >
<property name="street" value="197 H St"/>
<property name="city" val ue="Bl oom ngton"/>
<property name="st ate. st ateCode" val ue="IN'/>

</ bean>

In order for thisto work, the State object must have been already constructed (with the Address constructor,
bean inheritance, or other means). If the state object is null, a NullPointerException will be thrown when
Spring tries to set the stateCode property.

The P-Namespace

Aswe have seen and will continueto see, the use of XML configuration for constructing objects has many
benefits. However, one drawback isthe XML is much more verbose than code. To help with this problem,
Spring introducesthe‘p’ XML namespace. This namespace essentially adds the ability to specify property
values as attributes on the bean tag instead of the inner property tags. The attribute name given with the
p namespace should match the name of the property to populate.

For example, our previous bean configuration for address can be rewritten as:

<bean i d="address" cl ass="edu. nyedu. sanpl e. Address" p:street="197 H St" p:city="Bl oom ngton" p:state="IN'/>

Using the p namespace we can also configure references to other beans. The syntax for doing thisis to
add ‘-ref’ after the property name.

<bean i d="address" cl ass="edu. nmyedu. sanpl e. Address" p:street="197 H St" p:city="Bl oom ngton" p:state-
ref="state-1N'/>

Here Spring will look for a bean configuration with id equal to "state-IN", and use the object constructed
from that bean configuration to set the state property on Address.

With the p-namespace we can also set compound property names such as ‘ state.stateCode’ . Using the p-
namespace for setting property valuesis limited however. For instance, there is no mechanism for setting
collection property types.

Bean Parents

Bean configuration can be inherited for another configuring another bean using the parent attribute on the
bean tag. The value for the parent attribute is the id or name for the bean which configuration should be
inherited from. Configuration such asthe class, property and constructor arguments, initialization methods,
and so on, will be inherited for the child definition. The child bean definition can override the inherited
configuration, and add to it.

Asan example let’s assume we have a Car class defined as follows:

public class Car {
private String make;
private String conpany;
private String color;

20

Getting Started

We can then define bean definitions as follows:

<bean id="fordCar" cl ass="edu. nmyedu.sanpl e.Car" p: conpany="Ford"/>
<bean i d="bl ueFusi on" parent="fordCar" p: make="Fusi on" p:col or="Blue"/>
<bean i d="redFusi on" parent="fordCar" p:make="Fusion" p:col or="Red"/>
<bean i d="bl ueEscape" parent="bl ueFusi on" p: make="Escape"/>

Notice for the three child beans we did not have to specify the class attribute since it is inherited from the
parent. In the ‘blueFusion’ and ‘redFusion’ beans we are extending the ‘fordCar’ bean to specify the car
make and color. For the ‘blueEscape’ bean we extend ‘blueFusion’ to override the make property. There
is no restriction on the number of levels the bean inheritance can have.

Circular Dependencies

Be careful not to introduce circular dependencies when using bean inheritance. For example,
<bean id="a" parent="b"/> and <bean id="b" parent="a"/>.

When a bean configuration isinherited that includes property configuration for a collection class, we must
explicitly indicate to merge the entries. Thisis done by adding merge="true" to the collection tag.

<bean i d="address" cl ass="edu. nmyedu. sanpl e. Addr ess" >
<property name="phoneNunbers">
<list>
<val ue>812- 333- 9090</ val ue>
<val ue>812- 444- 9877</ val ue>
</list>
</ property>
</ bean>

<bean i d="j oesAddress" parent="address">
<property name="phoneNunbers">
<list merge="true">
<val ue>333-122- 4000</ val ue>
</list>
</ property>
</ bean>

With the merge attribute set to true, Joe's address will have three phone numbers configured. Taking the
merge attribute off (or setting to false) will result in Joe only having one configured phone number.

Overriding Bean Definitions

Spring also alows us to override the configuration of a bean by creating another bean with the
sameid (or name). For example, if <bean id="Fo0" is configured twice, the onethat isloaded last
will be used. The order in which the bean configuration is loaded depends on the configuration
(order of files). This functionality is important to how Rice and the other Kuali applications
provideagreat deal of flexibility. Aninstitutionimplementing the project can specify oneor more
‘institutional’” spring files. These files are loaded after the project Spring files, thus any beans
within the institutional files with the same id as a bean in the project Spring files will override.
This alows changing beans such as service implementations without modifying a project file.
However, be careful that you do not override a bean you did not intend to!

Bean Containers

So far we have looked at how we can use XML to provide bean configuration. Now let’s look at how
Spring uses that information to manage our objects.

21

Getting Started

The objects created from the bean configuration are managed within a container. An application may
contain more than one bean container, depending on configuration. A bean container is associated with
a set of bean configurations, loaded from a set of XML files (or other configuration mechanism if used).
Through code, we can then ask for an object from the container through the container interface.

Requesting Container Objects

Typical ways of requesting an object from the container are by type or id. For requesting by
type, we can use the interface for the object we want. In the case of Services, this would be the
service implementation. Thisisvery important as our application code does not have to have any
knowledge of the implementation. In addition to type, we can also request an abject by its bean
configuration id or name.

One type of bean container Spring provides is an ApplicationContext. This container is associated with
an application or a module of the application and provides services, resources, and other objects for that
application/module. The application context is initialized when the application starts up and maintained
throughout the application lifecycle. In Rice, each module has an associated ApplicationContext that is
configured and initialized with the Rice Configurers.

Figure 2.2. Bean Factories

Your Business Objects (POJOs)

The Spring

Cenfiguration Container

Metadata

Fully configured system
Ready for Use

In addition to the application contexts, other bean factories can be maintained by an application. For
example, as we will learn about in Chapter 4, the KRAD Data Dictionary module maintains a bean
factory that holds the dictionary metadata. A set of XML files provides the bean configuration for the
datadictionary. These XML files are separate from the ones that provide configuration for the application
context containers.

Bean Scope

For the objects Spring creates for us, we can define a Scope. The scope specifies how long the created
object should live. To specify the scope for a bean, we use the scope attribute on the bean tag.

<bean i d="M/Bean" class="..." scope="singleton">

The default scope for a bean is ‘singleton’. An object with scope singleton is created only once per bean
container. When requests are made to obtain an object for the correspond bean, the same object instance
is aways returned. By default, the singleton object is created during container initialization, however we
may add lazy-init="true" to the bean tag to indicate that the object should not be created until a request
for the object is made.

Another scope we can use is ‘prototype’. When a bean is marked with a scope of prototype, a new
object instance is created for each request. Prototype objects are not created initially during container
initialization.

22

Getting Started

Choosing Bean Scope

Deciding whether to use singleton or prototype scope usualy depends on whether our object
maintains state. If an object maintains state, we should use scope prototype so that it is thread
safe. For statel ess objects (such as services), we should use the singleton prototype.

Besides the singleton and prototype scopes, Spring also provides the request, session, and global session
scopes. Furthermore, you can create your own scope!

Recap

» Spring provides a configuration mechanism that allows us to define a ‘recipe’ for creating instances
of aclass.

* We can use XML to provide bean configurations. A bean configuration is given using the bean tag,
and includes an id attribute to uniquely identify the bean and a class attribute to indicate the class for
the object to create.

» Using the property tag we can configure property values for primitive types and collections. We can
a so configure dependencies of the object (which are properties of other object types) using the ref tag
or inner beans.

» The ability to configure dependencies external to the parent object is the Inversion of Control pattern.
» We can use the p-namespace as a shortcut for configuring properties.

» Spring allows usto inherit bean configuration using the parent attribute. The configuration inherited by
the child bean definition can be overridden and added to.

« Inorder to mergeinherited collection configuration, we must specify merge="true".

» The objects created by Spring are managed within a container. Generally there is a container for the
whole application or each application module. In addition, containers can be created for other purposes.

» The bean scope defines how long the created object will live. The default scope of singleton means only
one object will be created and shared throughout the application lifecycle. With a scope of prototype, a
new object instance will be created each time arequest is made to the container.

The Development Environment

Developing a Rice application is essentialy no different than other J2EE applications. Any tool that can
be used for creating J2EE apps can be used for a Rice app. Essentially Rice is a set of libraries that are
used with your project (like many other libraries a J2EE app includes) and configured for your needs.

The essential tools for developing a project are:

I DE (Integrated Development Environment) — Thisisthetool you will useto devel oper the source code
and resources for your project. It can be a simple text editor if you want, however it is recommended to
use one of the Java IDE tools available. Of these Eclipse, Intellij, and NetBeans are the most popular in
today’s market. Any of these will be fine for developing a Rice project. However, as we will learn about
next, Rice provides its own tooling to help getting started with Eclipse. Eclipse is chosen due to its high
use and that it is afree open source tool. The latest releaseis ‘Indigo’ and can be downloaded here:

http://www.eclipse.org/downl oads/packages/eclipse-ide-j ava-ee-devel opers/indigosr2

Database — Rice applications can use a MySql or Oracle database for persisting application data. Rice
itself will use the database for supporting the various Rice modules (workflow, identity management, and

23

http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/indigosr2

Getting Started

so on). Within the Rice distribution datasets are provided that can be used to create the initial database
schema. You can choose to load the ‘bootstrap’ dataset, which provides the baseline data needed to run
Rice, or the ‘demo’ dataset which adds additional demo data (such as example KIM data and workflow
doc types).

Although it is possible to provide a shared database for development, it is recommended for productivity
reasons for each developer to have a local database installed. Both MySQL and Oracle provide freely
available databases for development. Currently Rice has been tested with the following versions:

* Oracle
» Oracle Database 10g
» Oracle Database 11g
 Oracle Express Edition (XE)
Use the Oracle JDBC Driver to connect to these databases.

Ensure that the Oracle database you intend to use encodes character datain a UTF variant by default. For
Oracle XE, this entails downloading the "Universal" flavor of the binary, which uses AL32UTFS8.

« MySQL
« MySQL 5.1 +

Note for our chosen database we must also download the corresponding database driver. Thisisajar file
we will need to make available to our web container for connecting to the database.

These supported databases can be downloaded with the following URLs:

Table 2.1. Supported Databases URL s

Software Download Location

Oracle Standard and Enterprise Editions http://www.oracle.com/technetwork/database/enterpri se-edition/
downloads/index.html

Oracle Express Edition http://www.oracle.com/technetwork/database/express-edition/
downloads/index.html

Oracle JDBC DB Driver http://www.oracle.com/technetwork/database/features/jdbc/
index-091264.html

MySQL http://www.mysql.com/downl oads/

MySQL Connector/J JDBC Driver http://www.mysgl.com/downl oads/connector/j/

Note for working with a MySQL database the MySQL Workbench (available for free download) is very
useful and can save time for those new to MySQL.

Once the database provider is installed, we can then load one of the provided datasets using the Kuali
ImpEXx tool. The ImpEx tool is a Kuali-developed application which is based on Apache Torque. It reads
in database structure and datafrom XML filesin aplatform independent way and then creates the resulting
database in either Oracle or MySQL. To use this tool we simply provide configuration about the location
of the source dataset, along with connectivity information for our target database. Thisis done by creating
a properties file named ‘impex-build.properties’ in the user home directory. Once the configuration is
complete, we can invoke the tool using ant or maven and our database will be created.

Supported Databases

Rice strives hard to be database independent. It should be entirely possible to run with other
database vendors such as Sybase, Microsoft SQL Server, or DB2. However, these databases are

24

http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html
http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html
http://www.oracle.com/technetwork/database/express-edition/downloads/index.html
http://www.oracle.com/technetwork/database/express-edition/downloads/index.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.mysql.com/downloads/
http://www.mysql.com/downloads/connector/j/

Getting Started

not promoted due to lack of testing by the Rice team. In addition, the Rice CM team is working
towards supporting in memory databases such as Derby or H2. These would be mostly used for
quick start development purposes and demonstrations.

JDK — In order to support compilation of the application source code a JDK must be installed. Note
that this must be the JDK and not a Java Runtime Environment — JRE. Rice requires a JDK version of
1.6.x. Additionally, Rice has only been tested with the Sun JDK implementation. Therefore use of other
implementations such as OpenJDK may have problems.

For machines running Windows, JDK 6 can be downloaded at the following URL:

http://www.oracle.com/technetwork/javaljavase/downl oads/index.html

If you are on a Mac, then Java 6 should already be installed if you are up to date with the latest updates
from Apple.

Y ou will also want to set up your JAVA_HOME environment variable to point to theinstallation directory
of your JDK. In both Windows and Mac environments, the java executable program should aready be on
your path. But if it isnot, you will want to include JAVA_HOME/bin inyour PATH environment variable.

In order to verify that your JDK has been installed successfully, open a command prompt and type the
following:

java -version

Y ou should see output similar to the following:

java version "1.6.0_37"
Java(TM SE Runtinme Environnent (build 1.6.0_37-b06)
Java Hot Spot (TM 64-Bit Server VM (build 20.12-b01, m xed node)

If you receive an error indicating that the "java' command could not be found, please ensure that the java
command is on your machine's PATH environment variable.

Maven - Maven is the primary build tool used by the Kuali Rice project. Maven is based on a project
object model (POM) that defines various standards and conventions surrounding the organization of a
project. This facilitates a set of standard build goals and lifecycle phases (such as compile, test, package,
etc.). Mavenisparticularly helpful interms of dependency management. When building a Rice application
using Maven, al of the dependent libraries will be pulled in automatically.

It is not required for Rice enabled applications to be Maven projects. Again, Rice is essentially a set of
jarsthat can be used with an application. However, using Maven simplifies the setup process greatly. For
example, applications not using Rice must pull in and manage all of thethird party librariesthat are needed
by Rice. That hasan impact not only oninitial project setup, but also each timethat application isupgraded
to anew Rice version.

To download version 3 of Maven, use the following link:

http://maven.apache.org/downl oad.html

Y ou will want to set your M2_HOME environment variable to point to the location where you unzipped
Maven. Y ou will additionally want to include M2_HOME/bin in your PATH environment variable so that
maven can be executed from the command line without having to specify the full path.

Finally, to prevent potential out of memory errors when compiling Rice with Maven, you should set your
MAVEN_OPTS environment to a value like the following:

25

http://www.oracle.com/technetwork/java/javase/downloads/index.html
http://maven.apache.org/download.html

Getting Started

MAVEN_OPTS="- Xmx1024m - XX: MaxPer ni ze=768n{

In order to verify that Maven has been installed successfully and is available on the path, open acommand
prompt and type the following:

m/n -version

Y ou should see output like the following:

Apache Maven 3.0.4 (r1232337; 2012-01-17 03: 44: 56- 0500)
Maven hone: /usr/|ocal / maven

New

If you receive an error indicating that the "mvn" command could not be found, please ensure that the
directory that includes the mvn executable (M2_HOME/bin) is on your machine's PATH environment
variable.

Servlet Container — In order to run our Rice application we need have a servlet container. The serviet
container serves the web requests for a J2EE application. There are many containers available for use, but
Tomcat is most commonly used. Kuali Rice 2.0 supports the following Tomcat version:

» Tomcat 6 (Servlet API 2.5, JSP 2.1)
e Tomcat 7 (Servlet API 3.0, JSP 2.2)
For downloading and install instructions visit the Apache Tomcat site;

http://tomcat.apache.org/

For development purposes you can also choose to use an embedded application container such as Jetty.
The Rice project provides a sample Jetty Server that can be used for your project. The next section will
cover thisin more detail .

Project Setup

Now let’slook at creating a new Rice enabled project. To do this, we will use atool from the Rice project
that performs most of theinitial bootstrapping. Thetool isincluded within the Rice project. Therefore, we
need to start by downloading the Rice 2.0 release. The Rice distribution can be downloaded at:

http://kuali.org/download

Or the project may be checked out through Subversion with the following repository location:

https.//svn.kuali.org/repos/rice

Notethe full project must be checked out, not just thetool. Thetool createstheinitial artifacts by copying
from the Rice working copy.

The Rice project contents should be placed into afolder in the local file system. A standard practice isto
create atop level directory named ‘java’, followed by a‘projects’ directory, and then a directory named
‘rice’ that contains the actual project (‘/javalprojects/rice’).

The particular tool we will be using was written in Groovy, therefore we need to download the Groovy
runtime. This can be downloaded at the following URL:

26

http://tomcat.apache.org/
http://kuali.org/download
https://svn.kuali.org/repos/rice

Getting Started

http://groovy.codehaus.org/Downl oad

Install instructions are also available on the above site. For users of Windows, a Windows-Installer can
be downloaded which will install Groovy and perform any necessary configuration (including add groovy
to your path).

Once groovy isinstalled we are ready to run the create project script. Start up a console (on Windows you
can use the PowerShell) and change into the directory that contains the Rice project (e.g. ‘/java/projects
rice’). From the root project folder, change into the scripts folder. Thisfolder should contain afile named
‘ createproject.groovy’.

There are a few options supported by the create project script, but let’s start with the most basic way of
running. The command we will giveis:

groovy createproject.groovy -name PRQIECT_NAME

First we are invoking the groovy executable (this assumes groovy is on your path, if not the full path to
the groovy executable needs to be specified). Groovy then expects the name of the script we want to run,
which is ‘creatproject.groovy’. Next we specify the one required argument for the create project script
which is the name for the project we want to create. Assuming we want to create a new project named
‘MyRiceApp’, the command would be the following:

groovy createproject.groovy -name MyRi ceApp

After typing the command hit enter to start the script. Y ou should then see a prompt as follows:

WARNI NG

This programwi || delete the following directory and replace it
with a new project:
/ j aval proj ect s/ MyRi ceApp

It will also create or replace the following files in USER HOVE:
1) C\Users\jkneal.ADS/ kual i / mai n/ dev/ MyRi ceApp- confi g. xm
2) C:\Users\jkneal.ADS/ kual i/ main/dev/rice.keystore

If this is not what you want, please supply nore infornation:

usage:

groovy createproject -name PROJECT_NANME [-pdir PRQJECT DIR] [-rdir RICE DIR] [-ndir MAVEN HOVE]

Do you want to continue (yes/no)?

Type ‘yes and then enter to resume the program. Y ou will then see logging output from the script about
various files being created, the maven build, and finally printed instructions, and how to complete the
project setup.

Notice we did not tell the script where to put our new project, nor where to find the Rice project. Thisis
because the script defaultsto the project location of ‘ /javalprojects’ . If wewant our project to be generated
in adifferent location, we can do so by passing the directory path with the *-pdir’ argument:

groovy createproject.groovy -name MyRiceApp —pdir /home/myapps

The project directory given will be the parent for the project folder. The script will create another folder
within this with the same name as the given project name.

Similarly, if our source Rice project isin another directory, we can specify that using the ‘-rdir’ argument:

groovy createproject.groovy -name MyRi ceApp —rdir /home/ nyapps/rice

27

http://groovy.codehaus.org/Download

Getting Started

Unlike this project directory argument, this does specify the full path to the project (nothing will be
appended).

Finally, the create project script gives us a couple more options for the project generation. We can include
the Rice sampleapp in our project by passing the —sampleapp flag:

groovy createproject.groovy -name MyR ceApp —sanpl eapp

Having the various examples of the sampleapp can be very useful in particular if doing development with
the KRAD framework.

Lastly, we can have a project generated that is setup to go against a standalone Rice instance. To do this
we pass the —standal one flag:

groovy createproject.groovy -name MyRi ceApp —standal one

Project Structure and Configuration Files

The result of running the create project script is a new maven based Rice client project. Thisincludes the
directory structures for building out your application, along with the necessary configuration files. Let’'s
start by looking at the directories that were created.

Project Root (eg ‘/javalprojects/myapp’) — This is the root folder that was created to hold all the project
contents. Within thisfolder you will find three sub-folders, a‘.classpath’, ‘.project’, ‘instructions.txt’, and
‘pom.xml’ file.

.Settings — This folder contains settings configuration for the Eclipse IDE

src — Thisfolder isfor the application source files and resources. Within thisfolder is the standard maven
directory breakdown:

 src/main/java— Contains Java source code

* src/main/resources — Contains resource files (XML and other resources)

» src/main/webapp — Contains the application web content (JSP, tags, images, CSS, Script)
target — This folder holds the build output such as generated classes and wars.

Along with the directories several files are created. These are as follows:

Table 2.2. Created Files

File Description

classpath Eclipse file for managing the application classpath
project Eclipse project file

pom.xml Maven Project File

{ project} -RiceDataSourceSpringBeans.xml*

Spring XML file containing Rice data source configurations

{project} -RiceJT A SpringBeans.xml*

Spring XML file containing JTA transaction configuration

{ project} -RiceSpringBeans.xml*

Spring XML file containing the Rice module Configurers

SpringBeans.xml*

Spring XML filefor Application beans

{ project} -SampleA ppM odul eBeans.xml*

Spring XML filefor Sample App beans (only created if —sampleapp option
was given)

OJB-repository-sampl eapp.xml*

OJB configuration file for the Sample App (only created if —sampleapp
option was given)

28

Getting Started

File

Description

META-INF/{ project} -config.xml*

Default Rice configuration properties

src/main/webapp/WEB-INF/web.xml

Standard web deployment descriptor for J2EE applications

* All of these files are located within the sre/main/resources directory

In addition to the files created within the project, two files are created in the ‘{ user home}/kuali/main/

dev’ folder. These include:

» {project}-config.xml — Configuration file for application. This is where the settings for the database
and other configurations are given.

* rice.keystore — Provides a secure key for consuming secured services running on a Rice server

Configuring Your Rice Application

Next, we need to provide some configuration for our application that is custom to our environment (for
example, database connectivity). We can do this by modifying the properties available in {project}-

config.xml (located in the /kuali/main/dev folder in user home).

Although there are many configuration properties available for customization, the following are required

for getting started:

Table 2.3. Required Configuration Properties

Parameter Description Example

datasource.url JDBC URL of database to connect to jdbc:oracleithin: @l ocalhost:1521: X E
jdbc:mysql://localhost:3306/kuldemo

datasource.username User name for connecting to the server database | rice

datasource.password Password for connecting to the server database

datasource.obj.platform

Name of OJB platform to use for the database

Oracledi or MySQL

datasource.platform

Rice platform implementation for the database

org.kuali.rice.core.database.platform.Oracl ePl atf

prm

datasource.drive.name

JDBC driver for the database

oracle,jdbc.driver.OracleDriver

com.mysql.jdbc.Driver

Importing into Eclipse and Starting the App

Now we have our project setup and are ready to begin development. Note at this point that the application
is completely runnable. We could do a maven deploy, copy the generated war to our tomcat server, and
start up the application. However we are going to first import our project to Eclipse so that we will be
ready to further develop the application code.

Navigate to the Eclipse installation directory. There you should find an executable named ‘ eclipse.exe’.

Oncethisfileisfound double click it to start the IDE. When Eclipse starts up for the first time, it will ask
you to choose a workspace. This is a directory that Eclipse places newly created projects, and will also
read current projects from. A standard within the community is to use ‘/java/projects’ for your working
space. Note you can select the checkbox to use the directory as your default and Eclipse will not prompt

on the next startup.

Eclipse Memory

It is generally needed and recommended to allocate additional VM memory for the Eclipse
runtime. This can be done by opening up the file named ‘eclipse.ini’ that exists in the root
installation directory. At the end of the file you specify VM arguments as follows:

29

Getting Started

e vmargs
e Xms40m
e Xmx512m

The amount of memory allocated depends on the host machine. The above settings are for a
machine with 4g of memory.

When working with Eclipsefor thefirst time, there are additional pluginsyou will likely want to get. None
of these are required by Rice and depend on your institutional development environment and how you plan
to create your project. However, most projects today use SVN or GIT for source code control. Therefore
an additional Eclipse plugin is needed for communicating with the repository. Also if you have chosen to
use Maven (or used the create project script) the Eclipse Maven plugin will be very useful aswell.

To bring a new project into eclipse, select the File-Import menu option. This should bring up adialog as
show in the example below.

Figure 2.3. Import New Project Eclipse

e
Select

For the import source select ‘ Existing Projects info Workspace'. This should bring up adialog that looks
like the example below.

Figure 2.4. Selecting Project Eclipse

Here click the ‘Browse’ button to locate the directory for the project. After selecting the project location
click the *Finish’ button. Eclipse will then import the project contents and you are ready to begin coding!

To run our project we again have many options. One of theseisto deploy to an external servlet container
such as Tomcat. Using the Eclipse Web Tools platform, we can configure a Tomcat server and control all
the deployments, startups, and shutdowns from Eclipse.

Another approach is to use a Jetty Server. Rice provides a JettyServer class that can be used to launch
Jetty and host an application. To use this we just need to create an Eclipse launch configuration which

30

Getting Started

will run the server as a Java main class, and provide arguments for the deployment (such as context, web
app location and so on).

Setup for KRAD Development

To begin using the Rice development framework, we must first configure an application module. This
information tells the KRAD framework where to find resources for our module (such as dictionary and
OJB files) along with other metadata about our module. We could choose to have one module for our
whole application, or break into many modules (if using maven each KRAD module generally corresponds
with a maven module).

To configure a module we create a M oduleConfiguration. A ModuleConfiguration is a bean wired in
Spring XML specifying the following information:

e The modul€' s namespace

» The DataDictionary filesto load

» The OJB repository filesto load

» The package prefix of data objects in this module
» Externalizable business object definitions

The following is an example module configuration bean:

<bean i d="sanpl eAppMdul eConfi guration" class="org. kual i.rice. kns. bo. Modul eConfi guration">
<property name="nanmespaceCode" val ue="KR- SAP"/>
<property name="initializeDatabDictionary" value="true"/>
<property nanme="dat aDi cti onaryPackages" >

</ bean>

<list>

<val ue>edu/ sanpl eu/ travel / dat adi cti onary</ val ue>

</list>
</ property>
<property nanme="dat abaseRepositoryFil ePat hs">

<list>
<val ue>QJB-r eposi t ory- sanpl eapp. xnl </ val ue>
</list>

</ property>
<property nanme="packagePrefixes">

<list>
<val ue>edu. sanpl eu. travel </ val ue>
</list>

</ property>

Note in particular here the dataDictionaryPackages property. This is where the framework will pick
up data dictionary files for loading (which we will be using a lot in this training manual). We can
specify individual files or directories. If adirectory is given, then XML files added to that directory will
automatically get picked up and loaded on application startup.

When the Rice enabled application is started, the configuration for each module will be read and, in some
cases such as the dictionary and OJB, used to initialize services.

After we have our module configuration, we then need to configure amodul e service. Thisisaservice that
will provide metadata for our module. Responsibilities of the module service include determining whether
adata object belongsto amodule, and if the object is external to the application (in which case the module
servicewill also providelinksfor the object’ slookup and inquiry). If we don’t need to customize amodule
service (which is the case if the module has external data objects), then we can simply use the provide
service base and set the nested module configuration property to our module bean:

31

Getting Started

<bean i d="sanpl eAppMdul eServi ce" class="org. kuali.rice.krad. service.inpl.Mdul eServi ceBase">
<property name="nodul eConfiguration" ref="sanpl eAppMdul eConfiguration"/>
</ bean>

Our Sample Application

Throughout this training manual several exercises will be presented, giving you the opportunity to work
hands on with KRAD. For completing these exercises, you will use the project provided with the training
thumb drive, which isanew Rice enabled client application (with the sample app content). The exercises
will ask youtowork in one of two areas. Thefirstisageneral ‘labs’ areathat hasno real functional purpose.
Basically, thisisaplayground for trying variousideas presented. Then, you will work on putting the skills
together for building a sports application! This will have al the ingredients of an enterprise application
along with amore modern and rich Ul.

Within the project, you will mostly be working in:

* src/main/javaorg.krtrain.labs — source code for labs
 src/main/javacorg.krtrain.sports — source code for sports
 src/main/resources/org/krtrain/labs — resource files for labs

* src/main/resources/org/krtrain/sports — resource files for sports

* src/main/webapp/krtrain —web content for both labs and sports

32

Chapter 3. Data Objects

Data Objects and Business Objects
Data Objects

Webegin our training for the Kuali Rapid Application Development framework with the data accesslayer.
Enterprise applications generally have alarge number of CRUD (Create Read Update Delete) operations;
therefore, the access of datais a very important concern of development. KRAD builds on top of other
toolsto provide general facilities that greatly reduce the devel opment time. These facilities are known as
the KRAD Persistence Framework.

Thefoundation of the KRAD Persistence Framework isthe third party ORM (Object Relational Mapping)
tool. ORM tools target the persistence of data with arelational database. This is achieved by mapping a
Javaobject that containsthe datato one or more database tables. When a persi stence operation isrequested,
the ORM tool performs the work of trandating the request along with the corresponding object(s) to the
necessary DML statement. This provides a great advantage to the application as it generally requires no
database dependent code (database specific code might be required in certain cases). Moreinformation on
particular ORM tooling will be provided in the sections * OJB Primer’ and ‘Using JPA’.

In order to prepare our application for persisting data using an ORM tool, we must build the objects that
will hold the application data. From the established data model, we can determine the objects needed using
a mapping strategy. Although the strategies and options available depend on the ORM solution we are
using, generally we have the following mapping options:

1. Onetableto one object

2. One table to multiple objects (polymorphism)

3. Multiple tables to one object

Once we have determined how an object will relate with its database table(s), each object property is
associated with a table column through configuration. This configuration will also give the ORM tool

information on data type conversion and constraints. The final piece to our object mapping is specifying
any relationships. Thisincludes one-to-one, one-to-many, and many-to-many relationships.

Tip

Referential Integrity: It is not required to have referential integrity set up in the database for

relationships declared for the persistent metadata. However, it isgenerally good practiceto do so.
Now let’s set aside the mapping concerns and have a closer ook at our ‘data’ objects. Technically, these
objects are not complex at all. First, they must adhere to the POJO (Plain Old Java Object) and JavaBean
guidelines. These guidelines are as follows;
1. Is Seridizable (implements the java.io. Serializable interface)

2. Has ano-arg constructor

3. Provides property getter and setter methods using the conventional (get{ PropertyName} for getter,
set{ PropertyName} for setter, and is{ PropertyName} for Booleans)

33

Data Objects

Inaddition to the ‘ primitive’ property types a data object may contain, a data object may also be composed
of nested data objects (representing a one-to-one relationship), or acollection of data objects (representing
aone-to-many relationship).

Tip

Rel at ed Data Obj ect s: Itisimportant to setup the related data object properties. As we
will see later on, the framework can take care of many things for us automatically based on the
metadata derived from these relationships.

Next, well that's it! However, as we will see in just a bit, in order to take advantage of the additional
persistence features KRAD provides, there is one additional thing we need to add.

KRAD refersto any object that provides data as a‘ Data Object’. Data objects provide a very central role
in an enterprise application. Within the suggested KRAD architecture, they are not bound to just the data
access layer, but can freely move between the other application layers aswell. This meanswe can use data
objectsin our services, and we can use them to build our user interfaces.

Tip

' Dat a bj ect’ : The'DataObject’ term can refer to objects that are mapped to a persistence
mechanism, but also might not be. For example, it might be an object whose datais assembled by
aservicecall, whichinturninteractswith other persisted objectsor other services. Thisflexibility
is important for allowing other KRAD modules to be used with a variety of data sources and
strategies.

Best Practice: Keep dataobjectssimple! Try to avoid introducing any businesslogic or presentation logic
into the objects.

Business Objects

A specia type of data object in KRAD is known as a Business Object. These are data objects that
implement the interface org.kuali.rice.krad.bo.BusinessObject. There are two primary types of business
object: those that persist to the database and those that do not. Those business objects that do persist to the
database should implement the org.kuali.rice.krad.bo.PersistableBusinessObject interface. This interface
adds persistence related methods that are invoked throughout the framework.

Generally, when creating anew dataobject, it ismore convenient to extend one of the provided base classes
that implement the necessary interfaces. For persistable objects, this base class is org.kuali.rice.krad.bo.
PersistableBusinessObjectBase. Within this base class, default implementations for the persistable
methods exist along with properties for the common fields required for al persisted objects. These are
described in more detail later on in this section. Business objects that do not persist to the database can
extend org.kuali.rice.krad.bo.TransientBusinessObjectBase.

Tip

Transi ent Busi ness bj ects: Transient business objects were necessary in earlier
versions of Rice, dueto the framework requiring all objects to be business objects (including the
Ul generation). With version 2.0 of Rice and KRAD, this restriction no longer exists; therefore
thereisreally no need for the transient business object concept.

In order to take advantage of all thefeatures KRAD provides, it isrecommended that all persistable objects
(and therefore tables) contain two properties:

Data Objects

1. Version Number — This property holds a version for the record that is maintained by the ORM tool to
perform optimistic locking. The number isinitialy set to 0. Each time the record is updated, the version
number is incremented. Before updating the record, the ORM tool performs a comparison between
the version number on the data object, and the version number of the record in the database. If they
are different, the tool knows the record has been updated since the record was pulled and throws an
optimistic lock exception.

2. Object Id — This property holds a GUID value for each record in the database. This is used in the
framework as an alternate key for the record. Example usages of the object id include the notes and
attachments framework. Notes are associated with arecord by its object id. Another exampleisitsuse
within the multi-value lookup framework. Selected records are identified and retrieved based on their
unique object ids.

Special Business Objects

Additional functionality exists for a few specia types of business objects. One of these special typesis
business objectsthat have an active status. That is, each record has astate of active (which generally means
the record is valid for using) or inactive (meaning the record should not be used due to being old or not
currently valid). Objects of this type should implement the | nactivatable interface. Thisinterface requires
the methods isActive() and setActive(Boolean active) to be implemented.

The simplest form of inactivatable business objects are those that maintain a single field that indicates
the active status as a Boolean field. Another common case is that of an active date range (also known as
effective dating). These objects maintain two fields that work together for determining the active status.
This first of these fields is the active begin date which indicates the date on which the record becomes
active. Thisfield can have anull value indicating the record is active for all dates before the end date. The
second field is the active end date which indicates the date on which the record becomes inactive. This
field can have anull value indicating the record has no inactive date set.

Record is active if:

(activeFronDate == null ||
asOf Date >= activeFronDate.getMIlis()) & (activeToDate == null ||
asOfDate < activeToDate.getMIlis());

where the asOfDate is the current date or a date we wish to simulate the active check for.

For inactivatable business objects that use effective dating, the
org.kuali.rice.krad.bo.InactivatableFromTolmpl class can be extended which holds the necessary
propertiesand implementsthelogic necessary to determinethe active status (notethat thisclassimplements
the Inactivatable and I nactivatableFromTo interfaces).

When an object is marked as inactivatable, KRAD will give us some nice features for handling the active
status:

» Validation of active statusfor foreign key fields

Aswe will seelater on in the section * Automatic Validation’, KRAD can perform alot of the common
validation tasks for us. One of these is known as default existence checks. This is validation that is
performed on one or more user inputted fields to verify the value given exists in the related database
table. To perform this validation, the framework uses the configured relationship for the inputted fields
(inputted fields are the foreign keys). In addition to performing the existence checks, we can ask for
the active status to be verified as well. If the record exists but the active flag is false, an error message
will be displayed to the user.

* Inactivation Blocking

35

Data Objects

Changing the active status for a record to false (or inactive) is known as inactivation. Problems with
data integrity can occur if we inactivate a record that is referenced (by a foreign key relationship) by
another active record. For these cases we want to ensure the record with the relationship is inactivated
before therelated record. Using afeature known as | nactivation Blocking we can disallow the user from
inactivating arecord when this condition exists.

* Inactive Collection Row Filtering

When displaying a collection with the UIF (User Interface Framework) whose items implement the
Inactivatableinterface, afilter is presented allow the user to view all records or only thosethat are active.

* Key ValueFinders

Ul controls like the select and radio group can get their option values from a class known as
KeyValueFinder (more on thisin ‘Types of Controls'). For easy building of these option classes, the
UIF provides ageneric configurable KeyVaueFinder that will exclude inactive recordsfrom the options
list if the option providing class implements Inactivatable.

Another specia type of business objects are code/name objects. These objects all contain a field
that represents a code, and a field that gives the name for that code (or description). In many
cases these are the only two fields present. Business objects of this type should implement
the org.kuali.rice.krad.bo.KualiCode interface (or extend org.kuali.rice.krad.bo.KualiCodeBase). When
presenting code values that have arelated object of type KualiCode, the framework will do tranglation to
display the name or the code and name.

Tip
Planned Feature

Code Table: In the future KRAD will provide the facilities for storing KualiCode objectsin a
single code table. This will allow new codes to be created quickly (without the need for atable

and mapping).
RECAP

» Data objects are standard JavaBeans that hold application data. Generally, the data from these objects
is persisted to the database with use of an ORM tooal.

» Metadata provides the mapping between a data object class and a database table. Each object property
is mapped to a table field, and one-to-one, one-to-many, and many-to-many relationships can be
configured.

» Data objects are a central piece to the KRAD framework. These objects and their metadata are used to
provide features such as inquiries, lookups, maintenance, and validation.

» A business object is a special kind of data object that provides properties and methods for persistence
and other framework functionality.

 All persistable data objects should have the version number and object id properties.
 Business objects that have an active status implement the Inactivatable interface.
» KRAD provides additional functionality for inactivatable objects.

» KualiCode represents a business object that has a code and name property.

36

Data Objects

OJB Primer

Apache ObJectRelational Bridge [http://db.apache.org/ojb/] (OJB) is an Object/Relational mapping tool
that allowstransparent persistence for Java Objects against rel ational databases. OJB takes care of building
and executing all the necessary database statements (SQL) for managing the persistence of an application's
data. Thisnot only savesalot of development time, but also allowsfor easier support of multiple database
vendors. This section will cover the basics of OJB necessary for KRAD devel opment.

Tip

The OJB Project: OJB is a ‘dead’ project, meaning no active work is being done to enhance
the codebase. Rice is in the process of migrating from OJB to JPA [http://www.oracle.com/
technetwork/articles/javaee/jpa-137156.html] (Java Persistence Architecture) with a Hibernate
backend. The timeline for completion of that work isin 2013 with the release of Rice 2.3. It is
possible currently to use JPA in a Rice application, however some of the persistence features
provided need to be implemented by the application.

We make use of OJB with XML that provides the mapping metadata. Generally each application module
has one or more files that contain this XML. These files are picked up through the module configuration
(see New Project Setup):

<bean i d="sanpl eAppMdul eConfi guration" class="org. kuali.rice.krad. bo. Mdul eConfi guration">

<property nanme="dat abaseRepositoryFil ePat hs">
<list>
<val ue>QJB-r eposi t ory- sanpl eapp. xml </ val ue>
</list>
</ property>
</ bean>

OJB XML METADATA

All OJB files must begin with the standard XML declaration, and then the OJB doctype tag (root element):

<?xm version="1.0" encodi ng="UTF-8"?>
<descriptor-repository version="1.0">

</ descri ptor-repository>

Next, our OJB file must contain a jdbc-connection-descriptor which configures the database connection
OJB will use for the contained mappings:

<j dbc- connecti on-descri pt or
jcd-alias="dataSource" default-connection="false"
jdbc-1evel ="3. 0" eager-rel ease="fal se" batch-npde="fal se" useAut oConmi t="0"
i gnor eAut oConmi t Excepti ons="f al se"> <obj ect-cache
cl ass="org. apache. oj b. br oker. cache. Obj ect CachePer Broker | npl " />
<sequence- manager classNanme="org. kuali.rice.core.franmework. persistence. oj b. Confi gurabl eSequenceManager" >
<attribute attribute-name="property.prefix" attribute- val ue="datasource. ojb. sequenceManager" />
</ sequence- manager >
</ j dbc- connecti on-descri ptor>

Note that jcd-alias="dataSource" refers to the name of the data source configured in spring bean XML.
Also note the use of the Rice ConfigurableSequenceManager. This allows configuration through the Rice
configuration API of the sequence for a property (such as starting sequence value).

CLASS DESCRIPTORS

New data object mappings are added to OJB by adding a class-descriptor tag. One or more class descriptors
can be added to an OJB file after the jdbc-connection-descriptor. With the class descriptor, we must specify

37

http://db.apache.org/ojb/
http://db.apache.org/ojb/
http://www.oracle.com/technetwork/articles/javaee/jpa-137156.html
http://www.oracle.com/technetwork/articles/javaee/jpa-137156.html
http://www.oracle.com/technetwork/articles/javaee/jpa-137156.html

Data Objects

the fully qualified java class for mapping with the class attribute and the database table name with the
table attribute:

<cl ass-descriptor class="org. kuali.rice.krad.denp.travel.account. Travel Account” tabl e="TRV_ACCT" >

</ cl ass-descri ptor>

FIELD DESCRIPTORS

Now that we have our object-table mapping with the class descriptor, we can start mapping the primitive
fields of our object using a field-descriptor tag. We place the field descriptors inside our class descriptor,
indicating they all belong to that class. With the field descriptor we must specify the property hame using
the name attribute, and the table column name using the column attribute. In addition, we need to specify
the JDBC type for the table column using the jdbc-type attribute. This indicates to OJB how it should
convert the value between the database and object layers.

<fiel d-descriptor name="nane" col um="acct_nane" jdbc-type="VARCHAR" />

Some common jdbc types and their corresponding Javatype are as follows:

Table 3.1. JIDBC Typesto Java Type

JDBC Type JavaType
VARCHAR String

NUMERIC BigDecimal
DECIMAL BigDecimal
INTEGER int

BIGINT long

DOUBLE double

DATE javasgl.Date
TIMESTAMP java.sgl. Timestamp
CLOB clob

DATATYPE CONVERSION

Based on the given jdbc type, OJB can then convert the database value to the appropriate type for the base
Javatypes. However, KRAD provides some additional datatypes, and applications may develop their own
as well. In these cases, OJB will not be able to convert the value itself. However, OJB does provide a
conversion facility that we can hook into and perform the necessary conversion.

We must create a class that implements the 0oJB interface
org.apache.ojb.broker.access ayer.conversions.FieldConversion. This requires us to then implement two
methods. The first is named javaToSgl and is invoked to convert the custom Java type to one of the Java
types supported by OJB. The second method is named sglToJava and is invoked to convert the value
coming from the database to our custom type. In short, OJB will perform the standard conversion based
on the table above, then invoke our converter class to convert from the base Java type to the custom type.

public class Q bKual i Deci nal Fi el dConversi on inplenents Fiel dConversion {
private static final long serial VersionU D = 2450111778124335242L;

| **

* @ee Fiel dConversi on#j avaToSql (bj ect)
*
/

public Object javaToSgl (Object source) {
bj ect converted = source;
if (source instanceof KualiDecinmal) {

converted = ((Kuali Decimal) source). bi gDeci mal Val ue();

}

return converted;

38

Data Objects

}
| **

* @ee Fiel dConversi on#sqgl ToJava(bj ect)
*
/

public Object sqgl ToJava(Object source) {
bj ect converted = source;
if (source instanceof BigDecinmal) {
converted = new Kual i Deci mal ((Bi gDeci mal) source);
} return converted;

Thisisan example of aconverter provided by KRAD for the custom KualiDecimal type. In thejavaToSql
method, we are converting the KualiDecimal to a BigDecimal, which OJB can then convert to the JIDBC
type. In the sgl ToJava method, we take the BigDecimal value coming from the database and create a new
KualiDecimal type.

Once we have a converter class (or one is provided), we need to tell OJB to use it by specifying the full
class name for the converter on the field descriptor using the conversion attribute:

<fiel d-descriptor nane="price"
col um="PRI CE" jdbc-type="DECI MAL"
conversion="org. kual i .rice. core.framework. persistence. oj b. conversi on. g bKual i Deci nal Fi el dConversi on"/>

It is necessary to add the conversion attribute for each property that has a custom type.

RICE CUSTOM DATATYPES

Rice provides the following custom data types and OJB converters:

Table 3.2. Custom Data Typesand OJB Converters

Datatype Purpose Converter

KualiDecimal Provides a standard paradigm for handling | OjbKualiDecimalFieldConversion
BigDecimal

Kualilnteger Provides a standard paradigm for handling| OjbKualilntegerFieldConversion
Biglnteger

KualiPercent Essentialy the same as KualiDecimal with the| OjbKualilntegerFieldConversion
addition of extra constructors

Thesethree datatypes provide astandard way of handling scale and rounding. In the case of KualiDecimal,
the scaleis set to 2, and the rounding behavior is‘ Round Half Up'. Kualilnteger has a scale of 0, and uses
‘Round Half Up’ rounding aswell (for operations with decimal types).

Tip

Round Up Hal f: Round Half Up isacommon rounding strategy in particular within financial
applications. To calculate the rounded value, we add 0.5 to the value and then use the floor
function (largest integer that does not exceed value). For example, 23.5 rounds to 24, 23.4 round
to 23, -23.5 rounds to -23, -23.6 rounds to -24.

In addition to the convertors provided by Ricefor the custom datatypes, afew additional special convertors
are provided.

The first of these is OjbCharBooleanConversion. A typical practice in legacy systems (before the
introduction of database Boolean types) is to represent a Boolean by a single character string. Some
common mappingsare‘ T’ for true: ‘F for false, or ‘Y’ for true: ‘N’ for false. The Rice Boolean converter
can be specified for a field to convert these string values to the correct Boolean property type. Other

39

Data Objects

variations of the Boolean converter exist for other mapping strategiessuchas ‘1’ : ‘0, ‘A’ : ‘I’, ‘true’ :
‘false’, and ‘yes : ‘no’.

Finally, Rice provides a converter for encrypting secure database contents. The name of this converter is
OjbKualiEncryptDecryptFieldConversion. Thisconverter relies on the EncryptionServiceimplementation
to perform the encryption. Values are encrypted for storing in the database and then decrypted for object
population.

OTHER FIELD DESCRIPTOR ATTRIBUTES

All field descriptors must have the name, column, and jdbc-type attributes. In addition to these we can
make use of other OJB attributes to provide further column information.

Foremost among these is the primarykey attribute. This attribute simply takes a Boolean value of true (by
default false for al columns) to indicate the column for the field descriptor is a primary key. All class
descriptors must have at least one field descriptor with the primarykey="true" attribute. OJB uses the
primary key information in many places, including determining whether to do aninsert or update statement
(see ‘ The BusinessObjectService' for more information). In addition, primary keys are used for linking
relationships.

Compound keys are configured by adding the primarykey="true" attribute to more than one field:

<cl ass-descriptor class="org. kuali.rice.kew doctype. Docunent TypePol i cy" tabl e="KREW DOC_TYP_PLCY_RELN_ T">
<fi el d-descri ptor name="docunment Typel d" col um="DOC _TYP_I D' j dbc-type="VARCHAR' pri marykey="true"/>
<fiel d-descriptor name="policyNanme" col um="DOC_PLCY_NM' jdbc-type="VARCHAR' pri marykey="true"/>

A single primary key field can also be a surrogate key for which a sequence is used to generate the key
values. We can indicate to OJB that the primary key is a sequence using the autoincrement and sequence-
name attributes:

<cl ass-descriptor class="edu.sanpl eu. bookst ore. bo. Book" tabl e="BK_BOOK_T">

<fiel d-descriptor name="id" col um="BOOK_I D' jdbc-type="BI G NT" primarykey="true" autoincrement="true"
sequence- nane="BK_BOOK_I D_S" />

In this class descriptor for Book, we have a primary key field named ‘id’. Furthermore, the values for the
book id field are generated by a sequence named ‘BK_BOOK _ID_S'. When OJB performs an insert on
the BK_BOOK _T table, it will retrieve the next value from the book id sequence and use it asthe id for
the new record.

Tip

Sequence Nane: Requiredness of the sequence-name attribute depends on the sequence
manager being used (configured through the jdbc-connection-descriptor). OJB supports several
sequence managers that have different strategies for generating the ID (some not requiring an
actual database sequence). However, the recommendation is to use the provided Rice sequence
manager which does rely on a database sequence.

Now that we have our primary key fields set, recall the recommendation that all persisted objects carry the
version number and object id properties. We can map these properties with the follow field descriptors:

<fiel d-descriptor name="versi onNunber" col um="VER_NBR" j dbc-type="BI G NT" | ocki ng="true" />
<fi el d-descri ptor name="objectld" colum="0BJ_I D" jdbc-type="VARCHAR"' indexed="true" />

Note the locking and indexed attributes. The locking attribute tells OJB to use this column to perform
optimistic locking and only one field descriptor may have this attribute set to true. The indexed attribute
indicates to OJB that we have a database index on this field. OJB can then use that information for
optimizing queries.

40

Data Objects

REFERENCE DESCRIPTORS

After mapping all of the class primitive fields using field descriptors, we must then map our relationships
to other data objects. In code, these relationships are properties just like the primitive fields that persist
to table columns. However, the difference with these properties is their type is another data object (in the
case of 1-1) or acollection of other data objects (in the case of 1-many).

First, let’'s take the case of 1-1 relationships. To map these we use the reference-descriptor tag. A class
descriptor can contain one or more reference-descriptor tags. When using a reference descriptor tag we
must specify the name attribute which holds the name of the property we are describing (similar to the
name attribute in a field descriptor). Then we must specify the class of the related object using the class-
ref attribute.

For exampl e, suppose we had the following property in our Book data object that references a BookType:
public class Book extends Persistabl eBusi ness(bj ect Base {

private BookType bookType

Our corresponding reference descriptor will then be;

<ref erence-descriptor name="bookType" cl ass-ref="edu. sanpl eu. bookst ore. bo. BookType"/ >

We are not quite finished though with our reference descriptor. OJB can now determine we have aforeign
key relationship from Book to BookType, and it knows the primary key fields for BookType, but which
fields of Book are the actual foreign keys? To fill in this information, within our reference descriptor we
must add aforeign key field for each primary key field of BookType.

<reference-descri ptor name="bookType" cl ass-ref="edu. sanpl eu. bookst ore. bo. BookType” >

<forei gnkey field-ref="typeCode" />
</reference-descriptor>

When using the foreignkey tag, we must specify the field-ref attribute whose valueisthe name of thefield
in the class holding the relationship (in this case Book) that isthe foreign key. The number of foreignkey
tags must match the number of primary key fieldsin our class descriptor. Note aso the order the foreign
keysare declared must match the order in which they join to the primary keys. For example, if our reference
target class has primary key fields code and subCode, and we have foreign keys fkCode and fkSubCode,
the following configuration would be incorrect:
<reference-descri ptor name="subCode" cl ass-ref="edu. sanpl eu. SubCode” >
<forei gnkey field-ref="fkSubCode"/>

<forei gnkey field-ref="fkCode" />
</reference-descriptor>

Here the order of foreign keys is reversed which will cause OJB to join the fkSubCode with code, and
fkCode with subCode.

Similar to thefield descriptor, OJB provides additional attributeswe can specify for areference descriptor.
Three of these attributes are prefixed with 'auto-' and designate how OJB should handle the reference
during retrieve, update (or insert), and delete operations. The first of these is the auto-retrieve attribute,
and indicates whether the reference should be retrieved when the main (or parent) object is retrieved.
The attribute can be specified as 'false’ (reference should not be retrieved) or 'true’ (reference will be
retrieved). When auto-retrieve=false is specified, the reference object will be null on the main object after
retrieval. OJB provides mechanisms for retrieving the reference through code, which will be discussed in
the upcoming section 'Reference Refreshing'.

The auto-update attribute specifies whether the reference object should be updated when an update is done
on the main object. This attribute can have a value of 'none’' — meaning no update should happen for the
reference —and 'object' — meaning the reference record should be updated with the main object. In addition,

41

Data Objects

an option of 'link' can be specified, which isjust relevant for one-to-many relationships. This performs an
update on the indirection table, but not the actual reference table.

Thefinal auto attributeis auto-del ete, which indicates whether the reference object should be del eted when
the main object is deleted. Similar to auto-update, 'non€’, 'link’, or ‘object’ can be given for the value.

Care must be taken when setting the auto-retrieve attribute. Having the reference ready without having
to make an extra call is a great programming convenience. However, performance can suffer due to the
time required to initially load the reference objects with the main object, in particular for objects with
several relationships. Furthermore, optimizing the auto-retrieve setting can be difficult, due to it being a
global setting, and the developer often not knowing when the reference data will be needed. Don't worry
though; OJB has another attribute we can use! This attribute is named proxy and can have avalue of 'true
or 'false’ (the default). Adding proxy=true to our reference descriptor allows OJB to use lazy loading for
our reference. Essentially, this allows us to use the reference when needed without making an additional
call, but the full record is not loaded initially with the main object which will help performance. To make
this work, OJB will initially create a proxy object for the property value. When a method is invoked on
the proxy object (such as a getter or setter), OIB will fetch the record and populate the reference object.

Tip

Using Proxies: Note that using proxy=true changes when the reference object is loaded, and
works best for caseswhere the reference record is often not needed. For caseswherethe reference
record is usually needed, loading up front with the main object is a better choice. In particular,
proxies can lead to issues with alarge number of SQL calls being made when generating the Ul.

Using the proxy attribute on a reference can aso cause issues with code logic. Recall that OJB
will not attempt to retrieve the reference upfront when proxy=trueis given, and setsthe value for
our reference property to the proxy. One side effect of thisisthat doing a standard null check on
areference object can give us false information.

For example, suppose we do a null check on our bookType reference and if not null return the
name of the book type:

if ((book !'= null) && (book.getBookType() != null)) {

}

return book. get BookType(). get Name();

In this example, it is possible to get a NullPointerException on our return statement! This is
because initially OJB has set the book Type property to the Proxy object, which is not null. When
we invoke the getName() property, OJB will then attempt to execute the retrieval of the book
type. Now it is possible that book type does not exist, which will cause the bookType object to
be null. Then invoking getName() on a null will cause the NullPointerException.

Collection Descriptors

Similar to the reference descriptor, the collection descriptor maps a reference (nested) data object in the
database. However, collection descriptors are used for one-to-many relationships where the property is
alList type.

To map these we use the collection-descriptor tag. A class descriptor can contain one or more collection-
descriptor tags. When using a collection descriptor tag, we must specify the name attribute which holdsthe
name of the property we are describing (similar to the name attribute n reference descriptor). Then we must
specify the class of the related object using the class-ref attribute (again similar to reference descriptor).

For example, suppose we had the following property in our Book data object that references a List of
Authors:

42

Data Objects

public class Book extends Persistabl eBusi ness(bj ect Base {

private List<Author> authors

Our corresponding collection descriptor will then be:
<col | ection-descriptor name="authors" class-ref="edu.sanpl eu. bookst ore. bo. Aut hor"/>
When configuring acollection descriptor, the foreign key direction goesfrom the target classto the source.

That is, we need to specify the field in the target class (in this case Author) that maps to the primary key
of the source class (Book). Thisis done using the inverse-foreignkey tag:
<col | ecti on-descriptor name="bookType" cl ass-ref="edu.sanpl eu. bookst ore. bo. Aut hor”>

<inverse-foreignkey field-ref="bookld" />
</ col | ecti on-descri ptor>

The collection descriptor supports the same auto-x attributeswe saw in reference descriptor. Figure 5 gives
apicture of the reference and collection descriptors

OJB Descriptors

Class Descriplor
Business Object : Table
prop Filex) Docripionz) PK Column
prop Column
prop FK Colurmn
ref Reterence Descriptor

Table

PK Column
Column
Column

Business Object Table
prop PE Column
prop Column
prop FK Colurmnin

List <ref> Collection

Table

P Column
Column
Column

RECAP

¢ OJB isan Object/Relational mapping tool that allows transparent persistence of Java objects.
* Because OJB isnot active, the Rice project is converting to JPA.

¢ Object mappings are defined with XML in OJB files.

43

Data Objects

These XML files are picked up through the module configuration.

A class descriptor is atag that maps a Java object to a database table.

A OJB file can contain one or more class descriptors.

A field descriptor isatag nested within a class descriptor that maps a property of the object to acolumn.

On the field descriptor we must specify the jdbc-type so OJB knows how to convert the data (both
directions).

OJB does not know how to convert custom data types such as KualiDecimal.

In these cases, we need to implement a FieldConversion class that performs the conversion of data.
Rice provides the following OJB field convertors:

* OjbKualiDecimal FieldConversion—used to convert between aKualiDecimal and aJavaBigDecimal.

» OjbKualilntegerFieldConversion — used to convert between a Kualilnteger and a Java Biglnteger.

OjbK ualiPercentFieldConversion — used to convert between a KualiPercent and a Java BigDecimal.

OjbCharBooleanConversion — used to convert between varchar fields (' T-F', ‘1- 0, ‘yes-no’, ‘true-
false’) and boolean types.

» OjbKualiEncryptDecryptFieldConversion — used to encrypt/decrypt the field value.
On the field descriptor we can also specify the attributes:
e primarykey —indicates the field is a primary key.

* autoincrement, sequence-name—indicatesthefield value should be auto- incremented using the given
sequence name.

* indexed —indicates there is an index on the column.

A reference descriptor is atag within a class descriptor that maps a one-to-one rel ationship between the
class and another mapped class.

When configuring a reference descriptor we must specify the foreign key field(s).

On the reference descriptor we can aso specify the attributes:

 auto-retrieve —indicates whether the reference object should be retrieved when the parent object is.
« auto-update — indicates whether the reference object should be updated when the parent object is.

« auto-delete — indicates whether the reference object should be del eted when the parent object is.

proxy —indicates the reference object should be proxied, meaning it will be fetched when needed (when
amethod isinvoked).

A collection descriptor is atag within a class descriptor that maps a one-to-many relationship between
the class and another mapped class.

When configuring a reference descriptor we must specify the inverse foreign key field(s).

Chapter 4. The Data Dictionary

Introduction to the Data Dictionary

Thedatadictionary isthe main repository for metadata storage and provides the glue to combining classes
related to a single piece of functionality. The data dictionary is specified in XML and allows for quick
changesto be madeto functionality. The DataDictionary filesusethe Spring Framework for configuration,
so the notation and parsing operation will match that of the files that define the module configurers.

The contents of the data dictionary are defined by two sets of vocabularies; the *business object’ and the
‘document’ data.

Recap

» The DataDictionary is arepository of metadata primarily describing data objects and their properties
* Metadata is provided through Spring bean XML

» Useof Spring allowsfor easy overriding by implementers

» Datadictionary files are configured through the module configuration

* Much functionality provided by the KRAD frameworks rely on the metadata provided by the data
dictionary

« In addition to describing data objects, the data dictionary is also used to configure framework behavior
(for example ‘businessrule class’)

» The data dictionary beans are loaded into a separate Spring bean container whose information can be
accessed through the Data Dictionary Service

Attribute Definitions

Attribute definitions are used to provide metadata about the attributes (i.e. fields) of abusiness object. The
following is a sampling of attribute definitions from the Campusimpl business object data dictionary file:

<bean i d="Canpus- canmpusCode- par ent Bean" abstract="true" parent="AttributeDefinition">
<property nanme="for ceUppercase" val ue="true"/>
<property name="shortLabel " val ue="Canpus Code"/>
<property name="maxLength" val ue="2"/>
<property name="val i dati onPattern">
<bean parent="Al phaNurericValidati onPattern"/>
</ property>
<property name="required" value="true"/>
<property name="control ">
<bean parent="Text Control Definition" p:size="2"/>
</ property>
<property name="summary" val ue="Canpus Code"/>
<property name="nanme" val ue="canpusCode"/ >
<property name="| abel " val ue="Canpus Code"/>
<property name="description" val ue="The code uniquely identifying a particular canpus."/>
</ bean>

In client applications, it is common that several business objects share a field representing the same type
of data. For example, a country’s postal code may occur in many different tables. In these circumstances,

45

The Data Dictionary

the use of a parent bean reference (parent="Country-postal CountryCode”) definition allows the reuse of
parts of a standard definition from the "master" business object. For instance, the Statelmpl business
object (business object data dictionary file State.xml) references the postal CountryCode property of the
Countrylmpl (business object data dictionary file Country.xml). Because the postal CountryCode fieldsin
Statelmpl and Countrylmpl are identical, a simple attribute definition bean in the Business Object data
dictionary file (State.xml) can be used:

<bean i d="St at e- post al Count ryCode" parent="Country-postal CountryCode- parent Bean"/ >

The definition of the Country-postal CountryCode-parentBean bean is seen inside the Country.xml file (for
the Countrylmpl business object):

<bean i d="Country- postal CountryCode- parent Bean" abstract="true" parent="AttributeDefinition">
<property nanme="nanme" val ue="postal CountryCode"/>
<property name="forceUppercase" val ue="true"/>
<property name="| abel " val ue="Country Code"/>
<property name="shortLabel " val ue="Country Code"/>
<property name="maxLength" val ue="2"/>
<property name="val i dati onPattern">
<bean parent="Al phaNurericValidati onPattern"/>

</ property>

<property name="required" value="true"/>
<property name="control ">
<bean parent="Text Control Definition" p:size="2"/>

</ property>

<property name="summary" val ue="Postal Country Code"/>
<property name="description" val ue="The code uniquely identify a country."/>

</ bean>

Recap

» An Attribute Definition provides metadata about a single data object property

 Created with a bean whose parent is “ AttributeDefinition” (or another attribute definition bean)

* Propertiesthat can be configured include:

L]

name (required) — name of the property on the data object the definition describes
label — label text to use when rendering the property

shortLabel — short label text to use when rendering the property

minLength/maxL ength — min and max length a value for this property can have

required — whether a value for this property is always required (usually refers to persistence
reguiredness)

validationPattern — a validation constraint that applies to any property value
controlField (and control) — the control component to use by default when rendering the property

summary/description — help information for the property

Data Object and Business Object Entries

Data Object entries provide the KRAD framework extrametadata about a data object which isnot provided
by the persistence mapping or the class itself.

46

The Data Dictionary

The data object entry contains information about:

Descriptive labels for each attribute in the data object (data dictionary terminology uses the term
“attribute’ to refer to fields with getter/setter methods)

Primary keys for the data object
Metadata about each attribute
How input fields on HTML pages should be rendered for an attribute (e.g. textbox, drop down, etc.)

Relationships and collections that exists for the data object

The following is an example of a data object entry:

<bean i d="Book" parent="Book- parent Bean"/ >
<bean i d="Book- parent Bean" abstract="true" parent="DataCbjectEntry">
<property name="dat aCbj ect O ass" val ue="edu. sanpl eu. bookst or e. bo. Book"/ >
<property name="obj ect Label " val ue="Book"/>
<property name="col | ecti ons">
<list>
<bean parent="Col | ecti onDefinition" p:nanme="authors" p:|abel ="Aut hors" p:shortLabel =" Aut hors"

p: el ement Label =" Aut hor"/ >

</list>
</ property>
<property name="attributes">
<list>
<ref bean="Book-id"/>
<ref bean="Book-title"/>
<ref bean="Book-typeCode"/>
<ref bean="Book-isbn"/>
<ref bean="Book-publisher"/>
<ref bean="Book- publicati onDate"/>
<ref bean="Book-price"/>
<ref bean="Book-rating"/>
<ref bean="Book-bookType-nanme"/>
</list>
</ property>
<property name="titleAttribute" value="id"/>
<property name="pri maryKeys">
<list>
<val ue>i d</ val ue>
</list>
</ property>

</ bean>

Recap

A Data Object (or Business Object) Entry provides metadata about a data object
Created with a bean whose parent is “ DataObjectEntry” (or extending another data object entry bean)
Properties that can be configured include:

« dataObjectClass(required) — full classname for the data object being described

objectLabel —label text to use when rendering a data object record

dataObjectClass(required) — full classname for the data object being described

objectLabel —label text to use when rendering a data object record

o primaryKeys—list of property names that make up the primary keys

47

The Data Dictionary

« titleAttribute — name of the property to use as arecord identifier
« attributes—list of attribute definitions for properties contained in the data object

« relationships/collections — list of relationship (1-1) and collection (1-many) definitions for the data
object

Relationship and Collection Definitions

Coming Soon!

Constraints

Constraints define what the acceptable values for afield are.
Thereareavariety of constraintsthat can be defined at either the InputField level or the AttributeDefinition
level. These constraints go by the exact same property name at both levels. Keep in mind that constraints

defined at the InputField level always override those at the AttributeDefinition level (when the field is
backed by an AttributeDefinition).

Constraints are applied during a process called Validation. Validation can occur on the client during user
input, on the server during a submit process, or both. By default, client-side validation is on and server-
sidevalidation is off for FormViewsin Rice 2.0.

Some constraints mimic those that werein available in the Rice KNS framework and go by similar names.
To help identify which constraints are new and should be used to build KRAD compatible InputFieldsand

AttributeDefinitions, the constraints are all followed by a suffix in both their bean and java class names
of “Constraint”.

All constraints are enforced client-side during validation, unless noted below.

Simple Constraint Properties

Requi r ed

Property: required

Values: trueif required otherwise false

When afield isrequired, the field must have some input value for it to be considered valid
<bean parent="Ui f-1nput Fi el d" p:required="true" p:propertyName="fiel d1">...</bean>

M nLengt h

Property: minLength

Vaues: integer, O or greater

When aminLength is set, the input value' s character length cannot be less than minLength.

MaxLengt h

48

The Data Dictionary

Property: maxLength
Vaues: integer - O or greater

When amaxLengthisset, theinput value' scharacter length cannot be greater than maxL ength. MaxL ength
should be set to a greater value than minLength (if set).

<bean parent="Uif-InputField" p:mnLength="1" p: maxLengt h="8" p:propertyNane="fiel d1">...</bean>
Excl usi veM n
Property: exclusiveMin
Values: String representing a number or date value
When exclusiveMin is set to anumber, and the input’ s value is anumber, that number must be greater than
exclusiveMin. If exclusiveMinis set to adate, and theinput’ svalueisadate, that date must be greater than
exclusiveMin. Note that for dates, exclusiveMin vaidation is not enforced client-side, but the DatePicker
widget will limit date selection based on this value (though the widget will limit min inclusively - not
exclusively - so values should still be checked server-side).
I ncl usi veMax
Property: inclusiveMax
Vaues: String representing a number or date value
When inclusiveMax is set to a number and the input’s value is a number, that number must be less than,
or equal to, inclusiveMax. If inclusiveMax is set to adate and the input’ svalueis a date, that date must be

less than, or equal to, inclusiveMax. Note that for dates, inclusiveMax validation is not enforced client-
side, but the DatePicker widget will limit date selection based on this value.

<bean parent="Uif-InputField" p:exclusiveMn="0" p:inclusiveMax="500" p: propertyNanme="fiel d1>...</bean>
dat aType
Property: dataType

Values: STRING, MARKUP, DATE, TRUNCATED_DATE, BOOLEAN, INTEGER, FLOAT,
DOUBLE, LONG, DATETIME

When dataTypeis set to one of the above types, it checksto seeif the input’s value can be converted into
that type. Thisis not enforced client-side and can only be enforced during server-side validation.

<bean parent="Uif-InputField" p:dataType="|NTECGER' p: propertyName="fiel d1">...</bean>
m nCccur s/ maxQccur s

Thisconstraint isnot yet fully supported. The name and location may changein thefuture. Futureintended
useisto constrain total collection itemsin a collection.

SimpleConstraint

The SimpleConstraint class is a constraint that contains all of the simple constraint properties (identified
above) withinit. These are:

49

The Data Dictionary

required
maxLength
minLength
exclusiveMin
inclusiveMax
dataType

minOccurs/maxOccurs

The SimpleContraint is used within InputField to store the settings you can set directly through itssimple
constraint properties. SimpleConstraint itself can also be set directly on the InputField bean, and will
override all settings that may have been set through a simple constraint property on InputField. Beyond
this usage, SimpleConstraint's main role is to allow the usage of simple constraints in CaseConstraints.

Complex Constraints

Therest of the constraints allow more complex validation to occur on input values. All of these constraints
allow the setting of a messageK ey property if you would like to redefine the message that is shown when
validation encounters an error. By default, all complex constraints already have amessage predefined with
parameters generated for that message, and it is recommended you use the already defined messages in
most cases, except for a few when noted below. The base beans for all of the following constraints are
defined in DataDictionaryBaseTypes.xml.

Validation Patterns

VaidCharacterConstraints allow you to constrain the alowed input on a field to a set
combination of characters by using regex (Regular Expressions). There are a variety of predefined
ValidCharacterConstraintsavailablein KRAD, but the ability to easily create your ownisavailableaswell
using standard regex. A ValidCharacterConstraint is set through the validCharacterConstraint property on
either an InputField or AttributeDefinition. This constraint mimics, but enhances, constraints availablein
the original KNS called ValidationPatterns. However, do not use ValidationPatternsin KRAD asthey are
deprecated and no longer used.

<bean parent=

"Ui f-InputField" p:propertyName="fiel d62">

<property name="val i dChar act ersConstraint">
<bean parent="Al phaNureri cPatternConstraint" />
</ property>

</ bean>

The predefined beans for VaidCharacterConstraint are:

Al phaNureri cPatt er nConst r ai nt

Only alphabetic and numeric characters allowed.

Al phaPat t er nConst r ai nt

Only alphabetic characters allowed.

AnyChar act er Pat t er nConst r ai nt

50

The Data Dictionary

Only keyboard characters are allowed. Specifically, these are ASCII characters x21 through X7E in
hexadecimal. Whitespace is not allowed by default, unless enabled through the allowWhitespace flag.

Char set Pat t er nConst r ai nt

Allows any characters set through its validCharacters property.
Nurrer i cPat t er nConst r ai nt

Only numeric characters allowed.

Al phaNumer i cW t hBasi cPunc

Only alphabetic and numeric characters with whitespace, question marks, exclamation points, periods,
parentheses, double quotes, apostrophes, forward slashes, dashes, colons, and semi-colons alowed. This
isan additional configuration of AlphaNumericPatternConstraint with some “allow” flags turned on.

Al phaW t hBasi cPunc

Only alphabetic characters with whitespace, question marks, exclamation points, periods, parentheses,
double quotes, apostrophes, forward slashes, dashes, colons, and semi-colonsallowed. Thisisan additional
configuration of AlphaPatternConstraint with some “allow” flags turned on.

Nuneri cWt hQper at ors

Only numeric characters with whitespace, asterisks, pluses, periods, parentheses, forward slashes, dashes,
and equals signs, dashes alowed. Thisis an additional configuration of NumericPatternConstraint with
some “allow” flags turned on.

Fi xedPoi nt Pat t er nConstr ai nt

Only alows a numeric value where the precision property represents the maximum number of
numbers allowed, and scale represents the maximum numbers after the decimal point. For example, a
FixedPointPatternConstraint with precision 5 and scale 2 would alow: 2, 555, 555.11; but would not allow:
111.222, 1.222, 5555 (thisis actually the value 5555.00, so it is not allowed).

I nt eger Pat t er nConst r ai nt

Allows any valid integer (but does not restrict length or range). There are optional flags for alowing
negative integers, only negative integers, or not allowing zero asinput.

Dat ePat t er nConst r ai nt

Allows any date to be input that is a valid date in the system. Any format defined in the configuration
parameter “STRING_TO_DATE_FORMATS’ is allowed.

Basi cDat ePat t er nConst r ai nt

Allows a subset of the default date formats defined by DatePatternConstraint. These formats represent
the most common input for date values: MM/dd/yy, MM/ddlyyyy, MM-dd-yy, and MM-dd-yyyy. It is
recommended that this constraint be used on fields which use the DatePicker widget.

Conf i gur ati onBasedRegexPat t er nConstr ai nt

The following constraints are configurations of the ConfigurationBasedRegexPatternConstraint
which have a patternConstraintKey that is used to retrieve a regex pattern by key in
ApplicationResources.properties (or any other imported properties file). This differs from the above

51

The Data Dictionary

VaidCharactersConstraints because those generate their regex based on flags and options set on them.
These constraints can easily have their functionality modified by changing the regex they use in any
imported propertiesfile.

Custom Regex Constraints

Y ou can easily define your own ConfigurationBasedRegexPatternContraint bean by setting your
own messageK ey and patternConstraintK ey to something that you have defined in a properties
file.

Fl oat i ngPoi nt Pat t er nConst r ai nt
patternConstraintK ey: validationPatternRegex.floatingPoint

Allows any valid floating point value (does not limit length or range). In other words, any number which
may include adecimal point.

PhoneNunber Pat t er nConst r ai nt

patternConstraintK ey: validationPatternRegex.phoneNumber

Allows any valid US phone number in this format: #-#H-#HHH:.

Ti mePat t er nConst r ai nt

patternConstraintK ey: validationPatternRegex.timel2

Allows any valid timein 12 hour format, seconds and leading Os are optional.
Ti me24HPat t er nConst r ai nt

patternConstraintK ey: validationPatternRegex.time24

Allows any valid time in 24 hour format, seconds and leading Os are optional.
Ur |l Pat t er nConstr ai nt

patternConstraintK ey: validationPatternRegex.url

Allows any valid url; the prefixes http://, https://, or ftp:// are required.

NoWhi t espacePat t er nConst r ai nt

patternConstraintK ey: validationPatternRegex.noWhitespace

Any characters except for whitespace are allowed.

Javad assPatt er nConstr ai nt

patternConstraintK ey: validationPatternRegex.javaClass

Only valuesthat would be valid java class names are allowed.

Emai | Addr essPat t er nConst r ai nt

patternConstraintK ey: validationPatternRegex.email Address

Only valid email addresses are allowed.

52

The Data Dictionary

Ti mest anpPat t er nConst r ai nt
patternConstraintK ey: validationPatternRegex.timestamp
Only valid timestamp values are allowed.

Year Pat t er nConst r ai nt

patternConstraintK ey: validationPatternRegex.year
Any year from the 1600s to the 2100s is allowed.

Mont hPat t er nConst r ai nt

patternConstraintK ey: validationPatternRegex.month
Any valid month, by number, is allowed.

Zi pcodePat t er nConst r ai nt
patternConstraintK ey: validationPatternRegex.zipcode

Any valid US zip code, with or without its 4 number postfix, is allowed.

Custom Validation Patterns

In addition to the above defined VaidCharacterConstraints, you can define your own
VaidCharactersConstraint by defining the regex property “value” directly. This is an additiona
configuration option, similar to defining a custom ConfigurationBasedRegexPatternConstraint,
the only difference being that the regex value is defined at the bean level and in a
ConfigurationBasedRegexPatternConstraint it is defined in an imported properties file. Both custom
configurations must have a messageK ey defined.

<bean parent="Uif-InputField" p:instructional Text="customvalid characters
constraint - this one accepts only 1 al pha character followed by a period and
then followed by a nunber (a.8, b.0, etc)" p:propertyNane="fieldl">
<property name="val i dChar act ersConstraint">
<bean parent="ValidCharactersConstraint" p:value=""[a-zA-Z]\.[0-9]$"
p: messageKey="val i dati on. aDot Nunirest "/ >
</ property>
</ bean>

Prerequisite Constraints

A prerequisite constraint defines what fields must be filled out with this field (the field that the
PrerequisiteConstraint is defined on). When this field is filled out, it requires the field set in the
“propertyName” property of the PrerequisiteConstraint to be filled out as a result.

During client-side validation, whether that field comes after or beforethat field isirrelevant, asthe Ul will
only notify the user when appropriate. For example, if you haven’t yet visited afield that is now required,
the user will only be notified of an error after they have first visited this newly required field and have not
filled it out. Alternatively, if the field that is now required comes before the field that requiresit, the user
will be notified immediately. These mechanisms are set up to prevent the Ul from showing errors before
the user had a chance to interact with the corresponding field within the overall page flow.

A field can have any number of PrerequisiteConstraints in their “ dependencyConstraints’ property.

53

The Data Dictionary

<bean parent="Uif-InputField" p:propertyName="fieldl" >
<property nanme="dependencyConstrai nts">

<list>

<bean parent="PrerequisiteConstraint" p:propertyName="fiel d7"/>
<bean parent="PrerequisiteConstraint" p:propertyName="fiel d8"/>

</list>

</ property>

</ bean>

Prerequisite Constraints

A useful and common technique isto put a prerequisite constraint on both fields that may require
each other (example case: a measurement requires both a value and a unit, neither make sense
without the other).

Must Occur Constraints

MustOccurConstraint is used to identify fields that are required before this field can be filled out. Thisis
different from PrerequisiteConstraints because the number of fields required from a different set of fields
can be defined.

The MustOccurConstraint's min and max properties define how many PrerequisiteConstraints (defined
in its “prerequisiteConstraints’ property) in combination with the MustOccurConstraints (defined its
“mustOccurConstraints’ property) must be satisfied for this MustOccurConstraint to pass. Essentialy,
either a satisfied PrerequisiteConstraint or a satisfied MustOccurConstraint counts as one toward the min/
max.

The following MustOccurConstraint is valid when field11 has a value, or is valid when both field12 and
field13 hasavaue (min="2" and max="2" in the nested MustOccursConstraint enforces that both must be
filled out). However, in this case, filling out al threefieldsis also valid because of min="1" and max="2"
on the top level constraint (there is one PrerequisiteConstraint and one MustOccursConstraint at the top
level). Alternatively, setting amax="1" at the top level would make this constraint only allow one of the
two conditions to be satisfied (otherwise, it would be invalid).

<bean parent="Uif-InputField" p:propertyName="fiel dl">
<property name="nust Qccur Constrai nts">

<list>

<bean parent ="Mist Cccur Constraint">
<property name="mn" value="1" />
<property name="max" val ue="2" />
<property name="prerequisiteConstraints">

<list>
<bean parent="PrerequisiteConstraint" p:propertyName="fiel d11"/>
</list>

</ property>
<property name="nust Qccur Constrai nts">
<list>
<bean parent ="Mist Cccur Constraint">
<property name="mn" val ue="2" />
<property name="max" val ue="2" />
<property name="prerequisiteConstraints">
<list>
<bean parent="PrerequisiteConstraint" p:propertyNane="fieldl2" />
<bean parent="PrerequisiteConstraint" p:propertyNane="field13" />

</list>
</ property>
</ bean>
</list>
</ property>
</ bean>

</list>

</ property>

</ bean>

The Data Dictionary

Must Occurs Constraint M essage

Because of the complexity that some MustOccurConstraints can achieve, the message generated
by MustOccurConstraint by default may not always be accurate or easy to understand. It is
recommended that you define your own messageKey for complex MustOccurConstraints.

Case Constraints

A CaseConstraint provides the ability to only apply a certain constraint when a defined case/condition
is satisfied. The constraint or constraints used can be any of the above constraints, in addition to nesting
another CaseConstraint within itself.

CaseConstraint has the following properties:
propertyName - the name of the field the case is using in the condition.

operator - the name of the operator to use in the condition. By default, this operator is EQUALS.
Other operators available are NOT_EQUAL, GREATER THAN_EQUAL, LESS THAN_ EQUAL,
GREATER_THAN, LESS THAN, andHAS_VALUE (thefield defined in propertyNamejust hasto have
any valueto trigger the case constraint when HAS VALUE is used).

caseSensitive - set thisto true if the condition should be caseSensitive when comparing values.

WhenConstraint list - alist of WhenConstraints which define the values for the condition to be satisfied.
If one of the values in the “values’ property satisfies the condition, the constraint defined in this
WhenConstraint is applied to thisfield. Note that the value can a so be the value of another field defined
by the “valuePath” property —however, this does not work client-side in thisrelease. The WhenConstraint
also defines the “constraint” to be applied if the condition is satisfied with that value.

In order to define an “ANDed” CaseConstraint, nest another CaseConstraint into a WhenConstraint
property. Alternatively, defining multiple WhenConstraints define an “ORed” CaseConstraint. Also, to
apply multiple constraints for one value use multiple WhenConstraints with the same value defined.

The following code makes field1 required when field2 is equal to “valueA” or “valueB”. It also makes
field1 only allow aphanumeric input when field2 is equal to “valueA”.

