
Kuali Rice 2.2.6 Technical
Reference Guide

iii

Table of Contents
1. Global ... 1

Rice Client Overview .. 1
Embedded ... 1
Bundled .. 2
Thin Java Client ... 3
Web Services ... 4

Global Configuration Parameters ... 4
Rice Service Architecture and Configuration Overview ... 5

Overview .. 5
Implementation Details .. 5
Accessing Rice Services and Beans Using Spring ... 7

Eclipse and Rice ... 10
Overview ... 10
Download the Tools .. 10
Import rice into Eclipse as a project (Source distribution only) 11
Check out the Rice code (Non-source SVN distribution only) 13
Set up database drivers .. 13
Set up Eclipse for Maven ... 14
Rebuild Rice .. 15
Install the database .. 16
Installing the appropriate configuration files .. 16
Run the sample web application .. 16
Changing Rice project dependencies ... 17
Other Notes ... 18

Creating Rice Enabled Applications ... 20
Creating a Rice Client Application Project Skeleton .. 20
Reorder Eclipse Classpath .. 20
Rice Configuration System ... 20
Data Source and JTA Configuration ... 23

Version Compatibility .. 26
Commitment to Compatibility in Kuali Rice .. 26
Keeping Your Client Application Compatible .. 26

2. KEN ... 28
KEN Overview ... 28

What is KEN? .. 28
KEN Configuration Parameters ... 29
KEN Channels ... 30

Channel Subscription ... 31
KEN Producers .. 31

Adding Producers ... 31
KEN Content Types .. 31

Overview ... 31
Content Type Attributes ... 32

KEN Notifications .. 33
Common Notification Attributes .. 34
Message Content .. 34
Notification Response .. 36

Enterprise Notification Priority .. 37
Managing Priorities ... 37

KEN Delivery Types ... 37
Implementing the Java Interface .. 37

Kuali Rice 2.2.6 Technical
Reference Guide

iv

Default Delivery Types .. 38
KEN: Sending a Notification .. 39

Send a Notification Using the Web Service API ... 40
Web Service URL ... 40
Exposed Web Services ... 40

KEN Authentication .. 41
Web ... 41
Web Services ... 41

3. KEW .. 42
What is Kuali Enterprise Workflow? .. 42

What is workflow, in general? .. 42
What is Kuali Enterprise Workflow, in particular? .. 42
What problems or functions does KEW solve? ... 43
What problems does KEW NOT solve? .. 43
With which applications can KEW integrate? ... 44
Can I use KEW without building an entire application? ... 44

Steps to Building a KEW Application .. 44
Preface .. 44
Initial Steps - Determine the Routing Rules ... 44
Configure the Process Definition ... 45
Client PlugIn Steps ... 48
Build PostProcessor and Services .. 50
Package PlugIn ... 50
Client Web Application Steps ... 50
Final Steps .. 52

KEW Configuration .. 52
KEW Integration Options ... 52
Bundling the KEW Application ... 54
Using the Remote Java Client ... 57
Using the Thin Java Client ... 57
Picture of an Enterprise Deployment .. 60
KEW Core Parameters ... 61
KEW Configuration Properties .. 62
Email Configuration .. 65
Periodic Email Reminders .. 65
Workflow Preferences Configuration .. 66
Outbox Configuration .. 66
Implementing KEW at your institution ... 67

KEW Administration Guide .. 68
Configuration Overview ... 68
Application Constants .. 68
Production Environments ... 68
XML Ingestion ... 69
Message Queue Administration ... 70

KEW System Parameters ... 72
System Parameters Covered .. 72

Defining Workflow Processes Using Document Types ... 76
Common Fields in Document Type XML Definition ... 77
Document Types ... 78
Document Type Authorizer ... 110
Document Type Policies ... 111
Inheritance ... 116

Defining Workflow Processes Using PeopleFlow - a new feature in KEW 117
Technical Information about PeopleFlow ... 117

Kuali Rice 2.2.6 Technical
Reference Guide

v

KEW Routing Components and Configuration Guide ... 118
Configuration Steps ... 119
Routing Rules ... 125
InitiatorRoleAttribute ... 125
RoutedByUserRoleAttribute .. 125
NoOpNode ... 125
RequestActivationNode .. 125
NetworkIdRoleAttribute ... 126
UniversityIdRoleAttribute ... 129
SetVarNode .. 129

Routing Configuration using KIM Responsibilities .. 129
Route Node Definition ... 129
Matching Routing Nodes to Responsibilities .. 130

Using the Workflow Document API ... 131
Overview ... 131
WorkflowDocument ... 131
WorkflowInfo ... 131

Creating an eDocLite Application .. 131
Overview ... 131
Components ... 132
Lazy importing of EDL Styles ... 138

Customizing Document Search .. 142
Custom Search Screen ... 142
Hide Search Fields and Result Columns .. 143
Configure Lookup Function .. 144
Application Document Status .. 146
Define Keyword Search ... 146
Custom Search Criteria Processing ... 147
Custom Search Generation .. 151
Custom Search Results ... 151
Differences between SearchableAttribute and RuleAttribute 154
Document Security .. 154
Overview ... 154
Security Definition .. 154
Order of Evaluation ... 157
Security - Warning Messages .. 157
Service Layer ... 158

Action List Configuration Guide .. 158
Outbox Configuration .. 158

Email Customization .. 158
Configure a CustomEmailAttribute ... 159
Create a Custom XSLT Style Sheet .. 160

Document Link ... 162
Document Link Features ... 162
Document Link API .. 162
Document Link API Example .. 163

Reporting Guide ... 163
Reporting Features .. 163
The Routing Report Screen ... 163
The Report APIs ... 164
Report Criteria .. 164
Interpreting Report Results ... 165

Workflow Plugin Guide ... 165
Overview ... 165

Kuali Rice 2.2.6 Technical
Reference Guide

vi

Application Plugin ... 166
Plugin Layout ... 166
Plugin Configuration .. 167
OJB Configuration within a Plugin ... 169
Overriding Services with a ResourceLoader ... 170

KEW Usage of the Kuali Service Bus ... 172
General Usage .. 172
Implications of using “Synchronous” KSB messaging with KEW 173

4. KIM .. 174
Terminology ... 174

Principal .. 174
Entity .. 174
Group .. 174
Permission ... 174
Responsibility ... 175
Role .. 175
Reference Information .. 175

Services ... 176
Using the Services ... 176
IdentityService .. 176
GroupService .. 178
PermissionService ... 178
ResponsibilityService ... 179
AuthenticationService .. 179
RoleService .. 180
Person Service .. 181

KimTypeService Callbacks ... 181
Implementing Custom KIM Types ... 181
Configuring Custom KIM Types .. 182
Publishing Custom KIM Types to the Kuali Service Bus .. 183

KIM Database Tables .. 183
Table Name Prefixes ... 183
Unmapped LAST_UPDT_DT Columns ... 184

5. KNS .. 185
KNS Configuration Guide .. 185

Database Creation ... 185
KNSConfigurer and RiceConfigurer ... 185
Configuring the KNS Web Application Components .. 186
Module Configuration – Loading Data Dictionary and OJB Files 188
KNS Configuration Parameters .. 189

KNS Business Object Framework .. 190
Business Object Database Table Definition .. 190
Business Object Java Definition ... 194

KNS Data Dictionary Overview ... 199
Business Object Data Dictionary .. 199
Document Data Dictionary Overview .. 207
Maintenance Document Data Dictionary Overview .. 208
Alternate/Additional Display Properties ... 215
Dynamic read-only, hidden, and required Field states ... 217

Configuring a KNS Client in Spring ... 219
Spring JTA Configuration ... 219

KNS Validation and Business Rules Framework ... 220
Rules and Events .. 220
Standard KNS Events .. 221

Kuali Rice 2.2.6 Technical
Reference Guide

vii

Notifying Users of Errors ... 223
Creating New Events ... 223

KNS User Messages .. 224
Retrieving User Messages ... 225
Error Messages ... 225
Struts Messages .. 226

KNS Questions and Dialogs .. 226
Prompting Before Validation ... 226
HTML Markup ... 228

Derived Values Setters ... 229
KNS Notes and Attachments ... 230
KNS Javascript Guide .. 230

Integrating Javascript with KNS tags .. 231
Incorporating AJAX .. 231

KNS Data Masking ... 232
KNS Authorization .. 234

Common Document Authorizations .. 235
Maintenance Document Authorizations ... 236
Transactional Document Authorizations .. 238
Other Authorizations .. 239
Overriding Document Authorizers .. 239

KNS Exception Handling and Incident Reporting .. 240
KNS System Parameters ... 241

Getting text from a system parameter .. 241
Using an indicator parameter ... 242
Parameter Evaluators ... 242
Calling missing System Parameters .. 244
Overriding Rice Parameters ... 244

Building Screens using the KNS Tag Libraries ... 244
Implicit Variables .. 245
Tags for Layout .. 245
Tags for Controls .. 247
Tags for KNS Functionality .. 249
Useful Pre-Created Tabs ... 251

6. KRAD ... 252
KRAD Overview .. 252

Key KRAD Features .. 252
KRAD Conceptual view ... 255
KRAD Relational View .. 256
KRAD Data Dictionary .. 256

Simple Constraints, Min / Max .. 257
Valid Characters Constraints ... 258
Dependency Constraints ... 259
Lookup Constraints ... 259
Conditional Logic Constraints ... 259
Ocurrences Constraints ... 260
Collection Size Constraints ... 261
Constraints on the client side ... 262
Changing Error Messages ... 262
Constraint Architecture (building a custom constraint) ... 263

KRAD Business Objects? ... 266
KRAD Class Libraries? .. 266
Installing and Configuring KRAD .. 266

Configure Rice without KRAD (KNS Only) .. 266

Kuali Rice 2.2.6 Technical
Reference Guide

viii

Creating the KRAD database tables / connections to data? 267
KRAD Configurer and RiceConfigurer? .. 267
Configuring Spring and MVC? .. 267
Module Configuration – Loading Data Dictionary and OJB Files? 267
Other KRAD Configuration Parameters? ... 267
Configure guest user access .. 267

Building application pages using KRAD ... 269
KRAD Templates .. 269

Converting KNS pages to KRAD ... 270
(other? E/R diagrams?, binding paths?, pointer to javadocs?) ... 271

7. KRMS ... 272
KRMS Overview .. 272

What is a Rule Management System, in general? .. 272
What is Kuali's Rule Management System (KRMS), in particular? 272
What problems or functions does KRMS solve? .. 273
What problems does KRMS not address? .. 273
With which types of applications can KRMS integrate? .. 273
Can I use KRMS without building a Rice application? ... 273

KRMS Concepts ... 274
Namespaces, Contexts, Agendas, Rules and Propositions .. 274

KRMS Administration Guide .. 277
Initial Set up tasks .. 277

8. KSB .. 286
How to Use the KSB ... 286

Introduction .. 286
Bean Based Services .. 286
Diagram Notes .. 286

Details of Supported Service Protocols .. 287
Java Rice Client .. 287
Any Java Client .. 287
Non-Java/Non-Rice Client .. 288
KSB Registry as a Service .. 288

Configuring the KSB Client in Spring ... 288
Overview ... 288
Spring Property Configuration ... 289
Spring JTA Configuration ... 290
Put JTA and the Rice Config object in the CoreConfigurer 290
Configuring KSB without JTA .. 291
web.xml Configuration ... 292
Configuration Parameters .. 292
KSBConfigurer Properties ... 294
KSB Configurer .. 295

Configuring Quartz for KSB ... 297
Quartz Scheduling ... 297

Acquiring and Invoking Services Deployed on KSB .. 298
Service invocation overview .. 298
Acquiring and invoking a service directly .. 298
Acquiring and invoking a service using messaging .. 300
Getting responses from service calls made with messaging 301

Failover ... 302
Service call failover ... 302
Failover with queues .. 302
Failover with topics ... 302

KSB Exception Messaging .. 302

Kuali Rice 2.2.6 Technical
Reference Guide

ix

KSB Messaging Paradigms ... 303
Queues .. 303
Topics ... 303
Message Fetcher ... 303

Load Balancing ... 304
Object Remoting ... 304
Publishing Services to KSB .. 304

KSBConfigurer ... 304
Service Exporter ... 304
CallbackServiceExporter ... 305
ServiceDefinition properties .. 306
ServiceNameSpaceURI/MessageEntity .. 307
SOAPServiceDefinition .. 307
JavaServiceDefinition ... 307
Publishing Rice services ... 307

The ResourceLoader Stack .. 308
Overview ... 308
Accessing and overriding Rice services and beans from Spring 309

KSB Security -- STILL NEEDS TO BE REVIEWED!!!! ... 310
Overview ... 310
Credentials types ... 310
CredentialsSource .. 310
KSB connector and exporter code .. 311
Security and Keystores ... 312
BasicAuthenticationService ... 313

Queue and Topic invocation .. 314
Queue invocation .. 314
Topic invocation ... 314

KSB Parameters .. 315
Core Parameters .. 315
KSB Configurer Properties ... 318

JAX-RS / RESTful services .. 318
Caveats .. 318
A Simple Example .. 319
Composite Services ... 320
Additional Service Definition Properties .. 321

Glossary .. 322

x

List of Figures
1.1. Diagram of a sample embedded implementation ... 1
1.2. Diagram of a sample bundled implementation ... 2
1.3. Diagram of a sample Thin Java Client implementation .. 3
1.4. Resource Loader Stack .. 6
1.5. Root Directory Selection .. 12
1.6. Root Directory Selection Continued ... 13
1.7. Eclipse Classpath Variables .. 14
1.8. Eclipse Clean Build .. 15
1.9. Eclipse Jetty Launch ... 17
1.10. Update Eclipse Classpath ... 18
2.1. KEN Message Flow .. 28
2.2. KEN Message Storage ... 29
2.3. Find Delivery Types .. 39
2.4. List and Configure Delivery Types .. 39
3.1. Embedded Deployment Diagram example ... 54
3.2. Bundled deployment diagram .. 57
3.3. Thin client deployment diagram .. 60
3.4. Typical enterprise deployment of Kuali Rice ... 61
3.5. Ingester ... 69
3.6. Ingestion Complete ... 70
3.7. Message Queue Screen .. 70
3.8. Route Queue Entry Edit Screen ... 72
3.9. BlanketApproveSequentialTest Workflow ... 81
3.10. BlanketApproveParallelTest Workflow .. 85
3.11. NotificationTest Workflow ... 88
3.12. Blanket Approve Mandatory Test ... 91
3.13. Save Action Event Test .. 93
3.14. Save Action Even Test: Non-Initiator ... 95
3.15. Take Workgroup Authority ... 97
3.16. Move Sequential Test .. 99
3.17. Move In Process Test ... 102
3.18. Adhoc Route Test .. 104
3.19. PreApproval Test .. 105
3.20. Variables Test ... 109
3.21. Super User Action on Requests .. 114
3.22. Parallel and Sequential Activation Types ... 122
3.23. Parallel-Priority Activation Type .. 122
3.24. EDL Controller Chain .. 132
3.25. Custom Search Screen:Offer Request Example ... 142
3.26. Custom Document Search: Department Example ... 146
3.27. Document Search Screen: Application Document Status Example 146
3.28. Standard Doc Search Results Set .. 151
5.1. Totals .. 205
6.1. Input Field - Grouped .. 254
6.2. KRAD Conceptual View .. 255
6.3. KRAD Relational View .. 256
7.1. Term Lookup screen example .. 284
7.2. Term specification screen example ... 285
8.1. Overview of Supported Service Protocols .. 286
8.2. Global Resource Loader ... 308

xi

List of Tables
1.1. Global Configuration Parameters ... 4
2.1. KEN Core Parameters ... 29
2.2. KREN_CHNL_T .. 30
2.3. KREN_PRODCR_T .. 31
2.4. Common Notification Attributes .. 34
2.5. KREN_PRIO_T .. 37
3.1. Advantages/Disadvantages of KEW Integration Options ... 53
3.2. Required Thin Client Configuration Properties ... 58
3.3. Optional Thin Client Configuration Properties .. 58
3.4. KEW Core Parameters ... 61
3.5. KEW Configuration Properties .. 62
3.6. Optional Properties to Configure Simple SMTP Authentication ... 65
3.7. Configuration Parameters for Email Reminders .. 65
3.8. KEW System Parameters ... 72
3.9. Common Fields in Document Type XML Definition ... 77
3.10. InitiatorRoleAttribute ... 125
3.11. RoutedByUserRoleAttribute .. 125
3.12. NoOpNode ... 125
3.13. RequestActivationNode .. 126
3.14. NetworkIdRoleAttribute .. 126
3.15. UniversityIdRoleAttribute ... 129
3.16. SetVarNode .. 129
3.17. Key Reference Table: Default field names and reference keys .. 153
3.18. Commonly Overridden Services ... 171
4.1. KIM Configuration Parameters .. 176
5.1. KNS Configuration Parameters .. 189
5.2. Comparison of Maintenance and Transactional Documents ... 208
5.3. KNS Events ... 222
5.4. KNS Helper Functions for Permission Checks .. 233
5.5. Document Presentation Controller Methods .. 235
5.6. Document Authorizer Methods .. 236
6.1. Available KRAD Templates .. 269
7.1. Non-common data elements in the proposition table .. 275
7.2. Non-common data elements in the proposition parameter table .. 277
8.1. KSB Configuration Parameters .. 292
8.2. Properties of the ServiceDefinition ... 299
8.3. ServiceDefinition Properties .. 306
8.4. SOAPServiceDefinition .. 307
8.5. JavaServiceDefinition .. 307
8.6. Core Parameters .. 315

xii

List of Examples
2.1. Example – This is an example of how to add a Priority into the table: 37

1

Chapter 1. Global
Rice Client Overview

You can integrate your application with Rice using several methods, each described below.

Embedded
This method includes embedding some or all of the Rice services into your application. When using this
method, a standalone Rice server for the Rice web application is still required to host the GUI screens and
some of the core services.

To embed the various Rice modules in your application, you configure them in the RiceConfigurer using
Spring. For more details on how to configure the RiceConfigurer for the different modules, please read
the Configuration Section in the Technical Resource Guide for the module you want to embed.

Figure 1.1. Diagram of a sample embedded implementation

Advantages

• Integration of database transactions between client application and embedded Rice (via JTA)

• Performance: Embedded services talk directly to the Rice database

• No need for application plug-ins on the server

Global

2

• Great for Enterprise deployment: It’s still a single Rice web application, but scalability is increased
because there are multiple instances of embedded services.

Disadvantages

• Can only be used by Java clients

• More library dependencies than the Thin Client method

• Requires client access to the Rice database

Bundled
This method includes the entire Rice web application and all services into your application. This method
does not require a standalone Rice server.

Each of the Rice modules provides a set of JSPs and tag libraries that you include in your application.
These are then embedded and hooked up as Struts Modules. For more details on how the web portion of
each module is configured, please read the Configuration Guide for each of the modules.

Figure 1.2. Diagram of a sample bundled implementation

Advantages

• All the advantages of Embedded Method

• No need to deploy a standalone Rice server

• Ideal for development or quick-start applications

• May ease development and distribution

Global

3

• Can switch to Embedded Method for deployment in an Enterprise environment

Disadvantages

• Not desirable for Enterprise deployment when more than one application is integrated with Rice

• More library dependencies than the Thin Client method and the Embedded Method (since it requires
additional web libraries).

Thin Java Client
This method utilizes some pre-built classes to provide an interface between your application and web
services on a standalone Rice server.

Many of the Rice services are exposed by the KSB as Java service endpoints. This means they use Java
Serialization over HTTP to communicate. If desired, they can also be secured to provide access to only
those callers with authorized digital signatures.

Figure 1.3. Diagram of a sample Thin Java Client implementation

Advantages

• Relatively simple and lightweight configuration

• Fewer library dependencies

Disadvantages

• No transactional integration between client and server

Global

4

• Plug-ins must be deployed to the server if custom Rice components are needed

Web Services

This means directly using web services to access a standalone Rice server. This method utilizes the same
services as the Thin Java Client, but does not take advantage of pre-built binding code to access those
services.

Advantages

• Any language that supports SOAP web services can be used

Disadvantages

• No transactional integration between client and server

• Plug-ins must be deployed to the server if custom Rice components are needed

• Web Services can be slower than other integration options

Global Configuration Parameters

Table 1.1. Global Configuration Parameters

Configuration Parameter Description Sample value

app.code Together with environment, forms the app.context.name which then
forms the application URL.

kr

application.id The unique ID for the application. A value should be chosen which will
be unique within the scope of Kuali Rice deployment and integration.
There is no default for this value but it must be defined in order for
portions of Kuali Rice to function properly.

application.host The name of the application server the application is being run on. localhost

application.http.scheme The protocol the application runs over. http

cas.url The base URL for CAS services and pages. https://test.kuali.org/cas-stg

config.obj.file The central OJB configuration file.

config.spring.file Used to specify the base Spring configuration file. The default value is
"classpath:org/kuali/rice/kew/config/KEWSpringBeans.xml"

credentialsSourceFactory The name of the
org.kuali.rice.core.security.credentials.CredentialsSourceFactory bean
to use for credentials to calls on the service bus.

datasource.accessToUnderlying
ConnectionAllowed

Allows the data source's pool guard access to the underlying data
connection. See: http://commons.apache.org/dbcp/apidocs/org/apache/
commons/dbcp/BasicDataSource.html
#isAccessToUnderlyingConnectionAllowed()

true

datasource.initialSize The initial number of database connections in the data source pool.
See: http://commons.apache.org/dbcp/apidocs/org/apache/commons/
dbcp/ BasicDataSource.html#initialSize

7

datasource.minIdle The number of connections in the pool which can be idle without
new connections being created. See: http://commons.apache.org/dbcp/
apidocs/org/apache/commons/dbcp/ BasicDataSource.html#minIdle

7

datasource.ojb.sequenceManager.
className

The class used to manage database sequences in databases
which do not support that feature. Default value is
"org.apache.ojb.broker.platforms.KualiMySQLSequenceManagerImpl"

datasource.pool.maxActive The maximum number of connections allowed in the data
source pool. See: http://commons.apache.org/dbcp/apidocs/org/apache/
commons/dbcp/ BasicDataSource.html#maxActive

50

Global

5

Configuration Parameter Description Sample value

environment The name of the environment. This will be used to determine if
the environment the application is working within is a production
environment or not. It is also used generally to express the "name" of
the environment, for instance in the URL.

dev

http.port The port that the application server uses; it will be appended to all URLs
within the application.

8080

log4j.settings.props The log4j properties of the application, set up in property form.

log4j.settings.xml The log4j properties of the application, set up in XML form.

rice.additionalSpringFiles A comma delimited list of extra Spring files to load when the application
starts.

additional.config.locations A comma delimited list of additional configuration file locations to
load after the main configuration files have been loaded. Note that this
parameter only applies to the Rice standalone server.

rice.custom.ojb.properties The file where OJB properties for the Rice application can be found.
The default is "org/kuali/rice/core/ojb/RiceOJB.properties"

org/kuali/rice/core/ojb/RiceOJB.properties

rice.cache.disableAllCaches Flag to disable all Spring caching in Rice false

rice.cache.disabledCaches Flag to disable specific Spring caches in Rice by name. The cache names
should be comma separated.

http://rice.kuali.org/kim/v2_0/PermissionType, http://
rice.kuali.org/kim/v2_0/TemplateType{Permission}

rice.logging.configure Determines whether the logging lifecycle should be loaded. false

rice.url The main URL to the Rice application. ${application.url}/kr

security.directory The location where security properties exist, such as the user name and
password to the database.

/usr/local/rice/

transaction.timeout The length of time a transaction has to complete; if it goes over this
value, the transaction will be rolled back.

300000

version The version of the Rice application. 03/19/2007 01:59 PM

Rice Service Architecture and Configuration
Overview

This document describes how the Rice Service Architecture operates.

Overview

The Rice System consists of a stack of ResourceLoader objects that contain configuration information and
expose service implementations (potentially from remote sources). Each module supplies its own Spring
context containing it’s services. These Spring contexts are then wrapped by a ResourceLoader which is
used to locate and load those services.

Implementation Details

Rice is composed of a set of modules that provide distinct functionality and expose various services.
Each module loads it’s own Spring context which contains numerous services. These Spring contexts are
wrapped by a ResourceLoader class that provides access to those services. A ResourceLoader is similar
to Spring's BeanFactory interface, since you acquire instances of services by name. Rice adds several
additional concepts, including qualification of service names by namespaces. When the RiceConfigurer
is instantiated, it constructs a GlobalResourceLoader which contains an ordered chain of ResourceLoader
instances to load services from:

Global

6

Figure 1.4. Resource Loader Stack

All application code should use the GlobalResourceLoader to obtain service instances. The getService(…)
method iterates through each registered ResourceLoader to locate a service registered with the specified
name. In it’s default configuration, the GlobalResourceLoader contacts the following resource loaders in
the specified order:

1. Spring ResourceLoader – wraps the spring contexts for the various Rice modules

2. Plugin Registry – allows for services and classes from to be loaded from packaged plugins

3. Remote ResourceLoader – integrates with the KSB ServiceRegistry to locate and load remotely
deployed services

As shown above, the last ResourceLoader on the list is the one registered by KSB to expose services
available on the service bus. It’s important that this resource loader is consulted last because it gives
priority to using locally deployed services over remote services (if the service is available both locally and
remotely). This is meant to help maximize performance.

Thin Client Implementation

To implement a thin client version of Rice, modify the configuration files as per the following

config.xml:

<config>
 <param name="environment" override="false">dev</param>
 <param name="application.id">rice-remote-test-client</param>
 <param name="message.persistence">false</param>
 <param name="kim.mode">THIN</param>
 <param name="kew.mode">THIN</param>
 <param name="ksb.mode">THIN</param>
 <param name="standalone.application.id">TRAVEL</param>
 <param name="config.location">/root/kuali/main/${environment}/rice-remote-test-client-config.xml</param>
 <param name="config.location">classpath:META-INF/common-config-defaults.xml</param>
</config>

SpringBeans.xml:

Global

7

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.1.xsd">

<bean id="jtaTransactionManager" class="org.springframework.transaction.jta.JotmFactoryBean">
 <property name="defaultTimeout" value="3600"/>
</bean>

<bean id="bootstrapConfig" class="org.kuali.rice.core.impl.config.property.ConfigFactoryBean"
 p:initialize="true">
 <property name="configLocations">
 <list>
 <value>classpath:config.xml</value>
 </list>
 </property>
</bean>

<bean id="coreConfigurer" class="org.kuali.rice.core.impl.config.module.CoreConfigurer" depends-
on="bootstrapConfig"
 p:transactionManager-ref="jtaTransactionManager"
 p:userTransaction-ref="jtaTransactionManager"/>

<bean id="ksbConfigurer" class="org.kuali.rice.ksb.messaging.config.KSBConfigurer"/>

<bean id="kimConfigurer" class="org.kuali.rice.kim.config.KIMConfigurer"/>

<bean id="kewConfigurer" class="org.kuali.rice.kew.config.KEWConfigurer"/>

</beans>

Accessing Rice Services and Beans Using Spring

Rice Service as a Spring Bean

In addition to programmatically acquiring service references, you can also import Rice services into a
Spring context with the help of the ResourceLoaderServiceFactoryBean:

<!-- import a Rice service from the ResourceLoader stack -->
<bean id="aRiceService" class="org.kuali.rice.resourceloader.support.ResourceLoaderServiceFactoryBean"/>

This class uses the GlobalResourceLoader to locate a service named the same as the ID and produces a
bean that proxies that service. The bean can thereafter be wired in Spring like any other bean.

Using Annotations

Rice includes a Spring bean that extends the Spring auto-wire process (unlike the current version of Spring,
the auto-wire process in the version of Spring that’s included with Rice cannot be extended). With this
bean configured into your application, you can use the @RiceService annotation to identify Rice services
to auto-wire.

Add this bean definition to the top of your Spring configuration file to configure the Spring extension:

<bean class="org.kuali.rice.core.util.GRLServiceInjectionPostProcessor"/>

Add the @RiceService annotation to any field or method, following the normal Spring rules for injection
annotations. The annotation requires a name property that specifies the name of the service to inject. If the

Global

8

name requires a namespace other than the current context namespace, you must specify the namespace as
a prefix (for example, “{KEW}actionListService”).

@RiceService(name="workflowDocumentService")
protected WorkflowDocumentService workflowDocumentService;

Publishing Spring Services to the Global Resource Loader

In certain cases, it may be desirable to publish all beans in a particular Spring context to
the Resource Loader stack. Fortunately, there is an easy way to accomplish this using the
RiceSpringResourceLoaderConfigurer as shown below:

<!—- Publish all services from this Spring context to the GRL -->
<bean class="org.kuali.rice.core.resourceloader.RiceSpringResourceLoaderConfigurer"/>

<bean id="myService1" class="my.app.package.MyService1"/>

<bean id="myService2" class="my.app.package.MyService2"/>

In the above example, both myService1 and myService2 would be added to a Resource Loader that would
be put at the top of the Resource Loader stack. The names of these services would be “myService1” and
“myService2” with no namespace. To load these services you would use the following call to the Global
Resource Loader:

MyService1 myService1 = GlobalResourceLoader.getService(“myService1”);

Customizing and Overriding Rice Services

Reasons for Overriding Services

The most common reason that one would want to override services in Kuali Rice is to customize the
implementation of a particular service for the purposes of institutional customization.

A good example of this is the Kuali Identity Management (KIM) services. KIM is bundled with reference
implementations that read identity (and other) data from the KIM database tables. In many cases an
implementer will already have an existing identity management solution that they would like to integrate
with. By overriding the service reference implementation with a custom one, it’s possible to integrate with
other institutional services (such as LDAP or other services).

Installing an Application Root Resource Loader

An alternative to using the RiceSpringResourceLoaderConfigurer to publish beans from a Spring context
to the Rice Resource Loader framework is to inject a root Resource Loader into the RiceConfigurer.

You can create an implementation of ResourceLoader that returns a custom bean instead of the Rice bean,
or you can use a built-in resource loader like the SpringBeanFactoryResourceLoader which wraps a Spring
context in a ResourceLoader. Your configuration needs to inject this bean as the RootResourceLoader of
the RiceConfigurer using the rootResourceLoader property, as shown below:

<!-- a Rice bean we want to override in our application -->
<bean id="overriddenRiceBean" class="my.app.package.MyRiceServiceImpl"/>

Global

9

<!-- supplies services from this Spring context -->
<bean id="appResourceLoader"
 class="org.kuali.rice.core.resourceloader.SpringBeanFactoryResourceLoader"/>

<bean id="rice" class="org.kuali.rice.core.config.RiceConfigurer">
 <property name="rootResourceLoader" ref="appResourceLoader"/>
 ...
</bean>

Warning

Application Resource Loader and Circular Dependencies

Be careful when mixing registration of an application root resource loader and lookup of Rice
services via the GlobalResourceLoader. If you are using an application resource loader to override
a Rice bean, but one of your application beans requires that bean to be injected during startup, you
may create a circular dependency. In this case, you have to make sure you are not unintentionally
exposing application beans (which may not yet have been fully initialized by Spring) in the
application resource loader, or you have to arrange for the GRL lookup to occur lazily, after
Spring initialization has completed (either programmatically, or via some sort of proxy).

Replacing Rice Configuration Files

A Rice-enabled web application (including the Rice Standalone distribution) contains a RiceConfigurer
(typically defined in a Spring XML file) that loads the Rice modules. You can override services from the
various modules by injecting a list of additional spring files to load as in the following example:

<bean id="rice" class="org.kuali.rice.core.config.RiceConfigurer">
 ...
 <property name="additionalSpringFiles" ref="appResourceLoader">
 <list>
 <value>classpath:my/app/package/MyCustomSpringFile.xml</value>
 </list>
 </property>
 ...
</bean>

You will need to ensure that any Spring XML files and necessary classes they reference are in the classpath
of your application. If you are overriding things in the Rice standlone application itself, then you would
need to place classes in the WEB-INF/classes directory of the war and any jars in the WEB-INF/lib
directory.

It’s a standard behavior of Spring context loading that the last beans found in the context with a particular
id will be the versions loaded during context initialization. The additionalSpringFiles property will put
any Spring files specified at the end of the list loaded by the RiceConfigurer. So any beans defined in that
file with the same id as beans in the internal Rice Spring XML files will effectively override the out-of-
the-box version of those services.

When working with the packaged Rice standalone server, you won’t have access to the Spring XML
file which configures the RiceConfigurer. In this case, you can specify additional spring files using a
configuration parameter in your Rice configuration XML, as in the following example:

<param name=”rice.additionalSpringFiles”
value=”classpath:my/app/package/MyCustomSpringFile.xml”/>

Global

10

Eclipse and Rice
Warning

Recent change in Eclipse setup

Due to its unreliability, we have recently stopped relying on the Maven plugin for Eclipse to
manage the project build path. Instead, we are using the eclipse:eclipse plugin for Maven to
generate a static build path. Please note the changes in the Eclipse project setup.

Overview
This document describes how to set up an Eclipse environment for running Rice from source and/or for
developing on the Kuali Rice project. To create your own Kuali Rice client application, see the instructions
in Creating a Rice-Enabled Application.

Download the Tools
1. Install Java 5 SDK - http://java.sun.com.

2. Install the Eclipse Europa Bundle for Java Developers - http://www.eclipse.org/europa/

• You need to allocate at least 768MB of memory for the Eclipse runtime and at least 512MB of
memory for the JVM that Eclipse uses when it runs Java programs and commands.

• Go to Eclipse Preferences.

• On Windows: Window --> Preferences --> Java --> Installed JREs.

• On Mac OS X: Eclipse --> Preferences --> Java --> Installed JREs.

• Select the JRE and click Edit.

• Add -Xmx768m to Default VM Arguments

3. Install Maven2 for command line usage:

• Download Maven2.0.9 from http://maven.apache.org/download.html.

• Install Maven2 into C:\maven on Windows or /opt/maven on Linux. This directory is called the
Maven Root directory.

• Register Maven on your computer's PATH so that it can be invoked as an executable without have
to run the mvn command from the <maven_root>/bin directory all of the time.

• Set the M2_HOME environment variable on your system to the location of your Maven2 installation.

4. Update .m2 repository directory (WINDOWS ONLY) By default (on Windows) maven places the .m2
repo directory in the user directory inside the Documents and Settings folder. The space characters
can cause issues. To avoid them we need to do the following:

a. Figure out where you want your local maven repository to be stored, i.e. C:\work\m2

b. Make sure you turn off eclipse if it has auto updating maven turned on.

http://maven.apache.org/guides/mini/guide-ide-eclipse.html
http://java.sun.com
http://www.eclipse.org/europa/

Global

11

c. Move everything from your old maven directory to your new one. This will save you a considerable
amount of time. If you do not do this then maven will re-download all repositories to the new location.

d. Update your settings.xml file. This should be located in C:\Documents and Settings\user
\.m2\settings.xml. Add this line to the file somewhere inside the <settings> tag:

<localRepository>C:\work\m2</localRepository>

Import rice into Eclipse as a project (Source distribution
only)

Note: You only need to follow these instructions if you downloaded the source distribution of Rice as a
zip file. If you are a contributing developer who will be committing code to CVS, please skip this step
(Importing rice into Eclipse as a Project) and go to the next one instead.

1. Open Eclipse.

2. Choose File --> Import --> Existing Projects into Workspace.

Global

12

Figure 1.5. Root Directory Selection

3. Browse for and select /java/projects/rice (or where ever you unzipped the source distribution to) as
the root project directory and click Finish.

Global

13

Figure 1.6. Root Directory Selection Continued

Check out the Rice code (Non-source SVN distribution
only)

Note: You do not need to perform the steps in this section if you have downloaded the source distribution
of Rice as a zip file.

1. We recommend installing Subclipse as a plugin from your Eclipse instance (http://subclipse.tigris.org/
install.html)

2. Set up a new SVN repository in Eclipse: http://svn.kuali.org/repos/rice

3. Check out the Rice code from the appropriate branch of code (i.e. branches/rice-release-1-0-0-br)

Set up database drivers

Oracle

1. If this is the first time you've set up Eclipse to work with Rice, Maven won't find the Oracle drivers
in the Kuali repository.

2. If you do not already have an Oracle driver saved in /java/drivers as ojdbc14.jar, you can download
one from http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html. Save it as /java/
drivers/ojdbc14.jar

3. Run this command from the command line (this should all be on one line when you enter it):

UNIX

mvn install:install-file -DgroupId=com.oracle -DartifactId=ojdbc14
 -Dversion=10.2.0.3.0 -Dpackaging=jar -Dfile=/java/drivers/ojdbc14.jar

Windows

mvn install:install-file -DgroupId=com.oracle -DartifactId=ojdbc14
 -Dversion=10.2.0.3.0 -Dpackaging=jar -Dfile=c:/java/drivers/ojdbc14.jar

http://subclipse.tigris.org/install.html
http://subclipse.tigris.org/install.html
http://svn.kuali.org/repos/rice
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html

Global

14

Or, run the equivalent Ant target:

ant install-oracle-jar

Other databases

The driver for MySQL is already referenced by the Kuali Rice project. Rice does not have out-of-the-box
support for other RDBMS at this point in time. However, if you want to use other databases, it is possible
to add database support for that particular database as long as it’s supported by the Apache OJB project
(http://db.apache.org/ojb).

Set up Eclipse for Maven
If this is the first time you are using Eclipse with a project build path generated by the eclipse:eclipse
Maven plugin, you need to define the M2_REPO Classpath Variable in your Eclipse: Java > Build Path
> Classpath Variable, under the Preferences menu.

Figure 1.7. Eclipse Classpath Variables

The Rice project contains auto-generated build path entries that rely on the presence of this M2_REPO
variable to determine the location of dependency libraries.

http://db.apache.org/ojb

Global

15

Rebuild Rice
1. If dependency libraries have been added or removed from the Rice project, including the first time you

check out Rice, you should run the retrieve-maven-dependencies Ant target to pull down all necessary
libraries.

Note: For the Maven2 Ant tasks to work, Ant has to know where your Maven2 home is. If you have
set the M2_HOME variable in your system environment, it will be recognized automatically. If not,
or if for some reason you want to use a different location (e.g., if you want to have multiple Maven
installations), then you can set the maven.home.directory property in /root/kuali-build.properties.

2. Add the build.xml file in the root of the Rice project to your Ant view, or open a shell to the Rice
project directory and run the retrieve-maven-dependencies target. You should see Maven retrieving any
required dependencies. If you are running this Ant task in Eclipse, then you must recognize the PATH
environment variable under Run > External Tools > Open External Tools Dialog > Environment.

3. Optionally, if you have trouble running this Ant target, you can just run an mvn compile from the
command line to invoke a Maven compilation. This will download all dependencies into your local
maven repository.

4. Execute a clean build of the project in Eclipse:

Figure 1.8. Eclipse Clean Build

5. If your build was previously broken due to the M2_REPO classpath variable being undefined or due
to missing libraries, it should now have been built successfully.

Global

16

Install the database

To set up the database, please follow the instructions in the Installation Guide under Preparing the
Database.

Installing the appropriate configuration files

Note: Be sure to use an appropriate editor such as vi or Notepad when editing configuration files. For
example, we have found that WordPad can corrupt the configuration file.

To install the configuration file for the Kuali Rice sample application, you can do an Ant-based setup or
a manual setup.

Ant-based setup

1. Execute the prepare-dev-environment Ant target in the build.xml file located in the root of the project.

2. This creates: <user home>/kuali/main/dev/sample-app-config.xml

Manual setup

1. Copy the config/templates/sample-app-config.template.xml file to <user home>/kuali/main/dev/
sample-app-config.xml.

• For Windows, your user home is: C:\Documents and Settings\<user name>

• For Unix/Linux, your user home is: /home/<user name>

• For Mac OS X, your user home is: /Users/<user name>

2. Add the appropriate database parameters to <user home>/kuali/main/dev/sample-app-config.xml

• Oracle

<param name="datasource.url">jdbc:oracle:thin:@localhost:1521:XE</param>
<param name="datasource.username">oracle.username</param>
<param name="datasource.password">oracle.password</param>

• MySQL

<param name="datasource.url">jdbc:mysql://localhost:3306/kulrice</param>
<param name="datasource.username">mysql.username</param>
<param name="datasource.password">mysql.password</param>

Run the sample web application

• Back in Eclipse, locate and run the rice - JettyServer.launch file:

Global

17

Figure 1.9. Eclipse Jetty Launch

• Point your browser to the following url: http://localhost:8080/kr-dev

Changing Rice project dependencies

If you change any of the dependencies in any of the Rice pom.xml files, you must run the update-eclipse-
classpath Ant target to regenerate the top-level Eclipse .classpath file for the project.

http://localhost:8080/kr-dev

Global

18

Figure 1.10. Update Eclipse Classpath

If you change the dependencies and commit the change, when others update their local source copy they
must run the corresponding retrieve-maven-dependencies target again.

Note

Refresh your Eclipse project if dependencies (and therefore the Eclipse.classpath file) have
changed.

Other Notes

Settings.xml warning

If this is the first time that you have installed the Maven plugin into your Eclipse environment, you may
need to add a file called settings.xml in your <user home>/.m2 directory.

The easiest way to tell if you need to do this is that there will be a warning in the console after building,
stating that the settings.xml file is missing. All you need to do is create a settings.xml file with this content:

<settings/>

Rebuild, and the warning should no longer appear.

Note

You do NOT ever need to run any of the context menu Maven commands from inside Eclipse.

You do NOT need to run any Maven commands from the command line.

The Eclipse Maven2 plugin is a little bit flaky sometimes. You might need to close Eclipse to
flush its memory.

Default workspace JDK not 1.5

If your default workspace JDK is not 1.5, you need to reconfigure the Maven external tools definitions
for Rice this way:

Global

19

1. Open Run->External Tools->External Tools Dialog... menu item.

2. Find the m2 build category.

3. Select each preconfigured Rice external tool configuration, select the JRE tab, and ensure the JRE is
set to 1.5.

Using a custom maven repository location

The default Maven2 repository location is in your user directory; however, if you have a pre-existing
repository (or for some other reason don't want it in your user directory), you can alter Maven2's repository
location. The current version of the Maven2 plugin has a bug that does not allow this to work (see http://
jira.codehaus.org/browse/MNGECLIPSE-314), but the 0.0.11 development version available from the
update site http://m2eclipse.codehaus.org/update-dev/ allows you to specify a custom local repository.

Note

If you make this change, you may have to delete and re-add the Maven Managed Dependencies
library to your project build path if you have an existing, invalid, Maven-managed dependencies
library.

Setting JDK Compliance version

If your default workspace JDK is not 1.5, then you also need to set the JDK compliance level to the
appropriate version for the project. You can find this by right-clicking on the Project -> Properties ->
Java Compiler -> Compiler compliance level. Be sure the Enable project specific settings checkbox is
checked.

Turn off validation

Be sure to turn off validation at the project level by right-clicking on the Project, then clicking Properties
-> Validation -> Suspend all Validators. This can be adjusted once a successful Rice project is up and
running.

ORA-12519, TNS:no appropriate service handler found

If you start seeing java.sql.SQLException: Listener refused the connection with the following error:
ORA-12519, TNS:no appropriate service handler found, there are a couple of things that may remedy
the problem.

1. Increase the Oracle XE connection limit:

alter system set processes=150 scope=spfile;
alter system set sessions=150 scope=spfile;

2. Lower the pool size in your rice config.xml:

<param name="datasource.pool.maxSize">10</param>

Disconnect any other clients and then restart Oracle-XE.

http://jira.codehaus.org/browse/MNGECLIPSE-314
http://jira.codehaus.org/browse/MNGECLIPSE-314
http://m2eclipse.codehaus.org/update-dev/

Global

20

Creating Rice Enabled Applications

Creating a Rice Client Application Project Skeleton
In order to install a Rice client as a standalone server, please see the installation guide instructions for
Standalone Server Setup section in the Installation Guide.

Reorder Eclipse Classpath
Once you have completed the installation, you will need to import your project into eclipse and reorder the
eclipse classpath to account for a change in how the classpath was generated by maven. Navigate to your
project properties and select the Order and Export tab from the Java Build Path project property. There
will be an entry for JRE System Library at the bottom of the list that should be moved to the very top.

Rice Configuration System
The Rice Configuration System is an XML-based solution which provides capabilities similar to Java
property files, but also adds some additional features. The configuration system lets you:

• Configure keys and values

• Aggregate multiple files using a single master file

• Build parameter values from other parameter values

• Use the parameters in Spring

• Override configuration values

Configuring Keys and Values

Below is an example of a configuration XML file. Note that the white space (spaces, tabs, and new lines)
is stripped from the beginning and end of the values.

<config>
 <param name="client1.location">/var/lib/jenkins/workspace/rice-2.2-release-sitedeploy/target/checkout/src/
test/clients/TestClient1</param>
 <param name="client2.location">/var/lib/jenkins/workspace/rice-2.2-release-sitedeploy/target/checkout/src/
test/clients/TestClient2</param>
 <param name="ksb.client1.port">9913</param>
 <param name="ksb.client2.port">9914</param>
 <param name="ksb.testharness.port">9915</param>
 <param name="threadPool.size">1</param>
 <param name="threadPool.fetchFrequency">3000</param>
 <param name="bus.refresh.rate">3000</param>
 <param name="keystore.alias">rice</param>
 <param name="keystore.password">super-secret-pw</param>
 <param name="keystore.file">/var/lib/jenkins/workspace/rice-2.2-release-sitedeploy/target/checkout/src/
test/resources/keystore</param>
</config>

Here is an example of the Java code required to parse the configuration XML file and convert it into a
Properties object:

Config config = new SimpleConfig(configLocations, properties);

http://site.kuali.org/rice/2.2.6/reference/html/IG.html#standalone_server
http://site.kuali.org/rice/2.2.6/reference/html/IG.html#standalone_server

Global

21

config.parseConfig();

In the sample above, configLocations is a List<String> containing file locations using the standard
Spring naming formats (examples: file:/whatever and classpath:/whatever). The variable properties is a
Properties object containing the default property values.

Here is an example of retrieving a property value from Java code:

String val = ConfigContext.getCurrentContextConfig().getProperty(“keystore.alias”);

Aggregating Multiple Files

The Rice Configuration System has a special parameter, config.location, which you use to incorporate
the contents of another file. Typically, you use this to include parameters that are maintained by system
administrators in secure locations. The parameters in the included file are parsed as if they had been in the
original file at that place. Here is an example:

<config>
 <param name="config.location">file:/my_secure_dir/my_secure_file.xml</param>
</config>

Building Parameter Values from Other Parameters

Once you have defined a parameter, you can use it in the definition of another parameter. For example:

<config>
 <param name="apple">red delicious</param>
 <param name="taste">yummy yummy</param>
 <param name="apple.taste">${apple} ${taste}</param>
</config>

When this example is parsed, the value of the parameter apple.taste will be set to red delicious yummy
yummy.