<bean parent="Uif-InputField" p:propertyName="fiel dl">
<property name="caseConstraint">
<bean parent="CaseConstraint">
<property name="propertyNanme" val ue="field2" />
<property name="whenConstraint">
<list>
<bean parent ="WenConstraint">
<property name="val ues">
<list>
<val ue>val ueA</ val ue>
<val ue>val ueB</ val ue>
</list>
</ property>
<property name="constraint">
<bean parent="Requi redConstraint" />
</ property>
</ bean>
<bean parent ="WenConstraint">
<property name="val ue" val ue="val ueA" />
<property name="constraint">
<bean parent="Al phaNureri cPatternConstraint" />
</ property>
</ bean>

55

The Data Dictionary

</list>
</ property>
</ bean>
</ property>

</ bean>

State-based Validation and Constraints

State-Based Validation allows you to change what validations (in other words, what Constraints) are
applied to an object’s fields as it moves through states over time, through user interaction, or any other
mechanism that may affect a“state” of an object. One example of statesin practice is workflow status.

If you do not setup states, the view is considered stateless and all Constraints that you setup will apply at
all times (note: this behavior is unchanged from prior releases).

Tosetup state-based validation you must set the stateM apping property with a StateM apping obj ect.
The object MUST include a list of states and these states MUST be in order that the states are
changed.

In addition to the states themselves, you can define a map for specifying what the state’ s name will bein
the text of validation messages. The map st at eNaneMessageKeyMap takes the state as a key and a
messageK ey as avalue for its entries. The messageKey is used to retrieve the human readable version of
the message from the ConfigurationService.

The st at ePr opert yName property of StateMapping allows you to specify the name/path to the
property on the form which represents the state. By default thisis set to “ state” (meaning on the root form
UifFormBase, stateM apping will use the “state” property to determine the state of the object). This can be
changed to anything and is used with the new property of View called stateObjectBindingPath (the path
to the “state” property will be determined as stateObjectBindingPath + statePropertyName).

The cust onCl i ent Si deVal i dat i onSt at es property is used dtrictly to define what state the
client-side validation (see corresponding section) should useto validate during user interaction. By defaullt,
client-side validation will always validate against the “n+1" state. What that means is that client-side
validation will always validate against the NEXT state (if one exists, otherwise the current state) of the
object because that is what the user istrying to get to.

To change this behavior the customClientSideV alidationStates map can be used to define what client-side
validation will be used at each state. Its entries take the state of the object as the key and the state you want
the client-side validation to validate against at that state as the value. States which don’t have a custom
client-side validation state default to the “n+1" case, as normal.

Example of stateMapping with some of these properties set (note that state names themselves are for
example purposes only):

<property name="st at eMappi ng" >
<bean parent =" St at eMappi ng" >
<property nane="states">
<list>
<val ue>st at el</ val ue>
<val ue>st at e2</ val ue>
<val ue>st at e3</ val ue>
<val ue>st at e4</ val ue>
<val ue>st at e5</ val ue>
</list>
</ property>
<property nane="st at eNaneMessageKeyMap" >
<map>
<entry key="statel" val ue="deno.statel"/>
<entry key="state2" val ue="deno. state2"/>
<entry key="state3" val ue="deno. state3"/>

56

The Data Dictionary

<entry key="state4" val ue="deno. state4"/>
<entry key="state5" val ue="deno. state5"/>
</ map>
</ property>
<property name="custonC i ent Si deVal i dati onSt at es" >
<map>
<entry key="statel" val ue="state3"/>
</ map>
</ property>
</ bean>
</ property>

This example has 5 states, it defines a message key for each state, and for client-side validation when the
view's object isin "statel" the client will validate against "state3" (it will also validate against "state3"
in "state?2" as normal). It is retrieving the current state of the object from the "state" property at the root
of the form (default).

StateM apping also has some hel per methods that can be called:
» get Current St at e retrieves what is the current state of the object this stateMapping is for

» get Next St ate which gets the next expected state (this does not take into account
customClientSideV alidationStates).

After you have the StateM apping object defined, you need to define states on your validation constraints
to use state-based validation.

Defining Constraint state Information

Constraints without states defined fallback to “stateless’ and will aways apply for al states.
BaseConstraints now have a property called states. Thisrepresentsthelist of statesat which that constraint
applies. If the list is empty or null, the constraint will apply at every state. If the list contains at least 1
item, the constraint will apply at ONLY the states specified. To limit the amount of xml required when
entering states, there are some helper patterns allowed in this list. These are:

“+”: when entering a state name followed by a plus sign, this means the constraint is applied to that state
and every state afterwards. Examples. “statel+”, “[+”

“>": used for ranges. The constraint will apply from one state to another state, and every state in between.
Examples: “statel>state3”, “1>S’

Of course, you can just list single states by name in the list as well.
These patterns can be mixed in the list itself. Example: p:states="statel, state3>stated, state6+”

In addition, other than determining if the constraint applies at a specific state or not, Constraints can also
change fundamentally over time. An example of this may be that what is allowed to be input in afield
becomes stricter over state transitions. To accomplish this, constraints (BaseConstraint.java) now have a
property calledconst r ai nt St at eOver ri des which containsalist of replacementsfor the constraint
they are configured on. Constraintsin thislist must be compatible with the constraint they arereplacing; for
example, ValidCharacterConstraints should only be replaced with other ValidCharacterConstraints (and
itschild classes), etc. Overridesthat do not match or are not valid siblings/children classes of the constraint
they are overriding will throw an exception.

Constraints in this list MUST have the states at which they apply defined; the replacement will
override the constraint they are configured on at the states they specify. Overrides which do not
have states specified will throw an exception.

Rules for constraintStateOverrides:

57

The Data Dictionary

e Overides, if configured, always take precedence over their parent when they apply. If no overrides
match the state, or if the constraintStateOverrides list is empty, the parent constraint will apply (if it
is applicable for the state).

« If there are there are 2 overrides that both apply at the same state, the last on the list will always take
precedence.

State-based Validation at the Controller

Whilethe client-side validation isautomatic (alwaysvalidates against “n+1" unless configured otherwise),
the server-side validation is completely up to the implementer. If you would like to validate your View
(or aternatively DataDictionaryEntry), there are methods provided to do so. The main point is that server
validation is NOT automatic and is application controlled. These new state-based validation methods are
(some overloaded version not noted here):

For ViewValidationService (should be used for KRAD views):

» val i dateView Vi ew view) - Thisisthe main validation method that should be used when
validating Views. This method validates against the current state if state based validation is setup.

e val i dat eVi em Vi ewvi ew, Vi ewbdel nodel, String forcedValidationState)
- Vadlidate the view against the specific validationState instead of the default (current state). If
forcedValidationState is null, validates against the current state, if state-based validation is setup.

» val i dat eVi ewAgai nst Next St at e(Vi ew vi ew, Vi ewbdel nodel) -Validatetheview
against the next state based on the order of the states in the view's StateMapping. This will validate
against current state + 1. If there is no next state, this will validate against the current state.

» val i dat eVi ewSi mul ati on(Vi ew vi ew, Vi ewMbdel nodel) - Simulate view validation
- thiswill run all validations against all states from the current state to the last state in the list of states
in the view's stateM apping. Validation errorsreceived for the current state will be added as errorsto the
MessageMap. Validation errors for future states will be warnings.

For DictionaryValidationService (recommended only when you don’t have aview. Also note that state-
based validation only works for DataDictionaryEntry backed objects with StateM appings setup):

» val i dat e(Obj ect obj ect) —Validates against the current state (if state-based validation is set
up).

» val i dat eAgai nst St at e(Obj ect object, String validationState) - vaidates
againgt the state specified by validationState.

e val i dat eAgai nst Next St at e(Cbj ect obj ect) —validates against the next state as defined
by the state mapping.

What isdonein response to validation errorsis aso completely up to the implementation of the controller
logic (it is recommended you halt action and return back the same view passed in, thiswill automatically
display the discovered validation errors for the user).

Example of validating and checking errors (this simple example only changes the state on successful
validation):

/linside a controller nethod
KRADSer vi ceLocat or Web. get Vi ewval i dati onServi ce().val i dateVi ew(form get PostedView(), form "state2");
i f(!d obal Vari abl es. get MessageMap() . hasErrors()){

}

//do whatever you need to do on after a successful
//validation here (save, submit, etc)
formsetState("state2");

58

The Data Dictionary

return get U FMbdel AndVi ew(forn;

Figure4.1. State-based Validation Server Errors

@ This page has 3 errors

* Field 1: For State 2, Field 1 is a required field
* Field 2: For State 2, Field 2 is a required field
* Field 3: For State 2, Field 3 is a required field.

State
state1

Field 1 **

A
T
[
C
T
[
t
i
]
[a1]
LT
I
=]
u]

tate2 and after

]

In this image, you may notice the "**" indicator. In KRAD, this means the field is required for the next
state.

State-based Validation helper beans
There are afew beans available for use to help with a couple aspects of state based validation:
e St at eMappi ng - base StateMapping bean to parent from, defaults statePropertyName to "state”

o Wor kf | owSt at eMappi ng - suggested workflow StateMapping bean properties, for use with
documents. Important: use only if you know your state-based validation is tied directly to workflow
status.

e Ui f-StateBased- Requi redl nstructi onsMessage - message that indicates that "**"
means required for the next state. May be enhanced in the future to tell the user what the actual next
stateis.

Data Dictionary Services

Coming Soon!

The DATAOBJECTMETADATASERVICE

Coming Soon!

59

The Data Dictionary

Extending the Data Dictionary

Coming Soon!

60

Chapter 5. Introduction to the UIF

Overview of the UIF

The KRAD User Interface Framework (UIF) alows application developers to rapidly create rich and
powerful user interfaces. KRAD builds on concepts of the KNS (Kuali Nervous System) and the KS
(Kuali Student) UIF to create aframework capable of generating modern Web 2.0 interfaceswith asimple
declarative configuration. In the next few chapters, we will explore the architecture and features of the
UIF, and also see some of the exciting possibilities for future growth!

Asmentionedin‘A Need for KNSVersion 2', the KRAD effort was spawned based on the need to expand
the current Rice development framework for meeting requirements of the Kuali Student project. Although
the Rice KNS module has many great concepts that had worked well up to date, it was determined that
in order to meet the new requirements and to continue making overall improvements, portions of the
framework would need to be redesigned and rewritten. The majority of thiswork focused on Ul generation,
with some enhancements to other feature areas of the KNS. The following lists the primary goals of this
effort:

UIF Goal: Rich Ul Support

Over the past few years, web-based user interfaces have taken off. Many of these technologies have
leveraged browser-based JavaScript and Cascading Style Sheetsto createimpressive effectsor to radically
increase interactivity by communicating with a web-server in between the normal request/response page
cycle. Because of these huge advances, today's web application users have much higher expectations of
interactivity.

The KRAD UIF ams to alow the development of rich web interfaces by offering a variety of rich
components and behavior. This includes components like lightbox, suggest boxes, menu/tabs, and grid
(table) features. Some of the ‘behavioral’ features include partial page refreshes, progressive disclosure,
client-side validation, and AJAX queries. This is just a subset of the way that richer user interface
functionality is offered by KRAD. Chapters 8 and 11 cover these features and morein detail.

UIF Goal: More Layout Flexibility

One of the features of the Nervous System users pick up on quickly is the fact that so many screens can
be generated purely through configuration. A business object lookup and inquiry, as well as the screen
for maintenance documents: al can be generated entirely from an XML file. Freeing developers from
having to concern themselves with the particulars of the HTML generation for these screens makes the
user interface of Kuali applications more consistent, to say nothing of the boost to developer productivity
it gives.

However, there were other screens which could not be so easily generated. Transactional documents
depended on perhaps several JSP files, supported by hierarchies of traditional taglets. Non-document
screens had to be coded in JSP as well. The KNS provided a standard library of taglets - such as
documentPage, tab, html Control Attribute, and so on - which eased the devel opment task a bit, but the hard
fact was that developers still had to spend much more time coding these pages.

It should therefore be of little surprise that one of KRAD's major goals is improving this situation.
If transactional documents and non-document screens could make use of the Rich Ul support through
configuration, that would make it much easier to devel op theseincredibly important pieces of functionality.

61

Introduction to the UIF

However, as any KNS developer knows, transactional documents are much more flexible than lookups
or maintenance documents. Maintenance documents are almost always stacks of two or four columns,
perhaps broken up by a standard sub-collection interface. Conversely, atransactional document can look
like practically anything.

UIF Goal: Easy to Customize and Extend

We have all had the experience of working with development frameworks to meet some specia need that
the framework did not provide ‘out of the box’. In many cases, this is a painful process, requiring the
developer to get insidethe ‘ black box’ and figure out many intricate detail s of the framework. Furthermore,
once a solution isfound, it might require we modify the core of the framework, causing maintenance and
upgrade issues.

Similar issues were encountered when using the Rice KNS framework. In particular, the use of tags was
problematic, in that there was no way to customize tag | ogic without breaking the upgrade path. In addition,
the objects used for Ul modeling were not extensible or customizable without modifying the Rice code.
Therefore, an important goal for the UIF is to allow new Ul features to be added, and current features to
be modified without modifying Rice code. As we will see later, this is accomplished using a component
framework and the power of Spring bean configuration.

UIF Goal: Improved Configuration and Tooling

A lot of user feedback about the Kuali Nervous System centered on the repetitive tasks of setting up
configuration. Every business object has an object-relational mapping and an entry in the data dictionary;
that entry is made up of field configurations, which gets tediously long fairly quickly. And then there's
building the corresponding Java code to be the actual business object. Even more pieces are added to this
recipe when attempting to put together a document.

KRAD isadopting aseries of design principlesto alleviate some of thework required for thisconfiguration.
KRAD intends to introduce a series of simple-to-use tools to generate configuration based on defaults,
letting devel opers focus on tweaking the configuration to match business logic.

KRAD isalso simplifying configuration in general. Theideaof "convention over configuration” will mean
that standard defaults will be provided for what had to be manually configured before. These defaults can
be overridden, but if they fit the needs of the application, no further configuration will be necessary. This
will cut down ahuge amount on the "XML push-ups" required by KRAD application developers, but still
provide a great deal of flexibility.

UIF Dictionary

The UIF builds on the KNS concept of using Spring bean XML to build Uls. XML files are created to
configure and assemble UIF objects (called components). These files are then processed and loaded into
the Data Dictionary container.

More Information: Although the UIF configuration is loaded into the same container as the Data
Dictionary, conceptually we think of them as separate. A current practice within Rice isto have aresource
directory for data dictionary files, and a resource directory for UIF files (per module). In addition, care
was taken to allow for separate containersto be created (if desired at some point).

The UIF and UIM

We will see that technically, using the UIF is very easy, since most things can be accomplished by a
simple XML configuration. However, there is a challenge in knowing how to put the pieces together.

62

Introduction to the UIF

To accomplish the amount of flexibility necessary, the UIF introduces a lot of concepts that will take
sometimeto learn. Taken al together, these form alanguage for how Rice developers and UX leads will
discuss, prototype, and finally build user interfaces. To help with this process, the UIM (User Interaction
Model) was developed. The UIM is a collection of pages that document how to best make use of the
UIF functionality. Such things as when to use one component over ancther, various configurations of a
component, and overall UX concerns are documented within the UIM. Investing time to read through the
UIM will help devel opers get up to speed with the UIF much quicker.

Y ou canfind thelatest version of the UIM at thefollowing URL: https://wiki.kuali.org/display/STUDENT/
User+Interaction+Mode [https://wiki.kuali.org/display/STUDENT/User+Interaction+Model]

Recap

» The UIF (User Interface Framework) isthe KRAD module used to generate User Interfaces
* Goalsof theUIF are;

¢ Rich Ul Support

* More Layout Flexibility

 Easy to Customize and Extend

 Improved Configuration and Tooling

e The UIM (User Interaction Model) is documentation on how page developers should use the UIF for
designing views

Component Design

Parts

Centra to all of the UIF is the component framework. Components provide the mechanism for which
functionality is implemented in a customizable and extensible fashion. In short, they are the bread and
butter of KRAD!

So what is a component? A component to KRAD is anything that can be used to build aweb page. Many
of these have a visual presence on the screen, such as text. However, some do not, and instead provide
behavior with a script. Treating all these as components, gives us a uniform approach to developing the
UIFframework, in addition to providing avery customizable and easy to contribute modality. This section
will explore the design of components from a high level. Later on in this chapter, we will learn about the
varioustypes of components, and in chapters 6-9 we will look at the specific components KRAD provides
out of the box.

of a Component

A component ismade up of three different artifacts (seefigure 6). Thefirst of theseisaJavaclass. The Java
class defines the properties and behavior the component can have. As we will see later on, the properties
are what we can use to configure the component, while the behavior includes things such as how the
component interactswith other components. Aswith any class, the properties can be primitive or collection
types, or types of other objects. In this case of a component, these objects may be other components.
Therefore components can be nested (or a composition). In addition, components may extend from other
components to inherit properties and behavior. This forms a component hierarchy. The component class
may exist anywhere on the class path.

63

https://wiki.kuali.org/display/STUDENT/User+Interaction+Model
https://wiki.kuali.org/display/STUDENT/User+Interaction+Model
https://wiki.kuali.org/display/STUDENT/User+Interaction+Model

Introduction to the UIF

JSP
Template

The second artifact for acomponent isitsrendering template. ThetemplateisaFreeMarker filethat renders
HTML/JS contents for the component instance. The template is an optional artifact. Components may
‘self-render’, which means the component object will be invoked to return the HTML/JS contents (note
FreeMarker content cannot be used in this mode). However, most UIF components use templates as they
are much easier and cleaner to implement. We will learn all about templates in the next section.

The final piece of a component is its Spring bean definition. Spring bean XML is the mechanism by
which devel opers configure and assemble UIF components. Creating a bean definition for the component
(sometimes known as the ‘base’ definition) allows us to specify defaults for properties, in addition to
giving the component a unique name within the bean container (note that it would be possible to use the
component without a base definition, but then the class would have to be specified each timeit is used).

One important property that is configured with the base definition is the template. The template property
(available on all components) is the path to the template FreeMarker file that will render the component.
Specifying the template through the bean configuration provides loose coupling of the component class
and template. Thisisvery important to the flexibility of the system. The template can belocated anywhere
in the web root for the application.

The base component definition also does a couple more things for us. One of these is setting up the
component with scope prototype. All UIF components maintain state, so they must be marked as prototype
within Spring. Finally, it is recommended the base definition be setup with an abstract parent bean. This
setup looks like the following:

<bean i d="conponent Nane" parent ="conponent Nane- par ent Bean"/ >

<bean i d="conponent Nare- par ent Bean" abstract="true" cl ass="edu. myedu. Sanpl e. Conponent" scope="prototype">

</ bean>
This alows the base definition to be changed without having to copy the entire original configuration.
Recall that Spring allows usto override abean definition by specifying abean with the sameid. Therefore,
if an ingtitution wanted to change the default property for a component, they would simply include the
following in the institutional spring files:

<bean i d="conponent Name" par ent ="conponent Nanme- par ent Bean" >

<property name="propertyNanme" val ue="overrideVal ue"/>
</ bean>

Without the abstract parent bean, al of the initial property configuration would need to be copied (since
setting the parent to “componentName” would cause a circular dependency).

When defining base definitionswe are not limited to just one. In many cases, it isuseful to providedifferent
configurations of acomponent as different bean configurations. For example, one component wewill learn

64

Introduction to the UIF

about is the TextControl. The text control renders a HTML input of type text and has a size property,
which configures the display size for the input. First, we might setup a bean definition that looks like the
following:

<bean id="Uif-Text Control" parent="U f-Text Control - parentBean"/>
<bean id="Ui f - Text Control - parent Bean" abstract="true"
class="org. kuali.rice.krad.uif.control.TextControl" scope="prototype">
<property name="tenpl ate" val ue="/krad/ WEB-I NF/ftl/conponents/control/text.ftl"/>
<property name="size" val ue="30"/>
</ bean>

The control can then be used by bean references or inner beans:

<property name="control ">
<bean parent="Uif-TextControl" p:size="10"/>
</ property>

Notice here we are overriding the size property because we need a small input. Seeing this, we might
decide we want to have a standard size for small, medium, and largeinputs. Therefore we set the following
bean configurations:

<bean id="Uif-TextControl" parent="U f-Text Control -parentBean"/>
<beani d="Ui f - Text Cont r ol - par ent Bean" abstract="true"
class="org. kuali.rice.krad.uif.control.TextControl" scope="prototype">

<property name="tenpl ate" val ue="/krad/ WEB-I NF/ftl/conponents/control/text.ftl"/>
<property name="size" val ue="30"/>

</ bean>

<bean id="Uif-Smal | Text Control" parent="U f-Smal | Text Control - parent Bean"/ >

<bean id="Ui f-Smal | Text Control - parent Bean" abstract="true" parent="U f-Text Control ">
<property name="size" value="10 "/>

</ bean>

<bean id="Ui f-Medi unifext Control " parent="U f-Medi uniText Cont r ol - par ent Bean"/ >

<bean i d="Ui f- Medi unrext Control - par ent Bean" abstract="true" parent="Uif-Text Control ">
<property name="size" value="30 "/>

</ bean>

<bean id="Uif-LargeText Control" parent="U f-LargeText Control - parent Bean"/ >

<bean id="Uif-LargeText Control - parent Bean" abstract="true" parent="U f-Text Control ">
<property name="size" val ue="100 "/>

</ bean>

Now when we need asmall text control, we can referencethe * Uif-Small TextControl’ bean and not specify
the size:

<property name="control ">
<bean parent="Uif-Smal | Text Control "/>
</ property>

Many of the components provided by the UIF have multiple base bean definitions.

Customizing and Extending the UIF

We know that amajor goal of the UIF isto provide a high level of flexibility. Furthermore, we have seen
the central concept of components. So how does this component design achieve our goal ?

Toanswer thisquestion, let’ sfirst takealook at what criteriawe should look for in ahighly flexible system.
1. Canwe customize al parts of the system, or are there places that are ‘ unreachable’ ?

2. If we can customize something, can we do that outside of the original codebase so that we do not hinder
our upgrade path?

3. What level of understanding do we need to customize the system? Is each customization different?
Doesit require usto get deep inside the black box?

4. Can we add to the system? If so, do those additions act asfirst class citizens, or require some alternate
approach to use?

65

Introduction to the UIF

Recall besidesthe base ‘ plumbing’ of the UIF, aset of componentsis provided to build pages with. Each of
these components brings a piece of functionality to the framework. Thuswe can think of them as‘building
blocks' for the framework as shownin Figure 7.

Now let’s suppose we want to customize a ‘core’ component. To do this, we ssimply change one of the
component parts (class, bean, or template). We saw previously how we can change the bean configuration
for acomponent by providing another bean configuration with the sameid. Using the abstract parent bean,
we can inherit all of the original configuration and then change or add configuration as needed.

For an example of this, let’s use the UIF ‘required’ message field which has the following definition:
<bean i d="Ui f- Requi redMessage" parent="U f- Requi redMessage- par ent Bean"/ >
<bean i d="Ui f- Requi redMessage- par ent Bean" abstract="true" parent="U f-MessageFi el d"

scope="prototype" p:messageText="*" p: messageType="REQUI RED" >

</ bean>

We decide for our application we want the required message to actually display the text ‘required’ instead
of the configured asterisk. To do thisweinclude abean with the sameid in our application (or institutional
spring) file:

<bean id="Ui f-Requi redMessage" parent =" U f - Requi r edMessage- par ent Bean" p: messageText ="requi red" />
Now everywhere the required message field is used the text ‘required’ will display instead of ‘*’.
Tip
Adding Spring Files: Adding Spring files to the container can be done using
the KRADConfigurer.

Next let’s consider the component template. Remember the template is a FreeMarker file located in the
web root (or classpath) and generates the HTML/JS contents for the component. If we wish to change this
rendering, we can create another template in aweb location of our choosing.

66

Introduction to the UIF

Depending on the level of customization we need to implement, we might start by copying the current
template contents, or create onefrom scratch. Onewe have the templ ate that rendersthe component how we
want, then we override the bean configuration as described previously and override the template property
specifying the location for the new template. Besides the source location for the template, there is the
templateName property which specifies a name for the template in the host language (the name by which
the template is invoked). This must be unique, so that when overridding a template, we must also give a
unique name for the template (unless we are overriding the base bean definition itself):
<bean id="Uif-Text Control" parent="Ui f-Text Control - parentBean"/>
<bean i d="Uif - Text Control - parent Bean" abstract="true"
class="org. kuali.rice.krad.uif.control.TextControl" scope="prototype">
<property name="tenpl ate" val ue="/krad/ WEB-| NF/ftl/conponents/control/text.ftl"/>
<property name="t enpl at eName" val ue="uif_text"/>
<property name="size" val ue="30"/>
</ bean>
<bean id="Uif-Text Control" parent="Uif-Text Control - parent Bean">
<property name="tenpl ate" val ue="/nmyapp/ WEB-I NF/ftl/conponents/text.ftl"/>

<property name="tenpl at eNane" val ue="nyapp_text"/>
</ bean>

Thelast part of the component we haveto customizeisthe Javaclassitself. Modifying the Javaclasswould
allow us to add new properties and behavior to the component. For this, we can create a new class that
extends the original component class. This new class can be anywhere in the classpath. New properties
can be made available by adding propertiesto our extension class (with getters and setters). Customization
of behavior can be modified by overriding the various lifecycle methods. These methods will be covered
in Chapter 9. Once we have the new class, we associate it with the component by again overriding the
bean definition:
<bean id="Uif-TextControl" parent="U f-Text Control -parentBean"/>
<bean id="Uif- Text Control - parent Bean" abstract="true"
class="org. kuali.rice.krad.uif.control.TextControl" scope="prototype">
<property name="tenpl ate" val ue="/krad/ WEB-| NF/ftl/conponents/control/text.ftl"/>
<property name="size" val ue="30"/>
</ bean>
<bean id="Uif-TextControl" parent="U f-TextControl -parentBean" class="edu. nyedu. Sanpl e. Text Control ">

<property name="additional Property" val ue="foo"/>
</ bean>

Now that we have seen how to customize acomponent, how do we go about adding anew component? We
can add a component using the same process we saw for customization. The difference between adding
and customizing are:

1. Wewill create a new base Spring definition (not overriding an existing)

2. The Javaclass will not extend a core component, but one of the provided base classes (described later
on in this chapter)

Essentially we need to create the three artifacts for the component just like the core components. Once
created, using custom components is no different than using the provided components. Therefore as
depicted in Figure 8, core and custom components work together as part of the framework.

Component Building Blocks

Core
wojsny

Object

Tip

Planned Feature

67

Introduction to the UIF

Component ‘Drop In’: Inthefuture KRAD might support apluginfacility for ‘ dropping’ in new
components. A component ‘bundle’ could be downloaded and dropped into the plugin directory,
eliminating the need to copy the base bean definition, template file, and Javaclass.

RECAP

» Componentsare acentral pieceto the UIF and are critical for customizing and extending the framework
» Each component is made up of three parts:

« Java Class — defines the properties and behavior

* FreeMarker Template — renders HTML/JS content for a component instance

« XML Definition(s) —provides default propertiesfor acomponent (including thetemplate) and assigns
an ID for using the component

» KRAD provides several components for use ‘ Out of the Box’

» We can customize a component by changing its bean definition, writing a new template, or extending
the Java class to add properties or behavior

» We can create our own components by creating the three necessary artifacts (outside of the Rice code)

Building Templates with FreeMarker

Variable Markup

<htm >

Given that the goa of the UIF is to produce web pages (HTML, Image, and JS content); the component
template provides a very important role. This section will help us understand templates better, and how
they are built using the FreeMarker templating engine.

Before looking at templates in KRAD, let’s step back and think about the job of building a web Ul
framework. We know web pages are rendered by a browser from HTML markup, along with other
resources such as script and image files. So ultimately, the result from our framework is this markup that
will be streamed back as the response to a request by the user. This is the output of the framework. The
input to the framework will be XML configuration provided by an application devel oper. So how do these
get connected?

Based on our Spring knowledge, we know the XML metadatawill get used to create Objectsin the Spring
container, so these objects' instances now contain the devel oper's configuration. We can then expose these
objectsto the FreeMarker templates, which will combine the object values with static contentsto produce
the resulting markup (see figure 6).

Templates within KRAD are created using the FreeMarker framework. FreeMarker is a templating
framework that allows template files to be assembled at runtime. To create a template in FreeMarker,
we start by creating a file with extension .ftl. This can be anywhere in the application web directory or

classpath.

Now we can add static HTML content (just like creating an HTML page) along with dynamic content
using the FreeMarker language:

<head><title>${Kuali Formtitle}</title></head>

<body>
<t abl e>

68

Introduction to the UIF

<tr>
<td col span="2">${Kual i Form header}</td>
</tr>
<tr>
<t d>${ menu} </t d>
<t d>${ body} </ td>
</tr>
<tr>
<td col span="2">${Kual i Form footer}</td>
</tr>
</tabl e>
</ body>
</htm >

Notice within this file the use of '${}' notation. This is known as an interpolation, and is where data will
be inserted. This data comes from a model we expose to FreeMarker before rendering the templates. The
model isamap of objects that can be referenced within the FreeMarker templates. The map key givesthe
name by which the object isidentified. In KRAD, one object that is exposed by default isthe form object.
This object is awrapper for al the data that needs to be present for rendering the page, and is given the
identifier '‘KualiForm'.

Other objects exposed through the model are:
* The Http Request Object exposed with identifier 'request’
» The Rice UserSession object exposed with identifier ‘userSession'

» A Map of Rice configuration parameters exposed with identifier ‘ConfigProperties
Tip
Spring ModelAndView

The web tier of KRAD is implemented using the Spring MV C framework. Spring provides an
object named Model AndView that we build and return from our controller methods. The model
part of this object serves the same purpose as the FreeMarker model. In fact, when using the
freemarker view resolver, Spring pulls the model out of this object for configuring FreeMarker.
Therefore, for exposing additional objects in the templates, we can add those objects to the
ModelAndView object we return.

Now suppose wewant to pull out part of our FreeMarker content into aseparatefile, so that it can be reused
between different templates. First we create another file with .ftl extension. Let's call this file body ftl.
Now we add the FreeMarker content to our template file:

<h2> This is the page body </h2>
${ Kual i For m body}

Next, we can bring in the contents of body.ftl into our main template by using the FreeMarker directive
namedi ncl ude. To usetheinclude directive we specify the absolute or relative path to the template file
that should be included using the path attribute:

<htm >
<head><title>${Kuali Formtitle}</title></head>
<body>
<t abl e>
<tr>
<td col span="2">${Kual i Form header}</td>
</tr>
<tr>
<t d>${ menu} </t d>
<t d>
<#i ncl ude pat h="body.ftl"/>
</td>
</tr>
<tr>

69

Introduction to the UIF

<td col span="2">${Kual i Form footer}</td>
</tr>
</tabl e>
</ body>
</htm >

Interpolations may also contain expressions (see below). For example, we can add two numeric properties
together and render the result as follows:

${ Kual i For m nunPropl + Kual i For m nunProp2}

With FreeMarker we are not limited to just reading properties from the model, but also may invoke
methods! Thisis done using the method name within the expression, followed by list of valuesto send as
parameters. The parameter values may reference another model property or variable:

${Kual i Form retri eveTaxAnount (t axNunber, 'T')}

In addition to accessing dynamic data within the model, we can create new dynamic variables within the
template. To create anew variabletheassi gn directiveisused. Following the assign keyword, the name
and value for the variable are given separated by an equal:

<#assi gn nyVar="Hel | o!"/>

Similar to model properties, the value for a variable can be written to the output stream using the ${}
notation:

<td>${nyVar}</td> <#-- prints <td>Hello!</td> -->
When assigning a variable value, we may also use an expression. Freemarker supports all of the standard
expression operators. The only notable difference is Freemarker does not support the alpha operator
representation (‘eq, 'ne, 'It', 'or"). Operatorsare specified with theusua '==",'l=",'&&", || and so on. The one
exceptionin Freemarker isfor '>','<','>="'<=" operators, the al phaoperator can be given aswell. Thefull list
of expression operatorsis found here [http://freemarker.sourceforge.net/docs/dgui_template_exp.html].

Let's take a simple case of addition as an example:

<#tassi gn groupOneTot al =50/ >
<#tassi gn groupTwoTot al =100/ >
<#assi gn total Bot hG oups=groupOneTotal + groupTwoTotal />

Tip
Watch out for Nulls!

When a variable or property expression is null, by default FreeMarker will not convert to an
empty string but instead throw an exception. To prevent FreeMarker from throwing an exception
(and instead output nothing) an exclamation mark must be added after the variable. For example:
Hvariable!}

FreeMarker DataTypes

When working with model properties or variables, it is important to know the underlying datatype.
The datatype determines how the variable can be used within the markup (for example in expressions,
interpolations, and passing macro parameters).

The datatypes used by FreeMarker are String, Number, Boolean, and Date (Scalars); Hash, Sequence, and
Collection (Containers); Methods and Custom Directives (Subroutines); and Node.

Tip

Java Objects

70

http://freemarker.sourceforge.net/docs/dgui_template_exp.html
http://freemarker.sourceforge.net/docs/dgui_template_exp.html

Introduction to the UIF

Note that model properties that represent Objects are treated as a Hash in FreeMarker. This goes
for the model itself that is exposed for rendering.

Datatypes are implied by FreeMarker in one of two ways. For model properties, the datatype is derived
from the underlying Javatype. For variables, the datatype will be derived based on the assigned value. All
string values must be quoted. If value is not quoted, the datatype will be determined based on the format.
The keywords true and false are used to indicate a boolean type.

<#assign var="Hell 0"/> <#-- string datatype -->

<#tassi gn var=3/> <#-- nuneric datatype -->

<#tassi gn var=true/ > <#-- bool ean datatype -->

<#tassi gn conp=nodel . conp/ > <#-- assum ng nodel .conmp is object, hash datatype -->

Interpolations may only be used for variables/propertiesthat are scalars. FreeMarker converts number and
date typesto a string format based on the environment settings. Bool ean types must be explicity converted
to a string using the built-in "?string'.

When passing parameter values for macro invocations, we must also be aware of the datatypes expected
by the macro. Passing a quoted parameter value where the macro expects a number or boolean will cause
an error. In the following example, the macro with name 'grid' expects a parameter named ‘rowCount' of
type number:

<#macro grid rowCount>

</ #macr o>

I ncorrect Invocation:
<@rid rowCount="3"/>

Correct Invocation
<@rid rowCount =3/>

Control Statements

FreeMarker allows us to conditionally evaluate a block of markup, or to evaluate a block of markup
multiple times through the use of control statements. A control statement isimplemented using one of the
following directives:

if, else, elsaif

We can conditionally evaluate a block using the if directive. Following the if or elseif directive is an
expression to evaluate. If the expression evaluates to true, the corresponding block will be included,
otherwise the block given by the else directive (or the next expression) is evaluated if an elseif directive
follows. The general syntax is as follows:

<#i f expressionl>

/1 bl ock

<#el sei f expression 2>

/'l bl ock

<#el sei f expression n>

/1 bl ock
</#if>

In the following example we have a variable named col Count which holds an integer:

<#i f col Count == 1>
/1 block 1

<#tel sei f col Count == 2>
/1l block 2

<ttel se>

/1 block 3

</ #if>

71

Introduction to the UIF

In this example, we first check if the variable colCount is equal to 1, if so block 1 is evaluated. If not,
we check whether colCount is equal to 2 and if so evaluate block 2. If neither conditions are true, block
3 will be evaluated.

list

Thelist directive allows usto loop through avariable (or model property) which isasequence (array) type
and evaluate a block within each iteration. Thisis a useful control statement for rendering items like a
table or repeated sections. Thelist directive is used by specifying the variable/model name followed by a
variable to expose each item under. The general syntax is as follows:

<#li st sequenceNanme as itenp
/1 bl ock
</ #list>

L et's take an example where we assume we have amodel property named ‘foods that isa List. Within the
list body, the item being iterated over will be exposed with the variable 'food'":

<#list foods as food>
Name: ${food. nane}, Type: ${food.type}
</ #list>

If the datatype to iterate over is a Map, we can iterate using the list directive to iterate over the keys of
the map like the following example:

<#l i st map?keys as parnp

${map[parnj }
</ #list>

Here the loop variable gives the key for the map entry we are iterating over.

In addition to the loop variable exposed by thelist directive, two additional variables are exposed. Thefirst
givestheindex for theitem and is retrieved by adding'_index' to the loop variable. The second indicates
whether there are more items to iterate over and isretrieved by adding'_has next' to the loop variable.

Finally, the br eak directive existsto exit thelist directive early, as the following example demonistrates:

<#list seq as x>

${x}

<#if x = "spring"><#break></#if>
</ #list>

Context and Macros

By default, templates that are executed (by include directives) all belong to the same namespace. This
means each template has access to read and write the same variables. A change to the value of avariable
in one template, will change the value of the variable in another. This namespace shared by templatesis
known as the global namespace.

To execute FTL code in a separate namespace, FreeMarker allows the creation of Macr os. Macros are
created using the macro directive and are given a name that can be used for invocation. For example, we
can change our previous body.ftl to become a macro as follows:
<#tmacr o body>
<h2> This is the page body </h2>

${ Kual i For m body}
</ #macr 0>

The name for the macro follows the #macro keyword. In this example we have named our macro 'body".
Between the macro start and end tag we can add FreeM arker content just aswewould for ageneral template
file. Each time the macro is invoked, this FreeMarker content will be evaluated. Therefore macros give
us away to reuse FreeMarker markup.

72

Introduction to the UIF

Within the macro we can define new variables. As with a general template, we can use the assi gn
directiveto create avariable in the global namespace. However, since amacro hasits own namespace, we
can create a variable that is scoped to it as well. Thisis done using thel ocal directive. The syntax for
using the local directive isthe same as the assign directive.

<#tmacr o body>
<#l ocal locVar="is only visible within macro"/>
<#macr o>

If aglobal variable exists with the same name, the local variable will override within the context of the
macro.

Macros may parameterizethe content by accepting parameters. These parameters are given when the macro
isinvoked and are used within the macro body for evaluating the final output. Each parameter has a name
by which it is identified. Therefore, to declare macro parameters, we simply list their identifying names
on the macro directive after the macro name. Each parameter name is separated by a space:

<#macro macroName parml parn2 parn8 parmd ...>

Within the macro the parameters become local variables. We can print the parameter value to the output
stream, use in a conditional statement, or use in any other way supported by variables. For example, let's
add a header, bodyContent, and footer parameter to our body macro:

<#macro body header bodyContent footer>
<body>
<t abl e>
<tr>
<td col span="2">${header}</td>
</[tr>
<tr>
<t d>${menu} </ td>
<t d>
${bodyCont ent }
</td>
</[tr>
<tr>
<td col span="2">${footer}</td>
</[tr>
</t abl e>
</ body>
</ #macr 0>

Notice in this example we are writing out the values of the given macro parameters using the ${} notation.
Our body macro serves as awrapper for the content.

For each macro parameter we can also specify whether avalue is required to be given by the caller, and if
not a default value to use. A default value isindicated by placing an equal sign after the parameter name,
followed by the default value (which can be an expression). If a default valueis not given, the parameter
is assumed to be required. All required parameters must be given before parameters that have defaults.
Let'stake alook at an example:

<#macro body bodyContent header="Header One" footer="">
Here we have changed the body macro to make the bodyContent a required parameter, but not the header

or footer. If the header parameter is not specified by the caller, it will have a value of "Header One".
Likewise, if the footer is not given, it will have avalue of the empty string.

Invoking Macros

When a macro is loaded, it becomes a variable within the associated namespace. The macro name
(identifier given after the macro declaration) becomes the variable name, and the assigned namespace is
derived from the surrounding namespace of the FreeMarker file (see Including FTL Files).

73

Introduction to the UIF

If the macro belongs to the global namespace, it can be invoked with the text '<%' followed by the macro
name. Any parameter values are then given after the macro name (separated by a space). Each parameter
specification includes the parameter name, followed by the equal sign, followed by the parameter value
(which can be an expression). The macro invocation is completed with the closing greater than sign.

As an example, let's invoke our body macro created in the previous section, passing a value for the
'bodyContent' parameter:

<@ody bodyContent="Hell o KRAD World!"/>
or

<#assign content="Hell o KRAD Wrld!"/>
<@ody bodyCont ent =cont ent/ >

When the macro is associated with a namespace, we must specify the namespace before the macro name,
using a dot to separate each. Let's assume our body macro was associated with the namespace 'myapp'.
We would then invoke the macro as follows:

<@yapp. body bodyCont ent =content/>

Other Features of Macros

Macros are very powerful constructsthat allow great flexibility! Up to this point we have invoked macros
by simply passing parameter values. A macro may aso allow us to pass FreeMarker markup within the
body of the macro tag. The macro can then render this content in one or more locations of the macro. To
indicate where this content should be rendered, we use the nest ed directive. The nested directive may
be used more than once within the macro definition:

<#tmacro w apTd>
<t d>
<#tnest ed/ >
</td>

</ #macr o>

I nvocati on:
<@w apTd>
<#i f render Header >
${ header}
<ttel se>
${footer}
</ #if>
</ @w apTd>

Assuming renderHeader istrue, and the header variable is 'Header One, the following would be output:

<t d>
Header One
</td>

Another feature available for macros is varargs (variable number of arguments). To indicate a macro
accepts a variable number of arguments, the last parameter declaration must end with *...":

<#macro | oop parnms...>
<#l i st param keys as key>

${ par nf key] }
</ #list>
<#nmacr o>

I nvocati on:
<@ oop parml parng/>
<@oop parml parn? parn8/>

The parameter ‘parms' becomes a hash, where the name for each additional parameter is the hash key and
the corresponding parameter value the hash value. The macro may include other named parameters that
are listed before the varargs declaration.

74

Introduction to the UIF

Finally, FreeMarker provides the ability to create macro functions. These are macros that will run not
to render output, but to calculate and return a value. These are created using the f unct i on directive.
The function directive is used the same as the macro with afew exceptions. First the function directiveis
assumed to return avalue. Any variable that is created within the function (or a global variable) may be
returned using the r et ur n directive. The return directive is used by giving the variable name after the
return keyword (we also may return an expression that will be evaluated as the function return value).

Let's build an example function that returns the max of two numbers:

<#function max nunber1l nunber2>
<#i f nunmberl > nunber 2>
<#return nunber1/>
<t#tel se>
<#return nunber2/>
</#if>
<#function>

Functions also differ from Macrosin how they are called. Recall functionsreturn avalue, therefore we can
use them anywhere a value is expected. This includes within an interpolation, an expression, or variable
assignment. In addition, passing parameter values is done using function syntax '(parml, parmz, ...)" rather
than key/value pairs. The following shows examples of invoking the max function above:

${ max(nunber 1, nunber2)}

<#tassi gn maxNumrmex(nunber 1, nunber2)/>

<#i f number3 > max(nunberl, nunber2)>
/1 bl ock

</ #if>

Similar to macros, functions may be associated with a non-global namespace. When this is so, the
namespace must be given before the function name, and a colon separates each.

Built-Ins

Freemarker provides several utility functions called Built-Ins that can be applied to a variable or
expression. The built-ins that can be used depend on the underlying datatype, as shown by the grouping
below. To invoke abuilt-in, we add the question character ('?) after the variable (or expression), followed
by the built-in name and any parameters. The following shows the general form:

${ someVari abl e?bui | t I n(parns)}

The return value of the built-in invocation becomes the value for the expression:

<#tassi gn name='Joe Snmith'/>
Rice <#-- prints 'Joe Smth' -->
${ name?upper _case} <#-- prints 'JCE SMTH -->

The following are other examples of built-ins provided.
String Built-Ins

substring(from, toExclusive) - Returns a substring of a given string starting at the given from index up
to the given toExclusive index.

html - Escapes html markup

js_string - Escapes the string according to JavaScript string literals
length - Returns the number of charactersin the string

lower_case - Lower casesthe string

left_pad(length) - Left pads the string with spaces until it reaches the given length

75

Introduction to the UIF

right_pad(length) - Same as | ft pad, but pads with spaces to the right
contains(substring) - Returns true if the string contains the given substring
matches(regex) - Return true if the string matches the given regular expression

replace(stringToRepl ace, replacement) - Replaces all occurances of stringToReplace in the string with the
given replacement string

split(splitString) - Splits a string into an array on occurances of the given splitString parameter
starts with(string) - Returns true if the string starts with the given string parameter

trim - Removes leading and trailing whitespace

upper_case - Upper cases the string

Boolean Built-Ins

string - Converts the boolean to a string using "true” astrue and "false”" asfalse

string("yes"', "no") - Converts the boolean to a string using the first string parameter if the boolean istrue,
and the second string parameter if the boolean isfalse

Other Built-Ins

has_content - Returns true if the variable is not null and is not empty (meaning if the variable has a size
or length)

Including FTL Files

<#i ncl ude
<#i ncl ude

<#i mport

A template file may pull markup from another template file using the i ncl ude directive. The include
directive takes the path to the file as an argument, which may be expressed as a relative or absolute path:

‘../footer.ftl'/>
"/ krad/tenpl ates/footer.ftl'/>

FreeMarker al so supportsasecond way of including templatefilesfor the purpose of library (or namespace)
creation. Thisisdoneusingthei npor t directive. Again, we must give the path to the file as an argument.
We can aso give an additional argument that will identify the namespace the template contents should
be associated with. In the next example we include a freemarker template file that contains several macro
definitions, and associate them with the namespace 'myapp”:

"nyapp.ftl' as 'nyapp' />

All the macros contained in myapp.ftl will be associated with the myapp namespace and must be invoked
through that namespace. Note when using import, any output generated by the included template will be
ignored.

Component Templates

Each component within the KRAD UIF has a template file that defines a macro for rendering the
component. The template location and the macro name are then configured with the component definition.
Each time an instance of the component is encountered, the macro will be invoked with the component
instance.

Generally, the component macros do the following:

1. Insert values from the component properties with static markup

76

Introduction to the UIF

2. Invoke rendering for child components

Coarse-Grained Parameters

An important consideration when setting up a macro is how to setup the parameters. To help explain this,
let'stake alook at a sampletext control:

<@pring.input id="${id}" path="${path}" disabl ed="${disabled}" size="${size}" maxl ength="${maxLength}"/>

This snippet isinvoking a spring input macro, which will then output the HTML input tag. We see some of

the attributes this macro provides areid, path, disabled, size, and maxlength. Since thistemplateis generic

(inthe sensethat it should render all instances of the TextControl) the values for these attributes need to be

variable. Now based on our knowledge of macros, we can create an input macro which will allow valuesfor

these variables (or attributes) to be specified by the calling template. Thiswould look like the following:
<#macro uif_input id path disabled size maxLength>

<@pring:input id="${id}" path="${path}" disabl ed="${disabled}" size="${size}" maxl engt h="${maxLength}"/>
</ #macr o>

The calling template would then be:

<@i f _i nput id="${conponent.id}" path="${conponent.path}" di sabl ed="${conponent. di sabl ed}"
si ze="${conponent . si ze}" maxLengt h="${ conponent . maxLengt h}"/>

Here the component variable is the component instance that has been exported to the page.

Now let’s suppose that a developer wishes to override the component class and template to provide a
‘readonly’ property. The template now looks like this:
<#macro uif_input id path disabled size maxLength readOnly>
<@pring.input id="${id}" path="${path}" disabl ed="${disabl ed}" size="${size}" maxl engt h="${maxLengt h}"

readOnl y="${readOnl y}"/>
</ #macr o>

In order for the readonly attribute to be passed in, the developer must also change the calling template and
pass the corresponding component property value. This not only adds to the amount of work required for
customizing a component, but also leads to general maintenance issues within the framework.

To solvethis problem, KRAD passes the full component to the templates and not the individual properties
of the component. Passing the full component makes changes our original macro to:
<#macro uif_i nput conponent >
<@pring.input id="${conponent.id}" path="${conponent.path}" disabl ed="${conponent.di sabl ed}"

si ze="${conponent . si ze}"/>
</ #macr o>

Now for the custom template, we simply make use of the new property without any changes to the calling
template:
<#macro uif_i nput conponent >
<@pring.input id="${conponent.id}" path="${conponent.path}" di sabl ed="${conponent.di sabl ed}"
si ze="${conponent. si ze}"

readOnl y="${ conponent . readOnl y}"/>
</ #macr 0>

In addition to providing more template flexibility, using the course grained parameters gives us auniform
way of invoking templates (as we will see in a bit, the framework provides a generic macro that can be
used to render any component). Depending on the type of component, other parameters may be sent as
well. The standard macro contracts are as follows:

Table5.1. Macro Parameter Contracts

Component Type Macro Parameters

View view: the view component instance

77

Introduction to the UIF

Component Type Macro Parameters

Group group: the group component instance
Field field: the field component instance
Element element: the element component instance
Control control: the control component instance

field: the input field component instance

Widget widget: the widget component instance
parent: the component instance that contains the widget
additional parameters depending on widget

Layout Manager items: the group'sitems
manager: the layout manager instance
container: the container instance the layout manager is associated with

Note that the macro parameter that contains the component instance is exposed under different
names (group, field, element, ...), depending on the component type. The name is specified by the
get Conmponent TypeName() method on the component.

The KRAD Macro Library

KRAD aso comes with macros that provide utility functions for creating templates. These can be
referenced by the component macros to help with building content. For example, the div and span macros
generate the corresponding HTML tags with standard attributes (such asid and class). These macros are
exposed under the krad namespace, and are available by default to all component templates. The following
shows an example of using the script wrapper tag:

<@rad.script value="alert("hello");"/>

Template Macro

In Chapter 8 we will learn how to assemble UIF componentsinto aView. The View isacomponent itself
that, among other things, encapsulates all other components for our Ul. It can also be thought of as atree
of components. The rendering processes starts by invoking the configured view template macro. The view
template macro then in turn renders its child components, and so on, until the complete tree has been
traversed. Therefore, the responsibility of a template is to not only render the necessary markup, but to
invoke rendering for its child components. To help with this, KRAD provides the template macro.

The template macro requires the component parameter to be specified. This is the child component that
should be rendered:

<@rad. t enpl at e conponent =chi | dConponent />

Thetemplate macro will then createthe call for invoking the component macro, and passing the component
parameter (and any additional parameters). The figure below depicts the rendering process.

Figure5.1. KRAD Rendering Process

The Rendering Process

Component Template(s)

View Template

FreeMarker

Template

78

Introduction to the UIF

Besides invoking the template for the child component, the template macro performs the following:

1

2.

Setup progressive rendering or component refresh

Output content from self-rendering components

. Generate event script (onblur, onchage, ...)

. Generate component tooltip script

Templates dynamically create HTML markup based on the components.
Templates within KRAD are created using the FreeMarker framework.
Within templates we can use the interpolation syntax '${}' to output dynamic values.

By default the UIF Form object, request object, user session, and configuratin properties are made
available to templates.

FreeMarker supports all the standard expressions for variable assignment, logic tests, and interpolation.
FreeMarker allows us to create variables within the template using the assi gn directive.

FreeMarker has the following datatypes: String, Number, Boolean, Date, Hash, Segquence, Collection,
Method, and Node.

FreeMarker provides thei f , el se, el sei f control directive for conditionally including template
content.

FreeMarker providesthel i st control directive for looping over template content one or more times.

Macros provide the ability to create reusable template content that can be parametrized and create
variablesin alocal namespace.

Macros are created using the #macro directive, followed by a name for the macro, followed by zero
or more parameter names. The template content that should be rendered when the macro isinvoked is
given between the opening and closing #macro tags.

Variables created within a macro that should have loca scope are created using thel ocal directive.

Default values can be specified for parameters by adding an equal and then the default value after the
parameter name. If a parameter does not have a default value defined it becomes a required parameter.

Macros areinvoked using the'@' symbol followed by the macro name. Parameter values are given after
the macro name with key=value pairs (parameterName=parameterV alue).

When the macro i s associ ated with anamespace, we must specify the namespace before the macro name,
using adot to separate each.

Macros can render content passed through the invocation body using the nest ed directive.

A type of macro that returnsavalueisafunction. Functions are created using thef unct i on directive
and return avalue using ther et ur n directive.

Freemarker provides severa utility functions called Built-Ins that can be applied to a variable or
expression.

79

Introduction to the UIF

A template file may pull markup from another template file using thei ncl ude directive.

» Each component within the KRAD UIF has a template file that defines a macro for rendering the
component.

» Each component macro receives the component instance as a parameter.

The template macro can be used to invoke rendering of a component.

The Component Interface

Over the next few sections, we will look deeper into UIF components and the properties they have. These
components are defined by their Java class. The class declares how a component can be used and how it
works with other components. Asin all object-oriented designs, these classes model the domain objects
in our problem area, which is building web pages! Thus the component classes found should be mostly
familiar to anyone who has worked with the web (controls, labels, containers, buttons, links, ...).

To become a UIF component, a class must implement the org.kuali.rice.krad.uif.component. Component
interface. This interface defines standard getters/setters for properties all components should have, in
addition to methods that are invoked during the view lifecycle. Along with the Component interface,
the abstract implementation org.kuali.rice.krad.uif.component.ComponentBase is provided which can be
extended to build new components. Other than default implementations for lifecycle methods which we
will explore later, this classis essentialy a POJO (Plain Old Java Object) for the common properties.

Common Component Properties

We have already learned about one very important property that all components have — the template and
template name. The template is the path to the FreeMarker file that will perform the rendering process
(creating of HTML markup) for the component. The template name is the name of the macro by which
the rendering can be invoked. Now let’slook at some other properties that we get from ComponentBase:

Id — All components must have a unique identifier within aview. Thisid plays acritical role both server
sideand ontheclient. Onthe server, theid isused to pull acomponent fromitscontaining view. A view can
contain many components that are deeply nested. Iterating through thistree to find a particular component
can require alot of coding and add up to many wasted cycles. With the id we can ‘index’ the view such
that a component can beretrieved in asingle call.

On the client, the id becomes even more important. Asis the case for many of the server side component
properties, the id is used to populate the id attribute on the HTML element. This results in unique ids
for al elements on the page. These ids can then be referenced by a script created by the framework or
by the developer. Furthermore, it is also possible to build CSS based on the ids (although this is not the
recommended strategy).

For generating the id values, there are a few options KRAD provides. First, the id can be assigned by the
developer, or it can by generated by the framework. Manual assignment can furthermore be done in one
of two ways. Thefirst isto set the id by using the bean property tag. For example:

<bean parent =" Conponent ">
<property name="id" val ue="ks34"/>

The second way to manual assign the component id is by using the bean id attribute:

<bean i d="ks34" parent="Conponent">

Since the id bean attribute is already required in most beans (top level beans), it is often most convenient
to take this approach. If both the bean id attribute and the id property are specified, the id property value
will be used.

80

Introduction to the UIF

Note that when a bean inherits a bean definition, an id specified with the property tag will be inherited,
while theid attribute of the bean tag will not.

<bean i d="ks34" parent="Conponent">
</ bean>
<!-- this bean will not have a configured id -->
<bean parent="ks34">
</ bean>
If anidisnot configured by one of the above mechanisms, the framework will generate and assign aunique

id for the component. Ids are generated using a sequence that starts at 1 each timethe view lifecycleisrun
(eachrequest), and prefixed with ‘U’ . For example, thefirst few generated idswould be‘ul’, ‘u2’, and ‘ u3'.

The component ids are assigned by the framework at the beginning of the lifecycle (the ‘initialize’
phase). This guarantees all components will have an id throughout the view lifecycle (important for
script generation in addition to many other things). There is one twist, however. Some components are
dynamically created while processing the view data (the ‘applyModel’ phase). For example, all collection
row fields cannot be created until the collection dataisavailable. In these cases, the configured component
represents a ‘prototype’ for creating the dynamic components. The prototype will have an id that was
manually or automatically assigned. For creating the dynamic component, the prototype is copied and
then adjusted. This means the id value will be copied as well. In order to give the copy a unique id, the
id is suffixed. In the example of collection rows, each id is suffixed with the line (10", ‘11", ‘12'...). For
example, if the prototype has an id of ‘u56’, the field in the first collection line will haveid ‘u56_10, in
the second ‘u56_|1', and so on. Other id suffixes used in the framework will be discussed in the various
component sections.

Tip

Factory 1d: Another property we find on ComponentBaseisf act or yl d. Thisis used to hold
the original id for components that are copies of prototypes (dynamically) created. The property
is necessary when we need to get a new instance of component using the ComponentFactory.
Because the component was dynamically created, the ComponentFactory is not aware of it.
However, it is aware of its prototype. Using the factoryld, we can get a new instance of the
prototype and then adjust as necessary.

Title — For most components, we can specify the title property. This property gives extrainformation for
the component that will be available in the user interface. This is an example of a property that many
components have, but is used differently between components. For example, one of the component types
we will learn about in the next section is a Cont ai ner . Components generally begin with a header
(using the HTML header tag) and use the title property for the header text. Other types of components
include Fi el ds and Cont r ol s. The component types use the title property asthe title attribute on the
corresponding element they produce:

<el ement title="conponent title property value"/>
Thetitle attribute value is most often shown as a tooltip when the user hovers over the element.

Title Property: Thereason we say title property can be specified for ‘most’ components is that
there are some that do not use this. Since the overwhelming majority do, it was added to ComponentBase
for convenience.

Render —Therender property isaBoolean that indicates whether the HTM L markup should be generated
for the component. When this is set to false, the configured template will not be invoked during the
rendering process. By using conditional expressions to set the render property, we can make our view
much more dynamic. Essentially the render property allows usto display or not display acomponent based
on runtime conditions.

81

Introduction to the UIF

For example in the following configuration only field1 will be rendered:

<bean parent="Uif- I nputFi el d"
p: propertyNane="fiel d1"/> <bean parent="Uif-InputFiel d"
p: propertyNane="fiel d2" p:render="fal se"/>

Thedefault valuefor render istrue, soif therender property isnot specified the component will be rendered.

Hi dden — The hidden property is similar to the render property in that it configures whether or not
the component is displayed. However, when a component is hidden (and render is set to true), the
corresponding template will be invoked to generate markup. The content isthen surrounded with adiv that
contains a style of display none. This keeps the content from being visible. The content can be displayed
by changing the CSS display style through script. This provides a mechanism for toggling the display of
acomponent on the client. Later on, we will learn about jQuery, which among many other things, allows
usto flip the visibility of an element by invoking the show or hide function.

ReadOnl y —Itis common to use the UIF for building forms that will collect data and perform a process
on behalf of the user. There are avariety of components, such as controls and widgets, that allow the user
to input data. These components have a state of editable (user input is allowed) or read only (user input is
not alowed). To indicate acomponent should bein the read only state we can set the readOnly property to
true. Again, thisisaproperty that expressions are generally used for that setsthe state based on acondition.

Since it varies how components allow user input, the impact of setting a component as read only varies.
For example, read-only controls simply display the control value as HTML text. An action field, on the
other hand (button, link, image), will not render when set to read only.

Mor e | nf o: Components such as controls and action fields also support the disabled property. When
these components are disabled they are in aread only state (no user input is allowed), however they are
presented differently. Although the disabled appearance can be modified, generally the component appears
asit does when editable (for example the actual control or button appears) but appears dimmed. The UIM
provide guidelines for when to use disabled over readOnly.

By default, the component base bean definitions have the readOnly property set as a condition on the read
only status of the parent. Recall that our View represents a tree of components, where each component
contains zero or more child components. This is often referred to as a parent-child relationship. All
components with the exception of the View have a parent. Thus if the parent is read only, the child will
be aswell.

One example of the parent-child relationships is the Container component. The purpose of a container
is to hold other components and provide a layout. Therefore, the components in the container are
child components, and the container is the parent component. Setting the container component as
read only will make all components within the container read only. This is a convenient feature that
simplifies configuration. For example, if we needed to make a group of fields read only, we can add
the readOnly="true” property to the container component instead of adding the property to each field.
Furthermore, sincethe View contains all the components, we can add readOnly="true” to make our entire
web page read only.

Some views are always read only. One example of this is the Inquiry view which displays information
about a data object instance. The InquiryView base bean has the readOnly property set to true. Therefore
all components added to a view of thistype will be read only without having to specify the property.

Requi r ed —When acomponent allows user input, the required property indicates whether the user must
provide a value (or complete the input/action). This is most typically used with input fields that have a
control, but can also be used with a container (group) to indicate a section must be completed (fields in
the section must have input). Other components may use the required attribute in away that is appropriate
for the component.

82

Introduction to the UIF

In the case of input fields, setting required to true will do a couple of things. First, a message will be
displayed to the user indicating if it is required (by default an asterisk ‘*'). Second, the framework will
perform validation client side and/or server side that checks a value was given. If the value is empty, an
error message is created and presented to the user.

Style and Style O asses —KRAD provides alot of flexibility to make your web applications
look great! All UIF components have a configured style class that performs the visual treatment. These
style classes are provided within the CSSfiles that come with KRAD. However, if needed, using the style
properties we can add or override CSS configuration for each component.

Inline style configuration can be specified using the style property. The value is then placed as the style
attribute value for the corresponding HTML element. Likewise, style classes can be specified using the
styleClasses property. Thisproperty isalist typewith each list item specifying astyle class. The configured
style classes are concatenated into a string using a space delimiter, then output as the class attribute value
for the corresponding element.

Progressi ve and Ref r esh —Component base contains several propertiesthat relate to configuring
progressive disclosure or component refresh functionality. Thisis covered in detail in Chapter 11.

O der — KRAD adds some ahilities to the Spring configuration system, including more control over
collection merging. In a base bean definition that contains a collection, each component in the collection
can have an order specified. When inheriting the collection property in child beans, components can be
specified with the same order to replace itemsin the parent list or given an order that inserts the component
between two items of the parent collection. Thisfeaturein covered in more detail at the end of this chapter.

Tip

Read Onl y: Asstated above, thefeature of read only inheritanceisdone by setting an expression
on the readOnly property which isinherited. This configuration is as follows:

<property name="readOnly" val ue="@ #parent.readOnly}"/>

However, the readOnly property can be overridden to specify another condition, or to explicitly
make the component editable. This can be useful for cases when afew of the child components
need to be editable, but the majority should beread only. We can set the parent asreadOnly="true”
which will make all child components read only. Then we can add readOnly="false” to the few
components that should be editable.

Skip In Tab O der —By default, tabbing will follow the natural order of the el ements and include
each element that can accept focus. When needed, the element corresponding to the KRAD component
can be taken out of the tab order (will not be tabbed to) by setting the skiplnTabOrder Boolean to true.
An example of where this might be needed is a widget. The widget might contain several elements that
work together as one focusable item. Within the item, keyboard shortcuts can be provided for navigating
to the various elements. The user can simply tab again to get out of the widget (instead of having to tab
possibly several times).

More finely grained control over the tabbing order can be configured as well using the tablndex property
of Control.

Finalize Method To Call - Although you can do a great number of things using XML,
you also have the option of assembling components with code. One way to invoke code is with the
finalizeMethodToCall. Thisisthe name of amethod on the ViewHel perServicelmpl that should be called
during the finalize phase of the view lifecycle. Standard arguments to this method are the component
instance and the model (view data). Two additional properties, finalizeM ethodAdditional Arguments and
finalizeMethodInvoker, exist for greater flexibility oninvoking amethod. Code support iscovered in detail
in Chapter 10.

83

Introduction to the UIF

Sel f - Render and Render Qut put —Asdescribed in the section on templates and Apache Tiles,
most components are rendered by a FreeMarker file that combines parameters from the components with
static content to produce HTML markup. Components may render without a template by generating the
markup through code. This is done by setting the selfRender flag to true. When this flag is turned on,
instead of invoking atemplate, the method getRenderOutput will be invoked on the component instance
to return the markup that should be output.

Tip

Sel f - Render ed Cont ent : The markup returned by a self-rendered component may not
include dynamic markup (FreeMarker content). The string is written directly to the response
without going through FreeMarker processing, therefore only HTML markup must be returned.

Conponent Security —KRAD alowsfor fine-grained security to be defined, which integrates with
the KIM (Kuai Identity Management) module. Security restrictions are indicated by setting a flag on an
org. kuali.rice.krad. ui f.conmponent. Conponent Securi ty instance. When aflagis set,
the framework will check aKIM permission (setup for that restriction type) and, if not granted to the user,
therestriction will be activated. Particul ar security flagswill be discussed whilelooking at each component.

Conponent Modi fi er s — Component modifiers are classes that can be configured on a component
to modify its properties through code. A component may have one or more component modifiers that
get applied in the order they are configured. Modifiers can be useful in many cases. For example, the
maintenance framework supports a comparison view where an ‘old’ and ‘new’ field is presented for each
field. To achieve this, a component modifier was created that reads the configured group fields copying
each to make the ‘old’ field. Then a base bean was created with the component modifier configured. All
maintenance groups then extend this bean and inherit the comparison feature.

Component modifiers can aso have a condition that determines whether it should run (the
runCondi t i on). In the example of the maintenance modifier, we only want to show the comparison
when doing an edit operation (not for a new or copy). Therefore, the run condition is setup to check that
the maintenance action is edit. The framework will evaluate this condition and only invoke the modifier
if the condition succeeds.

There are many other things that can be done with component modifiers which will be covered in Chapter
10.

Tenpl ate Opti ons — Besides the properties a component class has, some component templates
support options that can be configured using thet enpl at eCpt i ons map. These can be thought of as
‘pass-through’ parameters since the component classis not aware of them.

Template options are used primarily with Widgets that invoke ajQuery plugin. All jQuery plugins have a
standard options map (or object since this is JavaScript) that configures the plugin options. This options
map is created from the template options.

Tip

Tenpl at e Opti ons: The generic template options map allows parameters to be added by
the template without modifying the class. This can be useful when creating custom templates
with options not originally supported by the component. In addition, this allows usto change our
plugin implementations more easily. The options for the new plugin can be configured through
the XML without having to change the class.

Property Repl acer s —Another tool provided by the UIF for component configuration are property
replacers. A property replacer allows us to exchange the value for a bean (component) property based on
acondition. For example, we can change the control for afield from atext control to a checkbox control

84

Introduction to the UIF

if some condition istrue. Or, we might want to change out acomplete list of container fields with another.
In a sense, property replacers give us the capability to have if statementsin our XML.

A component may have one or more property replacers defined. In addition, one or more property replacers
can be configured for the same property. Each property replacer whose condition passes will be applied,
so the order in which they are configured can matter. Property replacers will be covered in Chapter 10.

Cont ext — One very powerful feature of the UIF is the ability to use EL (Expression Language)
statementsin XML. The expressions are evaluated using the Spring EL framework. Spring EL allows us
to define variables that can be referenced within the expressions. The UIF provides these variables from
the component context map.

Each entry of the context map represents a variable, where the map key is the name of the variable (how
it will be referenced in the expression), and the map value is the value Spring should use for the variable.
The framework adds standard variables to the context for all components. Some examples include the
‘view’ and ‘component’ variables. Additional variables are added based on the component. For example,
components within a collection group receive the variables ‘line’ and ‘index’ for referring to the current
line. Finally, custom variables can be added to the context either through the XML configuration for a
component, or by code. More information on expressions will be covered in Chapter 10.

Script Event Support

In addition to implementing the Component interface, ComponentBase implements the
org.kuali.rice.krad.uif.component.ScriptEventSupport interface. This allows a component to specify
whether a given jQuery event is supported, and to retrieve or set the JavaScript code for that event.
For example, let's take the onblur event. If a component supports this event, it will implement the
getSupportsOnBlur method and return true. Script for the onblur event can then be set through the XML
by using the onBlurScript property. Finally, when rendering the component, the template tag will retrieve
the onBlurScript and associate with the onblur event. A listing of all events and examples will be given
in Chapter 11.

Recap

» A UIF Component is anything that can be used to build the application user interface.

e« To become a UIF component, a class must implement the interface
org.kuali.rice.krad.uif.component. Component.

» The component interface defines properties and behaviors all components must provide.

» Components can extend org.kuali.rice.krad.uif.component.ComponentBase which provides properties
and default implementations for the component interface.

» The id property is a unique identifier for the component which can be assigned in the xml with the
property tag or by the bean id attribute.

» The component id is used as the id for the element that is generated from the component. On the client
it can be used for scripting and styling.

» Therender property specifies whether html output for the component should be generated. When set to
false the component template is not invoked.

» The render property along with expressions give us the ability to conditionally determine how a page
will be displayed.

85

Introduction to the UIF

 For components that allow the user to interact with them, such as form controls, the readOnly property
can be set to not allow user interaction.

» By default, the read-only state is inherited by a component from its parent. This allows usto easily set
agroup of components or the entire page as read-only.

» Any component can be styled by using the style and styleClasses properties. The style property allows
an inline style to be applied, while the styleClasses allows us to apply one or more css classes to the
component.

» Component base contains properties for configuring progressive disclosure and component refresh
functionality.

« Although many things can be accomplished just with xml, code can be used to set the component state
by specifying afinalize method to call.

» Components can output their html marked directly instead of using atemplate. Thisis done by setting
the selfRender property to true.

» Component modifiers are classes that perform a modification on component state. One or more
modifiers can be configured for a component.

* In addition to the properties defined by a component, the template can have options that are passed
through using the template options map.

* Property replacers can be used to replace the value for a component property based on a condition.

 All components hold a context map which contains variables that can be used for expressions that are
evaluated for properties of that component.

» Components can indicate that they support a jQuery (JavaScript) event which allows script to be
configured for that event.

Types of Components

Within the UIF component landscape, there are groupings of components which share similar properties
and behaviors. With each component grouping, the framework provides an interface (extending
Component) and base class. This allows sharing of properties and behavior for components within these
groupings. In particular, the base classes areimportant for the view processing, known astheview lifecycle.

Another way to think of these component types is how we use them to build our web page. Recall that
each component is rendered to produce HTML markup (including script), thus our components are really
amodel HTML. Therefore, to understand the how the component groupings are formed, it is helpful to
first breakdown the various HTML tags and how they are assembled.

Content Elements

HTML provides us tags (known as ‘ elements’) we can specify that will be read by the browser to render
some type of content. Examples of thisinclude:

» <a> tag - Defines a hyperlink
 <button> tag - Defines a clickable button

e <hl1>to <h6> tag - DefinesHTML headings

86

Introduction to the UIF

e tag - Defines an image
» <label> tag - Defines alabel for an input element

As we see by the tag descriptions, these tags and others like them generate some content that is visible
to the user. The components that represent these tags (or will render these tags) are known as Content
Elements. The following is a mapping of the above tags to its UIF component:

e <a>- ActionLink

<button> - ActionButton

<h1> to <h6> - Header

e - Image

* <label> - Label

Controls

A special type of content element is one that allows the user to provide data input. These elements are
known as Form Elements or Controls. Controls are only valid within an HTML form which will collect
the data and post to a configured server location. Controls come in different types that determine how the
user can provide data. Some HTML control examples are as follows:

* <input> - acontrol that allowsthe user to input data by typing the value. Several different types of input
controls are provided which are configured by using the type attribute. Some available types include
‘checkbox’, ‘file’, ‘hidden’, ‘image’, ‘radio’, ‘submit’, and ‘text’.

o <textarea> - aspecia type of input that renders a multi-line text input
» <select> - acontrol that allows the user to select avalue from alist of options

Within the UIF, these types of components are also known as controls. Unlike the previous content
elements, there is not a one-to-one mapping between the tag and control component. Instead, the UIF
provides a component for each input type. Some examples include:

* <input type="text"> - TextControl

* <input type="file"> - FileControl

* <input type="checkbox"> - CheckboxControl
+ <textarea> - TextAreaControl

» <sglect> - SelectControl

Controls all implement the org.kuali.rice.krad.uif.control.Control interface, which has the base class
org.kuali.rice.krad.uif.control.Control Base.

Fields

Besides the various content elements HTML provides us, we also can use tags that allow us to group
content for layout purposes. One such element is the span. The span element defines a section of the
document and includes one or more content elements. Essentially, it is awrapper for other elements.

87

Introduction to the UIF

Spansarevery important for layout purposes. They giveustheability to put together morethan one element
and have it treated as a ‘block’ in the layout being employed. A good example of thisisthe pairing of a
label and control, where the label should appear above the control. If we wanted several of these pairings
to aligninahorizontal row, we would need to resort to atable. Wrapping each pairing in a span, however,
tells the browser these elements work together and should take up one place in the layout. Furthermore,
the default display property for span elementsisinline, so additional spanswill align in ahorizontal row.

Inthe UIF, these span wrappersareknown asFields. Thereare several different Field components provided
which have preset content elements, therefore, you don’t have to do the work of composing a content
element with a Field. Some examplesinclude:

* InputField — Field that contains a control, information text, and several other elements
» ActionField — Field that contains an action button or action link
e LinkField — Field that containsalink

In addition to wrapping content elements, the Field component also provides a label. This is a label for
the span contents, and its placement is configurable.

All Fields implement the org.kuali.ricekrad.uif.field.Field interface, which has the base class
org.kuali.rice.krad.uif field.FieldBase.

Containers

So far in this section, we learned about the basic HTML content elements and the span wrapper. We could
write a page with these elements, and the browser would render it based on the order of these elements
and their styling. However, in many cases we want to form larger groupings with their own layouts. For
this, HTML provides the div element.

The div element is similar to span in that it wraps elements. However, div elements are generally used to
divide larger sections of the page and can include content elements, along with the span element. The UIF
generates the div element using the G- oup component.

Thegroup component isan implementation of amoregeneral type of UIF component named Cont ai ner .
The main job of container componentsisto hold a configured list of components and render them using a
layout. A container isdivided into three parts: the header, the body, and the footer. Generally, these appear
in the user interface as show by the figure below:

Figure5.2. KRAD Containter Parts

Container Parts

Header

Body.
(Container Items)

Footer.

Besides the group component, another type of container isaView. Views do many thingsin the framework
that will be discussed throughout this manual, including the container duty. A view instance actually
contains all other components of an interface. That is, aview is at the root of the component tree and is
not contained within any other component. In addition, the container items we configure for a view must
be groups (conceptually known as ‘ Pages').

Containers may restrict the types of componentsthey can hold. For example, KRAD providesaLinkGroup
which is atype of group that only allows link components to be configured. Generally, these containers
restrict the components they can hold so that they can provide more specialized properties and behavior.

88

Introduction to the UIF

Tip

How do groups differ from fields? A field produces a span that wraps content elements, and a
group produces adiv element that wraps both content and span elements. They seem very similar!
Theimportant differenceisafield isapreset composition of elementswith a preset layout, while
the group component and itslayout can be configured. It ishelpful to think of thefield components
as our palette to choose from, and the group component as our canvas!

Widgets

Today we havethe ability to do alot morein our web applications, beyond using thebasic HTML elements.
With the use of JavaScript and frameworks such as jQuery, we can have features such as menus, tabs,
trees, and dialogs in our user interface. These features are achieved by composing the HTML elements
with script. Within the UIF, components that generate such content are known as Widgets.

Tip

Widget Templates: Although the majority of delivered widgets use jQuery, a widget template
may invoke any script method or make use of other frameworks.

Thisisacomponent typethat hasalot of variety. However, the commonality iswetypically create widgets
not by rendering HTML elements and attributes, but instead by invoking script. To be more specific, most
widget templates invoke ajQuery plugin passing in parameters from the templateOptions map.

We can also think of widgets as client side components. Unlike the other UIF components that generate
their HTML markup server side, widgets generate content on the client during page load. Widgets are
explained further in Chapter 8.

Composition and Containers

Just as HTML elements can be composed, so can the UIF components. These compositions can be fixed
based on the property type, or variable. For example, the LinkField is a fixed composition of a Link
component with the Field component:

public class LinkField extends Fiel dBase {

private Link link;

An example of a variable composition is the Group container with the items list that can accept any
component:

public class G oup extends ConponentBase {

private List<Conponent> itens;

Althoughit is possibleto have any composition of components between the varioustypes, there are certain
guidelines:

* Fixed Composition
« All components can be composed of groups, fields, elements, and widgets
* Input fields can be composed of controls

» Variable Composition (Container)

89

Introduction to the UIF

* Viewsaretop level components and may not be contained in other components
« A View can contain one or more groups

< A Group can contain one or more groups, one or more fields, and one or more content elements with
the exception of controls

e Groups and views may NOT contain widgets

¢ Groups and views may NOT contain controls

The below figure depicts the composition of components.

Figure5.3. KRAD Component Hierarchy

Component Hierarchy

The UIF contains groupings of components that have similar properties and behavior
Each component grouping has an interface and base class

Content elements are components that generate an html content element

A control isaspecia type of element component that allows the user to provide data input
A field is a component that wraps one or more content elementsin adiv

Fields have an associated |abel

A container is a component that holds other components and applies a layout

A container is divided into three parts: header, body, and footer

A group is atype of container that generates adiv and lays out its components using a layout manager
A view isthe top most component and, among many things, holds groups known as pages
A widget is a component that invokes a script to create the Ul elements client side
Widgets are typically implemented using jQuery

Components may be composed with components of other types

UIF Constants

Besides the component classes, the UIF contains other services and utility classes that are helpful to be
aware of. One of these is the UifConstants class. This contains constants that are used throughout the

90

Introduction to the UIF

UIF. Some of these are constants that represent configuration options, while others are used by the code.
For those that can be used for configuration, the constant can be referenced using an expression and the
‘UifConstants’ variable. For example @{ #UifConstants.Placement.LEFT} referstothe LEFT enum value
in the UifConstants class.

Posi t i on —ThePosition enumhasvaluesBOTTOM, LEFT, RIGHT, and TOP. Thisisused to configure
where an element should be placed in relation to another. One use of thisis for the field label. We can
choose to put the label to the left of the contained field element, on top, to the right, or on the bottom.

Oientati on — The Orientation enum has values HORIZONTAL and VERTICAL. This is used
primarily by the Box layout manager to configure whether the elements should be aligned in a horizontal
or vertical row.

Vi ew Type —The View Type enum givesthe available types of view. A View Type (discussed in 13) is
a subclass of the View or FormView components that provides specialized behavior. The out of the box
view types are DEFAULT, DOCUMENT, INQUIRY, LOOKUP, MAINTENANCE, and INCIDENT.

Control Type — The Control Type enum gives the available controls and is used primarily when
creating components through code.

Wor kf | ow Acti on — The Workflow Action enum gives available workflow document actions and
is used primarily within the Document controllers. Values are SAVE, ROUTE, BLANKETAPPROVE,
APPROVE, DISAPPROVE, CANCEL, FYI, and ACKNOWLEDGE.

Met hod To Call Nanmes —Thisisan inner constants class that specifies the name of methodToCall
parameter values (which map to controller names).

Acti on Event s —Thisisan inner constants class that specifies action event names. Action events are
away of grouping types of actions that can then be used for logic or authorization. An example action
event is“addLine”.

Id Suffixes —Thisisan inner constants class that declares id suffixes that are used throughout the
framework.

Vi ew Phases — This is an inner constants class that names the three view phases. INITIALIZE,
APPLY_MODEL, and FINALIZE.

Vi ew St atus — Thisisan inner constants class that names the three view states: C (CREATED), |
(INITIALIZED), and F (FINAL).

Cont ext Vari abl es Nanes —Thisisaninner constants class that holds the namesfor variables that
can be used in expressions. These variables are listed in Appendix E.

Refresh Cal | er Types —Thisisaninner constants class that holds names of refresh callers. These
can be used in return methods to determine what type of view called the refresh. Values are LOOKUP,
MULTI_VALUE_LOOKUP, and QUESTION.

EL Pl acehol der Prefix and Suffi x —These constants specify the placeholders that indicate
an expression in the XML.

Bi ndi ng Prefi xes —These constants specify prefixesthat can be used within expressionsfor binding
paths. Options are covered in Chapter 10.

Other Constant Files - In addition to Uif Constants, there are the following constant files:

e CssConstants — Constants for CSS strings

91

Introduction to the UIF

UifParameters — Constants for request parameter names. Some examples include methodToCall,
formKey, viewld, and pageld.

UifPropertyPaths — Constants for property binding paths.

KRADConstants— General constants for the KRAD module. These constants can bereferenced in XML
by using the Constants variable.

UifConstants provides enums and constant classes for configuration and code strings

UifParameters contains constants for request parameter names

KradConstants provides constants for the KRAD module

UifConstants can be referenced in XML by wusing the UifConstants variable

(@{#UifConstants.constantname}), likewise KradConstants can be referenced using the Constants
variable (@{ Constants.constantname}).