Using the Parameters in Spring

Because the parameters are converted into a Properties object, you can retrieve the complete list of
parameters using this code:

config.getProperties()

You typically use this in Spring to parse a configuration and put its properties in a
PropertyPlaceHolderConfigurer so that the parameters are available in the Spring configuration file:

<bean id="config" class="org.kuali.rice.core.config.spring.ConfigFactoryBean">
 <property name="configLocations">
 <list>
 <value>classpath:my-config.xml</value>
 </list>
 </property>
</bean>

<bean id="configProperties"
 class="org.springframework.beans.factory.config.MethodInvokingFactoryBean">
 <property name="targetObject" ref="config" />

Global

22

 <property name="targetMethod" value="getProperties" />
</bean>

<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="properties" ref="configProperties" />
</bean>

Once this is complete, the configuration parameters can be used like standard Spring tokens in the bean
configurations:

<bean id="dataSource" class="org.kuali.rice.core.database.XAPoolDataSource">
 <property name="transactionManager" ref="jotm" />
 <property name="driverClassName" value="${datasource.driver.name}" />
 <property name="url" value="${datasource.url}" />
 <property name="maxSize" value="${datasource.pool.maxSize}" />
 <property name="minSize" value="${datasource.pool.minSize}" />
 <property name="maxWait" value="${datasource.pool.maxWait}" />
 <property name="validationQuery" value="${datasource.pool.validationQuery}" />
 <property name="username" value="${datasource.username}" />
 <property name="password" value="${datasource.password}" />
</bean>

Initializing the Configuration Context in Rice

The Config object can be injected into the RiceConfigurer that’s configured in Spring and it will initialize
the configuration context with those configuration parameters.

This is done as follows:

<bean id="config" class="org.kuali.rice.core.config.spring.ConfigFactoryBean">
 ...
</bean>

<bean id="rice" class="org.kuali.rice.core.config.RiceConfigurer">
 <property name=”rootConfig” ref=”config”/>
</bean>

Overriding Configuration Values

The primary purpose of overriding configuration values is to provide a set of default values in a base
configuration file and then provide a separate file that overrides the values that need to be changed. You
can also update a parameter value multiple times in the same file. Parameter values can be changed any
number of times; the last value encountered while parsing the file will be the value that is retained.

For example, when parsing the file:

<config>
 <param name="taste">yummy yummy</param>
 <param name="taste">good stuff</param>
</config>

The final value of the parameter taste will be good stuff since that was the last value listed in the file.

As another example, when parsing the file:

<config>
 <param name="taste">yummy yummy</param>
 <param name="apple.taste">apple ${taste}</param>
 <param name="taste">good stuff</param>

Global

23

</config>

The final value of the parameter apple.taste will be apple yummy yummy. This demonstrates that
parameters that appear in the value are replaced by the current value of the parameter at that point in the
configuration file.

Additionally, you can define certain parameters in such that they won’t override an existing parameter
value if it’s already set.

As an example of this, consider the following configuration file:

<config>
 <param name="taste" override=”false”>even yummier</param>
 <param name=”brand.new.param” override=”false”>brand new value</param>

</config>

If this file was loaded into a configuration context that had already parsed our previous example, then
it would notice that the taste parameter has already been set. Since override is set to false, it would
not override that value with even yummier. However, since brand.new.param had not been defined
previously, it’s value would be set.

Data Source and JTA Configuration
The Kuali Rice software require a Java Transaction API (JTA) environment in which to execute database
transactions. This allows for creation and coordination of transactions that span multiple data sources. This
feature is something that would typically be found in a J2EE application container. However, Kuali Rice
is designed in such a way that it should not require a full J2EE container. Therefore, when not running
the client or web application inside of an application server that provides a JTA implementation, you
must provide one. The default JTA environment that Kuali Rice uses is JOTM. There are other open-
source options available, such as Atomikos TransactionsEssentials, and there are also commercial and open
source JTA implementations that come as part of an application server (i.e. JBoss, WebSphere, GlassFish).
Alternatively, Kuali Rice can be configured to use Bitronix.

If installing Rice using the standalone server option and a full Java application server is not being utilized,
then the libraries required for JTA will need to be moved to the servlet server which is being used.
These libraries have already been retrieved by Maven during project set up; it is a simple matter of
moving them from the Maven repository to the libraries directory of the servlet server. Assuming, for
instance, that Tomcat is being used, the following files need to be copied from the Maven repository to
$TOMCAT_HOME/common/lib:

• {Maven repository home}/repository/javax/transaction/jta/1.0.1B/jta-1.0.1B.jar

• {Maven repository home}/repository/jotm/jotm/2.0.10/jotm-2.0.10.jar

• {Maven repository home}/repository/jotm/jotm_jrmp_stubs/2.0.10/jotm_jrmp_stubs-1.0.10.jar

• {Maven repository home}/repository/xapool/xapool/1.5.0-patch3/xapool-1.5.0-patch3.jar

• {Maven repository home}/repository/howl/howl-logger/0.1.11/howl-logger-0.1.11.jar

• {Maven repository home}/repository/javax/resource/connector-api/1.5/connector-api-1.5.jar

• {Maven repository home}/repository/javax/resource/connector/1.0/connector-1.0.jar

• {Maven repository home}/repository/org/objectweb/carol/carol/2.0.5/carol-2.0.5.jar

http://jotm.ow2.org/
http://www.atomikos.com/Main/TransactionsEssentials
http://docs.codehaus.org/display/BTM/Home

Global

24

Additionally, the {Rice project home}config/jotm/carol.properties configuration file needs to be moved
to $TOMCAT_HOME/common/classes, this time from the built Rice project.

Configuring JOTM

Configure the JOTM transaction manager and user transaction objects as Spring beans in your application’s
Spring configuration file. Here is an example:

<bean id="transactionManagerXAPool" class="org.springframework.transaction.jta.JotmFactoryBean">
 <property name="defaultTimeout" value=”3600”/>
</bean>

<alias name="transactionManagerXAPool" alias="jtaTransactionManager"/>
<alias name="transactionManagerXAPool" alias="jtaUserTransaction"/>

You can use these beans in the configuration of Spring’s JTA transaction manager and the Rice configurer.
This configuration might look like the following:

<bean id="springTransactionManager" class="org.springframework.transaction.jta.JtaTransactionManager">
 <property name="userTransaction">
 <ref local="userTransaction" />
 </property>
 <property name="transactionManager">
 <ref local="jtaTransactionManager" />
 </property>
</bean>

<bean id="rice" class="org.kuali.rice.core.config.RiceConfigurer">
 <property name="transactionManager" ref="jtaTransactionManager" />
 <property name="userTransaction" ref="jtaUserTransaction" />
 ...
</bean>

Configuring JOTM Transactional Data Sources

JTA requires that the datasources that are used implement the XADataSource interface. Some
database vendors, such as Oracle, have pure XA implementations of their datasources. However,
internally to Rice, we use wrappers on plain datasources using a library called XAPool. When
configuring transactional data sources that will be used within JOTM transactions, you should use the
org.kuali.rice.core.database.XAPoolDataSource class provided with Rice. Here is an example of a Spring
configuration using this data source implementation:

<bean id="myDataSource" class="org.kuali.rice.core.database.XAPoolDataSource">
 <property name="transactionManager" ref="jtaTransactionManager" />
 <property name="driverClassName" value="${datasource.driver.name}" />
 <property name="url" value="${datasource.url}" />
 <property name="maxSize" value="${datasource.pool.maxSize}" />
 <property name="minSize" value="${datasource.pool.minSize}" />
 <property name="maxWait" value="${datasource.pool.maxWait}" />
 <property name="validationQuery" value="${datasource.pool.validationQuery}" />
 <property name="username" value="${datasource.username}" />
 <property name="password" value="${datasource.password}" />
</bean>

Configuring JTOM Non-Transactional Data Sources

When using the built-in instance of the Quartz scheduler that Rice creates, you will need to inject a non-
transactional data source into the RiceConfigurer in addition to the JTA transactional instance. This is
to prevent deadlocks in the database and is required by the Quartz software (the Quartz web site has

Global

25

an FAQ entry with more details on the problem). Here is an example of a non-transactional data source
configuration:

<bean id="nonTransactionalDataSource"
 class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
 <property name="driverClassName" value="${datasource.driver.name}"/>
 <property name="url" value="${datasource.url}"/>
 <property name="maxActive" value="${datasource.pool.maxActive}"/>
 <property name="minIdle" value="7"/>
 <property name="initialSize" value="7"/>
 <property name="validationQuery" value="${datasource.pool.validationQuery}"/>
 <property name="username" value="${datasource.username}" />
 <property name="password" value="${datasource.password}" />
 <property name="accessToUnderlyingConnectionAllowed"
 value="${datasource.dbcp.accessToUnderlyingConnectionAllowed}"/>
</bean>

You need to either inject this non-transactional data source into the Quartz SchedulerFactory Spring bean
(if you are explicitly defining it) or into the rice bean in the Spring Beans config file as follows:

<bean id="rice" class="org.kuali.rice.config.RiceConfigurer">
 ...
 <property name="nonTransactionalDataSource" ref="nonTransactionalDataSource" />
 ...
</bean>

Configuring Bitronix

Configure the Bitronix transaction manager and user transaction objects as Spring beans in your
application’s Spring configuration file. Here is an example:

<bean id="btmConfig" factory-method="getConfiguration"
 class="bitronix.tm.TransactionManagerServices" lazy-init="true"/>
<bean id="transactionManagerBitronix" class="bitronix.tm.TransactionManagerServices"
 factory-method="getTransactionManager" depends-on="btmConfig" destroy-method="shutdown" lazy-
init="true"/>

<alias name="transactionManagerBitronix" alias="jtaTransactionManager"/>
<alias name="transactionManagerBitronix" alias="jtaUserTransaction"/>

You can use these beans in the configuration of the Rice configurer. This configuration might look like
the following:

<bean id="rice" class="org.kuali.rice.core.config.RiceConfigurer">
 <property name="transactionManager" ref="jtaTransactionManager" />
 <property name="userTransaction" ref="jtaUserTransaction" />
 ...
</bean>

Configuring Bitronix Transactional Data Sources

An example configuration of Btironix Transactional Data Sources:

<bean id="riceDataSourceBitronixXa" class="bitronix.tm.resource.jdbc.PoolingDataSource" init-method="init"
 destroy-method="close" lazy-init="true">
 <property name="className" value="oracle.jdbc.xa.client.OracleXADataSource" />
 <property name="uniqueName" ref="ds-random-string" />
 <property name="minPoolSize" value="${datasource.pool.minSize}" />
 <property name="maxPoolSize" value="${datasource.pool.maxSize}" />
 <property name="useTmJoin" value="true" />

http://www.quartz-scheduler.org/docs/faq.html
http://docs.codehaus.org/display/BTM/Home

Global

26

 <property name="testQuery" value="${datasource.pool.validationQuery}" />
 <property name="allowLocalTransactions" value="true" />
 <property name="driverProperties">
 <props>
 <prop key="URL">${datasource.url}</prop>
 <prop key="user">${datasource.username}</prop>
 <prop key="password">${datasource.password}</prop>
 </props>
 </property>
</bean>

<bean id="ds-random-string" class="org.springframework.beans.factory.config.MethodInvokingFactoryBean">
 <property name="staticMethod" value="org.apache.commons.lang.RandomStringUtils.randomAlphanumeric"/>
 <property name="arguments"><list><value>20</value></list></property>
</bean>

Configuring Bitronix Non-Transactional Data Sources

Notice the addition of the driverClassName prop in the dirverProperties in the non-transaction data source
configuration

<bean id="riceDataSourceBitronix" class="bitronix.tm.resource.jdbc.PoolingDataSource" init-method="init"
 destroy-method="close" lazy-init="true">
 <property name="className" value="bitronix.tm.resource.jdbc.lrc.LrcXADataSource" />
 <property name="uniqueName" ref="ds-random-string" />
 <property name="minPoolSize" value="${datasource.pool.minSize}" />
 <property name="maxPoolSize" value="${datasource.pool.maxSize}" />
 <property name="useTmJoin" value="true" />
 <property name="testQuery" value="${datasource.pool.validationQuery}" />
 <property name="allowLocalTransactions" value="true" />
 <property name="driverProperties">
 <props>
 <prop key="Url">${datasource.url}</prop>
 <prop key="driverClassName">${datasource.driver.name}</prop>
 <prop key="user">${datasource.username}</prop>
 <prop key="password">${datasource.password}</prop>
 </props>
 </property>
</bean>

<bean id="ds-random-string" class="org.springframework.beans.factory.config.MethodInvokingFactoryBean">
 <property name="staticMethod" value="org.apache.commons.lang.RandomStringUtils.randomAlphanumeric"/>
 <property name="arguments"><list><value>20</value></list></property>
</bean>

Version Compatibility

Commitment to Compatibility in Kuali Rice
From version 2.0 of Kuali Rice up to at least version 3.0, the project is committed to providing what it refers
to as "middleware" or "client-server" service compatibility. This essentially means that an application
which is a client of the Kuali Rice Standalone Server (either it's services or it's database) should be able
to continue to function properly even if the Rice Standalone Server or it's database is upgraded to a newer
version.

More information on the scope of version compatibility in Kuali Rice can be found in the Kuali Rice
Version Compatibility Statement.

Keeping Your Client Application Compatible
There are a few rules that a client application using the Kuali Rice apis must following in order to ensure
the client application remains compatible once the Kuali Rice Standalone Server is updated. These rules

https://wiki.kuali.org/x/OABHC
https://wiki.kuali.org/x/OABHC

Global

27

only apply in situations where there is a standalone instance of Kuali Rice which is being integrated with.
In the case that an application is running Kuali Rice "bundled", then compatibility is not a concern since
that application forms a single software bundle with Kuali Rice included.

First, client-server compatibility only pertains to the components of Rice which have client-server
interaction, that includes the following components and their sub-modules:

• Core Service

• KSB

• KEW

• KIM

• KEN

• KRMS

• Location

There are some components of Rice which are "framework-only" and don't contain any client-server
remoting components. These include:

• Core

• KNS

• KRAD

There are, additionally, some modules of Rice which only run as part of the standalone server (or in bundled
mode) and those include eDocLite and the various "web" modules of Rice.

Only the first set of "client-server" Rice components are presently under the constraints of version
compatibility.

A summary of the rules a client application needs to follow in order to ensure they remain version
compatible is as follows:

• If integrated with a standlone Kuali Rice server, do not configure any of the Kuali Rice components with
a run mode of LOCAL. The LOCAL run mode is only for a fully bundled configuration of Kuali Rice as it
interacts directly with all of the Kuali Rice database tables instead of using remotely accessible services.

• In application code, only use classes in the api or framework modules of the "client-server"
components. This should be evident from the package names for the module as they should
have "api" or "framework" in the package name (i.e. org.kuali.rice.kew.api.* and
org.kuali.rice.kim.framework.*).

• Do not write custom code which interacts directly with the Kuali Rice database tables which are part of
any of the previously mentioned "client-server" components.

• When writing code against the Rice apis or frameworks, be sure to read the javadocs and be sure to
conform to the contracts specified therein.

• When implementing "callback" services, ensure that you are using the
CallbackServiceExporter properly as specified in the section called
“CallbackServiceExporter”

28

Chapter 2. KEN

KEN Overview

What is KEN?

Kuali Enterprise Notification is a form of communication between distributed systems that allows
messages to be sent securely and consistently. These messages act as notifications upon receipt and are
processed asynchronously within the service layer. The following architectural diagram represents the
flow of messages in a typical Rice Environment.

Figure 2.1. KEN Message Flow

From a developer’s perspective the diagram below helps to represent the inner workings of how KEN
stores data from the Data Modeling Layer into the Persistence Layer.

KEN

29

Figure 2.2. KEN Message Storage

The following sections of documentation aim at describing the inner workings of KEN as well as how
those pieces interact with Rice, specifically KEW. KEN itself is an interface that sits on top of KEW’s
API. This allows for registration and publishing of notifications, which then flow through KEW to result in
a KEW action request. See KEW Overview for more information. In addition to the action list, KEW can
be optionally configured to forward these requests to the Kuali Communications Broker or KCB for short.
This module is logically related to KEN and handles dispatching messages based on the user preferences.
Once messages are dispatched, a response or acknowledgement can be created.

KEN Configuration Parameters
Table 2.1. KEN Core Parameters

Configuration Parameter Description Default value

ken.url The base URL of the KEN webapp; this should be
changed when deploying for external access

${application.url}/ken

notification.resolveMessageDeliveriesJob.startDelayMS The start delay (in ms) of the job that resolves message
deliveries

5000

notification.resolveMessageDeliveriesJob.intervalMS The interval (in ms) between runs of the message
delivery resolution job

10000

KEN

30

Configuration Parameter Description Default value

notification.processAutoRemovalJob.startDelayMS The start delay (in ms) of the job that auto-removes
messages

60000

notification.processAutoRemovalJob.intervalMS The interval (in ms) between runs of the message auto-
removal job

60000

notification.quartz.autostartup Whether to automatically start the KEN Quartz jobs true

notification.concurrent.jobs Whether the invocation of a KEN Quartz job can
overlap another KEN Quartz job running concurrently

true

ken.system.user The principal name of the user that KEN should use
when initiating KEN-originated documents

notsys

kcb.url The base URL of the KCB (notification broker)
webapp

${application.url}/kcb

kcb.messaging.synchronous Whether notification messages are processed
synchronously

false

kcb.messageprocessing.startDelayMS The start delay (in ms) of the job that processes
notification messages

50000

kcb.messageprocessing.repeatIntervalMS The interval (in ms) between runs of the notification
message processing job

30000

kcb.quartz.group Group name of the KCB Quartz job KCB-Delivery

kcb.quartz.job.name Name of the KCB Quartz job MessageProcessingJobDetail

kcb.maxProcessAttempts Maximum number of times that KCB will attempt to
process a notification message

3

notification.processUndeliveredJob.intervalMS The elapsed time, in milliseconds, between runs of the
KEN process undelivered notifications job.

10000

notification.processUndeliveredJob.startDelayMS The elapsed time, in milliseconds, between the start of
the application and the first run of the KEN process
undelivered notifications job.

10000

Note

As of Rice 1.0.1, The parameter kcb.smtp.host is no longer used. The smtp server settings that
are required for sending email notifications with KEN are documented in the Kuali Enterprise
Workflow (KEW) Technical Reference Guide under Email Configuration.

KEN Channels
A KEN Channel is correlated to a specific type of notification. An example of a Channel’s use may be to
send out information about upcoming Library Events or broadcast general announcements on upcoming
concerts. Channels are subscribed to in the act of receiving notifications from a publisher or producer. They
can also be unsubscribed to and removed from the data store from within the UI. The Channel Definitions
are stored in the database table KREN_CHNL_T. The columns are listed as follows:

Table 2.2. KREN_CHNL_T

Column Description

CHNL_ID Identifier for the Channel

NM Name of the Channel represented in the UI

DESC_TXT Description of the Channel

SUBSCRB_IND Determines if the Channel can or cannot be subscribed to from the UI. This also determines if the
channel will be displayed in the UI

VER_NBR Version Number for the Channel

KEN

31

Channel Subscription
Channels can be subscribed to through the UI and also through the direct access to the data store. To
add a channel that can be subscribed to simply run the following SQL statement against the data store
customizing value entries to your needs:

INSERT INTO KREN_CHNL_T (CHNL_ID,DESC_TXT,NM,SUBSCRB_IND,VER_NBR)
 VALUES (2,'This channel is used for sending out information about Library Events.','Library Events
 Channel','Y',
1)

KEN Producers
A KEN Producer submits notifications for processing through the system. An example of a Producer would
be a mailing daemon that represents messages sent from a University Library System.

Characteristics of a Producer:

• Producers create and send notifications to a specific destination through various Channels.

• Each Producer contains a list of Channels that it may send notifications to.

• Producer Definitions are stored in the database table KREN_PRODCR_T.

Table 2.3. KREN_PRODCR_T

Column Description

CNTCT_INFO The email address identifying the Producer of the Notification.

DESC_TXT A Description of the Producer.

NM Name of the Producer.

PRODCR_ID The Producer’s Channel Identifier. See the KREN_CHNL_PRODCR_T table found in the database
for more information on how Producers link to Channels.

VER_NBR Version Number for the Producer.

Adding Producers
The Producer can be added through direct access to the data store. To add a Producer run the following
SQL statement against the data store customizing value entries to your needs:

INSERT INTO KREN_PRODCR_T (CNTCT_INFO,DESC_TXT,NM,PRODCR_ID,VER_NBR)
 VALUES ('kuali-ken-testing@cornell.edu','This producer represents messages sent from the general message
 sending forms.','Notification System',1,1)

KEN Content Types

Overview
A Content Type is part of the message content of a notification that may be sent using KEN. It can be as
simple as a single message string, or something more complex, such as an event that might have a date
associated with it, start and stop times, and other metadata you may want to associate with the notification.

KEN is distributed with two Content Types: Simple and Event.

KEN

32

Warning

It is strongly recommended that you leave these two Content Types intact, but you can use them
as templates for creating new Content Types.

Every notification sent through KEN must be associated with a registered Content Type. Registration of
Content Types requires administrative access to the system and is described in the KEN Content Types
section in the User Guide. The rest of this section describes the Content Type attributes that are required
for registration.

Content Type Attributes
A Content Type is represented as a NotificationContent business object and consists of several attributes,
described below:

id - Unique identifier that KEN automatically creates when you add a Content Type

name - This is a unique string that identifies the content. For example, ItemOverdue might be the name
used for a notification Content Type about an item checked out from the campus library.

description - This is a more verbose description of the Content Type. For example, "Library item overdue
notices" might be the description for ItemOverdue.

namespace - This is the string used in the XSD schema and XML to provide validation of the content,
for example, notification/ContentTypeItemOverdue. The XSD namespace is typically the name attribute
concatenated to the notification/ContentType string. Note how it is used in the XSD and XSL examples
below.

xsd - The XSD attribute contains the complete W3C XML Schema compliant code.

<?xml version="1.0" encoding="UTF-8"?>
<!-- This schema defines a generic event notification type in order for it to be accepted into the system. -->
<schema xmlns="http://www.w3.org/2001/XMLSchema"
 xmlns:c="ns:notification/common"
 xmlns:ce="ns:notification/ContentTypeItemOverdue"
 targetNamespace="ns:notification/ContentTypeItemOverdue"
 attributeFormDefault="unqualified"
 elementFormDefault="qualified">
 <annotation>
 <documentation xml:lang="en">Item Overdue Schema</documentation>
 </annotation>
 <import namespace="ns:notification/common" schemaLocation="resource:notification/notification-common" />

 <!-- The content element describes the content of the notification. It contains a message (a simple
 String) and a message element -->
 <element name="content">
 <complexType>
 <sequence>
 <element name="message" type="c:LongStringType"/>
 <element ref="ce:event"/>
 </sequence>
 </complexType>
 </element>

 <!-- This is the itemoverdue element. It describes an item overdue notice containing a summary,
 description, location, due date, and the amount of the fine levied -->
 <element name="itemoverdue">
 <complexType>
 <sequence>
 <element name="summary" type="c:NonEmptyShortStringType" />
 <element name="description" type="c:NonEmptyShortStringType" />
 <element name="location" type="c:NonEmptyShortStringType" />
 <element name="dueDate" type="dateTime" />
 <element name="fine" type="decimal" />
 </sequence>

http://www.w3.org/XML/Schema

KEN

33

 </complexType>
 </element>
</schema>

xsl - The XSD attribute contains the complete XSL code that will be used to transform a notification in
XML to html for rendering in an Action List.

<?xml version="1.0" encoding="UTF-8"?>
<!-- style sheet declaration: be very careful editing the following, the
 default namespace must be used otherwise elements will not match -->
<xsl:stylesheet

 version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:n="ns:notification/ContentTypeEvent"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="ns:notification/ContentTypeItemOverdue resource:notification/ContentTypeItemOverdue"
 exclude-result-prefixes="n xsi">

 <!-- output an html fragment -->
 <xsl:output method="html" indent="yes" />

 <!-- match everything -->
 <xsl:template match="/n:content" >
 <table class="bord-all">
 <xsl:apply-templates />
 </table>
 </xsl:template>

 <!-- match message element in the default namespace and render as strong -->
 <xsl:template match="n:message" >
 <caption>
 <xsl:value-of select="." disable-output-escaping="yes"/>
 </caption>
 </xsl:template>

 <!-- match on itemoverdue in the default namespace and display all children -->
 <xsl:template match="n:itemoverdue">
 <tr>
 <td class="thnormal">Summary: </td>
 <td class="thnormal"><xsl:value-of select="n:summary" /></td>
 </tr>
 <tr>
 <td class="thnormal">Item Description: </td>
 <td class="thnormal"><xsl:value-of select="n:description" /></td>
 </tr>
 <tr>
 <td class="thnormal">Library: </td>
 <td class="thnormal"><xsl:value-of select="n:location" /></td>
 </tr>
 <tr>
 <td class="thnormal">Due Date: </td>
 <td class="thnormal"><xsl:value-of select="n:startDateTime" /></td>
 </tr>
 <tr>
 <td class="thnormal">Fine: </td>
 <td class="thnormal">$<xsl:value-of select="n:fine" /></td>
 </tr>
 </xsl:template>
</xsl:stylesheet>

KEN Notifications
This document provides information about the attributes of a Notification. These attributes are elements
such as message content, who is sending the notification, who should receive it, etc. Kuali Enterprise

KEN

34

Notification (KEN) supports an arbitrary number of Content Types, such as a simple message or an event
notification. Each Content Type consists of a common set of attributes and a content attribute.

Common Notification Attributes

Table 2.4. Common Notification Attributes

Name Type Required Description Example

channel string yes • Name of a channel

• Must be registered

Library Events

producer string yes • Name of the producing system

• Must be registered and given
authority to send messages on
behalf of the <Library Events>
channel

Library Calendar System

senders a list of strings yes A list of the names of people on
whose behalf the message is being
sent

TestUser1, TestUser2

recipients a list of strings yes A list of the names of groups or users
to whom the message is being sent

library-staff-group, TestUser1,
TestUser2

deliveryType string yes fyi or ack fyi

sendDateTime datetime no When to send the notification 2006-01-01 00:00:00.0

autoRemoveDateTime datetime no When to remove the notification 2006-01-02 00:00:00.0

priority string yes An arbitrary priority; these must be
registered in KEN; the system comes
with defaults of normal, low, and
high

normal

contentType string yes Name for the content; KEN comes
set up with simple and event; new
contentTypes must be registered in
KEN

simple

content see below yes The actual content see below

Message Content
Notifications are differentiated using the contentType attribute and the contents of the content element.
The content element can be as simple as a message string or it may be a complex structure. For example,
a simple notification may only contain a message string, whereas an Event Content Type might contain
a summary, description, location, and start and end dates and times. Examples of the Simple and Event
Content Types:

Sample XML for a Simple Notification

<?xml version="1.0" encoding="UTF-8"?>
<!-- A Simple Notification Message -->
<notification xmlns="ns:notification/NotificationRequest"
 xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance
 xsi:schemaLocation="ns:notification/NotificationRequest
 resource:notification/NotificationRequest">
 <!-- this is the name of the notification channel -->
 <!-- that has been registered in the system -->
 <channel>Campus Status Announcements</channel>

 <!-- this is the name of the producing system -->
 <!-- the value must match a registered producer -->
 <producer>Campus Announcements System</producer>

 <!-- these are the people that the message is sent on -->
 <!-- behalf of -->

KEN

35

 <senders>
 <sender>John Fereira</sender>
 </senders>

 <!-- who is the notification going to? -->
 <recipients>
 <group>Everyone</group>
 <user>jaf30</user>
 </recipients>

 <!-- fyi or acknowledge -->
 <deliveryType>fyi</deliveryType>

 <!-- optional date and time that a notification should be sent -->
 <!-- use this for scheduling a single future notification to happen -->
 <sendDateTime>2006-01-01T00:00:00</sendDateTime>

 <!-- optional date and time that a notification should be removed -->
 <!-- from all recipients' lists, b/c the message no longer applies -->
 <autoRemoveDateTime>3000-01-01T00:00:00</autoRemoveDateTime>

 <!-- this is the name of the priority of the message -->
 <!-- priorities are registered in the system, so your value -->
 <!-- here must match one of the registered priorities -->
 <priority>Normal</priority>

 <title>School is Closed</title>

 <!-- this is the name of the content type for the message -->
 <!-- content types are registered in the system, so your value -->
 <!-- here must match one of the registered contents -->
 <contentType>Simple</contentType>

 <!-- actual content of the message -->
 <content xmlns="ns:notification/ContentTypeSimple"
 xsi:schemaLocation="ns:notification/ContentTypeSimple
 resource:notification/ContentTypeSimple">

 <message>Snow Day! School is closed.</message>
 </content>
</notification>

Sample XML for an Event Notification

<?xml version="1.0" encoding="UTF-8"?>

<notification xmlns="ns:notification/NotificationMessage"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="ns:notification/NotificationMessage
 resource:notification/NotificationMessage">
 <!-- this is the name of the notification channel -->
 <!-- that has been registered in the system -->
 <channel>Concerts Coming to Campus</channel>

 <!-- this is the name of the producing system -->
 <!-- the value must match a registered producer -->
 <producer>Campus Events Office</producer>

 <!-- these are the people that the message is sent on -->
 <!-- behalf of -->
 <senders>
 <sender>ag266</sender>

KEN

36

 <sender>jaf30</sender>
 </senders>

 <!-- who is the notification going to? -->
 <recipients>
 <group>Group X</group>
 <group>Group Z</group>
 <user>ag266</user>
 <user>jaf30</user>
 <user>arh14</user>
 </recipients>

 <!-- fyi or acknowledge -->
 <deliveryType>fyi</deliveryType>

 <!-- optional date and time that a notification should be sent -->
 <!-- use this for scheduling a single future notification to happen -->
 <sendDateTime>2006-01-01 00:00:00.0</sendDateTime>

 <!-- optional date and time that a notification should be removed -->
 <!-- from all recipients' lists, b/c the message no longer applies -->
 <autoRemoveDateTime>2007-01-01 00:00:00.0</autoRemoveDateTime>

 <!-- this is the name of the priority of the message -->
 <!-- priorities are registered in the system, so your value -->
 <!-- here must match one of the registered priorities -->
 <priority>Normal</priority>

 <!-- this is the name of the content type for the message -->
 <!-- content types are registered in the system, so your value -->
 <!-- here must match one of the registered contents -->
 <contentType>Event</contentType>

 <!-- actual content of the message -->
 <content>
 <message>CCC presents The Strokes at Cornell</message>

 <!-- an event that it happening on campus -->
 <event xmlns="ns:notification/ContentEvent"
 xsi:schemaLocation="ns:notification/ContentEvent
 resource:notification/ContentEvent">
 <summary>CCC presents The Strokes at Cornell</summary>
 <description>blah blah blah</description>
 <location>Barton Hall</location>
 <startDateTime>2006-01-01T00:00:00</startDateTime>
 <stopDateTime>2007-01-01T00:00:00</stopDateTime>
 </event>
 </content>
</notification>

Notification Response

When KEN sends a notification, it always returns a response. This is an outline in XML of that response:

<?xml version="1.0" encoding="UTF-8"?>
<response>
 <status>success</status>
</response>

KEN

37

Enterprise Notification Priority

Managing Priorities

There is no user interface page to manage priorities so you must make changes to the list of priorities in
the kren_prio_t table using SQL.

The table has these columns:

Table 2.5. KREN_PRIO_T

Name Type Max Size Required Attribute

PRIO_ID Numeric 8 Yes ID

NM Text 40 Yes Name

DESC_TXT Text 500 Yes Description

PRIO_ORD Numeric 4 Yes Order

VER_NBR Numeric 8 Yes Version

Example 2.1. Example – This is an example of how to add a Priority into the table:

INSERT INTO kren_prio_t (PRIO_ID, NM, DESC_TXT, PRIO_ORD, VER_NBR) VALUES (8, 'Bulk', 'Mass notifications', 6,
 1);

KEN Delivery Types
This section describes Kuali Enterprise Notification (KEN) Delivery Types, or what are sometimes called
Message Deliverers. A Message Deliverer Plugin is the mechanism used to deliver a notification to end
users. All notifications sent through KEN appear in the Action List for each recipient for which the
notification is intended. This message also contains an Email Delivery Type that allows you to send end
users a notification summary as an email message. Note that for a Delivery Type other than the default
(KEWActionList), the content of the notification is typically just a summary of the full notification.

Implementing the Java Interface

Creating a new Delivery Type primarily involves implementing a Java interface called
org.kuali.rice.kew.deliverer.NotificationMessageDeliverer. The source code of the interface:

/*
 * Copyright 2007 The Kuali Foundation
 *
 * Licensed under the Educational Community License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.opensource.org/licenses/ecl2.php
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.

 */

KEN

38

package org.kuali.rice.ken.deliverer;

import java.util.HashMap;

import java.util.LinkedHashMap;

import org.kuali.rice.ken.bo.NotificationMessageDelivery;
import org.kuali.rice.ken.exception.ErrorList;

import org.kuali.rice.ken.exception.NotificationAutoRemoveException;
import org.kuali.rice.ken.exception.NotificationMessageDeliveryException;
import org.kuali.rice.ken.exception.NotificationMessageDismissalException;

/**
 * This class represents the different types of Notification Delivery Types that the system can handle.
 * For example, an instance of delivery type could be "ActionList" or "Email" or "SMS". Any deliverer
 implementation
 * adhering to this interface can be plugged into the system and will be automatically available for use.
 * @author Kuali Rice Team (kuali-rice@googlegroups.com)
*/

public interface NotificationMessageDeliverer {
 /**
 * This method is responsible for delivering the passed in messageDelivery record.
 * @param messageDelivery The messageDelivery to process
 * @throws NotificationMessageDeliveryException
 */

 public void deliverMessage(NotificationMessageDelivery messageDelivery) throws
 NotificationMessageDeliveryException;
 /**
 * This method handles auto removing a message delivery from a person's list of notifications.
 * @param messageDelivery The messageDelivery to auto remove
 * @throws NotificationAutoRemoveException
 */

 public void autoRemoveMessageDelivery(NotificationMessageDelivery messageDelivery) throws
 NotificationAutoRemoveException;
 /**
 * This method dismisses/removes the NotificationMessageDelivery so that it is no longer being presented to
 the user
 * via this deliverer. Note, whether this action is meaningful is dependent on the deliverer
 implementation. If the
 * deliverer cannot control the presentation of the message, then this method need not do anything.
 * @param messageDelivery the messageDelivery to dismiss
 * @param the user that caused the dismissal; in the case of end-user actions, this will most likely be the
 user to
 * which the message was delivered (user recipient in the NotificationMessageDelivery object)
 * @param cause the reason the message was dismissed
 */

 public void dismissMessageDelivery(NotificationMessageDelivery messageDelivery, String user, String cause)
 throws NotificationMessageDismissalException;

Default Delivery Types

To find and configure the default delivery types configured for Rice, on the Main Menu tab, under the
Notification area, click on Delivery Types.

KEN

39

Figure 2.3. Find Delivery Types

Figure 2.4. List and Configure Delivery Types

KEN: Sending a Notification
The Kuali Enterprise Notification system (KEN) provides for a way to programmatically send a
notification. An application may construct a notification using the KEN web service API.

KEN

40

Send a Notification Using the Web Service API
To send a notification using the web service API, the notification must be constructed as an XML
document that validates against a schema for a specific Content Type. For more detail, see the Notifications
documentation.

To validate your notification XML, you must construct the XSD schema filename. To construct this file
name, append the Content Type value to ContentType.

For example, if you create a new Content Type for a library book overdue notification, then the contentType
element value should be OverdueNotice and the schema file you created for validation of the notification
XML should be ContentTypeOverdueNotice.xsd. This XML schema should be declared as a namespace
in the content element of the notification XML. Out of the box, KEN comes with Simple and Event Content
Types.

Web Service URL
By default, the Notification Web Service API may be accessed at: http://yourlocalip:8080/remoting/soap/
ken/v2_0/sendNotificationService

A WSDL may be obtained using the following URL: http://yourlocalip:8080/remoting/soap/ken/v2_0/
sendNotificationService?wsdl

Note

In the URLs above, replace yourlocalip with the hostname where KEN is deployed.

Exposed Web Services
Initially, KEN exposes a web service method to send a notification. The sendNotification method is a
simple String In/String Out method. It accepts one parameter (notificationMessageAsXml) and returns a
notificationResponse as a String. For the format of the response, see the Notification Response document
in the TRG for KEN.

Calling the sendNotification Service from JAVA

First, create a String that includes the XML content for the notification, as described in the Notification
Message document of the TRG for KEN. In the following example code, the XML representation
of the notification is read as a file from the file system in the main method, and the code calls the
MySendNotification method to invoke the Notification web service.

A SOAP style web services binding stub is available in the notification.jar file, as described above in
the Dependencies section.

You may use this code as a template for sending a notification using the web service:

package edu.cornell.library.notification;

import org.apache.commons.io.IOUtils;
import org.kuali.notification.client.ws.stubs.NotificationWebServiceSoapBindingStub;

import java.io.IOException;

import java.io.InputStream;

http://yourlocalip:8080/remoting/soap/ken/v2_0/sendNotificationService
http://yourlocalip:8080/remoting/soap/ken/v2_0/sendNotificationService
http://yourlocalip:8080/remoting/soap/ken/v2_0/sendNotificationService?wsdl
http://yourlocalip:8080/remoting/soap/ken/v2_0/sendNotificationService?wsdl

KEN

41

import java.net.URL;

public class MyNotificationWebServiceClient {
 private final static String WEB_SERVICE_URL = "http://localhost:8080/notification/services/Notification";

 public static void MySendNotification(String notificationMessageAsXml) throws Exception {
 URL url = new URL(WEB_SERVICE_URL);
 NotificationWebServiceSoapBindingStub stub = new NotificationWebServiceSoapBindingStub(url, null);
 String responseAsXml = stub.sendNotification(notificationMessageAsXml);
 // do something useful with the response
 System.out.println(responseAsXml);
 }

 public static void main(String[] args) {
 InputStream notificationXML =
 MyNotificationWebServiceClient.class.getResourceAsStream("webservice_notification.xml");
 String notificationMessageAsXml = "";
 try {
 notificationMessageAsXml = IOUtils.toString(notificationXML);
 } catch (IOException ioe) {
 throw new RuntimeException("Error loading webservice_notification.xml");
 }

 try {
 MySendNotification(notificationMessageAsXml);
 } catch (Exception ioe) {
 throw new RuntimeException("Error running webservice");
 }
 }

}

KEN Authentication

Web
KEN can support any Web Sign On technology that results in the population of the HttpServletRequest
remote user variable, exposed via the getRemoteUser accessor.

public java.lang.String getRemoteUser()

Returns the login of the user making this request, if the user has been authenticated, or null if the user
has not been authenticated. Whether the user name is sent with each subsequent request depends on the
browser and type of authentication.

Returns: A String specifying the login of the user making this request, or null

The generic KEN release comes configured with CAS.

Web Services
Web service authentication is part of the development process and is not implemented by the standalone
release of Rice. The notification web service is Axis-based.

42

Chapter 3. KEW
What is Kuali Enterprise Workflow?
What is workflow, in general?

Workflow is a very general term and means different things in different contexts. For example, it may mean
the sequence of approvals needed for a Leave Request or it may refer to a complex scientific procedure.

In our context of enterprise applications within a higher education institution, we're usually talking about
business process management when we discuss workflow. Usually, this revolves around business rules,
authorizations, and routing for approval.

A simple example is a leave request system. It needs some workflow to get the necessary people
(supervisor, etc.) to approve it. This is one example of the routing and approval side of a workflow.

You may also have business rules in workflow that dictate that some people get automatic approval for
leave requests. This is a business rule detail that workflow executes by automatically routing these types
of requests past the approval steps.

What is Kuali Enterprise Workflow, in particular?
The Kuali Enterprise Workflow (KEW) product revolves around routing and approval of documents. It is
a stand-alone workflow engine upon which you can integrate other enterprise applications to do routing
and approvals.

In addition, KEW contains an eDocLite system. This is a mechanism to create simple data-entry forms
directly in KEW. You can also create routing rules around eDocLite forms. eDocLite forms are the rough
equivalent of the basic, one- or two-page forms that are commonly used to process business and get
signature approvals.

The benefit of eDocLite in KEW is that it does not require a separate application. You can use eDocLite
in KEW simply by setting up the forms that your institution or department needs.

Overall, KEW is based on documents. In KEW, each document has a collection of transactions or things
to be done. Each transaction is approved or denied individually in KEW.

For example, John Doe may use a Leave Request document in KEW to ask for a week off in June. The
KEW Leave Request document contains enough information for his supervisor to make a decision about
John’s leave. (The document may use data keys to retrieve external information, such as John’s past Leave
Requests and available hours.) Once John submits his Leave Request, KEW routes it to John's supervisor
for approval. Depending on how John’s department has configured KEW for routing Leave Requests, after
John’s supervisor approves or denies his request, KEW may route it to more people for further action to
be taken.

Once John’s Leave Request document is processed, it triggers a PostProcessor, which can peform any
desired additional processing. This is most commonly used to “finalize” the business transaction once
all approvers have signed off on it. In this particular example, it might call another service that would
update records in the Leave Request application’s database, indicating that the individual has successfully
scheduled leave during that time period.

In addition, the KEW PostProcessor contains hooks for all the stages that a document goes through. For
example, an external application may use a KEW workflow for routing and approval of documents, and
that application may take action at each change in state of a routed document.

KEW

43

What problems or functions does KEW solve?
The primary benefit of KEW workflow is the correct routing for approval of documents. It enforces your
business-specific rules about who needs to approve what documents, in which scenarios.

Simple Workflow Example

Leave Request: Each person has one other person (possibly more) who needs to approve his or her leave
requests. In this context, KEW is the system that manages both the approval structure and the leave requests
themselves (the actual approvals).

More Complex Workflow Example

Purchasing Desktop Computers: You may need several business rules in KEW for this, such as a rule to
enforce:

1. A strategic alliance requires that you buy from one vendor unless there is a justification to not do so

2. General purchasing approval by the Purchasing Department is required when the cost of the purchase
exceeds a certain limit

3. Approval by the account owners who fund the purchase is required

In this example, KEW requires an approval if:

• The strategic alliance is not used

• The cost limit for Purchasing Department approval is exceeded

The workflow also requires an approval by the signer (or delegate) for each spending account that you
use for the purchase.

In KEW, Approval Types are set up such as account approver, supervisor, or organizational/department
hierarchy approver. An Approval Type contains the applicable routing and approval rules. Once you create
an approval type, those routing and approval rules are available for other workflow clients and scenarios.
This creates a tipping point situation, in which the more applications and business processes you set up
through workflow, the easier it gets to do new ones.

In addition, KEW can help you with distributed management of approval structures. Each group at your
institution (each college, unit, division, etc.) can create their own approval and workflow structure for their
group, and you can centrally manage the workflow above those groups. This allows groups to manage
their own internal controls and structures, while still being subject to higher-level institutional controls.

What problems does KEW NOT solve?
KEW is not a general-purpose application builder. For complex applications, you need to develop
applications separately and then integrate them with KEW. For simple forms or documents that need
approval, you can use eDocLite, but this only works in simple cases, analogous to a one- or two-page paper
form that requires signatures. It is important to note, however, that Kuali Rice does include a framework
called the Kuali Nervous System (KNS) that can be used to facilitate the development of more complex
applications and includes built-in integration with KEW.

KEW is not a general-purpose business rules engine. For example, it does not know that a continuation
account must be specified when an account is closed. Those types of rules are the responsibility of the

KEW

44

application itself to manage. However, this is not a clear-cut line, as KEW does manage business rules
that directly affect routing and approval.

KEW is not an Organization Hierarchy manager. For example, it will not automatically manage your
organizational hierarchies and internal structures. However, integration with these hierarchies and
structures can be accomplished using KEW, and leveraging such hierarchies for routing and approval is
a very common need for many applications.

With which applications can KEW integrate?
Nearly anything, in theory. In the current version of KEW, any application can access KEW if it can:

• Do Java method calls, or

• Do remote method invocation, or

• Do web-services calls, or

• Communicate with the Kuali Service Bus (KSB)

(The recommended cross-platform integration method is over web services.)

Can I use KEW without building an entire application?
Yes, absolutely!

KEW is an incredibly powerful platform for routing and approval for enterprise (i.e., large) applications.
However, it also includes eDocLite, which makes it easy to develop simple business-process forms and
run them through KEW. In this situation, in its most simple form, you can do all of your work within
KEW, and most of that work is in developing your form configurations. If needed, the eDocLite process
can also hook into a post-processor to take an action once a document's approvals are complete.

Steps to Building a KEW Application

Preface
In its simplest form, KEW is merely a set of services that can be used to submit documents to a workflow
engine and then interact with those documents as the progress through the routing process. Therefore,
there are many different ways to build an application that uses KEW. Kuali Rice itself has a few built-in
solutions (eDocLite and KNS) that make it easier to build applications that use KEW. Alternatively, an
application can be built from scratch or retrofitted to use KEW.

In this section, we will look at some common approaches to designing and building an application which
leverages KEW. However, it is by no means exhaustive and is simply meant to get you started and give
you ideas as you embark upon development of your own applications that use Kuali Enterprise Workflow.

Initial Steps - Determine the Routing Rules
Determine to whom you want to route the document and when it should be routed. For example, in the
Travel Request Sample Workflow Client Application, the steps in the routing process are:

1. Someone submits a travel request for a traveler

KEW

45

2. Traveler receives an Approve Action Item

3. Traveler's supervisor receives Approve Action Item

4. Traveler's dean/director receives Acknowledge Action Item

5. Fiscal Officer for account(s) receives Approve Action Item

Configure the Process Definition

In KEW, process definitions are attached to Document Types. The Document Type allows for
configuration of various pieces of the business process in addition to the process definition.

The Document Type is defined in XML format. KEW can ingest files containing this Document
Type configuration to set up the specified workflows and then executes the workflows based on that
configuration.