UIF Bean Files

Aswe learned in the UIF overview, each component has at |east one base Spring bean definition and in
many cases has more than one. KRAD ships with several base beans that are divided into files for better
management and easier browsing. All of these ‘base bean’ files are located in the resource folder (src/
main/resources) of the KRAD web module. Within the resources folder they are contained in the package
org.kuali.rice.krad.uif. The below screen shot shows this package in the Intellij project pane.

Figure 5.4. KRAD Intéllij Project Pane

skrad [rice-krad]

1k [rice-krad-app-framework]

1k [rice-krad-web-framework]

......

UIF Configuration Definitions

This file contains bean definitions that are related to component configuration. That is, the beans don’t
represent components, but classes that are used to configure a component. Some examples include
component modifiers, history, binding info, and filters.

92

Introduction to the UIF

UIF Control Definitions

This file contains bean definitions for control components. Examples include TextControl,
CheckboxControl, FileControl, and the SelectControl.

UIF Document Definitions

Thisfile contains bean definitions that are related to the Document view type. Thisincludes the Document
View bean, common document group and field beans.

UIF Field Definitions

This file contains bean definitions for the various field components. Examples include DataField,
InputField, ActionField, and ImageField.

UIF Group Definitions
This file contains bean definitions for the various group components. Multiple bean definitions
are provided for the group component that configure different layout managers. Examples include
Vertical BoxGroup and Horizontal BoxGroup. In addition, bean definitions exist for the group level (page,

section, and sub-section). Finally beans exist for the disclosure option and special types of groups like
the TreeGroup.

UIF Header Footer Definitions

Thisfile contains bean definitionsfor header and footer groups. Headers and footers are defined for various
group levels (page, section, and sub-section), along with collection groups. Finally the basic hl through
h6 header components are defined.

UIF Incident Report Definitions

This file contains bean definitions that are related to the incident report view.

UIF Inquiry Definitions

This file contains bean definitions that are related to the Inquiry view. This includes the Inquiry View
bean, and definitions for inquiry groups.

UIF Layout Managers Definitions

Thisfile contains bean definitions for the provided layout managers. In addition, common layout manager
configurations are provided as separate beans.

UIF Lookup Definitions

This file contains bean definitions for the Lookup view. This includes the Lookup View bean, and
definitions for lookup groups.

UIF Maintenance Definitions

This file contains bean definitions for the Maintenance view. This includes the Maintenance View bean,
and definitions for the maintenance groups.

93

Introduction to the UIF

UIF Rice Definitions

This file contains bean definitions for other Rice modules. Examples include the KIM person and KIM
Group controls.

UIF View Page Definitions

This file contains bean definitions for the various view and page components. This includes the default
View, Form View, and Page beans. Also included is the configuration for the base theme.

UIF Widget Definitions

This file contains bean definitions for the various widget components. Examples include DatePicker,
Lightbox, Breadcrumbs, and Tree.

Note that afull listing of beans contained in the above filesis given in Appendix A.

Recap

» The UIF provides several bean definitions that are divided into files based on type

Styling and themes

KRAD doesn’t stop with just rendering the HTML markup, but also provides CSS to make your web
applications look great! With the 2.0 release, you can choose to use one of two |ook-and—feels (known as
Thenes). Each theme has been created with default styling for all the delivered components. However, if
you wish to change styling or create new components, all the hooks are provided for doing so. This section
will explore the themes and how custom styling can be added.

View Theme

The UIF provides the class org.kuali.rice.krad.uif.view.ViewTheme which contains a list of style sheet
and script file paths. The ViewThemeisthen set asaproperty of the View and its corresponding properties
arereferenced when rendering the HTML CSSand Script links. Thus, it providesthe base theme (or ‘ Look
and Fedl’) for our page.

In XML, view themes can be created using the ‘ Uif-ViewTheme' bean:

<bean id="Ui f-MThenme" parent="U f-Vi ewThene">
<property name="styl esheets">
<list>
<val ue>/ css/ ny. css</ val ue>

</list>
</ property>
<property name="j sFil es">
<list>
<val ue>/script/ny.js</val ue>

</list>
</ property>
</ bean>

The 2.0 version of KRAD comes with two themes that can be used. The first of these is based on the
previous KNS devel opment framework and aimsto achieve the samelook. Themain reason for devel oping
this theme is so that existing application screens can be converted to KRAD while some remain in the

94

Introduction to the UIF

KNS. The look and feel was updated to not use images (including the buttons); it also has various other
improvements that allow for easier visual treatment (for instance changing the color scheme).

The second theme is based on the Kuali Student open look with modifications for KRAD. By
default, this is the theme configured in the base view definition. Both themes are defined in
Ui f Vi emPageDefinitions. xm .

Tip

Planned Feature: Dense Theme - For the 2.2 release, anew theme will be devel oped for KRAD
that will be the replacement for the KNS (legacy) theme.

Modifying Themes

Themescan easily be modified on an application basis, view basis, or component basis. There aretwo ways
to modify atheme. First, we can create additional style sheets and script files that are included with our
views. Thesefiles may set anywhere within the application web directory, or they can be accessed through
adifferent web server. To add the additional files, we use the additional CssFiles and additi onal ScriptFiles
properties on the view component:

<bean i d="MWVi ew' parent="U f-FornVi ew >

<property name="addi ti onal CssFil es”>

<list>
<val ue>/ css/ nmyVi ew. css<val ue> <val ue>http://server.com css/ nmyVi ew. css</val ue>
</list>

</ property>
<property name="additional ScriptFiles”>
<list>
<val ue>/ script/nyVi ew. j s</ val ue>
<val ue>http://server.com script/nyVi ew. js</val ue>
</list>
</ property>
</ bean>

Using bean inheritance, we can setup anew base view with the additional CSS and/or script filesthat other
viewsinherit. Furthermore, individual views can add files as needed.

Within the additional style sheets, we can override the provided style classes (see ‘Base Styles and
Conventions'), or add new style classes. For example, we might want to add a new style classto al input
fields, or buttons, or a new component we have devel oped. Once we have defined the style class, we must
then associate it with a component. We can do this by using the styleClasses property.

The styleClasses property is provided for all components, and holds a list of class names that should be
applied for that component. We can configure this property using the Spring list tag:

<bean i d="MActionButton" parent="Uif-PrimaryActi onButton">

<property name="styl eCl asses">
<list merge="true">
<val ue>cust ont yl e ass<val ue>
</list>
</ property>
</ bean>

Recall that in order to inherit collection configuration from a parent bean, we must using the Spring tags

and add merge="true". It is recommended that the default style classes aways be inherited.

The configured styleClasses are then specified as the class attribute on the rendered HTML element:

<button id="MActionButton" class="uif-primryActi onButton custontStyleCass" ... />

Notice the uif-primaryActionButton class. This was inherited from the Uif-PrimaryActionButton bean.

95

Introduction to the UIF

The second way to modify themesisby providinginlinestylinginformation. Thisisaccomplished by using
the style property that is available on all components. This property is then used to set the corresponding
style attribute on the rendered HTML element (known as inline styling).

<bean parent="Ui f- BoxG oupSecti on" p:style="border: 1px;">

Base Styles and Conventions

All of the provided components have astyle class configured by default. These style classes are configured
in the base bean definition(s) for the component. Similar to the naming convention employed for the bean
ids (starting with ‘Uif-*), the class names all begin with ‘uif-‘. After the prefix, the class names closely
match the bean name (with the exception of casing). As an example let's look at a few of the provided
action definitions:

<bean id="Uif-Actionlmage" ...
<property name="styl eCl asses">
<list merge="true">
<val ue>ui f - acti onl mage</ val ue>
</list>
</ property>

<bean id="Uif-PrimaryActi onButton" ...
<property name="styl eCl asses">
<list merge="true">
<val ue>ui f - pri mar yActi onBut t on</ val ue>
</list>
</ property>

<bean i d="Uif-SecondaryActi onButton" ...
<property name="styl eCl asses">
<list nmerge="true">
<val ue>ui f - secondar yAct i onBut t on</ val ue>
</list>
</ property>

<bean id="Uif-ActionLink" ...
<property name="styl eCl asses">
<list merge="true">
<val ue>ui f - acti onLi nk</ val ue>
</list>
</ property>

Notice the style class configured for each bean.

In addition to providing the style class per component, the base beans are al so setup to inherit classes from
the parent (with the merge="true"). A good example of thisis the stacked collection group section:

<bean id="Uif-StackedCol | ecti onSecti on" parent="Ui f-StackedCol | ecti onG oup" >
<property name="styl eCl asses">
<list merge="true">
<val ue>ui f - st ackedCol | ecti onSecti on</ val ue>
</list>
</ property>

As in the previous examples, we are applying a style class for the component named ‘uif-
stackedCollectionSection’. Now, let's walk up the bean hierarchy and look at the style classes we are
adding:

<bean id="Uif- StackedCol | ecti onG oup" parent="Uif-Col | ecti onG oupBase" >
<property name="styl ed asses">
<list nmerge="true">
<val ue>ui f - st ackedCol | ecti onG oup</ val ue>
</list>
</ property>

<bean id="Uif-Col | ecti onG oupBase" parent="Uif-G oupBase"/>
<property name="styl ed asses">
<list merge="true">
<val ue>ui f-col | ecti onG oup</ val ue>

96

Introduction to the UIF

</list>
</ property>

<bean i d="Uif- G oupBase">
<property name="styl eCl asses">

<list>
<val ue>ui f - gr oup</ val ue>
</list>

</ property>

So we can see the combined list of style classes applied will be *uif-group uif-collectionGroup uif-
stackedCollectionGroup uif-stackedCollectionSection’. This gives us a tremendous amount of flexibility
for styling, sincewe have many levelsat which to define styling. We can configure styling that appliesto al
groups (uif-group), then all collection groups (uif-collectionGroup), then al collection groupsthat havethe
stacked layout (uif-stackedCollectionGroup) and finally all collection groups with stacked layoutsthat are
rendered at the section level (uif-stackedCollectionSection). At each level, we can add or modify styling.

Suppose we had declared the following styles in our CSSfile:

ui f-group {
paddi ng : 10px;
margin : 10px;

}

ui f-collectionGoup {
paddi ng : 20px;
}

ui f-stackedCol | ecti onG oup {
border : 1px;
}

The applied styling for the generated element will then have a padding 20px, margin 10px, and border 1px.
Tip

Do we need all these style classes? As you have likely determined by now, there are a lot of
these bean definitions provided by KRAD, and therefore that means there are many style classes
applied. Many of these style classes do not have a corresponding definition within the CSSfiles.
However, they are provided to give greater flexibility for custom CSS. For example, suppose the
default theme did not add styling for action link. Therefore, a style class was not declared in the
bean. Now a KRAD application wishes to add styling for action links. They would first need
to override the bean definition to add the class for the component. Instead with it already being
provided, they can just add the declaration in their custom style sheets without any modifications
to the application code!

Fluid Skinning System

KRAD also comes bundled with the Fluid Skinning System (http://www.fluidproject.org/ [http://
www.fluidproject.org/]). The skinning system contains a set of CSSfiles with classes that can be used for
styling and layout. For example, there are many useful classes for text styling (size, color). Any of these
may be used by adding the class name in the styleClasses property. More information on using Fluid for
CSS layouts will be covered in Chapter 7.

Recap

» A base set of CSS and script filesis configured in a view theme object, which is then set on the view
component

* KRAD provides two themes in the 2.0 release. One is alegacy theme based on the KNS framework.
The second is a new theme based on the KNS open look and feel

97

http://www.fluidproject.org/
http://www.fluidproject.org/
http://www.fluidproject.org/

Introduction to the UIF

Additional CSS and script files can be added to the view using the additionalCssFiles and
additional ScriptFiles properties

A list of style classes that should be applied are configured on the component using the styleClasses
property

Inline styles can be declared for a component using the style property
Each UIF base bean has a style class configured by default. Each class name begins with * UIF-*
Style classes are inherited by parent bean definitions resulting in multiple applied classes

The multiple style classes provide flexibility to configure styling at different levels (corresponding to
the bean inheritance)

KRAD includes the fluid skinning system which can be used for additional styling needs and CSS
layouts

KRAD Spring Extensions

KRAD implements afew extensionsto the Spring configuration system that allow for easier configuration

of

collections and more flexibility on merging. As we saw in Chapter 1, configuring collections requires

the use of specia Spring tags. These additional tags add alot to the overall verboseness of the XML, and
the time spent writing it. KRAD helps with this problem by allowing List and Map values to be specified
as a string using established delimiters.

For populating a list with a single string value the individual entries are delimited using a comma. For
example:

p:listProperty="itentl,iten®,itenB"

or

<property name="listProperty" value="itenl,iten®2,itenB8"/>

isequivalent to:

<property name="listProperty">

<list>

<val ue>i t eml</ val ue>
<val ue>i t en2</ val ue>
<val ue>i t en8</ val ue>

</list>
</ property>

As a consequence of using the comma delimiters, list entries that contain a comma may not use the
shorthand configuration, but must instead using the Spring list tag.

Maps can aso be populated using the shorthand string configuration. Similar to a list, each entry is
delimited by a comma. For each entry, the key and value parts are separated using a colon. For example:

p: mapProperty="keyl: val uel, key2: val ue2, key3: val ue3"

or

<property name="mapProperty" val ue="keyl:val uel, key2: val ue2, key3: val ue3" />

is equivaent to:

<property name="mapProperty">

<map>

<entry key="keyl" val ue="val uel"/>

98

Introduction to the UIF

<entry key="key2" val ue="val ue2"/>
<entry key="key3" val ue="val ue3"/>

</ map>
</ property>

If any of the map keys or values contains a comma or colon, we must use the Map tag instead of the
shorthand configuration.

When using the shorthand notation, two other limitations should be understood. Thefirst isthat when this
isused on achild bean, any entries specified on aparent bean will be overridden. That is, thisislikeleaving
the merge attribute of the collection tag, or specifying merge="false". Therefore, when entries need to be
merged with the parent bean definition, the Spring collection tags must be used.

The second limitation is with generics (Java 1.5). When populating a collection, Spring will read
generic information to determine how to convert the configured value. For example, suppose we had a
List<Integer> property type. Spring will then attempt to convert each list value to an Integer type. When
using the shorthand string configuration, no type conversion on the entries is performed. Therefore, only
collections of string type are supported (for example List<String> or just List).

Tip

Property Value Type Conversion: The shorthand configuration being described here was
implemented using a feature of Spring that allows us to specify PropertyEditor classes that can
be used to convert values configured in the XML. A PropertyEditor is a core Java interface that
isinvoked to convert a value of one type to another type. Two property editor implementations
were created and configured with the bean container. The first converting a String to List, and
the second converting a String to Map. Property editors are also used to provide formatting of
valuesin the Ul. Thiswill be discussed in Chapter 6.

Merge Ordering

When inheriting configuration from a parent bean definition (using the parent attribute), we can merge
collection entries from the child to parent definition by adding merge="true” to the collection tag. Spring
performsthe merging by adding the entries on the child definition to the end of the entries of the parent. For
example, if our parent bean specifiesentries‘iteml’ and ‘item4’, then the child specifiesitems‘item3’ and
‘item5’, theresulting collection will have entrieswith thefollowing order: ‘item1’, item4’ " item3’," item5’.
In the majority of cases this is fine. However, when the order of items within the collection make a
functional difference, only being able to merge entries at the end of the collection can be a hindrance.

Within the UIF, many collections do represent a case where the order matters. One example is the Group
component which has alist of component items and a Layout Manager. These items will be rendered on
the page based on the order in which they appear in the collection.

Therefore a property named ‘order’ was added to all components (ComponentBase) that can be used to
declare where the component should be placed in the collection when merging.

To make use of this functionality, we must first setup the collection items in the base bean to have an
order value:

<bean i d="M/Page" parent="Uif-Page">

<property name="itens">
<list>

<bean i d="Sectionl" parent="Uif-GidSection" p:order="100">
<bean i d="Section2" parent="Uif-GidSection" p:order="200">
<bean id="Section3" parent="Uif-GidSection" p:order="300">

</list>
</ property>
<property name="itenmOr deri ngSequence" val ue="101"/>

99

Introduction to the UIF

Notice a couple of things here. First, the order was specified for each item such that there is a range of
integers that fall between each (<100, 100-200, 200-300, >300). The second is the property value of 101
for itemOrderingSequence.

Now, let's assume we want to create a page that extends from ‘MyPage’. For our page, we need to add
two sections. However, when these sections are rendered, the first section should be between ‘ Sectionl’
and ‘ Section2’, and our second section should be after * Section3’. This can be done as follows:
<bean i d="Anot her Page" parent="MPage">
<pr operty nanme="items">
<list merge="true">

<bean id="Section4" parent="Uif-GidSection">
<bean i d="Section5" parent="Uif-GidSection" p:order="320">

</list>
</ property>

That's it! So what happened? First, we need to understand the rules of merging when the order property
isgiven:

1. If acomponent item does not have an order value, it will be assigned a value starting with the specified
itemOrderingSequence. This sequence gets incremented by one each time it is used to assign an order
value.

2. The combined collection of itemsisthen sorted by ascending order values.

3. If an item from the child bean has the same order as an item from the parent bean, it will replace that
item.

Applying these rules to our example we see that * Section4d’ will get an assigned order value or *101’, thus
it will be placed between * Section1’ and * Section2’ which have order values of 100 and 200 respectively.
Finally * Section5’ will be placed after ‘ Section3’ since it has an order of 320 which is greater than 300.
Thefinal ordering is‘ Sectionl, Section4, Section2, Section3, Section5’.

Recap

» KRAD provides extensions to spring that allow for easier configuration of collections and more
flexibility

 List and map property values can be specified using a string value

* For lists, each entry is delimited using a comma

 For maps, each entry is delimited using a comma, with each key/value pair delimited using a colon
» Shorthand string configuration cannot be used if merging is required

» Shorthand string configuration cannot be used if list or map entry types are non-string

 For lists of components, the order property can be given to control where in the merged list the
component will be placed

» Component itemsfrom a parent bean can be overridden with achild item by using the same order value

100

Chapter 6. Fields and Content
Elements

Throughout the next few chapters, we will be taking a detailed look at the component types and the
individual components available out of the box with KRAD. We will start small and work our way up
to the entire view. By the end of this section, you will be armed with knowledge you can use to create a
wide variety of rich web interfaces!

In this chapter, we will look at the Content Element and Field component types. These form the palette
from which we can paint our page. Content elements are componentsthat will generate an HTML element
tag. Their properties are generally used to populate an available attribute of the HMTL tag. Therefore, if
you are familiar with the base set of HTML tag, learning these components should be no problem!

The Field component typeis awrapper. It is associated with the HTML span tag that allows us to enclose
one or more elements, and treat them as one unit for layout purposes. The field also allows us to declare
alabel which will be presented with the field block. For convenience, KRAD includes field components
that have present elements included. This allows for easy bundling in a group and applying a layout to
the set of fields. If a span is not needed, the elements can be directly configured in a group and rendered
using the configured layout manager.

So to learn more about what we can do with elements and fields, let's take alook at each component we
have in these types.

Field Labels

One commonly used content element we have is the Label component. As you might have guessed, this
component will render an HTML Label element. To create a new label component, we create a new bean
with parent="Uif-Label":

<bean parent="Uif-Label" ... >
Thelabel component isone of the simplest to use, sincethere arefew propertieswhichit accepts. However,

thereis one required property —the label text! Thisis the actual text that will appear on the screen as the
label. To specify this, we can use the label Text property:

<bean parent="Uif-Label" p:|abel Text="Book Title"/>

In most cases, thisis all we need to do! The resulting HTML will ook like the following:

<l abel id="66_| abel ">Field Label </I| abel >

Wait, where did the id come from? Recall that all components extend ComponentBase which provides
several properties for us, including the id property. If not specified, the framework will generate an id
for us automatically and use it for the element id attribute. We can specify a different id in either of the
following two ways:

<bean id="nyl abel " parent="U f-Label " p:|abel Text="Book Title"/>
<bean parent="Uif-Label" p:id="nyl abel" p:|abel Text="Book Title"/>

In addition to the id property provided by ComponentBase, there are many others we might want to use.
Some that might be useful for the label component include title, style, and styleClasses.

When generating a labdl, it is a best practice (for accessibility reasons) to also specify the for attribute.
The value for this attribute is the id of the element for which the label applies. On the label component,
we can configure this value using the |abel ForComponentld property:

101

Fields and Content Elements

<bean parent="Uif-Label" p:|abel Text="Book Title" p:|abel For Conponent|d="bookTitle"/>

However, thisis usually not necessary. Instead of creating the label component directly, we can let the
field component create one for us. The field component provides some assistance to us for configuring
the label and associating it with a component. To understand this, first let's ook at the generic FieldBase
class from which al fields extend:

public class Fiel dBase extends ConponentBase inplenents Field {
private Label fieldLabel;

}

We see the field base encapsulates alabel component. Thus when creating a field component we can set
the label component properties using the spring nested syntax (dot notation)

<bean parent="Uif-DataField" p:fieldLabel.|abel Text="My Data Field" ... >

Since the label is bundled within the field which is a wrapper for another component, the
label ForComponentld property will be automatically set (to the id of that wrapped component).

The Field component also provides a more convenient way of setting the label text. Instead of using the
nested notation of 'fieldLabel.label Text', we can simply set the 'label’ property:

<bean parent="Uif-DataField" p:label="My Data Field" ... >

The given value will then be set on the label property of the nested label component.

Other Label Options

In addition to the properties described previously, the label component offers the following properties:

r ender Col on —Thisindicates whether a colon should be rendered after the label text. For example, the
label text of 'Foo' will result in 'Foo:' being rendered.

requi r edMessage — Thisis amessage component that will be rendered with the labdl to indicate that
the element associated with the label (generally a contral) is required. By default, the message text is
configured to be ™" but can be changed on a global or case by case basis:

<bean parent="Uif-DataField" p:label="M Data Field" p:label.requiredMessage="required"/>

Like all components, the required message will be displayed if its render property is true. Therefore we
can set the required message to not display as follows:

<bean parent="Uif-DataFi el d" p:|abel ="My Data Field" p:|abel.requiredMessage.render="fal se"/>

However, we typically want to display the required message when the component the label is associated
withisrequired. Thisisagain whereour Field component providesvalue. Thefield will look at therequired
property (on all components) of thewrapped component, and, if set to true, will then set therender property
to true for the label's required message. Likewise, if the component's required property isfalse, the render
property on the required message will be set to false. Therefore these two properties are synced.

Automatic Setting of Properties?

In this section we have mentioned a few cases where the field component will automatically set
values for us based on a condition. Where does this happen? Well in code of course! Besides
simply holding the property values for us, the component class can also perform logic which are
invoked during the view lifecycle. Therefore, if we wanted to change the component behavior,
we would need to create a new class and then override the base bean definition as described.

requi r edMessagePl acenent —Alongwith therequired message, thelabel component also provides
a required message placement option. This indicates where the required message should be rendered in

102

Fields and Content Elements

relation to the label text. The type for this property is org.kuali.rice.krad.uif.UifConstants.Position, which
isan enum for the four possible positions (LEFT, TOP, RIGHT, BOTTOM). However, in the case of the
required message, only the LEFT and RIGHT positions are supported.

Other Field Label Options

Thefield also provides some additional properties that related to the label. These are:

| abel Pl acement — Similar to the requiredM essagePlacement of the label component, this property
is of type Position. It indicates where the label should be placed in relation to the other field content (the
wrapped component(s)). The LEFT, TOP, or RIGHT position may be specified:

<bean parent="Uif-DataFi el d* p:|abel ="My Data Field" p:|abel Pl acement =" LEFT"/ >
<bean parent="Uif-DataField" p:label ="My Data Field" p:label Pl acement="TOP"/>

<bean parent="Uif-DataFi el d* p:|abel ="My Data Field" p:|abel Pl acement="RI GHT"/ >

These three configurations are shown in the figure below.

Figure 6.1. labelPlacement Options

LeftField Label
Top Field Label

Right Field Label

short Label —Onthefield component, we can also configure an aternate 'short’ label. When necessary,
the short label can be pulled instead of the standard 'long’ label. For example, the table layout manager in
KRAD will use the short label for the table headers.

<bean parent="Uif-DataField" p:label="My Data Field" p:shortLabel ="My Fld"/>

Base Beans

With the various configuration options such as what to render and where, it can overwhelming. We
certainly do not want to think through each setting for every field we create. To help with this, base beans
are provided sensible defaults based on the label placement. These beans exist for the data field and input
field (two most commonly used fields).

Uif-DataField — Default which sets label placement to left, render colon as true, and required message
placement to right

Uif-DataField-Label Top — Sets label placement as top, render colon as false, and required message
placement to right

Uif-DataField-LabelRight — Sets label placement to right, render colon as false, and required message
placement to | eft

Similar beans exist for the Uif-InputField. To use one of the label configurations, we simply change our
parent bean:

<bean parent="Uif - Dat aFi el d- Label Top" p: | abel Text="My Data Field" />

Recap

» Thelink content element component renders an html label tag

» Thetext for the label is specified using the |l abel Text property

103

Fields and Content Elements

e Thel abel For Conponent | d property on alabel specifies the component id the label is associated
with

* Generally we don't need to create label components ourselves, but instead configure them through a
field component

« Labelscan aso include arequired message that indicates the field associated with the label hasrequired
input

» Thefield component will automatically set the for property on the label, along with setting the required
message field component's render flag to true if the field isrequired

» On the label component we can specify whether a colon should be added with the r ender Col on
Boolean

* On the label component we can also specify whether the required message appears to the left or right
of thelabel using ther equi r edMessagePl acenent property

» Thefield component allows us to specify where the label is placed in relation to the field contents. The
options are left, top, or right

» The field component allows us to specify a short label that can be used instead of the 'long' l1abel by
some layout managers (for example the table layout manager)

» Base beans are provided for data and input fields that have different configurations for a label. The
render colon and requirement message placement properties are set based on the label placement

Data Fields and Input Fields

Two fields that are used often in enterprise applications are the DataField and InputField. Generally,
enterprise applications have alarge amount of datainput and output. ThislO isperformed using an HTML
Form. The properties that back the form (provide and accept the data) are stored on a model. For our
purposes now, we can think of the model as a simple JavaBean (more information will be given in the
section 'Data Binding'). When we need to display one of these properties using KRAD, we configure a
DataField or InputField.

Data Field

A DataField isused to display aproperty value from the model asread-only. When we say read-only, this
means the value is displayed as static text on the page and the user cannot change its value. To create a
data field we specify a new bean with parent="Uif-DataField":

<bean parent="Uif-DataField" ... >

When configuring adatafield for our view, wemust associateit with aproperty on themodel object. Thisis
accomplished using the propertyName property. For example, suppose we had the following model object:

public class BookForm {
private String bookld;
private String bookTitle;
/'l getters/setters

}

To create adatafield for the bookld property, our configuration would be as follows:

<bean parent="Uif-DataField" p:propertyName="bookld" p:label="Book"/>

104

Fields and Content Elements

Recall from the previous section that our datafield includes alabel element and, by default, is configured
to be placed to the left of the field content. Therefore, the result of this will appear asin the figure below.

Figure6.2. Data Field L abel

Book: 3

The given property name can be a nested path. For an example of this, suppose now our model is the
following:

public class BookForm {
private Book book;

/1 getters/setters

}

public class Book {
private String bookld;
private String bookTitle;
}

To display the bookld now, our property name should be "book.bookld". This is the same as doing
getBook().getBookld(). More complex situations will be covered in the section 'Data Binding .

Input Field

An Input Field extends from the Data Field and gives edit capability. This means the user can change the
value for the associated property and submit it back using the HTML form. Values are edited using an
HTML control which is represented in KRAD with a Control content element. We will learn all about the
various types of controls later on in this chapter.

To create anew input field, we specify a new bean with parent="Uif-InputField":

<bean parent="Uif-InputField" ... >

Now since input field is also a data field, we must specify the property it is associated with using the
propertyName property:

<bean parent="Uif-InputFi el d" p:propertyNanme="bookl d"/>

Furthermore, since we have an input field and want to allow the user to change the value, we need to
configure acontrol component to use. We set the control component for theinput field using thecont r ol

property:

<bean parent="Ui f-InputFi el d" p:propertyName="bookl d" p:|abel ="Book |d">
<property name="control ">
<bean parent="Ui f-Text Control "/ >
</ property>

</ bean>

The control component is a new object, not a primitive. Therefore, we use a bean or ref tag to provide
the value. In this example, we are using the text control whose bean id is 'Uif-TextControl'. If needed, we
could set properties on the text control component using the p namespace or nested property tags.

In the figure below we see the result of the above input field configuration.

The rendered HTML for our input field will be the following:

<i nput id="u66" name="bookld" class="uif-control uif-textControl valid" tabindex="0" type="text" val ue=
size="30" aria-invalid="fal se">

105

Fields and Content Elements

Where did all these attributes come from? Since we didn't assign an id, the framework generated one for
us and outputted asthe element id. Next, the propertyName given for the input field was used as the name
attribute on the tag. This is important for binding the data which will be discussed in the section 'Data
Binding'. The 'Uif-TextControl' bean that was used for the control property included a default size of ‘30,
and also includes the style classes 'uif-control' and 'uif-textControl'. Finally, the framework set a tabindex
for us (this happens to be the first field on the page) and added aria markup for accessibility. Don't worry
if thisall doesn't make sense now, we'll see all these properties many more times!

Data and Input Fields

Whenever this training manual refers to adata field, the same will also apply to input fields (by
inheritance). However the reverseis not aways true.

Default Values

Through configuration of the data field, we can also initialize the backing property of the model. The
value specified will then be set as the property value when the model isinitialized. Chapter 12 will cover
how the model getsinitialized along with other concerns of the lifecycle. In terms of default values, it is
important just to know that the model gets created for a new request to a view (such as a request from
the portal or other application menu) and, once created, is reused throughout the conversation (series of
posts on the same view). Generally for initial requests we do not need to perform alot of business logic.
That is, usually we just want to display the view for the user to begin completing. Being able to set default
values that will display on the initial view is convenient in that we don't have to override the controller
method to do the same in code.

There are three properties available on a data field that allows us to configure a default value. The first
is the property 'defaultValue', which takes the actual value to use. For example, suppose we want to set a
default value of '2012' for the bookY ear property. Thiswould be done as follows:

<bean parent="Uif-DataFi el d" p: propertyName="bookYear" p:defaul tVal ue="2012"/>

Thisis equivaent to code;

bookFor m set BookYear ("2012");
The default value given must be convertible to the property type without a custom property editor.

A very powerful feature we will be looking at later on in this training manual is the Spring Expression
Language (EL). KRAD allows you to use expressions for most component properties, including the
defaultVaue. There are many things you can do with EL, but to give you ataste here are a couple:

<bean parent="Uif - Dat aFi el d" p: propertyName="bookYear" p:defaultVal ue="@?2010 + 2}"/>
<bean parent="Uif-DataFi el d" p: propertyName="bookYear" p: defaul tVal ue="@bookld < 1000 ? 2011 : 2012}"/>

<bean parent="Uif-DataFi el d" p:propertyName="bookTitle" p:defaultVal ue="New Book for @ bookYear}"/>

The second way to configure default values is by setting the 'defaultValues property (notice the 's on
the end). This property provides the ability to set multiple default values. For example, if you wanted to
default items with values of either 2 or 3 you could add the following.
<property name="def aul t Val ues" >
<list>
<val ue>2</val ue>
<val ue>3</val ue>

</list>
</ property>

The third way to configure a default value is by setting the def aul t Val ueFi nder d ass
property. This is the full class name for the class that implements the

106

Fields and Content Elements

org. kual i .rice. krad. val uefi nder. Val ueFi nder interface. This interface is very simple
with just the one method:

public String getValue();

Implementations of this can be made to determine the default value in whatever manner necessary.
Previous to KRAD, this was helpful for retrieving the default value from a system parameter. However,
with KRAD EL, you can do thiswith the defaultValue property using the get Par mfunction.

Let's create a default value finder class that calls a service to retrieve the value. Our finder class would
be setup like:

package edu. nyedu. sanpl e;
public class BookCopyri ght Year Val ueFi nder i npl ements Val ueFi nder {
public String getValue() {
return get BookService(). get Def aul t Copyri ght Year () ;

}

Prot ect ed BookServi ce getBookService() {
Servi ceLocat or. get BookServi ce();

}
}

We would then configure the data field to use our value finder class like this:

<bean parent="Uif-DataFi el d" p:propertyName="bookYear"
p: def aul t Val ueFi nder G ass="edu. nyedu. sanpl e. BookCopyri ght Year Val ueFi nder"/ >

One additional note that should be made regarding default values is for collection group fields. Data or
Input fields declared in these groups behave differently from the standard group, in that for each collection
line that exists in the model, a new set of fields is created. When configuring a default value (by either
mechanism) for a collection field, the value is picked up each time anew lineis created (as aresult of an
add line request). Thusit is adefault value for the collection line.

Alternate and Additional Display Properties

In certain situations, it is necessary to change the display of a data or input field when it is read only.
For example, we might want to display additional information along with the value of the property, or
we might want to display a different property value. This can be accomplished using the alternate and
additional display propertiesthat are available on datafield (and thereforeinput field through inheritance).

Asisthe case throughout much of the UIF, thereis more than one way to accomplish this. Thefirst method
we can use isto directly configure the alternate or additional value that should be displayed. Thisis done
using the readOnlyDisplayReplacement and readOnlyDisplay Suffix properties respectively. For example,
instead of displaying the value for the bookld property, we want to display the string 'ld Va'":

<bean parent="Uif-InputField" p:propertyName="bookld" p:readOnl yDi spl ayRepl acenment="1d Val "/>
Thiswould result in the text 'Ild Val' being displayed (along with the field 1abel).

Now, if we decide we just want to append the'ld Val' string the actual value of the bookld property, our
configuration would then be:

<bean parent="Ui f-InputFi el d" p:propertyName="bookl d" p:readOnlyD splaySuffix="I1d Val"/>

Assuming the bookld is'3, thiswould result in the text '3 *-* Id Va' being displayed as shown below.

Figure 6.3. Data Field L abel

107

Fields and Content Elements

Where did the *-* come from? KRAD inserts this fixed delimiter between the property value
and the additional display value. Currently this can only be changed by modifying the template;
however, thiswill be customizable in the future.

This has limited benefits by itself, but as mentioned earlier, KRAD allows us to use expressions to set
avalue. With EL we can display one or more other property values, perform operations and functions,
and mix in static text!

<bean parent="Ui f-InputFi el d" p:propertyName="bookl d" p:readOnl yDi splaySuffix="with title @bookTitle}"/>

Again assuming the bookld is'3" and bookTitle is'Dogs and Cats, thiswould result in the text '3 *-* with
title Dogs and Cats' being displayed.

Often, there is a need to display another property value as the alternate or additional display value. For
example, when we have an id or code field (that generally doesn't have any meaning to the user), it is
preferred to display the name instead of the code (or in addition to it). For these cases, you can simply
configure the readOnlyDisplayReplacementPropertyName or readOnlyDisplaySuffixPropertyName
properties with the name of the property whose value should be used:

<bean parent="Uif-InputFi el d" p:propertyName="bookl d" p:readOnl yDi spl ayRepl acenment PropertyNane="bookTitle"/>

Assuming bookTitleis'Dogs and Cats), this would result in the text 'Dogs and Cats.

<bean parent="Ui f-InputFi el d" p:propertyName="bookl d" p:readOnl yDi spl aySuffi xPropertyName ="bookTitle"/>

Assuming bookld is'3' and bookTitleis'Dogs and Cats, thiswould result in thetext '3 *-* Dogsand Cats.
Alternate/Additional Display and Input Field

The aternate and additional display values are only used when the field is read-only. But an
input field allows the user to edit the value, so does it make sense to configure these properties
for an input field? The answer is yes! An input field has a readOnly property (inherited form
ComponentBase) which dictates whether the control is rendered. If there are conditions which
set this property to true, then the control will not render and the value will be displayed as text.

Additional Display Properties for List<String> fields

When afield is of type List<String> and the readOnly property is set to true, there are afew more options
that you can take advantage of to change how this datais displayed. By default thisvalueswill be output in
acommaand space (", ") separated list, but thiscan be changed withther eadOnl yLi st Di spl ayType
property of DataField (and child type InputField). The following options are allowed:

o "DELIMITED" - list will be output with delimiters between each item defined by
readOnl yLi st Del i mi t er (which can be any text or html you would like)

* "BREAK" - list will be output with breaks between each item

"OL" - list will be output in ordered list format (numbered)
o "UL" - list will be output in unordered list format (bulleted)

The following would put a dash with spaces between each item of the list:

<bean parent="Uif-InputFi el d- Label Top" p: propertyNane="fiel d120" p:|abel ="Alternate Delinmiter"
p:instructional Text =" CheckboxG oupControl using an optionsFinder" p:w dth="auto"
p: readOnl yLi st Di spl ayType="DELI M TED" p:readOnlyListDelinmiter=" - ">

108

Fields and Content Elements

The result would be something like this"Valuel - Value2 - Vaue3"

Empty list alternate readOnly display

If your List<String> field isempty, the DataField will simply display nothing asathe valuefor the
list. Inorder to display something instead, indicating that thelist is empty, you can use a SpringEL
expression with ther eadOnl yDi spl ayRepl acenment property asfollows:

p: readOnl yDi spl ayRepl acenent =" @ #enpt yLi st (fi el d115)?' No Options Selected :'"'}

Thiswould display 'No Options Selected’ when the list is empty.

Note the OR; this means that ther eadOnl yDi spl ayRepl acement property is blank when
thelist isnot empty. Thisis required because we want the list to display with the options we may
have set inr eadOnl yLi st Di spl ayType instead of an alternate replacement for when the
list does contain values. The readOnlyListDisplayType logic performs a check make sure that
readOnlyDisplayReplacement is null or blank before processing - if it was set that content would
be used instead!

The Data Field and Input Field components are used to perform data |O

These components are used within an HTML form, corresponding to the KRAD form view component
Data and input fields are associated with a property on the model object (object providing the data)

A datafield is used to give aread-only display of a property value

A datafield is created with a bean whose parent is 'Uif-DataField'

The model property associated with the datafield is specified using the pr oper t yNane property
The property name can refer to a property on a nested object using the dot notation

Aninput field adds edit capability for a property's value

A input field is created with a bean whose parent is 'Uif-InputField'

The input field contains a control element component which is used to set the property vaue (for
example, atext control)

We can set a default value with the def aul t Val ue property. A static value can be given or an
expression which uses data from the model or a provided variable

Default values can also be set by creating a class that implementsthe Val ueFi nder interface

The value finder classis configured for use with the field using the def aul t Val ueFi nder d ass
property

Default values for fields with a collection group are used to initialize properties on new lines for the
collection (after the add action has been taken)

In some cases when the state is read-only we might need to display the vaue for
another property instead of the field's property, or display the vaue in addition to
it. This is done by using the readOnl yDi spl ayRepl acenent PropertyNane and
readOnl yDi spl aySuf fi xPr opert yNane properties

109

Fields and Content Elements

Data Binding

The purpose for our dataand input fields is to perform 10 between the user interface and our application
model (or domain objects). The population of data between these two layersis known as the data binding
process.

The binding process is mostly handled for us with the use of the Spring MV C framework (in previous
versions on Rice with the KNS this was handled by the Struts framework). In the majority of cases, all
we need to do is correctly point to our property in the model. Sounds easy, right? In cases such as our
BookForm example, it is. However, model objects (also called form objects) can contain nested data
objects that go down several levels and include collection structures such as List and Map. In order to
correctly push and pull the value, Spring needsto know the full 'path’ of the property relative to the model.

To understand this better, let'stake alook at how Spring performs the binding process. First, let's take the
outgoing direction (data from model outputted to the page). We know from the previous sections we must
specify apropertyName for the dataand input fields. In the case of theinput field, aninput HTML element
will be generated within the input field template. However, thisis not generated directly but instead uses
a helper tag provided by the Spring framework:

<@pring.input id="${control.id}" path="${field.bindinglnfo.bindingPath}" ... >

Notice the path attribute (disregard the value for now). Thisis an attribute of the Spring input macro that
specifies the path to the property that thisinput should be associated with. Spring will do two things with
this information. First, it will retrieve the value for that property from the model and set it as the value
attribute for the input macro. Next, it will use the path given as the value for the name attribute (if you are
wondering, the id attribute just gets passed through to the id attribute for the HTML tag). Assuming we
had a property path of 'bookld' with value '3, the resulting HTML input would be as follows:

<input id="u3" name="bookld" value="3" ... >

The value of '3' will then appear inside the rendered text box. All other controls types work in asimilar
manner.

In the case of adatafield, or when the input field is read only, the Spring bind macro is used. This tells
Spring to pull the value for the given property and stick the value into a FreeMarker variable (page or
request scope). We can then write out that value to a stream which resultsin the static text being displayed.

<@pring. bi nd pat h="${fi el d. bi ndi ngl nf o. bi ndi ngPat h}" >${ st atus. val ue} </ @pri ng. bi nd>${ st at us. val ue}

Now let's look at the incoming direction. This is data contained in the HTML form (with the controls)
that we wish to populate onto the model. Recall that when we used the Spring tag, our property path was
used for the name attribute value. When the page is submitted, the browser will use the name attribute
as the corresponding name of the request parameter. The request parameter value will then be the value
that was set on the control.

Onthe server, Spring will then iterate through the request parameter map, and attempt to find a property on
the model that matchesthe request parameter key. If amatch is made, the corresponding request parameter
valueis set as the value of the property. That'sit! Our binding is complete. Therefore, as long as we have
configured the property name to match a property on our model (nested or not), Spring will take care of
the rest.

Property Editors

When binding the data between the JSP page and the model, Spring will again invoke registered Property
Editors to perform the necessary type conversion. All values within the interface are treated as Strings.

110

Fields and Content Elements

When going from or to a property type, other than the primitive types or String type, a property editor
must be used.

Spring provides out-of-the-box property editors for common Java types that are registered by default
(registrationisthe process of configuring the Spring container to useaproperty editor). Also, someoptional
property editor implementations are provided that can be used. These include: ByteArrayPropertyEditor,
ClassEditor, CustomBooleanEditor, CustomCollectionEditor, CustomDateEditor, CustomNumberEditor,
FileEditor, InputStreamEditor, LocaleEditor, PatternEditor, PropertiesEditor, StringTrimmerEditor, and
URLEditor.

In addition to the provided Spring property editors, KRAD provides a set that can be used with the custom
Kuali types (such as KualiDecimal and Kualilnteger) and other common formatting practices. These
include:

Ui f Bool eanEdi t or — Formats any of the strings "/truelyes/y/on/1/" to the Boolean true, and any of
the strings "/false/no/n/off/0/" to Boolean false. Conversely, the Boolean true is formatted as the string
"yes" and the Boolean false is formatted as the string "no".

Ui f CurrencyEdi t or — Used for converting between a KuaiDecimal and a string. The string is
formatted using commas and to two decimal places.

U f Dat eEdi tor — Used for converting between a javautil.Date and a string. The Rice
Dat eTi neSer vi ce is used to perform the string formatting and for parsing the string to create a date
object.

Ui f Kual i I nt eger Edi t or —Used for converting between a Kualilnteger and a string. The string is
formatted using commas and to zero decimal places.

Ui f Per cent ageEdi t or — Used for converting between a KualiPercent and a string. Formatting is
similar to UifCurrencyEditor.

Ui f Ti mest anpEdi t or — Used for converting between a java.sgl.Timestamp and a string. The Rice
DateTimeService is used to perform the string formatting and Timestamp creation.

These property editors, along with Spring editors, are registered with Spring by property type. This means
whenever Spring encounters the associated type for the property being bound to, it will use the registered
property editor. For example, the UifCurrencyEditor is registered with the KualiDecimal type. Thus, when
binding to a property with type KualiDecimal, the UifCurrencyEditor will be used.

If needed, KRAD allows you to also specify a property editor to use for a data field. This might be
needed to support a custom data type or to perform custom formatting (formatting refers to the process
of rendering a String from an object). To create a new property editor, a class must be created that
implements the PropertyEditor interface. The easiest way to do thisisto extend the Spring provided class
java.beans.PropertyEditorSupport, and then override the getAsT ext() and setAsT ext(String text) methods.

package edu. sanpl eu. deno. ki t chensi nk;
public class U TestPropertyEditor extends PropertyEditorSupport inplenents Serializable {
private static final |ong serial VersionU D = -4113846709722954737L;

/**
* @ee java. beans. PropertyEdit or Support #get AsText ()
*
/
@verride
public String getAsText() {
bj ect obj = this.getValue();

if (obj == null) {
return null;
}

111

Fields and Content Elements

String di splayValue = obj.toString();
if (displayValue.length() > 3) {
di spl ayValue = StringWils.substring(displayVvalue, 0, 3) + "-" +
StringUils. substring(displayValue, 3);
}

return di spl ayVal ue;
}
/**
* @ee java. beans. PropertyEditor Support#set AsText (j ava. | ang. Stri ng)
*/
@verride
public void setAsText(String text) {
String value = text;
if (StringUils.contains(value, "-")) {
value = StringUtils.replaceOnce(val ue, "-", "");

}

t hi s. set val ue(val ue);

The two methods implemented here correspond to the two directions. outgoing to the page (to string), and
incoming to the model (to object). The getAsText() method is invoked to build the string that should be
displayed. We can use the getValue() method provided by the base class to get current object, then build
the string and return. The setAsText(String text) method is used to build the object from the String. After
we have constructed the object, we can call the setValue method to set the object that will be used for
the model property value.

Once we have the property editor class created, we can configure it to be used with our data field by
specifying the full class name in the propertyEditor property:

<bean parent="Uif - Dat aFi el d"
p: propertyName="bookl d" p: propertyEditor="edu. sanpl eu. deno. ki t chensi nk. Ul Test PropertyEdi tor"/>

Likewise the property editor can be specified for an input field:

<bean parent="Uif- I nputFi el d"
p: propertyNanme="bookl d" p: propertyEditor="edu. sanpl eu. deno. ki t chensi nk. Ul Test PropertyEdi tor"/>

Complex Paths

So far, we have used examples where the property was either directly on the model (form) object, or one
level down. Now let's look at more complex paths for binding that include many levels of nesting and
collection properties.

L et's assume we have the following objects:

public class TestForm {

private String fieldl;

private Test1Object testl1Object;
}

public class Test1Object {
private String ti1Field;
private Test20bject test20bject;
private List<Test20bject> test2List;
}

public class Test2Object {

private String t2Field;

private Map<String, String> t2Mp;
}

112

Fields and Content Elements

Some exampl e paths for these properties would be:

Fieldl on TestForm— "fieldl"

Each time we go into a nested object, we use a dot:
TiFi el d on Test1lChject = "test1CObject.t1Field"

T2Fi el d on Test2Obj ect — "test1(hject.test2Cject.t2Field"

The path for a collection field must specify the item index using the brackets [] and the index within the
brackets:

T2Fiel d on TestlList — "test1(bject.test2List[0].t2Field",
"test1lbject.test2List[1].t2Field", "testlObject.test2List[2].t2Field", ...

For binding to amap we again use the brackets with the map key within the brackets and quoted:

T2Map on Test2Chj ect — "test1(bject.test2ject.t2Map[’ keyl']",
"test 1(bj ect.test20bj ect. t 2Map[' key2'] "

We can continue forming paths for objects that are nested at deeper levels by adding additional dotsto the
path. In this way, we can form the path and set the propertyName value for any model property:

<bean parent="Uif - Dat aFi el d"
p: propertyNanme="t est 10bj ect . t est 20bj ect.t 2Fi el d">

Now suppose Test20bject had alarge set of fields we wanted to display. We could configure al of them
just asin the previous example:

<bean parent="Uif-DataFi el d" p:propertyName="test 1Cbj ect.test2Chj ect.t2Fi el d1">
<bean parent="Uif-DataFi el d" p: propertyName="t est 1Cbj ect .t est 2Cbj ect. t 2Fi el d2">

<bean parent="Uif-DataFi el d" p: propertyName="test 1Cbj ect.test2Cbj ect. t 2Fi el d3">

Thisis, however, very tedious and repetitive. Luckily, the UIF provides a class named Bi ndi ngl nf o
for which a property exists on adatafield. This class separates the path into three parts. Thefirst iscalled
the binding object path. This is the path to a data object on the model. The second is called the binding
prefix, and the third part is the binding name.

Thebinding nameisusually the same asthe given property name, and will be synced if not set. Thebinding
prefix is then a prefix to add before the binding name (property name). Finally, the full path is formed
by joining the prefix and name to the object path. This is known as the binding path and is invoked by
the templates to set the Spring path attribute. Please note the binding prefix is optional and not always
beneficial to use.

L et's breakdown the path "test1Object.test20bject.t2Field1" from the previous example. A good candidate
for the object path is "test1Object.test20bject”. That just leaves "t2Field1" so thereisnot really aneed for
abhinding prefix. Therefore, our configuration would be:

<bean parent="Uif-DataField" p: bindingl nfo.bindingObj ectPath="test10bj ect.test20bj ect"
p:propertyName="t2Field1">

We could also configure out datafield as follows:

<bean parent="Uif-DataField" p:bindingl nfo.bindingObj ectPath="test10bject"
p:bindingl nfo.bindByNamePrefix="test20bject" p:propertyName="t2Field1">

You might be wondering what the KRAD designers were thinking at this point. This doesn't seem to
remove the repetition, and in fact, it is much more verbose! On an individual field level, that is true. The
benefit is that we can put multiple fields which share similar paths together into a group.

113

Fields and Content Elements

We will learn all about the Group component in the next chapter, but two properties that exist are
fieldBindByNamePrefix and fieldBindingObjectPath. When one or both of these propertiesare configured
on the group, the value will be taken and set on corresponding binding info property for each group field.

For example:

<bean parent="Uif-Vertical BoxG oup" p:fiel dBi ndi nglbj ect Pat h="t est 1Cbj ect.test2Cbj ect" >
<property name="itens">

<list>

<bean parent="Uif - Dat aFi el d" p: propertyName="t 2Fi el d1" >
<bean parent="Uif - Dat aFi el d" p: propertyName="t 2Fi el d2" >
<bean parent="Uif - Dat aFi el d" p: propertyName="t 2Fi el d3" >

</list>

</ property>

</ bean>

This will result in "test1Object.test20bject” being set as the bindinglnfo.bindingObjectPath for each of
the three contained fields. Now that's better!

But KRAD goes one step further! We can also specify a default object binding path for the entire
view. Thisis done by setting the defaultBindingObjectPath property on the View component. This will
set the binding object path for al fields (and collection groups) if it not already set (we can override
if necessary). This is very useful in particular for the various view types provided. One example is
the MaintenanceView. This view targets the maintenance of a data object instance. This data object
instance is found in the model with path ‘document.newM aintainableObject.dataObect'. Since typically
all these views do are present all data for a particular record to be edited, we just need to specify
the properties of the data object we want to present. The maintenance view makes this easy for us by
setting " document.newM ai ntai nableObj ect.dataObject” asthe defaultBindingObjectPath. Therefore, when
specifying the view fields, we just need to specify the property name relative to the data object:

<bean parent="Uif-InputFi el d" p:propertyNanme="nunber"/>
<bean parent="Uif-InputFi el d" p:propertyName="nanme"/>

Which would result in binding paths:

' document . newMai nt ai nabl ebj ect . dat aCbect . nunber"’
' document . newMai nt ai nabl ebj ect . dat aCbect . nane’

Bean Reuse

Separating out the object path or binding prefix also allows for more reuse. For example, when
extending a group bean, it is a simple property change to modify the binding object path or
prefix. However, if the object path and prefix is embedded on the property name for each field
in the group, the child bean would need to override the entire itemslist and duplicate all the field
information.

The data and input field components implement the interface
org. kual i .rice. krad. ui f.conponent. Dat aBi ndi ng. Thisindicates to the framework that
the component binds to the model, and provides the binding info and property name properties. The other
component that implementsthisinterfaceisthe CollectionGroup. A collection group isagroup that iterates
over amodel collection and presents fields for each line. Therefore, when configuring a collection group,
we must point it to the property that holds the collection. Thisis done exactly the same as for datafields,
using the propertyName property and the bindinglnfo property. For example:

<bean parent="Uif-Tabl eCol | ecti onG oup" p: propertyNanme="nycol | ection" ... >

One thing to note is how the binding path for the fields within the collection group isformed. Thesefields
will automatically receive a binding prefix that is the path for the collection line. This path includes the

114

Fields and Content Elements

collection path plus the line index: "mycollection[0]", "mycollection[1]". Therefore the fields specified
within the collection are relative to the line (data object for the collection). This would be the same as
setting the fieldBindByNamePrefix property on a standard group component.

Finally, there are a couple other properties on the binding info class that are helpful to know about. The
first of these is the bindToMap property. This is necessary when our property name (or binding name)
is actually a Map key. Recall in these cases that we need to use the specia bracket notation. When this
property is true, the binding path will be formed using the object path, binding prefix, then the brackets
with the binding namein quotes.

<bean parent="Ui f-Dat aFi el d* p: bi ndi ngl nf 0. bi ndi ngObj ect Pat h="t est 10bj ect . t est 20bj ect "
p: bi ndi ngl nf 0. bi ndByNanePr ef i x="t 2Map" p: bi ndi ngl nf o. bi ndToMap="true" p: propertyNanme="keyl">

Thiswould result in the following binding path:
"test10bject.test20bject.t2Map['key17"

Another useful property on binding info isthe bi ndToFor mproperty. Thisis essentially an indicator to
not add on any binding object path (either from the view or a group). The binding prefix is still added,
if specified.

For example:

<bean parent="Uif-Vertical BoxG oup" p:fiel dBi ndi nglbj ect Pat h="t est 1(bj ect.test2Cbj ect">
<property name="itemns">
<list>
<bean parent="Ui f-Dat aFi el d" p: propertyName="t 2Fi el d1" >
<bean parent="Uif-DataFi el d" p:propertyName="fiel d1" p: bi ndi ngl nfo. bi ndToFor n="true">
</list>
</ property>
</ bean>

The binding path for the first data field would be "test10bject.test20bject.t2Field1”, but the binding path
for the second data field will only be "field1", due to the bindToForm property being set to true.

Recap

» The process of populating the model from an HTTP request and outputting values to the response from
the model isreferred to as data binding

» The Spring MV C framework performs the binding process

* For theincoming direction (request to model), Spring looksfor request parametersthat match aproperty
name on the model (starting from the top object and using dot notation for nested objects)

« For the outgoing direction (model to response), we use the provided Spring JSP tags, and specify the
path attribute to the property whose value should be outputted

» The Spring tagsin KRAD have the namespaces 's and 'form'

* When a conversion between data types is needed (for example String to Date), Spring uses a
Pr opert yEdi t or . Spring comes with default property editors for basic Java types and additional
editors that can be used as needed. In addition KRAD provides property editors which include:

 UifBooleanEditor
 UifCurrencyEditor

* UifDateEditor

115

Fields and Content Elements

 UifKualilntegerEditor
« UifPercentageEditor
 UifTimestampEditor

» Using the data field propertyEditor property, custom editors can be associated with a property for
binding (this includes using one of the provided editors, or creating a custom editor)

» Complex property paths are created in the following manner:

e Each time a nested object is encountered in the path, it is separated by a dot (eg
'nestedObj ect.nestedObject2.property’)

* A property on a List type is specified using the collection path, then the line index inside brackets
(eg 'collectionPath[index] .property")

« A Map property is specified using the map path, then the map key in quotes and inside a bracket (eg
'mapPath['key'].property")

» When configuring multiple fields that belong to the same nested object (or list or map), it can be tedious
to specify the full path each time. To help with this, KRAD provides the Bindinglnfo object. This can
be used to set the following properties:

« bindingObjectPath — Path to the parent data object
« bindByNamePrefix — Prefix to add after the object path and before the binding name (property name)

 Since specifying the bindingObjectPath for each field does not really help with the verbosity, the
fi el dBi ndi ngChj ect Pat h on the parent Group can be used instead. Likewise, the group
component containsthef i el dBi ndBy NamePr ef i x property

« We can set a default object path for the entire view using the view component property
def aul t Bi ndi ngQhj ect Pat h

» Separating the property name into an abject path helps with the reusability of bean configuration

» The Bindinglnfo object also contains the property bi ndToMap which is used to indicate the property
isamap key (which impacts how the final binding path isformed). In addition, we can set the property
bindToForm to true which means we do not want any binding object path (coming from the group or
the view) to be prepended

Data Dictionary Backing

In Chapter 4, welearned about the data dictionary and attribute definition entries. Welearned that we could
define alabel, control, and certain other properties in the attribute definition that will drive the rendering
of that attribute wherever it appearsin the Ul. So how does this work with the data fields?

First, as we have seen, we can configure everything we need directly on the data fields; therefore, the UIF
does not require the data dictionary to be used. However, the UIF does have a process for determining and
using an attribute definition for backing a data or input field. What this means isif an attribute definition
is found, the properties specified on the definition will be used as defaults for the data field. If the same
property is specified on the datafield, it will override the value from the attribute definition.

For example, suppose we have the following data object entry and attribute definition:

116

Fields and Content Elements

<bean i d="Travel Account" parent="DataCbj ectEntry">
<property name="dataCbj ectd ass" val ue="org. kual i . rice. krad. denp. travel . account. Travel Account"/ >
<property name="attributes">
<list>
<ref bean="Travel Account - nunber"/>
</list>
</ property>
</ bean>

<bean i d="Travel Account - nunber" parent="AttributeDefinition">
<property name="nanme" val ue="nunber"/>
<property name="| abel " val ue="Travel Account Number"/>
<property name="shortLabel " val ue="Travel Account Nunmber"/>
<property name="forceUppercase" val ue="fal se"/>
<property name="maxLength" val ue="10"/>
<property name="constraint Text" val ue="Must be 10 digits"/>
<property name="val i dati onPattern">
<bean parent="AnyCharact erVal i dati onPattern"/>
</ property>
<property name="control Fi el d">
<bean parent="Uif-Text Control" p:size="10"/>
</ property>
</ bean>

And we have the following input field which the previous attribute definition is backing:

<bean parent="Ui f-InputFi el d" p:propertyName="nunber" p:|abel ="New Travel Account Nunber"
p: for ceUpper case="true"/>

During the view lifecycleinitialize phase, the properties from the attribute definition are picked up and set
onto the input field (if not set). Note that the names do not always match exactly (for example the control
property of input field is fed from the controlField property of attribute definition). The above example
would result in an input field with the following state:

o Labe: "New Travel Account Number" (from theinput field config)
 Short Label: "Travel Account Number" (from the attr def config)
 Force Uppercase: true (from the input field config)

» Max Length: 10 (from the attr def config)

e Congtraint Text: "Must be 10 digits' (from the attr def config)
 Vadlidation Pattern: Any Character Validation (from the attr def config)
 Control: Text control with size 10 (from the attr def config)

An attribute definition can be linked manually through the data field configuration, or the framework will
attempt to find one based on the field binding path.

For manual configuration, we use the di cti onaryQbj ectEntry and
di cti onaryAttri but eNane properties. The dictionary object entry is the name of the entry in the
data dictionary for which the attribute definition belongs. This is generally the full class name of a data
object. The dictionary attribute name is then the value for the name attribute of the definition we want to
pick up. For our previous example this configuration would be as follows:

<bean parent="Ui f-InputFi el d" p:propertyName="nunber"
p: di ctionaryQbj ect Entry="edu. sanpl eu. travel . bo. Travel Account" p:dictionaryAttributeName="nunber"/>

We can aso leave off the dictionaryAttributeName, in which case the framework will default it to the
given propertyName:

<bean parent="Uif-InputField" p:propertyNanme="nunber"

117

Fields and Content Elements

p: di ctionaryQbj ect Entry="edu. sanpl eu. travel . bo. Travel Account "/ >

If the dictionary properties are not set, the UIF will attempt to find an attribute definition with the binding
path. Thisworks as follows:

1. The UIF takes the model class as the dictionary object entry (form class which is given on the view)
and the binding path as the dictionary attribute name. Is there an entry? If so, the UIF will useit. Else
it goesto step 2.

2. Isthe binding path nested (contains the dot separator)? If so, the UIF uses the name before the first dot
to get the corresponding object from the form by name. This will be the dictionary object entry. The
UIF usesthe part after the first dot asthe dictionary attribute name. Isthere an entry? If so, the UIF will
useit. If the path contains additional nesting, the UIF repests this step (step 2).

Asan example let's take the following model:

package edu. nyedu. sanpl e;
public class Travel Form {
private Travel Account travel Account;

}

package edu. nyedu. sanpl e;
public class Travel Account {
private String nunber;

}

Now suppose we have the following input field:

<bean parent="Uif-InputFiel d" p:propertyName="travel Account. nunber"/>

The UIF will first ask the data dictionary if it has an entry for 'edu.myedu.sample.TravelForm' and
attribute ‘travel Account.number', if so that attribute definition will be used to populate the input
field. If not, it will then get the property type for 'travelAccount' from TravelForm. This is of type
edu.myedu.sample.TravelAccount. Therefore, it will ask the data dictionary if it has an entry for
‘edu'myedu.sample. Travel Account' and attribute 'number’, and if so that attribute definition will be used.
The process continues until an attribute definition is found or the binding path is no longer nested.

The one exception to the above rule is for fields in collection groups. Since the assumption is these are
properties on the data object for the collection lines, the framework begins by asking for entries for that
data object class and the property name of the field.

<bean parent="Ui f- Tabl eCol | ecti onG oup" p: propertyNane="test Obj ect 1. nycol | ecti on"
p: col | ecti onObj ect C ass="edu. nyedu. sanpl e. Test 3(bj ect " >
<property name="itens">
<list>
<bean parent="Uif-InputField" p:propertyName="fieldl"/>

</list>

</ property>

</ bean>
The binding path for our field here will be ‘testObjectl.mycollection[index].fieldl'. In this case, the
framework asks the data dictionary for a definition with entry 'edu.myedu.sample.Test30bject’ and
attribute name ‘field1'. If the field propertyName is nested (or has a bindinglnfo.bindByNamePrefix
specified), and an entry was not found for the full name, the framework will recurse down the path as it
does for non-collection fields.

Recap

» We can default the properties for adata or input field from a data dictionary AttributeDefinition

118

Fields and Content Elements

« If an AttributeDefinition is used for a data field, the corresponding properties from the definition are
used if avalue for that property has not been specified for the field (in other words, we can override
any value on the attribute definition)

* We can explicitly associate an attribute definition with a data field using the properties
di cti onaryhj ect Nanme anddi cti onaryAttri but eNane

» Thedictionary object name gives the name of the data object entry in the data dictionary

» Thedictionary attribute nameisthe name of the property (the attribute definition ‘name’) associated with
the attribute definition. If not given but the dictionary object name is, the propertyName configured on
the data field will be used

» For fields configured on collection groups, the dictionaryObjectName is automatically set to the
collectionObjectClass configured on the group

« If an attribute definition is not explicitly defined, the framework will attempt to discover an attribute
definition to use. This process involves performing substrings on the binding path (starting from the
object path and substringing on the dot) and making aseries of callsto determineif an attribute definition
exists for a given object entry and attribute name. This continues until a definition is found or until all
substrings of the binding path have been tried

Types of Controls

A very important type of content element isthe control. Control components are used withan HTML Form
to allow the user to interact with the data. The control holds one or more datavalues. These values arefirst
initialized when the page renders (known astheinitial value) and then can be changed by the user or script
(known as the current value). When the form is submitted, the controls have their name attribute paired
with their current value to form arequest parameter that is sent to the server.

Controls are wrapped with the input field component. As described in the beginning of this chapter, the
input field holds the pointer to the model property whose value will be used as the initial value of the
control. Theinput field al so contains other configurationsrelated to the control and itsvalue, such ashelper
widgets and validation constraints.

HTML controls have different types. Some of thesetypes are represented by different tag elements (such as
textarea and select), while variations of the input control are indicated with the type attribute (technically
these might all be considered input controls, but KRAD treats each type as a different control). In this
section, we will learn about the different types of controls and their UIF component representation.

Checkbox

The Checkbox control renders an HTML input tag with type of "checkbox". This control is used to toggle
the state of a property between two values (usually the Booleans true and false). The image shows an
example checkbox control.

Figure 6.4. Checkbox Control

Checkbox:
Single CheckboxContro |

Ld

119

Fields and Content Elements

To create a new checkbox control, we create a new bean with parent of 'Uif-CheckboxControl'. Controls
cannot be set on their own; they must be defined within an input field using the control property:

<bean parent="Ui f-InputField" p:propertyName="acceptl|ndicator" p:|abel ="Accept?">
<property name="control ">

<bean parent="Ui f - CheckboxControl "/>

</ property>

</ bean>

File

The checkbox control has one custom property that can be set which is the value property. This can be
used to specify a string value that will be sent to the server when the checkbox is checked. If not set, the
default Boolean 'true’ will be sent.

Checkbox Request Parameters

It isimportant to note that browsers only send a request parameter for checkbox controlsif their
state is checked. That is, if the checkbox is not checked, no request parameter will be sent.
Therefore, if the value for a checkbox property was true before rendering the page, then the user
unsel ects the checkbox and submits. Unless specia logic isin place, the property will not be set
to false. KRAD uses the Spring checkbox tag which adds a hidden input that will indicate the
presence of a checkbox for each request, then if a corresponding checkbox parameter does not
exist, Spring will set the property to false. However when setting the value attribute for use with
anon-Boolean type, the reset logic must be taken care of by the developer.

The File control is used to allow the user to select a file from their file system whose contents will be
submitted with the form. The server can then make use of the file contents, or simply store the file on the
server (for example a note attachment).

To specify that afile control should be used, a bean with parent of ‘Uif-FileControl' should be given:;

<bean parent="Ui f-InputField" p:propertyName="fil eUpl oad" p:|abel ="File Upl oad">
<property name="control ">

<bean parent="Uif-FileControl"/>

</ property>

</ bean>

This control supports no custom properties (just the inherited component and base control properties). The
image below shows an example file control:

Figure6.5. File Control

File Control:
Use to upload files

Choose File | No file chosen

In order to use the control, there are a couple of requirements for the backend. First, the backing
property must be of type org.springframework.web.multipart.MultipartFile. Thisis so Spring can set all
the necessary fileinformation (name, content type, size, bytes). Many times, a pattern employed isto have
aproperty on the form with this type that is used for holding the upload, and then in a controller method,
the contents are pulled to populate a property with type File (or store the File object). The MultipartFile
class provides a convenient method for doing this called transferTo(java.io.Filefile).

The second requirement for uploading files is the HTML form encoding type "multipart/form-data’.
KRAD takes care of this by setting this as the encoding type for all forms.

120

Fields and Content Elements

Multipart Form

Always using the multipart form encoding (even when no file uploads are present) has an impact
on performance. An upcoming enhancement to KRAD will be to use this encoding only when a
file upload is present (with the use of script detection).

Hidden

The Hidden control is used to render an HTML input of type hidden. A hidden control isnot visible to the
user, therefore its value can only be changed by a script. These are often used to hold some state that is
needed when the page is posted back, or to provide data for scripting purposes.

To specify a hidden control should be used, a bean with parent of 'Uif-HiddenControl' should be given:

<bean parent="Uif-InputFi el d" p:propertyNanme="hi ddenFi el d">
<property name="control ">
<bean parent="Ui f-H ddenControl "/ >
</ property>
</ bean>

Request/Session State

All model data is stored with the user session and when a form is submitted, the request data
is overlaid. This means any model properties that were not present in the request will remain
untouched. This alleviates the need to write all state to the request (using hiddens) so that it is
not lost.

Using a hidden control is not the same as making the field state hidden (covered in Chapter 10). When
the field state is hidden, all of the field contents will be rendered (including a control that is possibly not
hidden) but not visible by default. The field contents can then be shown with a script once a condition is
met. With the hidden control, the other field contents (such as label and lookup) can still be visible. One
usage of the hidden control isto provide a field quickfinder (lookup icon) that forces the user to select a
value from the lookup instead of allowing them to type the value.

Min/Max Length

The input field control also has properties for setting min and max length. If the corresponding
properties on the control are not set, they will be synced with thefield settings. It can be necessary
to have adifferent setting for the control than the field due to formatting. The min and max length
settings for the control are used on the client, which is working with the formatted value. On the
server, validation is performed against the model property value (unformatted) and uses the field
length settings.

Text

The Text control rendersthe HTML input element with type of "text". Thisisasingle-line box that allows
the user to type the value.

To specify that atext control should be used, a bean with parent of 'Uif-TextControl' should be given:

<bean parent="Uif-InputField" p:propertyName="title" p:label="Title">
<property name="control ">
<bean parent="Uif- Text Control "/ >
</ property>
</ bean>

121

Fields and Content Elements

The text control supports the following properties:
Si ze —Thisisthe display size for the control in number of characters.

maxLengt h —When avalue is given, this is the maximum number of characters in length the value can
have. If set, the browser will stop the user from entering more characters than allowed.

m nLengt h — When avalueis given, thisis the minimum number of charactersin length the value can
have. Note that this is not supported by the HTML input tag itself, but is used by the KRAD validators
to check the value client side or server side.

dat ePi cker —Thisisanested widget component that renders an icon next to the text input that can be
used to selected acalendar day. Like all components, the date picker will be rendered if itsrender property
is set to true. Thiswidget and others are covered in Chapter 8.

wat er mar kText — Specifies text that will appear in the text control when the value is empty. Thisis
used to show example inputs to the user and is sometimes referred to as a placeholder (HTML 5). Once
the user beginsto input a value the watermark text is cleared.

t ext Expand — A Boolean type which indicates whether the text input can be expanded. When enabled,
an icon is rendered next to the text input that allows the user to click for getting a text area input that
allows more room for entering the value. Thisis useful if the maximum length for the field is longer than
the display size.

The UIF provides a handful of base beans for the text control that have various commonly used
configuration. These are as follows:

Ui f - Text Cont r ol — The default text control bean which sets the size to 30. None of the other text
control properties are set by default.

Ui f - Smal | Text Cont r ol —Similar to Uif-TextControl but setsthe sizeto 10 and appliesan additional
style class of 'uif-small TextControl'.

Ui f - Medi unifext Control — The same as Uif-TextControl except adds a style class of 'uif-
mediumTextControl'.

Ui f - Lar geText Control — Similar to Uif-TextControl but sets the size to 100 and applies an
additional style class of 'uif-largeTextControl".

Ui f-CurrencyText Control — Same as Uif-TextControl except adds a style class of 'uif-
currencyControl'. This adds aright align style to the control useful for displaying currency.

Ui f - Dat eCont r ol —SameasUif-SmallTextControl with the data picker added and an additional style
class of 'uif-dateControl".

Below are various examples of using these beans and setting other properties:

<bean parent="Uif-InputField" p:propertyName="field" p:label ="Field Label">
<property name="control ">

<bean parent="Ui f-Medi unControl" p:watermarkText="It's watermarked"/>

</ property>

</ bean>

Figure 6.6. Watermark Control

Field Label

With watermark text, and size="30"

122

Fields and Content Elements

<bean parent="Uif-InputField" p:propertyName="field" p:l|abel="Date 1">
<property name="control ">
<bean parent="Uif-DateControl"/>
</ property>
</ bean>

Figure 6.7. Date Control

Date 1
Default DateControl options

5

<bean parent="Uif-InputField" p:propertyName="field" p:|abel ="Field Label ">
<property name="control ">
<bean parent="Uif-Text Control " p:textExpand="true"/>
</ property>

</ bean>
Figure 6.8. Text Expand Control
Figld L.?b_ei .
TextArea

The TextAreacontrol issimilar to the text control with the exception of providing multiple linesfor inpuit.
This control is used for entering longer strings of data such as a description.

To specify atext area control should be used, abean with parent of 'Uif-TextAreaControl' should be given:

<bean parent="Uif-InputField" p:propertyName="title" p:label="Title">
<property name="control ">
<bean parent="Uif- Text AreaControl "/>
</ property>
</ bean>

The text area control supports the following properties:

r ows — Specifies the number of rows (or lines) the input should have. This determines the height of the
control.

col s — Specifiesthe width in characters the input should have.

maxLengt h — Similar to the text control, when avalue is given restricts the number to a certain number
of characters.

nm nLengt h — When a value is given, requires the length be greater than or equal to a certain number
of characters.

t ext Expand - A Boolean type which indicates whether the text area input can be expanded.
wat er mar kText — Specifiestext that will appear in the text area control when the value is empty.

The UIF provides a handful of base beans for the text area control that have various commonly used
configuration. These are as follows:

123

Fields and Content Elements

Ui f - Text AreaControl - Thedefault text areacontrol bean which sets rowsto 3, and cols to 40.

Ui f - Smal | Text AreaControl — Sets rows to 2 and cols to 35. Adds the style class 'uif-
small TextAreaControl'.

Ui f - Medi unifext AreaControl — Sets rows to 3 and cols to 40. Adds the style class 'uif-
mediumTextAreaControl'.

Ui f - Lar geText AreaControl - Sets rows to 6 and cols to 50. Adds the style class 'uif-
largeTextAreaControl'.

Below shows an example text area control.

Figure6.9. TextArea Control

Field Label

Spinner

The Spinner control isaspecial text control that renders up and down arrows to the right of the control for
incrementing and decrementing the value. Thisis an example of a'decorated’ control. That is, HTML does
not support a Spinner control inherently, but we use JavaScript to provide the additional functionality.
This means the rendered content will be the input element with type of ‘text’, with a script invocation to
add the spinner functionality.

Within the UIF, these script decorations are represented by awidget component. The widget is associated
with the component it works with. In this case, we extend the text control component and add the spinner
widget. The spinner widget will be covered in more detail in Chapter 8.

To specify a spinner control should be used, a bean with parent of 'Uif-SpinnerControl' should be given:

<bean parent="Uif-InputField" p:propertyName="count" p:|abel ="Spi nner Control">
<property name="control ">
<bean parent="Uif- Spi nnerControl "/>
</ property>
</ bean>

Screen shot 13 shows the spinner control.

Figure 6.10. Spinner Control

Spinner Control:
Click the arrows on the right

0

Multi-Value Controls

Up to this point, the controls we have seen hold a single value. Next, we will look at
controls that can hold multiple values to choose from. Some also alow selecting multiple
values to be submitted. These components are known as multi-value controls and implement the
org.kuali.rice.krad.uif.control.MultiVaueControl interface.

124

Fields and Content Elements

Options

When using amulti-value control, we need to specify alist of options the control will present. Each option
has two parts: the option key and the option value. The key gives the value for the field that will be
submitted to the server when the option is chosen. The label is displayed to the user for that option. These
do not necessarily have to be different, but it is a useful feature to display afriendlier label for the value.

As an example, let's assume we need to render a control that presents the list of states as options. In our
model, the property expects the state code (two letter abbreviation). However, to help the user we want to
display the full name for each state. Our options would then look like the following:

Table 6.1. State Options Example

Key Vaue
AL Alabama
Cco Colorado
IN Indiana
OH Ohio

X Texas

To represent these options, Rice provides the KeyVal ue interface and the Concr et eKeyVal ue
implementation. This class provides a string property for the key and a string property for the value,
with corresponding getters and setters. Furthermore, for configuring key value objects within XML,
the bean with name 'Uif-KeyLabelPair' is provided (whose class is ConcreateKeyValue). The following
demonstrates creating the above list in Spring XML:

<property name="options">
<list>

<bean parent="Ui f - KeyLabel Pair" p:key="AL" p:val ue="Al abam"/>
<bean parent="Uif-KeyLabel Pair" p:key="CO' p:val ue="Col orado"/>
<bean parent="Ui f - KeyLabel Pair" p:key="IN' p:val ue="Indi ana"/>
<bean parent="Uif-KeyLabel Pair" p:key="CH" p:val ue="Chi o"/>
<bean parent="Ui f - KeyLabel Pair" p:key="TX" p:val ue="Texas"/>

</ property>

Key Value Finders

Hard-coding in the options works for some simple cases (like 'Yes, 'No' type options), however most of
the time the options need to be built up dynamically. This might require performing a database query to
retrieve code/name pairs, or invoking a service to retrieve the options. For this, asmall piece of code must
be written that implements the org.kuali.rice.krad.keyvalues.KeyVauesFinder interface. The easiest way
to implement a key value finder is to extend the base class org.kuali.rice.krad.keyvalues.KeyVauesBase.
When extending this base class, we must implement the following method:

public List<KeyVal ue> get KeyVal ues();

Hopefully, it is clear what we need to do here. As stated previously, each option is represented by a
KeyValue object, so wereturn aList of KeyValue objects that will make up our options. How the method
isimplemented depends purely on the application logic needed. A common pattern isto query the database
to retrieve al records of a certain type, and then to use two fields from the record (usually the primary
key property and a description property) as the key and value. Here is an example from the Rice project
that is building up the options for state:

public List<KeyVal ue> get KeyVal ues() {
Li st <KeyVal ue> | abel s = new Arrayli st <KeyVal ue>();
Li st <State> codes =
Locat i onApi Servi ceLocat or. get St at eServi ce().findAl | St at esl nCountry(countryCode);

125

Fields and Content Elements

| abel s. add(new Concr et eKeyVal ue("", ""));
for (State state : codes) {
if(state.isActive()) {
| abel s. add(new Concr et eKeyVal ue(st at e. get Code(), state.getNane()));
}

return |abels;

Notice the construction of ConcreteK eyV alue objects using each state's code and name properties.

Once a key value finder classis created, it needs to be specified on the input field for which the options
should apply. This is done using the opt i onsFi nder or opti onsFi nder O ass properties. This
first of these takes an actual KeyVaueFinder instance, so it will be an inner bean or bean referencein the
XML. Thisisuseful if areusable finder has been created that contains properties which can be configured.
For example, suppose our state finder had an option indicating whether inactive state codes should be
included. First, we could setup a base bean as follows:

<bean i d="StateOpti onsFinder" class="org.kuali.rice.location.framework.state. StateVal uesFi nder"/>

Next, we can specify that the state finder should be used for an input field and configure the include
inactive option:

<bean parent="Uif-InputField" p:propertyNanme="stateCode">
<property name="optionsFi nder">
<bean parent="StateOpti onsFi nder" p:includelnactive="true"/>
</ property>
</ bean>

If our finder class does not have any options, or we just want to use the default, we can specify the class
using the optionsFinderClass property:

<bean parent="Uif-InputFi el d" p:propertyName="st ateCode"
p: optionsFi nder Cl ass="org. kual i . rice.location.framework. state. StateVal uesFi nder"/>

When the key valuefinder classis configured on aninput field, during the view lifecycleit will beinvoked
to build the options, which will then in turn be set on the options property of the control. If the options
property was already set on the control, it will not be overridden.

The KeyVaueFinder classis actually used not only in KRAD, but in various places throughout the Rice
project. In terms of building options for our controls, it has one big gap. Our getKeyV aues method takes
no parameters, so unless our model data is provided through some global variable, it is not possible to
conditionally build the options based on a model property value. Thisis a use case that comes up often.
For example, think of two dropdown contrals, the first providing optionsfor the food groups (Dairy, Fruit,
Vegetables, and so on). The second dropdown should provide options for the particular foods within the
selected group of the first dropdown. Thus, our key value finder for the food dropdown needs to know
the current value for the food group.

To allow for this, KRAD extends the KeyVaueFinder interface with
org.kuali.rice.krad.uif.control.UifKeyVauesFinder. One of the methods this interface adds is the
following:

public List<KeyVal ue> get KeyVal ues(Vi ewhbdel nodel);

Notice we now have a getKeyVaues method that takes in the model from which we can get at our
application data. A base class named org.kuali.rice.krad.uif.control.UifKeyVauesFinderBase is provided
for creating new UIF key value finders. The following demonstrates implementing conditional logic for
building the options:

126

Fields and Content Elements

public class FoodKeyVal uesFi nder extends Ui fKeyVal uesFi nder Base {

@verride
public List<KeyVal ue> get KeyVal ues(Vi ewivbdel nodel) {
Ui f Conmponent sTest Form t est Form = (Ui f Conponent sTest Forn) nodel ;

Li st <KeyVal ue> options = new
ArraylLi st <KeyVal ue>();

if (testForm get FoodG oup().equal s("Fruits")) {
options. add(new Concr et eKeyVal ue(" Appl es", "Apples"));

options. add(new Concr et eKeyVal ue(" Bananas", "Bananas"));
options. add(new Concr et eKeyVal ue(" Cherries", "Cherries"));
options. add(new Concr et eKeyVal ue(" Oranges", "Oranges"));
options. add(new Concr et eKeyVal ue(" Pears", "Pears"));

} else if (testForm getFoodG oup().equal s("Vegetables")) {
options. add(new Concr et eKeyVal ue("Beans", "Beans"));
options. add(new Concr et eKeyVal ue("Broccoli", "Broccoli"));

options. add(new Concr et eKeyVal ue(" Cabbage", "Cabbage"));
options. add(new Concr et eKeyVal ue("Carrots", "Carrots"));
options. add(new Concret eKeyVal ue(" Cel ery", "Celery"));
options. add(new Concr et eKeyVal ue(" Corn", "Corn"));
options. add(new Concr et eKeyVal ue(" Peas", "Peas"));

}

return options;

In this example, foodGroup, which is on our test form, holds the value for the selected food group. This
key value finder is then associated with the field that will display the available foods for that group:

<bean parent="Uif-InputField" p:propertyName="food" p:|abel ="Foods"
p: opti onsFi nder O ass="edu. sanpl eu. travel . opti ons. FoodKeyVal uesFi nder" p:refreshWenChanged="fi el d88">
<property name="control ">
<bean parent="Uif- DropdownControl "/>
</ property>
</ bean>

Notice the refreshWwhenChanged property setting pointing to foodGroup. This is configuring refresh
behavior, which we will learn about in Chapter 11. When the value of the foodGroup control changes, it
will refresh our food control, which will then rebuild the options based on the new food group!

Besides making the model data available, the UIF key value finder also provides another convenience. In
some cases (depending on whether our field is required) we want to display ablank option for our control,
while others we do not (forcing a value to be selected). Y ou might have noticed in our state finder the
following line:

| abel s. add(new Concr et eKeyVal ue("", ""));
Thisis adding a blank option at the beginning of the options list. Previous to KRAD, if you then wanted
the same options on another screen but did not want to provide the blank option, a new key value finder

class would need to be created. The UifKeyValuesFinder makes this a simple configuration option with
the following method:

publ i c bool ean i sAddBl ankOption();

When thisis set to true, the framework will add a blank option to the returned list of options from the key
value finder. Using the mechanism described above for setting key value finder properties, we can reuse
the same class in multiple places and configure whether a blank option should be added.

CheckboxGroup

The CheckboxGroup control is a multi-value control that presents each option as a checkbox. When a
checkbox is selected the corresponding option key will be selected as avalue. The checkbox group allows

127

Fields and Content Elements

the selection of multiple options, therefore multiple checkboxes for the group may be selected. The option
label for each checkbox is rendered to the right of the control.

The checkbox group control supports one custom property named delimiter. Thisis a string that will be
rendered between each checkbox (including the label). Two common options for this are the '& nbsp;' and
'</br>" strings. Notethisisthe HTML entity and tag and thus the first adds a space between each checkbox,
while the second adds a link break between each. These can be used to horizontally or vertically align the
checkboxes. KRAD provides base beansfor both these options named 'Uif-Horizontal CheckboxesControl'
and 'Uif-V ertical CheckboxesControl".

To specify a checkbox control should be used, a bean with parent of 'Uif-Horizontal CheckboxesControl'
or 'Uif-Vertical CheckboxesControl' should be given:

<bean parent="Uif-InputField" p:propertyName="sel ectedOpts" p: | abel =" Checkboxes 1">
<property nanme="control ">
<bean parent="Uif-Vertical CheckboxesControl ">
<property nanme="options">
<list>
<bean parent="Uif-KeyLabel Pair" p:key="0l" p:value="Option 1"/>
<bean parent="Uif-KeyLabel Pair" p:key="2" p:value="Option 2"/>
<bean parent="Uif-KeyLabel Pair" p:key="Q3" p:value="Option 3"/>
</list>
</ property>
</ bean>
</ property>
</ bean>

Note we could also have chosen to configure the optionsFinder or optionsFinderClass on the input field
bean instead of configuring the options directly on the control.

Below shows the checkbox group control.

Figure 6.11. CheckboxGroup Control

Checkboxes 1:
CheckboxGroupControl
Option 1
Option 2
Option 3

Since the checkbox group control allows selecting multiple values, our back model property must be a
List type of primitives (usually string). For example:

private List<String> checkboxG oupProperty;

After the request datais bound to the model, each value that was checked will be an entry in the List.

RadioGroup

The RadioGroup control is similar to the checkbox group control, with the exception of it only alowing
one value to be selected. Similar to the checkbox group, it supports the delimiter property and the UIF
provides two base beans for the space and line break delimiters.

To specify aradio control should be used, a bean with parent of 'Uif-Horizontal RadioControl' or 'Uif-
VerticalRadioControl' should be given:

<bean parent="Uif-InputField" p:propertyName="sel ectedOpt" p:|abel ="Radio 1">
<property name="control ">
<bean parent="Uif-Vertical Radi oControl ">

128

Fields and Content Elements

<property name="options">
<list>
<bean parent="Uif-KeyLabel Pair" p:key="0Ol" p:value="Qption 1"/>
<bean parent="Uif-KeyLabel Pair" p:key="2" p:value="COption 2"/>
<bean parent="Uif-KeyLabel Pair" p:key="Q38" p:value="COption 3"/>
</list>
</ property>
</ bean>
</ property>
</ bean>

Since the radio control only allows selection of one option, the back model property should be a non-
List type.

Select

The Select control is another variation of a multi-value control. The select control appears similar to the
text control, but with an arrow to display a dropdown list of options. The select control can be configured
to only allow one selection, or multiple.

To specify a select control should be used that allows only one value to be selected, a bean with parent
of 'Uif-DropdownControl' should be used:

<bean parent="Uif-InputField" p:propertyName="sel ectedOpt" p:|abel ="Sel ect Control ">
<property name="control ">
<bean parent="Ui f - DropdownContr ol ">
<property name="options">
<list>
<bean parent="Ui f - KeyLabel Pair" p: key="0O1" p:val ue="Option 1"/>

</list>

</ property>
</ bean>
</ property>

</ bean>

The back model property in this case should be a simple primitive (string, integer, ...).

Below shows the select control allowing only one selection.

Figure 6.12. Select Control

Select Control:
SelectControl using

Option 2 T]

To specify aselect control should be used that allows one or more values to be selected, a bean with parent
of 'Uif-Multi SelectControl' should be used:

<bean parent="Uif-InputField" p:propertyName="sel ectedOpts" p:label="Milti Select Control">
<property name="control ">
<bean parent="Uif-Milti Sel ect Control ">
<property name="options">
<list>
<bean parent="Uif-KeyLabel Pair" p:key="0l" p:value="Option 1"/>

</list>

</ property>
</ bean>
</ property>

</ bean>

129

Fields and Content Elements

Below shows the select control allowing multiple values to be selected.

Figure 6.13. Multi Select Control

Multi Select Control:
SelectControl with multiple="true"
Select1 «

Select 2

Select 3°

Select4 ~

The select control supports two custom properties. The first is the multiple property which is a boolean
indicating whether selection of more than one valueis allowed (set to true by the 'Uif-Multi SelectControl'
bean). The second property is named size and configures how many options should be visible to the user
without using the arrow. This dictates the vertical size of the control. As an example the select control
above was set to 4.

KIM Group

The KIM Group control is not an actual different type of HTML control. Instead, it is a wrapper for the
text control that provides additional functionality related to selecting a KIM group. The KIM group and
KIM user entities are used often in Rice enabled applications; therefore, these controls are provided to
simplify the configuration.

The group control adds a quickfinder (lookup icon) to thetext control that is configured to invoke the KIM
group lookup. The lookup is configured to return the group id, namespace, and name. The namespace and
name fields can then be displayed as data or input fields, and the group id will be added as a hidden.

To usethe KIM group control abean with parent of 'Uif-KimGroupControl' should be given. The property
that backs the input field for which the control is configured is assumed to hold the group name. As usual
thisis configured using the propertyName property on input field. In order for the control to work properly,
we must then specify the properties that hold the group id and namespace:

<bean parent="Uif-InputFi el d* p: propertyNanme="gr oupNamespaceCode" p: | abel =" Namespace Code"/>
<bean parent="Uif-InputFi el d* p:propertyNanme="groupNarme" p: | abel =" Nane">
<property name="control">
<bean parent="Ui f - Ki nGr oupControl " p: groupl dPropertyNanme="groupl d"
p: namespaceCodePr oper t yNane="gr oupNanespaceCode" / >
</ property>
</ bean>

Notice we are displaying the group namespace in an input field before the group name.

KIM User

The KIM User control is similar to the KIM Group control but instead of a KIM group, it allows us to
find a KIM User. This control does several things for us. Firgt, like the group control, it will configure a
quickfinder for our field that is configured to invoke the KIM User lookup. The lookup will then return
the principal id, principal hame (username), and person name (full name). Also, like the group control, it
will automatically add the principal id asahidden field for us. In addition, it setsup afield query (covered
later onin this chapter) that displays the person name under the control on return from the lookup, or when
tabbing out of the control.

To usethe KIM User control, abean with parent of 'Uif-KimPersonControl' should be given. The property
that backs the input field for which the control is configured is assumed to hold the principal name. As
usual thisis configured using the propertyName property on input field. In order for the control to work
properly, we must then specify the properties that hold the principal id and the person name:

130

Fields and Content Elements

<bean parent=

"Uif-InputField" p:propertyName="principal Nanme" p:|abel ="Person Nane" p:required="true">

<property name="control ">
<bean parent="Ui f - Ki nPersonControl " p: principal | dPropertyName="princi pal | d"
p: per sonNanePr oper t yNanme="per sonNane"/ >
</ property>

</ bean>

It acommon setup to carry the principal id as aprimitive field, with a nested Person object. In these cases,
it is not necessary to have a separate property for the principal name and person name, but instead the
properties on the nested person object can be used. For these cases, the user control provides a simpler
way to configure it by setting the personObjectPropertyName. This is the name of the property that holds
the nested person object.

<bean parent=

"Ui f-InputField" p:propertyName="principal Name" p:|abel ="Person Nane" p:required="true">

<property nanme="control ">
<bean parent="Uif-Ki nPersonControl" p: personCbj ect PropertyNanme="person"/>
</ property>

</ bean>

Below shows the user control with the person name displayed:

Figure6.14. KIM Group Control

Recap

* Member

eric %

A control isatype of content element that allows the user to input data through the HTML form

A control has an initial value that comes from a model property, and can then be changed by the user
or script on behalf of the user

Whentheformissubmitted, thevaluefor each control issent asarequest parameter, wherethe parameter
name is the taken from the name attribute and the value is the actual control value

Controls are associated with an input field which holds a pointer to the property from which the control
value will be pulled

HTML controls have different types which are represented by different control componentsin KRAD

The Checkbox component is used to render an HTML input of type 'checkbox'. A checkbox is used
to toggle avalue (typically a boolean property with true or false values)

The Fi | e component is used to render an HTML input of type 'file'. This allows the user to select a
filefrom thelocal file system that will be uploaded to the server. The backing property for afile control
must be of type org.springframework.web.multipart.MultipartFile

The Hi dden component is used to render an HTML input of type 'hidden’. This control is not visible
to the user and therefore cannot be changed directly by the user (only by script)

The Text component is used to render an HTML input of type 'text'. Thisrenders asingle line text box
where the user can type avalue. This control supports the following options:

131

Fields and Content Elements

» size— The horizontal display size of the text box

« maxLength — The maximum number of the characters the user can enter (corresponding to the length
of the value)

* minLength — The minimum number of characters that are required for the value
« datePicker — A nested date picker widget that allows the user to select a date from a calendar

« watermarkText — Text that will appear in the control when thereis no value. Thisis used to help the
user know the format for the value

 textExpand — A boolean that indicates whether the text expand widget should be enabled for the
control. This allows the user to click an icon and get an expanded text box

The UIF provides base beans that promote standard sizes for small, medium, and large text controls.
These include 'Uif-Small TextContral', 'Uif-MediumTextControl', and 'Uif-LargeTextControl'

The UIF also provides the bean 'Uif-DateControl* which is a text control with the date picker widget
enabled. Furthermore the bean 'Uif-Currency TextControl' can be used when the value is a currency

The TextArea component renders an HTML text areatag. This is a multi-line text box used for long
values. The text area components support the rows and cols properties, which determine the vertical
and horizontal display size of the control

The Spinner component rendersasan HTML input of type 'text' that is decorated with thejQuery Spinner
plugin. This allows the user to increment or decrement the value using a arrows rendered within the
text box

Multi-Value controls are controls which can present multiple values for selection and possibly allow
multiple values to be submitted for asingle field

When creating a multi-value control we must specify the options that should be available. These are
built by configuring instances of the Rice KeyValue interface (ConcreteK eyV alue implementation)

KeyValue objects can be created in XML by using the bean 'Uif-KeyL abel Pair'
Thelist of KeyValues are associated with a control using the opt i ons property

Instead of specifying the options directly in the XML, we can create a class of
type org.kuali.rice.krad.keyvalues.KeyValuesFinder and implement the method List<KeyValue>
getkeyVaues(). This class is then configured on the input field using the property
opti onsFi nder C ass (or an object can be injected using the optionsFinder property)

The UIF provides a special key value finder org.kuali.rice.krad.uif.control.UifKeyValuesFinder that
alows conditional key values to be built based on the model

The CheckboxG oup component is a multi-value control that presents the options as a set of
checkboxes

The checkbox group control supports a delimiter which will be rendered between each checkbox. The
UIF provides two beans with a delimiter set: ‘Uif-Horizontal CheckboxesControl' (space delimiter) and
‘Uif-Vertical CheckboxesControl' (HTML break delimiter)

Checkbox group controls allow multiple values to be selected. Therefore the backing property must be
alListtype

132

Fields and Content Elements

e The Radi oG oup component is similar to the checkbox group, with the exception of only alowing
one value to be selected

» TheSel ect component isamulti-value control that presents the options as a dropdown (arrow in the
text box that can be clicked to see the options)

» Select controls are created using the bean 'Uif-DropdownControl' for allowing a single value to be
selected or the bean 'Uif-Multi SelectControl’ for allowing multiple values to be selected

e The select control supports the si ze property which controls the number of options that are visible
without clicking the arrow

» The Kl M& oup control isaspecial text control that is configured for inputting KIM group names

* TheKl MJser control isaspecial text control that is configured for inputting KIM users. It adds things
such as a quickfinder and field query

Disabling Controls and Tabbing

Besides the specific properties offered by the various controls, all control components inherit a couple of
properties from org.kuali.rice.krad.uif.control.ControlBase. Thefirst of theseisthet abl ndex property.
This property is an int type that is used to populate the tablndex attribute on the corresponding control
element tag. Thisis of course used by the browser to set the tabbing order between the form controls.

By default, the framework sets all tab indexes to 0. This means the tabbing will follow the natural order
of the page (the order the controls are laid out on the page). However, if needed a specific tab order can
be created by setting the tab index property for each control.

Theother property supported on all controlsisthedi sabl ed property with type Boolean. Thevaluegiven
for this property will be set as the attribute value for the disabled attribute of the corresponding control
element. Thisindicates to the browser that the user should not be allowed to interact with the control.

Similar to other properties, we can statically set thevalueto 'true’ or 'false’ inthe XML, or use an expression
to conditionally disable the control:

<bean parent="Uif-InputFi el d" p:propertyName="fruitName">
<property name="control ">
<bean parent="Uif-Text Control" p:disabled="@foodGoup ne 'Fruit'}"/>
</ property>
</ bean>

In this example, we are disabling the text control for 'Fruit Name' if the food group field is not 'Fruit'.
The following is an example text control that isin the disabled state:

Figure 6.15. Disabled State Control

Field Label
Disabled

Disabled or Read Only

Animportant UX issueiswhether to disable acontrol, or make the control read only. Both display
the current value and prevent the user from changing it. Generally, a disabled control is used
to temporarily disallow interaction based on a condition. It might be the result of a refreshed

133

Fields and Content Elements

component based on a change to data. Read only is often used to display a state that cannot be
changed based on the current data (for example user permissions, or a state that the user cannot
modify).

Recap

 All controls have thet abl ndex property which can be used to implement a custom tab order (Note
that this is not recommended, though, if not set, the framework will set the tab indexes based on the
natural order of the page)

 Controls aso support the di sabl ed property. This is a boolean that will disable the control so that
input isnot allowed (the control isstill rendered). Like most properties, the disabled property can contain
an expression to conditionally disable the control

Hooking up Lookups and Inquiries

The input field component also provides a couple of widgets we can configure that will help the user
with datainput. The first of these is the fieldLookup property which is a nested widget component. This
widget component is called a Quickfinder. Quickfinder is aterm that was adopted in the KNS framework
to represent the icon next to a control that can be used to bring up alookup screen, search for avalue, and
return that value to the field. In KRAD, the quickfinder widget holds all the configuration for rendering
the icon along with the lookup request it makes.

All the options for quickfinder are covered in Chapter 8, but we will go over the essential ones here. To
understand these widget properties, we need to know a little bit about the lookup API. Essentially, this
is arequest based APl where communication is done via request parameters, of which the following are
required:

dat aObj ect Cl assNane — Lookup views (a specia 'type' of view) are associated with a data object
class. This is the class for the data object the search will be performed on. After the bean container is
loading, an indexing process is performed that maps data object classes to configured lookup views (see
'View Type Indexing' in Chapter 13). Therefore, instead of passing in the unique view id to specify the
view we want, we can pass in the data object class name.

fi el dConver si ons — The purpose of using the lookup is to search for a particular value and return
that value to the form being completed. In order for the lookup framework to return the field back to us,
we must specify the name of the field on the data object class whose value we need, and the name of
the field on the calling view. Furthermore, we can choose to have the lookup return additional fields that
populate other form fields or informational properties (see 'Field Queries and Informational Properties).
These pairs of fields are known as 'field conversions.

The fieldConversions property is a Map. Each entry represents afield that will be returned back from the
lookup, with the entry key being the field name on the data object class, and the entry value being the field
name on the calling view. It is helpful to think of this as a from-to mapping. Pulling from the data object
field (map key) to the calling view field (map value).

To configure a quickfinder on an input field, we have two options. First, we can create an inner bean with
parent of 'Uif-QuickFinder' for the input field's fieldLookup property:

<bean parent="Uif-Input Fi el d" p: propertyNanme="docunent. nunber">
<property name="fi el dLookup">

<bean parent="Ui f- Qui ckFi nder" p:dataObject Cl assNane="edu. sanpl eu. travel . bo. Travel Account"
p: fi el dConver si ons="nunber: docunent . nunber"/>

</ property>

</ bean>

134

Fields and Content Elements

In this example we have configured a quickfinder that will invoke the lookup view for Travel Account.
After theuser performsasearch and selectsarow (using the provided return valuelinks), the corresponding
number property value for the selected row will be returned and set in the document.number property for
our view (the field for which the quickfinder is configured). Notice in this example we are using the map
shorthand configuration for the fieldConversions property.

An aternative configuration is to set the dataObjectClassName and fieldConversions properties directly
using nested notation. Note this only works if the bean we are inheriting from (or one of its parents has
configured) the parent property, else a NullPointerException will be thrown:

<bean parent="Uif-InputFi el d" p:propertyNanme="docunent. nunber"
p: fi el dLookup. dat aCbj ect O assNane="edu. sanpl eu. travel . bo. Travel Account"
p: fi el dLookup. fi el dConver si ons="nunber : docunent . nunber"/>

Initializing Nested Components

It isacommon practice in the UIF for base beansto initialize and nest components. This allows
child beansto simply configure the needed properties on the nested component without having to
initialize the component itself. For example, the 'Uif-InputField' has the following property tag:

<property name="fi el dLookup">
<bean parent="Ui f- Qui ckFi nder"/ >
</ property>

If this was not provided, child beans would need to populate the fieldLookup property using a
nested bean instead of using the directed nested property notation.

Below we see the quickfinder icon (to the right of the text control) and the corresponding lookup view
that is presented when the user clicksthe icon:

Figure 6.16. Quickfinder Hook

Figure 6.17. Quickfinder Hook Example

(=)
Travel Account Lookup
i @ -
Javica .

Subisbdized Bercont:

Travel Fiscal Officer 1: a
||||| | Account Type Code:

search clear valuss

Another widget provided by input field and data field components is the Inquiry component. The inquiry
is used to display additional information about the current field value, generally the associated database
record.

135

Fields and Content Elements

There are two different flavors of the inquiry, the 'standard' inquiry and the 'direct’ inquiry. The former
refers to an inquiry for a field that is read only (user is not alowed to change value). This inquiry
is configured with the fi el dl nqui ry property on data field. A direct inquiry refers to an inquiry
of afield that is editable (has a control for changing the value). This inquired is configured with the
fiel dDirectl nquiry property and is available on input fields only.

Both inquiries point to the Inquiry widget component. This widget holds the configuration for invoking
the inquiry view once the inquiry is triggered (alink for the standard and an icon for the direct). Inquiry
views are similar to lookup views. They are associated with a data object class and can be requested by
passing the data object class name. However, for inquiries we need to pass a value from the calling view
to the inquiry view, instead of the other way around (asisthe case for lookup views). These are the values
that will be used to retrieve the data for the inquiry view.

This configuration is done using the i nqui r yPar anet er s property on the Inquiry widget. Like the
Lookup's fieldConversions property, this holds a map where each entry is a mapping of fields between
the two views. The entry key is the name of the field in the calling view from which the value will be
pulled, and the entry key is the name of the field in the inquiry data object class for which the value will
be populated. Again we can think of this as afrom-to mapping.

To configure the standard inquiry we use a bean with parent of 'Uif-Inquiry'. For the direct inquiry, we
use a bean with parent of 'Uif-Directinquiry'.

<bean parent="Uif-InputFi el d" p:propertyName="docunment. nunber">
<property name="fiel dl nquiry">
<bean parent="Uif-Inquiry" p:dataCbjectC assName="edu. sanpl eu. travel .bo. Travel Account"
p: i nqui ryPar anmet er s="docunent . nunber : nunber "/ >
</ property>
<property name="fiel dDi rectlnquiry">
<bean parent="Uif-Directlnquiry" p:dataCbjectC assName="edu. sanpl eu. travel.bo. Travel Account"
p: i nqui ryPar anmet er s="docunent . nunber : nunber "/ >
</ property>
</ bean>

We also have the option of using the nested property notation instead of using inner beans.

Below shows an example inquiry (standard inquiry for read only field), followed by an example direct
inquiry

Figure6.18. Standard Inquiry, Read Only

Direct Inguiry
Inquiry Click the button to perform an inquiry

al (1]

Automatic Lookups and Inquiries

For many instances where alookup or inquiry is desired, there is an underlying relationship in the model.
In Chapter 3, we learned how to represent one-to-one relationships in code (with nested data objects) and
then provide configuration to OJB using a reference descriptor. In Chapter 4, we learned about the data
dictionary and the ability to declare relationship definitions for our data object entry. These sources of
metadata are then consumed by the UIF to automatically configure lookups and inquiries for our fields!

For each data or input field, the framework will attempt to find a model relationship if two conditions are
met: one, we have not manually configured the lookup and inquiry; and two, the render flag for both is not
set to false. Setting the render flag to false on the fieldL ookup or fieldinquiry indicates to the framework
that we do not want them rendered regardless of the existence of arelationship.

136

Fields and Content Elements

The basic strategy for determining the existence of arelationship is as follows:
1. Determine a parent data object class for the fields property.

2. Query OJB metadata to get a class descriptor for the data object class, get any reference descriptors
the property participatesin.

3. Query data dictionary metadata to get data object entries for the data object class, get any relationship
definitions the field participatesin.

4. Of dl the relationships found in steps 2 and 3, filter out those where the target class does not support
the function (lookup or inquiry). For example, if the target data object classis Travel Account, but there
is no lookup view associated with that data object class, we do not consider that relationship.

5. Of the relationships remaining from step 4, choose the relationship which has the lowest cardinality
of foreign keys.

6. If arelationship was not found and the property name is nested, split the property name using the first
part of the path as the parent property and the remaining as the property name. Repeat the process
looking for arelationship. Note thisis similar to the process of finding a back data dictionary entry.

This is a complicated process and not all details are important as a user of KRAD. However, the first
step is critical to understand and deserves more explanation. The determination of the parent data object
class drives the metadata picked up by the framework and therefore where the rel ationships will be found.
Recall thethree partsto the fields binding path: the object path, binding prefix, and binding name (property
name). The framework will use the object path and prefix as the path to the parent object (everything
except the property name). Then it will get the type for the property from the model which is used as the
data object class.

Data Object M etadata

Many areas of the UIF (including the above widgets) use metadata from the OJB repository
and Data Dictionary together. They use a service named DataObjectM etaDataService which is
afacade for both sources of metadata.

A couple of things should be noted about the automatic lookups and inquiries. First, if no relationship is
found, the render flag on the widget will be set to false. Second, recall for the lookup and inquiry, we
need to configure field mappings (fieldConversions and inquiryParameters). The framework builds these
mappings from the fields that participate in the relationship.

Recap

» The input field component provides the quickfinder widget to allow the user to search for a value to
enter. Thisis configured using the fieldL ookup property

» The quickfinder can be configured by creating an inner bean with parent 'Uif-Quickfinder' or setting
options using the nested notation (fieldL ookup.property)

» Thebasic options for a quickfinder are:
« dataObjectClassName— Thefull classnamefor the data object whose lookup view should be rendered

« fieldConversions — A mapping of properties on the lookup data object to properties in the calling
view. When aresult row is selected from the lookup, the values for the configured lookup data object
fields will be returned to their associated view properties

137

Fields and Content Elements

* |lookupParameters— A mapping of propertiesfrom the calling view to search fields for the data object.
When the quickfinder is selected, the values for the configured view properties will be pulled and
populated into the search fields

» Theinput field also provides the Inquiry widget. This alows the user to see detail associated with the
current value. This comesin two flavors, asimple inquiry (presented as alink) for read only state, and
adirect inquiry (used by clicking an icon) to inquire on the current value of a control

 The inquiry widget is configured using the input fields fieldlnquiry and
fiel dDi rect| nquiry properties

» Theinquiry can be configured by creating an inner bean with parent 'Uif-Inquiry" or 'Uif-Directinquiry’.
We can also use nested notation to set properties (fieldinquiry.property or fieldDirectInquiry.property)

» Thebasic optionsfor aninquiry are:
 dataObjectClassName — Full class name for the data object whose inquiry view should be rendered

* inquiryParameters— A mapping of properties from the calling view to properties on the inquiry data
object. When the inquiry is selected, the values for the view properties will be pulled and sent with
the inquiry as request parameters for the corresponding inquiry properties. This generally becomes
the critierafor the record selection (and is generally the primary keys for the data object)

 If aquickfinder or inquiry is not explicity configured, the framework will attempt to hook these up
automatically. Thisis done using the DataObjectM etaDataService which will find relationships for the

property

» We can turn off automatic quickfinders or inquiries by setting the render property to false

Input Field Messages

For views that are not used often (such as a student page) or complex or unclear fields, it is helpful to
provideinstructional text within the field. These messages provide additional information that hel psclarify
the intended use.

Theinput field component has two types of standard messages that can be configured. Thefirst of theseis
known asinstructional text. Instructional text is used to indicate moreinformation about filling out afield
or how to complete atask using the Ul elements. An example of thisis"Completethisfield only if applying
for aoneyear loan". Instructional text is specified for an input field using the instructional Text property:

<bean parent="Uif-InputFi el d" p:propertyNanme="oneYear Ter n{
p:instructional Text="Conplete this field only if applying for a one year |oan"/>

The instructional text appears by default above the control and has a style class named 'uif-
instructional Message' applied. If the label placement is top, the instructional text will appear between the
label and the control.

Another type of message that can be configured on the input field is called constraint text. Constraint text
givesthe user information about the required format of the data that must be entered, or other information
necessary for entering the data correctly. A constraint message can be configured using the constraintText
property as shown here:

<bean parent="Uif-InputFi el d* p: propertyNanme="oneYear Ternf' p:constrai nt Text="Must be formatted as 3 digits"/>

The constraint text appears by default under the control and has a style class named 'uif-constraintM essage
applied.

138

Fields and Content Elements

Below shows an input field with instructional and constraint text.

Figure 6.19. Input Field with Contratint Text

Bank Id: | Fukdl 4

Recall from Chapter 4 these messages can also be configured on the dictionary attribute definition. If an
attribute definition is found for the field, the instructional and constraint messages will be copied (unless
overridden).

Recap

Input field provides message properties that can be specified to help clarify the purpose of aform field

The first type of message is known as instructional text and is configured with the
i nstructi onal Text property

Instructional text is meant to give information about how to complete afield or atask

By default the instructiona text appears above the input field control and has a style class of 'uif-
instructional M essage’

The other type of message is known as constraint text and is configured with the const r ai nt Text
property

Constraint text gives information about the format or other constraints for an inputted value

By default the constraint text appears below the input field control and has a style class of 'uif-
constraintM essage'

These messages can also be configured on the data dictionary attribute definition and inherited by the
input field

Field Queries and Informational Properties

Next let's take alook at some of the features available for providing the user dynamic information based
on the inputted field data. The information provided can vary based on what is relevant for a particular
field. Generally though, it is similar information as provided by the inquiry view, except we pick acouple
of important fields that are inserted directly into the page field (without the user having to take an action
and bring up alightbox or separate page).

To display dynamic information, first we need to setup placeholders or the properties that will hold the
information. These must be valid properties on the model (however for displaying a custom message, the
form is a great place to create 'dummy' properties). To specify information properties, we configure the
informational DisplayPropertyNames property on DataField. This property isaList type, with each entry
giving the name for a property to display.

<bean parent=

"Uif-InputField p:propertyNane="bookld" p:I|abel ="Book |d"

p: i nformati onal Di spl ayPropertyNanmes="bookTit| e, bookCopyri ght"/>

In this example we have an input field for the book id property, and we want to display the values for the
bookTitle and bookCopyright property with the field.

Informational display properties by default are rendered under the field control (or if read only under the
displayed value, and also if constraint text is present, then they will display below it). They are aways

139

Fields and Content Elements

displayed read only. The value for each property is placed with a span that receives a style class of 'uif-
informationalMessage'. Therefore, we can configure this style to change how the properties are displayed.
The default style uses the CSS display block style, making each property value appear on anew line.

Below gives a picture of thiswith two informational properties being displayed.

Figure 6.20. Two Informational Properties Example

Ajax Field Query
Displays additional information retrieved
a3

Field Attribute Query

Each time the field is rendered, the information display property values will be displayed. Thisis useful,
however, by itself itisnot 'dynamic'. That is, if the user then changes the value, the information properties
will not change to reflect the update. To make this happen, we need to associate a piece of functionality
called attribute query with our field.

An attribute query is represented by the class org.kuali.rice.krad.uif field.AttributeQuery. This is not a
component, just a classthat configures behavior that can be added to theinput field component. Basically,
this class provides propertiesfor configuring aquery to retrieve these information properties. It hassimilar
concepts to the lookup (quickfinder widget) with a more targeted purpose. There are two mechanisms for
configuring a query. The first involves configuring the necessary properties to alow the framework to
automatically perform a query. This involves the following attribute query properties:

dat aObj ect C assName — Name of the data object class the query will go against. The class given
must be mapped to the database (with ORM metadata) to support the automatic lookup. This functionsthe
same as the dataObjectClassName for the lookup view (or quickfinder widget).

qguer yFi el dMappi ng — A map type that holds the mappings of properties from the calling view to
properties on the data object class. Each entry represents one property mapping. The map key is the
property nameinthecalling view, and the map valueisthe property name on the dataobject class. Thiswill
usually include the property name of the field for which the query is configured (since we want to query
based on the value the user has inputted). We might need to passin additional properties from the view to
complete the query. This property functions similarly to the inquiryParameters on the inquiry widget.

Note this mapping is used to build criteria for the query. The values for the calling view properties are
retrieved and used to restrict the retrieved data object records based on the mapped data object fields. For
example, suppose we have the following query field mapping: "document.rentedBookl d:bookld" and the
value of the document.rentedBookld on our view is'3". When the query is performed the following clause
will be created "where bookld = '3" (note the actual SQL is not constructed by KRAD, but created by
the OJB criteria object).

returnFi el dvlppi ng —A map type that holds the mappings of properties from the data object class
to the calling view. Each entry represents one property mapping. The map key isthe property name on the
data object class, and the map value is the property name on the calling view. We can use this property
to map properties on the data object class back to configured information display properties of the field.
However, it is not limited to that. We can also map properties of the data object class back to properties
that are separate fields (thus filling in the control value for those corresponding fields).

addi ti onal Criteria—A mapthat holds additional criteriafor the query. The criteria specified will
be added to the constructed criteria based on query field mapping. The map key isthe name of the property
on the data object class the criteria should apply to, and the map value isthe value for the criteria. All map

140

Fields and Content Elements

entries are joined using the AND clause. Note, the map value does support query characters as provided
by the lookup framework ('!' — not, '>' — greater than, '<' — less than, *' —wildcard, and so on). In addition
for the map values, we can use expressions (‘@{}").

To hook up an attribute query with an input field we use the fi el dAttri but eQuery property.
We can then create an instance of the attribute query class by creating a bean with parent of 'Uif-
AttributeQueryConfig':

<bean parent="Uif-InputFi el d" p:propertyName="rentedBookl d" p:|abel ="Book Id"
p: i nformati onal Di spl ayPropertyNanes="rent edBookTi t| e, rent edBookCopyri ght" >
<property name="fiel dAttribueQuery">
<bean parent="Uif-Attri buteQueryConfig" p: datalbj ect C assName="edu. sanpl eu. bookst or e. bo. Book"
p: quer yFi el dMappi ng="r ent edBookl d: bookl d"
p: retur nFi el dMappi ng="bookTi t| e: rent edBookTi tl e, bookCopyri ght:rentedBookCopyright"/>
</ property>
</ bean>

In this example we have an input field for the rentedBookld property. We then setup a query that
will go against the Book data object, passing the value for rentedBookld as criteria for the bookld
property. From the resulting record, the bookTitle and bookCopyright property values will be copied to
the rentedBookTitle and rendedBookCopyright properties. These are configured as informational display
properties, therefore the updated values will display under the control for rentedBookl d.

Note the framework takes care of triggering the query (with the 'onblur' event), performing the query,
and updating the mapping return fields al client side (without a page post). It is expected the field
attribute query will return only one result. If more than one record is retrieved, the first record of the
hit list will be used. In the case of no matching records, a message will be rendered stating '{field
label} not found', where {field label} is the configured label. This message can be disabled by setting
fieldAttributeQuery.renderNotFoundMessage to false. In addition, attribute query contains a property
named returnM essageText that can be used to configure a message that will display with the results, or a
custom message in the case where no results are found.

The attribute query class also allows us to hook up a custom query that will be invoked to retrieve the
additional information. In this case, the devel oper writesthe actual code to perform the query (call another
service or whatever) and return the results. The framework will then take care of triggering the query and
handling the results (updating the values).

Thereisagreat deal of flexibility for invoking acustom query method. L et's start with the way that requires
theleast amount of configuration. First, we need to know alittle bit about the framework code, in particular
one service. The UIF invokes a service of type org.kuali.rice.krad.uif.service.ViewHel perService to
perform building of the view and many other Ul related functions. An implementation of this service
(ViewHelperServicelmpl) carries out this processing. The framework allows us to extend this service and
declare that one or more views should use the custom view helper. Thisis our gateway for code-based
customizations. So let's do it! The following sets up a custom view helper service:

package edu. nyedu. sanpl e;
public class CustonVi ewHel per Servi cel npl extends Vi ewHel per Servicel npl {

}

Next we configure our view to use the custom view helper service. This is done by setting the
viewHelperServiceClass property on the view component (the View component is covered in complete
detail in Chapter 9):

<bean id="MView' parent="Uif-FornVi ew' >

<property name="vi ewHel per Servi ceC ass" val ue="edu. nyedu. sanpl e. Cust onVi ewHel per Servi cel npl "/ >
</ bean>

141

Fields and Content Elements

Now we have a place to put our custom query method. The signature of this method depends on the query
being performed, but there are afew guidelines:

1. The method parameters must correspond to fields on the view (for example, think of the
queryFieldMapping which is configured for the automatic query, essentially we will be pulling fields
from the view the same way, except passing them as arguments to the method).

2. The method must return a data object instance for which the return properties can be retrieved, or a
list of data objects (in the case of backing afield's suggest property), or an AttributeQueryResult. The
AttributeQueryResult is an object that gets returned back to the client and read to processthe resullts. If
the method returns the data object, the framework will build the result object from that. However, the
result object can be built directly for custom needs.

To understand this better, let's take an example. Wewill create amethod that will perform the same search
as our automatic book query example. The query will go against the Book data object and take in the book
id as a parameter:

public Book retrieveBookByld(String bookld) {
Book foundBook;
/1 do query to find the book

return foundBook;

Now we need to configure the attribute query for the book id input field. To specify the name of our method
that should be called, we use the quer yMet hodToCal | property provided by the AttributeQuery
class. Then we specify the arguments for our method using the quer yMet hodAr gunent Fi el dLi st
property. Note this property functions similarly to the queryFieldMapping, except we are not mapping
properties from the calling view to properties on a data object, but instead to method arguments. The
value for each property configured in the queryMethodArgumentFieldList list is retrieved and passed as
amethod argument in the order listed.

The final step is to configure the returnFieldMapping property. This is the same as when doing the
automatic query. It maps properties on the returned object (returned from the method) to properties on
the view.

<bean parent="Ui f-InputFi el d" p:propertyName="rentedBookl d" p:|abel ="Book |d"
p: i nformational Di spl ayPropertyNanmes="r ent edBookTi t| e, rent edBookCopyri ght">
<property name="fiel dAttri bueQuery">
<bean parent="Ui f-AttributeQueryConfig" p:queryMethodToCal |l ="retri eveBookByl d"
p: quer yMet hodAr gunent Fi el dLi st ="r ent edBookl| d"
p: returnFi el dMappi ng="bookTi t| e: rent edBookTi tl e, bookCopyri ght:rentedBookCopyright"/>
</ property>
</ bean>

Here we configure the attribute query to invoke the 'retrieveBookByld' method. Since this is the only
configuration we gave, the framework assumes this is on the view helper service. Next, we set the query
method argument list as 'rentedBooklId'. This means the value for the rentedBookl d (the backing property
for the field) will be pulled and sent as the first argument to our method. If we added another property; its
value would be passed as the second argument, and so on. Finally, we configure the return field mapping
to pull the bookTitle and bookCopyright properties from the data object returned from our method, and
copy those values to the rentedBookTitle and rentedBook Copyright properties on the view model.

In addition to calling methods on a custom view helper service, we can choose to call a method within
another class. This could be a static class method somewhere, or a method on another service configured

142

Fields and Content Elements

in the Spring container. To configure an alternate class, we use the quer yMet hodl nvoker Confi g
property on AttributeQuery.

Thetypefor this property is org.kuali.rice.krad.uif.component.M ethodl nvokerConfig. Thistypeisusedin
various places within KRAD to configure a method invocation (for exampl e setting component properties
through code which is covered in Chapter 10). The class that contains the query method can be specified
using one of the following three properties:

t ar get C ass — Fully qualified class that contains the method. A new instance of this class will be
created before the method is invoked.

t ar get Obj ect — Object instance the method should be invoked on. Thisis useful for referencing other
Spring beans such as services.

st ati cMet hod — This configures a static method invocation and includes the class and method name
(e.g. 'edu.myedu.sample.QueryUtils.retrieveByld").

When using targetClass or targetObject, the method name can be configured by using the
gueryMethodToCall property on AttributeQuery, or by setting the t ar get Met hod property on
MethodinvokerConfig. If needed, the argument types can be specified using the ar gunment Types
property (in the case of overloaded methods), or even more information (such as generics and so on) can
be configured using the met hodObj ect property.

Wow! That'salot of options. Let's ook at a couple of examples.

First let's assume we have the following static method:

package edu. nyedu. sanpl e;
public class QueryUtils {
public static Book retrieveBookByld(String bookld) {
Book foundBook;
/1 do query to find the book
return foundBook;

Our query configuration would then be as follows:

<property name="fiel dAttri bueQuery">
<bean parent="Uif-AttributeQueryConfig"
p: quer yMet hodl nvoker Confi g. st ati cMet hod=
"edu. myedu. sanpl e. QueryUtils.retri eveBookByl d"
p: returnFi el dvappi ng="bookTi t| e: rent edBookTi t| e,
bookCopyri ght : rent edBookCopyri ght"/ >
</ property>

Next assume we have a service that has our retrieveBookByld method, and we have the following Spring

bean:

<bean i d="BookServi ce" cl ass="edu. nyedu. sanpl e. BookServi cel npl "/ >

Our query configuration would then be as follows:

<property name="fiel dAttri bueQuery">
<bean parent="Uif-AttributeQueryConfig"
p: quer yMet hodToCal | ="r et ri eveBookByl d"
p: returnFi el dvappi ng="bookTi t| e: rent edBookTi t| e,
bookCopyri ght : rent edBookCopyri ght " >
<property name="queryMet hodl nvoker Confi g. t ar get Cbj ect ">
<ref bean="BookService"/>

143

Fields and Content Elements

</ property>
</ bean>
</ property>

Finally the case of a non-static class method:

package edu. nyedu. sanpl e;
public class QueryUtils {
public Book retrieveBookByld(String bookld) {
Book foundBook;
/1 do query to find the book
return foundBook;

Our query configuration would be as follows:

<property name="fiel dAttri bueQuery">
<bean parent="Uif-AttributeQueryConfig"

p: quer yMet hodToCal | ="ret ri eveBookByl d"
p: quer yMet hodl nvoker Confi g. target Cl ass=
"edu. myedu. sanpl e. QueryUtils"
p: returnFi el dMappi ng="bookTi t| e: rent edBookTitl e,
bookCopyri ght: rent edBookCopyri ght"/>

</ property>

Attribute Query Service

If you areinterested in learning more about the framework code supporting attribute queries, take
alook at org.kuali.rice.krad.uif.service AttributeQueryService and itsimplementation. All query
calls (from the controller) go through this service

Field Suggest Widget

The attribute query classisalso used for configuring the Suggest widget. The Suggest widget decoratesthe
standard text control to show the user options asthey are inputting text (al so known as auto-compl ete). The
Suggest widget itself provides configuration on the client side behavior (such as delay, minimum number
of charactersfor query, and so on). Thiswidget along with othersis covered in Chapter 8.

Theattribute query for thefield Suggest widget is configured much likethefield query. Theonly difference
isinstead of returning multiple fields from one record, we want to return values for one field only, but
potentially multiple records. These make up the optionsthe user seeswhen inputting avalue (similar to the
options provided by multi-value controls). In addition, the framework assumes that property from the data
object class maps back to the field we configured the suggest with, therefore, we do not have to specify
the returnFieldMapping.

We configure the Suggest widget using the input field's suggest property. This is the nested Suggest
widget, which contains a nested AttributeQuery in the suggestQuery property. The base bean for the
Suggest widget is'Uif-Suggest'. We again have the two mechanisms for configuring the query (automatic
with dataObjectClassName, or build our own query and specify queryMethodToCall). After we have
configured the data object or the query method, we can then specify the property name for the data object
classthat provides values using the suggest . val uePr opert yNane:

<bean parent="Uif-InputField" p:propertyName="rentedBookTitle">
<property nane="suggest">
<bean parent="Uif-Suggest" p:val uePropertyNane ="bookTitle"

p: suggest Query. dat aObj ect Cl assNane="edu. nyedu. sanpl e. Book"/ >

</ property>

144

Fields and Content Elements

</ bean>

Since our query can now return multiple records, we should sort them so the field values appear in
ascending order to the user. This can be accomplished by specifying the property names to sort by with

the attribute query sor t Pr oper t yNanes property:

<property name="suggest">
<bean parent="Ui f-Suggest" p:val uePropertyNanme ="bookTitle"
p: suggest Query. dat aObj ect Cl assNanme="edu. nyedu. sanpl e. Book"
p: suggest Query. sort PropertyNanmes="bookTitle"/>

</ property>

In this example we are sorting the resulting Book data objects by their bookTitle property. The
sortPropertyNames property is a List type, therefore multiple columns to sort on can be given (using a

commafor the shorthand notation, or the Spring list tag).

Pathsfor Properties Configured with a Data Field

Throughout the past few sections we have discussed many properties on data and input field
that specify other model properties (such as the property mappings, informational properties,
additional/alternate display properties). Just like the property configured for thefield itself, these
are properties on the model the framework needs to pull (possibly set) a value from. Also just
like the field property, we need to know the full ‘path’ to the property from the root model object
(generally the form object). In the section on data binding we discussed how tedious it would
be to specify the full path for each field property (and in some cases like collection fields not
even possible). The sameistrue for these other properties. Luckily, KRAD helps out with this by
automatically adjusting the paths for these property names. It does this by looking at the binding
info object for the field the various properties are associated with, and assuming they have the
same hinding object path and prefix (if given).

For example, |et's assume we have the following input field:

<bean parent="Uif-InputField" p:propertyNanme="bookl d"
p: readOnl yDi spl aySuf fi xPropertyNane="bookTitle"
p: i nformati onal Di spl ayPropertyNanes="bookTi t| e, bookCopyri ght">
<property name="fi el dLookup">
<bean parent="Ui f- Qui ckfi nder"

</ bean>

Recap

p: dat aObj ect G assNane="edu. nyedu. sanpl e. Book"
p: fi el dConversi ons="i d: bookl d"/ >
</ property>

Now assume this field belongs to a group where fieldBindingObjectPath is set to
‘document.newBook'. Thus the binding path for our field will be 'document.newBook.bookld'.
The paths for the additional display property, informational display properties, and quickfinder
field conversions will then be adjusted by prefixing 'document.newBook' to the path (eg
‘document.newBook.bookTitle"). If a property should not be adjusted (for example, using a
dummy form property), it can be prefixed with the string ‘#form." (eg '‘#form.holdBooklId'). When
the framework finds this, it will take the prefix off and do no further adjustment.

* Field queries provide dynamic information for an inputted value

e To support field queries the data field property i nf or mat i onDi spl ayPr oper t yNanes can be
configured with alist of property names whose values should be displayed with the field

145

Fields and Content Elements

» When the field is rendered, values for informational display properties will be rendered as well.
By default, each value appears on a line below the control and receives a style class of 'uif-
informational M essage

» Toupdateinformation display properties dynamically (immediately after the user inputs or changesthe
field value) we can build afield attribute query

e Field queries are supported by the class org.kuali.rice.krad.uif.field.AttributeQuery. This holds
configuration for performing a query and mapping return values. Supported properties include;

* dataObjectClassName — Name of the data object class the query will be performed against. When
specified the framework will build a query against the data object

« queryFieldMapping - A map type that holds the mappings of properties from the calling view to
properties on the data object class. This becomes part of the query criteria

* returnFieldMapping — A map type that holds the mappings of properties from the data object classto
the calling view. The properties for the calling view may beinformational display properties, hidden
properties, or even other displayed field properties

« additional Criteria— A map that holds additional criteriafor the query.
» A field query is configured for an input field using thef i el dAt t ri but eQuery property

» An attribute query can be configured to invoke a custom method that will perform the query (such as
a service method). The basic steps for doing so are:

e Setquer yMet hodToCal | property to the name of the method that should be invoked (by default
this is assumed to be on the ViewHelperService implementation, for methods on other classes the
quer yMet hodl nvoker Conf i g property can be configured)

 Specify the method argument mapping with the quer yMet hodAr gunent Fi el dLi st property.
Thistakes alist of properties on the view that will map to method arguments in the order listed

* Finally, asin the case of the automatic query, configure ther et ur nFi el dMappi ng property to
map properties from the returned data object to properties on the view

» The Suggest widget performs an attribute query to show the user valid options as they are inputting
avalue. The widget is configured for an input field using the field's suggest property

e Thequery for afield's Suggest widget is completed in a similar manner to the field attribute query, the
only difference being the property return. Instead of expecting one data object record to be returned
(from which multiple property values can be picked), the query can return one or more records, from
which we only care about one property (the property that is associated with the field's property)

» To configure the property on the returned data objects that maps to the input field we set
val uePr opert yName

* Query results can be sorted by settingthesor t Pr oper t yNanes property to the list of propertiesthe
sort should be performed on (note only ascending sort is supported at thistime)

Other Data and Input Field Properties

Y ou have likely realized by now the data and input field components are very busy! But we are not done
yet. There are afew more properties that can be used with these components:

146

Fields and Content Elements

readOnlyHidden — A Boolean property that indicates the value for the field should be written out as a
hidden when the field's state is read only. Thisis useful for cases where the user is not allowed to change
the value, but the value can be changed with script and thus needs to be posted with the form to update
the value server side.

hiddenPropertyNames — Specifies a list of property names whose values should be rendered as hidden
elementswith thefield. Each property specified will produce a hidden element. A common use case of this
isafield that does not hold the primary key (name or alternate key) and thus we want to keep the primary
key as ahidden. These hidden property names can be populated from alookup return or afield query. The
user control discussed earlier uses this functionality. The principal name is given in the text control and
the principal id isahidden. When aquery or lookup is performed, the name will display in the control and
the hidden id will be populated. Therefore on submit the primary key field will be populated on the model.

escapeHtmlInPropertyValue — A Boolean that indicates whether HTML markup should be escaped from
the display property value. If HTML (or XML) content needs to be displayed in the value and not
interrupted when rendering the page, this property should be set to true.

customV alidatorClass, validCharactersConstraint, caseConstraint, dependencyConstraints,
mustOccurConstraints, simpleConstraint (Input Field Only) — These are constraint properties that
configure validation for the input field. These are interrupted to perform client side validation along with
the ability to validate server side. Note these can also be inherited from an attribute definition. Chapter 4
covers each one of these constraint types.

performUppercase (Input Field Only) — A Boolean that indicates whether the user inputted value should
be uppercased. If set to true the value will be uppercased client side with the onblur event.

Recap

» DataFields support the following additional properties:

* readOnl yH dden —Boolean that indicates the property value should be written out asahidden in
addition to being displayed when the field is read-only

e escapeHt m | nPropert yVal ue — A Boolean that indicates whether HTML content (markup)
within the property value should be escaped

e custonVal i datord ass, validCharactersConstraint, caseConstraint,
dependencyConstrai nts, mnustQccurConstraints, sinpleConstraint (Input
Field Only) — These are constraint properties that configure validation for the input field

e perfor mJpper case (Input Field Only) — A Boolean that indi cates whether the user inputted value
should be uppercased

Action and Action Field

So far in this chapter we have looked at the data and input field components, which alow the user
to perform data 10 with our application. We will how move on to other types of content element
and field components that are offered by KRAD. The field component behaves the same as it did
before, essentially being a wrapper for the content element and providing a label. The various field
implementations essentially provide convenience methods for setting properties on the nested element
component. Therefore, we just need to focus on the different content elements available to us.

Thefirst element wewill ook at isthe Action component. This component allowsthe user to take an action
on the view, such as submitting the data, requesting a new page, or invoking a server side or client side
process. There are afew different ways of representing the action in the Ul to the user. The most common

147

Fields and Content Elements

way is through an HTML button element (button tag). We can also choose to invoke the action with an
image (HTML input element of type 'image’). Finally, we can use a link to invoke the action (HTML a
tag using script).

In the UIF the action component is represented by the class org.kuali.rice.krad.uif.field.ActionField. This
class contains propertiesthat configure the action that will be taken when the component isinvoked, along
with the presentation of the action within the view.

To configurethe action that will be taken, we have two strategies possible. Thefirst isto use standard form
posting that will submit the form and make a server side call. These callswill get processed by the Spring
MV C framework, which will invoke a class referred to as the Controller. In Chapter 12 we will cover the
detailsfor building controllers and other web layer artifacts, but for our purposes now we can think of this
as aclass with methods that get invoked to handle arequest from the client. The request URL (which was
constructed from the HTML form post URL) is used by Spring to determine the controller classto invoke.
Therefore, on our individual action components, we just need to configure the controller method to call.
Thisis done using the action component property methodToCall. The value given will be sent along with
the action request and used by Spring to determine the controller method to invoke.

The other possible action type is invoking a JavaScript method. This would be script developed by the
application and included in the view. The script may then perform some client side operation and finish,
or perform some operation and then in turn make a server call. When making the server call, the script
would be responsible for setting the sever side method to call. Invoking client side script is done by setting
the actionScript property. Note the value given for this property is assumed to be script code, and is bound
with the onclick event for the corresponding HTML element.

For example, we could give avaluelike p:actionScript="alert('Hello World!");" which would simply show
the alert dialog and finish. We could also invoke amethod that is defined in one of our included script files
(through the view components additional ScriptFiles property): p:actionScript="doCal culateAndPost();".
This would invoke a script method named 'doCal culateAndPost'. Note multiple script statements can be
given within the string: "var i=0;var j=1;doMethod(i,j);".

Now that we know how to configure the action that will occur, how do we create the action component
in XML, and specify how it will appear? Like al UIF components, we just need to know the base beans
we can use, and then create a new bean that inherits from one. The following beans are provided for the
action component:

Uif-Actionimage — Action component that is configured for an image action. That is it will render an
HTML input element of type 'image’. This bean setsthe CSS style 'uif-actionlmage' on the image element.

Uif-PrimaryActionButton — Action component that is configured to render a button. The button element
can include text (the label) along with an image. This bean adds the CSS style 'uif-primaryActionButton'
on the button element.

Uif-SecondaryA ctionButton — Action component that is configured to render a button. This bean sets the
CSS style 'uif-secondaryActionButton' on the button element.

Uif-PrimaryActionButton-Small — Action component that is configured to render a button. This bean sets
the CSS style 'uif-primaryActionButton' and 'uif-small ActionButton' on the button element.

Uif-SecondaryActionButton-Small — Action component that is configured to render a button. This bean
sets the CSS style 'uif-secondaryActionButton' and 'uif-small ActionButton' on the button element.

Uif-ActionLink — Action component that is configured to render alink. The link may contain text and an
image. This bean sets the CSS style 'uif-actionLink' on the link element.

Note the four beans that render a button are the same with the exception of the style class. These four
different style classes give the ability to have different button 'levels' that result in different 'weight' being

148

Fields and Content Elements

applied to the button visually. For example a button the user is expected to use often should be given the
primary level, while once used less often should be given a secondary level (thusit is easier for them to
spot the former). Below the different button levels are shown.

Figure 6.21. Button Levels
Save

Save

Save

Button Rendering

In addition to rendering the HTML button element, KRAD uses the jQuery Button plugin to add
styling and behavior to the buttons. For more information on this plugin visit http://jqueryui.com/
demos/button/.

Let's look at some examples of creating buttons. Besides configuring the action, we generally want to
display alabel for the button (text that isdisplay on the button). To do thiswe set the actionL abel property:

<bean parent="Ui f-PrinmaryActionButton" p:actionLabel ="Save" p: net hodToCal | =" perfor nBave"/ >

In this example we have created an action button with the primary styling that will have alabel of 'Save'.
When the user clicks the button, the enclosing form will be submitted and a method named 'performSave’
will be invoked on our controller. It's that easy!

Along with the button label we caninclude animageicon. Thisisdone by configuring an Image component
that lives on the action component. The image component will be covered later on in this chapter, but we
can create one by simply giving the path to the image using the source property on Image. The image
component is nested on the action component with the actionlmage property and we can create a new
image component using the 'Uif-Image' bean:

<bean parent="Ui f-PrimaryActi onButton" p:actionLabel =" Save"
p: met hodToCal | =" per f or nSave" >
<property name="actionl mage">
<bean parent="Uif- I mage"
p: source="@#ConfigProperties['krad. externalizable.imges.url']}searchicon.gif"/>
</ property>
</ bean>

Notice the use of the expression "#ConfigPropertieq]'krad.externalizable.images.url’]}" in the value for
the source property. ConfigPropertiesisavariable available for all expressionswhich holds propertiesthe
Rice application has been configured with. This variable is a map type, where the key is the name of the
configuration property, and the map value isthe value for the configuration property. The Rice application
comes with a set of configuration properties, one of which is the 'krad.externalizable.images.url' which
points to the directory in the web app which contains the KRAD images. The definition of this
configuration is:

<par am name="kr ad. ext ernal i zabl e. i mages. url "overri de="fal se">${application.url}/krad/i mages/ </ paranm>

This is referring to another configuration property named "application.url’ (which could refer to others).
Ultimately this resolves to something like 'https://test.kuali.org/kr-krad/krad/images. This makes the
source for our image 'https://test.kuali.org/kr-krad/krad/images/searchicon.gif' which will be used by the
browser to fetch the image contents.

149

http://jqueryui.com/demos/button/
http://jqueryui.com/demos/button/

Fields and Content Elements

Configuration Properties:

Note the configuration properties are fed from the various '-config' XML files configured with
the application, including one that resides in the user home. Y ou can add your own application
properties and refer to them like above. Note aswell applications can configure other mechanisms
for picking up properties using the Rice configurers.

By default, the image will display to the left of the label text in the button. We can change this to one of
the other positions (top, right, bottom) by setting theact i onl magePl acenent property:

<bean parent="Uif-PrimaryActionButton" p:actionLabel ="Save"
p: met hodToCal | =" per f or nBave" >
<property name="actionl mage">
<bean parent="Uif- | mage"
p: source=" @ #Confi gProperties['krad. externalizable.inmages.url']}searchicon.gif"
p: actionl magePl acenent =" Rl GHT"/ >
</ property>
</ bean>

Thefollowing Screen Shot isan exampl e taken from the KRM S modul e which uses the images and buttons
to create atoolbar.

Figure 6.22. Buttons Toolbar

To change our button to an image submit or alink, we just need to change the base bean:

<bean parent="Uif-Actionl mage" p: nmethodToCal | ="perfornBave" >
<property name="acti onl mage">
<bean parent="Uif- I mge"
p: source="@#ConfigProperties['krad. externalizable.inmges.url"']}searchicon.gif"/>
</ property>
</ bean>

Note since we are creating an image submit, an action label is not needed. Furthermore, the image
placement is not relevant. This exampleis actually used by the Quickfinder widget and is shown below.

Figure 6.23. Quickfinder Widget

Q

Finally, an action link is configured like:

<bean parent="Ui f-ActionLi nk" p:actionLabel ="Do Script" p:actionScript="doYourAjax();"/>

Which is shown below.

Figure 6.24. Action Link

Do Scrpt

Action Even and Action Parameters

Sometimes it can be useful to identify an action based on an event (functional, not technical such as
onclick) that we can use to make decisions when the action is invoked. For example, one common action
screens must have is the save operation. Thisisinvoked to save the current data on the client to the server.

150

Fields and Content Elements

Generally these are labeled as 'Save, but they don't have to be. For example the designer might choose to
label the action 'Save Document', or 'Save Course'. Using the actionEvent property available onthe Action
component, we can configure all these buttons as invoking a 'save' event:

<bean parent="Uif-PrimaryActi onButton" p:actionLabel ="Save Document” p: methodToCal | ="saveDocunent"
p: acti onEvent ="save"/ >

<bean parent="Ui f-PrimaryActi onButton" p:actionLabel ="Save Course" p: nmethodToCal | ="saveCourse"
p: acti onEvent ="save"/ >

When an action is invoked, the corresponding action event value will be passed as a request parameter
along with the method to call. We can then inspect the request value (using the request object, or if our
model extends UifFormBase it provides the property for us) and perform the logic associated with the
event.

So exactly what could we do with this? One good use is within the business rules framework (discussed in
Chapter 13). Businessrules are written to respond to an event (arule event), thusthe action event name can
be mapped to arule event. Action events can also be useful within the view rendering logic. For example,
one use the UIF currently has is to determine when the add action has been taken for a collection. Since
the button could be labeled differently between collections and views, the framework determines if the
action requested was a collection 'add' by looking at the action event. It then sets up a script to perform
highlighting on the added row once the component refreshes.

Along with the method to call and action event parametersthat are sent for an action, there are caseswhere
we might need more information to complete a request. An example of this are actions that operate on a
collection line. These actions are likely available for each line (for instance the delete button), so if we
only invoke the deleteline button or send in the 'delete’ action event, how will we know which lineg(s) to
delete? Furthermore, if there are multiple collections on the page, how will we know which collection?

The framework allows us to specify additional request data that will be sent when an action is taken
using the actionParameters property. Thisis a map type where the key specifies the name for the request
parameter, and the map value the request parameter value. Let's assume we are configuring a button with
a collection group (covered in next chapter):

<bean parent="Ui f-PrimaryActionButton" p:actionLabel ="del ete" p:nethodToCal | ="del et eAccount"
p: acti onParaneters="chart: @#l i ne. chart Code}, account: @#l i ne. account Nunber}"/>

Here we are using the shorthand map notation to setup two action parameters. The first will have name
‘chart’ and will be equal to the value for the chart code property on the current collection line (collections
make the '#line' variables available that refers to the current line instance for which the component is
being built). Likewise the second parameter will have name 'account' and will be equal to the value for
the account number property on the current line.

When the user takes the action and our controller method isinvoked, wewill have request parameterswith
names ‘chart' and 'account' that we can use to determine which account data object instance we should
delete. In Chapter 12 we will learn about a base form class our model can extend which does many things
for us. Among these is providing a map property populated with the action parameter sent in the request,
and a convenience method for getting the value of a parameter by name:

public Map<String, String> getActionParaneters();
public String getActionParamaterVal ue(String actionParaneter Nane) ;

Thusin our controller method we can do the following:

publ i ¢ Mbdel AndVi ew del et eAccount (@bdel Attri bute("KualiForni') Ui fFornBase
ui f Form BindingResult result, HttpServletRequest request, HttpServletResponse response) {

151

Fields and Content Elements

Account For m account Form = (Account Form) ui f Form

String sel ectedChart Code = account Form get Acti onPar amat er Val ue("chart");
String sel ect edAccount Nunmber = account For m get Acti onPar amat er Val ue("account");
/| del ete account

Along with the action parameters we configure in XML, the framework will add parameters for us
automatically in certain situations. For example, any action component within a collection group will
receive a parameters 'sel ectedCollectionPath' and 'sel ectedLinel ndex', which indicate the collection name
and line index the action took place on.

Field Focus and Anchoring

An action component can occur anywhere in aview, including in the middle of page. In most cases after
an action is taken the user wants to continue completing the form at the location the action took place
(location of the button or link). In a page with lots of vertical scrolling, what we don't want to happen is
after the user clicks abutton in the middle of the page, they are pushed back to the top on refresh and have
to scroll back down to their previous position. Therefore, we want to set anchor points that will be used
when the page refreshes after the action.

To set this up, the action component provides the jumpTol dAfterSubmit and jumpToNameAfterSubmit
properties. We can specify one of these propertiesto set the anchor position. For the jump toid, we specify
the id for a component on the view. This could be the button itself, a group (with a div element) or any
other field. For example, on the following button we are specifying the page should scroll back to the
button location on refresh:

<bean i d="del ete_button" parent="Ui f-PrimaryActi onButton" p:actionLabel ="del ete"
p: met hodToCal | =" del et eAccount”
p: j unpTol dAft er Submi t ="del ete_button"/>

If we want to scroll back to the location of a data or input field, we can specify the property name for the
field using the jJumpToNameAfterSubmit property:

<bean parent="Uif-PrimaryActionButton" p:actionLabel ="del ete"
p: met hodToCal | =" del et eAccount "
p: j unpTol dAf t er Submi t =" newAccount . account Nunber "/ >

To scroll back to the top or bottom of the page, the keywords "TOP" or "BOTTOM" can be given for
thejump toid:

<bean parent="Ui f-PrimaryActi onButton" p:actionLabel ="Save" p:nmethodToCal | ="save" p:junpTol dAfter Submi t="TOP"/>

Anchoring and Partial Page Refreshes:

KRAD supports refreshing parts of the page (components) for actions instead of always posting
thefull page. Thisisdonewith AJAX and replacing the DOM contents, therefore the user isnever
scrolled away from their current positions and setting an anchoring point is not necessary.

In addition to anchoring, we might want to set focusto a particular field after an action is taken. The UIF
includes an example of thisin the collection group. After the add action is taken, the focus is set back to
thefirst field on the collection add line.

We can configure the focused component using the focusOnl dAfterSubmit property. Thisistheid of the
field that should receive focus when the page (or component) refreshes. The keyword "FIRST" exists to
set focus to thefirst visible input field control on the view:

152

Fields and Content Elements

<bean parent=

"Uif-PrinmaryActi onButton" p:actionLabel =" Save"

p: met hodToCal | ="save" p:focusOnl dAfter Subnit="FlI RST"/>

Disabled

One other property on the action component that deserves mentioning is the disabled property. This
performs the same function as the disabled property on Control elements. When set to true, the button will
not allow the user to take the associated action.

Below shows two buttons. The first is enabled and the second is disabled.

Figure 6.25. Enabled and Disabled Buttons

Recap

enabled button

The Action component is a content element that allows the user to perform an action, such as posting
the form or performing a script function

Out of the box action components can be rendered as HTML button elements, links, or image submit
inputs

Types of actions fall into two categories:

* Server Requests — These are reguests made to the server to perform an action. In most cases thisis
part of aform submission, but can also be aget request. When configuring a server request, the action
property methodToCall must be given. This is the name of the method on the controller class that
should be invoked. Mapping of URL is covered in Chapter 9

 Client Side Requests— These are requests that execute a piece of JavaScript code (either a code block
or function call). The script to execute is configured using the action property actionScript. After the
script isfinished, it can simply return or make a server request on behalf of the user

Thelabel for an action is specified using the actionLabel property

An action button is built using one of the following parent beans. 'Uif-PrimaryActionButton', 'Uif-
SecondaryActionButton', 'Uif-PrimaryActionButton-Small’, or 'Uif-SecondaryActionButton-Small'.
The difference between these four beans isin the styling to indicate four different levels of buttons

An action link is built using the bean parent 'Uif-ActionLink’
An action image is built using the bean parent 'Uif-Actionlmage’
Using the #ConfigProperties EL variable is convenient for configuring image paths

In addition to displaying the action label, button and link actions can display an image. The image is
configured using the actionlmage property

By default an image configured for abutton displaysto the left of the label, however its position can be
changed to TOP, RIGHT, or BOTTOM by setting the property actionlmagePlacement (to be renamed
to actionlmagePosition)

Actions that perform common server side actions (such as the save operation) but might have different
|abels can be associated with an action event. Thisis configured using the actionEvent property

153

Fields and Content Elements

 Action events give the ability to determine the type of action requested without relying on alabel

* Incertain casesan action needsto send additional parametersthat clarify the action request. For example
collection line actions need to send the collection for which the action was chosen, and aso the line
number

» Parameters for actions are built using the actionParameters map. The map key is the name of the
parameter that will be sent when the action is selected, and the value is the parameter value that will
be submitted

 Action parameters can be configured in XML (or added through code). In addition the framework will
automatically add parameters in certain situations (for example actions configured for a collection line
will get the collection name and line index)

» Action parameters can easily be retrieved from a controller method by calling the form method
getActionParamaterV alue(String actionParameterName)

e TheEL variable #line refers to the collection line data object the field is being rendered for
 Action components support configuring a focus element or anchor element for the page refresh

* For setting an anchor point, the properties jumpTol dAfterSubmit or jumpToNameA fterSubmit can be
used

e Thekeywords TOP and 'BOTTOM' can be used for the jumpTol dAfterSubmit property
» The element to focus on after arefresh is configured using the focusOnl dAfterSubmit property
 Like controls, actions can be disabled by setting the disabled property

» Some more properties have been added to the action component which are hooks that provide more
flexibility to the user

« preSubmitCall — This property is a script which needs to be invoked before the form is submitted.
The script should return a boolean indicating if the form should be submitted or not.

 gjaxSubmit — boolean property which indicates if the datais to be submitted via ajax or otherwise
« successCallback — This property is a script which will be invoked for successful gjax calls

« errorCallback — script which will be invoked on error in gjax calls

Space and Space Field

Now for an easy one! One HTML entity that is useful for layout purposesis' ' (a space). To create
a space, we use the Space component. This component has no properties, and simply renders the '& nbsp;'
element. When putting together multiple content elements in a group, the space component can be used
to adjust the padding between each. To create a space component, we specify a bean with parent of 'Uif-

Space':

<bean parent="U f - Space"/ >

Likewise the space field exists which wraps the space entity in a span. This can be used for rendering
empty 'blocks' in the layout. To create a space field, we specify abean with parent of 'Uif-SpaceField":

<bean parent="Uif - SpaceFi el d"/>

154

Fields and Content Elements

Recap

» The Space component can be used to render the HTML & nbsp; entity

» The Space Field component can be used to render a span with a space. Thisis useful for creating blank
'dots in alayout

ValidationMessages content element

The ValidationM essages component is used to display validation errors and other types of messagesto the
user. Thisisthe general mechanism by which the application communicates to the user about the success
or failure of an action.

A ValidationM essages element is different in many ways from the previous components we have |ooked
at. First, we don't generally create new errors field components like we do data, input, and action fields.
Instead, these components are already constructed as properties of a container (both the View and Group)
and an Input Field. Therefore, al we need to do is configure them as needed.

In the next chapter we will learn about group nesting and how we form the conceptual groupings of the
view: a page, section, sub-section, and field group. Each of these groups contains a ValidationM essages
element that displays by default under the group header. It is important to understand these group ‘levels
when configuring the associated V alidationM essages (although the framework attempts to set reasonable
defaults out of the box). A ValidationM essages element is also included for an Input field by default. This
isfor handling individual field level messagesfrom the server and messagesfrom the client sidevalidation.

Important - even though ValidationMessages are configured at the group level, validation messages
displayed to the user are only ever shown on the screen for what we consider "Sections'. Sections are
essentially groups that have a header. If a group does not have a header, it displays its messages at the
next available section. When no sections are present, messages are displayed at the "Page" level. Thus
configuring a ValidationM essages element for agroup without aheader will result in no effect. Exception:
for the PageGroup case - if no header is defined, the framework will still show the messages at this level.
In addition to this, ValidationMessages for fields can only ever be configured for InputFields - because
other fields do not allow user input.

In order to understand how to configure a ValidationMessages element, we need to understand how
messages are added during application processing. To collect messages for a request, KRAD provides
the class org.kuali.rice.krad.util.MessageMap. This collects messages of type Error, Warning, and Info.
At the beginning of each request, a new message map is constructed and made available through the
org.kuali.rice.krad.util.Global Variables class as a static method. Therefore application code can get a
handle on the message map by calling GlobalV ariables.getM essageM ap(). This means the message map
does not have to be passed through all the application methods (made possible because the message map
is attached to the current thread).

When adding amessage to the message map, there are three pieces of datawe can specify. Thefirst tellsthe
framework what property or container the message is associated with. Associating the message allows the
framework to give abetter indication of the source of the error when rendering the page. When associating
a message with a group or field, we need to give the id for the component. A message for an Input field
can also be associated by property name, but we need to give the full property path of this field (asis
done for binding). To display a general message at the page level that doesn't relate to your current page
content, the present keywords of 'GLOBAL_ERRORS, 'GLOBAL_WARNINGS, and 'GLOBAL_INFO'
exist for each of the message types.

The second piece of data we need to give is the property key for the message. In order to support
customizations and internalization, all messages are externalized from the code through a resource

155

Fields and Content Elements

bundle. In the current version of Rice, these messages are configured in property files, with one being
KRADA pplicationResources.properties.

We need to provide the key of the resource and the framework will resolve the actual message. The
final piece (not always necessary) is any arguments that are necessary for the message. With the use of
placeholders('{0}', '{1}','{ 2} "), we can have variablesin our message that get replaced by the runtime data.
If the message contains one or more variables, the value for each must be given when adding the message.

To add a message to the message map, we can use one of the following methods based on the type of
message we want to add and how we want it associated (property or component):

publ i ¢ Aut oPopul ati ngLi st <Error Message> putError(String propertyNane, String errorKey, String...
errorParaneters);

publ i ¢ Aut oPopul ati ngLi st <Error Message> putWarni ng(String propertyNane, String nessageKey, String...
nessagePar anet ers) ;

publ i ¢ Aut oPopul ati ngLi st <Error Message> putInfo(String propertyNanme, String nessageKey, String...
nessagePar anet ers) ;

publ i ¢ Aut oPopul ati ngLi st <Err or Message> put Error For Sectionld(String sectionld, String errorKey, String...
errorParaneters);

publ i ¢ Aut oPopul ati ngLi st <Err or Message> put War ni ngFor Secti onl d(String sectionld, String nessageKey, String...
nessagePar anet ers) ;

publ i ¢ Aut oPopul ati ngLi st <Err or Message> put | nf oFor Sectionld(String sectionld, String nessageKey, String...
nessagePar anet ers) ;

Note even though the last three methods named include 'Section’, they can be used for any UIF container.

L et's take some examples. Suppose we have the following Group definition:

<bean i d="BookDocunment Overvi ew' parent="Uif-GidSection" p:title="Book Overview' >
<property name="itens">
<list>
<bean parent="Uif-InputFi el d" p:propertyNanme="bookl d"/>
<bean parent="Ui f-InputFi el d" p:propertyName="bookTitle"/>
<bean parent="Ui f-InputFi el d" p:propertyName="aut hor.name"/>
</list>
</ property>
</ bean>

Now we want to have a business rule that says the author name cannot be 'Anonymous. First we add a
message to our application resources (propertiesfile):

error.book.authorName.anonymous=Author name cannot be 'Anonymous’

Next we write application code to check the rule (see 'Writing Business Rules' in Chapter 13), and if the
rule fails we add an error message associated with the author name property:

if (isAnonymous) {
d obal Vari abl es. get MessageMap() . put Error ("aut hor. name", "error. book. aut hor Narre. anonynous") ;

}

Since our message did not have any variables, we only needed to pass the property name and message key.
Note if there is a default binding object path on the view (or was added on the group), the property path
for our field would be '{ object path}.author.name'. The key we specify must then also include the object
path. The message map allows for asimilar concept of ‘auto-prefixing' the path asis done in the UIF. We
can make a call to the method addToErrorPath(String parentName) to specify a string that should prefix
any message keys added from that point on. We can then call removeFromErrorPath(String parentName)
to stop the prefixing. For example:

156

Fields and Content Elements

d obal Vari abl es. get MessageMap() . addToEr r or Pat h(" docunent . newBook") ;

/lresults in the full key of 'docunent.newBook.author. nane'
d obal Vari abl es. get MessageMap() . put Error ("aut hor. name", "error. book. aut hor Narre. anonynous") ;
/1 nore validation

d obal Vari abl es. get MessageMap() . r enoveFr onEr r or Pat h(" docurent . newBook") ;

This is useful when doing severa validations on the same object. KRAD also takes advantage of thisin
certain places to automatically prefix the error paths. For example, in the document framework for events
that take place on the document, it will add the prefix 'document'.

For one last example, let's assume we need to validate all three fields of the book overview group. Since
this doesn't redlly tie to one property in particular, we will just associate the error with the section. This
can be done as follows:

if (mssingFieldvalue) {
d obal Vari abl es. get MessageMap() . put Error (" BookDocunent Over vi ew', "error. book. overvi ew. m si ngFi el dval ue");
}

Ok, so now that we know a little bit about how messages are added, let's go back to configuring the
VdidationM essages el ement.

If we want to then match on additional keys, we can add those usingthe addi t i onal KeysTolMat ch
property. ThisisalList type where each entry gives an additional property path or id to match on. Each one
of these can be defined with awildcard, aswell. So if we wanted to also include any messages associated
with the ‘author' property path, we can do so asfollows:

<bean i d="BookDocunent Overvi ew' parent="Uif-GidSection" p:title="Book Overview
p: errorsFiel d. addi ti onal KeysToMat ch="aut hor *" >

The ValidationMessages object and its subclasses have severa other properties we can configure which
include:

e di spl ayMessages (Al | evel s) —If true, error, warning, and info messages will be displayed
at this level. Otherwise, no messages for this ValidationM essages element will be displayed. Thisisa
global display on/off switch for all messages.

Other ValidationMessages elements of the screen react to the display flag being turned off at certain
levels: if display is off for an Input field, the next level up will display that field's full uncollapsed
message text; and if display is off at a section, the next section up will display those messages nested
in asublist.

» di spl ayFi el dLabel Wt hMessages (G oupValidati onMessage |evel) — Boolean
that indicates whether the field label should be displayed with messages that are associated with afield
in the Section level summary. When set to true, the message will be displayed as {Field Label} —
{Message}'. For example: '‘Book Title— Must not be longer than 50 characters.".

* col | apseAddi ti onal Fi el dLi nkMessages (G oupVal i dati onMessage |evel) —
When collapseAdditional FieldLinkM essages is set to true, the messages generated on field links will
be summarized to limit the space they take up with an appendage similar to how [+n message type] is
appended for additional messages that are omitted. When thisflag is false, all messages will be part of
the link separated by a comma

e useTooltip (Fieldvalidati onMessage | evel) —Whentrue, usethetooltip onfieldsto
display their relevant messages. When fal se, these messages will appear directly below the control.

157

Fields and Content Elements

Below shows ValidationM essages for various elements of a page which are configured with the default
settings and displaying multiple errors:

Figure 6.26. ValidationM essages for a Page

Standard Sections Page @ [e 9 errors]

@ The Page submission has 9 errors

¢ The "Section 1 Title " section has 7T errors
¢ The "Section 2 Title " section has 2 errors

Figure 6.27. ValidationM essages for a Section

v Section 1 Title @ [@ 7 errors]

» Field 1: Error! Message Texd Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text

e Field 2: Errorl Message Text Text Text Text Text Text Texdt Text Text Text Text Text Text Text Text Text Text Text

* Field 3: Error! Message Texdt Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text

* Field 4: Errorl Message Texd Text Text Text Texdt Text Texdt Text Text Text Text Text Text Text Text Text Text Text

» Radio 1: Error] Message Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text

» Checkbox: Errorl Message Text Text Text Text Text Text Text Text Texd Text Text Text Texd Text Text Text Text Texd

» Checkboxes 1: Errorl Message Text Texd Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text Text

Figure 6.28. ValidationM essages for an InputField

TR e B R L e T) I'l'l!_-'_l'_ll.l::lﬁ_- 1™l 1™l 1™l 1™l 1™l 1™l 1™l 1™l

* Checkboxes 1. Erro ° Error! Message Text Text Text Text
Fields are direct children Text Text Text Text Text Text Text Text

Text Text Text Text Text Text
Fi'E'I'd 1 * _..l"r I l'l.rlﬂ:

Recap

» The ValidationM essages component displays validation messages and other information as part of a
request/response.

158

Fields and Content Elements

» ValidationMessages only really apply to 3 levels. Page, Section (any group with a header), and
InputFields.

» Groups can be nested to form conceptual groupings of the view such as page, section, sub-section, and
field groups. Thus we might want to configure the associated errors field depending on the grouping
level'.

» There are three types of messages that can be displayed: error, warning, and info.
* In application code, messages for each request are collected by a messageMap instance.

» To add a message we need to specify three arguments. Thefirst part is the property path or component
id the message should be associated with. The second part is the key for the message in the resource
bundle, and the final part is any arguments for the message (message variables).

» We can add messages to the message map by first getting the instance with Global V ariables, then using
one of the provided 'put' methods.