One example of routing configuration is the Travel Request application. The Document Type configuration
is defined in the following four XML files:

TravelRoutingConfiguration.xml - Defines the travelDocument Document Type, including
PostProcessor, docHandler, and routeNodes:

<?xml version="1.0" encoding="UTF-8"?>
<data xmlns="ns:workflow" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="ns:workflow
 resource:WorkflowData">
 <documentTypes xmlns="ns:workflow/DocumentType" xsi:schemaLocation="ns:workflow/DocumentType
 resource:DocumentType">
 <documentType>
 <name>TravelRequest</name>
 <description>Create a New Travel Request</description>
 <label>Travel Request</label>
 <postProcessorName>org.kuali.rice.kns.workflow.postprocessor.KualiPostProcessor</postProcessorName>
 <superUserGroupName namespace="TVL">SuperUserGroup</superUserGroupName>
 <blanketApproveGroupName namespace="TVL">BlanketApproveGroup</blanketApproveGroupName>
 <defaultExceptionGroupName namespace="TVL">ExceptionGroup</defaultExceptionGroupName>

 <docHandler>${application.url}/travelDocument2.do?methodToCall=docHandler</docHandler>
 <routePaths>
 <routePath>
 <start name="Initiated" nextNode="DestinationApproval" />
 <requests name="DestinationApproval" nextNode="TravelerApproval" />
 <requests name="TravelerApproval" nextNode="SupervisorApproval" />
 <requests name="SupervisorApproval" nextNode="AccountApproval" />
 <requests name="AccountApproval" />
 </routePath>
 </routePaths>
 <routeNodes>
 <start name="Initiated">
 <activationType>P</activationType>
 </start>
 <requests name="DestinationApproval">
 <ruleTemplate>TravelRequest-DestinationRouting</ruleTemplate>
 </requests>
 <requests name="TravelerApproval">
 <ruleTemplate>TravelRequest-TravelerRouting</ruleTemplate>
 </requests>
 <requests name="SupervisorApproval">
 <ruleTemplate>TravelRequest-SupervisorRouting</ruleTemplate>
 </requests>
 <requests name="AccountApproval">
 <ruleTemplate>TravelRequest-AccountRouting</ruleTemplate>
 </requests>
 </routeNodes>
 </documentType>
 </documentTypes>

KEW

46

</data>

TravelRuleAttributes.xml – Defines the attributes used by the Workflow Engine to determine to whom
to route to next:

<?xml version="1.0" encoding="UTF-8"?>
<data xmlns="ns:workflow" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="ns:workflow
 resource:WorkflowData">
 <ruleAttributes xmlns="ns:workflow/RuleAttribute" xsi:schemaLocation="ns:workflow/RuleAttribute
 resource:RuleAttribute">
 <ruleAttribute>
 <name>EmployeeAttribute</name>
 <className>edu.sampleu.travel.workflow.EmployeeAttribute</className>
 <label>Employee Routing</label>
 <description>Employee Routing</description>
 <applicationId>TRAVEL</applicationId>
 <type>RuleAttribute</type>
 </ruleAttribute>

 <ruleAttribute>
 <name>AccountAttribute</name>
 <className>edu.sampleu.travel.workflow.AccountAttribute</className>
 <label>Account Routing</label>
 <description>Account Routing</description>
 <applicationId>TRAVEL</applicationId>
 <type>RuleAttribute</type>
 </ruleAttribute>
 </ruleAttributes>
</data>

TravelRuleTemplates.xml - Defines the RuleTemplates that represent each routeNode listed in the
Document Type configuration:

<?xml version="1.0" encoding="UTF-8"?>
<data xmlns="ns:workflow" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="ns:workflow
 resource:WorkflowData">
 <ruleTemplates xmlns="ns:workflow/RuleTemplate" xsi:schemaLocation="ns:workflow/RuleTemplate
 resource:RuleTemplate">
 <ruleTemplate allowOverwrite="true">
 <name>TravelRequest-DestinationRouting</name>
 <description>Destination Routing</description>
 <attributes>
 <attribute>
 <name>DestinationAttribute</name>
 </attribute>
 </attributes>
 </ruleTemplate>
 <ruleTemplate allowOverwrite="true">
 <name>TravelRequest-TravelerRouting</name>
 <description>Traveler Routing</description>
 <attributes>
 <attribute>
 <name>EmployeeAttribute</name>
 </attribute>
 </attributes>
 </ruleTemplate>
 <ruleTemplate allowOverwrite="true">
 <name>TravelRequest-SupervisorRouting</name>
 <description>Supervisor Routing</description>
 <attributes>
 <attribute>
 <name>EmployeeAttribute</name>
 </attribute>
 </attributes>
 </ruleTemplate>
 <ruleTemplate allowOverwrite="true">
 <name>TravelRequest-AccountRouting</name>
 <description>Travel Account Routing</description>
 <attributes>
 <attribute>

KEW

47

 <name>AccountAttribute</name>
 </attribute>
 </attributes>
 </ruleTemplate>
 </ruleTemplates>
 </data>

TravelRules.xml - Defines the rules (a rule is a combination of Document Type, Rule Template and
Responsibilities) that the workflow engine uses to determine to whom to route to next:

<?xml version="1.0" encoding="UTF-8"?>
<data xmlns="ns:workflow" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="ns:workflow
 resource:WorkflowData">
 <rules xmlns="ns:workflow/Rule" xsi:schemaLocation="ns:workflow/Rule resource:Rule">
 <rule>
 <name>TravelRequest-DestinationLasVegas</name>
 <documentType>TravelRequest</documentType>
 <ruleTemplate>TravelRequest-DestinationRouting</ruleTemplate>
 <description>Destination Rule</description>
 <ruleExtensions>
 <ruleExtension>
 <attribute>DestinationAttribute</attribute>
 <ruleTemplate>TravelRequest-DestinationRouting</ruleTemplate>
 <ruleExtensionValues>
 <ruleExtensionValue>
 <key>destination</key>
 <value>las vegas</value>
 </ruleExtensionValue>
 </ruleExtensionValues>
 </ruleExtension>
 </ruleExtensions>
 <responsibilities>
 <responsibility>
 <principalName>user4</principalName>
 <actionRequested>A</actionRequested>
 </responsibility>
 </responsibilities>
 </rule>
 <rule>
 <name>TravelRequest-EmployeeRole</name>
 <documentType>TravelRequest</documentType>
 <ruleTemplate>TravelRequest-TravelerRouting</ruleTemplate>
 <description>Traveler Routing</description>
 <responsibilities>
 <responsibility>
 <role>edu.sampleu.travel.workflow.EmployeeAttribute!employee</role>
 <actionRequested>A</actionRequested>
 </responsibility>
 </responsibilities>
 </rule>
 <rule>
 <name>TravelRequest-SupervisorRole</name>
 <documentType>TravelRequest</documentType>
 <ruleTemplate>TravelRequest-SupervisorRouting</ruleTemplate>
 <description>Supervisor Routing</description>
 <responsibilities>
 <responsibility>
 <role>edu.sampleu.travel.workflow.EmployeeAttribute!supervisr</role>
 <actionRequested>A</actionRequested>
 </responsibility>
 </responsibilities>
 </rule>
 <rule>
 <name>TravelRequest-DirectorRole</name>
 <documentType>TravelRequest</documentType>
 <ruleTemplate>TravelRequest-SupervisorRouting</ruleTemplate>
 <description>Dean/Director Routing</description>
 <responsibilities>
 <responsibility>
 <role>edu.sampleu.travel.workflow.EmployeeAttribute!director</role>
 <actionRequested>K</actionRequested>
 </responsibility>
 </responsibilities
 </rule>

KEW

48

 <rule>
 <name>TravelRequest-FiscalOfficerRole</name>
 <documentType>TravelRequest</documentType>
 <ruleTemplate>TravelRequest-AccountRouting</ruleTemplate>
 <description>Fiscal Officer Routing</description>
 <responsibilities>
 <responsibility>
 <role>edu.sampleu.travel.workflow.AccountAttribute!FO</role>
 </responsibility>
 </responsibilities>
 </rule>
 </rules>
</data>

Client PlugIn Steps
Your plugin should contain Java classes that correspond to the attributes defined in the XML
configuration file. The Travel Request Sample Client contains two attribute classes: EmployeeAttribute
and AccountAttribute. Each of these classes implements these two interfaces:

org.kuali.rice.kew.rule.RoleAttribute
org.kuali.rice.kew.rule.WorkflowAttribute

Using the EmployeeAttribute as an example, here are the implementations for the RoleAttribute interface:

getRoleNames() - Returns a list of role names to display on the routing rule GUI in the KEW web
application:

private static final Map ROLE_INFO;

static {

 ROLE_INFO = new TreeMap();
 ROLE_INFO.put(EMPLOYEE_ROLE_KEY, "Employee");
 ROLE_INFO.put(SUPERVISOR_ROLE_KEY, "Supervisor");
 ROLE_INFO.put(DIRECTOR_ROLE_KEY, "Dean/Director");
}

public List getRoleNames() {
 List roleNames = new ArrayList();
 for (Iterator iterator = roles.keySet().iterator(); iterator.hasNext();) {
 String roleName = (String) iterator.next();
 roleNames.add(new Role(getClass(), roleName, roleName));
 }
 return roleNames;
}

getQualifiedRoleNames() - Returns a list of strings that represents the qualified role name for the given
roleName and XML docContent which is attached to the workflow document:

/**
 * Returns a String which represent the qualified role name of this role for the given
 * roleName and docContent.
 * @param roleName the role name (without class prefix)
 * @param documentContent the document content
*/

public List<String> getQualifiedRoleNames(String roleName, DocumentContent documentContent) {
 List<String> qualifiedRoleNames = new ArrayList<String>();
 Map<String, List<String>> qualifiedRoles = (Map<String, List<String>>)roles.get(roleName);
 if (qualifiedRoles != null) {
 qualifiedRoleNames.addAll(qualifiedRoles.keySet());
 } else {
 throw new IllegalArgumentException("TestRuleAttribute does not support the given role " + roleName);

KEW

49

 }
 return qualifiedRoleNames;
}

resolveQualifiedRole() - Returns a list of workflow users that are members of the given Qualified Role.
(Used to help determine to whom to route the document.):

/**
 * Returns a List of Workflow Users which are members of the given qualified role.
 * @param routeContext the RouteContext
 * @param roleName the roleName (without class prefix)
 * @param qualifiedRole one of the the qualified role names returned from the {@link
 #getQualifiedRoleNames(String, DocumentContent)} method
 * @return ResolvedQualifiedRole containing recipients, role label (most likely the roleName), and an
 annotation
*/

public ResolvedQualifiedRole resolveQualifiedRole(RouteContext routeContext, String roleName, String
 qualifiedRole) {
 ResolvedQualifiedRole resolved = new ResolvedQualifiedRole();
 Map<String, List<String>> qualifiedRoles = (Map<String, List<String>>)roles.get(roleName);

 if (qualifiedRoles != null) {
 List<String> recipients = (List<String>)qualifiedRoles.get(qualifiedRole);
 if (recipients != null) {
 resolved.setQualifiedRoleLabel(qualifiedRole);
 resolved.setRecipients(convertPrincipalIdList(recipients));
 } else {
 throw new IllegalArgumentException("TestRuleAttribute does not support the qualified role " +
 qualifiedRole);
 }

 } else {
 throw new IllegalArgumentException("TestRuleAttribute does not support the given role " + roleName);
 }
 return resolved;
}

Using the EmployeeAttribute example, here are the implementations for the WorkflowAttribute interface:

getRoutingDataRows() – Returns a list of RoutingDataRows that contain the user interface level
presentation of the ruleData fields. KEW uses the ruleData fields to determine where a given document
would be routed according to the associated rule:

public List<Row> getRoutingDataRows() {
 List<Row> rows = new ArrayList<Row>();
 List<Field> fields = new ArrayList<Field>();
 fields.add(new Field("Traveler username", "", Field.TEXT, false, USERID_FORM_FIELDNAME, "", false, false,
 null, null));
 rows.add(new Row(fields));
 return rows;
}

getDocContent() - Returns a string containing this Attribute's routingData values, formatted as a series
of XML tags:

public String getDocContent() {
 String docContent = "";

 if (!StringUtils.isBlank(_uuid)) {
 String uuidContent = XmlUtils.encapsulate(UUID_PARAMETER_TAGNAME, _uuid);

 docContent = _attributeParser.wrapAttributeContent(uuidContent);
 }

 return docContent;

KEW

50

}

validateRoutingData() - Validates routingData values in the incoming map and returns a list of errors
from the routing data. (The user interface calls validateRoutingData() during rule creation.):

public List validateRoutingData(Map paramMap) {
 List errors = new ArrayList();

 String principalName = StringUtils.trim((String) paramMap.get(PRINCIPAL_NAME_FORM_FIELDNAME));
 if (isRequired() && StringUtils.isBlank(principalName)) {
 errors.add(new WorkflowServiceErrorImpl("principalName is required",
 "accountattribute.principalName.required"));
 }

 if (!StringUtils.isBlank(principalName)) {
 KimPrincipalInfo principal =
 KIMServiceLocator.getIdentityService().getPrincipalByPrincipalName(principalName);
 if (principal == null) {
 errors.add(new WorkflowServiceErrorImpl("unable to retrieve user for principalName '" +
 principalName + "'", "accountattribute.principalName.invalid"));
 }
 }
 if (errors.size() == 0) {
 _principalName = principalName;
 }
 return errors;
}

Build PostProcessor and Services
The PostProcessor class should implement the interface:

org.kuali.rice.kew.postprocessor.PostProcessorRemote

You should use this interface for business logic that should execute when the document transitions to a
new status or when actions are taken on the document. The PostProcessor for the Travel Request Client
is the class:

org.kuali.rice.kns.workflow.postprocessor.KualiPostProcessor

that implements the doRouteStatusChange() method to update the status of the travel document in the
Travel database. The KualiPostProcessor in this case is the standard PostProcessor used on all documents
that are built on the KNS framework.

Package PlugIn
Depending on how the application has been developed (i.e. embedded workflow engine vs. using the
engine as a remote service) it may be necessary to package components like the PostProcessor into a plug-
in. See the Workflow PlugIn Guide for details on how to do this.

Client Web Application Steps

Build the Web Application

Begin to build a Kuali Enterprise Workflow the same as you build any other Java-enabled web application.
You build it with all the business logic for the application and, for example, communication to the workflow
engine using web services.

KEW

51

As an example, the Travel Request Client Web Application uses Struts, Spring, and OJB.

Build the Service that Connects to the Workflow Engine

For the rest of this section, this guide refers to the Java application communicating with the Kuali Enterprise
Workflow as the Client Application. The Client Application needs a service that will interact with the
workflow system. This service will perform actions such as locating a document in the workflow system
and routing the document.

Below are examples from the Travel Request Sample Client. The methods in the TravelDocumentService
class find a TravelDocument in the workflow system, save and route a TravelDocument, and validate a
TravelDocument.

findByDocHeaderId() - Finds a Document in the workflow engine:

public TravelDocument findByDocHeaderId(Long docHeaderId, String principalId) {
 if (docHeaderId == null) {
 throw new IllegalArgumentException("invalid (null) docHeaderId");
 }
 TravelDocument result = travelDocumentDao.findByDocHeaderId(docHeaderId);
 if (result != null) {
 // convert DocAccountJoins into FinancialAccounts
 ArrayList accounts = new ArrayList();
 for (Iterator joins = result.getDocAccountJoins().iterator(); joins.hasNext();) {
 DocumentAccountJoin join = (DocumentAccountJoin) joins.next();

 FinancialAccount account = financialAccountService.findByAccountNumber(join.getAccountNumber());

 accounts.add(account);
 }
 result.setFinancialAccounts(accounts);
 try {
 WorkflowDocument document = new WorkflowDocument(principalId, result.getDocHeaderId());
 } catch (WorkflowException e) {
 LOG.error("caught WorkflowException: ", e);
 throw new RuntimeException(e);
 }
 }
 return result;
}

The TravelDocumentServiceImpl class populates the attribute values on the workflow document
(Employee, Account) that will be used for future routing. It does this by calling its getEmployeeAttribute()
and getAccountAttribute() methods and adding the results to the workflow document by calling the
addAttributeDefinition() method.

private WorkflowAttributeDefinitionVO getEmployeeAttribute(TravelDocument travelDocument) {
 WorkflowAttributeDefinitionDTO attrDef = new
 WorkflowAttributeDefinitionDTO("edu.sampleu.travel.workflow.EmployeeAttribute");
 String principalName = travelDocument.getTravelerUsername();
 attrDef.addConstructorParameter(principalName);
 return attrDef;
}

private List getAccountAttributes(TravelDocument travelDocument) {
 List accounts = travelDocument.getFinancialAccounts();
 List accountAttributes = new ArrayList();
 for (Iterator accountIterator = accounts.iterator(); accountIterator.hasNext();) {
 WorkflowAttributeDefinitionDTO attrDef = new
 WorkflowAttributeDefinitionDTO("edu.sampleu.travel.workflow.AccountAttribute");
 FinancialAccount account = (FinancialAccount)accountIterator.next();
 attrDef.addConstructorParameter(account.getAccountNumber());
 accountAttributes.add(attrDef);
 }
 return accountAttributes;

KEW

52

}

Build the Action Class with Workflow Lifecycle Methods

In the Travel Request Sample Client, the WorkflowDocHandlerAction struts action class calls the
workflow lifecycle methods (approve, acknowledge, etc.) on the workflow document.

WorkflowDocHandlerAction - Take approve action. (Each workflow action - acknowledge, complete,
etc. - is like this):

public ActionForward approve(ActionMapping mapping, ActionForm form, HttpServletRequest request,
 HttpServletResponse response) throws Exception {
 LOG.info("entering approve() method ...");
 DocHandlerForm docHandlerForm = (DocHandlerForm) form;
 WorkflowDocument document = docHandlerForm.getWorkflowDocument()
 document.approve(docHandlerForm.getAnnotation());
 saveDocumentActionMessage("general.routing.approved", request);
 LOG.info("forwarding to actionTaken from approve()");
 return mapping.findForward("actionTaken");

}

Set up the WorkflowDocument in the initializeBaseFormState() method of the DispatchActionBase
from which the Struts action classes inherit. Obtain the workflow document with this line of code:

String principalId = getUserSession(request).getPrincipalId();
WorkflowDocument document = new WorkflowDocument(principalId, docId);

Package the Web Application

Package the Client Application (client web application) for deployment the way you normally package
web applications. The Travel Request Sample Web Application does this with an Ant build script. The
dist step of the build.xml script builds the SampleWorkflowClient.war file.

Final Steps

Deploy the PlugIn

Deploy the plugin to your workflow installation. Copy the plugin directory structure to your application
plugins directory. Please see the Workflow Plugin Guide for more information.

Deploy the Client Web Application

Deploy the Client Web Application to your Application server the way you normally deploy web
applications.

KEW Configuration

KEW Integration Options
The following integration options are available to applications integrating with KEW:

• Embedded - The KEW engine is embedded into a Java application. The Standalone Rice Server is
required.

KEW

53

• Bundled - Same as Embedded mode except that the entire KEW web application is also embedded into
the Java application. The Standalone Rice Server is not required.

• Remote Java Client – A Java client is used which relies on the service bus to communicate with a
Standalone Rice Server’s KEW services.

• Thin Java Client - A thin Java client is used which communicates with a Standalone Rice Server over
remote service calls.

• Web Services - Interacts directly with web services on a Standalone Rice Server.

Table 3.1. Advantages/Disadvantages of KEW Integration Options

Integration Option Advantages Disadvantages

Embedded • Integration of database transactions between
client application and embedded KEW (via
JTA)

• Performance - Embedded client talks directly
to database

• No need for application plug-ins on the server

• Great for Enterprise deployment, there is still a
single shared Standalone Rice web application
but scalability is increased because of multiple
Workflow Engines

• Can only be used by Java clients

• More library dependencies than the Thin
Client model

• Requires client application to establish
connections to Kuali Rice database

Bundled • All the advantages of Embedded Mode

• No need to deploy a standalone Rice server

• Ideal for development or "quickstart"
applications

• Application can be bundled with Rice for ease
of development/distribution

• Can switch to Embedded Mode for
deployment in an Enterprise environment

• Not desirable for Enterprise deployment where
more than one application is integrated with
Rice and KEW

• More library dependencies than the Thin
Client model and Embedded Mode (additional
web libraries)

Remote Java Client • Relatively simple configuration

• Client can access more external KEW services
from the Standalone Rice Server than the Thin
Java Client, and yet the client does not need to
have an embedded KEW engine

• Requires client application to be KSB-
enabled, unlike the Thin Java Client

• Cannot be used by KNS-enabled client
applications

Thin Java Client • Relatively simple configuration

• Fewer Library Dependencies

• No transactional integration between client
and server

• Plug-ins must be deployed to the server if
custom routing components are needed

Web Services • Any language which supports web services
can be used

• No transactional integration between client
and server

• Plug-ins must be deployed to the server if
custom routing components are needed

• Web Services can be slower than other
integration options

Standalone Server

To effectively use any of the KEW integration modes besides bundled, a Standalone Rice Server will need
to be deployed.

Embedded Deployment Diagram

Here is a diagram illustrating what a sample embedded deployment might look look.

KEW

54

Figure 3.1. Embedded Deployment Diagram example

Bundling the KEW Application

web.xml

Bundled mode is the same as embedded mode except that the client application embeds the entire Kuali
Rice system within it (including the web application). The embedding of the web application portion is
accomplished by utilizing Struts Modules.

Configuration is the same as embedded mode, with the exception of loading the web application portions
in the web.xml:

<filter>
 <filter-name>UserLoginFilter</filter-name>
 <filter-class>org.kuali.rice.kew.web.UserLoginFilter</filter-class>

</filter>

<filter-mapping>
 <filter-name>UserLoginFilter</filter-name>
 <servlet-name>action</servlet-name>
</filter-mapping>

<servlet>

KEW

55

 <servlet-name>action</servlet-name>
 <servlet-class>org.apache.struts.action.ActionServlet</servlet-class>
 .. other struts configuration if applicable
 <init-param>
 <param-name>config/en</param-name>
 <param-value>/en/WEB-INF/struts-config.xml</param-value>
 </init-param>
 <load-on-startup>0</load-on-startup>
</servlet>

<servlet>
 <servlet-name>remoting</servlet-name>
 <servlet-class>org.kuali.rice.ksb.messaging.servlet.KSBDispatcherServlet</servlet-class>
 <load-on-startup>1</load-on-startup>
</servlet>

<servlet>
 <servlet-name>export</servlet-name>
 <servlet-class>org.kuali.rice.kew.export.web.ExportServlet</servlet-class>
</servlet>

<servlet>
 <servlet-name>attachment</servlet-name>
 <servlet-class>org.kuali.rice.kew.notes.web.AttachmentServlet</servlet-class>
</servlet>

<servlet>
 <servlet-name>edoclite</servlet-name>
 <servlet-class>org.kuali.rice.kew.edl.EDLServlet</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>remoting</servlet-name>
 <url-pattern>/remoting/*</url-pattern>
</servlet-mapping>

<servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>*.do</url-pattern>
</servlet-mapping>

<servlet-mapping>

 <servlet-name>export</servlet-name>
 <url-pattern>/export/*</url-pattern>
</servlet-mapping>

<servlet-mapping>

 <servlet-name>attachment</servlet-name>
 <url-pattern>/en/attachment/*</url-pattern>
</servlet-mapping>

<servlet-mapping>
 <servlet-name>edoclite</servlet-name>
 <url-pattern>/en/EDocLite</url-pattern>
</servlet-mapping>

org.kuali.rice.kew.web.UserLoginFilter – This filter is used to assist the KEW bundled web application
in determining who the authenticated user is. Specifically, the login filter invokes the KIM identity
management service to determine the identity of the authenticated user.

KEW

56

Typically, a previously executed filter will challenge the user on entry to a Rice web page for their
authentication credentials using CAS or some other form of single sign on (SSO) authentication system.

For development and testing purposes, Rice provides a simple filter implementation that will present a
simple sign on screen. This screen displays only a single login entry field and submit button. The user
can enter their username (no password) and press the submit button, and the system authenticates the user
for entry into the system.

This can be configured as follows in the web.xml:

<filter>
 <filter-name>LoginFilter</filter-name>
 <filter-class>org.kuali.rice.kew.web.UserLoginFilter</filter-class>

</filter>

<filter-mapping>
 <filter-name>LoginFilter</filter-name>
 <servlet-name>action</servlet-name>
</filter-mapping>

and in the rice-config.xml:

<param name="filter.login.class">org.kuali.rice.kew.web.DummyLoginFilter</param>
<param name="filtermapping.login.1">/*</param>

org.apache.struts.action.ActionServlet - The Struts servlet which loads the KEW Struts module. The
module name should be 'en'. Struts only allows a single Action Servlet so if you are using Struts in your
application, all of your Struts modules will need to be configured using the init-param elements in this
servlet definition.

org.kuali.rice.ksb.messaging.servlet.KSBDispatcherServlet - A servlet which dispatches http requests
for the Kuali Service Bus (see KSB documentation for more details). The servlet mapping here should
correspond to the serviceServletUrl configuration parameter for the KSBConfigurer.

org.kuali.rice.kew.export.web.ExportServlet - serves exports of lookup results as XML files

org.kuali.rice.kew.notes.web.AttachmentServlet - serves attachments that have been attached to
documents using the KEW Notes and Attachments framework

org.kuali.rice.kew.edl.EDLServlet - The servlet used to interact with eDocLite documents. See eDocLite
documentation for more information.