» For VaidationMessages associated with a container or input field, the framework takes care of
automatically adding the component id or property path to the list of matchable keys.

» We can configure additional paths or ids to be matched on and displayed for that ValidationMessage
level by usingthe addi ti onal KeysToMat ch property.

» We can configure which areas to display messages at, and the framework will automatically determine
wherethe next available areaisto display this message. So amessage should never belost unlessdisplay
isoff for al levels.

e Thedi spl ayFi el dLabel Wt hMessages property determinesif field label's should be prepended
to messages matched to fields at the section level.

» The col | apseAddi ti onal Fi el dLi nkMessages property determines if the additional
messages beyond the first message associated with a field should be summarized at the section level.

* TheuseTool ti p property determines if the tooltip should be used to display messages at the field
level.

Generic Field

So KRAD will do everything for you and you will never have to write a FreeMarker template right? In
most likelihood, no! Although the UIF is extremely flexible, being about to cover everything a visua
designer can come up with isnot practical. KRAD is meant to provide those common components that are
generaly applicable, and allowing Rice applications to extend where needed.

When agap isfound, there are two routes that can be taken. One is that the application can fill the gap by
creating the component themselves (and possibly contributing back). In Chapter 5 we learned the general
guidelines for doing so. However, creating a new component might be overkill in some situations. For
example, we might need to add something that is really very specific to the use case, and it is unlikely
other placesin the application (or other applications) will find it useful. In these cases, we really just want
to get the job done and not spend extra time making it 'generic'.

KRAD allowsthisto be doneby creating custom templates. These templatesare not for renderingaKRAD
component, but instead a hook to implement any logic required. However, we still need to hook these
custom filesinto the view processing, so that they are invoked and rendered in the correct place. One way
we can do thisis by using the org.kuali.rice.krad.uif.field.GenericField component. The generic field has
no custom properties associated with it, nor doesit have a default template. It does, however, contain the

159

Fields and Content Elements

inherited component and field base properties such asid, style, label, and so on. This givesyou the ability
to write a custom FreeMarker template that will act asafield.

Since there is no template provided by default, we must create one before using the generic field. Unlike
other component templates, there are really no rules to follow here; this can contain any content we like.
Let's assume we have created a FreeMarker file named 'bookQuestionnaire’ in one of our application web
folders named '/myappl/ftl*:

<#tmacr o bookQuestionaire field>

What is your favorite book? <forminput path="questionnaire.favoriteBook"/>
<l i >What nmany books do you read a nonth? <forminput path="questionnaire.booksPerMnth"/>

Do you wi sh you could read nore? <forminput path="questionnaire.readMrelndicator"/></1i>
</ ul >

</ #macr o>

To create a generic field with this FreeMarker file, we create a new bean with parent of 'Uif-
CustomTemplateField' and set the template and template name properties:

<bean parent="Ui f- Cust oniTenpl at eFi el d" p:tenpl ate="/nyapp/ ftl/bookQuestionnaire.ftl"
p: t enpl at eName="bookQuesti onaire"/>

If needed in multiple places, we can create atop level bean with anid:

<bean i d="BookQuesti onnaire" parent="U f-CustoniTenpl at eFi el d" p:tenpl ate="/nyapp/ftl/bookQuestionnaire.ftl"
p: t enpl at eNane="bookQuestionaire"/>

In this way, we can add as many custom templates as needed.

It isalso possible to parameterize our custom template using the templateOptions map property (recall this
is provided by ComponentBase). For example, if we wanted a parameter to determine whether or not we
ask the third question, we could do so as follows:

<#tmacro bookQuestionaire fiel d>

<#l ocal askReadMore=fiel d.tenpl ateOptions[' askReadMore']/>

What is your favorite book? <forminput path="questionnaire.favoriteBook"/>
<l i >How many books do you read a nmonth? <forminput path="questionnaire.booksPerMnth"/>
<#i f askReadMore>
Do you wi sh you could read nmore? <@pring.input path="questionnaire.readMrelndicator"/>
</ #if>

</ #macr o>

Now to specify the variable setting, our bean will be:

/I TODO: need bean example here

Disadvantages of Generic Fields

A couple of things should be noted when building agenericfield. First, sincewe don't have actual
input field components for any included input macros (or other form macros), we don't get certain
features such as custom property editors, default values, and so on. Ancther route to take for
custom templatesis to use a Group (with all the fields configured) and write a custom template.
The custom template can then render a custom layout, add additional markup or whatever elseis
necessary, and invoke the template tag to render the individual fields.

Recap

e The Generic field component allows a custom FreeMarker template to be created and act as afield to
the framework

160

Fields and Content Elements

 The custom template can reside anywhere in the web module and may contain any content
» Generic field components can be created with a bean with parent 'Uif-CustomTemplateField'
» Custom templates can have variables that are passed using the templateOptions map proper

» Another way to implement custom templates is by configuring a group (with field items) that uses the
custom template. The template can then render a custom layout and other markup, then invoke the
template tag to render each field

Iframe

Although not needed as much these days with the capability of modern web applications, KRAD
nonethel ess provides the Iframe component for generating the HTML Iframe element. Iframes areinline
frames that can be used to embed another document (including cross-site).

To create an iframe component, we need to create a new bean with parent of 'Uif-Iframe. The only
required property is the source property, which isthe URL (relative or full) for the document that should
be embedded.

For example, we can include the kuali.org webpage in our view as follows:

<bean parent="Ui f-Iframe" p:w dth="800px" p: hei ght="550px" p:source="http://wwm.kuali.org"/>

Notice here we are also setting the width and height properties which are available on the iframe
component. This size the frame to the given dimensions.

The iframe component also provides a property named frameborder which can be used to provide asize
for aborder around the frame. Asis the case with al components, we have the standard properties such
asid, title, and styleClasses that can be set aswell.

Recap

* KRAD provides the iframe component for generating the html iframe elements
* Iframes can be used to embed other documents into the view
» We create an iframe component with a bean whose parent is ‘Uif-1frame

» When creating an iframe component we must set the source property which gives the relative or full
URL to the document that should be embedded

» We can restrict the size of the displayed frame using the width and height properties

Image and Image Field

Moving along with the field and content element types, we find the Image and Image Field components.
Have a guess as to what these components render? Correct! They render the HTML img tag. Note the
Image component is used to render a static image on the page (not one that can be used to generate an
action; however script can be added to the image component if desired).

To use an image component we create a bean with parent of 'Uif-Image’. The image component requires
the sour ce property to be specified which is the relative or full URL to the image. If we wish to wrap

161

Fields and Content Elements

our image in a span and potentially also have a label, we can use the Image Field component which has
base bean name 'Uif-ImageField'. For example:

<bean parent="Uif-ImageField" p:label="Image field with alt text" p:altText="pdf
i mage" p:source="@#ConfigProperties['krad. externalizable.imges.url']}pdf.png"/>

Here we are bringing in the pdf.png image with the source property. Recall earlier we discussed the
#ConfigProperties expression variable we can use to retrieve configuration parameters. Note also we are
setting a property name al t Text . Thisis text that will display if the image cannot be rendered, and it
isagood practice to always set this.

Below shows the result of the above configuration.

Figure 6.29. Image with alt Text

]
Image field with alt text: -

There are additional messages we can configure to display with the Image component. These are known
as the caption header and cutline text (traditional newspaper terms). To specify caption header text we
use the captionHeaderText property. We can choose to have the caption display above or below the image
by setting the captionHeaderPlacementAbovel mage Boolean (defaults to true in base bean). Cutline text
givesasummary of theimage contents and is specified using the cutlineText property. Hereisan example
of using these properties:

<bean parent="Ui f-1mage" p:altText="conputer progranm ng"
p: capti onHeader Text ="1 mage Caption Text" p:cutlineText="1mage cutline text
here" p:styl eC asses="kr-photo" p:source="conputer_progranm ng.jpg"/>

Notice here we are al so setting the styleClasses property, which you will see in the next screen shot gives
rounded borders to our image.

The above configuration results in the following.

Figure 6.30. Image with Cutline Text

Image Caption Text

Image cutline text here

162

Fields and Content Elements

Along with the caption and cutline string properties, the image component contains a nested Header and
Message Field component corresponding to each. These nested components can be used to adjust the
styling applied along with other configuration (such as possible the header level).

Recap

* HTML Images can be rendered using the image or image field components

» We create image components with beans with parent of 'Uif-Image'

e Thesour ce property specifiesthe relative or full URL to the image

e Theal t Text property istext that will display when the image cannot be rendered

* We can add a caption to our image using the capt i onHeader Text property. The caption can
be rendered above or below the image by setting the capt i onHeader Pl acenent Abovel nage

property

 Finally we can add asummary of our image usingthecut | i neText property. By default the cutline
text displays underneath the image

Link and Link Field

TheLink and Link Field components are used to generate the HTML a(link) tag. The atagisused to link
to another document (the primary mechanism of navigation in the web). Thelink is presented to use by a
label, which when clicked on will take the user to the linked page.

To create a link component, we create a bean with parent of 'Uif-Link'. We configure the linked source
using the hrefText property. Asis the case for all URL resources, we can specify arelative or full URL.
Thelabel for the link (what the user will see) is given by the linkLabel property.

For an example let's build alink to the kuali.org website that displays the text 'Kuali Website' to the user.
Inthe XML thiswill be:

<bean parent="Ui f-Link" p:hrefText="ww. kual i .org" p:linkLabel ="Kuali Website"/>

Below shows the resulting link.

Figure 6.31. Link Component Example

Kuali Website

When using alink component we can al so choosetheframetarget thelinked document will openupin. This
isdone by setting thet ar get property and is used to populate the target attribute on the corresponding
element. Possible values are:

_blank - Opens the linked document in a new window or tab
_self - Opens the linked document in the same frame as it was clicked (thisis default)
_parent - Opens the linked document in the parent frame

_top - Opensthe linked document in the full body of the window

163

Fields and Content Elements

By setting thel i ght Box property to "Uif-LightBox", the link will be opened in alightbox.

<bean parent="Uif-Link" p:hrefText="ww. kuali.org" p:linkLabel ="Kuali Wbsite"/>
<property name="li ght Box">
<bean parent="Uif-Li ght Box"/>
</ property>
</ bean>

If wewant to put alink inafield, wecan usethe Link Field component with base bean name'Uif-LinkField'.
All of the above properties are available along with the field's [abel property.

Recap

» Thelink and link field components are used to render the html atag
» Thehtml atag provides alink to the user for navigating to another page
* We create link components using a bean with parent of Uif-Link or Uif-LinkField

* When building a link component, we specify the page that should be linked using the hr ef Text
property. This gives the relative or full URL to the page that should be linked

» Thelink label isthetext that displaysto the user. Thisisset using thel i nkLabel property

» We can configure the frame for which the linked document will open in using thet ar get property.
Values given include _blank (for new tab or window), _self (for same window), _parent (for parent
frame), or _top (for top level/window frame)

Message Field

The last component we will look at in this chapter is the Message Field. In this case, there is no
corresponding HTML element tag. Instead, the message field is used to render static text with the HTML
markup.

A message field can be specified anywhere in the view to provide a custom message to the user. To create
a message field component, we create a bean with parent of 'Uif-MessageField'. The message field only
has one custom property, the messageText. Thisisthe text that will make up the message:

<bean parent="Ui f- MessageFi el d" p: messageText ="Message Field 1 Text"/>
<bean parent="Ui f- MessageFi el d" p: messageText ="Message Field with expression text: '@fiel d88}'"/>

Notice in the second message field we are using an expression to print out the value for property 'field88'.
Below shows the result

Figure 6.32. Message Field

Message Field 1 Text
Message Field with expression text: 'Fruits’

Over thischapter we have learned about various messagesthat can be configured as part of the components
(for example, instructional and constraint text on the input field). We generally set these by using a String

164

Fields and Content Elements

component property. However, the components also contain a MessageField component that can be used
to change the default styling (or other properties) for the message rendering. The String properties are
simply provided for convenience and, during the view processing, are copied to messageText property for
the corresponding message field.

Recap

» The message field component is used to generate static text
» We can create a message field component using a bean with parent of 'Uif-MessageField'

» Thetext for the messageis given with thenessageText property. the value can contain expressions
for dynamically building the message

Rich Message Content

Rich message content refer to functionality available in various components (above) which accept text.
Rich message functionality allows textual components to be more robust by providing the power to use
amost any KRAD component, html, image, link, or cssinline with the rest of the text.

Touserich messagefunctionality, you just haveto declaretext with the appropriatetag enclosed in brackets
"[1". This means that text that needs to use brackets in its content MUST use a backslash to escape that
character in text properties that expect the use of rich message functionality (example, "\[" and "\]").
Rich message tags can be also be wrapped within other tags allowing for a variety of combinations.

The following areas allow rich message content described by this section:

« Uif-Message component — messageT ext property

» Uif-Label component — label Text property

 Uif-InputField — label, instructional Text, and constraintText properties

» Uif-CheckboxControl - checkboxL abel

» Uif-KeyLabelPair (used by radio and checkbox groups 'options’ property) — value property

* Uif-HeaderBase (and children) — header Text property (support to be added)

» Groups (Views, Pages, Sections) —instructional Text, and headerText (support to be added) properties.
Any validation messages from the server or set up through message configuration (reduced scope no
id or component index tag allowed)

» Anywhere the Message component is used

The following KRAD rich message tags are supported (< > represents content to set):

* [i d=<component id> propertyl=value property2=value] - insert component with id specified at that
location in the message. You can aso set/override properties of the component referenced through
by specifying those additional properties (must be separated by spaces). Textual properties must be
wrapped in single quotes.

 [n] - insert component at index n from thei nl i neConponent list.

165

Fields and Content Elements

e [<ht M tag and properties>][/<html tag>] - insert html content directly into the message content at
that location, without the need to escape the <> charactersin xml.

* [col or =<html color code/name>][/color] - wrap content in color tags to make text that color in the
message. Thisis the same as wrapping the content in a span with color style set.

» [css=<css classes>][/css| - apply css classes specified to the wrapped content . This is the same as
wrapping the content in a span with the class property set.

[I'i nk=<href src>][/link] - an easy way to create an anchor that will open in a new page to the href
specified. Thisisthe same as wrapping the content in an atag with the target set as"_blank".

» [act i on=<action settings> data=<extra data>][/action] - create an action link inline without having to
specify acomponent by id or index. The options below MUST bein acomma separated list in the order
specified. Specify 1-4 always in this order — for example, options CANNOT be skipped if you would
like to only set methodToCall and gaxSubmit, you must still set validateClientSide to its default value
(note: thisis parallel to how javascript functions with optional parameters are passed).

The options (in order) are:

« met hodToCal | (String)

val i dat ed i ent Si de(boolean) - true if not set

aj axSubni t (boolean) - trueif not set

e successCal | back(jsfunction or function declaration) - this only works when gjaxSubmit istrue
The tag would ook something like this:

[action=ret hodToCal | JAction[/action]

in most common cases. And in more complex cases:

[action=met hodToCal | , true, t rue, f uncti onNane]Action[/action].

In addition to these settings, you can also specify data to send to the server in this fashion (the space
is REQUIRED between settings and data):

[action=<action settings> dat a={ keyl: 'value 1', key2: val ue2}]
Note

Reminder: If the [] characters are needed in message text, they need to be declared with a
backslash escape character: "\[" and " \]"

Component Rich Message Tags

Note

These component options cannot be used for validation messages.

Component by id — this example gets the component named Demo-SampleMessagelnput, defined
elsewhere, by id:

<bean parent="Ui f - Message" >

166

Fields and Content Elements

<property nane="nmessageText"
val ue="Message getting conponent by id [id=Denp-Sanpl eMessagel nput] inside its content"/>
</ bean>

Component by index in the inlineComponents list - can only be used with components that have an
inlineComponents property. These are Message, RadioControl, CheckboxesControl, and Label. In this
example component 0 is the first item in the inlineComponents list (Uif-InputField) and component 1 is
the second item (Uif-Link)
<bean parent="Ui f - Message" >
<property name="nmessageText"
val ue="Message with input [0] and link [1] inline"/>
<property name="inlineConponents"> <list> <bean parent="Uif-InputField" p:propertyName="fieldl"/>

<bean parent="Uif-Link" p:href="http://ww. kuali.org" p:linkText="Kuali"/> </|ist> </property>
</ bean>

Html, Color, and css Rich Message Tags

Example that uses all 3 in one message (bold html tag, color for #~78C00 web color, and css to add the
class 'fl-text-underline' around that content)

<bean parent="Uif - Message" >
<property name="nessageText"
val ue="[b] Message[/b] using a [col or=#F78C00] [css='fl-text-underline']conbination[/css] of
different options[/color]" />

Link and Action Rich Message Tags

Example of alink inline with message content

<bean parent="Uif- Message" >
<property name="messageText"
val ue="Testing link tag [link=" http://ww.kuali.org']Link[/link]"/>
</ bean>

The main difference between link and action is that action calls a method on the controller — this mimics
the KRAD Action component's functionality. Example of an action that calls the "addErrors' method on
the controller:

<bean parent="Uif- Message" >
<property name="nessageText"
val ue="Testing net hodToCal | action [action=addErrors]Link Text[/action]"/>
</ bean>

Action that calls the "addErrors' method on the controller, turns off client-side validation, and passes an
some extra datato the controller (extralnfo with value 'some data):

<bean parent="Uif - Message" >
<property name="nmessageText"
val ue="Testing passing data [acti on=addErrors, fal se data={extralnfo: 'sone data'}]
addErrors[/action]"/>
</ bean>

Action using all available options — calling method "addErrors®, turning off client side validation,
gjaxSubmit on, and on success calling the function specified (which shows an alert with "Successful
Callback" init):
<bean parent="Uif- Message" >
<property name="nmessageText"
val ue="Testing custom success cal | back [action=addErrors, fal se, true, function()

{alert (' Successful Callback')}]addErrors[/action]"/>
</ bean>

Checkboxes and Radio Control Rich Message Usage

Example showing usage in CheckboxesControl (RadioControl usage would be very similar):

167

Fields and Content Elements

<property name="control ">
<bean parent="Uif-Vertical CheckboxesControl ">
<property nane="inlineConponents"> <list> <bean parent="Uif-|nputField" p:propertyNane="fiel d19"/> <bean
parent="Ui f -1 nput Fi el d" p: propertyName="fiel d20"/> </|ist> </property>
<property name="options">
<list>
<bean parent="Uif-KeyLabel Pair" p:key="1" p:value="A website: [0]"/>
<bean parent="Ui f - KeyLabel Pair" p: key="2" p:val ue="A magazine: [1]"/>
<bean parent="Uif-KeyLabel Pair" p:key="3" p:value="[col or=blue]A Friend[/color]"/>
<bean parent="Uif-KeyLabel Pair" p:key="4" p:value="Qher: [id=Deno-Sanpl eMessagel nput?2]"/>
</list>
</ property>
</ bean>
</ property>

Other Rich Message Usages

Usagein InputField labels:

<bean parent="Ui f- I nput Fi el d- Label Top" p: propertyName="fi el d100" p:| abel ="Label Wth [col or=green] Col or[/
color]"/>

Usage in instructiona Text (similar in other areas which are backed by the Message component in their
Java object):

p:instructional Text="Testing [css='fl-text-underline']checkbox and radi o groups[/css] bel ow'

Usage in CheckboxControl - also demonstrating the ability to override a property of the component
referenced by id (overriding propertyName with value 'field103'):

<bean parent="Uif- | nput Fi el d- Label Top" p: propertyNanme="bFi el d1" p: | abel =" CheckboxControl ">
<property name="control ">

<bean parent="Uif- CheckboxControl " p: checkboxLabel ="1, [id=Denp- Sanpl eMessagel nput 4
propertyName='fiel d103'], agree to the ternms and conditions of this form'>
</ bean>
</ property>

</ bean>

168

Chapter 7. Groups

Groups

In the last chapter we learned a great deal about the Content Element and Field component types. These
types are essentially KRAD representations of the HTML content markup. They form the palate from
which to paint our picture.

In this chapter, we will move on to the Group component. This is one of the general Container typesin
KRAD. Theseallow usto bundle our fieldstogether and structure them for layout purposes. In other words,
they alow usto organize our content into the top most container, the view.

A group component is represented by the org.kuali.rice.krad.uif.container.Group class. Thisisthe'genera’
group component, meaning there are no restrictions on the types of fields or content elements we can put
into the group. Other special group types exist that allow only a subset of fields and elements. They do this
to target a more specify behavior. For example, the LinkGroup only supports adding Link components.
These group types have a class that extends the Group class and add properties specific to the behavior
or rendering they provide.

Besides holding fields and content elements, groups can also contain other groups. This means we can
nest groups within each other. Although a simple concept, it becomes very powerful in terms of building
our view. Essentially, we can break complete web page up into several group layers. This process will be
discussed morein the next section.

As we stated in the UIF Overview, there are common properties for al containers. The first of these
is, of course, the container ‘items. This is the list of components that belong to the container. By itself,
the items container just performs grouping of the components, it tells us nothing about how the items
should be arranged on the page. For thisinformation, an object called aL ayout Manager is associated with
the group. The layout manager encapsulates the information for how to arrange and decorate the items.
Therefore, the same group can be reused and presented in different ways without changing its associated
layout manager. A large part of this chapter will discuss the concept of layout managers and the particular
managers provided by KRAD out of the box.

The items that are rendered form the majority of the group's contents. However, we can configure
additional content before and after the container items. The before content isknown as the group's header,
while the after content is known as the group's footer. In code the corresponding objects found on group
are the Header and Footer groups. The Header component contains another group itself. But in addition
to containing a group with configurable items, it also generates a HTML header tag (h tag) using the
Header content element. The header generally indicates visually the beginning of the group presentation.
The footer is just a standard group. It adds nothing special and is ssmply known as the footer because it
falls after the main group content.

Thegroup aso alowsaninstructional text messageto be configured. Similar to theinput field instructional
message, this gives directions to the user for completing the form. However, this applies to the group as
awhole and not to an individual field. Finally, also similar to the input field, the group contains an errors
field component. Thisis used for presenting error/warning/info messages that apply to the group contents,
or to display message counts.

Thegroup template controls how these various pieces are rendered. Basically the rendering order is: header
group, instructional message, errors field, container items (delegate to layout manager), and footer.

Ok, so where's the beans? There are severa base beans provided for groups (they actually have their
own file 'UifGroupDefinitions.xml"). These correspond to various layout manager configurations and the
special types of groups. Therefore we will cover the beans with each subsequent section.

169

Groups

Recap

Group Base Bean

An abstract bean with name 'Uif-GroupBase' is provided from which all the group beans extend.
This sets the class, template, base style, errors field setup, and some disclosure options. The use
of abstract base beans is done throughout the framework to match the abstract classes. Included
in this is a top level bean named 'Uif-ComponentBase'. Therefore the bean hierarchy closely
resembl es the actual class hierarchy.

The group component allows us to bundle together components for layout purposes
The base group component is generic and can hold any field or content element

More special groups exist to extend agroup and restrict the type of componentsthat can be added. They
do so to target more specific behavior or rendering. An exampleisthe link group

Groups can nest within each other, therefore we can organize our entire view with groups

Groups have an associated object called alayout manger. The layout manager encapsulates information
on how to present the group's items

We can easily reuse a group and change its presentations by switching layout managers

Groups aso alow content to be added before and after the group items. The before content is configured
with a header group, and the after content with a group footer

Instructional text message can aso be configured for the group. It gives the users directions on how to
complete the set of fields within the group

Likeinput fields, groups have an associated errors group. This errors group displays error/warning/info
messages related to the group in general (or displays message counts)

The group template controls how the various group parts are rendered. The default template rendering
order is: header group, instructional message, errors field, group items (delegates to layout manager),
and the footer

Several group base beans are provided that correspond to various configurations with various layout
managers

Page Decomposition with Groups

Let'slook more closely at how we use groups to organize our user interface contentsinto one single view.
So far we have learned that the view and group components are container types. Let's think of a container
as an area of the screen enclosed by a box shape. With this in mind, we are going to work through the
process of reverse engineering an interface (assume we have amock or wireframe) into the view and group
containers.

First we start with one large box that will cover the entire interface (everything in the window, with the
exception of any application header or footer such as the portal wrapper).

170

Groups

Figure 7.1. One Large Box

New Tab wu
e a * 0 %@ %9

€@ chrome Mostvisited Apps

This top level box will be our view container. The view is always at the top of the hierarchy (not nested
within any other component). To do thefurther breakdown, we heed to know the parts of aview component.
Wewill cover thismore in The View section, but besides the standard container properties (header, footer,
items) we aso have a navigation and breadcrumbs component that take up space within the view 'box'.
In the 'classic' view template provided with KRAD, the navigation can be a left vertical menu, or atop
horizontal row of tabs. The view breadcrumbs are rendered at the top of the page, followed by the view
header. The view footer will be the very last thing rendered. Assuming our mock has all of these (which
we can take out as needed) let's then block off those areas:

Figure7.2. Full View Page
New Tab _Y

¢ a 0 %@ % 9 X

Breadcrumbs

View Header

Mavigation

View Footer

@ chrome Mostvisited Apps Recent

171

Groups

Notice after we mark off the pieces of the view we have an arealeft for content. Thisiswhere we can add
content with a Group component. This top level group (with view parent) is known as a Page and has
a base bean named 'Uif-Page’. Since each item in our view navigation will replace the page contents, we
can have multiple Page components associated with the view. These page components are thus configured
through the view's items list (from the Container interface).

At this point, we could start adding field or content elementsto our page group. However, unless our page
isvery simple, we likely want to provide further groupings on the page contents. Thiswill allow the user
to clearly seefieldsthat go together and provide a cleaner organization to our page. So to do this, we break
our page into a set of vertical boxes, each known as a section:

Figure 7.3. Vertical Sections

Here we see we have divided the page into three groups. A group at this level is known asa Sect i on.
Again we could now add content to one or all of our sections, but there might be a case where we need to
divide again. Thuswe can break each section into a set of vertical boxes. These are known as sub-sections:

Figure 7.4. Vertical SubSections

The first section we have divided into two groups and likewise for the third section. A group at this level
iscalled aSub- Sect i on.

There are a couple of thingsthat should be noted from the example. First, each group breakdown (section,
sub-section) does not necessarily have the same height. The heights can vary based on the contents.

172

Groups

Furthermore, they do not necessarily have to stack vertically one on top of another. This depends on the
layout manager we use for the parent group. Finaly, the actual type of group (whether it the base group,
collection group, or whatever) does not matter. It is the level a which the group is at that makes the
difference in our conceptual naming. Below gives us another picture of the conceptual groupings.

Figure 7.5. Conceptual Groupings

View Page
Header Header Layout
" Manager
&
Section
Page >
Section
Section
Footer
Section Sub-Section
Layoul
Layout Header s
Maﬁ-ﬂgé‘fh‘ Ny p » " Manager

Field

- Field

Field

Footer

So what is the point of this? These are all just group components so why not just call them that? That is
a true point. However, recall we can have multiple bean definitions for the same component. Therefore,
the UIF provides a set of bean definitions with names that correspond to these levels. These do various
things for us. For example:

1. Set upthe correct header level for the corresponding group level. That way, by correctly using the group
levelsfor nesting, the generated headerswill reflect the nested group (will not end up with an h2 header
within a group with an h4 header).

2. Defaults for the group's errors field will be setup based on best practice.

3. Additional style classes are added for the group level so that padding and other visual treatments can
be given.

In generd, it gives us a hook to treat groups differently based on where they are at in the view. Besides
the technical benefits, these names help to create a language between page designers and developers for
working together to create the user interface.

173

Groups

Recap

L evels Past Sub-Section

Thereisnolimit enforced for how deep groups can nest. Therefore, if needed, you can nest groups
within a sub-section and further down. However, base beans are not provided in these cases, so
you need to take care to set the header levels, error configuration, and styling for these levels (or
develop the base beans to represent them).

Our entire interface can be broken down with the view component and a set of groups
We can decompose our page by drawing boxes and dividing

We start by drawing a box around the window content (excluding any application header and footer
such as portal navigation). This first box makes up the view content area

Besides the standard container parts (header, items, footer), the view also contains a navigation and
breadcrumbs component that takes up a 'box’ of the view

After boxing theview header, footer, navigation, and breadcrumbs, the remaining content areaisagroup
known as the page

If we have navigation, the page contents can change for each navigation link. Thusthe view can contain
multiple page components which are set in the view's items property

If we have a simple page, we can start adding fields directly to the page group. However, generally
we want make grouping of the page content. Thisis done by dividing the page into multiple groups. A
group at thislevel is known as a section

We can continue by dividing a section into groups. A group at thislevel is called a sub-section

Although these different levelsareall still group components, KRAD providesdifferent bean definitions
corresponding to the levels

Using the correct bean definition for alevel ensures the header order will be correct for nested headers.
In addition defaults for the associated errors fields at each level have been setup, and style classes are
provided to provide indenting and other visual cues

Y ou can nest groups down as many levels as needed. However when going past the sub-section level,
care needs to be taken to correctly set the header levels, error configuration, and styling

Headers

The Header component is used to render the various HTML header tags (h1, h2, h3, .. h6). Similar to
the errorsfield component, there are header component instances already associated with, and configured
for, containers (view and group). These are generally used to indicate the start of a container on the page
and to give atitle for that container. If needed, the header component can be used in other places of the
view aswell (for instance in agroup's items list). However, it is generally better to create nested groups
in those situations.

Besides rendering the HTML 'h' tag, the header element contains a nested group that can be used to add
field components. Thus with this group we can configure links or other content type to display within the
header part of the group.

174

Groups

Header Container

HTML 5 providesthe header tag which ismeant to represent ablock of content that introducesthe
main content. This gives more semantic meaning than using just the div tag. The KRAD Header
component is morein line with the header tag than the h tag, although it generatesah tag aswell.

The Header content element contains two custom properties. The first of these is the header Text
property. This property gives the text that will display as the header. The second property is
header Level . Thisis astring that corresponds to one of the header levels supported by HTML (‘hl,
'h2', .. 'h6").

Base bean definitions for the header components are found in UifHeaderFooterDefinitions.xml. For
the Header component, a base bean is provided for each of the header levels 1-6. These are named:
'Uif-HeaderOne', 'Uif-HeaderTwo', 'Uif-HeaderThree', 'Uif-HeaderFour', 'Uif-HeaderFive, and 'Uif-
HeaderSix'. To create a header component, we add a new bean using one of these as our parent. For
example:

<bean parent="Uif-Header One" p: header Text ="Bi g Header"/>

Thiswould result in the following HTML markup:

<hl cl ass="ui f - header">Bi g Header </ h1>

The use of one of the other beans would change the h tag to the corresponding h tag for that level.

As mentioned at the start of this section, we generally work with header components through a container
(the view or group containers). Within the container is a nested header component. This allows us to not
only generate a header element, but also to configure content that will render within the header area. For
each container level, there are header component beans configured. However, instead of being named by
the header level, they are named by the container level they are associated with. These include:

Uif-ViewHeader — Header associated with the view container. Uses a header one and adds the style class
‘uif-viewHeader' to the group div.

Uif-PageHeader — Header associated with the page container. Uses a header two and adds the style class
'uif-pageHeader' to the group div.

Uif-SectionHeader — Header associated with the section container. Uses a header three and adds the style
class 'uif-sectionHeader' to the group div.

Uif-SubSectionHeader — Header associated with the sub-section container. Uses a header four and adds
the style class 'uif-subSectionHeader" to the group div.

By default the header components are already initialized in the corresponding group definition. Therefore
we can use the nested syntax to set properties like in the following example:

<bean i d="MSection" parent="Ui f-Vertical BoxSection" p:header. header Text="Section 1 Title">

For specifying the header text, containers give us aspecial property named title. When thisis set, the value
will be pushed to the header Text property on the nested header element:

<bean i d="My/Section" parent="Uif-Vertical BoxSection" p:title="Section 1 Title">

The resulting header is shown below.

175

Groups

Figure 7.6. Header Text Example

Now suppose we want to add other content to the header group. For example, we might want to display
links or buttons to the right of the header text. We do this just like adding content to any other group,
using the items property:

<bean i d="MySection" parent="Ui f-Vertical BoxSection" p:title="Section 1 Title">
<property name="header.itens">

<list>
<bean
<bean

parent="Ui f- Acti onLi nk" p:actionLabel ="copy" p: nmet hodToCal | ="copy"/>
parent="Ui f-ActionLi nk" p:actionLabel ="edit" p: methodToCal |l ="edit"/>

</list>
</ property>

</ bean>

Note we set theitems directly on the header component instead of its nested group. We can do this because
the header component provides a convenience getter and setter that uses the nested group items property.

With the use of a style class, we can make our header group contents push to the far right of the header area
(likewise we can flush it next to the header text, wrap to a new line, or use another of the many possible
visual treatments).

We can accomplish a lot with the use of header items. The following Screen Shot shows a couple more
examples. In the first one, the standard view header for document views is used, which contains a group
that displays information about the document. The second header is a page header that contains buttons
for expanding or collapsing al the disclosure groups on the page (notice in this case there is no actual
header text) Besides of the different items, notice the difference in styling between the header areas based
on their associated container level.

Figure 7.7. Additional Header Examples

Document Number: 3015 Document Status: [INITIATED
Travel Account Maintenance
Initiator Network Id: admen Creation Timestamp: 10:27 PM 02/24/2012

Recap

» The header component is used to generate the various HTML header tags (h1, h2, h3..h6)

* We generally don't need to create a header component, since they are associated with a container and
initialized as a nested component. However, they can be added in other places (in the groups items for
instance) if needed

» Besides rendering the html header tag, the header component also contains a nested group. This group
can be used to display content (such as links or buttons) in the header area of the group

» The header element contains the properties headerText and headerLevel. The header text specifies the
actual text that will display asthe header. The header level corresponds with the html header level that
should be generated (h1-h6)

176

Groups

» The UIF provides base bean definitions for each of the six header levels. To create a header component
we use one of thesein our bean parent

» Also provided are header beans that correspond with each container level (view, page, section, sub-
section). In addition to setting the header level, these add a style class corresponding to the level so that
we can add different visual treatments (aview header will display differently than a section header)

» Wecan add itemsto the header by setting the header.items property. With CSS we can make our content
display next to the header, to the far right, wrap to a new line, or use any other of the many possible
visual treatments)

Footers

Unlike the header areafor agroup, the footer does nothing special. Itissimply another group instance that
isrendered after the group'sitems. It is called afooter because of being rendered at the 'foot' of the group.
The actual component typeisjust a standard group (at least in the default group definition, subclasses of
agroup could have a subclass 'footer' group).

Since the footer is just a group, we can populate the property using any of the provided group beans.
However, there are a few group beans that are target the footer area. Generally since the footer group is
below the group's main content, it is a great place to add buttons, links, or other content that applies the
presented group. In the footer, we want to just display this content, not another header and footer (sincethe
footer isagroup, it also has a nested header and footer, and the nesting can continue). The UIF provides
the following base bean for footer groups:

<bean i d="Uif - Foot erBase" parent="U f-Horizontal BoxGroup" scope="prototype">
<property name="styl eCl asses" val ue="uif-footer"/>

</ bean>

Notice the footer base bean extends 'Uif-Horizontal BoxGroup'. We will learn more about this bean later
on, but essentially it is a group definition with no header and footer (both set to render false) and using a
box layout with horizontal orientation. This means the items configured in the group will berendered in a
horizontal row. When setting the header property, we can create an inner bean that extends the footer base:

<bean i d="MyG oup" parent="Uif-Vertical BoxSection" p:title="My G oup">
<property name="footer">
<bean parent ="Uif - Foot er Base" >
<property name="itens>

<list>
<bean parent="Ui f-PrimaryActionButton" p:nmethodToCal | ="cal cul ate" p:actionLabel ="cal cul ate"/>
<bean parent="Uif-PrimaryActionButton" p:nmethodToCal | ="clear" p:actionLabel ="clear"/>
</list>

</ bean>

</ property>

</ property>

</ bean>

In this example we have configured our group to have two buttons (‘calculate’ and 'clear') by setting the
group's footer property. To set the property we used the provided footer base bean and added two action
components through the footer's items property. Below shows the "MyGroup” bean.

Figure 7.8. Group Footer Example

calculate clear

177

Groups

It is common for the View and Page footers to have buttons. For these containers, the footer is already
initialized, and we can use the nested notation:

<bean i d="M/Page" parent="Uif-Page" p:title="My Page">
<property name="footer.itenms>

<list>
<bean parent="U f-PrimaryActi onButton" p: nmethodToCal |l ="save" p:acti onLabel ="save"/>
<bean parent="U f-PrimaryActi onButton" p:nmethodToCall ="cancel" p:actionLabel ="cancel "/>
</list>
</ property>
</ bean>

Common Button Groupings

If you have common button groupings, it ishelpful to create atop level bean (with anid) for those
so they can be reused. For example, the UIF provides the footer bean 'Uif-FormFooter' which
includes actions or save, close, and cancel. If these are the buttons you need, you can simply do
the following:

<bean i d="M/Page" parent="Ui f-Page" p:title="My Page">
<property name="footer">
<bean parent="Uif - FornFooter"/>

</ property>
</ bean>
The UIF also contains a common footer for document views that contains the various workflow
actions.
Recap

» Thefooter issimply another group that is rendered at the 'foot' of a parent group
» Generdly in the footer we want to just display contents (not another header and footer)

» The footer is a great place to add buttons, links, or other content that apply to the whole group (for
example page buttons)

» The UIF provides a base bean named 'Uif-FooterBase' that uses a group configured to not render a
header and footer, and to use a horizontal box layout

e Sinceitis common to have footer contents for the view and page, afooter is already initialized and we
can simply set thef oot er . i t ens property

» Common button groups can be configured in afooter definition with anid so that they can bereused. The
UIF provides one such grouping for the standard save, close, and cancel actions named 'Uif-FormFooter'

Introduction to Layout Managers

We know a group bundles together multiple components as a container, but the group itself has no
knowledge on how these components should be positioned on the page. Instead, KRAD provides an
object called aLayout Manager. For those who have devel oped applicationsin Javawith Swing, GWT, or
used the .Net Framework, the concept of Layout Managers will be familiar. Basically a Layout Manager
encapsulates an algorithm on how to position agroup of components by their relative positions. Y ou might
say it isthe blueprint for agroup's items.

To become a layout manager, a class must implement the
interface org.kuali.rice.krad.uif.layout.LayoutManager, or extend the base class

178

Groups

org.kuali.rice.krad.uif.layout.LayoutManagerBase. A layout manager is not a Component itself (does not
implement the Component interface), however, it does have some of the same properties. These include:

id — A unique identifier for the layout manager instance. This is unique among al layout managers and
components of a view instance. If the layout manager renders some HTML element that needs to be
referenced client side, theid value can be used for the corresponding el ement id attribute. Theid assignment
for layout managers follows the same rules as components.

template — Unlike layout managers in Swing and others that build the layouts in code, the KRAD layout
managers operate through templates (although this is not required, a layout manger can build the layout
in code as well). These generally follow the basic pattern of :

1. Add starting markup (for example <table>)

2. Iterate through each of the groups items wrapping with markup and then invoking template tag (for
exampl e <tr><td>template</td>..<td>templ ate</td></tr>

3. Add finishing markup (for example </table>)

Since layout managers use templates, they can be customized the same way as a component (switching
the template, extension and so on).

style and styleClasses — Similar to component, these properties hold style configuration or alist of style
classes that should be applied to alayout manager wrapper (for example adiv or table).

context —Map of context objectsthat can be used for expressions configured on layout manager properties

A layout manager by default supports any group instance. However, alayout manager can be built to only
support specific group types. One exampl e of thisisthelayout managersthat work with Collection Groups.
We will see these later on in the chapter. A layout manager can declare the type of group supported by
implementing (or overriding) the following method:

public O ass<? extends Contai ner> get SupportedContainer();

For example, alayout manager may be setup to work only with TreeGroups as follows:

public Cl ass<? extends Contai ner> get SupportedContainer() {

}

return TreeG oup. cl ass;

In the rendering process, the layout managers will then invoke the rendering of the group's items. What
then invokes the layout manager? Well the group of course! Recall at the beginning of this chapter that
basic group template:

+ Render header

* Render instructional text

* Render errorsfield

* Invoke layout manager passing group items
» Render footer

Since the group template controls the invocation of the layout manager, a group template may choose to
not do so and instead layout the items itself. There are a couple examples of this we will learn about later
on in this chapter.

Moving on, let's learn more about these layout managers!

179

Groups

Recap

A group has no knowledge regarding the positioning of the components

» KRAD provides the concept of layout mangers. This concept can also be seen in frameworks such as
Java Swing, GWT, and .NET

» A layout manager encapsulates an algorithm on how to position a set of components by their relative
position. It isablueprint for rendering the group'sitems

« To become a layout manager, a class must implement the
interface org.kuali.rice.krad.uif.layout.LayoutManager, or extend the base class
org.kuali.rice.krad.uif.layout.LayoutM anagerBase

» Layout managers are not components, but share similar properties. These include:
¢ id —uniqueidentifier for the layout manager
» template — FreeMarker template file for the layout manager that performs the layout logic
« templateName — Name of the layout manager macro
e styleand style classes — CSS treatment for the layout manger wrapper (such as adiv or table)
« context —map of objects available for property expressions

* A layout manager can support all general groups, or subsets by implementing the method
getSupportedContainer()

 Collection layout mangers are atype that only work with collection groups

» Thelayout manger isinvoked by the group template

Group Layout Managers

Let's begin our exploration of layout managers by looking at those that work with basic groups. That is,
we have a group containing items 1..n, that need to be positioned onto the page. Out of the box KRAD
provides two such layout managers, the Grid Layout and the Box Layout.

To help explain the algorithm employed by each layout manager, it is helpful to think of our 'box' areas
again. We know our default group template renders starting content (header, instructions), and theninvokes
the layout manger, and finally the footer. Therefore, the layout manager positions the group itemsin the
box between the group header and footer.

Figure 7.9. Group Layout

Header

Layout Area

Footer

180

Groups

Grid Layout

The Grid Layout manager divides the layout area into a grid (n by m blocks) and then places the group
components into the 'slots’ based on the order in which they are found in the group's items list. The most
important configuration property for this layout manager is the number of columns our grid should have.
For example, if we use agrid layout with number of columns egual to two, two items will be positioned
on each row. New rows will be created until al the items are positioned. Assuming we had five itemsin
our group, they would be positioned as shown here:

Figure7.10. Grid Layout

lterm 1 ltem 2
ltem 3 ltermn 4
ltem 5

The group layout manager can then be configured to meet any grid configuration. We could take our same
group of five items with a one column grid which would stack all the items on top of each other. Or we
could use a5 column grid would be put al the items on one horizontal row. The next figure depicts the
general N columns by M rows layout.

Figure7.11. Grid Layout Examples

Grid Layout

3 Columns x 2 Rows

Component Component Component

Component Component Component

N Columns x M Rows

Component Component Component

Component Component Component.

The default template for the grid layout uses HTML tablesto achieve the grid positioning. A single table
is created for the group items, with each item being rendered in a table cell (and table rows created as
necessary). Because tables are used, this is sometimes referred to as 'table based' layout, as opposed to
the Box Layout we will learn about next which is 'div based'. There are advantages and disadvantages to
the table layout. The advantages are easier alignment of content and the ability to do things such as row
and column span. The disadvantages are the table is 'non-fluid' (does not adjust as the window resizes)
and accessihility concerns. Many of the accessibility concerns are addressed in KRAD with the use of
ARIA (see Chapter 11).

The UIF provides a base bean named 'Uif-GridLayoutBase' that all grid layout beans should extend. This
bean configures the grid template, adds a style class of 'uif-gridLayout’, and sets defaults for some of the

181

Groups

grid properties we will learn about in a bit. We can create a new grid layout manger instance using this
as our bean parent:

<bean parent="Uif- GidLayout Base" p: nunber & Col ums="2"/>

The UIF aso provides beans preconfigured with the number of columns for typical cases. These
include 'Uif-TwoColumnGridLayout' (2 columns), 'Uif-FourColumnGridLayout' (4 columns), 'Uif-
SixColumnGridLayout' (6 columns). Therefore if we wanted a four column grid we can just do the
following:

<bean parent="Uif - Four Col umG i dLayout"/>

To associate alayout manager with a group, we use the group property named | ayout Manager :

<bean i d="MyG oup" parent="Uif-G oupBase" p:title="Group with Gid Layout">
<property nanme="|ayout Manager" >
<bean parent="Uif - Four Col umGri dLayout "/ >
</ property>

</ bean>

This is made even easier for us though, because there are beans that extend 'Uif-GridBase' and have a
layout manger already configured for us. These beans are;

Uif-GridGroup - General group configured with a grid layout. Also adds a style class of 'uif-gridGroup'
to the group component.

Uif-GridSection - Section level group configured with a grid layout. Also adds a style class of 'uif-
gridSection' to the group component.

Uif-GridSubSection - Sub-Section level group configured with a grid layout. Also adds a style class of
'uif-gridSubSection' to the group component.

Using these beans we can rewrite our previous example as follows:

<bean i d="MyG oup" parent="Uif-GidGoup" p:title="Group with Gid Layout" p:|ayout Manger. nunber & Col ums="4"/>

Since the layoutManager property is initialized by the base bean, we can use nested notation to set the
numberOf Columns property. By default numberOf Columnsiis set to two.

Row, Col Span, Width

Since the grid layout manager creates an HTML table, it supports the row and col span options available
fromthetable cell element. These properties are not set on the layout manager, but instead set on the group
component itself using the properties col Span and rowSpan. The column span can be set to specify anitem
should take up more than one'slot'. That is, setting the span to two means the item will take up the position
of two slots. Therow spanissimilar, but the slotsare counted vertically instead of horizontally. Thusarow
span of two means an items will take up the vertical space of two items. Let's take the following example:

<bean i d="MyG oup" parent="Uf-GidGoup" p:title="Group with Gid Layout" p:|ayout Manager. nunber & Col utms="3">
<property name="itens">

<list>
<bean parent="Uif-InputField" p:propertyName="fieldl" p:col Span="2"/>
<bean parent="Uif-|nputField" p:propertyName="field2"/>
<bean parent="Uif-InputField" p:propertyName="field3" p:rowSpan="2"/>

182

Groups

<bean parent="Uif-|nputField" p:propertyName="fiel d4" p:col Span="2"/>
<bean parent="Uif-|nputField" p:propertyName="fiel d5" p:col Span="2"/>
</list>
</ property>
</ bean>

This configuration would result in the following table structure:

<t abl e>
<tr><td col Span="2">fiel di</td><td>fiel d2</td></tr>
<tr><td rowSpan="2">fiel d3</td><td col Span="2">fi el d4</td></tr>
<tr><td col Span="2">fiel d5</td></tr>

</ tabl e>

Note for items without the row or col span properties set, they receive a default of one. The following
figure shows the corresponding blocks for each item.

Figure 7.12. Row, Col Span L ayout

Using row and col span, along with the ability to nest grid groups (nested tables), we have a great amount
of flexibility in the layouts we can achieve. Below shows what a grid group with different row and col
spans looks like in the legacy look and feel.

Figure 7.13. Row, Col Span Example

Growp with G lavout and vanous colirow mans

As you might have noticed, the previous figures depict even widths for each cell. This is the default
behavior for the grid layout (the areawill be divided by the number of columns to set a percentage width
for each column). We can adjust the widths of each column by setting the width property on the group
items. For exampl e let's take the previous three column grid layout and set varying widthsfor the columns:

<bean id="MyG oup" parent="Uif-GidGoup" p:title="Goup with Gid Layout" p:|ayout Manager. nunber & Col ums="3">
<property name="itens">
<list>
<bean parent="Uif-I|nputField" p:propertyName="fieldl" p:w dth="50%/>
<bean parent="Uif-I|nputField" p:propertyName="field2" p:w dth="25%/>/>
<bean parent="Uif-I|nputField" p:propertyName="field3" p:w dth="25%/>
<bean parent="Uif-I|nputField" p:propertyName="field4"/>

183

Groups

<bean parent="Uif-InputField" p:propertyName="fiel d5"/>

</list>
</ property>

</ bean>

Here we are setting the first column to span 50% of the total table width, and 25% for the second and
third columns. Since we are only using three columns, we do not need to set the width on the remaining
group items (field4 and field5). Essentially we just need to set the widths for the first row. The width can
be given as a percentage of the table or a fixed width (for example pixels). For controlling the full table
width, we can apply a style setting (which will render as the style attribute on the table element) or add
astyle class to the layout manager.

Label Separator

When working with a grid layout it can be useful for alignment purposes to render the field label in a
separate column. Recall our discussion in Chapter 6 regarding fields and label positioning. Let's assume
we have agroup containing input fieldswith thelabel configured to render in theleft position (the default).
For this group we are using a grid layout configured with one column (therefore each field will stack
vertically). Our labels and controls will then look something like the following:

[.abel One:

Second Label:

Third Field Label:

Here the field labels were chosen to be different lengths, which is likely to happen with real label text.
Notice with the variable label length, were the control begins varies from field to field and thus we do not
have alignment vertically. If we wereto put the labelsin their own column, the cell width would expand to
cover thelongest label, and our controlswould all start in the next column. Thuswe would have alignment:

Label One:

Second Label:

Third Field Label:

The framework provides the option for doing this through a Component Modifier. Component modifiers
are classesthat perform some modification to the component they are configured on. Each component may
have one or more such modifiers configured. Thusthey give usaway to encapsulate some functionality in
apiece of code that can be applied to multiple components, and in addition can be conditionally applied.
Chapter 10 covers this concept in more detail.

One component modifier provided with KRAD isthe Label FieldSeparateM odifier. Thismodifier operates
on a group component by iterating through the group items and pulling out the label as a separate item.
Thus, it appearsto the layout manager that we configured the label as a separate group item, and the layout

184

Groups

manager will then in turn render the label inits own cell. The Uif-GridGroup bean we have been working
with has this modifier configured by default:

<bean id="U f-GidGoup" parent="U f-G oupBase" scope="prototype">

<property nanme="| ayout Manager" >

<bean parent="U f-Gi dLayout Base"/>
</ property>
<property nanme="conponent Mdifiers">

<list>

<bean parent="Uif-Label Fi el dSeparat or-Mdifier" p:runPhase="FI NALI ZE"/ >

</list>

</ property>

</ bean>

Notice this bean sets the componentModifiers list property adding the label field separator, whose UIF
bean is named 'Uif-Label FieldSeparator-Modifier'. The runPhase is one property modifiers have that
determineswhenintheview lifecyclethe modifier will be executed. Theavailable phasesare INITIALIZE,
APPLY_MODEL, and FINALIZE.

If we inherit from a bean with one or more modifiers configured, we can choose not to use the modifiers
by setting the property to null (using the Spring null tag):

<property name="conponent Modi fiers">

<nul I />
</ property>

Other Grid Layout Options

The Grid Layout Manager also supports the following properties:

suppressLineWrapping — By default, once the configured number of columns is reached, the layout
manager will wrap to anew row. If this property is set to true, the layout manager will ignore the number
of columns property and instead continue to render all group itemsin onerow. Thisisuseful if the number
of group itemsis unknown and you wish to have them in a single line. The number of columns property
does not need to be specified when using line wrap suppressing.

applyAlternatingRowStyles — Boolean that indicates whether alternating row styles of ‘odd’" and 'even'
should be applied to each tr element. This allows alternating row styles that is common on data grids.

applyDefaultCelIWidths — Boolean that indicates whether default widths should be calculated for each
cell. If set to true, the total width will be divided by number of columns to determine the default width as
a percentage for each cdll. If the width is configured for an item, it will not be overridden.

renderAlternatingHeaderColumns — Boolean that indicates whether cells should alternate between table
header and table cells (th and td). Thisis generally set to true when using the label separator so the label
cells appear with different styling. The appropriate scopes are added by the framework (th with scope
equal to column for the header row, and th with scope equal to row for table headers within a data row).

Box Layout

Next, let's take alook at the other provided group layout, called the Box Layout. Unlike the grid layout,
which creates agrid of blocks, the box layout creates just asingle row of blocksin either the horizontal or
vertical direction. It will keep creating blocksin adirection until all items of the group have been rendered.
The first item configured in the group will receive the first position, on to the last group item which will
receive the last position.

185

Groups

Within the layout area we can think of the box layout as dividing the area horizontally (in the case of
horizontal orientation):

Figure 7.14. Horizontal Box L ayout

The box layout manager contai nsaproperty named orientation that determinesthe direction of therendered

items. Thevalid valuesfor this property are HORIZONTAL and VERTICAL. Thefollowing figure shows
an example of each orientation.

Figure 7.15. Box Layout M anager

Box Layout - Vertical

Component

Component

Component

Box Layout - Horizontal

Component Component Component

To accomplish these layouts the box manager uses CSS display styles. Recall our component types and
their HTML output:

Groups—div element

186

Groups

Field — span element
Content Element — content element

Each of theseinheritsthe style and styleClasses properties from ComponentBase. Therefore the box layout
manager manipul atesthese propertiesin code to achieve thedesired layout through CSS. For the horizontal
orientation, the manager applies a style class of boxLayoutHorizontal ltem to each item. This adds a float
left to each item style making theitems align in ahorizontal row. For the vertical orientation, the manager
appliesastyleclassof boxLayoutV erticalltem. Thisstyleclasssimply addsadisplay style of block, making
each item wrap to a new row and the items stacking to form avertical row.

Like grid layout, the box layout had advantages and disadvantages. One advantage is the ability for the
layout to adjust asthe window resizes (items will automatically wrap down to new lines as needed instead
of forcing a scrollbar). With the increasing need to support mobile devices, this can be a big win. In
addition, div based layouts are better for accessibility support. However, aligning content (such asthelabel/
control alignment in the grid layout) is much harder to accomplish. Furthermore, cross-browser rendering
issues occur more often than when using basic tables.

For XML configuration, the box layout manager has a base bean with name'Uif-BoxLayoutBase'. Thissets
the box layout template and adds the style class of ‘uif-boxLayout’. Then, extending this, we have beans
for each orientation. First is'Uif-Horizontal BoxLayout', which sets the orientation as HORIZONTAL and
adds a style class of 'uif-horizontalBoxLayout'. Likewise, there is a bean named 'Uif-V ertical BoxL ayout'
that sets the orientation to VERTICAL, and adds a style class of 'uif-verticalBoxLayout'. We can apply
one of these to a group as we did for the grid layout, using the group's layoutM anager property:

<bean i d="MyG oup" parent="U f-G oupBase" p:title="Goup with Box Layout">
<property nanme="| ayout Manager">
<bean parent="Uif-Vertical BoxLayout"/>
</ property>
</ bean>

However, the UIF again provides us with group definitions with box layouts aready configured. These
are asfollows:

Uif-VerticalBoxGroup — General group configured with avertical box layout. Adds a style class of 'uif-
verticalBoxGroup' to the group.

Uif-VerticalBoxSection — Section level group configured with avertical box layout. Adds a style class of
'Uif-Vertical BoxSection' to the group.

Uif-Vertical BoxSubSection — Sub-Section level group configured with avertical box layout. Adds astyle
class of 'Uif-Vertical BoxSubSection' to the group.

Uif-Horizontal BoxGroup - General group configured with a horizontal box layout. Adds a style class of
‘uif-horizontal BoxGroup' to the group.

Uif-Horizontal BoxSection - Section level group configured with a horizontal box layout. Adds a style
class of 'Uif-Vertical BoxSection' to the group.

Uif-Horizontal BoxSubSection - Sub-Section level group configured with a horizontal box layout. Adds a
style class of 'Uif-VerticalBoxSubSection' to the group.

Using these beans we can rewrite our previous example as.

<bean i d="MyG oup" parent="U f-Vertical BoxGoup" p:title="Goup with Box Layout"/>

187

Groups

When looking at the grid layout, the examples shown were al fields. Recall, though, that we can also nest
groups within groups, and, just like fields, they need a layout manager to position them. The box layout
manager is generally the layout of choice in this case. In particular, because groups such as section and
sub-section typically span the full width available, the vertical box layout is used to 'stack’ the groups.

As an example let's build a page group with sections:

<bean i d="Bookl nf oPage" parent="Ui f-Page" p:title="Book Info">
<property name="itens">

<list>

<bean parent =" Bookl nf oSecti on"/>
<bean parent =" BookDet ai | sSecti on"/>
<bean parent =" BookRef Secti on"/>
</list>
</ property>

</ bean>

Here we are creating a page with three items. Each item is a reference to another bean that is a section
group. How will these sections be positioned? It turns out that because it is so common for the sections
to be vertically stacked, that the default layout defined in Uif-Page is Uif-VerticalBoxLayout! Therefore
each section will divide the page vertically.

Sections and Sub-Sections

There is no requirement that sections and sub-sections divide the page vertically. In fact, in our
previous example, we could override the layout manager to be UIF-HorizontalBoxLayout. This
would result in three section columns. We could furthermore override the layout manager for
each section using a horizontal layout, which would result in sub-section columns. Of course,
we can also switch between horizontal and vertical layout between group levels, or use another
layout such as grid.

Other Box Layout Options

The Box Layout Manager al so supports the following properties:

padding — The box layout essentially is just using CSS to perform layouts, and, using the style and
style classes properties, you can modify the CSS applied. However, the box layout provides a couple of
properties for convenience. The first of these is the paddi ng property. When positioning items side by
side, or one below another, atypical visual concern isthe padding (or space) between each item. Too little
space and the item content might run together as one, and too much will waste space and not look visually
appealing. Therefore, the padding can be set to specify the exact amount of space between each item. Note
the manager will take the value given and use it to set the corresponding CSS property (either padding-
right for horizontal layout or padding-bottom for vertical layout). The value can be afixed amount (px, pt,
cm, etc.) or as a percentage of the parent container. Note the default styles applied have a default setting
for padding that should be acceptable in most cases.

itemStyle and itemStyleClasses — These have similar purposes to the style and styleClasses properties we
have aready learned about. The difference in this case is the given style or class will be applied not to
the layout manager, but each group item that layout manager positions. Note that we could accomplish
the same thing by setting the style or styleClasses property on the group item itself; however, it is more
convenient to set in this one place instead of each item. Also, if we are inheriting a group and changing
the layout, setting the properties for each item would require us to redefine each item.

As an example here is a group bean with the style classes set on each item:

<bean parent="Ui f-Hori zont al BoxSecti on">
<property name="itens">

<list>

188

Groups

<bean parent="Uif-DataField" ...>
<property nane="styl eCl asses">
<list nmerge="true">
<val ue>f ssLayout | t enx/ val ue>
</list>
</ property>
</ bean>
<bean parent="Uif-DataField" ...>
<property nane="styl eCl asses">
<list nmerge="true">
<val ue>f ssLayout | t enx/ val ue>
</list>
</ property>
</ bean>
<bean parent="Uif-DataField" ...>
<property nane="styl eCl asses">
<list nmerge="true">
<val ue>f ssLayout | t enx/ val ue>
</list>
</ property>
</ bean>
</list>
</ property>
</ bean>

Since we want to keep the inherited style classes for Uif-DataField, we must use the Spring list tags with
merge="true". Now we can accomplish the same thing using the box layout manager's itemStyleClasses

property:
<bean parent="Ui f-Hori zont al BoxSecti on">

<property name="| ayout Manager.itenttyl eC asses" val ue="fsslLayoutlteni/>
<property name="itens">

<list>
<bean parent="Uif-DataField" ...>
<bean parent="Uif-DataField" ...>
<bean parent="Uif-DataField" ...>
</list>

</ property>
</ property>
</ bean>

Since the layout manager property isinitialized by the parent bean, we can use the nested notation. Now
that is much better!

CSS Layouts

You can achieve many layouts using the box layout manager and using the styleClasses
properties. It is your gateway for doing CSS based layouts. In particular, KRAD comes bundled
with the Fluid CSS layout engine, which allows you to create various layouts by adding the
appropriate Fluid classes. Y ou can also explore such things as CSS3 grid layouts, or bring in other
CSS layout engines. For quick layout adjustments, just use the style property to specify a CSS
float value: p:style="float: right;".

* For basic groups KRAD provides two layout managers. the Grid layout and the Box layout
» Thegrid layout manager positions the group items in table cells

» When using the grid layout manager, we must specify the number of columnsfor each row. The manager
will then fill in the slots with the group items wrapping to new rows once the column count is reached

e The UIF provides the base bean 'Uif-GridLayoutBase' for the grid layout manager, in addition to beans
with a preconfigured number of columns (such as 'Uif-TwoColumnGridLayout")

189

Groups

A layout manager is associated with agroup using the | ayout Manager property

Instead of setting the layout manager property on a group, we can use the base beans that are already
configured to use agrid layout. These correspond to the various group levels:

« Uif-GridGroup
* Uif-GridSection
¢ Uif-GridSubSection

The grid layout allows us to change the number of 'dots' (cells) an item takes up by setting the row and
col span. In addition, we can specify a custom width for each item (by default the manager will divide
by the number of columns to set the width equally)

A typical requirement is for the labels and controls to align between fields. Since labels can vary in
length, thisis difficult to achieve without using tables. KRAD provides a label separator modifier that
can be used with a grip layout to place the field label in a separate cell. This is enabled by default
(through the base beans)

The grid layout manager also supports options for applying alternate row styles (‘odd' and 'even’ style
classes) and rendering alternating header columns (th elements with scope 'row")

The box layout manager places the group itemsinto arow using CSS styling

The direction of the layout row can be set using the ori ent ati on property. The options are
HORIZONTAL and VERTICAL

The UIF provides the base bean named 'Uif-BoxLayoutBase' for the box layout manager. In
addition base beans are provided for the two orientations: 'Uif-HorizontalBoxLayout' and 'Uif-
VerticalBoxLayout'

Similar to the case of grid layout, beans are provided for groups configured with abox layout manager.
These include both orientations at each of the group levels:

 Uif-VerticalBoxGroup
 Uif-Vertical BoxSection
 Uif-Vertical BoxSubSection

« Uif-HorizontalBoxGroup

« Uif-Horizontal BoxSection

« Uif-Horizontal BoxSubSection

The box layout is generally used for positioning groups (such as sections) and rows of buttons (action
fields)

The paddi ng property can be specified to customize the space between the group items (either the
space to the right for horizontal orientation or space below for vertical orientation)

CSS styling can be applied to the group items to achieve other layouts. For example, using the Fluid
stylesto makevariousgridsor left/right panels. Instead of adding the style class(s) to each groupitem, we
can use the layout manager propertiesi t enSt yl e andi t enfst yl eCl asses. The layout manager
will then apply them to each item for us

190

Groups

Field Groups

Thereisonetype of Field that we didn't cover in Chapter 6 which isthe Field Group. Thisismerely afield
that contains a group! Why do we need that? We need this because fields have something groups don't, a
label! Let's consider the following group using a grid layout:

<bean id="MyG oup" parent="Uif-GidGoup" p:title="Goup with Gid Layout" p:|ayout Manager. nunber & Col ums="4">

<property name="itens">
<list>

<bean parent="Uif- | nputField" p:propertyName="fieldl"
<bean parent="Uif-|nputField" p:propertyName="fiel d2"
<bean parent="Uif- | nputField" p:propertyName="fiel d3"

<property nanme="control ">
<bean parent ="Uif - CheckboxControl "/ >
</ property>
</ bean>

<bean parent="Uif- | nputField" p:propertyName="fiel d4"

<property nanme="control ">
<bean parent ="Uif- CheckboxControl "/>
</ property>
</ bean>

<bean parent="Uif- I nputField" p:propertyName="fiel d5"

</[list>
</ property>

p:label ="Field 1'
p:label ="Field 2
p:l abel ="Field 3

>
S

">

p:label ="Field 4">

p:l abel ="Field 5"/ >

</ bean>

Thisresult of thisis show below.

Figure 7.16. Grid Group Checkbox

Group with Grid Layout

Field 1: Field 2:
Field 3; Field 4

Field 5

Notice here the labels appear in separate cells due to the label field separator being enabled. What if we
wanted the two checkboxes (field3 and field4) to appear in one cell together instead of two separate cells?
We could add a nested group in our items but then there would not be a label for the corresponding label
cell. Thisiswhere field groups help us.

For creating field group components the base bean with name 'Uif-FieldGroupBase' is provided. Thisadds
astyle class of 'uif-fieldGroup' to our field. Extending this are the following two beans:

Uif-VerticalFieldGroup — Initialized the nested group component to Uif-VerticalBoxGroup. This means
the nested group will use a vertical box layout. In addition this bean adds the style class of 'uif-
vertical FieldGroup' to the field.

Uif-HorizontalFieldGroup — Initialized the nested group component to Uif-HorizontalBoxGroup. This
means the nested group will use a horizontal box layout. In addition this bean adds the style class of 'uif-
horizontal FieldGroup' to the field.

The most common use case for afield group is to combine a set of fields into one, and then use the label
property of the field to label the group. In these cases the header and footer on the nested group are not
used and thus turned off by default (in the base beans).

Now let's create afield group for our checkboxes. Wel use the vertical field group so they appear on top
of each other within the cell:

191

Groups

<bean i d="MyG oup" parent="Uif-GidGoup" p:title="Goup with Field G oups"
p: | ayout Manager . nunber O Col uims="4">
<property name="itens">
<list>
<bean parent="Uif-|nputField" p:propertyName="fieldl" p:label="Field 1"/>
<bean parent="Uif-|nputField" p:propertyName="field2" p:label="Field 2"/>
<bean parent="Uif-Vertical Fi el dGoup" p:|abel =" Checkboxes">
<property nanme="itens">
<list>
<bean parent="Uif-InputField" p:propertyNane="field3" p:label="Field 3">
<property nanme="control ">
<bean parent="Ui f - CheckboxControl "/>
</ property>
</ bean>
<bean parent="Uif-InputField" p:propertyNane="field4" p:label="Field 4">
<property name="control ">
<bean parent="Ui f - CheckboxControl "/>
</ property>
</ bean>
</list>
</ property>
</ bean>
<bean parent="Uif-|nputField" p:propertyName="field5" p:label="Field 5"/>
</list>
</ property>
</ bean>

Notice here we are setting the label property on our field group, this will be the label that displays the
in the label cell. Also notice to set the items on the nested group, we just specified "items" instead of
"group.items". Thisis because the field group class provides a convenience getter and setter that worked
with the nested group. The result of the above is shown below.

Figure7.17. Nested Field Groups

Field 1: Field 2:

Checkboxes: Field 5:
el

Recap

» A Field Group issimply afield that contains a nested group

» Field groups are useful for grouping fields that act as a set (for example a group of checkboxes) and
need to be labeled as a set

* The UIF provides the base bean named 'Uif-FieldGroupBase' for field group components. Extending
from these are beans that use a box layout for the nested group: 'Uif-Vertical FieldGroup' and 'Uif-
Horizontal FieldGroup'

» Generaly, when using afield group, the header and footer for the nested group is not needed; therefore
these are turned off (render property isfalse) in the base beans

 Field groups are al'so helpful for achieving complex layouts

Link Group

One special type of group provided in KRAD isthe Li nkGr oup component. A link group may be used
to create such things asalink tool bar or agroup of links (such asamenu group). Asimplied by its name,
only link components may be placed into alink group.

To create alink group, abean with parent of Uif-LinkGroup is used.

192

Groups

<bean parent="Uif-Li nkG oup" p: header Text ="Li nk G oup" >

To position the contained links, the link group does not use a layout manager, but instead a specified
delimiter. Thisdelimiter isrendered between each link pair. To configure the delimiter string, the property
| i nkSepar at or isgiven.

In addition we can specify a string that will render before the group of links, and a string that will render
after the group. The begin string is given using the gr oupBegi nDel i mi t er . Likewise the end string
isgiven using the gr oupEndDel i m t er .

p: groupEndDel im ter="]">
<property name="itens">
<list>
<bean parent="Ui f-Link" p:href="http: nyapp/ home" p:|inkLabel ="Home"/>
<bean parent="Ui f-Link" p:href="http: nyapp/register" p:linkLabel ="Register"/>
<bean parent="Ui f-Link" p:href="http: nyapp/ about” p:1|inkLabel ="About"/>
</[list>
</ property>
</ bean>

Navigation Group

Coming Soon!

Collection Groups

Timeto tacklethedragon! If you have followed everything up to this point, you are ready to go. If not, well
this would be a good time to review! The next component type we are going to look at is the Collection
Group. This component is inherent with complexity due to the many responsibilities it has. First, as its
nameimplies, it as atype of group. However, similar to datafield, it is also a DataBinding component (is
backed by a model property). But in both cases, the collection group has significant differences.

Let'sstart by looking at the data binding aspect of collection group. We know from our work with datafield
this means our component is going to point to a property somewhere in the model. The purpose of doing
soisto provide 1O (Input/Output) with the application model. Consider our model we used in Chapter 6:

public class Test Form {

private String fieldl;

private Test1Object test1Chject;
}

public class Test1Ohject {
private String t1Field,;
private Test2Chject test20bject;
private List<Test2C0bject> test2List;
}

public class Test20bject {
private String t2Field,;

193

Groups

private String t2Fiel d2;

private String t2Fiel d3;

private Map<String, String> t2Map;
}

All of the data (or input) field examples we showed pointed to properties that had primitive types (String,
Integer, Boolean, List<String>). Although the property path might have been nested, it eventually pointed
to aprimitive property. So in Test10bject, how would we give the ability to edit or display propertiesfrom
each item of the test2List property? Notice the type for this property isaList of data objects. Thisisthe
type of property our collection group will bind to. We use the same approach as datafield for configuring
the collection property. That is by using the propertyName property and the nested bindinglnfo property
(when needed).

We will learn about the collection group beans later on, but for now let's create a bean that uses the
collection group base bean with name 'Uif-CollectionGroupBase':

<bean parent="Uif-Col |l ecti onG oupBase" p:title="My First Collection" p:propertyNane="test1Object.test2List"/>

Collection group isatype of group (whichisacontainer), therefore, we can specify thetitle property which
will be used for the group header text. Then we are pointing our collection to the test10bject.testList List
property. Now let's add some input fields to our collection group:

<bean parent="Uif-Coll ecti onG oupBase" p:title="My First Collection" p:propertyNane="test1(bject.test2List">
<property name="itens">
<list>
<bean parent="Uif-InputField" p:propertyName="t2Field"/>
<bean parent="Uif-InputField" p:propertyName="t2Fi el d2"/>
<bean parent="Uif-InputField" p:propertyName="t2Fi el d3"/>
</list>
</ property>
</ bean>

Notice the property names for our input fields point to properties on Test20bject. Unlike general group
fieldsthat are assumed to be relative to the root model object (form) or abinding object path, the property
names given for a collection field are assumed to be on the collection item class. What do we mean by
collectionitem class? Thisrefersto thetypefor each of our list items, which in our exampleis Test20bject.
All collection items must contain properties (with valid getters and setters) for the fields configured.

Collection Field Binding

Recall our discussion on databinding in Chapter 6 and the binding info 'bindByNamePrefix'. This
property is set automatically for each field in the collection group to be the path to the collection
item (collection binding path plus the item index).

This collection group looks very similar to the basic groups we have looked at, so what is the difference?
A good way to think of the difference is our basic group renders one set of fields, while our collection
groups renders multiple sets of fields. That is, for each item that existsin thelist property, the set of fields
configured will be generated. Let's assume our test2List property has three items, then the corresponding
fields generated will be:

Collection Item 1 (test2List[0]):
Fields: test2List[0].t2Field, test2List[0].t2Field2, test2List[0] .t2Field3
Collection Item 2 (test2List[1]):

Fields: testoList[1].t2Field, testoList] 1] t2Field2, testoList[1].t2Field3

194

Groups

Collection Item 3 (test2List[2]):
Fields: test2List[2].t2Field, test2List[2].t2Field2, test2List[2].t2Field3

And so on for further collection items. This requires the framework to dynamically create new fieldsin
code to expand to the number of collection items present in the model. This process is described in the
upcoming section '‘Component Prototypes.

Collection Object Class

The collection item class is critica for much of the functionality collection groups provide.
Therefore, when creating a collection group, we must specify the item class type using the
col | ecti onQoj ect C ass property:

<bean parent="Uif-Col | ecti onG oupBase" p:title="My First Collection"

p: propertyNane="t est 10bj ect . t est 2Li st"
p: col | ecti onObj ect O ass="edu. nyedu. sanpl e. Test 20bj ect"/ >

The class given must be a concrete (non-abstract) class that follows the JavaBean specification.

Add Line

Collection groups provide data 10 at two different levels: One for the individual collection item fields,
and two at the collection level itself. Data 1O at the collection level is done in terms of adding and
removing items (data objects). Therefore, a general facility provided by the collection group is the add
line configuration.

First, to specify we want to have an add line for our collection group, we set the r ender AddLi ne
property to true. This is true by default in our collection group base, however, in code there is aso the
condition that the collection group not be read-only (when in read-only state, the add line will not be
rendered). This behavior can be modified by acollection helper class called the Collection Group Builder,
which we will learn about later in this section.

Currently the UIF implements the add line functionality using a separate property. This means the object
that holdsthe add line datais not part of the collection property itself. Oncethelineisadded, the add object
isinterested in collection. Thus, the collection group needs to have a property to store the add line object.
This can be done in one of two ways. First, if no configuration is provided and the UifFormBase is being
used for a base form class (the recommendation), a generic property of Map type will be used. The full
collection path is used to key the map, with the actual add line object as the Map value. The framework
will then take care of setting the binding paths appropriately. Y ou can also choose to specify the path for
the add line through the collection group. Thisworks similar to specifying other property paths. We can do
this by setting the addLi nePr oper t yName and, if needed, the addLi neBi ndi ngl nf o properties.
Asan example, let's assume we want to use our test20bject property to hold the add line:

public class Test1Object {

}

private String t1Field;
private Test2Object test20bject;
private List<Test20bject> test2List;

We can configure this as follows:

<bean parent="Uif-Col |l ecti onG oupBase" p:title="My First Collection"

p: propertyNane="t est 1Cbj ect . t est 2Li st"
p: col | ecti onObj ect d ass="edu. nyedu. sanpl e. Test 20bj ect ">
<property name="addLi nePropertyNane" val ue="test 10hj ect.test2Chject"/>

195

Groups

</ bean>

Note unlike the field property names, the add line is not assume to be on the collection item. Therefore,
it follows the standard rules as other non-collection fields. In this case (assuming the view has no
default object binding path), we set the full path from the form to our add line property, which is
'test10bject.test20bject".

The configured collection group items will be used to generate the add line as well. Therefore, they must
all exist for the add properties type (generally this is the same type as the collection items). If it isdesired
to have a different set of fields for the add line (for example, some fields might get defaulted or are
not necessary to show until the line has been added), an alternate set of items can be specify using the
addLi nel t ens property. This property holds alist of components similar to the generic group's items

property.

Lastly, the collection group provides a nested Label component for the add line named addLi neLabel .
Thisis not used by the collection group itself, but is made avail able to the collection layout managers (for
example, the table layout manager uses this to label the add line row).

Collection Add Blank Line

Collections can be configured to allow the user to add blank editable lines to the collection. Thisway, the
user isforced to add the line to the collection before entering data. In this case, the blank line will already
be part of the collection data.

To enable this feature the r ender AddBI ankLi neBut t on property on CollectionGroup must be set
to true. This can be set on stacked as well astable collection layouts. Thiswill cause the default add line
actions not to be rendered inside the items and, instead, an Add Line action button will be rendered once
for the collection.

The placement of this button can be set using theaddLi nePl acenent property. Vaid valuesare TOP
and 'BOTTOM'. The default will aways be TOP'. Thiswill also determine where the blank will be added
to the collection, 'TOP will insert the line first and 'BOTTOM' will insert the line last.

The newly added line will be highlighted until the collection is saved in order to differentiate it from the
original items.

Example configuration (NOTE : the addLinePlacement does not need to specified if the valueis 'TOP)...

<bean i d="Col | ecti ons- AddBl ankLi ne- Tabl eLayout” parent="Uif-Di scl osure-Tabl eCol | ecti onSecti on"

p: | ayout Manager . nunber O Col uims="4">

<property name="render AddBl ankLi neButton" val ue="true" />
<property name="addLi nePl acenent" val ue="TOP" />

</ bean>

Figure 7.18. Collection Add Blank Line Example- TablelL ayout with TOP add line
placement

¥ Table Layout With Add Blank line TOP (default)

add line

$ * Field 1 ¥ *Field 2 % * Field 2 $ * Field 4 § Actions
1 delets

2 A B c v} delete

E 1 2 3 4 deleta

196

Groups

Collection Add Via Lightbox

Callections can be configured to allow the user to add items to the collection viaamodal dialog.

The add button in the dialog will execute client side checks just like the add action in normal collection
setup would do, and not allow the user to add invalid content.

To enablethisfeature, theaddVi aLi ght Box property on CollectionGroup must be set to true. Thiscan
be set on stacked as well as table collection layouts. Thiswill cause the default add line actions not to be
rendered inside the items and, instead, an Add Line action button will be rendered once for the collection.

The addLi nePl acenent property determines where the blank will be added to the collection. Valid
values are 'TOP and 'BOTTOM'. The default will always be "TOP. "'TOP will insert the line first and
'BOTTOM' will insert the line |ast.

The newly added line will be highlighted until the collection is saved in order to differentiate it from the
original items.

Example configuration (NOTE : the addLinePlacement does not need to specified if the valueis 'TOP) :

<bean i d="Col | ecti ons- AddVi aLi ght Box- Tabl eLayout" parent="Uif-Di scl osure-Tabl eCol | ecti onSecti on"

<property name="addVi aLi ght Box" val ue="true" />
<property name="addLi nePl acement" val ue="TOP" />

</ bean>

Figure 7.19. Collection Add Via Lightbox Example - TableLayout with TOP add
line placement

* Field 1:
* Field 2:

* Field 3:

* Field 4:

Line Actions

In Chapter 6, we learned about the action component, which is used to render buttons or links for our
view. These allow the user to perform some action such as making a server call, or invoking client side
script. The collection group provides us the ability to configure actions that operate on a collection line.
Examples of this are the add action (present with the add line to invoke the line addition), and the delete
action (to remove an item from the collection). These are standard actions we think about with collections,
but others can be added as well. For example, we might choose to have a copy action, or a perform detail
action. In short, actions can be configured for whatever the functional needs are.

197

Groups

We specify the line actions using the collection group's| i neAct i ons property. The property holds a
list of Action components that are rendered when the collection group r ender Li neAct i ons property
istrue (this property givesusaway to turn off all actions conditionally). Similar to add line, the framework
also enforces the condition of the collection group being in editable state (not read-only) before the actions
will be rendered.

Let'sconfigure two buttonsfor our collection lines. Thefirst buttonwill call aserver side controller method
named 'copyLine', and the second will call a server side controller method named 'deleteLing':

<bean parent="Uif-Col | ecti onG oupBase" p:title="My First Collection"
p: propertyName="t est 10bj ect . t est 2Li st"
p: col |l ecti onObj ect G ass="edu. nyedu. sanpl e. Test 20bj ect " >

<property name="lineActions">
<list>
<bean parent="Ui f-SecondaryActi onButton-Smal|" p: methodToCal | =" copyLi ne" p: acti onLabel ="copy"/>
<bean parent="Ui f- Secondar yActi onButton-Smal | " p: met hodToCal | =" del et eLi ne" p: acti onLabel ="del ete"/>
</list>

</ property>

</ bean>

Notice we have chosen to use the secondary small button styling. Thisis the chosen design for collection
buttons by the KRAD team, but any button style may be used. Furthermore, any action component may
be used, including the action links or images.

Similar to the group items, the set of line action componentswill be created for each collection item present
in the model. This means our view could end up with several action buttons with labels 'copy' and 'del ete,
that all call server methods 'copyLine' and 'deletel ine' respectively. So when the server method isinvoked,
how do we know which line was chosen? Thisis where the action parameters map available on the Action
component comesinto play. When the actions are created during the view lifecycle, action parameterswill
be added to each action component indicating the collection path, and the line index. These parameters
are then sent with the request made when the action is invoked, and can be pulled from the request (or
form) within the controller method.