KEW

57

Bundled Deployment Diagram

Figure 3.2. Bundled deployment diagram

Using the Remote Java Client
Along with the previous embedded configurations, KEW also allows for Remote Java Clients, which
communicate with KEW services that are available on the service bus. Configuration of the remote client
is similar to that of the embedded client, except that no embedded KEW engine gets set up; instead, the
client relies on the service bus for accessing the KEW services of the Standalone Rice Server.

Caution

Limitations of Remote KEW Java Clients:

At present, KNS-enabled Java clients cannot be used as Remote KEW Java Clients.

Using the Thin Java Client
In addition to the embedded configurations discussed previously, KEW also provides a thin java client
which can be used to talk directly to two KEW services exposed on the service bus.

These KEW services are:

• WorkflowDocumentService - provides methods for creating, loading, approving and querying
documents

KEW

58

• WorkflowUtilityService - provides methods for querying for various pieces of information about the
KEW system

Additionally, access to two KIM services is required, as Principal and Group information is needed to use
many of the methods in the KEW services above.

These KIM services are:

• kimIdentityService - provides methods to query for Principal and Entity information

• kimGroupService - provides methods to query for Group information

Of course, this configuration requires Standalone Rice Server deployment. The workflow engine deployed
within Standalone Rice Server is used for processing documents that integrate using a thin client.

These services are exposed on the KSB as Java services, meaning they use Java Serialization over HTTP
to communicate. Optionally, the KEW services can also be secured to provide access to only those callers
with authorized digital signatures (note that secure access is required for the KIM services). In order to
configure the thin client, the following configuration properties need to be defined.

Required Thin Client Configuration Properties

Table 3.2. Required Thin Client Configuration Properties

Property Description

encryption.key The secret key used by the encryption service; Must match the setting on
the standalone server

keystore.alias Alias of the application's key within the keystore

keystore.file Path to the application's keystore file

keystore.password Password to the keystore and the key with the configured alias

workflowdocument.javaservice.endpoint Endpoint URL for the Workflow Document service

workflowutility.javaservice.endpoint Endpoint URL for the Workflow Utility service

identity.javaservice.endpoint Endpoint URL for the KIM identity service

group.javaservice.endpoint Endpoint URL for the KIM group service

Note

It is simplest to use an identical keystore file and configuration in your thin client application to
that on your standalone server.

Optional Thin Client Configuration Properties

Table 3.3. Optional Thin Client Configuration Properties

Property Description

secure.workflowdocument.javaservice.endpoint true/false value indicating if endpoint is secured (defaults to true); Must
match the setting on the standalone server

secure.workflowutility.javaservice.endpoint true/false value indicating if endpoint is secured (defaults to true); Must
match the setting on the standalone server

Thin Client Spring Configuration

Here is the Spring configuration for a thin client in ThinClientSpring.xml:

KEW

59

<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.org/dtd/spring-beans.dtd">

<beans>
 <!-- point Rice to the file containing your configuration params -->
 <!-- which should include a parameter setting kew.mode to "THIN" -->
 <bean id="config" class="org.kuali.rice.core.config.spring.ConfigFactoryBean">
 <property name="configLocations">
 <list>
 <value>classpath: yourThinClientApp-config.xml</value>
 </list>
 </property>
 </bean>
 <!-- Pull your configuration params out as Properties -->
 <bean id="configProperties"
class="org.springframework.beans.factory.config.MethodInvokingFactoryBean">
 <property name="targetObject" ref="config" />
 <property name="targetMethod" value="getProperties" />
 </bean>
 <!-- expose configuration params to Spring -->
 <bean class=
"org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="properties" ref="configProperties" />
 </bean>
 <!-- The RiceConfigurer that sets up thin client mode -->
 <bean id="rice" class="org.kuali.rice.kew.config.KEWConfigurer">
 <!-- inject the "config" bean into our configurer -->
 <property name="rootConfig" ref="config" />
 </bean>
</beans>

For more details on configuring Rice for a thin client, please see the Thin Client Implementation sub-
section of this Technical Reference Guide.

Endpoint URLs

Since KEW and KIM use the KSB to expose their services, the endpoint URLs are the same as those
exported by the KSB.

An example configuration for these might be:

<param name=
"workflowdocument.javaservice.endpoint">http://yourlocalip/kr-dev/remoting/WorkflowDocumentActionsService</
param>
<param name=
"workflowutility.javaservice.endpoint">http://yourlocalip/kr-dev/remoting/WorkflowUtilityService</param>
<param name=
"identity.javaservice.endpoint">http://yourlocalip/kr-dev/remoting/kimIdentityService</param>
<param name=
"group.javaservice.endpoint">http://yourlocalip/kr-dev/remoting/kimGroupService</param>

Thin Client Deployment Diagram

Here is a diagram showing what a thin client deployment might look like.

http://site.kuali.org/rice/2.2.6/reference/html/TRG.html#thin_client

KEW

60

Figure 3.3. Thin client deployment diagram

Picture of an Enterprise Deployment

As can be seen from the various integration options described, a KEW Enterprise Deployment (and Kuali
Rice in general) might very well be a distributed environment with multiple systems communicating with
each other.

The diagram below shows what a typical Enterprise deployment of Kuali Rice might look like.

KEW

61

Figure 3.4. Typical enterprise deployment of Kuali Rice

KEW Core Parameters
The display below includes those basic set of parameters for rice-config.xml as the minimal parameters
to startup the Rice software. These parameters are a beginning reference to you for modification to your
rice-config.xml.

Note

Please verify that your application.url and database username/password are set correctly.

Table 3.4. KEW Core Parameters

Core Description Examples\Values

workflow.url URL to the KEW web module (i.e.,
${application.url}/en)

plugin.dir Directory from which plugins will be loaded

attachment.dir.location Directory where attachments will be stored

As a minimum, you must enable the dummy login filter by adding these lines to the rice-config.xml file
for default login screen:

<param name="filter.login.class">org.kuali.rice.kew.web.DummyLoginFilter</param>
<param name="filtermapping.login.1">/*</param>

KEW

62

KEW Configuration Properties

Table 3.5. KEW Configuration Properties

Property Description Default

actionlist.outbox Determines if the KEW actionlist "outbox" (ie,
the actions already completed) will be viewable
by users of the Rice application.

false

actionlist.outbox.default.preference.on Determines if the KEW actionlist "outbox" is the
default mode for viewing the action list.

false

base.url Base URL under which Action List and other
KEW screens can be found

Example: if your action list URL is http://
yourlocalip/en/ActionList.do, set this property to
http://yourlocalip/

client.protocol Same as clientProtocol property on
KEWConfigurer, this property can be configured
in either place

embedded

data.xml.root.location The temporary location of files being processed
by the KEW XmlPollingService

/tmp/${environment}/kew/xml

document.lock.timeout Used by the Oracle database platform to
determine how long database locks on the
document header are used

email.reminder.lifecycle.enabled If true, turns on timed job to send out regular e-
mails to remind users of actions still waiting in
their action list

extra.classes.dir Directory where classes for KEW plugins are
located

extra.lib.dir Directory where libraries for KEW plugins are
located

kew.mode The mode that KEW will run in; choices are
"local", "embedded", "remote", or "thin"

local

kew.url The base URL of KEW services and pages ${application.url}/kew

plugin.dir Directory to load plugins from if the Plugin
Registry is enabled

plugin.registry.enabled If set to true, then the Plugin Registry will be
enabled and any available plugins will be loaded
(see Workflow Plugin Guide)

false

attachment.dir.location When using the attachments system, this is the
directory where attachments will be stored

data.xml.loaded.location Directory path where the XML Loader will store
successfully loaded XML files

data.xml.pending.location Directory path where the XML Loader will look
for files to ingest

data.xml.pollIntervalSecs Interval in seconds that the XML Loader will poll
the pending directory for new XML files to load

data.xml.problem.location Directory path where the XML Loader will put
XML files it failed to load

datasource.platform The fully qualified class name
of an implementation of the
org.kuali.rice.core.database.platform.Platform
interface

default.note.class The fully qualified class name
of the default implementation of
org.kuali.rice.kew.notes.CustomNoteAttribute
to use for the Notes system

org.kuali.rice.kew.notes.CustomNoteAttributeImpl

edl.config.loc Location to load the EDocLite component
configuration from

classpath:META-INF/EDLConfig.xml

embedded.server Indicates if an embedded instance is supposed to
behave like a standalone server. See additional
notes below under embedded.server

false

Identity.useRemoteServices Configuration parameter that governs whether a
number of common identity services (user and

http://yourlocalip/en/ActionList.do
http://yourlocalip/en/ActionList.do
http://yourlocalip/

KEW

63

Property Description Default

group service) are exported or retrieved via the
bus. If this flag is set to true then:

1. user and group service will NOT be published
the bus, and

2. CoreResourceLoader will short-circuit the
resource loader stack lookup and go directly
to the bus to obtain these services,
circumventing any beans that may be defined
by local modules.

initialDelaySecs Delay in seconds after system starts up to begin
the XML Loader polling

rice.kew.enableKENNotification Determines if KCB notifications should be sent
for KEW events when Action Item events occur

true

rice.kew.struts.config.files The struts-config.xml configuration file that the
KEW portion of the Rice application will use

/kew/WEB-INF/struts-config.xml

workflow.documentsearch.base.url The URL for the document search page ${workflow.url}/DocumentSearch.do?
docFormKey=88888888&returnLocation=
${application.url}/
portal.do&hideReturnLink=true

xml.pipeline.lifecycle.enabled If set to true, will poll a directory for new Rice
configuration XML and ingest any new XML
placed in that directory

false

The ‘embedded.server’ Parameter

If embedded.server parameter is enabled (set to true), then two additional features will be loaded when
KEW is started:

1. XML Loader

2. Email Reminders

The XML Loader will poll a directory for XML files to ingest into the system (as configured by the
data.xml.* properties).

The Email Reminders will handle sending Daily and Weekly batch emails for users that have their
preferences set accordingly.

The ‘datasource.platform’ Parameter

KEW requires and uses the database platform implementation in order to function. These may be be
implemented differently for each support database management system.

The current functional implementations of this platform are:

• org.kuali.rice.core.database.platform.OraclePlatform

• org.kuali.rice.core.database.platform.Oracle9iPlatform (deprecated and just an alias for the
OraclePlatform)

• org.kuali.rice.core.database.platform.MySQLPlatform

Custom Servlet Filters

When running a Standalone Rice Server, you may want to implement your own filters for authentication
purposes. The system comes with a special filter that will read filter definitions and mappings from the
configuration system.

KEW

64

The Bootstrap Filter is a generic filter that is applied to all web requests, which then delegates to any filters
and are setup through the default configuration. This mechanism allows registration of institution-specific
filters without the necessity of modifying the web application configuration file (/WEB-INF/web.xml)
within the standalone webapp.

Filter syntax is as follows:

<param name="filter.filter name.class">class name of filter</param>

filter name is an arbitrary name for your filter:

<param name="filter.myfilter.class">edu.institution.organization.MyFilter</param>

Any number of configuration parameters may be defined for a given filter as follows:

<param name="filter.filter name.filter param name">filter param value</param>

For example:

<param name="filter.myfilter.color">red</param>

<param name="filter.myfilter.shape">square</param>

For custom filters to be invoked, they must first be mapped to requests. That is done via the filter mapping
parameter:

<param name="filtermapping.filter name.optional order index">path matching expression</param>

filter name is the name of your previously defined filter, optional order index is an optional integer used
to specify the position of the filter in the invocation order, and path matching expression is a Servlet-
specification-compatible url pattern.

<param name="filtermapping.myfilter.1">/special/path/</param>

If an order index is not specified, it is assumed to be 0. Filters with equivalent order are ordered arbitrarily
with relation to each other (not in order of filter or mapping definition). A full example follows:

<param name="filter.myfilter.class">edu.institution.organization.MyFilter</param>

<param name="filter.myfilter.color">red</param>

<param name="filter.myfilter.shape">square</param>
<param name="filter.securityfilter.class">edu.institution.organization.SecurityFilter</param>

<param name="filter.securityfilter.secretKey">abracadabra</param>

<param name="filter.compressionfilter.class">edu.institution.organization.CompressionFilter</param>
<param name="filter.compressionfilter.compressLevel">5</param>
<param name="filtermapping.securityfilter.1">/secure/</param>

<param name="filtermapping.myfilter.2">/special/path/</param>

KEW

65

<param name="filtermapping.compressionfilter.3">/*</param>

Email Configuration

KEW can send emails to notify users about items in their Action List (depending on user preferences).
Email in KEW uses the JavaMail library. In order to configure email, you will need to configure the
appropriate JavaMail properties. A list of those properties can be found at the end of the page at the
following url: http://java.sun.com/products/javamail/javadocs/javax/mail/package-summary.html

In addition to these standard JavaMail properties, you can also set the following optional properties to
configure simple SMTP authentication.

Table 3.6. Optional Properties to Configure Simple SMTP Authentication

Property Description Examples/Values

mail.transport.protocol The protocol used to sending mail smtp

mail.smtp.host This is the host name of the SMTP smtp.secureserver.net

mail.smtp.username The username used for access to the SMTP server

mail.smtp.password The password used for access to the SMTP server

Of course, if the authentication required by your mail server is beyond the abilities of the above
configuration, it is possible to override the enEmailService loaded by the KEW module and implement
a custom email service.

In order for KEW to send out emails, several steps need to be done. In order to have KEW send out
any emails, the “SEND_EMAIL_NOTIFICATION_IND” KNS System Parameter needs to be set to
‘Y’. For emails to real people, the environment code must be set to ‘prd’. If this is not set to ‘prd’,
an email can still be sent out to a test address. This test address is set by the KNS System Parameter,
“EMAIL_NOTIFICATION_TEST_ADDRESS”. Emails sent in a test system will only be sent to the
address specified by the EMAIL_NOTIFICATION_TEST_ADDRESS. The “from” address may also be
set with a System Parameter. To do this, set the “FROM_ADDRESS” System Parameter to the email
address you want the KEW emails sent from. If the FROM_ADDRESS parameter doesn’t exist or isn’t
set, it will default to “admin@localhost”.

Periodic Email Reminders

KEW can send emails on a nightly or weekly basis to remind users about items in their Action List
(depending on user preferences). The following set of parameters configures whether the processes to send
these reminders will run, and at what time(s) of day they will do so.

Table 3.7. Configuration Parameters for Email Reminders

Property Description Examples/Values

email.reminder.lifecycle.enabled Enable periodic KEW reminder emails true

dailyEmail.active Enable daily reminder emails true

dailyEmail.cronExpression Configures the schedule on which
the daily reminder emails are
sent – see org.quartz.CronExpression,
org.quartz.CronTrigger for information about the
format for this parameter

0 0 1 * * ?

weeklyEmail.active Enable weekly reminder emails true

weeklyEmail.cronExpression Configures the schedule on which
the weekly reminder emails are

0 0 2 ? * 2

http://java.sun.com/products/javamail/javadocs/javax/mail/package-summary.html

KEW

66

Property Description Examples/Values

sent – see org.quartz.CronExpression,
org.quartz.CronTrigger for information about the
format for this parameter

Workflow Preferences Configuration
Workflow users have the ability to update their preferences by going to the “User Preferences” page. The
default values for many of these preferences can now be configured.

For example, institutions will commonly override the default action list email preference. By default it’s
set to “immediate,” but it can be configured to “no”, “daily”, “weekly”, or “immediate.” The user will still
be able to override the defaults on their User Preferences screen.

Here a list of workflow preferences that can be configured:

<!-- Default Option for Action List User Preferences. -->

<param name="userOptions.default.color">white</param>
<!-- email options: no, daily, weekly, immediate -->
<param name="userOptions.default.email" >immediate</param>
<param name="userOptions.default.notifyPrimary" >yes</param>
<param name="userOptions.default.notifySecondary" >no</param>
<param name="userOptions.default.openNewWindow" >yes</param>
<param name="userOptions.default.actionListSize" >10</param>
<param name="userOptions.default.refreshRate" >15</param>
<param name="userOptions.default.showActionRequired" >yes</param>

<param name="userOptions.default.showDateCreated" >yes</param>
<param name="userOptions.default.showDocumentType" >yes</param>
<param name="userOptions.default.showDocumentStatus" >yes</param>
<param name="userOptions.default.showInitiator" >yes</param>
<param name="userOptions.default.showDelegator" >yes</param>
<param name="userOptions.default.showTitle" >yes</param>
<param name="userOptions.default.showWorkgroupRequest" >yes</param>
<param name="userOptions.default.showClearFYI" >yes</param>
<param name="userOptions.default.showLastApprovedDate" >no</param>
<param name="userOptions.default.showCurrentNode" >no</param>
<param name="userOptions.default.useOutBox" >yes</param>
<!-- delegatorFilterOnActionList: "Secondary Delegators on Action List Page" or "Secondary Delegators only on
 Filter Page" -->
<param name="userOptions.default.delegatorFilterOnActionList" >Secondary Delegators on Action List Page</param>
<param name="userOptions.default.primaryDelegatorFilterOnActionList" >Primary Delegates on Action List Page</
param>

Outbox Configuration
The Outbox is a standard feature on the Action List and is visible to the user in the UI by default. When
the Outbox is turned on, users can access it from the Outbox hyperlink at the top of the Action List.

The Outbox is implemented by heavily leveraging existing Action List code. When
an Action Item is deleted from the Action Item table as the result of a
user action, the item is stored in the KEW_OUT_BOX_ITM_T table, using the
org.kuali.rice.kew.actionitem.OutboxItemActionListExtension object. This object is an extension of
the ActionItemActionListExtension. The separate object exists to provide a bean for OJB mapping.

The Workflow Preferences determine if the Outbox is visible and functioning for each user. The preference
is called Use Outbox. In addition, you can configure the Outbox at the KEW level using the parameter tag:

<param name="actionlist.outbox">true</param>

KEW

67

When the Outbox is set to false, the preference for individual users to configure the Outbox is turned off.
By default, the Outbox is set to true at the KEW level. You can turn the Outbox off (to hide it from users)
by setting the property below to false:

<param name="actionlist.outbox.default.preference.on">false</param>

This provides backwards compatibility with applications that used earlier versions of KEW.

Notes on the Outbox:

• Actions on saved documents are not displayed in the Outbox.

• The Outbox responds to all saved Filters and Action List Preferences.

• A unique instance of a document only exists in the Outbox. If a user has a document in the Outbox
and that user takes action on the document, then the original instance of that document remains in the
Outbox.

Implementing KEW at your institution
In addition to the previous discussion of KEW configuration, there are a few other aspects relevant to
implementing KEW at your institution.

Bootstrap data

Because the operation of parts of KEW is dependent on a set of Document Types and Attributes being
available within the system, there is some bootstrap XML that you will want to import. The easiest way
to do this is to import the files in the following locations using the XML Ingester:

• kns/src/main/config/xml/RiceSampleAppWorkflowBootstrap.xml

• kew/src/main/config/bootstrap/edlstyle.xml

• kew/src/main/config/bootstrap/widgets.xml

These files include the following:

• Application constants: cluster-wide configuration settings

• Core document types and rules: a few primordial document types and rules are required for the system
to function

• Default "eDocLite" styles: these are required if you wish to use eDocLite

• Default admin user and workgroup: these are depended upon (at the moment) by the core document
types and rules, as well as referred to by the default application constants

Application constants you may want to change:

• Config.Application.AdminUserList: this should be set to a space-delimited set of administrative user
names

• Workflow.AdminWorkgroup: this should be set to an institutional admin workgroup; if the default KEW
workgroup service is used, this can be left to the default, WorkflowAdmin

KEW

68

• Config.Mailer.FromAddress: this should be changed to an address specific to your institution, e.g.
kew@your-university.edu

• HelpDeskActionList.helpDeskActionListName: set to an workgroup at your institution

• ApplicationContext: set to the context path of the KEW application, if it differs from the environment
default, e.g. "en-prod" instead of "en-prd"

In the core document types and rules config, you will need to change:

• superUserWorkgroupName, blanketApproveWorkgroupName, and exceptionWorkgroup: should be set
to the administrative group at your institution. If you are using the default workgroup service, this can
be left as WorkgroupAdmin

• ensure all docHandler elements, if they specify a URL, specify: "${base.url}/en-dev/Workgroup.do?
methodToCall=docHandler", and ensure that the base.url config parameter is specified in your
configuration (as mentioned above)

KEW Administration Guide
This guide provides information on administering a Kuali Enterprise Workflow (KEW) installation. Out of
the box, KEW comes with a default setup that works well in development and test environments. However,
when moving to a production environment, this setup requires adjustments. This document discusses basic
administration as well as instructions for working with some of KEW’s administration tools.

Configuration Overview
You configure KEW primarily through the workflow.xml file. Please see the KEW Configuration
Parameters guide for more information on initial configuration of a KEW installation.

Application Constants
Application Constants are the configuration elements in KEW. Each constant is modifiable at system
runtime; any changes take effect immediately in KEW. Application Constants are stored in a cluster-safe
cache and propagated across all machines when change occurs. For more information about Application
Constants, please refer to Application Constants.

Production Environments
When rolling KEW out into a production environment, there are application constants which you may
need to change:

• ActionList.sendEmailNotification - This is usually set to false in test environments so emails aren’t
generated during testing. Usually, this is set this to true in a production environment to allow email
notifications. You also need to ensure that your email service is configured properly to allow KEW to
send notifications.

• ApplicationContext - In a production environment, this is usually something like en-prd. You must set
this value correctly so that KEW’s email notifications contain valid links.

• Backdoor.ShowbackDoorLogin - The backdoor login allows users to masquerade as other users for
testing purposes. It is recommended that you set this value to false in a production environment.

KEW

69

• RouteManagerPool.numWorkers – The appropriate value for this depends on the capabilities of your
production hardware. If it's set too high, KEW may use so much of the CPU that other applications
running on the same machine are adversely impacted.

• RouteManagerQueue.waitTime - In test environments, users tend to be more sensitive to immediate
feedback since they may be testing processes over the course of a couple minutes that, in practice, occur
over a number of days. In test environments, it is recommended that you keep this value low. In a
production environment, you can reasonably increase this value without affecting the speed at which
documents are routed. This reduces thrashing on the route queue.

• RouteQueue.isRoutingByIPNumber - If you are running your production KEW system in a clustered
environment, set this value to false. This allows processing of documents in the queue to be distributed
across the entire cluster, which enhances routing performance and facilitates load balancing.

• RouteQueue.maxRetryAttempts - As with the RouteManagerQueue.waitTime constant, in a test
environment it is important to find out as quickly as possible if a document is going to go into exception
routing (usually indicating a problem in that document's routing setup). In a production environment, it
may make sense to allow a longer period before a document goes into exception routing. This constant,
in combination with the RouteQueue.timeIncrement constant, determines how long it takes a document
to be put into exception routing.

• RouteQueue.timeIncrement - Increasing this value results in a longer time before a document goes
into exception routing.

XML Ingestion
KEW relies on XML for data population and routing configuration. XML Ingester is available from the
Administrator channel in the portal. This allows import of various KEW components from XML, such
as DocumentTypes, RuleAttributes, Rules, Workgroups, and more.

Uploading an eDocLite form

To upload XML, go to Ingester UI and select the XML file that you want to import:

Figure 3.5. Ingester

After upload, notice the red arrow and the statement, Ingested xml doc: <name of file>:

KEW

70

Figure 3.6. Ingestion Complete

Message Queue Administration
The Message Queue is the main scheduling mechanism in KEW. You use it to schedule documents for
asynchronous routing and to queue arbitrary units of work. When KEW places a document into exception
routing, it may become stuck after a series of failed attempts. You can use the Route Queue UI to resolve
this issue, as well as to fix new entries, if needed.

Examining the Message Queue

The main Message Queue screen:

Figure 3.7. Message Queue Screen

Examining this sample screen, we see there are 20 entries in the message queue, one on each row. The
columns display information about each entry:

• Message Queue Id - The primary key of this route queue entry in the data store

KEW

71

• Service Name

• Service Namespace

• IP Number - The IP address of the machine on which the entry was created. In the environment pictured,
we have three machines in our cluster. The IP number shows from which machine each entry was queued
up.

• Queue Status – The entry can be in a state of QUEUED, ROUTING, or EXCEPTION:

• A QUEUED entry is waiting for a worker thread to pick it up.

• A ROUTING entry currently has a worker working on it.

• An EXCEPTION entry has a problem and the route manager cannot access it. An administrator
manually sets an EXCEPTION status to suspend a route queue entry until a problem can be diagnosed.

• Queue Priority - The priority of the entry in the queue, where entries with the lowest number are
processed first

• Queue Date - The date that KEW should process this queue entry. If the queue checker runs and
discovers the queue date for an entry is equal to or earlier than the current time, it processes that entry.

• Expiration Date

• Retry Count - The number of times KEW has attempted to process the entry

• App Specific Value 1 - The parameters to be passed to the Route Queue processor such as document ID

• App Specific Value 2 - The parameters to be passed to the Route Queue processor

• Action - The Edit link in the Action column allows you to edit the route queue entry.

Once a message entry has been successfully processed, it is deleted from the queue.

Diagnosing and Fixing Problems

Sometimes it is necessary to manually edit a route queue entry that is halted inside of the queue. This
situation might happen when:

• KEW encounters an error trying to put the document into exception routing. This could occur if there is a
database error or the document's PostProcessor throws an exception when it's notified of a status change

• KEW is improperly shut down in the middle of an entry being processed

• The database goes down while an entry is being processed

In all cases, the status of the entry is ROUTING, but there is no longer a worker thread processing the
entry. Currently, KEW doesn't implement any auto-detection of failure cases. To put one of these entries
in a state where it can be picked up by the route manager again, simply click the Edit link and set the
entry’s status back to QUEUED. Here's a screen shot of the Route Queue Entry - Edit screen:

KEW

72

Figure 3.8. Route Queue Entry Edit Screen

Use the Queue Status dropdown list to change the status of the entry. You may also want to set the Retry
Count to zero to allow you to diagnose the problem before the document goes into exception routing.

KEW System Parameters

System Parameters Covered

Table 3.8. KEW System Parameters

Name Value Description

MAX_MEMBERS_PER_PAGE 20 The maximum number of role or group members to
display at once on their documents. If the number
is above this value, the document will switch into a
paging mode with only this many rows displayed at
a time.

PREFIXES Ms;Mrs;Mr;Dr

SUFFIXES Jr;Sr;Mr;Md

CHECK_ENCRYPTION_SERVICE_OVERRIDE_IND Y Flag for enabling/disabling (Y/N) the demonstration
encryption check.

DATE_TO_STRING_FORMAT_FOR_FILE_NAME yyyyMMdd A single date format string that the
DateTimeService will use to format dates
to be used in a file name when
DateTimeServiceImpl.toDateStringForFilename(Date)
is called. For a more technical description of
how characters in the parameter value will be
interpreted, please consult the Java Documentation
for java.text.SimpleDateFormat. Any changes will
be applied when the application is restarted.

DATE_TO_STRING_FORMAT_FOR_USER_INTERFACE MM/dd/yyyy A single date format string that the DateTimeService
will use to format a date to be displayed on a
web page. For a more technical description of
how characters in the parameter value will be
interpreted, please consult the Java Documentation
for java.text.SimpleDateFormat. Any changes will
be applied when the application is restarted.

DEFAULT_COUNTRY US Used as the default country code when relating
records that do not have a country code to records
that do have a country code, e.g. validating a zip
code where the country is not collected.

ENABLE_DIRECT_INQUIRIES_IND Y Flag for enabling/disabling direct inquiries on
screens that are drawn by the nervous system (i.e.
lookups and maintenance documents)

ENABLE_FIELD_LEVEL_HELP_IND N Indicates whether field level help links are enabled
on lookup pages and documents.

KEW

73

Name Value Description

MAX_FILE_SIZE_DEFAULT_UPLOAD 5M Maximum file upload size for the application. Must
be an integer, optionally followed by "K", "M", or
"G". Only used if no other upload limits are in effect.

SENSITIVE_DATA_PATTERNS [0-9]{9};[0-9]{3}-[0-9]{2}-[0-9]{4} A semi-colon delimited list of regular expressions
that identify potentially sensitive data in strings.
These patterns will be matched against notes,
document explanations, and routing annotations.

STRING_TO_DATE_FORMATS MM/dd/yy;MM-dd-yy;MMMM dd,
yyyy;MMddyy

A semi-colon delimited list of strings
representing date formats that the
DateTimeService will use to parse dates when
DateTimeServiceImpl.convertToSqlDate(String) or
DateTimeServiceImpl.convertToDate(String) is
called. Note that patterns will be applied in the
order listed (and the first applicable one will
be used). For a more technical description of
how characters in the parameter value will be
interpreted, please consult the Java Documentation
for java.text.SimpleDateFormat. Any changes will
be applied when the application is restarted.

STRING_TO_TIMESTAMP_FORMATS MM/dd/yyyy hh:mm a A semi-colon delimited list of strings
representing date formats that the DateTimeService
will use to parse date and times when
DateTimeServiceImpl.convertToDateTime(String)
or
DateTimeServiceImpl.convertToSqlTimestamp(String)
is called. Note that patterns will be applied in
the order listed (and the first applicable one will
be used). For a more technical description of
how characters in the parameter value will be
interpreted, please consult the Java Documentation
for java.text.SimpleDateFormat. Any changes will
be applied when the application is restarted.

TIMESTAMP_TO_STRING_FORMAT_FOR_FILE_NAME yyyyMMdd-HH-mm-ss-S A single date format string that the DateTimeService
will use to format a date and time
string to be used in a file name when
DateTimeServiceImpl.toDateTimeStringForFilename(Date)
is called. For a more technical description of
how characters in the parameter value will be
interpreted, please consult the Java Documentation
for java.text.SimpleDateFormat. Any changes will
be applied when the application is restarted.

TIMESTAMP_TO_STRING_FORMAT_FOR_USER_INTERFACE MM/dd/yyyy hh:mm a A single date format string that the DateTimeService
will use to format a date and time to be displayed
on a web page. For a more technical description
of how characters in the parameter value will be
interpreted, please consult the Java Documentation
for java.text.SimpleDateFormat. Any changes will
be applied when the application is restarted.

ACTIVE_FILE_TYPES collectorInputFileType;
procurementCardInputFileType;
enterpriseFeederFileSetType;
assetBarcodeInventoryInputFileType;
customerLoadInputFileType

Batch file types that are active options for the file
upload screen.

SCHEDULE_ADMIN_GROUP KR-WKFLW:WorkflowAdmin The workgroup to which a user must be assigned to
modify batch jobs.

DEFAULT_CAN_PERFORM_ROUTE_REPORT_IND N If Y, the Route Report button will be
displayed on the document actions bar
if the document is using the default
DocumentAuthorizerBase.getDocumentActionFlags
to set the canPerformRouteReport property of the
returned DocumentActionFlags instance.

EXCEPTION_GROUP KR-WKFLW:WorkflowAdmin The workgroup to which a user must be assigned to
perform actions on documents in exception routing
status.

MAX_FILE_SIZE_ATTACHMENT 5M Maximum attachment uploads size for the
application. Used by KualiDocumentFormBase.
Must be an integer, optionally followed by "K", "M",
or "G".

KEW

74

Name Value Description

PESSIMISTIC_LOCK_ADMIN_GROUP KFS:KUALI_ROLE_SUPERVISOR Workgroup which can perform admin deletion and
lookup functions for Pessimistic Locks.

SEND_NOTE_WORKFLOW_NOTIFICATION_ACTIONS K Some documents provide the functionality to send
notes to another user using a workflow FYI or
acknowledge functionality. This parameter specifies
the default action that will be used when sending
notes. This parameter should be one of the following
2 values: "K" for acknowledge or "F" for "fyi".
Depending on the notes and workflow service
implementation, other values may be possible.

SESSION_TIMEOUT_WARNING_MESSAGE_TIME 5 The number of minutes before a session expires.
That user should be warned when a document uses
pessimistic locking.

SUPERVISOR_GROUP KR-WKFLW:WorkflowAdmin Workgroup which can perform almost any function
within Kuali.

MULTIPLE_VALUE_RESULTS_EXPIRATION_SECONDS 86400 Lookup results may continue to be persisted in
the DB long after they are needed. This parameter
represents the maximum amount of time, in seconds,
that the results will be allowed to persist in the DB
before they are deleted from the DB.

MULTIPLE_VALUE_RESULTS_PER_PAGE 100 Maximum number of rows that will be displayed on
a look-up results screen.

RESULTS_DEFAULT_MAX_COLUMN_LENGTH 70 If a maxLength attribute has not been set on a
lookup result field in the data dictionary, then the
result column's max length will be the value of this
parameter. Set this parameter to 0 for an unlimited
default length or a positive value (i.e. greater than 0)
for a finite max length.

RESULTS_LIMIT 200 Maximum number of results returned in a look-up
query.

MAX_AGE 86400 Pending attachments are attachments that do not yet
have a permanent link with the associated Business
Object (BO). These pending attachments are stored
in the attachments.pending.directory (defined in the
configuration service). If the BO is never persisted,
then this attachment will become orphaned (i.e. not
associated with any BO), but will remain in this
directory. The PurgePendingAttachmentsStep batch
step deletes these pending attachment files that are
older than the value of this parameter. The unit of
this value is seconds. Do not set this value too short,
as this will cause problems attaching files to BOs.

NUMBER_OF_DAYS_SINCE_LAST_UPDATE 1 Determines the age of the session document records
that the step will operate on, e.g. if this parameter is
set to 4, the rows with a last update timestamp older
that 4 days prior to when the job is running will be
deleted.

CUTOFF_TIME 02:00:00:AM Controls when the daily batch schedule should
terminate. The scheduler service implementation
compares the start time of the schedule job from
quartz with this time on day after the schedule job
started running.

CUTOFF_TIME_NEXT_DAY_IND Y Controls whether when the system is comparing
the schedule start day & time with
the scheduleStep_CUTOFF_TIME parameter, it
considers the specified time to apply to the day after
the schedule starts.

STATUS_CHECK_INTERVAL 30000 Time in milliseconds that the scheduleStep should
wait between iterations.

ACTION_LIST_DOCUMENT_POPUP_IND Y Flag to specify if clicking on a Document ID from
the Action List will load the Document in a new
window.

ACTION_LIST_ROUTE_LOG_POPUP_IND N Flag to specify if clicking on a Route Log from
the Action List will load the Route Log in a new
window.

EMAIL_NOTIFICATION_TEST_ADDRESS Default email address used for testing.

KEW

75

Name Value Description

HELP_DESK_NAME_GROUP KR-WKFLW:WorkflowAdmin The name of the group who has access to the "Help
Desk" feature on the Action List.

PAGE_SIZE_THROTTLE Throttles the number of results returned on all users
Action Lists, regardless of their user preferences.
This is intended to be used in a situation
where excessively large Action Lists are causing
performance issues.

SEND_EMAIL_NOTIFICATION_IND N Flag to determine whether or not to send email
notification.

KIM_PRIORITY_ON_DOC_TYP_PERMS_IND N Flag for enabling/disabling document type
permission checks to use KIM Permissions as
priority over Document Type policies.

MAXIMUM_NODES_BEFORE_RUNAWAY The maximum number of nodes the workflow
engine will process before it determines the process
is a runaway process. This is to prevent infinite
"loops" in the workflow engine.

SHOW_ATTACHMENTS_IND Y Flag to specify whether or not a file upload box
is displayed for KEW notes which allows for
uploading of an attachment with the note.

SHOW_BACK_DOOR_LOGIN_IND Y Flag to show the backdoor login.

TARGET_FRAME_NAME iframe_51148 Defines the target iframe name that the KEW
internal portal uses for its menu links.

DOCUMENT_SEARCH_POPUP_IND Y Flag to specify if clicking on a Document ID from
Document Search will load the Document in a new
window.

DOCUMENT_SEARCH_ROUTE_LOG_POPUP_IND N Flag to specify if clicking on a Route Log from
Document Search will load the Route Log in a new
window.

FETCH_MORE_ITERATION_LIMIT Limit of fetch more iteration for document searches.

RESULT_CAP Maximum number of documents to return from a
search.

DOCUMENT_TYPE_SEARCH_INSTRUCTION Enter document type information below
and click search.

Instructions for searching document types.

DEBUG_TRANSFORM_IND N Defines whether the debug transform is enabled for
eDocLite.

USE_XSLTC_IND N Defines whether XSLTC is used for eDocLite.

IS_LAST_APPROVER_ACTIVATE_FIRST_IND A flag to specify whether the
WorkflowInfo.isLastApproverAtNode(...) API
method attempts to active requests first, prior to
execution.

REPLACE_INSTRUCTION Enter the reviewer to replace. Instructions for replacing a reviewer.

FROM_ADDRESS rice.test@kulai.org Default from email address for notifications. If not
set, this value defaults to admin@localhost.

NOTE_CREATE_NEW_INSTRUCTION Create or modify note information. Instructions for creating a new note.

RESTRICT_DOCUMENT_TYPES Comma separated list of Document Types to exclude
from the Rule Quicklinks.

CUSTOM_DOCUMENT_TYPES Defines custom Document Type processes to use for
certain types of routing rules.

DELEGATE_LIMIT 20 Specifies that maximum number of delegation rules
that will be displayed on a Rule inquiry before the
screen shows a count of delegate rules and provides
a link for the user to show them.

GENERATE_ACTION_REQUESTS_IND Y Flag to determine whether or not a change to
a routing rule should be applied retroactively to
existing documents.

ROUTE_LOG_POPUP_IND F Flag to specify if clicking on a Route Log from a
Routing Rule inquiry will load the Route Log in a
new window.

RULE_CACHE_REQUEUE_DELAY 5000 Amount of time after a rule change is made before
the rule cache update message is sent.

KEW

76

Name Value Description

RULE_CREATE_NEW_INSTRUCTION Please select a rule template and
document type.

Instructions for creating a new rule.

RULE_LOCKING_ON_IND Y Defines whether rule locking it enabled.

RULE_SEARCH_INSTRUCTION Use fields below to search for rules. Instructions for the rule search.

RULE_TEMPLATE_CREATE_NEW_INSTRUCTION Enter a rule template name and
description. Please select all necessary
rule attributes for this template.

Instructions for creating new rule templates.

RULE_TEMPLATE_SEARCH_INSTRUCTION Use fields below to search for rule
templates.

Instructions for the rule template search.

NOTIFY_EXCLUDED_USERS_IND Defines a group name (in the format
“namespace:name”) which contains members who
should never receive notification action requests
from KEW. Notification requests in KEW are
generated when someone disapproves or blanket
approves are exist to notify other approvers that
these actions have taken place.

The most common use for this is in the case
of “system” users who participate in workflow
transactions. In these cases, since they aren’t actual
users who would be checking their action list, it
doesn’t make sense to send them requests since they
won’t ever be fulfilled.

Defining Workflow Processes Using Document
Types

A Document Type is an object that brings workflow components together into a cohesive unit (routing
configuration). One of its primary responsibilities is to define the routing path for a document. The routing
path is the process definition for the document. It can consist of various types of nodes that perform certain
actions, such as sending action requests to responsible parties, transmitting emails, or splitting the route
path into parallel branches.

In addition to the routing path, it contains the Post Processor which receives event callbacks from the
engine, the DocHandler which is the access point into the client application from the Action List and
Access Control for certain actions. It can also define various policies that control how documents of that
type are processed by the workflow engine.

This document has four parts:

1. A detailed explanation of the common fields in the Document Type XML definition

2. An example of each Document Type with a description of each field in it

3. Descriptions of the Document Type policies

4. A description of inheritance as applied to Document Types

There are some common attributes in every Document Type, but each Document Type can be customized
to provide different functions.

• Document Types

• Document Type Policies

• Inheritance

KEW

77

Common Fields in Document Type XML Definition

Table 3.9. Common Fields in Document Type XML Definition

Field Description

name The name of the Document Type

parent The parent Document Type of this Document Type. Each Child Document
Type inherits the attributes of its parent Document Type.

description The description of the Document Type; its primary responsibilities.

label The label of the Document Type, how it’s recognized

postProcessorName The name of the postProcessor that takes charge of the routing for this
Document Type

postprocessor A component that gets called throughout the routing process and handles
a set of standard events that all eDocs (electronic documents) go through.

authorizer A component that gets called during the routing process to perform
authorization checks. Applications can customize this component on a per-
doctype basis.

superUserGroupName The name of a workgroup whose members are the super users of this
Document Type. Super users of this Document Type can execute a super
user document search on this Document Type.

blanketApproveGroupName The name of a workgroup whose members have the blanketapprove rights
over this Document Type.

defaultExceptionGroupName The name of the workgroup whose members receive an exception notice
when a document of this Document Type encounters an exception in its
routing.

docHandler The DocHandler that handles the routing of this Document Type

active A true or false indicator for the active status of this document

validApplicationStatuses The set of valid application document statuses for this document type. If
this optional configuration is set, the application document status will only
allow the specified values to be set.

policies The policies that apply to this Document Type

policy The policy that applies to this Document Type. Use this when there is only
one policy for the Document Type.

value: A true or false indicator for whether the action for the policy will
be taken

routingVersion This field exists only for backward compatibility with older versions
of KEW. Originally, KEW only supported sequential routing paths (as
opposed to those with splits and joins). The KEW getDocRouteLevel()
API returns an integer that represents the numerical step in the routing
process. This number only has meaning for those documents that define
sequential routing.

• A document with a routingVersion of "1" will keep track of the route
level number.

• A document with a routingVersion of "2" (the default, unless explicitly
defined in the Document Type configuration) will NOT keep track of
the route level number and an exception will be thrown if code attempts
to access that value. New Document Type definitions do NOT need, and
should NOT have, this flag defined.

routePaths The routing paths for this Document Type

routePath The routing path for this Document Type. Use this field when there is just
one routing path for this Document Type.

routeNode A point or node on the routing path of this Document Type

routeModule The most basic module; it allows KEW to generate Action Requests

start The starting node of this Document Type during routing

requests The requested next node in the routing of this Document Type

activationType The activation type of the next node that is requested by this Document
Type. There are two activation types:

• P: Parallel: Multiple nodes in the routing process are activated at the
same time

KEW

78

Field Description

• S: Serial or Sequential: The nodes in the routing process are activated
one at a time

• R: Priority-Parallel: The multiple nodes with the same priority are
activated at the same time before moving to the next priority

ruleTemplate The ruleTemplate that applies to the routing node in this Document Type

split The routing path splits into branches and can continue on any of them at
a split.

branch One of the branches in the routing path.

join The point in the routing path where the split branches join together.

process There is a sub-process in the routing path; in other words, some nodes in
the routing path will activate a sub-process.

simple A new node in the routing path

• type: The type of the new routing node

• value: The value of the new routing node

• message: The message associated with the new routing node

• level: The routing level of the new routing node

• log: The log name of the new routing node

dynamic This changes the node to dynamic when it transitions to the next node in
the routing path; therefore, the routing path is dynamic rather than static.

Document Types

Document Type Examples

BlanketApproveTest

<documentType>
 <name>BlanketApproveTest</name>
 <description>BlanketApproveTest</description>
 <label>BlanketApproveTest</label>
 <postProcessorName>org.kuali.rice.kew.postprocessor.DefaultPostProcessor</postProcessorName>
 <superUserGroupName namespace=”KR-WKFLW” >TestWorkgroup</superUserGroupName>
 <blanketApproveGroupName namespace=”KR-WKFLW”>TestWorkgroup</blanketApproveGroupName>
 <defaultExceptionGroupName namespace=”KR-WKFLW”> TestWorkgroup</defaultExceptionGroupName>
 <docHandler>_blank</docHandler>
 <active>true</active>
 <policies>
 <policy>
 <name>DEFAULT_APPROVE</name>
 <value>false</value>
 </policy>
 </policies>

</documentType>

• name: This is the Document Type for Blanket Approve Test.

• description: This Document Type is used to test the Blanket Approve function.

• label: This Document Type is recognized as the BlanketApproveTest type.

• postProcessorName: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor.DefaultPostProcessor.

• superUserGroupName: The super users for this Document Type are members of the TestWorkgroup.

• blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right on this
type of document.

KEW

79

• defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

• docHandler: The Doc Handler for this type of document is _blank.

• active: This Document Type is currently Active. In other words, it is in use.

• Policies for this Document Type contains two policies: The DEFAULT_APPROVE policy is set false
by default. In other words, the default approve action on this type of document is NOT to approve it.

BlanketApproveSequentialTest

<documentType>
 <name>BlanketApproveSequentialTest</name>
 <parent>BlanketApproveTest</parent>
 <description>BlanketApproveSequentialTest</description>
 <label>BlanketApproveSequentialTest</label>
 <postProcessorName>org.kuali.rice.kew.postprocessor.DefaultPostProcessor</postProcessorName>
 <superUserGroupName namespace=”KR-WKFLW”>WorkflowAdmin</superUserGroupName>
 <blanketApproveGroupName namespace=”KR-WKFLW”>TestWorkgroup</blanketApproveGroupName>
 <defaultExceptionGroupName namespace=”KR-WKFLW”>WorkflowAdmin</defaultExceptionGroupName>

 <docHandler>_blank</docHandler>
 <active>true</active>
 <routePaths>
 <routePath>
 <start name="AdHoc" nextNode="WorkflowDocument" />
 <requests name="WorkflowDocument" nextNode="WorkflowDocument2" />
 <requests name="WorkflowDocument2" nextNode="Acknowledge1" />
 <requests name="Acknowledge1" nextNode="Acknowledge2" />
 <requests name="Acknowledge2" />
 </routePath>
 </routePaths>
 <routeNodes>
 <start name="AdHoc">
 <activationType>P</activationType>
 </start>
 <requests name="WorkflowDocument">
 <activationType>P</activationType>
 <ruleTemplate>WorkflowDocumentTemplate</ruleTemplate>
 </requests>
 <requests name="WorkflowDocument2">
 <activationType>P</activationType>
 <ruleTemplate>WorkflowDocument2Template</ruleTemplate>
 </requests>
 <requests name="Acknowledge1">
 <activationType>P</activationType>
 <ruleTemplate>Ack1Template</ruleTemplate>
 </requests>
 <requests name="Acknowledge2">
 <activationType>P</activationType>
 <ruleTemplate>Ack2Template</ruleTemplate>
 </requests>
 </routeNodes>
</documentType>

• name: This is the Document Type for Blanket Approve Sequential Test. There is a sequence of routing
nodes, and no routing node can be skipped.

• parent: The parent Document Type is BlanketApproveTest. This Document Type inherits the policies
that BlanketApproveTest has.

• description: This Document Type is used to test the Blanket Approve Sequential function.

• label: This Document Type is recognized as the blanketApproveSequentialTest type.

• postProcessorName: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor.DefaultPostProcessor.

KEW

80

• superUserGroupName: The super users for this Document Type are members of the WorkflowAdmin.

• blanketApproveGroupName: The members of the TestWorkgroup have blanketApprove right on this
type of document.

• defaultExceptionGroupName: The members of the WorkflowAdmin will receive an exception notice
for documents of this Document Type.

• docHandler: The Doc Handler for this type of document is _blank.