What about if we have an add line, will these actions be rendered for it as well? In most cases the actions
configured for existing lines do not make sense for the add line (consider our case with the copy and delete
actions). Therefore the line actions are not rendered for the add line and, instead, a separate property is
provided named addLi neAct i ons. Theusual action wefind hereis, of course, the 'add’ action. Thisis
used to make the server call for adding the line to the collection. Let's see how we add this:

<bean parent="Uif-Col |l ecti onG oupBase" p:title="My First Collection"
p: propertyNane="t est 1(bj ect . t est 2Li st"
p: col |l ecti onObj ect G ass="edu. nyedu. sanpl e. Test 20bj ect " >
<property nane="addLi neActions">

<list>
<bean parent="Uif - Secondar yActi onButton-Smal | " p: net hodToCal | ="addLi ne" p:acti onLabel ="add"/>

</list>
</ property>
<property nanme="lineActions">

<list>
<bean parent="Uif-SecondaryActi onButton-Smal|l" p: nmethodToCal | ="copyLi ne" p: acti onLabel ="copy"/>
<bean parent="Uif-SecondaryActi onButton-Small" p: nmethodToCal | ="del et eLi ne" p: acti onLabel ="del ete"/>

</list>
</ property>

</ bean>

The configuration isthe same as the lineActions property, the only difference being we specify adifferent
property hame on the collection group.

If al you need for your collection is the standard add and delete actions, you're in luck! That is because
you get al this for free by extending the 'Uif-CollectionGroupBase' bean. This bean definition sets
the addLineActions to include the add action, and likewise sets the lineActions to include the delete

198

Groups

action. Furthermore, the UifControllerBase class provided with KRAD takes care of adding and deleting
collection lines. Thus no code required at all by the page devel oper!

Add/Delete Actions

In many cases an application needsto do more than simply modifying the collection when an add
or deletereguest ismade. One common requirement isto first validate the datawith businessrules.
Or we might need to invoke some other operation. These needs can be taken care of while having
the framework take care of the collection manipulation. First, the controller methods delegate
the operations to a ViewHelperService. Thisis a service implementation that is configured on a
view instance and performs much of the view related functions. Within the view helper, methods
are provided that can be easily overridden to perform validation or other functions. We could
also choose to write a controller that extends the UifControllerBase and configure the actions to
invoke a custom method. After performing custom logic, a call to super can be made to carry
out the line action.

Validated Line Actions

A special typeof Line Actionsarethe Validated Line Actions. They do client side validation on therelated
item before the action can be fired. If the validation fails, a message dialog will be displayed informing
the user that the item contains errors, and that the action will not be executed.

We specify the validated line actions using the collection group'sval i dat edLi neAct i ons property.
Similar toline actions, the property holdsalist of Action componentsthat are rendered when the collection
group render Li neAct i ons property is true (this property gives us a way to turn off al actions
conditionally). Example:

<bean parent="Uif-Col |l ecti onG oupBase" p:title="My First Collection" p:propertyName="test1(bject.test2List"
p: col |l ecti onoj ect A ass="edu. nyedu. sanpl e. Test 2(bj ect " >
<property name="val i dat edLi neActi ons" >
<list>
<bean parent="Uif-SecondaryActi onButton-Small" p: methodToCal | ="updat eLi ne" p: acti onLabel ="update"/>
</list>
</ property>
</ bean>

Collection Save Action

A type of Validated Line Action that is configured on collections is the save action. This action is not
rendered by default. This action will call the savel.ine method on the UifControllerBase controller which
will call the ViewHel perService processColl ectionSavel ine method which can be overridden by the client.
Thiswill allow for processing single collections items.

The save actions can berendered by setting ther ender SavelLi neAct i ons property to true. Example:
<bean i d="Col | ecti ons- SavelLi nes- Tabl eLayout" parent="Uif-D scl osure-Tabl eCol | ecti onSecti on"
p: | ayout Manager . nunber O Col uims="4">
<propert yl ﬁérna:” render Saveli neActi ons" val ue="true" />

</ bean>

Collection Action Column Sequence

Collections using TableL ayoutManager can be configured to set the action column placement.

199

Groups

The | ayout Manager . act i onCol umPl acenent property on the CollectionGroup can be set to
specify the placement of the action column. The default placement will be'RIGHT'. Other valid placement

values are 'LEFT' or any valid column number. Values higher than the number of columns or a value of
-1 will default to 'RIGHT".

Example configuration (NOTE : the addLinePlacement does not need to specified if 'TOP)...

<bean i d="Col | ecti ons- Acti onCol umPl acenent - Tabl eLayout” parent="Uif-D scl osure-Tabl eCol | ecti onSecti on"
p: | ayout Manager . nunber O Col uims="4">

<property nanme="| ayout Manager. acti onCol uimPl acenent" val ue="3" />

</ bean>

Figure 7.20. Collection Action Column Placement Example

4 ¥ Field 1 ¥ Actions * Field 2 % ¥ Field 3 % ¥ Field 4 :

add: add

1 A delete B [O

2 1 delete 2 3 4

3 W delste ks Y Z
SubCollections

We have seen how to bind to primitive types (data field), and collection types (collection group), and
primitives within a collection (collection group data fields), so what about a collection property within a
collection item? We can do that as well, and these are called SubCollections.

Basically we configure a sub-collection the same way as a normal collection, using a collection group.
The difference is the collection group for a sub-collection is nested within another collection group. So
we can just set the sub-collection collection group in the parent collection group's items list right? The
answer isno. The reason being, these nested collection groups need to be treated differently for rendering
than the standard collection group items. Therefore, a property named subCol | ect i ons is provided
for configuring nested collection groups.

For an example let's first create a Test30bject, and add alist of these objects to our Test20bject:

public class Test3bject {
private String t3Field;
private String t3Field2;
}

public class Test2bject {
private String t2Field;
private String t2Fiel d2;
private String t2Fiel d3;
private List<Test30bject> test3List;
private Map<String, String> t2Map;

We can then configure the collection group for the sub-collection as follows:

<bean parent="Uif-Col | ecti onG oupBase" p:title="My First Collection"
p: propertyNane="t est 1(bj ect . t est 2Li st"
p: col | ecti onObj ect G ass="edu. nyedu. sanpl e. Test 20bj ect " >
<property nane="subCol | ecti ons">
<list>

200

Groups

<bean parent="Uif-Collecti onG oupBase" p:title="My First Collection"

p: propertyNane="t est 3Li st"

p: col l ecti onObj ect G ass="edu. nyedu. sanpl e. Test 30bj ect ">

<property name="itens">

<list>
<bean parent="Uif-InputField" p:propertyName="t3Field"/>
<bean parent="Uif-InputField" p:propertyName="t 3Fi el d2"/>
</list>
</ property>
</list>
</ property>
</ bean>

Notice our collection group for the sub-collection is configured exactly like any standard collection. Also
noticethat the property nameissimply 'test3List'. Thisisbecause the binding for the sub collectionsfollow
the samerule asthe collection group fields (assumed to be on the collection item). We can continue adding
other sub collectionsto the list as needed.
As you might have guessed, the sub-collection could in turn have sub-collections and further down the
line. The framework does not restrict how many levels the nesting can go (in practical terms of screen real
estate three levels is usually the limit). The number of fields generated when using sub-collections can
grow quiterapidly. For each parent collection line, a separate sub collection must be rendered entirely. For
example assume our test2List has 2 items, and our test3List has 3 items. The line rendering would then be:
* Render test2List[0]

* Render test2List[0].test3List[O]

* Render test2List[0].test3List[1]

* Render test2List[0].test3List[2]
* Render test2List[1]

* Render test2List[1].test3List[O]

* Render test2List[1].test3List[1]

e Render test2List[1].test3List[2]

You can clearly see that as more test2List items are added, the number of fields grows fast. Adding other
sub-collections, or another level of sub-collections, makes the rate of growth even more rapid.

Collection Group Builder

Coming Soon!

Recap

» A Collection Group is a specia group that renders multiple sets of fields and associates with a model
property of type Collection

» Likeaninput field, the collection group usesthe pr oper t yNamne and bi ndi ngl nf o properties for
finding the property that provides the collection data

» When configuring a collection group, we must specify the type for each collection item using the
col | ecti onthj ect d ass property

201

Groups

All datafields declared within the collection group'sitemslist are assumed to be on the collection object
class (therefore, their path given isrelative to the path of the collection item)

Collection groups provide datal O at two levels: theindividual collection fields, and the collectionitems
(data objects). For adding a collection item, we use the add line feature which is enabled by the property
r ender AddLi ne (true by default when the group is not read-only)

The add line data object is not part of the collection until the user performsthe add operation. Therefore,
we must hold the data object in a separate property

The UIF provides a generad Map on UifFormBase for holding add line objects. We can
override this to use a custom property by setting the properties addLi nePr opert yNane and
addLi neBi ndi ngl nfo

By default, the components configured in the items property will be used for the add line as well. We
can, however, configure adifferent list of components using the addLi nel t ens property

Collections can be configured to allow the user to add blank editable lines to the collection. This way,
the user is forced to add the line to the collection before entering data. To enable this feature, the
r ender AddBI ankLi neBut t on property on CollectionGroup must be set to true

Collections can be configured to allow the user to add items to the collection via a modal dialog. To
enable thisfeaturethe addVi aLi ght Box property on CollectionGroup must be set to true

The collection group providesthe property addLi neLabel whichisused by layout managersto label
theadd line

Action fields that perform an action related to an existing line can be given using thel i neAct i ons
property. For theadd line, actionsaregivenusingtheaddLi neAct i ons property. Common examples
include the 'delete’ action for existing lines and the 'add' action for the add line

Validated Action fields that perform a validation and an action related to an existing line can be given
using theval i dat edLi neAct i ons property

Thedisplay of the actionsis controlled by the property r ender Li neAct i ons (by default thisistrue
when the group is not read-only)

We can specify the placement of the action column on collection groups using Tablel ayoutM anager by
setting thel ayout Manager . acti onCol utmPl acenent property

Collection group beans can extend the base bean 'Uif-CollectionGroupBase' which configures the add
and del ete buttons by default

We can create a controller that extends Ui f Cont r ol | er Base which provides handling of the add
and delete line actions. If we need to perform custom actions (such as validation), we can override
the controller method or implement the ViewHelperService method pr ocessBef or eAddLi ne or
processAft er AddLi ne

In addition to providing data 10 for primitive property types on a collection, we also have nested
collection property types. These are referred to as sub-collections

Sub-collections are just a collection that is nested, therefore, we use a collection group and configure
in the same way as a non-nested collection. The only difference is we then add this collection group to
thesubCol | ect i ons property of the parent collection group

202

Groups

» When configuring the property path for the sub-collection (like the collection items), it is assumed to
be related to the collection object class

Component Prototypes

Coming Soon!

Recap

* Inmany places of the UIF components need to be created dynamically based on data or other conditions.
A good exampl e of thisare components configured for acollection group. For example, when we specify
the lineActions, these action need to be rendered for each line. Therefore, we need separate components
for each line (the same components cannot be used for reasons such as id, action parameters, property
paths and so on)

* When the framework needs to dynamically build a component, it makes a copy of the component
configured. Therefore, the configured component acts as a prototype for the component creations rather
than being the actual component that is rendered

» Many properties have the suffix 'prototype’ in their name to indicate this purpose

Collection Layout Managers

Again we know the group component (including collection groups) has no knowledge of how to position
the componentsit holds. Therefore, we need to associate alayout manager with the group. Because of the
unique features we have seen with collection groups, they require a special type of layout manager. These
layout managers must implement the interface org.kuali.rice.krad.uif.layout.CollectionL ayoutM anager,
which requires amethod named buildLine to be implemented. Collection layout managers haveto do alot
more work than the standard layout managers. For the standard manager such as grid and box, most of the
work can be simply done through the template by the process described earlier in this chapter. Collection
layout managers, though, need to do work in codeto collect the generated collection linefields (and actions)
and, in some cases, create wrapping components (this will become more clear as we continue).

Setting aside the concerns of item layout, the collection group appears just like the standard group. We
have the group header, instructional message, errors field, the group items, and the footer. The difference
comes where the items are rendered, which we will again call the Layout Area.

Version 2.0 of KRAD comes with two collection layout mangers, the Table Layout Manager and the
Stacked Layout Manager. Let's take a close look at each of these.

Table Layout

The Table Layout manager does as you might expect: it creates an HTML table! However, unlike the
table created by the grid layout, these tables follow more closely with what we think of as adatatable (for
exampl e a spreadsheet). These tables have the following characteristics:

1. Each collection item is one line in the table. Note we say line instead of row (tr). In most cases aline
isasingle table row, but can span multiple rows.

2. Eachitemfield isacolumn in thetable. Thefield label is presented as the column header.

The basic table layout is shown below.

203

Groups

Figure 7.21. Table Layout Manager

Header Header Header
Label Label Label

Component Component Component Actions

Component Component Component Actions

Component Component Component Actions

Component Component Component Actions

In addition to the columnsrendered for the group items, the table layout manager will create two additional
columns. One of these will hold the line actions. Recall our line actions are configured as alist of Action
components on the collection group. In order to place thesein acell, the table layout manager wraps these
actionsinto a Field Group. We use the prototype pattern to specify how the action field groups should be
created. The property for doing soisact i onFi el dPr ot ot ype.

By default these prototypeis set as follows:

<property nanme="actionFi el dProt otype">
<bean parent="Uif-Horizontal Fi el dG oup" p:align="center" p:l|abel ="Actions"
p: short Label =" Actions"/>
</ property>

For each collection item, a new field group component will be created by copying this prototype. The
list of actions will then also be copied, and finally inserted as the items on the nested field group. The
prototype definition here stated the field group items (actions) will be rendered using a horizontal box
layout. Furthermore, this specifies alabel for the field of 'Actions, which, like the label for the collection
fields, will be displayed as the column header. Finally, we are specifying our content should align center.

The second column the table layout manager will add is referred to as the sequence column. Thisis a
column that will provide alabel for each row. Typically thelabel is either a generated sequence (1,2,3...),
or uses an identifier property from the collection item class (such as a line number or unique identifier).
To enable the column, the property r ender SequenceFi el d on the table manger must be set to true
(default). We then need to specify where the sequence value should come from. One way of doing this

204

Groups

isto allow the framework to create the sequence value for us. Thisis basically a numbering of each line
starting with one. To use autosequencing we set the property generateAutoSeguence to true.

Row Details Group option

Table collections can now display additional details on arow. When using thisfunctionality, an additional
column with a "Details" link will be available, and when the user clicks on it, the configured group to
display for that row will be revealed/disclosed below that row. The intended uses of this functionality is
for the user to be ableto discover additional information about that collection item without having to leave
the page, or hide content that can become large, such as descriptions.

To use arow details group with a Uif-TableCollectionSection (or variation of) you setup the following
properties on its | ayout Manager (It is REQUIRED that the layoutManager is using richTable
functionality - in other words, it is using the dataT ables jQuery plugin to render):

r owDet ai | sGr oup —this can be ANY group or section content you would like to use for the content
of details. The input and data fields used in this group will automatically inherit the necessary collection
binding path just like items of the collection itself

A note on column width: If you would like the details column to take up less space than it does by
default, you must manually alter the column width as follows (20px is the width we are manually setting
here and 0 isthe index of the details column):

<property name="| ayout Manager. appl yDef aul t Cel | Wdt hs" val ue="fal se"/>
<property name="| ayout Manager.richTabl e. t enpl at eOpti ons" >
<map merge="true">

<entry key="aoCol umbDefs" val ue="[{" ; sW dt h" :

[01}1"/>

" ; 20px" ; , " ; aTar get s" ;

</ map>
</ property>

Figure 7.22. Row Details

* Field 1 * Field 2
Details A B
Detalls f 5
" Field 4: 4
Details W X
Bsiais ik

Fi

4:d

Details a s

Showing 1 to 5 of 5 entries

Row Grouping

Collection row grouping allows for rows of a table collection to be grouped together under a common
header when one (or more) of their property values are the same.

To group lines of acollection, thegr oupi ngPr oper t yNanmes property must be set. In most cases, this
will beasingle pr oper t yNane, but it can be as many as you want to specify. When there are multiple
propertyNames given, they will be sorted and displayed by valuein the order giveninthelist (concatenated
using a comma to separate the values). ALL propertyNames given MUST be a valid property of the
collection object for this table collection specified by the collection's collectionObjectClass property .

All propertyNames are relative to the collection line object, and do not need accept #lp (or other
prefixes). Important note: grouping currently does not allow/ignores the use of the sequenceField property
(renderSequenceField should be set to false). The ri chTabl e widget of collections must be have
render="true" for grouping to work.

205

Groups

There are 2 available options to customize the grouping title;

By default, when using grouping, the field you are grouping on is not displayed automatically. This hasto
be done in the same way you would display other fields of the line, by adding the field you want to show

groupi ngPrefi x (string) — this will prefix the default title of the group with the string provided
(does not affect sort order, sort order will still be based on actual grouping value)

groupi ngTi t| e (string) —thisisa customized titlethat MUST include SpringEL for valuesto group
by. #p should be used to reference values of the line in the expression(s) used. Thetitle can be anything
as long as it includes some content that is based on line values. Sorting will be based on the full title
in alphabetical order. groupingTitle will always override the settings of groupingPropertyNames and

groupingPrefix.

to items (so displaying the grouping field value or not is up to the devel oper depending on use case).

To enable grouping, simply supply some gr oupi ngPr oper t yNanes. In this example, lines will be
grouped by the values that exist for field1 of the collectionObject. The fieldl InputField is also displayed

asafield of the collection line (but could be omitted if desired).

<bean i d="Deno- Col | ecti onGr oupi ng- Secti onl"

<property
<property

<property
<property
<property

name="header Text" val ue="Basi ¢ G ouping"/>
name="col | ecti onObj ect Cl ass"

val ue="edu. sanpl eu. denp. ki t chensi nk. Ul Test Cbj ect"/ >
name="propertyNane" val ue="groupedList1"/>
name="readOnl y" val ue="true"/>

name="1 ayout Manager . r ender SequenceFi el d" val ue="
<property name="| ayout Manager. groupi ngPr opertyNanmes"> <l ist>

<property name="itens">

fal se"/>
<val ue>fi el di</val ue> </list> </property>

parent ="Ui f - Tabl eCol | ecti onSecti on">

<list>

<bean parent="Uif-InputField" p:propertyName="field2" p:label ="Value 1"/>

<bean parent="Uif-InputField" p:propertyName="fiel d3" p:label ="Value 2"/>

<bean parent="Uif-InputField" p:propertyName="fiel d4" p:|abel ="Value 3"/>

<bean parent="Uif-InputField" p:propertyName="fieldl" p:l|abel ="G oup Val ue"/>

</list>
</ property>
</ bean>
Which resultsin atable that looks like this:
Basic Grouping

Value 1 Value 2 Value 3 Group Value
A
100 200 300 A
101 200 300 A
102 200 300 A
103 200 300 A
104 200 300 A
B
100 200 300 B
101 200 300 B
102 200 300 B
C
100 200 300 c
101 200 300 c

Showing 1 to 10 of 36 entries

Alternatively, if we supply multiple property names, we can group lines based on multiple properties of

the collectionObject instead of one.

<property name="| ayout Manager . gr oupi ngPropertyNames"> <l i st> <val ue>fi el d2</val ue> <val ue>fi el d1</val ue> </

l'ist> </prope

rty>

2

3

4

Mext

Last

206

Groups

<property name="itens">
<list>
<bean parent="Uif-InputField" p:propertyName="fieldl" p:|abel ="Senmester"/>
<bean parent="Uif-InputField" p:propertyName="field2" p:|abel ="Year"/>
<bean parent="Uif-InputFi el d" p:propertyName="fiel d3" p:|abel =" Course"/>
<bean parent="Uif-InputField" p:propertyName="fiel d4" p:label ="Credits"/>
</list>

This results in a table that looks like this (this table al'so has column totaling turned on, this is covered
in the next section):

Semester Year Course Credits
2001, Fall
Fall 2001 AAA12] 2
Fall 2001 BBB123 3
Fall 2001 CCC123 4
Fall 2001 DDD123 3
Group Total: 12
Group Max: 4
2001, Spring
Spring 2001 AAA123 3
Spring 2001 BBB123 3
Spring 2001 CCcc123 3
Group Total: 9
Group Max: 3
2002, Fall
Fall 2002 AAA123 3
Fall 2002 BBB123 2
Fall 2002 Cccc123 3
Group Total: 8
Group Max: 3
Page Total: 29
Total: 57
Page Max: 4
Max: 4
Showing 1to 10 of 19 entries 1/ 2| Next||Last

Supplying a groupingPrefix to use for the grouping row title (set on the | ayout Manager of the Uif-
TableCollectionSection)

<property name="| ayout Manager. gr oupi ngPrefi x" value="Lines with value "/>

Resultsin atable that looks like this:
Grouping using Grouping prefix option

Value 1 Value 2 Value 3 Group Value
Lines with value A

100 200 300 A

101 200 300 A

102 200 300 A

103 200 300 A

104 200 300 A

Lines with value B

100 200 300 B

101 200 300 B

102 200 300 B

Lines with value C

100 200 300 C

101 200 300 C

Showing 1 to 10 of 36 entries 123]4]|Next||Last

207

Groups

And supplying agr oupi ngTi t | e (note that SpringEL is REQUIRED to be used in the groupingTitle
property, if used)

<property name="I| ayout Manager. groupi ngTitle" value="Letter @#l p.fieldl} initeni/>

Results in atable that 1ooks like this:
Grouping using custom groupingTitle

When a groupingTitle is used groupingPropertyMames and groupingPrefix are ignored. This option gives full control of the grouping title
to the dev but REQUIRES springEL as part of the title.

Value 1 Value 2 Value 3 Group Value
Letter A in item

100 200 300 A

101 200 300 A

102 200 300 A

103 200 300 A

104 200 300 A

Letter B in item

100 200 300 B

101 200 300 B

102 200 300 B

Letter C in item

100 200 300 C

101 200 300 c

Showing 1 to 10 of 36 entries First | | Previous | [2| [3][4 | [Next | | Last

Column Calculations

Collection totaling allows the calculation of column data, and puts this total at the bottom of
that column in the table's footer. Currently, column calculations only work for numeric data
To setup calculations for a collection, the only thing that needs to be provided is a list of
column calculations (Col utmcCal cul at i onl nf o) you want for each column on the collection's
| ayout Manager . col unmcCal cul ati ons property. Columns can even have multiple types of
calculations per column.

Thefollowing KRAD base beans are avail able that provide default ColumnCal culationlnfo configurations
for the most common column cal culation operations:

Ui f - Col ummCal cul ati onl nf o — ALL ColumnCalculationInfo must have this bean as a parent
(thisisimportant for any custom calculations)

Ui f - Col utmCal cul ati onl nf o- Sum

Ui f - Col umCal cul at i onl nf o- Aver age (default 2 decimal places, but alows you to specify
decimal places through cal cul ationFunctionExtraData — described below)

Ui f - Col utmcCal cul ati onl nf o- Max

Ui f - Col umCal cul ati onl nfo-M n

By default, KRAD supports sum, average, min, and max, but can easily be expanded with any calculation
you want to provide, by creating your own javascript function and ColumnCal cul ationl nfo bean. Javascript
functions referenced by ColumnCalculationinfo must follow this format ("values' must be the first
parameter, "yourExtraData" is optional and can be named anything):

208

Groups

function yourCal cul ati onFuncti onNanme(val ues, your ExtrabDat a) {
//do a calculation with the array of val ues passed
/lreturn calculation result

}

The function's name is used in ColumnCalculationinfo's cal cul ati onFuct i onName property. This
property must be specified by name only; parenthesis and parameters CANNOT be included. The
framework automatically passes the array of column values to calculate to the function as the first
parameter and data specified by the cal cul at i onFunct i onExt r aDat a property as the second
parameter. This data can be any valid javascript data: int, String, object, etc.

The calculationFunctionExtraData property is meant to provide options to your calculation function, if
needed (our average function, for example, uses calculationFunctionExtraData to pass the number of
decimal places to be used in the average).

The settable properties available on Ui f - Col urmCal cul at i onl nf o are;

pr opert yNanme —must be set. This specifies the column of the collection you are totaling. The field
for this propertyName must be one of the fields specified by items of the TableCollection.

showTot al (Boolean) —default true. Whether or not to show the calculation total for the column (this
isthetotal of all values of the collection across al pages)(default is true on KRAD base beans).

showPageTot al (Boolean) —if true, this shows the calculation total for the values of the currently
shown page for the column(default is true on KRAD base beans).

showG oupTot al (Boolean) —if true, showsthe group calculation total for the values of each group.
The TableCollection must be using row grouping functionality for this to work (see TableCollection
Row Grouping) (default isfalse on KRAD base beans).

total Fi el d, pageTotal Fi el d, and groupTot al Fi el dPr ot ot ype —the MessageField
component used to display the column calculation results. Normally not configured, but can be used
to force messageText in the skip client-side scenario (described below) and to modify the label of the
calculation field at will. These fields should not be overridden, only their properties set. Example of
setting the label on pageTotalField:

<property name="pageTotal Fi el d.fiel dLabel .| abel Text" val ue="Page Average"/>

cal cul ati onFunct i onName — described above, the js calculation function to use by name.

cal cul ati onFuncti onExt r aDat a —optional. The additional jsdatato passto thejscalculation
function.

recal cul at eTot al d i ent si de — if false, the calculation for total (not page or group totals —
these are ALWAY S client-side calculations if shown) is not done client side. What this means is the
total must come from the server by providing the total to the totalField in this way through SpringEL:

<property name="total Fi el d. messageText" val ue=" @ #f orm server Cal cul atedTotal }"/>

cal cul at eOnKeyUp —if true, fields of this column will perform their calculations on key up (there
isasmall delay to prevent it from calculating before you are done typing).

The following example has a different calculation for each column of the collection. Since we do
not specify the show properties, our beans, by default, show total and page total. Note that the
columnCalculationlnfo propertyNames match the propertyNames of thefieldsin the collection'sitemslist.

<bean i d="Denp- Col | ecti onTotal i ng- Secti onl" parent="Uif-Tabl eCol | ecti onSecti on"

209

Groups

<property
<property
<property
<property
<property
<property
<property

p: propertyNane="fiel d1"/> <bean parent="Uif- Col umCal cul ati onl nf o- Aver age"
parent =" Ui f - Col umCal cul ati onl nf o-M n"

nanme="header Text" val ue="Different Calcul ations per Colum"/>

nanme="instructional Text" val ue="Denobnstrati ng sum average

mn, max"/>

nanme="col | ecti onObj ect O ass" val ue="edu. sanpl eu. deno. ki t chensi nk. Ul Test Obj ect"/ >
nanme="propertyNanme" val ue="list1"/>
nanme="1 ayout Manager . gener at eAut oSequence" val ue="true"/>

nanme="1 ayout Manager.ri chTabl e. render" val ue="true"/>

nanme="1 ayout Manager . col umcCal cul ati ons"> <l i st> <bean parent="Uif - Col umCal cul ati onl nf o- Sunt

p: propertyName="fiel d4"/> </|ist> </ property>

<property
<list>

<bean

<bean

<bean

<bean

nanme="itens">

parent="Ui f -1 nput Fi el d"

p:required="true"/>

parent="Ui f -1 nput Fi el d"

p:required="true"/>

parent="Ui f -1 nput Fi el d"

p:required="true"/>

parent="Ui f -1 nput Fi el d"

p:required="true">

</ bean>

</list>

</ property>

</ bean>

p:label ="Field 1"
p:label ="Field 2"
p: label ="Field 3"

p: label ="Field 4"

Which results in atable that looks like this:

Different Calculations per Column

Demonstrating sum, average, min, max

p: propertyNane="fiel d2"/> <bean

p: propertyNane="fiel d3"/> <bean parent="Ui f-Col umcCal cul ati onl nf o- Max"

p: propertyNane="fiel d1"
p: propertyNane="fi el d2"
p: propertyNane="fiel d3"

p: propertyNane="fi el d4"

A Field 1 4 Field2 4 Field3 4 Field4 4 Actions
add: add
1 111165 36 2 44| ¢ |
2 1 2 3 4|]
3 9 10 11 12| [delete |
4 13 14 15 16] | [delete
5 17 18 19 20] | [delete |
6 5 6 7 8| [delete]
7 1 2 3 41 J
8 9 10 11 12|
9 13 14 15 16 1 |
Page Total: 73 Page Average: 9.11 Page Min: 3 Page Max: 20
Total: 419 Average: 33.55 Min: 3 Max: 156

To enable calculations for a collection that also has row grouping, we would do the following (notein this
example we are turning off total and page total, and only doing sums for each column):

<bean i d="Deno- Col | ecti onTot al i ng- Secti on7" parent="Ui f-Tabl eCol | ecti onSecti on">

<property name="header Text" val ue="Group Totaling"/>
<property name="instructional Text" value="Goup Totaling on for last 3 colums, no totaling for
total or page total"/>
<property name="col | ecti onQbj ect O ass"
val ue="edu. sanpl eu. denp. ki t chensi nk. Ul Test Cbj ect"/ >
<property name="propertyName" val ue="groupedList1"/>
<property name="readOnly" val ue="true"/>
<property name="| ayout Manager . render SequenceFi el d" val ue="fal se"/>

<property nanme="| ayout Manager. col umcCal cul ati ons"> <l ist> <bean parent="U f- Col umCal cul ati onl nf o- Sunt
p: showPageTot al ="f al se" p: showGr oupTot al ="true" p:showTotal ="fal se" p: propertyName="fiel d2"/> <bean

parent =" Ui f - Col umCal cul ati onl nf o- Sunt' p: showPageTot al ="f al se"

p: showG oupTot al ="true" p: showTot al ="f al se"

p: propertyNanme="fiel d3"/> <bean parent="Ui f- Col umCal cul ati onl nf o- Sunt' p: showPageTot al ="f al se"
p: showGr oupTot al ="true" p:showTotal ="fal se" p:propertyName="fiel d4"/> </list> </property>
<property nanme="| ayout Manager. gr oupi ngPropertyNanmes"> <l ist> <val ue>fiel di</value> </list> </property>

<property
<list>
<bean
<bean
<bean
<bean
</list>

name="itens">

parent="Ui f-1nputFi el d"
parent="Ui f-1nputFi el d"
parent="Ui f-1nputFi el d"
parent="Ui f-1nputFi el d"

</ property>

</ bean>

p: propertyNanme="fi el d2"
p: propertyNanme="fi el d3"
p: propertyNanme="fi el d4"
p: propertyNanme="fi el d1"

Which results in atable that looks like this:

p: | abel ="Val ue 1"/ >
p: | abel ="Val ue 2"/>
p: | abel ="Val ue 3"/>
p: | abel =" Group Val ue"/>

210

Groups

Group Totaling

Group Totaling on for last 3 columns, no totaling for total or page total

Value 1 Value 2 Value 3 Group Value
A
100 200 300 QA
101 200 300 ;A
102 200 300 QA
103 200 300 @ A
104 200 300 : A
Group Total: 510 Group Total: 1000 Group Total: 1500
B
100 200 300 : B
101 200 300 i B
102 200 300
Group Total: 303 Group Total: 600 Group Total: 900
=
100 200 300
101 200 300 i C
Showing 1 to 10 of 36 entries First | | Previous | (8 |2 | |3 || 4 | [Next | | Last

The TableCollection's TableL ayoutManager also has a few options related to calculations (besides the
layoutManager.columnCalculations described in detail above). These relate to if left total labels will be
used. When renderOnlyL eftTotalLabels is true, the label for the total fields will be rendered in the left
most column of the footer (if that column also has atotal itself, it will be shown alongside it). When using
left labels, columns can ONLY have one calculation type that must be common to all the columns that
will be calculated.

When the renderOnlyLeftTotalLabels flag is true, the tableLayoutManager will also override any
of the show flags of the columnCalculations defined with its own showTotal, showPageTotal, and
showGroupTotal flags (total and pageTotal are shown by default). In addition, the labels used in the | eft
most column are defined by totalLabel, pageTotalLabel, and groupTotal L abel Prototype.

The following settings will render atable with left labels and each column with a sum calculation:

<property name="| ayout Manager.render Onl yLeft Tot al Label s" val ue="true"/>
<property name="| ayout Manager. col utmCal cul ati ons" >
<list>
<bean paren
<bean paren
<bean paren
<bean paren
</list>
</ property>

"Ui f - Col umCal cul ati onl nf o- Sunt' p: propertyName="fiel d1"/>
"Ui f - Col umCal cul ati onl nf o- Sunt' p: propertyName="fiel d2"/>
"Ui f - Col umCal cul ati onl nf o- Sunt' p: propertyName="fiel d3"/>
"Ui f - Col umCal cul ati onl nf o- Sunt' p: propertyName="fi el d4"/>

-

Which results in atable that looks like this:

Left Total Labels

Force labels left with left most column being one with no totaling itself

4 Field 1 Field 2 Field 3 Field 4 Actions
add: add
1 5 6 7 8
2 1 2 3 4
3 9 10 1 12
4 13 12 15 16
5 17 18 19 20
6 5 6 7 8
7 1 2 3 !

8 9 10 1 12
2 13 14 15 16
Page Total: 73 82 91 100
Total: 419 369 397 382

Showing 1t 9 of 11 entries Fi Previous | [(2 [Next | [Last

211

Groups

Stacked Layout

Coming Soon!

Figure 7.23. Stacked L ayout Manager

Each row
has its own
contained,

internal layout.

The List Template

Coming Soon!

Components

Components

Components

Actions

Components

Components

Components

Actions

Rows

212

Groups

Recap

» Due to the nature of collection groups specia layout mangers are needed. These must implement
the interface org.kuali.rice.krad.uif.layout.CollectionL ayoutManager which requires implementing the
method bui | dLi ne

» KRAD provides two collection layout managers. the Table layout manager and the Stacked layout
manager

* The table layout manager creates an HTML table in the form of a data grid, whose characteristics are
the following:

» Each collection item is one line in the table (which might correspond to one or more table rows)
» Eachitem field isacolumn in the table

» The table layout manager can also add two columns for us. The first being the action column, which
will present the configured actions (lineActions or addLineActions) for the associated collection group

 The field group that is rendered in the action column is configured using the
acti onFi el dPr ot ot ype property. The label given for the prototype is used to label the table
column

* The second column the layout manager can add is called the sequence column. Thisis used to label the
row (using ath with scope row)

» We can specify aproperty whose value will be displayed in the sequence column by setting the property
sequenceFi el dPr ot ot ype (Notethisproperty isactually of type Field, meaning we could instead
use amessage field or other type of field)

» Wecan also have the table layout manager automatically number each row for us by setting the property
gener at eAut oSequence totrue

» By default the add line will be rendered as the first line of the table. We can have the add line render
before the table by setting property separ at eAddLi ne to true. When doing so the group property
addLi neGr oup will be used to render the add line contents. This can be configured to use the layout
and other properties necessary (note: the separate add line group is generally needed when our add line
fields do not match up with the fields configured for existing lines)

» Thetable layout manager also supports the following options:

* useShortLabels — For creating the table header row the labels for each field configured in the items
list will be pulled. By default the label property is used, however if this property is set to true the
shortLabel will be used instead. Thisis helpful if there are many table columns

* headerL abel Prototype — Prototype label component that will be copied to create the table headers.
Styling and other properties can be set this way

« richTable — The nested RichTable widget that adds on client side features such as sorting, paging,
and export. These options can be changed on a per table bases by setting the options on the nested
property (if a basic table with no client side featuresis desired, simply set richTable.render to false)

« numberOfColumns and suppressLineWrapping — The table layout manager extends the grid layout
manager (used for general groups). Therefore all of the properties available for the grid layout are
also available for the table layout. This includes setting the number of columns for the table. If the

213

Groups

number of columnsis less than the number of fields configured in the items property, multiple rows
will be created for each collection item as necessary. In most cases we want the number of columns
to match the number of configured items. The property suppressLineéWrapping can be set to true to
force this condition (in which case the numberOf Columns property does not need to be set)

The following beans are provided for the table layout:

« Uif-TableCollectionLayout — Base bean for the table collection layout. Sets defaults for many of the
properties and adds the style class 'uif-tableColl ectionL ayout'

« Uif-TableCollectionGroup — General group (not associated with any level) configured with atable
layout. Adds the style class 'uif-tableColl ectionGroup'

« Uif-TableCollectionSection — Section level group configured with atable layout. Addsthe style class
‘uif-tableCollectionSection'’

« Uif-TableCollectionSubSection — Sub-section level group configured with a table layout. Adds the
style class 'uif-tableColl ectionSubSection'’

« Uif-TableSubCollection-WithinSection — For a sub-collection group using a table layout where the
parent is at the section level (because sub-collections need to appear nested, it is necessary to adjust
header levels and styling for the collection group)

« Uif-TableSubCollection-WithinSubSection — For a sub-collection group using atable layout where
the parent is at the sub-section level

Similar to the difference between the two general group layouts (the grid table based and the box div
based), is the difference between the table and stacked collection layout managers

A stacked layout manager renders each collection linein adiv. In other words, for each collection item,
astandard Group is created containing the items for that line

The groups generated from the stacked manager by default 'stack’ on each other, that is by default they
are positioned using a box layout with vertical orientation

The group for each line is created from the | i neGr oupPr ot ot ype property. For the add line, the
addLi neGr oup group isused (note since only one add line is needed this group is used directly, not
copied)

Since agroup is generated for each line, the line fields are positioned according to the layout manager
of that group. Therefore, when using a stacked layout manager, we also have a choice of the layout
manager to use for each line group (such as grid, horizontal or vertical box)

Similar to the sequence field used by the table layout manager to label each line, the stacked layout
|abels each line using the header for the line's group.

For existing lines, the propertiessunmar yTi t | e andsunmmar yFi el ds areused. ThesummaryTitle
is a string that will be set as the group header text (this can contain expressions for adding dynamic
content). The summaryFields property isaList of property names whose value should be appended to
the title. These properties are assumed to be relative to the collection object class (this property will be
renamed to summaryPropertyNamesin version 2.2)

The overall layout of the generate groups (along with other properties such as styling classes) can be
controlled by configured thewr apper G- oup property

The following beans are provided for using the stacked layout:

214

Groups

 Uif-StackedCollectionLayoutBase — Base bean for the stacked layout manager. Sets up some
prototypes and adds the style class 'uif-stackedColl ectionLayout'

« Uif-StackedCollectionLayout-WithGridltems — Stacked layout manager that has a configured line
group prototype to use agrid layout

« Uif-StackedCollectionLayout-WithBoxItems - Stacked layout manager that has a configured line
group prototype to use a box layout

 Uif-StackedCollectionGroup - Genera group (not associated with any level) configured with a
stacked layout with line group grid layout. Adds the style class 'uif-stackedCollectionGroup'

« Uif-StackedCollectionSection — Section level group configured with a stacked layout with line group
grid layout. Adds the style class 'uif-stackedCollectionSection'’

« Uif-StackedCollectionSubSection — Sub-section level group configured with a stacked layout with
line group grid layout. Adds the style class 'uif-stackedColl ectionSubSection'

« Uif-StackedSubCollection-WithinSection — For a sub-collection group using a stacked layout where
the parent is at the section level (because sub-collections need to appear nested, it is necessary to
adjust header levels and styling for the collection group)

« Uif-StackedSubCollection-WithinSubSection — For a sub-collection group using a stacked layout
where the parent is at the sub-section level

« An dternate template for the stacked collection layout is provided that renders each line group in alist

item. The following base beans are provided for a collection group that uses the stacked list template:
'Uif-ListCollectionGroup', 'Uif-ListCollectionSection', and 'Uif-ListCollectionSubSection'

Disclosure

Coming Soon!

Recap

» The Disclosure component can be used to alow for the showing and hiding of presented content

* All groups contain the disclosure component that can be enabled to provide the ability to collapse a
part of the page

» The UIF provides beans for all the group beans with disclosure enabled
* All the disclosure bean names start with 'Uif-Disclosure’ (for example Uif-Disclosure-GridGroup)

» The disclosure widget supports the def aul t Open property, along with options for rendering (such
as animation properties and collapse image)

Scrollable

Adding Scrollableto agroup, section or sub-section enablesascroll bar to appear when the content exceeds
height that is specified with Scrollable.

215

Groups

Figure 7.24. Scrollable Section

¥ Scrollable Group

By adding scrollable to a group or section a
scrollbar appears if the content exceeds the
specified size.

Ll L e = L =L = = L == L =1]

by adding the Uif-Scrollpane bean. With
the Uif-Scrollpane bean the height and/or
width can be specified. If the content size
exceeds the specified size then scrollbars
are rendered for the group/section.

[m [»

Field 1: Sk

<bean i d="MScrol | abl eG oup" parent="Uif-Di scl osure-Vertical BoxSection" p: header Text ="Scrol | abl e G oupt"
p: wi dt h="30% >
<property name="scrol | pane">
<bean parent="Uif-Scrol | pane">
<property name="hei ght" val ue="100px"/>
</ bean>
</ property>

For section and sub-section only the content is scrolled, not the title or instructional text.

Recap

The Scrollable component can be used to enable scrolling in groups and sections

The height property on Scrollable needs to be specified

The height property is given in pixels or percentages (e.g. 100px or 30%)

« Only the content of the section and subsection will be scrolled, not the title or instructional text

216

Chapter 8. Widgets
Widgets

Widgets allow developers to produce rich Ul functionality. KRAD already contains the basic and most
commonly used widgets and provides the functionality to configure these widgets to suit your needs.
Examples of widgets that come packaged in the framework include a date picker, and a spinner value
selector. The framework also provides the base widget classes that can be extended to create custom
widgets. Custom widgets should only be created in instances where the current KRAD functionality cannot
be used to deliver the required functionality.

RECAP

jQue

* Widget components represent a composition of elements that form anew Ul artifact
* In most cases the new artifacts are formed on the client using JavaScript
* In particular, the mgjority of widgets provided with KRAD are implemented using jQuery plugins

» Through widgets we can enhance KRAD with the wide variety of client side features available today!

ry Plugins and Options

Most widgetsin KRAD are built using jQuery plugins. jQuery is a cross-browser, open source Javascript
library designed to simplify the client-side scripting of HTML. jQuery also provides capabilities for
developers to create plug-ins on top of the JavaScript library. Currently, there are thousands of jQuery
plug-ins available on the web that cover awide range of functionality such as Ajax helpers, webservices,
datagrids, dynamic lists, drag and drop, events and modal windows. Many of these can be used to create
new widgets.

jQuery plugins can usually be called with one argument, which is an object literal of the settings you
would like to override. The base widget classes allow you to pass javascript options to these widgets by
initializing the componentOptions map property. This map will then be converted to astring literal, which
will be used to call the jQuery function. The framework widgets have some default options configured,
and can be seen in the UifWidgetDefinitions.xml data dictionary file in the source code.

<property name="t enpl at eOpti ons" >

<map>

<entry key="showOn" val ue="button"/>

<entry key="buttonl mage" val ue="@ #Confi gProperties['krad. externalizable.inmages.url']}cal.gif"/>
<entry key="buttonl mageOnly" val ue="true"/>

<entry key="showAni ni' val ue="sl i deDown"/>

<entry key="showButtonPanel " val ue="true"/>

<entry key="changeMnth" val ue="true"/>

<entry key="changeYear" val ue="true"/>

</ map>
</ property>

These options can be overridden by extending the widget bean in spring configuration:

<bean i d="Uif - Cust onDat ePi cker" parent="Uif - Dat ePi cker"/>
<property nanme="tenpl at eOpti ons”>
<map merge="true">

<entry key="showButtonPanel " val ue="fal se"/>

</ map>
</ property>

</ bean>

In this example the date picker is extended, and only the showButtonPanel parameter is changed. The
merge = 'true’ property on map is very important if you want to keep the parent bean's properties.

217

Widgets

RECAP

» As stated, widgets are basically a front end to a client side component which has a set of supported
properties

» Thepropertiesfor the client side component are configured using the widget's templateOptions property

» The templateOptions property is a Map. The map key is the name of the client side property, and the
map value is the corresponding value for the property

» Thetemplate options are trandated to a Javascript object string and passed to the plugin as the ‘options
argument

 Since the widget properties are 'loosaly' coupled with the class through the generic map, we can easily
exchange out plugins (without changing the Java widget class)

 In some cases, to make configuration easier for common plugin options, a property has been added to
the widget class

Types of Widgets

The most commonly used widgets have already been added to the KRAD framework. These widgets can
be extended, and their properties and component options overridden. Some of the options are added as
properties on the beans where others will have to be set by adding them to the component options map.

Breadcrumbs

The breadcrumbs widget is used to render the breadcrumbs on the views that allow for navigation back
to previous pages.

Properties

Table 8.1. Breadcrumb Properties

Property Default Description

displayHomewardPath true Flag to hide/display home path

displayPassedHistory true Flag to hide/display passed on from previous
view

displayBreadcrumbswWhenOne false Flag to hide/display breadcrumbs when there is
only one history item

homewardPathL.ist <bean parent="Uif-HistoryEntry" p:title="Home" | This history entry that points to the portal will be

p:url="@{#ConfigProperties'application.url]} /portal .do"/> used when home is selected.

Plugin (Template) Options

None

DatePicker

The DatePicker widget is used to render the date picker on date fields. KRAD uses the jQuery Ul
DatePicker plugin. See http://jqueryui.com/demos/datepi cker/#option-showOptions.

Properties

The DataPicker widget has no properties (everything is configured through the templateOptions for the
jQuery plugin).

218

Widgets

Plugin (Template) Options

Table 8.2. DatePicker Options

Option Default Description

showOn button Have the DatePicker appear automatically when the
field receives focus (‘focus),

buttonlmage @{ #ConfigPropertieq]'krad.externalizable.images.url]} cal.gif The URL for the popup buttonimage. If set, buttonText
becomes the alt value and is not directly displayed.

buttonlmageOnly true Set to true to place an image after thefield to use asthe
trigger without it appearing on a button.

showAnim sideDown Set the name of the animation used to show/hide the
DatePicker.

showButtonPanel true Whether to show the button panel.

changeMonth true Allows you to change the month by selecting from a
drop-down list.

changeY ear true Allows you to change the year by selecting from a
drop-down list.

Directinquiry
The Directlnquiry widget renders the icon next to a field and opens an inquiry lightbox for the current
value in that field when clicked. The default setting is to open the inquiry view in alightbox. This can be
changed to open in a new window.

Properties

Table 8.3. Directinquiry Properties

Property Default Desription

basel nquiryUrl @({ #ConfigProperties|'application.url]} /kr-krad/inquiry The base url used to build the inquiry url.

directinquiryActionField This field can be overridden to exclude the Uif-
LightBox and open in anew browser window.

Plugin (Template) Options
None

Disclosure

The disclosure widget renders a disclosure header on a group that allows the group to be expanded and
collapsed. This allows the user to minimize clutter on the screen and only view the necessary groups. The
state of these disclosures will be stored on form submits to be rendered correctly on the page refresh.

Properties

Table 8.4. Disclosure Properties

Property Default Description

collapselmageSrc ../h3_expand.png Expand icon

expandlmageSrc ..Ih3_collapse.png Collapse icon

animationSpeed 500 Speed of expand/collapse animation
defaultOpen true Set to true to create in open state.

219

Widgets

Plugin (Template) Options

None

Help

The Help widget is used to render tooltip help and/or external help.

The tooltip help appears when the mouse is placed over the header text of a view, page, section or sub-
section, or over thelabel of afield. Plain text and HTML formatted text are supported. Tooltip help content
is defined in the data dictionary. Thisis an example of how to add atooltip on a TextControl:

<bean parent="Uif- Text Control ">
<property name="hel p">
<bean parent="Uif-Hel p* p:tooltipHel pContent="This is ny help text"/>
</ property>
</ bean>

The external help renders as a clickable help icon which opens a separate window for the help URL. The
URL of the help can either be specified via the data dictionary, or through a system parameter. Thisisan
example of how to add a external help with the URL from the data dictionary to a View:

<bean parent="Uif-View >
<property name="hel p">
<bean parent="Uif-Hel p" p: external Hel pUrl="http://ww.kuali.org/"/>
</ property>
</ bean>

Thisis an example of how to add a external help with the URL from the systems parameter to a View:

<bean parent="Uif-View >
<property name="hel p">
<bean parent="Uif- Hel p">
<property name="hel pDefinition">
<bean parent="Hel pDefinition" p:paraneter Namespace="KR- SAP" p: par anet er Name="TEST_PARAM'
p: par anet er Det ai | Type="TEST_COVPONENT" / >
</ property>
</ bean>
</ property>
</ bean>

Properties

Table 8.5. Help Properties

Property Default Description

tooltipHel pContent Plain or HTML formatted text that should be
displayed inside the help tooltip.

externalHelpUrl The URL for the external help.

helpDefinition The HelpDefinition bean that contains the keys

for retrieving the external help URL from the
system parameters.

Plugin (Template) Options
None
Inquiry

The inquiry widget is used to render the link fields that will open an inquiry window. The default setting
isto open theinquiry view in alightbox. This can be changed to open in in a new window.

220

Widgets

Properties

Table 8.6. Inquiry Properties

Property Default Description

baselnquiryUrl @{ #ConfigPropertied ‘application.url]} /kr-krad/inquiry The base url used to build the inquiry url.

inquiryActionField This field can be overridden to exclude the Uif-
LightBox and open in a new browser window.

Plugin (Template) Options

None

Lightbox

The lightbox widget is used to render content in a modal window. This widget is used in KRAD to open
the inquiry and lookup views in the modal lightbox without navigating away from the current view. The
jQuery fancyBox plugin isused in KRAD. See http://fancyapps.com/fancybox/#docs.

Properties

Table 8.7. Lightbox Properties

Property Default Description
height 95% Height in percentage of screen
width 75% Width in percentage of screen.

Plugin (Template) Options

Table 8.8. Lightbox Options

Option Default Description

fitToView true If set to true, fancyBox is resized to fit inside
viewport before opening

openEffect fade The transition type. Can be set to 'lastic’, 'fade’
or 'none'

closeEffect fade The transition type. Can be set to ‘elastic’, 'fade’
or 'none'

openSpeed 200 Speed of the fade and elastic transitions, in
milliseconds

closeSpeed 200 Speed of the fade and elastic transitions, in
milliseconds

helpers overlay:{css:{cursor:'arrow'} ,closeClick:false} | Settings for additiona fancybox helpers.

Defaults specify an arrow cursor and disables
closing of lightbox on mouse click

type iframe Forces content type. Can be set to 'image’, 'html’,
‘gax', 'iframe, 'swf' or 'inline

QuickFinder

The Quickfinder Widget is used for navigating to a lookup from afield. There are two instances of this
widget. Firstly, there is the standard widget that will do a page refresh when returning the results and
reload the parent view. The second instance (Uif-QuickFinderByScript) will return the value by script and
not reload the parent view.

221

http://fancyapps.com/fancybox/#docs

Widgets

Tip
Return by Script: If you do not need the parent view to be refreshed when returning values,
you can return the values by script and greatly improve the performance. To do this, you haveto
set afield's 'fieldLookup' property to the Uif-QuickFinderByScript bean.

Properties

Table 8.9. QuickFinder Properties

Property Default Description

basel ookupUr| @{#ConfigPropertied|"application.url ']} /kr-krad/lookup The base url used to build the lookup url.

multipleVauesSelect false Indicates whether a multi-values lookup should be
requested

Plugin (Template) Options

None

RichTable

The RichTablewidget decoratesaHTML Table client sidewith varioustoolsincluding sorting, exporting,
paging and skinning. Thiswidget usesthejQuery DataT ables plugin. See http://www.datatables.net/usage/

options

Properties

Table 8.10. RichTable Properties

Property Default Description

empty TableMessage No records found The text which is displayed when the table is
empty

showSearchAndExportOptions false Indicates whether search and export options are
enabled

Plugin (Template) Options

Table 8.11. Rich Table Options

Option Default Description

sDom fTrtip This initialization variable alows you to specify
exactly where in the DOM you want DataTables to
inject the various controls it adds to the page

bRetrieve true Retrieve the DataT ables object for the given selector.
oTableTools aButtons' : ['csv', 'xIS'] , 'sSwfPath' : '@{#ConfigProperties]'application.url']}/krad/ | To customize the TableTools options through the
scripts/jquery/copy_cvs xls pdf.swf'} DataTables initialization object, you can make use of

this parameter.

Suggest

The Suggest widget provides dynamic select optionsto the user asthey are entering the value (also known
asauto-complete). Thewidget isbacked by an AttributeQuery that providesthe configuration for executing
aquery server side that will retrieve the valid option values. Uses jQuery Ul Auto-complete widget. See
http://jqueryui.com/demos/autocompl ete/

222

http://www.datatables.net/usage/options
http://www.datatables.net/usage/options
http://jqueryui.com/demos/autocomplete/

Widgets

Properties

Table 8.12. Suggest Properties

Property Default

Description

suggestQuery

Attribute query instance that will be executed to
provide the suggest options

Plugin (Template) Options

Table 8.13. Suggest Options

Option Default Description

minLength 2 The minimum number of characters auser hasto
type before the Autocompl ete activates.

delay 3000 The delay in milliseconds the Autocomplete
waits after a keystroke to activate itself.

Tabs

The Tabswidget used for creating tabsto break up content into multiple sections. See http://jqueryui.com/

demos/tabs/

Properties

None
Plugin (Template) Options
None

Tree

The Treewidget isused to created atree with expand/collapse branches. The current implementation using

the jsTree plugin: http://www.jstree.com.

223

http://jqueryui.com/demos/tabs/
http://jqueryui.com/demos/tabs/
http://www.jstree.com

Widgets

Basic String Data tree

Data Tree
) Meml
1 .| ltem2
. 1. ||| Subltem A
4. _:_ Subltem B
- L] ttem B-1
i .\ Item B-2
L.] temB-3
] Subltem C
.| tem3
Tree Group

Uif-TreeGroup - A group that contains avisual tree structure, with parent nodes that can be expanded or
collapsed to show or hidetheir children. Thisallowsyou to naturally display components that nest within
other components; for example, avisual representation of folders and files.

Uif-TreeSection - A section that contains a tree group. This component is actually an extension of Uif-
TreeGroup, and so everything discussed below applies to both, but we'll be using Uif-TreeSection in our
examples. The following Screen Shot shows a simple tree with several levels of nesting revealed by
expanding Item 2, and Subltem B.

The view configuration for a simple tree with nothing but atext label on each node is quite elementary:

<bean parent="Uif-TreeSection" p:instructional Text="Data Tree">
<property name="title" value="Basic String Data tree"/>
<property name="propertyNane" val ue="tree"/>

</ bean>

The most important piece of configuration for this Uif-TreeSection is the propertyName whose value
corresponds to a getter method on the data object, or the form which returns an object of type
org.kuali.rice.core.api.util.tree.Tree. For the above configuration snippet, the body of this method might
look like this:

/* somewhere in your formor data object */

public Tree<Foo, String> getTree() {
return this.tree; // return the Tree nenber of this data object or form
}

This is a straightforward getter method, but we'll need to know more about the structure of the object
we'rereturning. Tree has two generic types associated with it, of the form Tree<T,K>. For usein a Uif-
TreeSection, the generic type T will correspond to the class of the data object at each node, and the generic
type K will always be String to hold the label text for the node.

So in the above example, we have a data object of type Foo that each node in the tree holds, and (as
always) a corresponding String label. Speaking of nodes, let's look at some key parts of the API for
org.kuali.rice.core.api.util.Tree and it's right hand class, org.kuali.rice.core.api.util .tree.Node:

public class Tree<T, K> inplenments Serializable {

224

Widgets

}

[*.00*]

/1 this is where you put the content into the tree.
/! The actual tree structure is all nmade up of Nodes
/1 nested within Nodes

public void setRoot El enent (Node<T, K> rootEl ement) {
[*000*]
}

public class Node<T, K> inplenents Serializable {

[*000*]
/1 construct a node with its data object and | abel
public Node(T data, K label) {
[*.00*]
}

/1 build up the nested structure by setting the children

public void setChildren(List<Node<T, K>> children) {
[*000*]
}

Y our data object containing the tree structure may use other classes than Tree and Node for the internal
representation of your tree. Inthat case, you can still utilize Uif-TreeSection to add amethod that translates
your internal tree into a Tree made up of Nodes. Spend a few minutes following this example where we
are tranglating a tree made out of Foo objects which contain child Foosinto a Tree of Nodes:

Warning

If you are not comfortable with recursion, you may want to do some homework on it to follow
along.

/* somewhere in your formor data object */

/** Getter nmethod referenced fromUif-TreeSection conponent via the propertyNane */
public Tree<Foo, String> getTree() {

}

| **

/1 construct our Tree object
Tree nyTree = new Tree<Foo, String>();

/'l construct a root
Node Node<Foo, String> rootNode = new Node<Foo, String>();
nmyTr ee. set Root El enent (r oot Node) ;

/1 populate the tree structure with a recursive wal k of our Foos
bui | dFooTr ee(r oot Node, this. getRoot Foo());

return nmyTree;

* This method builds a tree by recursively wal king through the children of the Foo.
* @aram sprout - parenttree node
* @aramfoo - Foo for which to make the tree node

*/

private void buil dFooTree(Node sprout, Foo foo) {

/] Create a treeNode and attach it to the sprout paraneter passed in.

if (foo!=null) { // create a node for our Foo
sprout . set NodeLabel (foo. get Description());
sprout. set Dat a(fo0);
Li st <Foo> al | MyChi Il dren = foo.getChildren();

if (allMChildren !'= null) for (Foo child : allMChildren){
Node<Foo, String> chil dNode = new Node<Foo, String>();

/1 add child node to sprout
sprout. get Chil dren().add(chil dNode);

/1 recursive call

225

Widgets

bui | dFooTr ee(chi | dNode, child);

So far we have talked about trees with nodes that only display labels for their corresponding data objects.
Each node is, in fact, rendered in two parts: the label, and the data group. There are templates for how
nodes are rendered, which are called node prototypes. Without doing any configuration, the default node
prototype has just an empty container for its data group, which resultsin atree that renders similar to the
screenshot shown previously; but we can change that by configuring a custom defaultNodePrototype.

<bean parent="Uif-TreeSection" p:instructional Text="Data Tree">
<property name="title" value="Tree with Data G oup"/>
<property name="propertyNanme" val ue="tree"/>
<property name="def aul t NodePr ot ot ype" >

<!-- our custom node prototype -->
<bean cl ass="org. kual i.rice.krad. ui f.contai ner.NodePr ot ot ype">
<property name="| abel Prot ot ype">
<bean parent="Uif-MessageFiel d"/>
</ property>
<property name="dat aG oupPr ot ot ype" >
<bean parent="Uif-Vertical BoxGroup" p:style="margin-left: 2em">
<property name="itens">
<list>
<bean parent="Ui f-Horizontal Fi el dG oup">
<property name="itens">
<list>
<bean parent="Uif-InputFiel d"
p: propertyNane="fiel d1"
p:label ="Field 1"
p:required="true"
p: | abel Pl acenment =" TOP"
p:instructional Text="instructions 1"
p: | abel Fi el d. styl eCl asses="1 abel Top"/ >
<bean parent="Uif-InputFiel d"
p: propertyNane="fiel d2"
p:label ="Field 2"
p:required="true"
p: | abel Pl acenent =" TOP"
p:instructional Text="instructions 2"
p: | abel Fi el d. styl eCl asses="1 abel Top"/ >
<bean parent="Uif-InputFiel d"
p: propertyNane="fi el d3"
p:label ="Field 3"
p:required="true"
p: | abel Pl acenment =" TOP"
p:instructional Text="instructions 3"
p: | abel Fi el d. styl eCl asses="1 abel Top"/ >
n parent="Uif-InputField"
p: propertyNane="fi el d4"
p:label ="Field 4"
p:required="true"
p: | abel Pl acenent =" TOP"
p:instructional Text="instructions 4"
p: | abel Fi el d. styl eCl asses="1 abel Top"/ >

<bea

</list>
</ property>
</ bean>
</list>
</ property>
</ bean>
</ property>
</ bean>
</ property>
</ bean>
<l-- the end of our U f-TreeSection -->

Y ou can see here that we have defined a defaultNodePrototype that contains a dataGroupPrototype with
a couple of nested groups for formatting, and four Uif-InputFields inside it. These could in fact be just
about any components that you wanted to use to represent the data objects on your Nodes. Still, going
along with the notion that the data objects for our nodes are of class Foo, we can infer from these input
fieldsthat class Foo must have properties (members with corresponding getters and setters) named field1,

226

Widgets

field2, field3 and field4. A tree rendered from the above configuration (with some admittedly silly data
in the fields) might look like this:

Tree with Data Group

Deata Tree
r mem 1
* Fleldd 1: * Fiedd - * Field 3: * Field 4&:
Instructions 1 nsyucsons 2 nstructions 3 Instructons 4
1-A 18 1-c -0
Subliem A
*Field 1: * Fiedd 2 * Field 3 * Fiedd 4:
instructions 1 rsrucsons 2 nstrucsions 3 instructions 4
1SA-A 1SAB 1SA.C 1SA-D
Sublem B
* Field 1 * Field * Field 3 * Fiedd 4
instructions 1 instucsons 2 nstructions 3 instructions. 4
158-4 1588 158-C 158-0
Bem 2
* Field 1: " Feld T * Field 3: * Field 4
instructions. 1 nswucsons 2 nsuctions 3 instructons 4
A 28 C 2D
Bem 3
* Field 1: * Fiedd 2 * Field 3. * Fiedd 4
instructions 1 rerucsons 2 natructions 3 instructions 4
3a 38 ic D

As you can see, the data group is rendered beneath the icon and label for each node. This example is
quite simple, you could in fact have very complex data groups for your nodes with complex formatting
and many fields and other components within.

The #np Context Variable

When you are working with fields inside the data group of a node, there is a very powerful tool for
referencing other properties of the same node, and that isthe #np context variable. In special properties of
components that allow references to other fields in the view, the #np context variable is a placeholder for
the current node being rendered. It allows you to (for example) progressively render a component within
anode based on the value of another field in that same node. Here's asimple example:

<bean parent="Uif-TreeSection" p:instructional Text="Data Tree">
<property name="title" value="Tree with Data G oup"/>
<property name="propertyNane" value="tree"/>
<property name="def aul t NodePr ot ot ype" >

<l-- our custom node prototype -->
<bean cl ass="org. kuali.rice. krad. ui f.container. NodePr ot ot ype">
<property name="| abel Prot otype">
<bean parent="Ui f - MessageFi el d"/ >
</ property>
<property name="dataG oupPr ot ot ype" >
<bean parent="Uif-Vertical BoxG oup" p:style="nargin-left: 2em">
<property name="itens">
<list>
<bean parent="Uif-Horizontal Fi el dG oup">
<property name="itens">
<list>
<bean parent="Uif-InputFi el d" p:propertyName="fieldl"

p: |l abel ="Field 1"
p: requi red="true" p:|abel Pl acenent =" TOP"
p:instructional Text="instructions 1"
p: | abel Fi el d. styl ed asses="| abel Top"/ >
<bean parent="Uif-InputFi el d" p:propertyName="fiel d2"

p: |l abel ="Field 2"

227

Widgets

p:required="true"

p: | abel Pl acenment =" TOP"

p:instructional Text="instructions 2"

p: | abel Fi el d. styl eCl asses="1 abel Top"/ >
<bean parent="Uif-InputField"

p: propertyNane="fi el d3"

p:label ="Field 3"

p:required="true"

p: | abel Pl acenent =" TOP"

p:instructional Text="instructions 3"

p: | abel Fi el d. styl eCl asses="1 abel Top"/ >
<bean parent="Uif-InputField" p:propertyNanme="fiel d4"

p: label ="Field 4"

p: | abel Pl acenment =" TOP"

p:instructional Text="instructions 4"

p: | abel Fi el d. styl eC asses="1 abel Top"

p: progressi veRender =" @#np. fi el d3 matches 'A *'}"/>

</list>
</ property>
</ bean>
</list>
</ property>
</ bean>
</ property>
</ bean>
</ property>
</ bean>
<l-- the end of our U f-TreeSection -->

Theonly thing different here from our previous exampleisthat for field4 we've madeit no longer required,
and we've set aprogressiveRender on it containing an expression that will be satisfied when field3 contains
a String value that begins with a capital A. When this is the case, field4 with be dynamically rendered
on the node. Hereis a screenshot in which such avalue has been entered into the input for field3 on the
node |abeled Item 1:

Data Tree

Hem 1

* Field 1: * Field 2: * Field 3: Field 4;

natructions 1 instructions 2 instructions 3 instructions 4

LA 1B Asdl 10
Hem 2

* Field 1: * Field 2: * Field 3:

netructions 1 Instructions 2 instructions 3

A 8 -c
hem 3

" Fleld 1: " Fleld 2: " Fheld 3:

nsiructions 1 instructions 2 instrucbons 3

3A 3B ic

This is a very simple and contrived example, but there are many real world use cases for this type of
functionality. Asyou can probably imagine, you can create very complex and dynamic trees with nodes
that render very differently depending on the data contained within each, based on conditional rendering
and progressive disclosure using the #np context variable. However, there is another more elemental
configuration that can be used to render different nodes of atree in different ways.

The NodePrototype Map

Previously, we have specified a custom defaultNodePrototype to change the way that all the nodesin the
tree arerendered. Thereis another property of the Uif-TreeSection (and Uif-TreeGroup) that can be used
to allow trees with nodes containing data obj ects of differing classesto berendered in different ways. This
property is called nodePrototypeMap, and it isaMap from Class to NodePrototype. Hereis an example:

228

Widgets

<bean parent="Uif-TreeSection" p:instructional Text="Data Tree">
<property name="title" value="Tree with Data G oup"/>
<property name="propertyNanme" val ue="tree"/>
<property name="nodePr ot ot ypeMap" >

<!-- we define our map in Spring xm -->
<map key-type="java.l ang. d ass">
<l-- the Spring Expression Language sni ppet used here returns the C ass object for edu.sanpleu.Apple -->

<entry key="#{ T(edu.sanpl eu.Apple) }">
<l-- for brevity, the NodePrototype isn't shown here. |Instead we reference a
parent bean that you can assume is defined el sewhere in the file, but omtted here -->
<bean parent =" Appl eNodePr ot ot ype"/ >
</entry>
<!-- the Spring Expression Language sni ppet used here returns the C ass object for edu.sanpleu. Orange -->

<entry key="#{ T(edu.sanpl eu. Orange) }">

<l-- for brevity, the NodePrototype isn't shown here. |Instead we reference a
parent bean that you can assume is defined el sewhere in the file, but omtted here -->

<bean parent =" O angeNodePr ot ot ype"/ >

</entry>

</ map>
</ property>
</ bean>

The above configuration will use the AppleNodePrototype to render Nodes whose data object is of
type edu.sampleu.Apple, and the OrangeNodePrototype to render nodes whose data object is of type
edu.sampleu.Orange. This may present adight puzzleto you if you remember the API for Nodes:

public class Node<T, K> inplenents Serializable {
[*o00*%]

// construct a node with its data object and | abel

public Node(T data, K label) {
[*o00*%]

}

/1 build up the tree structure by setting children

public void setChildren(List<Node<T, K>> children) {
[*o00*%]

}

}

Asyou can see, the type of achild node must match the type of its parent. What this meansis that you'll
haveto leverage aclass (or interface) hierarchy to create your tree of heterogeneous objects. For example,
you might create a parent class of type Fruit:

public abstract class Fruit { /*...*/ }
/1 then nake Apple and Orange subcl asses:

public class Apple extends Fruit { /*...*/ }
public class Orange extends Fruit { /*...*/ }

Then you can define your tree like this:

Tree<Fruit, String> nyTree; // and populate it with Apples and Oranges as you w sh.

Of course, using thetype hierarchy that isinherent to javaclasses, you could aways defineyour treethusly:

Tree<oj ect, String> nyTree;

Obviously, you could put any object you like in a Node for this tree, but the Framework won't be able to
render it unless you have an entry in your nodePrototypeMap with the Class (or a parent Class) of that
object as the key, and a NodePrototype that is valid for the properties on that object as the value.

Tooltip

The Tooltip widget is used to render a tooltip. The jQuery Bubble Popup plugin is used. See http://
www.maxvergel li.com/jquery-bubbl e-popup/documentation/. Tooltips can display plain text or HTML,
and can be added to any component by setting the tooltipContent in the Data Dictionary. Thisisaexample
of how to add atooltip on a TextControl :

229

http://www.maxvergelli.com/jquery-bubble-popup/documentation/
http://www.maxvergelli.com/jquery-bubble-popup/documentation/

Widgets

<bean parent="Uif-Text Control ">
<property name="t ool Ti p">
<bean parent="Uif-Tooltip" p:tooltipContent="This is my tooltip"/>
</ property>
</ bean>

Properties

Table 8.14. Tooltip Properties

Property Default Description

tooltipContent Plain text or HTML string that will be used to render the tooltip content.
onFocus false Indicates the tooltip should be triggered by focus/blur

onMouseHover true Indicates the tooltip should be triggered by mouse hover

Plugin (Template) Options

Table 8.15. Tooltip Options

Option Default Description

position top It setsthe Bubble Popup on theleft, top, right or bottom side of thetarget element;
possible values areleft’, 'top', 'right’ or 'bottom’

aign left It sets the Bubble Popup alignment along the side of the target element; possible
values are 'left’, 'center' or 'right' when position is 'top or 'bottom' otherwise 'top',
'middl€e’ or 'bottom’' when position is 'left' or 'right'

awaysVisible fase If it's true, the Bubble Popup maintainsthe position and alignment if it's possible,
also when the browser window is resized ; otherwise the plugin changes (or

restores back) the Bubble Popup's position to make it always visible in the

browser's viewport, this works as well when browser window is resized

tail { dign:'left', hidden: false} "tail" isan object that containsthefollowing propertiesfor the Bubble Popup'stail
"align" (String) option setsthe alignment for the tail and possible values are 'l ft’,
‘center’ or 'right' when Bubble Popup's position is 'top' or 'bottom' otherwise 'top',
'middle’ or 'bottom’ when position is'left' or ‘right’;

"hidden" (Boolean) option can betrue or falseand toggle on or off thetail'simage

themePath .Jkrad/plugins/tooltip/jquerybubblepopup-theme/ | It setsthe relative path of the folder that contains al the themes

themeName black It sets the theme for the Bubble Popup; al the themes are saved inside the
themePath folder; possible values are: azure, black, blue, green, grey, orange,
violet, yellow, all-azure, all-black, all-blue, al-green, al-grey, al-orange, al-
violet, al-yellow

selectable true When the mouse is over the target element, a bubble popup appears; then, if
"selectable" is true, you will be able to select the content inside it; if the mouse
goes out of the button OR the bubble, the popup will be closed. By default, this
option is false, then you will not be able to select the content because when the
mouse isimmediately out of the button, the popup will be closed

distance 20px It sets the distance of the point from which the Bubble Popup comes

width null It sets the width of the Bubble Popup, an integer "10" or a string as "10px" is
accepted; this option sets a CSS width property for the main <TABLE> in the
markup template

height null It sets the height of the Bubble Popup, an integer "10" or a string as "10px" is
accepted; this option sets a CSS height property for the main <TABLE> in the
markup template

divStyle {} It is an object that contains CSS properties as { color: '#000000', margin:'Opx'}
the CSS properties inside this object will be added to the main <DIV> tag in the
markup template; by default it is an empty object

tableStyle {} It is an object that contains CSS properties as { color: '#000000', margin:'Opx'}
the CSS properties inside this object will be added to the main <TABLE> tag in
the markup template; by default it is an empty object

innerHtml null Theinner text inside the Bubble Popup, it can contain HTML tags

innerHtml Style {} It is an object that contains CSS properties as { color: '#000000', margin:'Opx'}
the CSS properties inside this object will be added to the <TD> tag container

230

Widgets

Option Default

Description

with "{BASE CLASS}-innerHtml" as class attribute in the markup template; by
default it is an empty object

dropShadow true

Drop the shadow (true)) or not (false) for the Bubble Popup

manageM ouseEvents false

Do not change this property as KRAD overrides this to false

mouseOver show

It adds a managed mouseover event to the target DOM element associated with
the Bubble Popup; possible values are 'show' or 'hide’. 'show' : when mouse is
over the target element, show the Bubble Popup associated with it. 'hide' : when
mouse is over the target element, hide the Bubble Popup associated with it

mouseOut hide

It adds a managed mouseout event to the target DOM element associated with
the Bubble Popup; possible values are 'show' or 'hide'. 'show' : when mouse is
out of thetarget element, show the Bubble Popup associated with it. 'hide' : when
mouse is out of the target element, hide the Bubble Popup associated with it

openingSpeed 250

It sets the opening speed

closingSpeed 250

It sets the closing speed

openingDelay 0

It sets adelay in milliseconds when the Bubble Popup is opening

closingDelay 0

It sets adelay in milliseconds when the Bubble Popup is closing

baseClass jquerybubblepopup

It sets the base class name saved in the CSS file "jquery-bubble-popup.css’;
generaly you don't need to edit this option, it is only useful if other CSS classes
declared inside the document interfere with the main class of the Bubble Popup;
in this case, you will need only to choose a new valid name for the base class
and set this option with it, then you need to replace al occurrences of the base
class name "jquerybubblepopup” inside the "jquery-bubble-popup.css’ file with
the new name

themeMargins azure

It sets the theme for the Bubble Popup; al the themes are saved inside the folder
"jquerybubblepopup-theme/”'; possible values are: azure, black, blue, green,
grey, orange, violet, yellow, al-azure, all-black, all-blue, all-green, al-grey, al-
orange, al-violet, al-yellow

afterShown function(){}

1t setsacallback function to execute when Bubble Popup is opened; you can set it
as jQuery('.button’).CreateBubblePopup({innerHtml: 'This is a Bubble Popup!’,
afterShown: function(){ aert('Bubble Popup is open!’);}});

afterHidden function(){}

It sets a callback function to execute when Bubble Popup is closed

hideElementld I

Insert in the array al 1Ds of the elements that you want to hide; it is useful if any
element interfere with a Bubble Popup. By defaullt, it is an empty array

Creating a New Widget

To create a new widget basically takes five steps. First, you have to find the appropriate jQuery plugin
or JavaScript function that will satisfy your widget requirements. Secondly, one needs to create a Java
widget classthat extends the widget base. Thirdly, you would create the FreeMarker template file that will
render the widget on the browser. The fourth step is to create a custom JavaScript, which would only be
necessary in some cases when you need to pass the component id to the jQuery select. Lastly, you need

to create the spring beans definitions.

For our exercise application, we will look at adding a spinner widget that will render spinner buttons on
an input control to make increasing and decreasing numeric values without typing.

jQuery Plugin

When choosing the jQuery plugin to use for the spinner widget, we had to take the following into
consideration. We looked for a plugin that isin a stable release and not a Beta release. We also compare
our requirements with the featuresthat the plugin has available. For this example, we decided on the Smart

Spin plugin.
Tip

Choosing Plugins: When choosing plugins, first have look at the current jQuery libraries (like
jQuery UI) that are already being imported to see if they might not have a plugin that suits your

231

Widgets

needs. If choosing anew library, remember to include the .jsand .cssfilesin the 'stylesheets and
']sFiles' properties of your view.

Java Widget Class

The KRAD framework provides the org.kuali.rice.krad.uif.widget.WidgetBase base class that you can
extend to create custom widget classes. This class aready provides all the necessary lifecycle methods
and base properties.

public class Spinner extends W dgetBase {
private static final |ong serialVersionUD = -659830874214415990L;

public Spinner() {
super () ;

}

@verride
public void perfornFinalize(View view, Object nodel, Conponent parent) {
super. perfornFinalize(view, nodel, parent);

}
}

For the spinner widget, we will also creste a spinner control that extends the
org.kuali.rice.krad.uif.control. TextControl. This control will have the spinner widget class as a property
that will be used in the control's template to render the spinner controls.

public class SpinnerControl extends TextControl {
private static final |ong serial VersionU D = -8267606288443759880L;

private Spinner spinner;

public SpinnerControl () {
super();

}

@verride

publi ¢ Li st <Conponent > get Conponent sFor Li fecycl e() {
Li st <Conponent > conponents = super. get Conponent sFor Li f ecycl e();
conponent s. add(get Spi nner ());
return components;

}
| **

* Spinner widget that should decorate the control

*

* @eturn Spinner

*/
publ i ¢ Spi nner get Spi nner ()
{

return spinner;
/**

* Setter for the control's spinner widget instance

*

* @ar am spi nner
*/
public void set Spi nner(Spi nner spinner) {
this. spinner = spinner;
}
}

FreeMarker Template

Because we extended the TextControl to create the SpinnerControl widget class, wewill do the samewhen
creating the template. Wewill invoke the text control macro to include the standard text control. To render
the spinner buttons on the control, we use the script macro to call the createSpinner function that will add
the spinner plugin on that text field. We pass the specific SpinnerControl id and the component options
as parameters.

232

Widgets

<#macro spinner control field>

<#-- Create Standard HTM. Text |nput then decorates with Spinner plugin -->

<ui f _text control=control field=field/ >

<@rad. script value="createSpinner('${control.id}', ${control.spinner.conponent OptionsJSString});/>
</ #macr o>

JavaScript Function

For this example we created a custom JavaScript function that will be called from the template.

| **

* Creates the spinner widget for an input

* @aramid - id for the control to apply the spinner to
* @aramoptions - options for the spinner
*/

function createSpinner(id, options) {
jq("#" + id).spinit(options);

Spring Beans Definitions

Lastly we add the spring bean definitions. Here we can specify default property values and component
options.

<bean id="Uif- Spinner" parent="Uif-Spi nner- parentBean"/ >
<bean i d="Uif - Spi nner- parent Bean" abstract="true" class="org. kuali.rice.krad. uif.w dget. Spi nner"
scope="prototype" parent="U f-Wdget Base">
<property name="conponent Opti ons">
<|’Tap>
<entry key="m n"val ue="0"/>
<entry key="steplnc" val ue="1"/>
<entry key="pagelnc" val ue="1"/>
</ map>
</ property>
</ bean>
<bean id="Uif- Spi nnerControl " parent="Uif-Spi nner Control - parent Bean"/ >
<bean i d="Uif - Spi nner Cont r ol - par ent Bean" abstract="true"
class="org. kuali.rice.krad.uif.control. SpinnerControl"
scope="pr ot ot ype"
parent ="Ui f - Snal | Text Control ">
<property name="tenpl ate" val ue="/krad/ WEB-| NF/ j sp/ t enpl at es/ control / spi nner.jsp"/>
<property name="spi nner">
<bean parent="Uif- Spi nner"/>
</ property>
<property name="styl ed asses">
<list nmerge="true">
<val ue>ui f - spi nner Control </ val ue>
</list>
</ property>
</ bean>

RECAP

» Widgets allow developersto produce rich Ul functionality

» KRAD already contains the basic and most commonly used widgets and provides the functionality to
configure these widgets to suit your needs

» Examples of widgets that come packaged in the framework include a date picker, a spinner value
selector, breadcrumbs, and a lightbox widget

* jQuery plugins can usually be called with one argument, which is an object literal of the settings you
would like to override. The base widget classes allow you to pass javascript options to these widgets by

233

Widgets

initializing the templatecomponentOptions map property. The base widget classes can be overridden,
and properties can be changed or added to the componentOptionsMap

The framework allows you to create custom widgets

There are many jQuery plugins available online that can be used to create new widgets
The main steps of creating a custom widget are:

« Choose the appropriate jQuery plugin if oneis needed

» Create widget class by extending org.kuali.rice.krad.uif.widget.WidgetBase

Create the template file

* Create the custom JavaScript function that will initialize the plugin

Add the spring bean definitions in the Data Dictionary

234

Chapter 9. The View
Putting It Together with Views

The View Component

The view component sits at the very top of the component tree. It holds one or more pages that allow
the user to complete a course grained task. In addition to the pages it holds, the view aso contains the
standard container header, footer, and errors fields. We also configure navigation for the pages through
the view component.

In addition to the interface related configuration, many properties exist on the view component for
configuring backend processing. Some examples of this include the form post URL, the form (model)
class, and vaidation flags.

The base view component is defined with the class org.kuali.rice.krad.uif.view.View. For views that need
to render an HTML form, the subclass org.kuali.rice.krad.uif.view.FormView is used. The component
beans we use to configure the view are 'Uif-View' and 'Uif-FormView'. The following is an example of
configuring aform view:

<bean id="Travel -testViewl" parent="U f-FornView' >
<property name="title" value="Test View 1"/>
<property name="itens">

<list>

<bean parent="Ui f-Di scl osure- Page" p:id="pagel">
<property name="itens">
<list>
<ref bean="test Sectionl"/>
<ref bean="test Section2"/>
<ref bean="test Section3"/>
<ref bean="test Section4"/>
<ref bean="test Section5"/>
</list>
</ property>
</ bean>

</list>

</ property>
<property name="fornC ass" val ue="edu. sanpl eu. travel . krad. form Ul Test Forni'/ >
<property nanme="def aul t Bi ndi ngQbj ect Pat h" val ue="travel Account1"/>

</ bean>

In this example, we first set the title for the view (inherited from ContainerBase). Then, we configured
one page in the view'sitemslist that contains five sections. Finally, we associated the view with the form
class 'UITestForm' and specify a default binding object path.

Theid given for the view component (either by explicitly setting theid property or through the bean id) is
very important. For the case of general form view, thisishow wewill request the view with aURL (custom
views that extend the general form view, known as view types, may support other ways of retrieving a
view).

Recap

» The view groups together all the Ul components for a course grained task (it sits at the top of the
component tree)

A view contains one or more pages, in addition to the standard container header, footer, and errorsfield

235

The View

Navigation between pages is configured through the view

The view component is defined by the class org.kuali.rice.krad.uif.view.View

org.kuali.rice.krad.uif.view.FormView extends the View class for adding HTML form functionality

The base beans for the view component are 'Uif-View' and 'Uif-FormView'

The view id can be used to request a view instance with a URL (for the general form view, thisisthe
only way to request the view)

The following properties are supported on the View component:

namespaceCode — Modul e (or application) namespace code the view is associated with. If given, this
will be used when making KIM permissions checks (other future uses are planned as well)

viewName — A unique name for the view within a view type. View types (covered in Chapter 13)
support alternate ways of retrieving aview. For example, alookup view can be requested by passing
the data object class the lookup view is associated with. If multiple lookup views exist for the same
data object class, they can be differentiated by using the viewName. The viewName is then passed
with the data object class through the URL. If the view name is not specified, it inherits the name
'default’

theme — The ViewTheme object associated with the view. This configures the base set of style sheets
and script files that are used for the rendered view

applicationHeader and applicationFooter — A Header element and Group footer that will be rendered
before and after the view contents. Thisis used to define a consistent application header and footer
through all views (note most Rice applications currently use the portal header and footer instead)

breadcrumbs — A Breadcrumbs widget used to provide application crumbs. Note this provides the
location of the view within the application, not the 'trail’

growls — Growls widget that can be used to configure growls that are displayed for the view
growlMessagingEnabled — Enables or disables growl messages. If enabled, growls will appear on
refresh of a page when there are error, warning, or informational messages. If disabled, growls can

still be given with the use of custom script

entryPageld — When aview contains multiple pages, specifies the page that should be opened for the
initial request. If not specified, the first page configured in theitems list is used

currentPageld — Id for the page to be rendered. In the controller this property can be set to change
the page that will be rendered. The default navigate method provided in UifControllerBase takes care
of changing thisvalue

navigation — The NavigationGroup that will be rendered for the view

formClass — Full class name for the form (top level model object). Note that it is not a requirement
that the form class extends UifFormBase, but it must implement the ViewModel interface

defaultBindingObjectPath — Default path to use for the binding object path of DataBinding
components. See' Data Binding' in Chapter 6

objectPathToConcreteClassMapping — A map of property paths to class mappings. When a property
has an abstract type (interface or abstract class) it is not possible for the framework to create instances

236

The View

of that class or, in many cases, find data dictionary or persistence metadata. In these cases, a map
entry can be added to specify the concrete classto use

additional ScriptFiles — A list of script (.js) file paths (either relative to the web root or full URLS)
that should be included for the rendered view

additionalCssFiles - A list of style (.css) file paths (either relative to the web root or full URLS) that
should be included for the rendered view

viewTypeName — Name of the view type that the view belongs to. This is generally set in the base
beans for a view type (such as 'LOOKUP, or 'INQUIRY"). When requesting a view by type, this
name must be sent

viewHelperServiceClass — Full class name for the ViewHelperService implementation. Defaults
to org.kuali.rice.krad.uif.service.impl.ViewHelperServicelmpl. Note you may aso inject the
ViewHelperService instance by setting the viewHel perService property

viewStatus — Lifecycle status for the view. Thisis generally just used by the framework

viewlndex — A class the holds indexes for various view components. This is used throughout the
framework and custom code to retrieve components. For example, suppose we wanted to find the
InputField for property 'field1' and we were given the view instance. Without the index, we would
need to traverse the component tree, looking for InputField components, and then checking the
property name. Using the view index, we can simply get the InputField by the property name with
the contained index. The indexes are built while carrying out the view lifecycle and traversing the
tree for the phases

viewRequestParameters — A Map of request parameters that were used to initialize the view
component (see upcoming section 'View Request Parameters)). These must be maintained ontheform
in the case of view reinitialization (for example, in the case of a session timeout)

presentationController — ViewPresentationController instance used to perform logic for edit, read-
only, and hidden states of components

authorizer — ViewAuthorizer instance used to perform user based authorization for a component's
edit or view state

expressionVariables— A map of custom variablesthat can be used in expressions. The map key gives
the variable name, and the value gives the expression to evaluate for the variable value. These are
evaluated at the beginning of the perform model phase, and then available in any expression on the
view's contained components

singlePageView — Indicates whether the view only contains one page group. In this case, the items
configured are assumed to be section groups, and the sections are inserted into a page through code.
Thisallows simpler configuration for viewsthat typically don't have multiple pages (such as alookup
view)

page — When singlePageView is true, this property holds the page group that will be rendered. The
items configured on the view are then inserted into this group through code

viewMenuGroupName — A string that identifier the group the view belongsto. This is currently not
being used by KRAD, but isin place for future portal improvements (in portal terms, we can think
of this as the channel the view link will be placed in)

applyDirtyCheck — Boolean that enables or disables the dirty fields check

237

The View

« trandateCodes — Boolean that indicates whether code properties should automatically be trandated
to their name property for read only display. This is similar to the function of DataField's
readOnlyDisplaySuffixPropertyName, however, the framework will attempt to do this automatically

» Thefollowing additional properties are supported on the FormView component:

 renderForm — Boolean that determines whether the HTML form will be rendered. In some cases, a
view might need to conditionally render a form for which this property can be used. By defaullt it
isset to true

« validateClientSide — Boolean that indicates whether client side validation should be performed

« validateServerSide — Boolean that indicates whether automatic validation should be performed when
the view is posted. Thisis currently not supported, but is planned for the future. The validation will
be performed against any constraints defined on the data fields (which could be inherited from the
data dictionary attribute definition)

« formPostUrl — The relative or absolute URL the form should post to. If not set, the framework will
set thisto the request URL (not including the request parameter string)

Navigation
The following view example shows a multi-page view with a navigation component:

<bean id="Travel -testVi ew2" parent="Travel -testVi ewl">
<property name="title" value="Test View 2"/>
<property nanme="navigation">
<ref bean="test Vi em\enu"/>
</ property>
<property name="itens">
<list>
<bean parent="Uif-Page" p:id="pagel" p:title="Page 1"/>
<bean parent="Uif-Page" p:id="pagel" p:title="Page 1"/>
<bean parent="Uif-Page" p:id="pagel" p:title="Page 1"/>
</list>
</ property>
</ bean>

<bean id="test Vi emienu"
parent ="Ui f - MenuNavi gati onG oup" >
<property name="itens">
<list>
<bean parent="Ui f - Header Two" p: header Text =" Navi gati on"/>
<bean parent="Ui f-Navi gati onActi onLi nk" p: navi gat eToPagel d="pagel"
p: acti onLabel ="Page 1"/ >
<bean parent="Ui f-Navi gati onActi onLi nk"
p: navi gat eToPagel d=" page2"
p: acti onLabel =" Page 2"/>
<bean parent="Ui f-Navi gati onActi onLi nk" p: navi gat eToPagel d="page3"
p: acti onLabel ="Page 3"/>
<bean parent="Ui f-Navi gati onActi onLi nk" p: navi gat eToPagel d="page4"
p: acti onLabel =" Page 4"/ >
</list>
</ property>
</ bean>

Recap

» The NavigationGroup is a special type of group that renders navigation links for aview

» The UIF provides the following navigation group beans:

238

The View

 Uif-NavigationGroupBase — Base navigation group bean that sets the template and adds the style
class 'uif-navigationGroup'

 Uif-MenuNavigationGroup — Navigation group that is rendered as a menu. Adds the style class 'uif-
menuNavigationGroup'

« Uif-TabNavigationGroup — Navigation group that is rendered as tabs. Adds the style class 'uif-
tabNavigationGroup'

» To configure the navigation links, we use the bean with id 'Uif-NavigationActionLink'. This bean sets
up some default styling to the link, and sets up a script call. We can also choose to use the 'Uif-
NavigationActionButton' bean for a menu button, or the 'Uif-SecondaryNavigationActionButton' bean
to provide a secondary styling

» The navi gat eToPagel d property is set to specify the page that should be navigated to when the
link is selected. By default, the server side method navigate is called, which will handle the navigation
(we can call another method using the standard methodToCall property, and then call navigate at the
end of our controller method)

» Header components can be used in the havigation group to label groupings (really any component, such
as images, can be used with the menu navigation group; however, this is not really practical with the
tab navigation)

» Thenavigation group is associated with the view by the property navi gat i on

View Indexing

Coming Soon!

Requesting a View Instance

Coming Soon!

Figure 9.1. URL Mapping

https:/{domain}/{serviet}/{co ntrﬁller}?methach}CaH:{melhod}&viewldf{viewEd}&pageid={pageld}

oo

App Config Web.xml

AML
¥
Controller Controller 1D of View to Optional Id of
Reguest Mapping Request Mapping Render the page to
Annotation Annotation display

Recap

» A view request URL contains the following parts:

« Application URL — Base URL to the application (domain, port, and app context). For example
‘devl.rice.kudi.org

239

The View

* Servlet Context — Mapping to the Spring servlet (configured in the web.xml). For example 'kr-krad'

e Controller Mapping — Part of the URL that maps to the controller within the serviet. In KRAD these
are configured using the @RequestM apping(value = "/training") annotation on the controller class

* Request Parameters — Key value pairs that are used to populate the request parameters map (this
is everything after the 7 in the URL where each key/value pair is separated by '&'). Some request
parameters to know are:

* viewld —Theid for the view that should be rendered

» methodToCall — Name of the method on the controller that should be invoked. Thisis configured
using the @RequestM apping(params = "methodT oCall=methodName") on the controller method

» Other common request parameters are declared in the constants class UifParameters

View Request Parameters

Coming Soon!

Recap

» A view request parameter is a property on the View component that can be set from arequest URL

* View regquest parameters are declared using the annotation @RequestParameter. By default, the
framework will look for any request parameter with the same name as the property for which the
annotation is configured on. To populate the property from arequest parameter with a different name,
the annotation property parameterName can be set

» Any value sent for aview regquest parameter will override the value configured in the UIF dictionary

The View Service

Coming Soon!

The View Lifecycle and View Helper Services

Coming Soon!

Recap

» The ViewHelperService carries out the mgjority of the view processing

e Custom implementations of the view helper service can be set using the view properties
viewHel perService and viewHel perServiceClass

 After the view object is retrieved from the Spring container, processing is done in three phases:

 |nitialize — During this phase, defaults are set for component properties, and things such as ID
assignment occurs

* Apply Model — During this phase, the model is looked at to perform conditional logic (including
expressions), and to build dynamic components (for example collection lines)

240

The View

* Finalize — A fina phase to set state before the rendering is then performed. At this point, all

components should have been created and conditional logic applied

» Common logic (for al components) is performed within the view hel per service for the various phases

* Inaddition, the view helper delegates to each component for every phase

» Therefore, customization of the processing can also be done by extending the component class (and

overriding the bean definition to use the custom class)

» Theview helper aso contains methods for callback from the UIf base controller. For example, the add

and del ete operations are performed through the view helper

Figure 9.2. RequestResponseFlow

iniiFgam
Pull Fomm

from Manager |

or Creale New

GetPost Request

UIF Controller Interceptor
v View

Service

build\iew
UIFE

Controller

UIF Controller Interceptor

ScreenMediaView Template
JSP Rendering

241

The View

ID Generation

Coming Soon!

Application Header and Footer

Coming Soon!

Recap

» A common application header and footer can be set using the view properties applicationHeader and
applicationFooter

Building Application Menus

Coming Soon!

KIM Authorization

Coming Soon!

Recap

» KRAD allows securing any piece of the view

» By default, authorization is controlled through KIM permissions (with assigned roles)

e To enable authorization, first a KIM permission must be created with the correct template type and
permissions, then the corresponding component must be marked using the ComponentSecurity object
(property isnamed conponent Securi ty)

» Thefollowing permissions can be added:

Open View — Template Name 'Open View' Details viewld: Enabled by setting
componentSecurity.viewAuthz to true on the view component

Edit View - Template Name ‘Edit View" Details viewld: Enabled by setting
componentSecurity.editAuthz to true on the view component

View Field — Template Name 'View Field': Details viewld and fieldld or viewld and propertyName
(for datafields): Enabled by setting componentSecurity.viewAuthz to true on the field component

Edit Field — Template Name 'Edit Field": Details viewld and fieldld or viewld and propertyName (for
datafields): Enabled by setting componentSecurity.editAuthz to true on the field component

View Group (appliesto any group including page, section, and subsection levels) — Template Name
'View Group": Details viewld and groupld or viewld and propertyName (for collection groups):
Enabled by setting componentSecurity.viewAuthz to true on the group component

Edit Group (applies to any group including page, section, and subsection levels) — Template Name
'Edit Group": Details viewld and groupld or viewld and propertyName (for collection groups):
Enabled by setting componentSecurity.editAuthz to true on the group component

242

The View

* View Widget — Template Name 'View Widget": Details viewld and widgetld: Enabled by setting
componentSecurity.viewAuthz to true on the widget component

» Edit Widget — Template Name 'Edit Widget": Details viewld and widgetld: Enabled by setting
componentSecurity.editAuthz to true on the widget component

e Perform Action — Template Name 'Perform Action": Details viewld and actionld or viewld and
actionEvent: Enabled by setting componentSecurity. performActionAuthz to true on the action
component

e View Line — Template Name 'View Line: Details viewld and groupld or viewld and
collectionPropertyName: Enabled by setting componentSecurity.viewLineAuthz to true on the
collection group component

e Edit Line — Template Name 'Edit Line: Details viewld and groupld or viewld and
collectionPropertyName: Enabled by setting componentSecurity.editLineAuthz to true on the
collection group component

 View Line Field — Template Name 'View Line Field: Details viewld, groupld
or collectionPropertyName, and fieldld or propertyName: Enabled by setting
componentSecurity.viewlnLineAuthz to true on the field component

e Paform Line Action — Template Name 'Perform Line Action: Details viewld,
groupld or collectionPropertyName, and actionld or actionEvent: Enabled by setting
componentSecurity.performLineActionAuthz to true on the action component

e Full Unmask Attribute — Template Name 'Full Unmask Field: Details namespaceCode,
componentCode, and propertyName. Enabled by setting componentSecurity.attributeSecurity.mask
to true on the datafield

e Partid Unmask Attribute - Template Name 'Partia Unmask Field"
Details namespaceCode, componentCode, and propertyName. Enabled by setting
componentSecurity.attributeSecurity.partial Mask to true on the datafield

* View Attribute — Template Name 'View Attribute’: Details namespaceCode, componentCode, and
propertyName. Enabled by setting componentSecurity.attributeSecurity.hide to true on the datafield

< Edit Attribute — Template Name 'Edit Attribute’: Details namespaceCode, componentCode, and
propertyName. Enabled by setting componentSecurity.attributeSecurity.readOnly to true on the data
field

In addition to the general View permissions, all permissions that previousely existed in the KNS
(document, inquiry, maintenance permissions and so on) are supported in KRAD

243

Chapter 10. Conditional Logic

Conditional Logic

Coming Soon!

Presentation Controllers and Authorizers

Coming Soon!

Configuration with Expressions

Coming Soon!
Spring EL
Coming Soon!

Recap

» An expression language statement can be specified within the UIF XML to conditionally set a property
value

» An expression starts with the delimiter '@{" and ends with '}’

A property value can contain asingle expression, or several expressionswithin other literal text (eg 'liter
text @{ expresson} more @{ another expression}"’)

» Expressions are evaluated using the Spring EL engine during the views apply model phase
» Some of the features supported by Spring EL include:

 Literal expressions

< Boolean and relational operators

* Regular expressions

 Class expressions

« Accessing properties, arrays, lists, maps

* Method invocation

» Relational operators

e Assignment

 Calling constructors

* Beanreferences

244

Conditional Logic

Array construction
Inline lists

Ternary operator
Variables

User defined functions
Collection projection
Collection selection

Templated expressions

By default, an expression term is eval uated against the model object. For example, if our expression is
‘@{field1}', the expression will evaluate the value of field1 on the model. Paths are formed in the usual
manner (dot for nested, brackets for lists and maps)

Expression terms can also go against a variable. Variables are indicated using the '# prefix (eg
‘@{#variable.property}"). The following variables are available within the UIF (note some of the
variables are only available in certain contexts)

collectionGroup — For a property on a collection group, or any component within the group, this
variable can be used to refer to the collection group component instance

ConfigProperties — A map of the Rice configuration properties. The map key is the config property
name and the map value is the config property value

component — Refers to the component instance the property is configured on. Note when setting a
nested property, the component variable will point to the nested component, not the component bean
the property tag belongs to

Constants — Constants from the KRADConstants class
DocumentEntry — When on a document view refers to the data dictionary document entry

index — When on a component within a collection group line, refers to the index of the line the
component is being rendered for

isAddLine - When on acomponent within a collection group line, indicatesif the line being rendered
istheadd line

line - When on a component within a collection group line, refersto the data object for the collection
line the component is being rendered for

parentLine - Refersto the parent collection line (parent to a sub collection) allowing accessto the sub
collection size with '@{ #parentLine.subCollectionName.size()} ' from within the sub collection

readOnlyLine - When on a component within a collection group line, indicates if the line for which
the component is being rendered for is read-only

manager — Refers to the layout manager instance for the parent group (note if within a nested group,
the manager instance will be that of the direct parent)

node — For tree components refers to the current node the component is being rendered for

245

Conditional Logic

nodePath — For tree components refers to the path for the node the component is being rendered for
parent — Refers to the immediate parent component

UifConstants — Constants from the UifConstants class

view — Refers to the view instance the component belongs to

ViewHelper — The view helper instance configured for the view (note this is a convenient way to
create and call custom methods from EL)

Component Context

Coming Soon!

Recap

 All components contain a property named context which isaMap type

The context map holds various key/value pairs that build the context for a component

» The context map is then used for:

L]

Building EL variables

Getting references to other components from a method (such as the finalize method)

» Common objects (such as those listed under EL variables) are inserted into the context map by the
framework, however custom context entries can be added through XML or code

Built-In and Custom Functions

Coming Soon!

Recap

Note

All UIF functions need to be prepended with #. For example, #isAssignableFrom.

e The UIF provides a number of functions that can be called from within an expression:

boolean #isAssignableFrom(Class<?> assignableClass, Class<?> objectClass) — Used to check
whether a class (such as a class configured for a property) is assignable to another class

boolean #empty(Object value) — Used to check whether agiven valueis empty (null or empty string)
(eg '@{ lempty(field1)})

String #getName(Class<?> clazz) — Returns the name for a class

String #getParm(String namespaceCode, String componentCode, String parameterName) — Retrieves
the value for a system parameter as a String

Boolean #getParmind(String namespaceCode, String componentCode, String parameterName) —
Retrieves the value for a system parameter as a Boolean

246

Conditional Logic

* boolean hasPerm(String namespaceCode, String permissionName) — Checks whether the current user
has the given KIM permission

e boolean #hasPermDtls(String namespaceCode, String permissionName, Map<String, String>
permissionDetails,Map<String, String> roleQualifiers) — Checks whether the current user has the
given KIM permission matching the details and role qualifiers

* boolean #hasPermTmpl(String namespaceCode, String templateName, Map<String, String>
permissionDetails,Map<String, String> roleQualifiers) — Checks whether the current user hasaKIM
permission for the template name that matches the details and qualifiers

* Custom functions can be added to the ViewHelperService implementation and invoked by
#ViewHel perService.functionName (for example " @{#ViewHelper.getL owestAmount(fieldl, field2,
‘true)}")

* Inaddition, for new global functions, the ExpressionEval uatorService can be overridden to register new
expression functions

» Finaly, recall that Spring allows usto call any method on an object we have areference to

Custom Variables

Coming Soon!
Component Modifiers
Coming Soon!
Recap
» Component modifiers allows usto perform a modification on acomponent (and its nested components)
through code
» Component modifiers are created by implementing the interface

org.kuali.rice.krad.uif.modifier.ComponentModifier which requires implementing the method
per f or mvbdi fi cati on(View view, Object model, Component component)

e One or more component modifiers may be associated with a component with the
conponent Modi fi ers List property

» Component modifiers can be conditionally applied by setting the runCondition property

» Someexamplesof component modifiersinthe UIFincludethe L abel Separator (pull thelabel component
for afield into a separate group item) and the MaintenanceCompareM odifer (creates afield for the 'old'
data object)

Property Replacers

Coming Soon!

Recap

 Property replacers can be used to configur areplacement for acomponent property based on acondition

247

Conditional Logic

A component can contain one or more property replacers configured with the propertyReplacers List
property

A property replacer is created using a bean with parent 'Uif-Conditional BeanPropertyReplacer’
The following properties are supported by a property replacer:

 propertyName —Name of the property on the component the property replacer is configured on (note
can be nested) that should be replaced

« condition — The condition (EL expression) to evaluate for the replacement. If the condtionistrue, the
property value will be replaced, otherwise it will not be

« replacement — The object the property should be replaced with when the condition is true. In most
cases this is a component, but can be a primitive type, a collection (possibly of components), or
another type

Using property replacers, we can do such things as replacing a control based on a condition, replacing
the entire group items list, replacing alayout manager, and so on

Collection Filters

Coming Soon!

Recap

The lines displayed for a collection group can be filtered by using a
org.kuali.rice.krad.uif.container.CollectionFilter object

To create a collection filter, we must implement the interface method: List<Integer> filter(View view,
Object model, CollectionGroup collectionGroup)

One or more collection filters can be applied to a collection group using the List property filters
The UIF provides afilter implementation that allows filtering of the collection using an expression

Tousethisfilter we create abean with parent 'Uif-Conditional CollectionFilter'. Then we set the property
expression to the filtering expression. Lines will only be displayed if the expression evaluates to true
for that line

Another example of a collection filter within the UIF is the ActiveCollectionFilter. Thisfilter is added
automatically to a collection group when the collection object class implements the Inactivatable
interface (a button is also rendered allowing the user to toggle the filter)

Code Support

Coming Soon!

Overriding with the ViewHelperService

Recap

Coming Soon!

Through a custom view helper service, we can implement custom logic for configuring components

248

Conditional Logic

During the view processing, the default view helper service provides the following methods for custom
logic:

 performCustomi nitialization
 performCustomA pplyModel
 performCustomFinalize
» We can implement one of these methods with code that conditionally sets component properties

* Specific component instances can be acquired by the component id

We then hook up our view helper service with a view using the vi ewHel per Ser vi ceC ass
property

Component Finalization

Coming Soon!

Recap

» The UIF provides a more convenient way of configuring components with code called Component
Finalization

* First we create a method that returns void and accepts the following arguments:
« component — the component which we want to modify
* model —the model object (contains the data and the view)

* Next wesetthefinalizeMet hodToCal | property (available on al components) to the name of
the created method

» With just the finalize method set, the framework assumes the method is available on the configured
view helper service

» We can implement our method in another class (such as a static class or a service)

* To invoke a class besides the view helper, we must configure the fi nal i zeMet hodl nvoker
property

» Our finalize method can take additional arguments if needed. We pass these arguments using the
finalizeMet hodAddi ti onal Ar gunent s property

Group Initialization

Coming Soon!

The Component Factory
Coming Soon!

Recap

* Incode, wearenot limited to just setting val ues on existing components, but can create new components
aswell

249

Conditional Logic

For example, we can completely create the content for a group through code

Generally when creating components in code, we want to reuse the setup defaults (template, style
classes, ...)

Thereforeinstead of creating anew component instance oursel ves, we can get anew component instance
from the Spring container

To help with this, the ComponentFactory classis provided

The component factory contains methods to get new instances of the KRAD provided components, for
example:

 getinputField()

 getTextControl()

In addition, some overloaded methods exist for convenient property setting:

* getlnputField(String propertyName, String label)

 getlnputFied(String propertyName, String label, UifConstants.Control Type control Type)
The return components are initialized according to their corresponding beans

Once a new component instance is returned, properties can be changed as needed

Copying Components

Recap

Coming Soon!

In certain situations, we might wish to create a new component by copying an existing component
By copying a component, we inherit the state from the component that was copied

The framework makes extensive use of component copying through its prototype functionality (when
dynamically generating componentsin code)

KRAD provides the utility class ComponentUtils which contains methods for copying components
These include:
e <T extends Component> T copy(T component) — copy component

» <T extends Component> T copy(T component, String idSuffix) — copy component and add suffix to
theid of the created component

e <T extends Component> T copyComponent(T component, String addBindingPrefix, String idSuffix)
— copy component, adjust id, and adjust binding for components that are DataBinding

e <T extends Component> List<T> copyComponentList(List<T> components, String idSuffix) — copy
all componentsinto anew list of components and adjust ids

250

Chapter 11. Client Side Features

Progressive Disclosure
RECAP

 Progressive disclosure reduces clutter on the page by presenting content only when needed

* Instead of displaying or sending all the content a user might need to complete a task, we display/send
content as the user needs them

» The content that is not displayed initially is associated with a condition, when the condition becomes
true the content will be displayed

e In KRAD we can configure a component to be progressive disclosed by setting the
pr ogr essi veRender property

» The value for the progressive render property is an el statement. However only a subset of the EL is
supported since the expression will be translated to script that evaluates on the client. Therefore for
the most part the expressions are restricted to evaluation of model properties with a subset of the EL
operators

* First evaluation isdone on theinitial request to determine if the content should be displayed. In order to
beinitialy displayed both the render property (which can be an expression) and the progressiveRender
property must evaluate to true

* Ontheclient, fields that participate in the progressRender condition receive events that will trigger the
condition evaluation

« If the evaluation succeeds and the content is hidden, it will be shown. Contrary if the evaluation falls
and the content is show, it will be hidden

» The progressive render feature supports the following options for how the content is retrieved:

« default (no other flags set) — content will be sent to the client and rendered, then hidden if the content
should not be visible

» progressiveRenderViaAJAX set to true — if this property of Component is set to true and the
component’ s progressive render conditionisnot initially true, the content will not be sent to the client.
When the condition becomes true on the client, a request with AJAX will be made to retrieve the
content. Once the content is retrieve the first time it remains in the client for subseguence show/hide
operations

 progressiveRenderAndRefresh set to true — if this property of Component is set to true each time a
show or hide operation is performed arequest to the server will be made to retrieve the content. Since
the model datais also sent with the request, the content can also change between operations

Component Refresh
RECAP

» The state of acomponent can change as the model changes

251

Client Side Features

» To be a highly responsive application, we want the updated component to be presented when the
corresponding data condition is met

 Traditionally, updates would only be presented after a server request such as aform action

» With script, we can trigger the condition immediately and update the contents, which is known as
Component Refresh

» Component refresh is similar to progressive disclosure in that a certain condition will trigger an update
for the component’ s contents

» All KRAD components support the component refresh process
 To enable component refresh, we set the component property condi ti onal Refresh
» The conditional refresh property holds an expression that is trandated to client side script

» Whenever the refresh condition toggles between the true and false result, a call to the server will be
made to retrieve updated contents

* Only the contents for the component are refreshed from the process, however the entire form data is
sent to the server with the request

» Using component refresh, we can do things such as the following:
¢ Change the disabled or read-only state of a component
¢ Change the options for a control
 In many cases, we want to refresh content when the value for afield changes

» For this cases, KRAD provides an easier configuration with the
r ef reshvhenChangedPr oper t yNanes property

» Thisproperty isconfigured onthe component that should berefreshed. Thevalueisone or more property
names that trigger the refresh (when their value changes)

Disable on User Action

Client-side disable on user action refers to the ability to disable controls and/or buttons based on user
actions or input. Client-side disable follows the same rules and limitations that progressive disclosure and
refresh conditions do (they operate on alimited set of SpringEl expressions because they must betransated
to the client —almost any Boolean expression which does not reference afunction is allowed).

When auser interactswith arelated control, the expression will be evaluated and if true, the corresponding
control will be disabled.

Important note: inputs which are disabled do not send their valuesto the server when a form is
submitted.

Disabled works with any Cont r ol (technically any control which extends ControlBase). It also works
with any Action or ActionLink. The following properties are available for disable functionality:

e di sabl ed (Boolean expression) —can be any valid springEl boolean expression (or just true or false)
—no custom SpringEL functions allowed

252

Client Side Features

e eval uat eDi sabl edOnKeyUp (Boolean) —if true, rather than evaluating the disable condition on
the onChange event, the condition will be evaluated on each keystroke allowing immediate feedback to
the user. This can only be used on textual inputs.

» di sabl edWhenChangedPr opert yNanes (list) — changing any of the inputs with the property
names specified will disable THIS control. Useful for disallowing input when something else changes.

* enabl edWhenChangedPr opert yNanes (list) — changing any of the inputs with the property
names specified will enable THIS control. Useful for when the control starts out with disable="true’
and any user interaction with another control causes this one to be enabled.

In this example, field2’'s TextControl input will be disabled when field118's value is “disable’. Thisis
achieved through this property - p:disabled="@{#form.field118 eq 'disable’}". When field118 s value is
not “disable” the control will be enabled. The action button specified here follows the same rules.

<bean parent="Uif-InputField" p:propertyName="fiel d118" p:|abel ="Choose" p:w dt h="aut 0"
p:instructional Text="Click option to disable and enable">
<property name="control ">
<bean parent="Uif-Vertical Radi oControl ">
<property name="options">
<list>
<bean parent="Ui f - KeyLabel Pair" p: key="enabl e" p:val ue="Enabl e"/>
<bean parent="Ui f - KeyLabel Pair" p: key="di sabl e" p:val ue="Di sabl e"/>
</list>
</ property>
</ bean>
</ property>
</ bean>

<bean parent="Uif-InputField" p:propertyName="fiel d2">
<property name="control ">
<bean parent="Ui f-Text Control" p:disabled="@#f ormfieldll8 eq 'disable }"/>
</ property>
</ bean>

<bean parent="Uif-PrimaryActi onButton" p:actionLabel ="Action Button" p:disabled="@#formfieldl18 eq
"disable' }"/>

Example of both the enabl edWhenChangedPr oper t yNanes and
eval uat eDi sabl edOnKeyUp in action; when field52 has anything typed in, then enable this control
for field54 immediately.

<bean parent="Uif-InputField" p:propertyName="fiel d54">
<property name="control ">
<bean parent="Uif-Text Control" p:disabl ed="true" p:enabl edWhenChangedPropertyNames="fi el d52"
p: eval uat eDi sabl edOnKeyUp="true"/>
</ property>
</ bean>

AJAX Actions
RECAP

» To support more responsive applications with features such as progressive disclosure and component
refresh, we need to support partial page refreshes

 Inatraditional web application, the entire page is submitted by the browser and completely rendered
again with the response

» Today with Ajax, we can make server requests ourselves, receive the response, and update pieces of
the page as needed

 Within the framework partial updates are handled by the framework to support various features

253

Client Side Features

By default, actions configured for aview will result in the entire view being rendered

 For configuring partial refreshes, the Uif-PrimaryActionButton is provided

» Ajax actionfields have all the same properties as action components, but have two additional properties:
« refreshld —id for the component that should be refresh when the action completes

« refreshPropertyName — property name for the data (or input) field that should be refresh when the
action completes

» Using these properties, we can refresh any group (including the page, section, sub- section, or other
group), field, or widget

» Using these properties, we can refresh any group (including the page, section, sub- section, or other
group), field, or widget

» By default when using gjax action field the page is refreshed

Lightbox

The recommended way to use lightboxesisthrough the Uif-Link or the Uif-Dial og beans. For caseswhere
thisisn't possible, the following JavaScript functions can be used to open lightboxes.

showL ightboxUrl (url) The content for the lightbox isloaded from the specified url.

showL ightboxComponent(componentl@he content for the lightbox isa Uif component (e.g. asection) and
is specified via the component id.

showL ightboxContent(content) The content of the lightbox is passed as the parameter which could
be either plain or html formatted text.

Each of the three functions can accept a second overri deQpti ons parameter which alows for
additional lightbox styling. This parameter is optional and should only be used if it isunavoidable, sinceit
is specific to the underlying implementation, which could change. If possible use the "uif-lightbox" CSS
classfor styling.

Working in the Client with jQuery

Data Attributes

HTML 5 data attributes are a way of adding custom attributes to tags. Data attributes are prefixed with
a 'data-' prefix e.g. 'data-role’. JQuery makes data attributes available on the jQuery data object for use
in scripting manipulations. Internally, KRAD uses the jQuery data object and data attributes heavily in
validation, amongst other uses. This can be seen in krad.validatejs.

Data attributes are available on all form elements, except the radio button. Page elements like image,
iframe, and links also support data attributes. There are two ways to add data attributes to a control or
element. Both these ways involve setting properties in the defining XML configuration files.

Thefirst way applies to three data attributes, which can be set directly on a component using the property
names data-role, data-meta and data-type. These attributes are physically present on the tag for the
component on which they have been configured. This can be seen in lines 13 - 15 of the program listing
below.

254

Client Side Features

The second way is to use the dataAttributes map to set alist of attributes. The map key is the attribute
name, and the value is the attribute value. Using the map is appropriate when complex attributes need
to be set. Complex attributes are those whose values contain '{}'. Data attributes set via this map are not
physically present on the tag, but are set on the component's jQuery data object viaan initialization script
that runs on page load. This can be seeninlines5 - 12 of the program listing below.

A sample configuration is shown below.

1. <bean id="textArealnputField_attrs" parent="Uif-InputField" >

2. S

3 <bean parent="Ui f-Text AreaControl " >

4. S

5. <property name="dataAttri butes">

6. <map>

7. <entry key="iconTenpl at eName" val ue="cool -i con-%. png"/ >

8. <entry key="transitions" value="3"/>

9. <entry key="capital s" val ue="{kenya: ' nairobi', uganda:'kanpala', tanzania:'dar'}"/>
10. <entry key="intervals" value="{short:2, mediumb5, |ong:13}"/>
11. </ map>

12. </ property>

13. <property name="dat aRol eAttribute" value="role"/>

14. <property name="dat aMet aAttribute" val ue="neta"/>

15. <property name="dat aTypeAttribute" val ue="type"/>

16. </ bean>

17. </ property>

18. </ bean>

Configuring Event Handling
RECAP

 Views can be enhanced to achieve awide range of functionality by extending the client side behavior

 All views receive the jQuery import for use (other libraries can be included for al views through the
theme)

» KRAD supports two mechanisms for adding client side code:

» Create aJavaScript file that references component content by id (or some other selector), theninclude
the file through the view’ s additional ScriptFiles property

* Add JavaScript code associated with a component event through the corresponding component
property

» Component classesinclude propertiesfor eventsthat are applicableto the generate HTML elements (for
example ‘onBlurScript’ for control components)

* Some common events include:
« onDocumentReadyScript — special jQuery event that gets thrown when the document is fully loaded
 onBlurScript — event thrown when focus is removed from an element
« onChangeScript — event thrown when the value for a control changes
 onClickScript — event thrown when an element is clicked

 onFocusScript — event thrown when an element receives focus

255

Client Side Features

* For the event property value, a script can be included inline, or externalized to a JavaScript file and
then invoked as a function

» ThejQuery object can be referenced by the full name of ‘jQuery’, or the abbreviated ‘jg’ name

Validation
Client Side Validation

Client-side validation refers to validation that happens without interaction with the server, immediately
during user interaction with input fields. Client-side validation uses the constraints defined on InputFiel ds
and AttributeDefinitions to determine if afield is valid. These constraints are converted in the java code
to methods and rules used by the jquery.validate.js plugin.

When the user hasinteracted with afield and moved on to the next field, client-side validation isinvoked
onthat field and any validation errors are shown on the screen. When the user goes back to afield to correct
it, validation occurs with any change so the user getsimmediate feedback on whether they fixed their error.

The validation messages shown are determined by the messageKey on the constraint for that field.

By default, client-side validation is on. Client-side validation can be turned off/on on each individua
constraint, but also at the FormView level through the validateClientSide flag.

Server Side Validation

KRAD enabled server-side validation must be performed manually through methods on your custom
controller. To call server validation manually, usethe validateView method on the ViewValidationService.
This method will validate on any constraints set on the InputFiel ds/AttributeDefinitions for your view. If
there are any errors, this method will add them to the MessageMap. The validation mechanism used is
functionally equivalent to client-side validation.

KRADSer vi ceLocat or Web. get Vi ewval i dati onServi ce().validateView(forn);

Validation Messages

Validation messages is the term used for error, warning, or information messages that are displayed
on the screen. Validation messages can be displayed for both server-side and client-side messages. The
V alidationM essages ContentElement all ows configuration of how and when these messages are displayed.
This object can be configured at the Page, Group/Section, and Field level, and each level is configured
with some default recommended settings, but these can be overridden.

Server-side messages are shown for any messages that are added to the MessageMap from one of your
controller method calls (as described in 6.13 ValidationM essages content element).

Each message type will have different icons (and background patterns) associated with the messages when
displayed. By default these icons are:

'@
Error

! Warning

) @Info

256

Client Side Features

When validation messages are received from the server they are always displayed in asummary at the top
of the page and at the sections for which they apply.

At the page level, if sections exist, the summary will include the total number of messages on the screen
and linksto each section which contains the fields/sections that have validation messages. Messageswhich
apply to the entire page are al so displayed at thislevel. If the page has no sections, the page level summary
will include links directly to the fields which have messages.

At the section level, the messages will be links to the fields which they apply - these links will cause
the browser to move focus to that field. Any message beyond the first for afield, will be displayed as a
summary; the full message content will be available during field interaction. If the section containsits own
subsections which have messages, there will be links to those subsections.

At thefield level, all applicable messages will be displayed in atooltip when the field's control has focus
or when the field's control is being hovered over.

When first interacting with a page that has no message summaries, messages will only appear at the field
level during client-sidevalidation. If asummary already exists on the page, these new messageswill appear
in the summaries as client-side validation occurs.

When aclient-side validation error occurs, the user will seean error icon and appropriate error highlighting
on the control which has an error. When the user returns to this field, they will see the error messagein a
tooltip, and when the user attempts to fix a field that has a client-side error, feedback to the user will be
immediate: when the error is fixed the tooltip, icon, and error highlighting will disappear.

It isimportant to note that only client-side errors can be resolved in this fashion. Server-side errors do not
produce immediate feedback because they require a server round-trip to determine if they are corrected,
therefore, when a user interacts with a field which had a server-side error in attempt to fix it, the field
will instead be marked with an icon and highlighting that indicates that the field has been modified with
an attempted fix.

When both server and client messages are present on the screen, they are all included in the summaries
and tooltips, and when a client-side error is corrected, only that message text is removed.

Some of these default interactions can be changed through settings on the ValidationM essages element
as described in section 6.13.

Ajax Improvements

Ajax isagroup of web development client side technologies which are used to create asynchronous web
applications. Web applications can send and retrieve data asynchronously without affecting the display
of the current page.

The gjax calls have been cleaned up. gjaxSubmitForm(), standard submitForm() and methods to do
validation before hand have been added. writeHiddenToForm(), which was earlier used to write the data
as hidden params on the form, has been replaced by data-attributes.

« actionlnvokeHandler() - The actionlnvokeHandler method checks based on the data-attributes whether
itisan gjax submit, or anon gjax one, and then calls one of the submit methods.

* gaxSubmitForm() - This, in turn, calls the ajaxSubmitFormFullOpts method with the validate flag set
to false.

« validateAndAjaxSubmitForm() - This, in turn, calls the gaxSubmitFormFullOpts method with the
validate flag set to true.

257

Client Side Features

e gaxSubmitFormFullOpts() - Submits the form through an gjax submit, the response is the new page
html, and runs all hidden scripts passed back. It is similar to the old ajaxSubmitForm method, but has
some additional parameters which allow for providing hooks for successCallback, errorCallback and
preSubmitCalls. It also takes a validate flag as well as a returnType. A returnType is used to request
data from the server, but the server may override it. If the validate flag is set, it validates the form and
proceeds only if the form is valid. If a preSubmitcall is specified, then it executes that and proceeds
if it returns true. If the returnType is not given, then it defaults to "update-page" and sets it on the
data which is submitted to the server. It then calls the invokeAjaxReturnHandler to determine which
handler function to call. The successCallback and errorCallback are handled as they were before in
gjaxSubmitForm. The elementToBlock and the lightBox processing also remain the same.

submitForm() - This is used for non-gjax calls. This in turn calls the submitFormFullOpts with the
validate flag set to false.

validateAndSubmitForm() - Thisisused for non-gjax calls. Thisin turn calls the submitFormFul|Opts
with the validate flag set to true.

 submitFormFullOpts() - Doesanon gjax submit. The data-attributesthat are passed in as additional data
are written as hidden params to the form before it is submitted.

¢ invokeAjaxReturnHandler - This method iterates over divsin the content that is passed in to determine
which handler functions to call. The handler functions are initialized in krad.initialize.js

As part of the improvements, gjax returns were made smarter. This essentially means that when sending
back an ajax response, we need to write data that is used by the gjax call to determine how the response
should be handled. The content is wrapped in a handler that indicates how the gjax call should handle the
content. Here is an example of how it is done:

<di v data-handl er="update-title">
<div ..> title contents </div>
</ di v>

The following methods have been added to handle the ajax response based on the returnType

 updatePageHandler - Called if the returnType is "update-page”. Finds the page content in the returned
content and updates the page, then processes breadcrumbs and hidden scripts. While processing, the
page contents are hidden.

» updateViewHandler - Replacesthe view with the given content and runsthe hidden scripts. Called when
the returnType is "update-view".

« redirectHandler - Called when the returnType is "redirect”. Replaces the contents of the window with
those of the redirected URL.

 updateComponentHandler - Caled when the returnType is "update-component”. Retrieves the
component with the matching id from the server, and replacesamatching _refreshWrapper marker span
with the same id with the result. In addition, if the result contains alabel and a displayWith marker span
has a matching id, that span will be replaced with the label content and removed from the component.
Thisallows for label and component content separation on fields.

Utilities

258

Chapter 12. Controllers
Introduction to Spring MVC

Coming Soon!

Controllers

Coming Soon!

Controller Annotations

Coming Soon!

Interceptors

Coming Soon!

Spring Views and the Common UIF View
Coming Soon!

Spring Tags
Coming Soon!

Binding and Validation

Coming Soon!

Property Editors

Coming Soon!

Security and Masking

Coming Soon!

Bean Wrapper and ObjectPropertyUtils

Coming Soon!

Form Beans

Coming Soon!

259

Controllers

UifControllerBase and UifFormBase

Coming Soon!

Connecting the Controller with the View

Coming Soon!

Dialogs

The KRAD framework provides the ability to build modal dialogs into aweb application. Modal dialogs
can improve the usability and flow of a web page. Diaogs alow the server-side controller to gather
additional information from the user after the form is submitted, without having to change page.

A common and simple example of adialog is to confirm with the user before performing a potentially
dangerous action. For Example, "Are you sure you want to delete?". In this simple example, the question
is displayed in a lightbox. The user must select a response, which closes the lightbox, before they can
interact again with the underlying page contents.

KRAD dialogs support even more complex interactions with the user, with multiple components
and controls, conditional logic, and rich styling. With KRAD, you can create re-usable dialog group
components that enables rich styling (from CSS stylesheets) and user interaction, to pose questions and
collect user responses. The dialogs support images, tables, declarative logic, checkboxes, radio buttons,
dropdowns, and input fields (for example, for a user to provide a text description, with details for their
response choice), or keyboard navigation. Dialogs also have the ability to progressively disclose questions
and other Ul choices depending on other selections madein the lightbox, to dynamically add to the content
and re-size (up to a max, scrolling supported thereafter). Dialogs may be configured to pass the data
collected in the form where it is available to the controller code.

Multiple dialogs may be used on a single view. They can be stacked on each other or invoked separately
depending on controller programmatic logic.

KRAD aso providesacanned set of pre-defined dialog groups. These pre-defined dialogs have convenient
properties for easy customization. They may aso be extended, just like any group, by adding components
to the "items" property of the dialogGroup.

Using Dialogs in a View
To useadiaog in aview requires the following three setup steps:
1. Define the dialog group (or use a pre-defined dialog group) in the view definition file.
2. Declarethe dialog group in the dialogList View property (also in the view definition).
3. Invoke the dialog from the view controller.

First, let's take alook at avery simple example. Thisis one of the pre-defined KRAD diaogs.

Figure 12.1. Header Text Example

260

Controllers

To usethisdialog in aview, simply declareit in the dialogList property of the view:

<bean i d="MTest Vi ew' parent="Uif-FornView'>
<property nanme="di al ogs">

<list>
<bean i d="nySensi tiveDi al og" parent="Uif-SensitiveData-Di al ogG oup"/>
</list>

</ property>

And theninvoke it in your controller code:

/1 first check if the dialog has already been answered by the user
if (!hasDi al ogBeenAnswer ed("nmySensitiveDi al og", form){

/1l redirect back to client to display |ightbox

return showDi al og(di al ogl, form request, response);

/1 get the response entered by the user
bool ean areYouSure = get Bool eanDi al ogResponse("nySensitiveDi al og", form request, response);

The code snippet above is from the controller method invoked by the action (set by the methodToCall
property on the action). This method is called when an action is performed on the page. It uses some
methods inherited from UifControllerBase to manage the dial og.

Thefirst line of code checksto seeif the dialog has been answered by the user during this page interaction.
During thisfirst pass, the dialog has not been answered, it hasn't even been displayed yet. So, showDialog()
is called to return to the client and display the dialog. After the user interacts with the dialog choosing one
of the options, wereturn back to the same controller method again. Thistime, the dial og hasbeen answered,
so the logic falls through and calls getBooleanDial ogResponse() to determine the user's response.

Creating a Dialog Group For a View

Next, let's take a closer look at dialog groups. Any group defined in the view can be used as content in
the lightbox. Just add areferenceto it in the "dialogs" list property in the view definition. A DialogGroup
provides some additionalproperties for convenience, but any group will do. It should be set to hidden
unless you want the group displayed on the main page as well. So, the designer has afew options:

» useapre-defined KRAD dialog

* customize an existing dialog, changing any of the prompt text, the number of option buttons, the value
of the option buttons, adds itemsto the group, add custom styling,...

* create your own custom, hidden group

Here is the bean definition for a DialogGroup. The dialogGroup is a hidden group with some additional
properties for convenience.

» prompt - the message displayed to the user

» explanation - atextareainput to get additional textual response information (hidden by default)
* responselnputField - holds the value chosen by the user

* availableResponses - the choices to be displayed in the lightbox (ok/cancel, yes/no/maybe)

* reverseButtonOrder - determines the order the responses are displayed

The css class "uif-dialogGroup” provides the styling for the lightbox.

<!-- Dialog Goups -->
<bean id="Uif-Di al ogG oup" parent="Uif-Di al og&G oup- par ent Bean"/ >
<bean i d="Uif-Di al ogG oup- par ent Bean" abstract="true" class="org. kuali.rice.krad.uif.container.D al ogG oup"

261

Controllers

parent="Uif-Vertical BoxSection">

<property
<bean p

nane="header" >
arent =" Ui f - Header Three"/ >

</ property>

<property
<property
<property
<property
<property
<list>
<bean
<bean
</list>
</ propert
<property
<property
<property
<bean p
</ propert
<property
<bean p
</ propert
<property
<bean p
<I--
<li
<
</l
</pro
</ bean>
</ propert
<property

nane="header. cssCl asses" val ue="ui f - di al ogHeader"/ >
nane="header Text" val ue=""/>

nanme="hi dden" val ue="true"/>

name="pronpt Text" val ue="Wuld You Like to Continue?"/>
nanme="avai | abl eResponses" >

parent ="Ui f - KeyLabel Pai r" p: key="Y" p:val ue="Yes"/>
parent ="Ui f - KeyLabel Pai r" p: key="N' p:val ue="No"/>

y>
nanme="di spl ayExpl anati on" val ue="fal se"/>
nanme="rever seButtonOrder" val ue="fal se"/>
nanme="pronpt ">

arent="Ui f-Di al ogPronpt"/ >

y>
nanme="expl anati on">

arent="Ui f - Di al ogExpl anation"/>

y>
nanme="r esponsel nput Fi el d">

arent ="Ui f - Di al ogResponse" >

<property nane="cssCl asses">

st nmerge="true">

val ue>ui f-action uif-primaryActi onButton uif-boxLayoutHorizontal ltenx/val ue>

ist>
perty>-->
y>
nane="cssC asses" >

<list merge="true">

<val u

</list>

</ propert
</ bean>

T

e>ui f - di al ogGr oup</ val ue>

y>

heexplanation field isa TextAreainput by default. This can be overridden locally to be any input. KRAD

pre-defined dialogs override thisfield to be either a checkbox group or radio button group.

T

he number of response choices and their values are customized by overriding the availableResponses

property.

Manag

ing Dialogs from a Controller

UifControllerBase contains common methods for managing dial ogs.

ModelAndView showDialog(dialogld, form, request, response) returns the conversation back to the
client by displaying the dialog content in a lightbox.

boolean hasDialogBeenDisplayed(String dialogld, UifFormBase form)Returns whether the dialog has
been presented to the user during this conversation.

boolean hasDialogBeenDisplayed(String dialogld, UifFormBase form)Returns whether the dialog
has already been answered by the user during this conversation. This method also performs
hasDialogBeenDisplayed() prior to checking the answered status. This method is the preferred choice
because it can test for both cases of whether the dialog has been displayed, and whether it has been
answered.

boolean getBooleanDia ogResponse(dialogld, form, request, response) If the dialog has aready been
answered by the user, returns true if the user chose an affirmative response, false if negative response
was chosen. Also returns false if the dialog has not been answered.

String getStringDialogResponse(dialogld, form, request, response) If the dialog has already been
answered by the user, returns the string value of the option chosen by the user.

262

Controllers

The DialogManager class encapsulates this functionality and provides additional methods for more
detailed dialog management.

bool ean get Bool eanDi al ogResponse(String dial ogld, U fFornBase form HttpServletRequest
request, HttpServletResponse response)

Invoking a Dialog Entirely from the Client

Pre-Defined Dialog Groups

For convenience, the KRAD Ul Framework contains several pre-built dialog groups.

» Uif-OK-Cancel-DialogGroup A basic dialog with the header text set as "Please Confirm to Continue".
The prompt text default is"Would Y ou Liketo Continue?'. Availableresponsesare"OK" and "Cancel"

» Uif-Yes-No-DialogGroup A basic dialog with the header text set to "Please Select". The prompt text
default is"Would You Like to Continue?'. Available responses are"Yes' and "No"

» Uif-True-False-DialogGroup A basic dialog with the header text set to "Please select from the values
below". The prompt text default is "Would You Like to Continue?'. Available responses are "True"
and "False"

 Uif-SensitiveData-DialogGroup A basic dialog with the header text set to "Warning: Sensitive Data'".
The prompt text default is ""Potentially sensitive data was found on the document. Do you wish to
continue?'. Available responses are"Yes"' and "No"

* Uif-Checkbox-DialogGroup A basic dialog with the checkbox control for the explanation. The default
responses are "OK" and "Cancel"

 Uif-RadioButton-DialogGroup A basic dialog with the radio button control for the explanation. The
default responses are "OK" and "Cancel"

Customizing Dialog Groups

Error, Info, and Warning Messages

Coming Soon!

Growls

Coming Soon!

Exception Handling

Coming Soon!

Session Support and the User Session

Coming Soon!

263

Controllers

Servlet Configuration

Coming Soon!

264

Chapter 13. View Types
What are View Types?

Coming Soon!

View Type Indexing

Coming Soon!

Lookup View Type

Lookup View

Lookupsare used to list sets of data objects of aspecific dataobject class. This might be used astheinitial
entry point from the application portal in order to list existing documents for view, edit, or copy. Or, it
might be used inside of a document to make an association to reference data (e.g. to assign a member to
agroup). In both cases, the same Lookup View is being used.

To create a document-specific lookup view, the Uif-LookupView is extended. The Uif-LookupView
consists of two distinct sections, the criteria section and the result section.

Figure 13.1. Lookup View

|\Fuali ——

ricas mmmmnulm KRAD
(] action st | () doc search | Logged in User: admin

Home » Book Lookup

Book Lookup

Actions 1d 4 Tiie § Humber of Pages

Extending alookup from the Uif-LookupView not only provides a standard look, but it also removes the
burden of creating the individual sections by simply specifying the criteria and result fields.

<bean i d="BookLookupVi ew' parent="Uif-LookupVi ew'>

<property name="title" val ue="Book Lookup" />

<property name="dat albj ect O assNanme" val ue="org. gut enberg. cat al og. BookBo" />
<property name="| ookupCriteria" />

265

View Types

<list>

<bean parent="Uif-LookupCriterial nputField" p:propertyName="id" />
<bean parent="Uif-LookupCriterialnputField" p:propertyName="title" />
</list>

</ property>

<property name="resul tFi el ds">

<list>

<bean parent="Uif-DataFiel d" p:propertyName="id" />

<bean parent="Uif-DataFiel d" p:propertyName="title" />

<bean parent="Uif-DataFi el d" p:propertyName="nunmf Pages" />
</list>

</ property>

</ bean>

As usual, we give the lookup bean a unique ID. The title property will contain the header text of our
lookup. We assign the business object that will be returned by this lookup via the dataObjectClassName
property. ThelookupCriteriaproperty isalist of LookupCriteriaAttributeFields. These specify thefields
by which we can narrow the results. Finally, we specify what fields should appear in the result via the
resultFields property. To specify these fields, use the Uif-DataFiel ds property.

Lookupable and Lookupablelmpl

For lookups, the Lookupable interface needs to be implemented in conjunction with extending the
ViewHelperService. In most cases, the out-of-the-box implementation Lookupablelmpl is sufficient. |If
customization of the lookup view rendering lifecycle is needed, the L ookupablelmpl can be extended and
the necessary methods overridden.

If weimplement our own Lookupable, we specify thisin the viewHel perServiceClass property of the view.

<property name="vi ewHel per Servi ceC ass" val ue="org. gut enber g. cat al og. BookLookupabl el mpl * />

LookupSearchService

The LookupServiceis responsible for the dataretrieval. The default implementation that is delivered out-
of-the-box is LookupServicelmpl. This provides a generic search mechanism for business objects.

Lookup Action and Form

Coming Soon!

Customizing the Lookup View

Thesorting of theresult set can be customized with the defaultSortAttributeName property, which specifies
the sort key and the defaultSortAscending property, which reverses the sorting order.

Adding Action URLs

The resultsActionsField property contains the field with the actions that are available on each line of the
result such as edit, copy and delete.

The resultsReturnField property contains the field with the available actions for returning the results to
aprevious screen.

Changing Layout for the Results

Coming Soon!

266

View Types

Inqui

ry View Type

Inquiry View

The inquiry view is the read-only view used to display detailed information of data objects. Fields on
documents, lookups, and other inquiries may have aninquiry link to display the details of these linked data
objects. For example, we might have an inquiry link on a book title that will bring up the inquiry view of
that book with the book's details such as author, summary, number of pages, etc.

To create a document-specific inquiry view, the Uif-InquiryView is extended.

<bean i d="Bookl nqui ryVi ew' parent="U f-InquiryView'>

<property name="title" val ue="Book Inquiry" />

<property name="dat albj ect C assNanme" val ue="org. gut enber g. cat al og. BookBo" />
<property name="itens" />

<list>
<bean parent

="U f-GidSection" />

<property name="| ayout Manager . nunber & Col uims" val ue="2" />
<property name="itens">

<list>
<bean parent
<bean parent
<bean parent
</list>

</ property>
</ bean>
</list>

</ property>
</ bean>

Inquir

="Ui f - Dat aFi el d" p: propertyName="id" />
="Ui f-DataField" p:propertyName="title" />
="Ui f - Dat aFi el d" p: propertyName="nunmCf Pages" />

We identify the inquiry view by assigning a unique ID. The title property will contain the header
text of our inquiry. We specify the business object that will be displayed by this inquiry with the
dataObjectClassName property. With the items property, we can specify one or more groups that will
make up theinquiry page. Here, we choose asimple two column grid layout with Uif-InputFields that will
display the label in the first column and the value in the second.

able and Inquirablelmpl

For inquiries, the Inquiry interface needs to be implemented in conjunction with extending the
ViewHelperService. In most cases the out-of-the-box implementation Inquirablelmpl is sufficient. If
customization of the inquiry view rendering lifecycle is needed, the Inquirablelmpl can be extended, and
the necessary methods overridden.

If we implement our own Inquirable, we specify thisin the viewHel per ServiceClass property of the view.

<property name="vi ewHel per Servi ceC ass" val ue="org. gut enber g. cat al og. Bookl nqui rabl el mpl * />

Custo

mizing the Inquiry View

Theinquiry view doesn't restrict us to the label-value grid layout. Y ou can choose any group layout, and
introduce nested groups and sections. Y ou also have all widgets at your disposal, which will be displayed
in their read-only state.

If your view contains a field that creates an inquiry link to the same data object, you most likely want
to suppress this to avoid unnecessary recursive inquiries that might confuse the user. To do so, set the
fieldinquiry.render property to false.

<bean parent="Uif-InputField" p:propertyNane="title" p:fieldlnquiry.render="false" />

267

View Types

Maintenance View Type

Maintenance Document Entry

Coming Soon!

Maintenance View

The Maintenance View is used to create, maintain and display a data object.

Figure 13.2. Maintenance View

|Zuali (7 e

rices ° m Administration ~ KRAD
(i]m":x_“m' Logged in User: admin

3024

Document Humber:

Document Status: INITIATED
Book Maintenance

Initiator Network 1d: admn Creation Timestamp: 10:58 A4 03/02/2012

* Tithe: (=)

Number of Pages:

submit save blanket approve close

012 The Kual Fe
bed by other parbes

<bean i d="BookMai nt enanceVi ew' parent="U f-Mai nt enanceVi ew'>
<property name="title" val ue="Book Maintenance" />

<property name="dat albj ect C assNanme" val ue="org. gut enberg. cat al og. BookBo" />
<property name="itenms" />

<list>

<bean parent="Uif-GidSection" />

<property name="| ayout Manager . nunber & Col uims" val ue="2" />
<property name="itenms">

<list>

<bean parent="Uif - DataFi el d" p: propertyName="id" />

<bean parent="Ui f-Dat aFi el d" p: propertyName="title" />

<bean parent="Uif - Dat aFi el d" p: propertyName="nunmcf Pages" />
</list>

</ property>

</ bean>

</list>

</ property>

</ bean>

We identify the Maintenance View by a unique Id, and assign the heading for the maintenance screen
to the title property. The dataObjectClassName specifies the data object for which we are creating the
maintenance view. For a simple layout, we choose the two column Uif-GridSection layout, and specify
the data object fieldsin it.

268

View Types

Comparable and Maintenance Edit

Coming Soon!

Maintainable and Maintainablelmpl

For maintainables, the Maintainable interface needs to be implemented in conjunction with extending the
ViewHelperService. In most cases, the out-of-the-box implementation Maintainablelmpl is sufficient. If
customization of the inquiry view rendering lifecycle is needed, the Maintainablelmpl can be extended,
and the necessary methods overridden.

If we implement our own Maintainable, we specify this in the viewHel perServiceClass property of the
view.

<property name="vi ewHel per Servi ceC ass" val ue="org. gut enber g. cat al og. BookMai nt ai nabl el npl " />

Maintenance Action and Form

Coming Soon!

The Maintenance Lifecycle

Coming Soon!

Maintenance Locking

Since our application can be used by multiple users we need to worry about somebody else starting to
edit our document while it is being routed through workflow. If we would allow this then that user
might override our changes with theirs. To prevent such athing from happening we lock the maintenance
document on its fields that uniquely identify the document. Often these fields are the primary keys of
the data object.

<bean i d="BookMi nt enanceVi ew' parent="Uif - Mai nt enanceVi ew'>

<property name="I| ocki ngKeys" >

<list>
<val ue>i d</ val ue>
</list>

</ property>

</ bean>

Customizing Maintenance Documents

With the Maintenance document, we aren't restricted to the two column grid layout. Y ou can choose any
group layout, and introduce nested groups and sections. All the widgets can be used.

Transactional View Type

Coming Soon!

Document Objects and Mappings

Coming Soon!

269

View Types

Workflow Post Processing

Coming Soon!

Transactional Document Entry

Coming Soon!

Document View

Coming Soon!

Document Action and Form Base

Coming Soon!

The Document Service

Coming Soon!

Document Authorizer and Presentation Controller

Coming Soon!

Request Setting of Fields to Read-Only

Coming Soon!

Writing Business Rules

Coming Soon!

Notes and Attachments

Coming Soon!

Creating a New View Type

Coming Soon!

KIM Primer

Kuali Identity Management is the component of Rice which deals with actors within an application. The
vast majority of system actorsfor an application are, sensibly enough, users. However, KIM was designed
to handle non-user actors as well: people who are not actors, but still interact with the system such as
university applicants or visiting speakers, faculty and staff throughout the university (whether they use the
application or not), and even the application itself. Marshaling al of thisinformation and using it to grant
actors abilities to use the application and be notified of its effectsis at the heart of what KIM does.

Keeping track of this information may seem to be an order of the highest complexity, but it can be
understood as consisting of a mere six high level objects. First, there are the system actors themselves,

270

View Types

which KIM labelsas"entities'. Entitieswiththeability to authenticate withinthe system-i.e., application
users - are termed "principals’. Multiple principals can be collected together and treated as a whole
into two major units of conglomeration: "groups' and "roles’. Finaly, principals within a role can
be granted a "permission” - the ability to carry out an action within the application; and they can be
given a"responsibility" - a notification and opportunity to act upon actions others have taken within the
application. (Permissions should seem fairly intuitive since they were covered earlier.) This primer will
work its way through the first five of these concepts in turn. Responsibilities will be covered in more
detail in the KEW primer.

Entities

Once again, system actors are known as "entities’ in KIM terminology. Entities can interact or be
acted upon the system in any number of ways. Most "entities’ will represent people, though there are
some entities which represent applications (known as "system entities") to be associated with the acts of
applicationitself, or other applications. Thesearerarer cases- typically, there'sahandful of system entities
known by an application, but large numbers of "person™ entities.

Since most entities represent people, there's a staggering amount of information about entities which KIM
can manage. Entities can be associated with multiple addresses, so that home, work, and other addresses
can be stored. The same is true of phone numbers and e-mail addresses. Entities can have residency,
citizenship, and visa information stored for them. Employment information and institutional affiliations
can be stored for any entity. If apersoninasystem wantsto limit accessto any of thisinformation, privacy
preferences can be stored for that person's entity record. Entity records can store a complex amount of
information about a person'sname. Andif all of that wasn't enough, KIM providesaway to create generic
entity attributes for an application, so that an application can store extra values, which it itself defines,
about the entity.

Entities managed by KIM are typically maintained through the Person Identity Management document.

However, since it's very common for ingtitutions to aready have an identity management
system in place, maintenance of KIM information can be overridden via a new implementation
of org.kuali.rice.kim.api.identity.ldentityService. Institutions looking to override that service should
check on Rice collaboration lists; there's a good chance that implementations geared towards specific
technologies already exist. At least one Kuali Community created |dentityService implementation - for
LDAP - comes packaged with Rice.

There is one other important piece of information which KIM manages about that very special subset of
entities who use the system: principal information. A principa is an entity - person or system - which
can authenticate into a system, and then act within the system. Principals have a special id (which may
be equal to the entity id, depending on how each institution implements KIM) and a "principal name" -
the username for the user in the system.

Just as entity management can be overridden through the IdentityService, web authentication can be
overridden viaorg.kuali.rice.kim.api.identity.AuthenticationService. Again, there'sahigh likelihood that
common authentication options already have implementations; ask Rice collaboration lists.

Groups and Roles

Asuseful asit isto have information on all of those various entities, the biggest interaction an application
haswith themisto treat them as users: to allow authentication of principals, and then grant those principals
permission to perform certain actions within the system, aswell asthe responsibility to view actionswhich
have occurred within the system. And, of course, granting all of that principal by principal would get
tedious quickly and difficult to manage to boot. Therefore, KIM provides two ways to collect principals
together so that principals with similar rights within the application can be treated as a whole. Once
again, KIM offerstwo main forms of collecting principals: groups and roles. Roles are terribly important:

271

View Types

permissions and responsibilities are only assigned to roles. Groups, though, tend to be a more intuitive
concept and therefore a better starting place.

Groups are simply a collection of principals and other groups. Together, each principal or group collected
into the parent group are known as "members'. A group has a unique group id to identify it aswell asa
unique module namespace and group name combination. A group can aso have an optiona description.

There's one other twist with groups, but for now, this definition will suffice: a collection of member
principals and groups with two unique identifiers: a system assigned group id and a user-assigned module
namespace and name.

Of course, such a concept hardly originated with KIM; the KIM code for groupsis actually based on older
code which was part of KEW. Furthermore, just like with entities and principals, KIM supports other
sources of group data, such as the open source Grouper project or Microsoft Active Directory Services.

Group data is accessed through an implementation of org.kuali.rice.kim.api.group.GroupService. Rice
comes with an implementation of GroupService which holds group information in the KIM database
but once again, other implementations for popular group services, such as Active Directory Services or
Grouper, are almost certainly availablein the Kuali community.

At first glance, roles likely will not seem that different from groups. Roles also have members, which
can be principals, groups, or other roles. (Note: groups cannot have roles as members.) Roles have a
system assigned role id, but are better known by the unique combination of a module namespace and role
name. They even have descriptions. And yet, roles have the power to be associated with permissions and
responsibilities; the only way groups have a similar power is to be a member of arole. What then makes
roles so special? Unlike groups, roles can provide further information about the principal s within them: a
role can differentiate among its members. Because of that, rolestypically model certain authorities within
the university system.

For instance, let's say aRice application isbeing written for astate university with nineteen child campuses
among the state. Let's say furthermore that each campus has a collection of people whose job it is to
administrate financial aid for students. That could be modeled as nineteen groups, one for each campus
in the state. But in KIM, a better modeling would be to create one role, which, for the purposes of this
example, will have the module namespace KS-SA, and the role name Financial Administrator. All the
financial administrators for each of the nineteen campuses would become members of this role: but each
membership would also keep track of which campus the member is associated with. Groups cannot do
that, and thisiswhy KIM roles are so much more powerful than KIM groups.

How, then, does this differentiation among members which occursin roles, work? The next section takes
that question up.

Roles: Differentiating among principals

A concept which occursthroughout KIM isthat of an attribute. If that term sounds reminiscent of attributes
intherest of KRAD, it should: an attribute is simply afield which holds a particular datavalue. In KIM,
attributes are used to provide particular details about KIM data, such as arole membership. For example,
with our KS-SA Financial Administrator example above, the attribute would be "campusCode" - that'sthe
value used to differentiate between the members of the role. Attributes which apply to role members are
known as "role qualifiers'.

However, arole is not associated with an attribute directly - it is associated with one or more attributes
through aKIM type. A KIM typeisjust that: a collection of one or more KIM attributes. KIM typesalso
define matching behavior - because, as will be seen during the discussion of permissions, KIM spends a
lot of time matching datafrom one KIM entity (such as apermission or responsibility) with data of another
KIM entity (typically a role membership). A closer look at that process will be covered in the section
on KIM permissions.

272

View Types

Now, roles do not need to associate with any attributes - though, because an application needs roles to
assign to permission and responsibilities, attributeless roles still exist within applications. Those roles
have a KIM type of KUALI Default (which, unsurprisingly, has a unique id of "1"). In this case, when
members are added to role via, say, the Role Identity Management document, there are no qualifiers to
assign. The below screen shot shows assignment of members with no qualifiers using the Role document.

Figure 13.3. Role Screen

However, if aroleis associated with a KIM type which has attributes, then the ability to qualify arole
membership with the attributes. Attributes in a type may be either required - meaning that all members
(save for member roles) will have to have some value for that attribute - or not. Any system data can
potentially be used as an attribute for a KIM type; it all comes down to the needs of the application. The
next Screen Shot shows assignment with qualifiers.

Figure 13.4. Role Screen, Qualifiers

—

QA ————ney

— i b

Typesarereally at the heart of how KIM handles permissions and responsibilities and they will be covered
again, in more detail, in the section on Permissions.

273

View Types

Astute observers may have noticed that KIM Groups can be assigned types as well. Again, what's the
difference with roles? With roles, the type differentiates the memberships. With groups, the type simply
provides more information about the group. For instance, the KFS application has a Group type which
allows an organization (identified by the composite key of chart of accounts code and organization code)
with agroup. All membersin a Group so typed have the _same organization associated, whereasin a
role, each member can be different. Groups use types merely for description - which, in practice, means
alot of Groups use KUALI Default as the type and do not use this extra description at all.

While most roles have members associated through the Person Identity Management and Role Identity
Management documents, there are a class of roles which do not have members assigned: derived roles.

Derived roles are so called because they derive their membership data from other data objects in the
system. For instance, in KFS, thereisaderived role called KFS-SY S Fiscal Officer. Membershipsof this
role are controlled by special dataon the KFS-COA Account dataobject. Again, theserolesarefairly rare
but do show off the power of KIM types and what kind of data they can access.

Permissions

Using KIM permissions, an application devel oper can effectively permit or bar usersfrom accessing certain
portions of the application. KIM'stype system, alluded to in the section on roles, provides away to build
highly generic permissions, meaning that a developer can generate a permission to allow or deny almost
any conceivable action within the application.

In Rice 2, anumber of useful permissions are already defined. Earlier portions of this text covered some
of the permissions which KRAD provides. Other permissions include the ability to initiate a document,
the ability to route or blanket approve a document, the ability to add membersto arole or group, even the
ability to grant a permission or responsibility.

How does KIM allow such a variety of permissions to exist? The answer once again returns to KIM
attributes and KIM types. Every permission has a template associated with it, which means that all
permissions which grant initiation of documents share a single template. Like so many KIM objects,
each template has a unique synthetic key as well as a unique combination of namespace and name - so
for the document initiation permissions, the template is always KR-SY S Initiate Document. KR-IDM
Grant Permissionisthetemplatefor al permissionswhich allow usersto grant permission. The Permission
inquiry view is shown below.

Figure 13.5. Permission Inquiry

274

View Types

Each permission template is backed by a KIM type, which again is a collection of one or more KIM
attributes. For instance, the KR-SYS Initiate Document permission template's KIM type is KR-SYS
Document Type (Permission) and it hasone KIM attribute associated with it - adocument type. Therefore,
each permission associated with the KR-SYS Initiate Document permission template should have a
certain document type associated. Other KIM permission types include types which handle namespaces,
component names, and even generic data.

Just as with roles, there's a permission template which wraps the KUALI Default KIM type - this
permission template is also called KUALI Default. This permission template allows no extra attributes
and istypically used for unique, application-specific permissions.

Each permission created, therefore, has atemplate associated with it. It alsoisgiven aunique syntheticid,
and a unigque namespace and name combination. Permissions typically also have descriptions associated
them.

Finally, permissions can be associated with roles. This is done via the Role Identity Management
document. Once apermission is actively associated with arole, then all members of that role potentially
have the ability to carry out the permitted act.

Potentially - and this is where the power of roleskicksin. Let'ssay auser isabout to carry out a generic
action - to initiate a Role | dentity Management document. When that action occurs, KRAD automatically
calls org.kuali.rice.kim.api.permission.PermissionServicetisAuthorizedBy Template. That method takes
in a number of parameters: the principal id of the user attempting to carry out the action; the namespace
code and name of the permission template to check; and then two Map<String, String> parameters -
permissionDetails and qualification.

The permissionDetails parameter helps KIM find the correct permission. In the case of the KR-
SYS Initiate Document check, KRAD will have already populated that map with an attribute name
("documentTypeName") and value for the document which will be initiated. KIM then looks through
permissions which use the KR-SYS Initiate Document check and it uses the matching behavior of
the associated KIM permission type (specifically, the performPermissionMatches method) to find a
permission which matches for the Role Identity Management document. Because permission templates
can have a customized type, the KIM permission type for KR-SY S Initiate Document does some special
behavior: it traverses up the KEW document type hierarchy (to be covered more fully in the KEW
primer) to find an appropriate permission - basically meaning that if an application developer has wisely
arranged all application document types into a hierarchy, permissions need not be specified for every
single document. Other permission KIM types perform matching services such as handling namespace
wildcards. And of course, application devel opers can create their own permission type roles.

Once a permission has been found, KIM looks up the roles associated with those permissions and their
types. KIM sends the qualifier map to the role types of the matching roles. The KIM type for each role
takesthe qualifier map that was passed to it and attemptsto match each member'srole qualifications. If the
qualifier map is empty, then typically all members are passed back as matching - though some KIM role
typesoverride that behavior. If qualifier attributes have been passed in, then the KIM role type determines
if each member matches and only passes back the matching members.

KRAD sends generic role qualifiers to every KIM permission call that it makes. More specific role
qualifiers can be sent to KIM via View configuration, through a map passed into the componentSecurity
property on aField.

In short, this means that based on data within a KRAD screen, certain members of the role will be able to
perform certain actions but not others. For instance, every member of our KS-SA Financial Administrator
role may have permission to view reports on cross-university financial aid grants, those same members
will only be ableto changethefinancial aid status of astudent if the student takes classes primarily ontheir
campus. Qualified roles and permissions provide an incredibly powerful way to granularly limit access
to certain portions of the application with a minimum of configuration.

275

View Types

KRAD will generally add permission details and qualifier values that are generically appropriate to
the call. However, authorizers and KRAD configuration often allow the addition of more values -
this can be especially important when adding qualifiers. Also, even though KRAD will automatically
make permission calls in certain cases, there is nothing to prevent the application developer from
making their own permission calls in the code. Calls based on template should call the aforementioned
org.kuali.rice.kim.api.permission.PermissionServicetfisAuthorizedBy Template. |f thetemplateisKUALI
Default - one of those highly specific application permissions - then the appropriate permission check
would go through org.kuali.rice.kim.api.permission.PermissionServicetisAuthorized.

The last major object of KRAD - responsibilities - will be covered early on in the KEW Primer.

KEW Primer

Versions of what is now Kuali Enterprise Workflow existed before the first Kuali application was even
written. Why? Because enterprise applications find it highly useful to tie into a system which can
route application content among various users, where that content can be acknowledged, approved, or
disapproved. KEW provides an elegant and highly configurable way to route such content. Furthermore,
as different foundation applications have produced more and more byzantine routing requirements, as
systems such as KIM have become part of Rice, as institutions have tied non-Rice-based application
development platformsto the KEW document framework, KEW has proven itself deeply adaptable, ready
to handle any challenging routing situation.

That flexibility derives from the fact that KEW has one major conceptual entity: the document, but then
provides myriad ways to route that entity. This primer will examine what documents are, cover two
different routing mechanisms which KEW provides, and finally look at some of the other support that
KEW gives documents. This primer will not be an exhaustive study of KEW's capabilities, but it should
get developers started in understanding how KEW works.

Documents and Document Types

Any application content which can be routed among usersis considered a "document”. KEW associates
each document with a header and with content. Content is encrypted information about the document in
an XML format. The exact vocabulary and contents of that XML is entirely up to the application, though
KRAD providessomewaysto generatethat XML automatically. A document's header givesthe document
a unique identification number (the "document number" or "document header 1D") and associates the
document with a document type. Every document has to be associated with a document type, and that
document type provides routing information and KEW configuration for all documents of that type.

KEW exports document types through the Document Type lookup as XML, and can read in XML

configuration for document types in the same vocabulary through the legendary "ingester”. All of this

means that most developers find it easiest to understand a document through its XML representation.
Here's an example from KFS: the Vendor maintenance document.

<?xm version="1.0" encodi ng="UTF-8"?>

<data xm ns="ns:workflow' xm ns:xsi="http://ww.w3. org/ 2001/ XM.Schema- i nst ance"
xsi : schemalLocat i on="ns: wor kf | ow r esour ce: Wr kf | owDat a" >

<docurent Types xml ns="ns: wor kf | ow Docunent Type"

xsi : schemaLocat i on="ns: wor kf | ow/ Docunent Type resour ce: Docunent Type" >

<docurnent Type>

<nane>PVEN</ nane>

<par ent >VEND</ par ent >

<description />

<l abel >Vendor </ | abel >

<hel pDefi ni ti onURL>def aul t. ht n?t ur| =Wor dDocunent s%2Fvendor 2. ht m</ hel pDefi ni ti onURL>
<active>true</active>

<rout i ngVer si on>2</r out i ngVer si on>

<r out ePat hs>

<r out ePat h>

<start nane="AdHoc" next Node="RequiresApproval " />

276

View Types

<split nane="RequiresApproval ">

<branch nane="True">

<rol e name="Managenent" nextNode="Initiator" />

<rol e nane="Initiator" nextNode="Join" />

</ branch>

<branch nane="Fal se">

<si nmpl e name="Do Not hi ng" next Node="Join" />

</ branch>

<join nane="Join" />

</split>

</ r out ePat h>

</ r out ePat hs>

<r out eNodes>

<start nane="AdHoc" />

<split nane="RequiresApproval ">

<type>org. kual i . kf s. sys. docunment . wor kf | ow. Si npl eBool eanSpl i t Node</type>

</split>

<rol e name="Managenent" >

<qual i fierResol verC ass>org. kual i . rice. kns. workfl ow attribute. Databi ctionaryQualifierResol ver</
qual i fi er Resol verd ass>

</rol e>

<role nane="Initiator">

<qual i fierResol verC ass>org. kual i . rice. kns. workfl ow attribute. Databi ctionaryQualifierResol ver</
qual i fi er Resol verd ass>

</rol e>
<j oin nane="Join" />
<si npl e nane="Do Not hi ng" >

<type>org. kual i . ri ce. kew. engi ne. node. NoOpNode</ t ype>

</ si npl e>

</ r out eNodes>

</ docunent Type>

</ docunent Types>

</ dat a>

There'sagreat deal to notice about thisexample, but it does break into three major parts: information about
the document type at the top; the route paths next; and finally, the route nodes.

The document information is fairly straight forward. Every document type has a name. (KFS makes all
of its document names four characters long. Other foundation projects eschewed that practice.) Every
document can have a description and if the document is a transactional document, then the document
should have alabel associated with it - the page will blow up otherwise. A help definition can be associated
with the whole of the document, which is useful if the help content for the application is at document-
level granularity; KRAD will provide finer grained help options than that but an overall discussion of the
document may still be helpful. Naturally, a new document type would be set to <active> and it's good
practice to use routingVersion of 2; routingVersion of 1 isfar legacy concept.

A special note about a document type's parent. PVEN's parent document typeis"VEND", KFS's VVendor
Module Complex Maintenance Document. Having a parent means that the document type inherits all of
what the parent document type defines - unless the document type definesthe valueitself. For instance, if
PVEN had not defined the routePaths and routeNodes sections, then it would have inherited that routing
trail and notes from the VEND document type. There'sanumber of other document type elements - some
of whichwill be covered |ater - which PVEN isinheriting from either VEND or one of its parent document
types. Applications which attempt to use KIM based routing are highly recommended to place al of their
documents into a single document hierarchy: one with a single root, parentless document type. That is
(aswill be covered in more detail in the section on responsibilities) responsihbilities follow document type
hierarchies, and having asingle hierarchy meansthat nodes reused among several different documentscan
have KIM responsibilities created at a higher level at the hierarchy and shared among all descendants.

When thinking about route paths and route nodes, it might be useful to think of aboard game. Most board
games have a path that player's pieces must go through in a specific order. Route paths work precisely
like that: they describe the paths (it's very rare to have more than one) that a document will follow as it
routes from user to user. Route nodes describes the points where the document can "land", just like each
spot within the path in the board game. Every node which islisted in the routePaths section must have a
corresponding definition in the routeNodes section.

277

View Types

Just anoteto get out of the way: yes, multiple routePaths can be defined for asingle document. The author
of this primer has not seen a use case for that functionality.

routePaths defines several different kinds of nodes. 1n the PVEN example, we see several different types:
start, split, branch, join, role, and simple.

Every document needs to start at a "start” node. The document is not routed to anyone at this point; it's
simply beginning its journey of - if all goes well - approval. Having a common name for all start nodes
in each document type in a given application is a pretty good idea. Note that the start is associated with
another "start" in the routeNodes section.

A split defines branches where a document can traverse multiple branches but skip others. As many
branches as required by application needs can be defined. For the sake of this discussion, though, let's
investigate a very simple branching mechanism in KFS.

First, every split also has a corresponding routeNode element. This routeNode element defines a type:
org.kuali.kfs.sys.document.workflow.SimpleBooleanSplitNode. Every split hode needs to have a type
defined for it which implements org.kuali.rice.kew.engine.node.SplitNode. That interface has one method
associated with it: process, which takes in a RouteContext and RouteHelper aobjects and returns a
SplitResult. The RouteContext includes both the document type header and the document content for the
document; the RouteHel per has methodsto examine nodes. An org.kuali.rice.kew.engine.node.SplitResult
basically wraps a List of which branches the given document should follow - again, there's a possibility
that it could, in parallel, follow multiple branches.

org.kuali.kfs.sys.document.workflow.SimpleBooleanSplitNode will only follow one branch at a time -
either the branch named true "True" or the branch named "False". It queries a special method on KFS
documents which returns a Boolean; the value of the Boolean determines the branch the document will
follow. Simplicity works wonderfully for a lot of applications, but of course any required logic can be
implemented for a split node.

Branches are fairly ssimple. They do not even have corresponding nodes in the routeNodes section! Do
remember, though, to make sure the branch names match up exactly - case and all - with the namesreturned
in the SplitResult. Also, every split node needs to have a corresponding join node to join the branches
back when the document is finished routing through the split logic. Joins do have corresponding nodes
in the routeNodes section. If a document has multiple split nodes and each, asit should, has ajoin, each
join must have a unique name within the document type.

If the PVEN routesto the "False" branch, it goesto asimple node. That simple node has a corresponding
definitionin therouteNodes, whereit too isgiven atype: org.kuali.rice.kew.engine.node.NoOpNode. That
NoOpNode is an implementation of the org.kuali.rice.kew.engine.node.SimpleNode interface. Just like
the SplitNode interface, the SimpleNode interface has one method, process, and it even takes in the same
parameters. It returns a SimpleResult, which merely notes whether the processing of the node is complete
or not. The NoOpNode does nothing, but SimpleNodes generally are used for when a document must
be automatically processed at some point (though a PostProcessor - like the doRoutel evel Changed and
doRouteStatusChanged method hooksin every KRAD document - provide an alternate and preferred way
of carrying out such work). Like joins, every simple node must have a unique name within the document

type.

That leaves role and the strange qualifierResolverClass - and what those are will remain unresolved until
KIM responsibilities get full coverage. There are also other kinds of nodes which will be covered within
the primer as well.

Document types can define other things as well. The two biggest definitions not yet discussed are rule
attributes - and those will get full coverage later - and policies. Policies are simply KEW options
that a document can turn on or off. For example, if no action requests are generated for a document,
then is that document automatically approved? That can be controlled via the DEFAULT_APPROVE
policy. Does a document need to be routed by its initiator or by any user which has access? That's

278

View Types

controlled by the INITIATOR_MUST_ROUTE policy. Anenumeration of al policy options can befound
in org.kuali.rice.kew.doctype.DocumentTypePolicyEnum.

This has been alot of discussion about document types - but the document hasn't routed to any users yet!
Again, there are two major ways that KEW provides to route documents to people: KIM responsibilities
and KEW rules. The primer will cover responsibilitiesfirst.

KIM and KEW together: Responsibilities

Time, at last, to cover the sixth and final major conceptual entity from KIM: responsibilities. A
responsibility is a mapping of aKIM role to a KEW document type routeNode, with a description of the
action required at that node. When adocument typeisrouted to a user, that user typically has one of three
sets of actions - either they can approve or disapprove the document; they can acknowledge the document;
or they can "FYI" the document. (Like so much about KEW in this primer, this is something of a gross
simplification; it's called a"primer" for areason.) When a user has received a request to either approve
or disapprove adocument, the document cannot go to the next routeNode until all of the proper approvals
have been made - and if one disapproval is made on the document, the document is effectively dead and
goes no further (KEW can be afairly cutthroat board game). With an acknowledge request, the document
travels to the next routeNode and may even go to "processed” state - but it will not be a"final" document
until every user acknowledgesit. AnFY| request works similarly, with the variation that a user can clear
FYI'sin the action list - an FYI'd user need not even open the document. The KIM responsibility brings
all of thistogether: the KIM role, the KEW document type node, and information about the action the user
gets to take on the document.

Much like permissions, KIM responsibilities are tied to a KIM type - and therefore a number of attributes
- through a""responsibility template”. However, unlike permissions, there's really only two responsibility
templates which KEW comes with: KR-WKFLW Review and KR-WKFLW Resolve Exception. Yes,
new templates can be created for responsibilities but, whereas permissions can be used in a number of
contexts throughout an application necessitating a need for multiple permission templates, the number of
contexts where responsibilities get invoked is pretty limited. KR-WKFLW Review routes adocument to
membersof arole-i.e., it does pretty much what KEW isout thereto do. KR-WKFLW Resolve Exception
isinvoked in cases where an exception occurs on a document during post-processing; when this occurs
to a document, it seems wise to send it to a special group of support personnel to try to figure out what
went wrong on the document.

Given that, the vast majority of responsibilities set up for an application use the KR-WKFLW Review
template. That template has five qualifiers associated with it, though in 99% of the cases, only four of
those qualifiers are defined.

The first is the documentTypeName - the name of the document type that the responsibility applies to.

Remember that responsibilities are aware of parents of document types, and therefore, if aresponsibility
is assigned to a document type with many descendants, all descendants could possibly make use of that
responsibility. Again: when using KIM responsibilities, it is wise to arrange al document types in an
application in a hierarchy with asingle, root parent-less document type.

The second is the routeNodeName. This name should match the name given the role on the document
type definition - for instance, from the example above "Management" or "Initiator". This name must be
exactly the name specified on the document type; these names are case sensitive.

Thenext responsibility attributeis"required”. Thisisassigned either "true” or "false” (that's case sensitive
too). If aresponsibility has"true" for its "required” value, then it is expected that when a document routes
to that node, action requests will be generated. If action requests are not generated, then the document
goes to KR-WKFLW Resolve Exception routing - it's a dead document which needs be resuscitated.

Next is the "actionDetailsAtRoleMemberLevel" attribute which again is "true" or "fase'. Most
responsibilitieshave asingle action - approve, acknowledge, or FY 1 - defined for thewholerole. However,

279

View Types

in some special cases, it isuseful for each member of aroleto have adifferent choice - one getsto approve,
one gets an FYI. This attribute enables that and the KIM Role Identity Management document handles
assigning actions on a member by member basis.

The final attribute, rarely used, is the qualifierResolverProvidedldentifier attribute. Trust the author on
this one - the use of this attribute is far beyond the scope of this primer.

A responsibility also has a unique system generated id and a unique namespace and name combination,
aswell as an optional (but often useful) description.

On KIM's Role Identity Management document, responsibilities can be associated with roles. There's
an extratwist to assigning a responsibility to a role: the actions described for the role must be described
aswell. Thisincludes the approve versus acknowledge versus FY | choice and a couple others. There'sa
choice of whether the first in the role to act on the document will act for the entire role, or whether every
member of the role must make that action on the document. There's a priority choice which can be left
blank but which will be respected - lower numbers will get higher priorities and roles with those lower
priorities will get a chance to act on the document before it enters the lower priority role members' action
lists. Finally, there's the choice of whether to force the action or not. If a user has already approved a
document, and that user is a member of the role where the document is now routing, does the user need
to look at the document and approve again? If force required is checked, then yes: someone in the role
needs to approve again. If force required is not checked, then the user's previous approval will count as
approval for the current responsibility.

Responsibilities are pretty simple to set up then - but there's one lingering question. The power of rolesis
that memberswithin arole can be differentiated between each other. How do responsibilities differentiate
between members of the role? The answer to that question is back in the document type definition where
the role node was set up:

<role nane="Initiator">

<qual i fierResol verC ass>org. kual i . rice. kns. workfl ow attribute. Databi ctionaryQualifierResol ver</
qual i fi er Resol ver d ass>

</rol e>

A qualifier resolver pulls values from the document to feed into the role and find only qualified members.

KEW provides a number of qualifier resolvers (and the org.kuali.rice.kew.role.QualifierResolver
interface so that applications can define their own). This primer will cover the two most
popular qualifier resolvers: org.kuali.rice.kns.workflow.attribute.DataDictionaryQualifierResolver and
the org.kuali.rice.kew.role. X PathQualifierResolver.

The DataDictionaryQualifierResolver is tightly integrated with the KRAD framework. When trying to
read qualifiersfor arole at aresponsibility node, it looksto two sources: aKRAD document, whichit pulls
via KRAD's DocumentService, and the data dictionary entry for that KRAD document. Specifically, it
looks for a property on the document called workflowAttributes. The workflowAttributes handles both
how to index the document for file searching - covered later - and how to send qualifiersto roles at nodes.

Here's an example of the routing configuration for a document, a data dictionary bean definition which
will be passed to the documentEntry's workflowAttribute's property:

<bean i d="Requi si ti onDocunent - wor kf | owAt t ri but es- par ent Bean" abstract="true"

par ent =" Wor kf | owAt t ri but es" >
<property name="routingTypeDefinitions">
<n‘ap>
<entry key="Organi zation" val ue-ref="Routi ngType- Requi si ti onDocunent - Or gani zati on"/>
<entry key="SubAccount" val ue-ref="RoutingType- Purchasi ngAccount sPayabl eDocunent - SubAccount "/ >
<entry key="Account" val ue-ref="Routi ngType- Pur chasi ngAccount sPayabl eDocunent - Account "/ >
<entry key="AccountingOrgani zati onHi erarchy"
val ue-ref =" Rout i ngType- Pur chasi ngAccount sPayabl eDocunent - Account i ngOr gani zat i onHi erarchy"/>
<entry key="Commodi ty" val ue-ref="RoutingType- Purchasi ngDocunent - Cormodi ty"/>

<l--

no qualifiers for separation of duties -->

</ map>

280

View Types

</ property>
</ bean>

routingTypeDefinitions is a map which associates keys - route level names (again, case sensitive!) -
to a bean of type org.kuali.rice.krad.datadictionary.RoutingTypeDefinition. If a document routes to a
node with no qualified roles, then there does not need to be a map entry for that point. A sample of a
RoutingTypeDefinition bean looks like this:

<bean i d="Routi ngType- Requi si ti onDocunent - Or gani zati on"
class="org. kual i .rice.krad. dat adi cti onary. Routi ngTypeDefi nition">
<property name="routingAttributes">
<list>
<ref bean="RoutingAttribute-chart O AccountsCode" />
<ref bean="RoutingAttribute-organizati onCode" />
</list>
</ property>
<property name="docunent Val uePat hG oups" >
<list>
<bean cl ass="org. kual i . rice. krad. dat adi cti onary. Docunent Val uePat hGr oup" >
<property name="docunent Val ues" >
<list>
<val ue>chart Of Account sCode</ val ue>
<val ue>account . or gani zati onCode</ val ue>
</list>
</ property>
</ bean>
</list>
</ property>
</ bean>

There are two propertiesin need of description. The routingAttributes property expectsalList of attributes
in the order that the values will be collected. This basically sets the names of the qualification attributes
sent to KIM. The documentV aluePathGroups property takes alist of DocumentV aluePathGroup objects
which describe the property paths, relative to the document, to pull valuesfrom. In this case, the qualifier
resolver will get a copy of the document via DocumentService; it will read getChartOf AccountsCode()
and associate the value with the key "chartOf AccountsCode" in the property set and then it will read the
value of getAccount() and read the value of getOrganizationCode() from the result of the first call and
associate that with the qualifier key "organizationCode". This qualification will then be sent to KIM and
only role members who match that qualification will have the document routed to them.

RoutingTypeDefinitions also handle collection definitions. The following bean uses a
DocumentCollectionPath bean definition to loop over a collection returned from the document
by the method getAccountsForAwardRouting(); for each value in that collection, it will read
the value of getContractsAndGrantsAccountResponsibilityld() and associate it with the key
contractsAndGrantsAccountResponsibilityl d; anew qualification will be generated for every item returned
by the getAccountsForAwardRouting() method.

<bean i d="Routi ngType- Pur chasi ngDocunent - Awar d"
class="org. kuali.rice.kns. datadictionary. Routi ngTypeDefinition">
<property name="routingAttributes">
<list>
<bean cl ass="org. kual i .rice.kns. datadictionary. Routi ngAttribute">
<property name="qualificationAttributeName" val ue="contractsAndG ant sAccount Responsi bilityld" />
</ bean>
</list>
</ property>
<property name="docunent Val uePat hG oups" >
<list>
<bean cl ass="org. kual i .rice. krad. dat adi cti onary. Docunent Val uePat hGr oup" >
<property name="docunent Col | ecti onPat h" >
<bean cl ass="org. kuali.rice. krad. dat adi cti onary. Docunent Col | ecti onPat h" >
<property name="col | ecti onPath" val ue="account sFor Awar dRout i ng" />
<property name="docunent Val ues" >
<list>
<val ue>contract sAndGr ant sAccount Responsi bi | i tyl d</ val ue>

281

View Types

</list>
</ property>
</ bean>
</ property>

</ bean>
</list>
</ property>
</ bean>

Applications which use KRAD documentswill probably find it very smpleto get the qualifiersthey need
at certain routing nodes via this mechanism.

Thealternative popular qualifier resolver isorg.kuali.rice.kew.role.X PathQualifierResolver. Thisqualifier
uses the XML generated by KRAD at the time of document routing and runs XPath expressions against
it to find the qualifiersto passto KIM for role resolution.

Before looking into how to configure XPathQualifierResolver, the concept of RuleAttributes must be
introduced. A "rule attribute” is simply a KEW entity which helps handle serialized XML document
content, typically through configurable XML. There are a number of different rule attribute types: rule
validations, email notifications, document search customization options, and rule qualifiers. Hereis a

configuration of arule attribute for an XPathQualifierResolver:

<data xm ns="ns: workfl ow' xm ns:xsi="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"

xsi : schemaLocat i on="ns: wor kf | ow r esour ce: Wr kf | owDat a" >
<rul eAttri butes xm ns="ns: workfl ow Rul eAttribute"
xsi : schemalLocati on="ns: wor kfl ow Rul eAttri bute Rul eAttribute">
<rul eAttri bute>
<name>Rol eRout eMbdul e- Test XPat hQual i fi er Resol ver </ nane>
<cl assNane>or g. kual i . ri ce. kew. rol e. XPat hQual i fi er Resol ver </ cl assName>
<l abel >Rol eRout eMbdul e- Test XPat hQual i fi er Resol ver </ | abel >
<descri pti on>Rol eRout eMbdul e- Test XPat hQual i fi er Resol ver </ descri pti on>
<type>Qual i fi er Resol ver </ type>
<resol ver Confi g>
<baseXPat hExpr essi on>/ xm Dat a/ char t Or g</ baseXPat hExpr essi on>
<qualifier name="chart">
<xPat hExpr essi on>. / char t </ xPat hExpr essi on>
</qualifier>
<qualifier name="org">
<xPat hExpr essi on>. / or g</ xPat hExpr essi on>
</qualifier>
</ resol ver Confi g>
</rul eAttribute>
</rul eAttributes>
</ dat a>

If rule attributes seem reminiscent of document types, with names, labels, and descriptions, that's hel pful
- those attributes work much the same as they do on document types. RuleAttributes have more though.

They have the class name of the rule attribute - which for XPathQualifierResolvers is conveniently
alwaysorg.kuali.rice.kew.role.X PathQualifierResolver. Therearesevera different typesof ruleattributes;
the type for qualifier resolvers is always QualifierResolver. And then there's aresolverConfig. Thisis
the configurable XML part of the rule attribute; it maps XPath expressions which pull values from the
serialized XML and matches them with qualifier attribute names. It sets abase X Path expression and then
uses that to get values for the specific X Path expressions. The assumption here is that the document has
been serialized as so:

<?xm version="1.0" ?>

<xn Dat a>

<chart Or g>

<chart >UA</ char t >

<or g>TAR</ or g>

</chart Org>

<chart Or g>
<chart >UA</ char t >
<or g>MJS</ or g>

</chart Org>

282

View Types

</ xm Dat a>

A qudlifier set will be generated for each <chartOrg> tag that the XPath expressions find. The qualifier
has a name attribute, which will act as the key to the value within the qualifier.

The document type then uses this attribute, not via the qualifierResolverClassName tag but rather the
gualifierResolver tag in the document type:

<rol e nane="Rol el">

<activationType>P</activati onType>

<qual i fi er Resol ver >Rol eRout eMbdul e- Test Qual i fi er Resol ver</ qual i fi er Resol ver >
</rol e>

Applications making use of the XPathQualifierResolver are advised to investigate the use of
org.kuali.rice.krad.datadictionary.WorkflowProperties beans in data dictionary entries for transactional
documents. This bean, passed in to the entry via the workflowProperties property, limits the size of
the XML that KRAD serializes the document into. KRAD's default XML serialization of transactional
documents can lead to huge amounts of data being serialized needlessly. Maintenance documents
generally do not have this problem.

There are ways to do routing in KEW which do not use KIM responsibilities or roles at all, through
RuleXMLAttributes. Coverage of these can be found in the KEW technical reference guide published at
http://kuali.org/rice/documentation/

Document Searching

Thereisone other major topic to cover about documents and types: how to provide waysfor usersto search
for them. As KEW processes documents, it "indexes' that document for search values, so that users can
more easily find that unique document later. When a user goes to find a document and they choose a
specific document type, they will get fields specific to that document type which help find documents of
that type more quickly. A custom doc search is shown below.

Figure 13.6. Custom Doc Search

S - . - . a

« ca -
|] PEr—
|Fuali
\w\n-mv- R e

There are two fairly simple ways that KRAD provides to do searchable attribute indexing. The first is
through the SearchableX MLAttribute. Thisis set up as arule attribute, just as the configuration for the
XPathQualifierResolver was:

283

View Types

<data xm ns="ns: wor kfl ow' xml ns: xsi="http://ww.w3. org/ 2001/ XM_Schema- i nst ance"
xsi : schemaLocat i on="ns: wor kf | ow r esour ce: Wr kf | owDat a" >
<rul eAttri butes xm ns="ns: workfl ow Rul eAttribute"
xsi : schemalLocati on="ns: wor kf|l ow Rul eAttri bute resource: Rul eAttribute">
<rul eAttri bute>
<nane>G venNaneSear chabl eAt t ri but e</ nane>
<cl assNane>or g. kual i . ri ce. kew. docsear ch. xm . St andar dGeneri cXM.Sear chabl eAttri but e</ cl assNanme>
<| abel >Search Attribute for G ven Name</|abel >
<descri ption>You're reading these code exanples very, very closel y</description>
<t ype>Sear chabl eXm Attri but e</type>
<sear chi ngConfi g>
<fiel dDef name="gi venname" title="First name">
<di spl ay>
<type>text</type>
</ di spl ay>
<visibility>
<col umm vi si bl e="true"/>
</visibility>
<fi el dEval uati on>
<xpat hexpressi on>// per son/ gi vennane/ val ue</ xpat hexpr essi on>
</fiel dEval uati on>
</ fiel dDef >
</ sear chi ngConfi g>
</rul eAttribute>
</rul eAttributes>
</ dat a>

With searchable attributes, remember that there are two instructions which the search attribute needs to
know about: how to draw the field to search for the document on the screen and how to find the value
of the field on the document. The search attribute above does that in the searchingConfig. The fieldDef
tag explains how to draw the field for the search: it will be a text box, and it will be visible in the search
results. Inside the fieldDef tag is the fieldEvaluation tag. That declares an XPath expression which will
be run - not at all surprisingly - against the document's serialized XML header content. As the document
is processed, that value will be read and stored, and document searches will be carried out against that
indexed field.

Of course, thisis arule attribute and therefore certain fields must be filled out in the declaration. Every
XML searchable attribute uses the type SearchableXMLAttribute. The className should aways be
org.kuali.rice.kew.docsearch.xml.StandardGenericX ML Searchabl eAttribute - this is the class which uses
the fieldDef definition to index and render the field in the document search. And of course, every
searchable attribute needs aname. The label and description are optional but often useful.

This attribute then can be associated with a document type, through the attributes tag.

<data xm ns="ns:workfl ow' xm ns:fo="http://ww.w3. org/ 1999/ XSL/ For mat "
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schera- i nst ance"
xsi : schemaLocati on="ns: wor kf | ow resour ce: Wr kf | owDat a" >
<docurent Types xnl ns="ns: wor kf | ow Docunent Type"
xsi : schemaLocat i on="ns: wor kf | ow/ Docunent Type resour ce: Docunent Type" >
<docurent Type>
<nane>Per sonDocunent </ name>
<par ent >Kual i Docurnent </ par ent >
<attributes>
<attribute>
<nane>G venNaneSear chabl eAt t ri but e</ nane>
</ attribute>
</attributes>
</ docunent Type>
</ docunent Types>
</ dat a>

If there's a searchable attribute which uses XPath expressions to find values in serialized document
content, surely then there must be a searchable attribute which reads in a KRAD document
from the database and uses the data dictionary to figure out what values to index and how
to search against them. Such a hypothesis turns out to be completely correct: there exists
org.kuali.rice.krad.workflow.attribute.DataDictionary SearchableAttribute. It is defined as follows:

284

View Types

<rul eAttri bute>
<nane>Dat aDi cti onar ySear chabl eAttri but e</ name>
<cl assNane>
org. kuali.rice. krad. workflow attribute. DatabDi cti onarySearchabl eAttribute
</ cl assNane>
<l abel >Data Dictionary Searchable Attribute</|abel >
<t ype>Sear chabl eAttri but e</type>
</rul eAttribute>

It is part of a WorkflowAttributes bean, which is injected to the workflowAttributes property of a
document's data dictionary entry. The declaration looks like this;

<bean i d="Per sonDocunent - wor kf | owAt t ri but es" parent ="Workfl| owAttri butes">
<property name="sear chi ngTypeDefi niti ons">
<list>
<bean cl ass="org. kuali.rice. kns. datadi ctionary. Sear chi ngTypeDefi ni tion">
<property name="searchi ngAttribute">
<bean cl ass="org. kual i .rice. kns. datadi cti onary. Searchi ngAttribute">
<property name="busi nessQbj ect O assNane"
val ue="edu. sanpl eu. si npl eapp. busi nessobj ect . Per son"/ >
<property name="attributeName" val ue="gi vennanme"/ >
</ bean>
</ property>
<property name="docunent Val ues" >
<list>
<val ue>per son. gi vennane</ val ue>
</list>
</ property>
</ bean>
</list>
</ property>
</ bean>

Whereas routingTypeDefinitions are a map which map from a routeNodeName to a definition,
searchingTypeDefinitions are simply a List of SearchingTypeDefinition beans. Much like the
SearchingX MLAttribute, KEW needs two pieces of information: how to draw the field on the search
screen and how to find a value for that field. The searchingAttribute property answers the question of
how to draw the field. It takes in a SearchingAttribute bean which has a businessObjectClassName and
an attribute name on that business object class. To draw the field, it looks at the data dictionary entry
for the given business object and draws its KRAD attribute - a fairly familiar scenario by now. The
documentV alues property takesin alist of property pathsto look for valuesin the document. In this case,
DataDictionary Searchabl eAttribute will retrieve a copy of the document from DocumentService and then
call getPerson() against it; if that does not return null, it will call getGivenname() on the Person business
object and store that value.

This searchabl e attribute would have been set up in the document type as follows:

<data xm ns="ns:workfl ow' xm ns:fo="http://ww.w3. org/ 1999/ XSL/ For mat "
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schera- i nst ance"
xsi : schemaLocat i on="ns: wor kf | ow r esour ce: Wor kf | owDat a" >
<docunent Types xm ns="ns: wor kf | ow Docunent Type"
xsi : schemaLocat i on="ns: wor kf | ow Docunent Type resour ce: Docunent Type" >
<docunent Type>
<nane>Per sonDocunent </ name>
<par ent >Kual i Docunent </ par ent >
<attributes>
<attribute>
<nane>Dat aDi cti onar ySear chabl eAttri but e</ name>
</attribute>
</attributes>
</ docunent Type>
</ docunent Types>
</ dat a>

285

View Types

Again, barely the surface of KEW's document searching capabilities has been scratched. Unique
SearchAttribute classes can be created and there are waysto customi ze the results returned on the document
search screen in alot of different ways. Further details can once again be found in the KEW technical
reference guide.

This primer has been only a short tour of the amazing power that Kuali Enterprise Workflow putsin the
hands of application developers. Even though there's a great deal of power there, most developers get
the hang of KEW configuration pretty quickly. Enterprise applications can leverage the power of KRAD,
KEW, and KIM together to provide the support for a powerful and robust enterprise application system.

Message View Type

Message View

The Message View is a simple view for displaying an application message, such as an error or other
interruption that is encountered during processing of a request.

This view type provides two custom properties. The nessageText property holds the text for the
message to display. In addtion, the message property holds the message component that will be used to
render the message. Thiscomponent can be used to alter the default CSS properties and other configuration
if necessary. Other common view properties, such as footer, can be specified if desired. Usually however
this view simply displays a message.

The base bean definition for the message view hasanid of Ui f - MessageVi ew and is shown below:

<bean id="Ui f-MessageVi ew' parent="U f-MessageVi ew par ent Bean"/ >
<bean id="Ui f- MessageVi ew par ent Bean" abstract="true"
class="org. kuali.rice.krad. uif.view MessageVi ew' parent="U f-FornVi ew'>
<property name="page">
<bean parent="Uif-Page"/>
</ property>
<property name="nessage">
<bean parent="Uif- Message" >
<property name="cssCl asses">

<list nmerge="true">
<val ue>ui f - appl i cati onMessage</ val ue>
</list>

</ property>
</ bean>
</ property>
<property name="persi st FornfoSessi on" val ue="fal se"/>
<property name="breadcrunbs.render" val ue="fal se"/>

</ bean>

Like any bean definition in the UIF, this default can be overridden. For example it might be useful to add
actions to the view footer.

The message view is different from other view typesin how it is used. We don't request a message view
from a URL, but instead it is given in response to another request. For example, one use of the message
view within KRAD isfor locked modules. A module can be locked for maintenance through the System
Parameters table. When amoduleislocked, no views associated with that module can be accessed unless
the user has been granted permission (through KIM) to do so. If the user does not have permission they
are given an error stating the given module islocked.

To enforce the module locked checking an interceptor is used to determine the module for a request and
check itslocked status. If themoduleislocked, therequest isthen redirected to the modul e locked control ler
which will display the message view with the modul e locked message.

In this case, we could create a view definition that extends Uif-MessageView and sets the message text
with the module locked message. Then instead of returning the view that was requested, return the view

286

View Types

for our custom message view. However this would be a bit inconvenient to do for every such message we
have in the application. Therefore KRAD alowsyou to call ahelper methodon Ui f Cont r ol | er Base
that will get an instance of the default message view, and set the custom message text through code. The
following demonistrates using the helper method for the module locked example:

/**
* Retrieves the nodul e | ocked nessage test froma system paraneter and then returns the nmessage view
*/
@Request Mappi ng(val ue = "/ nodul e-1 ocked")
publ i ¢ Mbdel AndVi ew nodul eLocked(@vbdel Attri bute("Kual i Forni') U fFornBase form
@Request Par an(val ue = MODULE_PARAMETER, required = true) String nodul eNanmespaceCode) {
Par anmet er Servi ce paraneter Serivce = CoreFranmewor kServi ceLocat or. get Par anet er Servi ce() ;

String messagePar anConponent Code = KRADConst ants. Det ai | Types. ALL_DETAI L_TYPE;

String nessagePar anName = KRADConst ant s. Syst enGr oupPar anet er Nanes. OLTP_LOCKOUT_MESSAGE_PARM

String | ockout Message = paranet er Seri vce. get Par anet er Val ueAsSt ri ng(nodul eNanespaceCode,
messagePar anConponent Code, nessagePar anNane) ;

if (StringUils.isBlank(lockoutMessage)) {
String defaul t MessagePar amNanme =
KRADConst ant s. Syst enGr oupPar anet er Nanes. OLTP_LOCKOUT_DEFAULT_MESSAGE;
| ockout Message = paranet er Seri vce. get Par anet er Val ueAsSt ri ng(KRADConst ant s. KNS_NAVMESPACE,

messagePar anConponent Code, def aul t MessagePar aniNane) ;
}

return get MessageVi ew(form "Mdul e Locked", |ockoutMessage);

Notice the return call. This is invoked the helper method named get MessageVi ew which takes as
parameters the UIF form instance, view header (can be blank), and the message text. As stated above this
constructs the message view and performs the standard get Ui f Model AndVi ewreturn. The following
screenshot shows the resulting message view.

Figure 13.7. Message View

| Fuali.

rice Administration | KRAD

[j action list][C%j doc search] Logged in User: admin

Module Locked

The module you are attempting to access has been locked for maintenance.

287

Chapter 14. Testing and Tooling
Reloading Dictionary

Coming Soon!

Rice Data Objects

Introduction

Purpose of RDO

The Kuali Rapid Application Development Framework (KRAD) relies on several different artifactsfor its
creation and rendering of web applications. These artifacts are greatly varied in both form and purpose;
ranging from standard java class files to xml files. The creation of these can be both repetitive and time
consuming to developers. The purpose of the Rice Data Object (RDO) Developer is to decrease both the
repetitiveness and time it takes to create these artifacts by automating and guiding the creation.

What is RDO

The Rice Data Objects Developer is an artifact creation tool that helpsin the implementation of the Kuali
Rapid Application Development framework. It allows the user to rapidily develop web applications by
providing a quick and easy way to create the necessary artifacts for use in the KRAD framework. In the
most basic terms, it is a wizard that guides the user, through prompts and lists, in entering the needed
information for each artifact, then generates the completed form, removing the need for repetitive typing
and formatting. Through thisit also brings alevel of standardization to the different artifacts, making the
interpretation of each simpler.

Thistool utilizesan interactive command line styleinterfacethat assiststhe user in entering theinformation
about a desired artifact, offering validation on the content before writing the artifact to the appropriate
location. This process takes care of the bulk work needed to create and deploy web applications with the
user only needed to touch the artifact itself for subject specific details and changes.

Installation and Configuration

Included Files
 Folder: Properties
« File: rdo-config.properties

* File: rdo-tool.jar
Setting Up File System

The RDO Developer is set up to save the artifacts generated to predetermined locations. This can cause
errors in the save process if the folder location that RDO is trying to access is missing. To prevent this,
before using RDO, the user should configure the File Path Setup section of the properties so that the
file paths point to the folder in which they wish to save each artifact. More details can be found in the
Configuring Properties section below.

288

Testing and Tooling

Configuring Properties

The RDO Developer offers a wide availability of customization and automization which can be set up
through the rdo-config.propertiesfile. Thisfileis broken into a number of different sections based on the
area of the RDO affected. It is recommended to make a back up of this file before making changes.

» Main Program Setup

The properties described in this section deal with the functionality and navigation of the RDO. Please
note the all names and symbols defined in this area need to be exact to avoid critical runtime errors
in the program.

Delimiter: List separator used in thisfile (default value: ",").
developerlist: List of the devel oper names displayed in the main menu.

lineardevel opment.javaobjectwriter.next: The name of the developer after the Java Object devel oper
in the linear devel opment method (default value: DDL).

lineardevel opment.ddlwriter.next: The name of the developer after the DDL Developer in the linear
development method (default value: OJB).

lineardevel opment.ojbwriter.next: The name of the developer after the OJB Developer in the linear
development method (default value: DataDictionary).

lineardevel opment.datadictionarywriter.next: The name of the developer after the Data Dictionary
Developer in the linear development method (default value: ViewXML).

lineardevel opment.viewwriter.next: The name of the devel oper after the View Developer inthelinear
development method (default value: DataObject).

lineardevel opment.converters.use: The status of whether artifacts will be created by converting other
information from previous artifacts (values: aways, never, prompt).

utilities.filepath.errormessages: The file name and location for the xml document that contains the
list of error codes for the program.

utilities.interface.gui: The status of whether the Tooling GUI Interface will be used to display and
run the programiin.

* File Path Setup

The properties described in this section deal with the set up of the file system and the file location
for saving artifacts developed using the RDO. File paths can be substituted into others by enclosing
the property name in "{}" for example: "{filepath.default.workarea}/ java/projects {projectname}/"
where thefirst brackets enclose the workarea name defined in these properties. Putting brackets around
projectname and modulename tells the RDO to substitute the project or module name set by the user.

filepath.prompt.projectname: Whether the user should be prompted to enter a project name when
creating new artifacts (values: true, false).

filepath.prompt.modulename: Whether the user should be prompted to enter a module name when
creating new artifacts (values: true, false).

filepath.default.projectname: The default name of the project for the artifacts.

filepath.default.modulename: The default name of the module for the artifacts

289

Testing and Tooling

filepath.default.workarea: The default file location where the file system starts for the artifacts.
filepath.location.project: The file path where the project folder is.
filepath.location.workflow: The file path where workflow artifacts are saved.
filepath.location.module: The file path where the module folder is.
filepath.location.resource: The file path to where OJB artifacts are saved.
filepath.location.changeset: The file path to where DDL artifacts are saved.
filepath.location.dictionary: The file path to where Data Dictionary artifacts are saved.
filepath.location.uif: The file path to where View artifacts are saved.
filepath.location.dataobjects: The file path to where Java Object artifacts are saved.
filepath.location.ojb: The file path to where OJB artifacts are saved.
filepath.location.package.project: The import package of the project.

filepath.location.package.module: The import package of the module.

Java Object Writer

The properties described in this section deal with the automization of the Java Object Developer.

javaobjectwriter.default.authorname: The default name of the author for a Data Object.
javaobjectwriter.default.authoremail: The default email of the author for a Data Object.

javaobjectwriter.default.businessobject: The default business object status of a Data Object (values
"yes' /"no").

javaobjectwriter.prompt.authorname: Whether the user should be prompted to enter a author name
when creating a new Object.

javaobjectwriter.prompt.authoremail: Whether the user should be prompted to enter a author email
when creating a new Object.

javaobjectwriter.prompt.businessobject: Whether the user should be prompted to enter the business
object status when creating a new Object.

javaobjectwriter.datatypes.names: List of data typesin which common properties can be set.

javaobjectwriter.datatypes.paths: List of corresponding import paths to the previous list (order of
these items must match its counterpart in the first list).

DDL Writer

The properties described in this section deal with the automization and list options of the DDL
Developer.

ddlwriter.columntype.names: List of column typesin which a column can be set to.

ddlwriter.converter.datatype: List of dat289pes with registered JIDBC matches.

Testing and Tooling

« ddlwriter.converter.jdbctype: List of corresponding JDBC matchesto the previouslist (order of these
items must match its counterpart in the first list).

» DataDictionary Writer

The properties described in this section deal with the default list and options available for the Data
Dictionary Developer.

e datadictionary.definition.textconstraints: List of values for a gpecid attribute —
validCharactersConstraint.

datadictionary.definition.controlfields: List of values for a special attribute — controlfield.

datadictionary.definition.attributes.simple: List of attribute names for simple attributes.

« datadictionary.definition.attributes.example: List of examples for the simple attributes listed above
(order of these items must match its counterpart in the first list).

« datadictionary.definition.attributes.special: List of attribute names for special attributes.
* OJB Writer
The properties described in this section deal with the OJB file and creation of anew file if needed.

 ojb.filename: Thisisthe name of the ojb file which the devel oper will append to (default: ojb.xml).

Starting the program

Before starting the RDO, users should first make sure the program is set up correctly. They should first
check that the rdo-config.propertiesfile arein the /properties folder. Once the propertiesfilesarein place,
users should make changes to the rdo-config file to set up the customization and automization as they
wish, and making sure the errorMsgs.xml file is being pointed to as well, to decrease errors and allow
error handling by the system. After set up is complete, start the program by clicking the program icon and
opening the console.

User Guide

Artifact Creation Methods

RDO offers several ways to go about the development of the different artifacts used by the KRAD
framework based on the needs and desires of the users.

Stand alone

The most basic setup of the RDO allows usersto create each artifact from scratch in a standal one method.
Using this method, each artifact is created by itself, meaning that it is not using influenced by the other
artifacts, nor does the user need to create the others. This method allows for the quick replacement or
creation of specific artifactsin the system.

Linear Development

This method focuses on creating several artifacts of the same set (either complete or partial sets). In this
set up, the user fillsin theinformation and creates the artifact before moving on to the next; allowing them
to use information filled in on the previous artifacts to create the others. The default order of creation is:

291

Testing and Tooling

Java Object -> DDL Table -> OJB Descriptor -> Dictionary entry -> Views

However, this can be changed to allow for the absence of an artifact or for the preference of the user.
(Changing the order of artifact creation can be done by modifying the values of the lineardevel opment
entries in the propertiesfile).

Main Menu

Themain menu for the RDO simply consists of the different artifactsthat can be created using the program.
To start the creation of an artifact, select it from the menu by entering its selection value (the number on
the |left side of the artifacts name). Y ou can also enter 0 to exit the program.

Interacting with Prompts

The RDO is meant to assist users in entering information to create the KRAD artifacts, and does this by
using prompts to direct what information the program is looking for the user to enter. To avoid mistakes
or misinformation from being entered, the program will validate the information entered by the user and
respond if invalid information is detected. The user can also back out of a series of prompts by entering
"/q", which will return them to the closest menu.

292

Testing and Tooling

Data Object Developer

Kuali Tooling Ap

KRAD

tooling

Please select an Artifact to create

[While entering information enter '/g' to return to the last menu
1 - DataObject

2 — DDL

3 - OJB

4 — DatalDicticnary

5 — ViewXml

0 — Exit

1

*%**% Nata Object Developer #*&eks

Please enter the name for the new data object:
TestObject

Enter "/q' to escape back to the last menu when entering information
kcrking on Object: TestObject

Please select an option from the following list:
1 — hdd Simple Property to Object

2 — bdd Belational Property to Object

3 — Modify Menu

4 — Preview Data Object

S — Write Data Object

& — Write Data Object and Start DDL

7 — Switch Artifacts

0-Exit

The Data Object isasimplejava classthat contains anumber of properties (data entries). These properties
can consist of simple datatypes like int, String or boolean, or relation (user defined) data types. For each
data type the needed imports, declarations and constructor initializion are created, as well as the getters
and setters needed to fill or retrieve the data stored for these properties.

Creating a New Object

When the Developer is started, the user is prompted for the name of the Data Object they wish to create.
This is the actual name of the Object and follows the standard java class naming syntax. Once the name
of the new object isfilled, the main menu is presented.

293

Testing and Tooling

Adding a Common Property

To add a common property to the Data Object, the user selects "Add Simple Property” from the main
menu. They will then be prompted to enter the name of the new property; like the Object name, it follows
the javanaming syntax for dataentries, and it should also follow any naming conventions (though naming
conventions are not checked for during creation). Next, the user is presented with alist of common data
types to pick from using the number on the left side of the type name. If a property is not present on the
list, it will need to be added as arelation property.

Adding a Relation Property

To add arelation property to the Data Object the user selects "Add Relational Property” from the main
menu. Like when adding acommon property, they will be prompted to enter the namefor the new property
(same syntax and conventions apply). Next, they will be asked to enter the import package for the data
type. This means that the user must enter the exact import syntax for the type they wish to use, and not
a general package using the * symbol (example pathl.path2.typel) as the data type for the property is
extracted from itsimport package. Once complete, the user is asked whether therelational property is"one
to one" or "one to many" by selecting the options from the list. A "one to many" status on the property
means that it will be designated as alist in the java class.

Modifying The Data Object

To modify information already entered into the Data Object, the user can select "Modify Menu" from the
main menu. Thiswill take them to anew menu in which they are able to modify any piece of data already
entered by selecting from the options and following the prompts. Where the primary data entering options
in the main menu deal with collecting data for a whole item at once, the options under the modify menu
handle only a specific segment of the data at one time.

Previewing Java Class

Once the necessary information has been entered into the Data Object Devel oper, the user can preview
a sample of the class that will be written by selecting "Preview Data Object" from the main menu. This
preview shows the class imports, property declarations and constructor, but not the getters and setters.

Writing the Object to File

After checking the Data Object for completeness and correctness, it can then be written to the appropriate
location defined in the program propertiesfile by selecting "Write Data Object” from the main menu. This
option automatically writes the complete class to a .javafile at that location. Once the file is written, the
program prompts the user if they would like to open the new file. By entering "yes" to this prompt the file
will then be opened using the computer's default program for opening files of the type java.

Linear Development

When looking at the main menu, the user will noticethat there aretwo optionsto write: "Write Data Object”
and "Write Data Object and Start " The first option merely writes the Object being worked on to
its file and staysin the Data Object Devel oper; the second option, however, isfor the linear development
method. Meaning that it will write the Object to file, then exit the Data Object Developer, and start the
next Developer as assigned in the propertiesfile. By doing thisthe information entered for the Data Object
and previous artifacts is used to help in making the other artifacts helping speed up the process. For linear
development, it is suggested to always start in the Data Object Developer, as it sets the property fields
for the others.

294

Testing and Tooling

DDL Developer

Once the user has completed creating a Data Object, they can exit back to the RDO's main menu by simply
selecting the "Exit" option from the Data Object Devel oper menu.

uali Tooling A

KRAD

tooling RDO

hhile entering information enter "/g'" to return to the last menu
1 - Datalbject

- DDL

- OJB

- DataDictionary

- ViewXml

- Exit

[EE =T T P ¥]

#xxdd NINT, Developer *#sx*

Please enter the name for the new Table:
Tablel

Enter '/qg'" to escape back to the last menu when entering information
|Wcrking on Table: TABLELl

Please choose an option from the following list:

1l - 2dd Columm to Tabkle

2 — kdd Constraint to Table
3 - Modify Menu

4 — Preview DDL

5 — Write DDL

& — Write DDL and Start OJB
7 — Switch Artifacts

0-Exit

The DDL Fileis actually a LiquiBase Changeset XML file that contains the necessary information to
create the base table of the database. This includes the beginning set up of the LiquiBase Changelog with
the first Changeset that creates the new table with the starting columns and constraints. Each file isfor a
single database table related to a single Data Object.

295

Testing and Tooling

Creating a New DDL

When the DDL Developer is started the user is prompted to enter the name of the table to be created by the
Changeset. Thisisthe actual database table name and should follow the required syntax and conventions
of a standard database schema. When a new Table is created two default columns are also added to the
database ("versionid" and "objectid") with the appropriate information about both.

Linear Development

If the user isusing the linear development method and a Data Object has been created, then before starting
the DDL Developer, the user will be prompted if they wish to create the Changeset using the information
from the previous Data Object. By entering "yes', the new Table will be populated with the Object's
information. This means the name of the table will be set, and a new column added with its name and
data type filled in for each data property. Note: The user is only prompted this question if the converters
option in the propertiesfileis set to.

Adding Columns

To add a column to the created Table, the user selects "Add Column" from the main menu. They will
then be asked to enter the name of the new column which should meet database syntax (the name will
automatically be set to uppercase). A list of IDBC typesisdisplayed, and the column type can be selected
using theindex on theleft side of thetype'sname. Oncethetypeisselected the user can enter the parameters
for the type by following the prompt (if the JDBC type has a common format of parameters, the user will
be asked if they wish to use it, which provides a more detailed and structured prompt). After the type is
entered the user can then enter a default value for the column which should match the type. Finally, the
user is prompted to enter whether this column should be nullable or not by selecting the appropriate option.

Adding Constraint

To add a constraint to the Table, the user can select "Add Constraint” from the main menu. They will then
be prompted for the type of constraint they wish to add.

Primary Key: To add a primary key constraint to the Table, select "Primary Key" from the constraint list.
Then select all columns from the list displayed by entering the index to the left of the name. Each column
is selected one at atime with as many columns being added as needed.

Foreign Key: To add aforeign key constraint to the Table select "Foreign Key" from the constraint list. The
user will then be prompted to enter the name of the Table being referenced in the key, followed by entering
the name of each column referenced in that Table, one by one. Once the referenced columns are entered,
they can then enter the columns affected in the new Table by selecting them from the list displayed.

Modifying The DDL

To modify information already entered into the DDL, the user can select "Modify Menu" from the main
menu. Thiswill take them to anew menuin which they are ableto modify any piece of dataalready entered
by selecting from the options and following the prompts. Whereas the primary data entering optionsin the
main menu deal with collecting data for awhole item at once, the options under the modify menu handle
only a specific segment of the data at one time.

Previewing DDL
Once the necessary information has been entered into the DDL Developer, the user can preview the data

for the new Table by selecting "Preview DDL" in the main menu. This will display all the data entered
asit would appear in thefile.

296

Testing and Tooling

Writing the DDL to File

After checking the DDL Changeset for completeness and correctness, it can then be written to the
appropriate location defined in the program propertiesfile by selecting "Write DDL" from the main menu.
This option automatically writes the complete Changeset to a xml file at that location. Once the file is
written, the program prompts the user if they would like to open the new file. By entering "yes' to this
prompt, thefilewill then be opened using the computer's default program for opening files of the type xml.

Linear Development

Exiting

When looking at the main menu, the user will notice that there are two optionsto write: "Write DDL" and
"Write DDL and Start " Thefirst option merely writes the Changeset being worked on to itsfile and
stays in the DDL Developer, the second option however is for the linear development method. Meaning
that it will write the Changeset to file, then exit the DDL Developer, and then start the next Developer
as assigned in the properties file. By doing this, the information entered for the Changeset and previous
artifactsis used to help in making the other artifacts hel ping speed up the process. For linear devel opment,
it is suggested to aways start in the Data Object Developer, asit sets the property fields for the others.

Once the user has completed creating a DDL Changeset, they can exit back to the RDO's main menu by
simply selecting the "Exit" option from the DDL Developer menu.

297

Testing and Tooling

OJB Developer

ual Tooling A

KRAD

tooling

Please select an Artifact to create

[While entering information enter "/q" to return to the last menu
1 - Dataldbject

- DDL

- OJB

- DataDictionary

- ViewxXml

- Exit

LA O A W= Ld kD

*xkks O,JB Developer %k

Please enter the package for the object defined in this OJB
path.Testibject

Please enter the name for the table defined in this OJB
Tablel

[Enter '/qg' to escape back to the last menu when entering information
1l — Add Property

- Add Relation

- Mpdify Menu

— Preview OJB Descriptor

- Write OJB Descriptor

— Write OJB Descriptor and Start DataDictionary

— Switch Artifacts

Exit

1 @ LA d= LA P

[=]
|

The OJB fileis a OJB Class Descriptor using Apache OJB Repository XML files. The Class Descriptor
contains information connecting a Data Object to a database table. The OJB file can have multiple Class
Descriptors for Object Table pairs, as well as the information need to connect to the database in which
the tableis a part of.

Creating a New OJB Class Descriptor

When the OJB Developer is started, the user is prompted to enter the package of the Java Object and name
of the table being connected by the Class Descriptor. The package should be the exact import package for
the Object and the table name exactly as it appears in the database.

298

Testing and Tooling

Linear Development

If the user isusing thelinear devel opment method, and has created both a Data Object and DDL Changeset,
they can fill in the information for the Descriptor using the information from these two artifacts. If only
a Data Object has been created, the OJB Developer will use that information to set the package, and only
prompt them for the table name. Creating the Object first will allow the user to select the different data
properties from it when adding properties and relations to the Descriptor.

Adding a Property

To add a property to the Class Descriptor, the user can select "Add Property" from the main menu. They
will then be prompted to select afield from alist containing all properties defined in a previous created
Data Object (if no Data Object was created, or the new property isnot in thelist, the user can create a new
one by selecting "New Property"). They will then be asked enter the column name in the database that
corresponds to this property before selecting the JIDBC Type for this column from a displayed list. Next
the Developer will prompt them to find out if the column isaprimary key of the Table. If the columnisa
primary key, it will ask if it is a sequence before asking for the name of the sequence.

Adding a Relation

To add arelation to the Class Descriptor, the user can select "Add Relation” from the main menu. They
will then be prompted to select afield from alist containing all properties defined in a previous created
Data Object (if no Data Object was created, or the new property is not in the list, the user can create a
new one by selecting "New Property™). Next, they need to enter the import package of the classthat itisa
relation to. Once thisis complete, they can set a number of options by selecting true or false as prompted.
These options include AutoRetrieve, AutoUpdate, AutoDel ete, whether the relation is a proxy or not, and
finally, whether it isacollection (ie. one to many). After this, they are asked to enter all foreign key fields
referenced by this column, aswell as all fieldsin which it is ordered by (if the relation is a collection).

Modifying The Class Descriptor

To modify information already entered into the Class Descriptor, the user can select "Modify Menu" from
the main menu. This will take them to a new menu in which they are able to modify any piece of data
already entered by selecting from the options and foll owing the prompts. Where the primary data entering
optionsin the main menu deal with collecting data for awholeitem at once, the options under the modify
menu handle only a specific segment of the data at one time.

Previewing the OJB Class Descriptor

Once the necessary information has been entered into the OJB Developer, the user can preview the data
for the new Descriptor by selecting "Preview OJB Descriptor” in the main menu. Thiswill display all the
data entered asit would appear in the file.

Writing the Class Descriptor to File

After checking the Descriptor for completeness and correctness, it can then be written to the appropriate
location defined in the program properties file by selecting "Write OJB Descriptor” from the main menu.
This option automatically appends the complete Descriptor to the OJB xml file at that location (if no file
exists, a new OJB xml will be created and the Descriptor appended to it). Once the file is written, the
program prompts the user if they would like to open the new file. By entering "yes' to this prompt, thefile
will then be opened using the computer's default program for opening files of the type xml.

Linear Development

When looking at the main menu, the user will notice that there are two options to write: "Write OJB
Descriptor" and "Write OJB Descriptor and Start ." Thefirst option merely writesthe Class Descriptor
being worked on to its file and stays in the OJB Developer; the second option, however, is for the linear

299

Testing and Tooling

development method. Meaning that it will write the Descriptor to file, then exit the OJB Developer and
start the next Developer as assigned in the properties file. By doing this, the information entered for the
Descriptor and previous artifacts is used to help in making the other artifacts, helping to speed up the
process. For linear development, it is suggested to always start in the Data Object Developer, as it sets

the property fields for the others.

Exiting

Once the user has completed creating a OJB Class Descriptor, they can exit back to the RDO's main menu

by simply selecting the "Exit" option from the OJB Developer menu.

Data Dictionary Developer

K Tooling Appi

KRAD

tooling

W= O A s LS R

1
2
3
4
5
6
i
i
9

DDL

oJB
DataDictionary
ViewEml

Exit

%%% Data Dictionary Dewveloper #*#*#x

Flease enter the package for the object defined in this dictionary
path.TestObject

[Enter '/g'" to escape back to the last menu when entering information
Please select an option from the menu below:

Set Object Label

kdd Primary Keys

Set Title Attribute

2dd Attribute Definition
kdd Belation Definition
BAdd Collection Definition
Modify Menu

Preview Dictionary

Write Dictionary

10 - Write Dictionary and Start ViewEml
11 - Switch Artifacts
0 - Exit

300

Testing and Tooling

The Data Dictionary Fileisan xml file generated using the Spring Beans format. The Dictionary contains
information on a single Data Object. This includes ways to identify it and its different properties. It also
contains definitions for each property to aid in the validation of information it holds.

Creating a New Data Dictionary

When the Data Dictionary Developer is started, the user is prompted to enter the package of the Data
Object being defined in this Dictionary. The package should be the exact import package for the Object.

Linear Development

If the user is using the linear development method and has created the Data Object, they can fill in the
information for the Dictionary using the information from this artifact. Creating the Object first will allow
the user to select the different data properties from it when adding keys, title attributes and definitions
to the Dictionary.

Setting the Object Label

To set the object label of the Dictionary, select "Set Object Label" from the main menu. This will then
prompt the user to enter the label.

Adding Primary Keys

To add a set of primary keysto the Dictionary, select "Add Primary Keys' from the main menu. Thiswill
display alist of propertiesin the Data Object which the user can add to (if no Data Object was created, or
the new property is not in the list, the user can create a new one by selecting "New Property"). Each key
isadded one at atime, and the complete list of keys should be added in a single run of this option.

Adding Title Attributes

To add aset of title attributesto the Dictionary, select "Add Title Attribute" from the main menu. Thiswill
display alist of propertiesin the Data Object which the user can add to (if no Data Object was crested, or the
new property isnot in thelist, the user can create a new one by selecting "New Property"). Each attribute
is added one at atime, and the complete list of attributes should be added in a single run of this option.

Adding Attribute Definitions

To add an attribute definition to the Dictionary, select "Add Attribute Definition” from the main menu.
Thiswill display alist of propertiesinthe Data Object which the user can select from (if no Data Object was
created, or the new property isnot in the list, the user can create anew one by selecting "New Property").
A list of attributes for this definition will be displayed; a user can add an attribute by selecting it from the
list using the index on the left side, which will then prompt them to enter the value for it.

Adding Relation Definition

To add arelationship definition to the Dictionary, select "Add Relation Definition" from the main menu.
Thiswill display alist of propertiesin the Data Object which the user can select from (if no Data Object was
created, or the new property isnot in thelist, the user can create a new one by selecting "New Property").
Next, they will be prompted to enter the target class, which should be the import package of the class
being referenced. Then, they can add primitives (then supports) by entering the source property and target
property in the form of "source,target" in which the source is the name of a property in the class being
written in the dictionary, and the target is the name of a property in the class being referenced.

Adding Collection Definitions

To add an collection definition to the Dictionary, select "Add Collection Definition" from the main menu.
Thiswill display alist of propertiesinthe Data Object which the user can select from (if no Data Object was

301

Testing and Tooling

created, or the new property isnot in the list, the user can create anew one by selecting "New Property").
Next, they will be prompted to enter the target class, which should be the import package of the class
being referenced. Finally, they will be prompted to enter the label, short label, and element label for the
collection (they can default these when asked, letting the Devel oper create them).

Modifying The Data Dictionary

To modify information aready entered into the Data Dictionary, the user can select "Modify Menu"
from the main menu. This will take them to a new menu, in which they are able to modify any piece of
data already entered, by selecting from the options and following the prompts. Whereas the primary data
entering options in the main menu deal with collecting data for a whole item at once, the options under
the modify menu handle only a specific segment of the data at one time.

Previewing the Dictionary

Once the necessary information has been entered into the Data Dictionary Developer, the user can preview
athe data for the new Dictionary by selecting "Preview Dictionary" in the main menu. This will display
all the data entered as it would appear in thefile.

Writing the Dictionary to File

After checking the Dictionary for completeness and correctness, it can then be written to the appropriate
location defined in the program properties file by selecting "Write Dictionary” from the main menu. This
option automatically writes the complete Dictionary to an xml file at that |ocation. Once thefileiswritten,
the program promptsthe user if they would like to open the new file. By entering "yes' to this prompt, the
file will then be opened using the computer's default program for opening files of the type xml.

Linear Development

Exiting

When looking at the main menu, the user will notice that there are two optionsto write: "Write Dictionary"
and "WriteDictionary and Start " Thefirst option merely writesthe Dictionary being worked ontoits
file and staysin the Data Dictionary Devel oper; the second option, however, isfor the linear devel opment
method. Meaning that it will write the Dictionary to afile, then exit the Data Dictionary Developer, and
start the next Developer as assigned in the properties file. By doing this, the information entered for the
Dictionary and previous artifactsis used to help in making the other artifacts, hel ping speed up the process.
For linear development, it is suggested to always start in the Data Object Devel oper, asit setsthe property
fieldsfor the others.

Once the user has completed creating a Data Dictionary, they can exit back to the RDO's main menu by
simply selecting the "Exit" option from the OJB Developer menu.

302

Testing and Tooling

View Developer

N = DR o R

KRAD

tooling RDO

hhile entering information enter '"/q'" to return to the last menu
1 - Datalbject

- DDL

- OJB

- DataDictionary

ViewxXml

- Exit

LA O A = La kD
|

*kkkd View Developer *xdsx

Please enter the package for the object used in these Views
path.Testlibject

[Enter 'g' to escape back to the last menu when entering information
1 - Set Lookup View

- Set Inquiry View

- Set Maintenance Document

- Set Maintenance View

Configure WorkFlow DocType

- Modify Menu

- Preview Views

- Write Views

- Write Views and Start Datalbject
10 — Switch Artifact

0 - Exit

Woon =] & O = L R
|

The View File is an xml file generated using the Spring Beans format. The Views contain information
on how to display different web pages as well as how the flow of data is handled between the web page
and the database.

Creating New Views

When the View Developer is started, the user is prompted to enter the package of the Data Object being
displayed in these Views. The package should be the exact import package for the Object.

303

Testing and Tooling

Linear Development

If the user is using the linear development method, and has created the Data Object, they can fill in the
information for the Views using the information from this artifact. Creating the Object first will allow the
user to select the different data properties from it when adding fields to the Views.

Setting the Look Up View

To set the look up view, select "Set Look Up View" from the main menu. The user will then be prompted
to enter the title of the view. After this, the user createsthefield listsfor the search, result, and default sort
fields by selecting from alist of properties in the Data Object (if no Data Object was created, or the new
property is not in the list, the user can create a new one by selecting "New Property").

Setting the Inquiry View

To set the inquiry view, select "Set Inquiry View" from the main menu. The user will then be prompted
to enter the title of the view. After this, the user will be continually prompted to create sections for the
View. To create a section, they are first asked for the section's name and the instructional text. Next, alist
of properties in the Data Object into which the user can add as fields is displayed (if no Data Object was
created or the new property is not in the list the user can create a new one by selecting "New Property").
After selecting the fields covered in the section, the user setsthe type of section it isfrom alist. Each type
has its own information that the user can enter by following the prompts.

Setting the Maintenance

To set the Maintenance artifact, select "Set Maintenance Artifact" from the main menu. The user will be
prompted to enter the document type, followed by displaying alist of properties in the Data Object from
which the user can select as locking keys (if no Data Object was created, or the new property is not in the
list, the user can create a new one by selecting "New Property").

Setting the Maintenance View

To set the maintenance view, select " Set Maintenance View" from the main menu. After this, the user will
be continually prompted to create sections for the View. To create a section they are first asked for the
section’'s name and the instructional text. Next, alist of properties in the Data Object into which the user
can add as fields is displayed (if no Data Object was created, or the new property is not in the list, the
user can create a new one by selecting "New Property™). After selecting the fields covered in the section,
the user setsthe type of section it isfrom alist. Each type has its own information that the user can enter
by following the prompts.

Modifying The Views

To modify information already entered into the Views, the user can select "Modify Menu" from the main
menu. This will take them to a new menu, in which they are able to modify any piece of data already
entered, by selecting from the options and following the prompts. Whereas the primary data entering
options in the main menu deal with collecting datafor awhole item at once, the options under the modify
menu handle only a specific segment of the data at one time.

Previewing Views

Once the necessary information has been entered into the View Developer, the user can preview athe data
for the new Views by selecting "Preview Views" in the main menu. Thiswill display all the data entered
asit would appear in thefile.

304

Testing and Tooling

Writing Views to File

After checking the Views for completeness and correctness, they can then be written to the appropriate
location defined in the program propertiesfile by selecting "Write Views' from the main menu. Thisoption
automatically writes the complete Views to asingle xml file at that location. Once the file is written, the
program prompts the user if they would like to open the new file. By entering "yes" to this prompt the file
will then be opened using the computer's default program for opening files of the type xml.

Linear Development

Exiting

When looking at the main menu, the user will notice that there are two options to write: "Write Views"
and"WriteViewsand Start _." Thefirst option merely writesthe Views being worked ontoitsfileand
staysin the View Developer; the second option, however, isfor the linear development method. Meaning
that it will writethe Viewsto afile, then exit the View Devel oper, and start the next Devel oper as assigned
in the propertiesfile. By doing this, the information entered in previous artifacts is used to help in making
the other artifacts, helping speed up the process. For linear development, it is suggested to always start in
the Data Object Developer, asit sets the property fields for the others.

Once the user has completed creating Views, they can exit back to the RDO's main menu by simply
selecting the "Exit" option from the View Developer menu.

Rice Dictionary Validator

Introduction

Purpose

The Rice Framework works by utilizing anumber of interconnected java data objects held together in the
programs data dictionary. These objects are complex and created through the combination of a number
of Spring Beans; mistakes in these beans can cause breakdowns in the system, causing missing pages or
incorrect information to be display. The purpose of the Rice Dictionary Validator (RDV) isto limit these
mistakes by validating that the beans are being created correctly, and warning devel opers of problems that
may occur.

What is RDV

The Rice Dictionary Validator is a combination of an integrated backbone in the Rice Framework, and a
independent tool application within Rice Toals. It looksthrough the beans that make up the data dictionary
and identifies any problemsit finds before reporting them to the developer. The tool is setup to do thisin
several ways. Thefirst isto validate the beans during the start up of the Rice Framework allowing for the
check of the entire dictionary being used. The other is a more limited check for use during development,
loading only a core set of beans and any beans the devel oper has set to check.

Regardless of whether the Validator is being run during the Rice startup, or with the Rice Tools, the
RDV runs through the complete list of beans being loaded and creates an individual error report for every
validation failed before displaying the report to the user. The output display can be configured based on
what is displayed and how it is displayed.

305

Testing and Tooling

Installation and Configuration

Rice Startup Validation

A default version of the RDV is setup to run during the start of the Rice Framework with the output
being handled by the DataDictionary.class logger as info, warn and errors. This hands responsibility of
the display settings over to the log4j properties file. Since it is a developer toal, it can be turned on
and off in the Framework's properties. The RDV can be toggled on and off by setting the parameter
validate.data.dictionary to true or false in the xml settings file: common-config-defaults of the rice-impl
module.

Rice Tools Validator

To setup the independent RDV all that is required is to configure its settings in the properties file
(properties/rdv-config.properties). It can be run from the Rice Tools application.

« ricedictionaryvalidator.corefiles - Thisisalist of default bean files to be loaded during validation

« ricedictionaryvalidator.display.method - This is the default setting for the method of output when
displaying the validations

« ricedictionaryvalidator.display.method.file - This is the default file to save validation results to if the
output typeisfile

* ricedictionaryvalidator.display.errors - Display default for whether to display the number of errors

« ricedictionaryvalidator.display.warnings - Display default for whether to display the number of
warnings

« ricedictionaryvalidator.display.errors.messages - Display default for whether to display the error
messages

« ricedictionaryvalidator.display.warnings.messages - Display default for whether to display the warning
messages

« ricedictionaryvalidator.display.xmifiles - Display default for whether to display the xml files when
displaying the error/warning messages

« ricedictionaryvalidator.failonwarning - This is the default for whether the validator should fail if
warnings are detect instead of just errors

User Guide

The Rice Dictionary Validator has two different implementations: aintegrated validator to be run during
start up of the Rice Framework, and an extension to run with the Rice Tools application. The first is to
insure that the dictionary is accurate when running the complete application. The second isto aid in the
development of the new bean sets.

Rice Startup Validation

Running Validation

If the Rice Framework is set to run validations in its configuration file, then the validator will be run
automatically when the application islaunched. The validation optionis set in the common-config-defaults
of the rice-impl module.

306

Testing and Tooling

Validations Covered
 Uif Component Beans

« DataDictionary Beans

Viewing Results

By default, the validation results are set to be displayed using log4j. The basic results will be shown as
info tags, while the messages will be displayed as error and warn tags respectfully. This can be changed
in the DataDictionary.validateD D(boolean) method.

Adding Validation to Data Objects

Validation can be added to beans by adding the method:

public Arraylist <ErrorReport> DataObject.conpleteValidation(ValidationTrace)
Within this method, first update the ValidationTrace using the line appropriate addBean() method, and
follow by placing any validations that are needed for the data object. When a validation fails, create an

error report by first making a String array containing any valuesinvolved in the validation. Next, thereport
can be created by using the following method on the ValidationTrace Object.

tracer.crateError({The Failed Validation},{The created list of involved val ues})

Warning reports can be created the same way using the createWarning(...) method. An example of abasic
report is below (other ways to make reports can be found in the constructors of ErrorReport).

String currentValues[] = {"a ="+ a, "b ="+ b};
tracer.createError("Property a nust be greater than b", currentVal ues);

If the data object extends another object that has validation too, call its completeValidation() method.

307

Testing and Tooling

Rice Tools Validator

KRAD

tooling

Ak A A AT I AR AT AT AT A A A A IR K

[felcome to Rice Dictionary Validator
EE RS TSR LSS E LR LR R R L R
Walidation Status : Not Ran

Errors: 0 # Warnings: 0

Cutput -> Gui Window Displaving: |#Errors||#Warnings| |Errors| |Warnings|
Please select an option from below:
Bdd File to Validation List
Bemove File from Validation List
View Files in Validation List
Validate Files

Change Settings

Exit

A O A d= L ka2

Please select an option to change below
1 — Set Validation Failure on Warnings

Set Output Option

Show # of Errors

Show # of Warnings

Show Error Messages

Show Warning Messages

Show EXmlPages

Exit

Adding Files for Validation

To add afile to the validation list, the user can select "Add File to Validation List" in the main menu.
They will then be prompted to enter the path of the file to be validated. The path must be avalid file on
the computer.

308

Testing and Tooling

Removing File for Validation

To remove afile from the validation list, the user can select "Remove File from Validation List" to have
the program display a list of all file paths currently set for validation. The user can then select one to
remove it from thelist.

Viewing Files Set for Validation

To display the list of files they have added for validation, the user can simply select "View Files in
Validation List", which then displays the file paths.

Validating Files

To validate the files, the user can simply select "Validate Files' from the main menu. The program will
validate the files then display the output based on the options set by the user.

Changing Settings

The Display settings, as well as whether to have validations fail if a warning is detected, can be set by
selecting "Change Settings' from the main menu. Thiswill take you to a sub menu with optionsfor all the
settings that can be changed. All the settings are controlled by toggling them, so the user can select the
one they want to change, then select yes/no to turn it on/off.

The option for setting the output of the validation is dightly different, asit asksfor additional information
based on the output type selected.

Exiting

Once the user has completed running validations, they can "Exit" the RDV by selecting exit fromthemain
menu.

Rice Dictionary Schema

Introduction

Purpose

The KRAD Framework works by utilizing the Spring Framework and its Bean feature that allows for
the filling of the data objects from xml files. These xml files are written using the Spring Bean xml tags.
This reduces the file to a collection of alimited number of tags with little connection to the information
they contain, and an unnatural semantic flow. The purpose of the Rice Dictionary Schema is to expand
the variety of the xml files to make them easier to understand and connect with the data objects they are
representing.

What is RDS?

The Rice Dictionary Schema performs the creation and setup of an extension to the Spring Framework
that allows for the use of unique and descriptive xml tags when creating the needed files for the KRAD
Framework. The tooling application developed for RDS allows the user to setup, maintain, and expand
this language extension.

309

Testing and Tooling

Setting Up the RDS

Basic Overview

The RDS utilizes another feature of the Spring Framework, Xml Authoring, that allows the user to setup
and defineaway for the Spring Framework to transl ate xml tagsinto thenormal Bean tag format. Authoring
functions through the use of five files to define the different aspects of the xml tags including reading the
xml, tranglating into beans, and informing Spring of the language. RDS automates and eases the creation
of thesefilesthat are then compiled into the KRAD Framework.

» Schema Xsd - Defines the semantics of the bean xml file.

» Namespace Handler - Registers the Bean Tag with a parser.

* Parser - Defines the semantics of the bean xml file.

 Spring.schemas - Registers the schema xsd with the Spring Framework.

» Spring.handlers - Registers the handler with the Spring Framework.

The RDS alows usersto create new tags for the Rice Schema by building onto other schemas, giving the
new schema access to the older schemas tags and resources, including all of the files needed to define

the schema. Because of this, when implementing a new schema, users only have to create two of the files
(Spring.schemas and schema.xsd) for their schema and the system will provide the rest of the files.

Expanding the Schema

Schema Naming

When creating anew schema, the first thing auser should do is name the schema. The name of the schema
isused in several ways by the RDS, and all schemanames should be unique. The classlist file and schema
file both use the name as part of the automatic processing. Example:

» SCHEMANAME_schemaxsd
« SCHEMANAME_schemaclasses.xml
* gspring.schemas

Schema Xsd

When creating the xsd file, the user uses the following code and replaces SCHEMANAME with the name
of the schema being built off of, and repeats this line in schema location for each support schema being
built off of. For each tag bean added in the schema, add the element tag used in the example with the name
set to the new tag name.

<xsd:schema attributeFormDefault="unqualified"
elementFormDefault="qualified"
targetNamespace="http://www.kuali.org/schema’
xmins="http://www.kuali.org/schema
xmins:xsd="http://www.w3.0rg/2001/X ML Schema">

310

Testing and Tooling

<xsd:include schemal ocation="http://www.kuali.org/ SCHEMANAME/schema.xsd"/>

<xsd:element name="PROPERTYNAME" type="schema'/>
<xsd:element name="PROPERTY NAME2" type="schema'/>
</xsd:schema>

spring.schemas

When creating the spring file, the user simply adds the following line; as with creating the xsd, replace
SCHEMANAME with the name of the schema being created (instead of the supporting schema name).

http://ww. kual i . or g/ SCHEMANAVE/ schema. xsd = META- | NF/ SCHEMANAMVE _schema. xsd

Class List File

Since thetagsfor the RDS are defined using annotations, alist of classes will be needed so the system can
read them. Thisfileisan xml file, with each class being listed with a class tag. The classes can be listed
individualy, or in alist with commals separating them. Below is an example of thefile;

<kradSchema>
<class>org.kuali.rice.krad.datadictionary.Classl</class>
<class>org.kuali.rice.krad.datadictionary.Class2</class>
<class>org.kuali.rice.krad.datadictionary.Class3</class>
<class>org.kuali.rice.krad.datadictionary.Class4</class>
</kradSchema>

Adding Annotations

Restrictions

When adding tagsto the custom schema, there are several restrictionsto the tag names and property names.

Bean Tag

Tag names should be valid string names as xml tags (ex. variablel, subclass.variable,...)
The tag names of beans must be unique

The tag names of the properties should be unique among the other tags used in the bean (be careful, as
the bean tag gains the property tags of any parent classes)

Property tags found in the bean file but not in the annotations will be dropped through when parsed to
be handled by the Spring Framework (ex. layoutmanager.numcols)

Reserved object tags: ref

Reserved property tags:. id, parent, abstract, ref

To create a new bean tag for the custom schema, add the annotation tag BeanTag to the class that it will
represent. When adding a BeanTag, the user will have to declare a name for the new tag, and can also
declare a bean default parent for beans of that tag. If there is no parent declared in the tag, the default
none will be used.

311

Testing and Tooling

Property Tag
To create a new tag or attribute for a property, add the annotation tag BeanTagAttribute to the property's
get function. When adding the tag, the user will need to also declare anamefor the new tag, and the type of
the property being defined. If thetypeisnot declared in the tag, the property will betreated as SingleValue.
The types are defined by the types below found in the BeanTag Attribute:
 AttributeType. SINGLEVALUE - A single property of asimple data type.
 AttributeType.SINGLEBEAN - A single property of a bean object.
 AttributeType LISTVALUE - A list property of asimple data types.
 AttributeType.LISTBEAN - A list property of a bean objects.
 AttributeType MAPVALUE - A map of two simple data types.
» AttributeType. MAPBEAN - A map of asimple data type to a bean object.
 AttributeType MAP2BEAN - A map of two bean objects.

 AttributeType. SETVALUE - A set of smple data types.

AttributeType.SETBEAN - A set of bean objects.

Writing the Bean File
Spring and Custom Schema

The Spring Beans and Xml Authoring systems allow for the mix of both spring and custom schemain the
same set of beans. This means that a bean declaration can either be in the custom schema format, or the
spring bean format. The property declarations within the bean has to follow the schemathat the bean was
declared in; but if a nested bean is added, it can be declared in any format.

Property Names

When using the custom schema, the tag names of the properties do not al have to be declared in the
annotationsto be used inthe bean file. Property namesthat are not found in the schemaare dropped through
using the unidentified name in the property declaration. They will then follow the normal spring rules on
property names, which means that compound names can be used aswell. Do note that if an unknown name
isfound, it will be treated as asingle valueif in the attribute tags, or as asingle bean if it is a nested tag.

» Beans Header

When creating the beans header in the bean file, there are two things that need to be looked at: the
namespace prefix, and the namespace schemalocation. If the custom schemais going to be the primary
tags used, then it can be set to the xmins and the spring beans given a prefix. The namespace for the
custom schemaiis http://www.kuali.org/schema. To add the custom schema to the bean file, it needs to
be added to the schema location using the line:

<spring:beans xmlns="http://www.kuali.org/schema’
xmlns:p="http://www.springframework.org/schema/p"
xmlns:xsi="http://www.w3.0rg/2001/X M L Schema-instance"
xmlns:spring="http://www.springframework.org/schema/beans"

312

Testing and Tooling

xsi:schemal ocation="http://www.springframework.org/schema/beans
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://www.kuali.org/schema http://www.kuali.org/test/schema.xsd">
</spring:beans>

» Bean Object

If custom schemais the primary namespace of the xml, then the object tag can be used without a prefix.
To use the custom tag, use the name declared in the class annotation for the tag name, then add any
properties that are simple datatypes as attributes. Even if the properties do not have a custom tag or are
compound names, non-bean singles are handled by the attributes. Attributes encountered that are not
found in the custom schema are dropped through as property values by the parser.

<classTagName parent="uif-classl" id="classld" abstract="true"
tagProperty="thisis tagged" unTagProperty="thisisnt" compound.name="Authors"/>

* Single Bean

For adding nested beans, the property is declared as a new tag with no attributes, and the new bean is
nested within it.

<beanProperty>
<singleBean parent="uif-bean"/>
</beanProperty>

e ListVaue

When declaring alist of simple data types in the bean, the property name is used in a new tag without
any attributes. Values are then added by nested value tags under the property tag.

<listProperty>
<vaue>vi</vaue>
<vaue>v2</vaue>
<vaue>v3</vaue>
</listProperty>

e List Bean

A list of bean objects is started the same as the list value with the property tag declared. However;
instead of nested value tags, the bean tags are declared either by a referenced bean, or new spring, or
custom bean declarations.

<attributes>

<ref bean="bean-id"/>

<spring:bean parent="uif-bean"/>
<customBean parent="uif-custom"/>
</attributes>

313

Testing and Tooling

Rice Tools

Table 14.1. Rice Tooling: RDS

Main Menu

KRAD

tooling

KRAD

tooling

1 -

W00 =] o LA W G Ra

0 -

EE s s

[Welcome to Rice Dictionary Schema
EE R s s e e

Please select an option from the lis

Set Schemza Name

Set META-TNF Location
Add Support

Remove Support

2dd Tag

Bemove Tag

View Configuration
Save Configuration
Load Configuration

10 - Generate Schema
11 - Sawve Configuration
12 - Load Configuration

Exit

=

— Set Schema Name

— Set META-INF Location

— BAdd Support

- Bemove Support

2dd Tag

- Bemove Tag

- View Configuration

- Save Configuration

- Load Configuration

10 - Generate Schema

11 - Save Configuration Copy
12 - Load Configuration Copy
0 - Exit

f

W0 =] o A s e R P
|

Schema Name: test

METR-TNF Location: C:\Users\johglove\Desktop\Rice

Support Schemas

krad
Tags , Class
collectiondef , org.kuali.rice.krad.datadi
attributedef , org.kuali.rice.krad.datadic
1]

The RDStool included inthe Rice Tool package aids the creation and management of a custom schemaby
automating creating the schema xsd, spring.schemas and the class list file. This allows the user to deploy
a new schema and expand upon it easily before redeploying it with the changes. It also gives the user
instructions and lines needed to implement the schema in the KRAD Framework. The RDS allows the
copying of created schema configurations, letting users manage multiple schemas at the same time.

314

Testing and Tooling

With this tool, the work needed by the user to implement a schema is greatly reduced, as the user only
needs to provide four things:

Schema Name - The name of the new schema.
META-INF - The location of the META-INF folder (../META-INF).
List of Support Schemas - The names of the schemas that the new schemais being built on.

List of Tags- A list of new tagsto be used in the schemawith the classiit represents.

Using Rice Tool's RDS

Setting the Schema Name:

To set the name of the new schema, select the "Set Schema Name" option. Next, enter a name for the
new schemathat is unique among the schemas being used and are acceptable as file names.

META-INF Location:

To set the name of the new schema select the "Set META-INF Location” option at the main menu,
and enter the path of the META-INF file. This path is actually into the folder so it should end in "/
META-INF".

Handling Support Schemas:

To add a schemato build upon, select "Add Support" from the menu, and enter the name of the schema
to be added to the user. Supports can be removed by selecting "Remove Support" and selecting the
support to remove. The name of the supports are case sensitive.

Handling Tags:

To add a new class to the schema, select "Add Tag" from the main menu, and enter both the name of
the new tag, and the package of the tag's class. Supports can be removed by selecting "Remove Tags'
and selecting the support to remove.

Handling the Schema Configuration:

The current configuration being worked on is handled automatically, and can be viewed and saved by
selecting the load configuration option on the menu. The load configuration option will load the last
configuration saved automatically. This is the working configuration and is automatically saved to a
default file, so users will not have to enter afile name.

Handling Additional Schemas:

If the user is working on multiple schemas, the configuration for each of them can be saved outside the
working configuration by selecting the save and load copy options. Unlike the working configuration,
these are saved to user defined xml files, so the user will have to enter their file path.

Generating a Schema:

Once the schema configuration is complete, the custom schema can be deployed by selecting "Generate
Schema" from the menu. This will create the schema, spring.schemas and class list and save them to
the META-INF folder. The RDSwill notify the user that the files were created, followed by the schema
location needed to be used in the bean xml files, and the setting needed for the KRAD configuration
filesfor the classlist.

315