• active: This Document Type is currently active. In other words, it is in use.

• routePath: The routing path for this Document Type is: AdHoc -> WorkflowDocument ->
WorkflowDocument2 -> Acknowledge1 -> Acknowledge2.

• routeNode: Based on the routePath, there are five nodes in the routing of this Document Type:

• The starting node for this Document Type is AdHoc. On the initiation of a document of this type, the
postProcessor in Kuali Enterprise Workflow (KEW) activates the node, AdHoc.

• The next node in the routing for this Document Type is WorkflowDocument. On request, the node is
activated and applies the rules in rule template, WorkflowDocumentTemplate.

• The next node in the routing for this Document Type is WorkflowDocument2. On request, the node
is activated and applies the rules in rule template, WorkflowDocument2Template.

• The next node in the routing for this Document Type is Acknowledge1. On request, the node is
activated and applies the rules in rule template, Ack1Template.

• The next node in the routing for this Document Type is Acknowledge2. On request, the node is
activated and applies the rules in rule template, Ack2Template.

KEW

81

Figure 3.9. BlanketApproveSequentialTest Workflow

BlanketApproveParallelTest

KEW

82

<documentType>
 <name>BlanketApproveParallelTest</name>
 <parent>BlanketApproveTest</parent>
 <description>BlanketApproveParallelTest</description>
 <label>BlanketApproveParallelTest</label>
 <postProcessorName>org.kuali.rice.kew.postprocessor.DefaultPostProcessor</postProcessorName>
 <superUserGroupName namespace=”KR-WKFLW” >TestWorkgroup</superUserGroupName>
 <blanketApproveGroupName namespace=”KR-WKFLW”>TestWorkgroup</blanketApproveGroupName>
 <defaultExceptionGroupName namespace=”KR-WKFLW”> TestWorkgroup</defaultExceptionGroupName>
 <docHandler>_blank</docHandler>
 <active>true</active>
 <routePaths>
 <routePath>
 <start name="AdHoc" nextNode="WorkflowDocument" />
 <requests name="WorkflowDocument" nextNode="Split" />
 <split name="Split" nextNode="WorkflowDocumentFinal">
 <branch name="B1">
 <requests name="WorkflowDocument2-B1" nextNode="WorkflowDocument3-B1" />
 <requests name="WorkflowDocument3-B1" nextNode="Join" />
 </branch>
 <branch name="B2">
 <requests name="WorkflowDocument3-B2" nextNode="WorkflowDocument2-B2" />
 <requests name="WorkflowDocument2-B2" nextNode="Join" />
 </branch>
 <branch name="B3">
 <requests name="WorkflowDocument4-B3" nextNode="Join" />
 </branch>
 <join name="Join" />
 </split>
 <requests name="WorkflowDocumentFinal" nextNode="Acknowledge1" />
 <requests name="Acknowledge1" nextNode="Acknowledge2" />
 <requests name="Acknowledge2" />
 </routePath>
 </routePaths>
 <routeNodes>
 <start name="AdHoc">
 <activationType>P</activationType>
 </start>
 <requests name="WorkflowDocument">
 <activationType>P</activationType>
 <ruleTemplate>WorkflowDocumentTemplate</ruleTemplate>
 </requests>
 <split name="Split" />
 <requests name="WorkflowDocument2-B1">
 <activationType>P</activationType>
 <ruleTemplate>WorkflowDocument2Template</ruleTemplate>
 </requests>
 <requests name="WorkflowDocument2-B2">
 <activationType>P</activationType>
 <ruleTemplate>WorkflowDocument2Template</ruleTemplate>
 </requests>
 <requests name="WorkflowDocument3-B1">
 <activationType>P</activationType>
 <ruleTemplate>WorkflowDocument3Template</ruleTemplate>
 </requests>
 <requests name="WorkflowDocument3-B2">
 <activationType>P</activationType>
 <ruleTemplate>WorkflowDocument3Template</ruleTemplate>
 </requests>
 <requests name="WorkflowDocument4-B3">
 <activationType>P</activationType>
 <ruleTemplate>WorkflowDocument4Template</ruleTemplate>
 </requests>
 <join name="Join" />
 <requests name="WorkflowDocumentFinal">
 <activationType>P</activationType>
 <ruleTemplate>WorkflowDocumentFinalTemplate</ruleTemplate>
 </requests>
 <requests name="Acknowledge1">
 <activationType>P</activationType>
 <ruleTemplate>Ack1Template</ruleTemplate>
 </requests>
 <requests name="Acknowledge2">
 <activationType>P</activationType>
 <ruleTemplate>Ack2Template</ruleTemplate>

KEW

83

 </requests>
 </routeNodes>
</documentType>

• name: This is the Document Type for Blanket Approve Parallel Test. At some point in the routing, the
route path may split and a node can be skipped if another parallel node takes action on the document.

• Parent: The parent Document Type is BlanketApproveTest. This Document Type inherits the routing
that exists for BlanketApproveTest.

• description: This Document Type is used to test the Blanket Approve Parallel function.

• label: This Document Type is recognized as the blanketApproveParallelTest type.

• postProcessorName: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor.DefaultPostProcessor.

• superUserGroupName: The super users for this Document Type are members of the TestWorkgroup.

• blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right on this
type of document.

• defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

• docHandler: The Doc Handler for this type of document is _blank.

• active: This Document Type is currently active. In other words, it is in use.

• routePath: The routing path for this Document Type is: AdHoc -> WorkflowDocument -> split ->
B1\B2\B3 -> Join -> WorkflowDocumentFinal -> Acknowledge1 -> Acknowledge2.

• routeNode: Based on the routePath, there are six nodes in the routing of this Document Type:

• The starting node for this Document Type is AdHoc. On the initiation of a document of this type, the
postProcessor in KEW activates the node, AdHoc.

• The next node in the routing for this Document Type is WorkflowDocument. On request, the node
is activated and applies the rules in rule template, WorkflowDocumentTemplate. Then, the routing
path splits into three branches for the next node.

• One branch is B1. On request, the node WorkflowDocument2-B1 is activated and applies the
WorkflowDocument2Template. The next node in this branch is WorkflowDocument3-B1. On
request, the node is activated and applies the WorkflowDocument3Template.

• One branch is B2. On request, the node WorkflowDocument3-B2 is activated and applies the
WorkflowDocument3Template. The next node in this branch is WorkflowDocument2-B2. On
request, the node is activated and applies the WorkflowDocument2Template.

• One branch is B3. On request, the node WorkflowDocument4-B3 is activated and applies the
WorkflowDocument4Template.

• Then, the routing path joins and the route merges back together into one route.

• The next node in the routing for this Document Type is WorkflowDocumentFinal. On request, the
node is activated and applies the rules in rule template, WorkflowDocumentFinalTemplate.

• The next node in the routing for this Document Type is Acknowledge1. On request, the node is
activated and applies the rules in rule template, Ack1Template.

KEW

84

• The next node in the routing for this Document Type is Acknowledge2. On request, the node is
activated and applies the rules in rule template, Ack2Template.

KEW

85

Figure 3.10. BlanketApproveParallelTest Workflow

NotificationTest

KEW

86

<documentType>
 <name>NotificationTest</name>
 <description>NotificationTest</description>
 <label>NotificationTest</label>
 <postProcessorName>org.kuali.rice.kew.postprocessor.DefaultPostProcessor</postProcessorName>
 <superUserGroupName namespace=”KR-WKFLW” >TestWorkgroup</superUserGroupName>
 <blanketApproveGroupName namespace=”KR-WKFLW”>TestWorkgroup</blanketApproveGroupName>
 <defaultExceptionGroupName namespace=”KR-WKFLW”> TestWorkgroup</defaultExceptionGroupName>
 <docHandler>_blank</docHandler>
 <active>true</active>
 <routePaths>
 <routePath>
 <start name="AdHoc" nextNode="NotifyFirst" />
 <requests name="NotifyFirst" nextNode="Split" />
 <split name="Split" nextNode="NotifyFinal">
 <branch name="LeftBranch">
 <requests name="NotifyLeftBranch" nextNode="Join" />
 </branch>
 <branch name="RightBranch">
 <requests name="NotifyRightBranch" nextNode="Join" />
 </branch>
 <join name="Join" />
 </split>
 <requests name="NotifyFinal" />
 </routePath>
 </routePaths>
 <routeNodes>
 <start name="AdHoc">
 <activationType>P</activationType>
 </start>
 <requests name="NotifyFirst">
 <activationType>P</activationType>
 <ruleTemplate>NotifyFirstTemplate</ruleTemplate>
 </requests>
 <split name="Split" />
 <requests name="NotifyLeftBranch">
 <activationType>P</activationType>
 <ruleTemplate>NotifyLeftBranchTemplate</ruleTemplate>
 </requests>
 <requests name="NotifyRightBranch">
 <activationType>P</activationType>
 <ruleTemplate>NotifyRightBranchTemplate</ruleTemplate>
 </requests>
 <join name="Join" />
 <requests name="NotifyFinal">
 <activationType>P</activationType>
 <ruleTemplate>NotifyFinalTemplate</ruleTemplate>
 </requests>
 </routeNodes>
</documentType>

• name: This is the Document Type for Notification Test. At some point in the routing, the route path
may split, and a node can be skipped if another notification node takes action on the document.

• description: This Document Type is used to test the notification function.

• label: This Document Type is recognized as the NotificationTest type.

• postProcessorName: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor.DefaultPostProcessor.

• superUserGroupName: The super users for this Document Type are members of the TestWorkgroup.

• blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right on this
type of document.

• defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

KEW

87

• docHandler: The Doc Handler for this type of document is _blank.

• active: This Document Type is currently active. In other words, it is in use.

• routePath: The routing path for this Document Type is: AdHoc -> NotifyFirst -> split -> LeftBranch
\RightBranch -> Join -> NotifyFinal.

• routeNode: Based on the routePath, there are four nodes in the routing of this Document Type:

• o The starting node for this Document Type is AdHoc. On the initiation of a document of this type,
the postProcessor in KEW activates the node, AdHoc.

• The next node in the routing for this Document Type is NotifyFirst. On request, the node is activated
and applies the rules in rule template, NotifyFirstTemplate. Then the routing path splits into two
branches for the next node.

• One branch is LeftBranch. On request, the node is activated and applies the
NotifyLeftBranchTemplate.

• One branch is RightBranch. On request, the node is activated and applies the
NotifyRightBranchTemplate.

• Then the routing path joins together again.

• The next node in the routing for this Document Type is NotifyFinal. On request, the node is activated
and applies the rules in rule template, NotifyFinalTemplate

KEW

88

Figure 3.11. NotificationTest Workflow

NotificationTestChild

<documentType>
 <name>NotificationTestChild</name>
 <parent>NotificationTest</parent>
 <description>NotificationTest</description>
 <label>NotificationTest</label>
 <postProcessorName>org.kuali.rice.kew.postprocessor.DefaultPostProcessor</postProcessorName>
 <superUserGroupName namespace=”KR-WKFLW” >TestWorkgroup</superUserGroupName>
 <blanketApproveGroupName namespace=”KR-WKFLW”>TestWorkgroup</blanketApproveGroupName>
 <defaultExceptionGroupName namespace=”KR-WKFLW”> TestWorkgroup</defaultExceptionGroupName>
 <docHandler>_blank</docHandler>
 <active>true</active>
 <policies>
 <policy>
 <name>SEND_NOTIFICATION_ON_SU_APPROVE</name>
 <value>true</value>
 </policy>

KEW

89

 </policies>
</documentType>

• name: This is the Document Type for Notification Test Child.

• Parent: The parent Document Type is NotificationTest. This Document Type inherits the routing that
NotificationTest has.

• description: This Document Type is used to test the Notification function.

• label: This Document Type is recognized as the NotificationTest type.

• postProcessorName: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor.DefaultPostProcessor.

• superUserGroupName: The super users for this Document Type are members of the TestWorkgroup.

• blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right on this
type of document.

• defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

• docHandler: The Doc Handler for this type of document is _blank.

• active: This Document Type is currently active. In other words, it is in use.

• Policy: There is only one policy that applies to this Document Type:
SEND_NOTIFICATION_ON_SU_APPROVE. This policy currently applies to this Document Type.
In other words, a notification will be sent to the designated two users when a SuperUser approves a
document of this type.

BlanketApproveMandatoryNodeTest

<documentType>
 <name>BlanketApproveMandatoryNodeTest</name>
 <parent>BlanketApproveTest</parent>
 <description>BlanketApproveMandatoryNodeTest</description>
 <label>BlanketApproveMandatoryNodeTest</label>
 <postProcessorName>org.kuali.rice.kew.postprocessor.DefaultPostProcessor</postProcessorName>
 <superUserGroupName namespace=”KR-WKFLW” >TestWorkgroup</superUserGroupName>
 <blanketApproveGroupName namespace=”KR-WKFLW”>TestWorkgroup</blanketApproveGroupName>
 <defaultExceptionGroupName namespace=”KR-WKFLW”> TestWorkgroup</defaultExceptionGroupName>
 <docHandler>_blank</docHandler>
 <active>true</active>
 <routePaths>
 <routePath>
 <start name="AdHoc" nextNode="WorkflowDocument" />
 <requests name="WorkflowDocument" nextNode="WorkflowDocument2" />
 <requests name="WorkflowDocument2" nextNode="Acknowledge1" />
 <requests name="Acknowledge1" nextNode="Acknowledge2" />
 <requests name="Acknowledge2" />
 </routePath>
 </routePaths>
 <routeNodes>
 <start name="AdHoc">
 <activationType>P</activationType>
 </start>
 <requests name="WorkflowDocument">
 <activationType>P</activationType>
 <ruleTemplate>WorkflowDocumentTemplate</ruleTemplate>
 <mandatoryRoute>true</mandatoryRoute>
 </requests>
 <requests name="WorkflowDocument2">
 <activationType>P</activationType>

KEW

90

 <ruleTemplate>WorkflowDocument2Template</ruleTemplate>
 <mandatoryRoute>true</mandatoryRoute>
 <finalApproval>true</finalApproval>
 </requests>
 <requests name="Acknowledge1">
 <activationType>P</activationType>
 <ruleTemplate>Ack1Template</ruleTemplate>
 </requests>
 <requests name="Acknowledge2">
 <activationType>P</activationType>
 <ruleTemplate>Ack2Template</ruleTemplate>
 </requests>
 </routeNodes>
</documentType>

• name: This is the Document Type for Blanket Approve Mandatory Node Test.

• Parent: The parent Document Type is BlanketApproveTest. This Document Type inherits the policies
that NotificationTest has.

• description: This Document Type is used to test the Blanket Approve Mandatory Node.

• label: This Document Type is recognized as the BlanketApproveMandatoryNodeTest type.

• postProcessorName: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor.DefaultPostProcessor.

• superUserGroupName: The super users for this Document Type are members of the TestWorkgroup.

• blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right on this
type of document.

• defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

• docHandler: The Doc Handler for this type of document is _blank.

• active: This Document Type is currently active. In other words, it is in use.

• routePath: The routing path for this Document Type is: AdHoc -> WorkflowDocument ->
WorkflowDocument2 -> Acknowledge1 -> Acknowledge2.

• routeNode: Based on the routePath, there are five nodes in the routing of this Document Type:

• The starting node for this Document Type is AdHoc. On the initiation of a document of this type, the
postProcessor in KEW activates the node AdHoc.

• The next node in the routing for this Document Type is WorkflowDocument. On request, the node is
activated, applies the rules in rule template, WorkflowDocumentTemplate, and sets the mandatory
route as true. In other words, the document must route through this node.

• The next node in the routing for this Document Type is WorkflowDocument2. On request, the node is
activated, applies the rules in rule template, WorkflowDocument2Template, and sets the mandatory
route as true. In other words, the document must route through this node.

• The next node in the routing for this Document Type is Acknowledge1. On request, the node is
activated and applies the rules in rule template, Ack1Template.

• The next node in the routing for this Document Type is Acknowledge2. On request, the node is
activated and applies the rules in rule template, Ack2Template.

KEW

91

Figure 3.12. Blanket Approve Mandatory Test

KEW

92

SaveActionEventTest

<documentType>
 <name>SaveActionEventTest</name>
 <description>SaveActionEventTest</description>
 <label>SaveActionEventTest</label>
 <postProcessorName>org.kuali.rice.kew.postprocessor.DefaultPostProcessor</postProcessorName>
 <superUserGroupName namespace=”KR-WKFLW” >TestWorkgroup</superUserGroupName>
 <blanketApproveGroupName namespace=”KR-WKFLW”>TestWorkgroup</blanketApproveGroupName>
 <defaultExceptionGroupName namespace=”KR-WKFLW”> TestWorkgroup</defaultExceptionGroupName>
 <docHandler>_blank</docHandler>
 <active>true</active>
 <policies>
 <policy>
 <name>DEFAULT_APPROVE</name>
 <value>false</value>
 </policy>
 </policies>
 <routePaths>
 <routePath>
 <start name="AdHoc" nextNode="WorkflowDocument" />
 <requests name="WorkflowDocument" />
 </routePath>
 </routePaths>
 <routeNodes>
 <start name="AdHoc">
 <activationType>P</activationType>
 </start>
 <requests name="WorkflowDocument">
 <activationType>P</activationType>
 <ruleTemplate>WorkflowDocumentTemplate</ruleTemplate>
 </requests>
 </routeNodes>
</documentType>

• name: This is the Document Type for Save Action Event Test.

• description: This Document Type is used to test the Blanket Approve Mandatory Node.

• label: This Document Type is recognized as the SaveActionEventTest type.

• postProcessorName: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor.DefaultPostProcessor.

• superUserGroupName: The super users for this Document Type are members of the TestWorkgroup.

• blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right on this
type of document.

• defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

• docHandler: The Doc Handler for this type of document is _blank.

• active: This Document Type is currently active. In other words, it is in use.

• Policies for this Document Type: The DEFAULT_APPROVE policy is set false by default. In other
words, the default approve action on this type of document is NOT to approve it.

• routePath: The routing path for this Document Type is: AdHoc -> WorkflowDocument.

• routeNode: Based on the routePath, there are two nodes in the routing of this Document Type:

• The starting node for this Document Type is AdHoc. On the initiation of a document of this type, the
postProcessor in KEW activates the node AdHoc.

KEW

93

• The next node in the routing for this Document Type is WorkflowDocument. On request, the node
is activated and applies the rules in rule template WorkflowDocumentTemplate.

Figure 3.13. Save Action Event Test

SaveActionEventTestNonInitiator

<documentType>
 <name>SaveActionEventTestNonInitiator</name>
 <description>SaveActionEventTest With No Initiator Only Save Required</description>
 <label>SaveActionEventTestNonInitiator</label>
 <postProcessorName>org.kuali.rice.kew.postprocessor.DefaultPostProcessor</postProcessorName>
 <superUserGroupName namespace=”KR-WKFLW” >TestWorkgroup</superUserGroupName>
 <blanketApproveGroupName namespace=”KR-WKFLW”>TestWorkgroup</blanketApproveGroupName>
 <defaultExceptionGroupName namespace=”KR-WKFLW”> TestWorkgroup</defaultExceptionGroupName>
 <docHandler>_blank</docHandler>
 <active>true</active>
 <policies>
 <policy>
 <name>DEFAULT_APPROVE</name>
 <value>false</value>
 </policy>
 <policy>
 <name>INITIATOR_MUST_SAVE</name>
 <value>false</value>
 </policy>
 </policies>
 <routePaths>
 <routePath>
 <start name="AdHoc" nextNode="WorkflowDocument" />
 <requests name="WorkflowDocument" />
 </routePath>
 </routePaths>
 <routeNodes>
 <start name="AdHoc">
 <activationType>P</activationType>

KEW

94

 </start>
 <requests name="WorkflowDocument">
 <activationType>P</activationType>
 <ruleTemplate>WorkflowDocumentTemplate</ruleTemplate>
 </requests>
 </routeNodes>
</documentType>

• name: This is the Document Type for Save Action Event Test Non Initiator.

• description: This Document Type is used to test the saving of an action event by non-initiator.

• label: This Document Type is recognized as the SaveActionEventTestNonInitiator type.

• postProcessorName: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor.DefaultPostProcessor.

• superUserGroupName: The super users for this Document Type are members of the TestWorkgroup.

• blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right on this
type of document.

• defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

• docHandler: The Doc Handler for this type of document is _blank.

• active: This Document Type is currently active. In other words, it is in use.

• Policies for this Document Type:

• The DEFAULT_APPROVE policy is set false by default. In other words, the default approve action
on this type of document is NOT to approve it.

• The INITIATOR_MUST_SAVE policy is set false by default. In other words, the initiator does NOT
have to save the document for the non-initiator to save the actions on it.

• routePath: The routing path for this Document Type is: AdHoc -> WorkflowDocument.

• routeNode: Based on the routePath, there are two nodes in the routing of this Document Type:

• The starting node for this Document Type is AdHoc. On the initiation of a document of this type, the
postProcessor in KEW activates the node AdHoc.

• The next node in the routing for this Document Type is WorkflowDocument. On request, the node
is activated and applies the rules in rule template, WorkflowDocumentTemplate.

KEW

95

Figure 3.14. Save Action Even Test: Non-Initiator

TakeWorkgroupAuthorityDoc

<documentType>
 <name>TakeWorkgroupAuthorityDoc</name>
 <description>TakeWorkgroupAuthority Action Test</description>
 <label>TakeWorkgroupAuthorityDoc</label>
 <postProcessorName>org.kuali.rice.kew.postprocessor.DefaultPostProcessor</postProcessorName>
 <superUserGroupName namespace=”KR-WKFLW” >TestWorkgroup</superUserGroupName>
 <blanketApproveGroupName namespace=”KR-WKFLW”>TestWorkgroup</blanketApproveGroupName>
 <defaultExceptionGroupName namespace=”KR-WKFLW”> TestWorkgroup</defaultExceptionGroupName>
 <docHandler>_blank</docHandler>
 <active>true</active>
 <policies>
 <policy>
 <name>DEFAULT_APPROVE</name>
 <value>false</value>
 </policy>
 </policies>
 <routePaths>
 <routePath>
 <start name="AdHoc" nextNode="WorkgroupByDocument" />
 <requests name="WorkgroupByDocument" />
 </routePath>
 </routePaths>
 <routeNodes>
 <start name="AdHoc">
 <activationType>P</activationType>
 </start>
 <requests name="WorkgroupByDocument">
 <activationType>P</activationType>
 <ruleTemplate>WorkgroupByDocument</ruleTemplate>
 </requests>
 </routeNodes>
</documentType>

KEW

96

• name: This is the Document Type for Take Workgroup Authority Doc.

• description: This Document Type is used to decide authorized workgroups by Document Type.

• label: This Document Type is recognized as the TakeWorkgroupAuthorityDoc type.

• postProcessorName: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor.DefaultPostProcessor.

• superUserGroupName: The super users for this Document Type are members of the TestWorkgroup.

• blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right on this
type of document.

• defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

• docHandler: The Doc Handler for this type of document is _blank.

• active: This Document Type is currently active. In other words, it is in use.

• Policies for this Document Type: The DEFAULT_APPROVE policy is set false by default. In other
words, the default approve action on this type of document is NOT to approve it.

• routePath: The routing path for this Document Type is: AdHoc -> WorkflowDocument.

• routeNode: Based on the routePath, there are two nodes in the routing of this Document Type:

• The starting node for this Document Type is AdHoc. On the initiation of a document of this type, the
postProcessor in KEW activates the node AdHoc.

• The next node in the routing for this Document Type is WorkflowDocument. On request, the node
is activated and applies the rules in rule template, WorkflowDocumentTemplate.

KEW

97

Figure 3.15. Take Workgroup Authority

MoveSequentialTest

<documentType>
 <name>MoveSequentialTest</name>
 <parent>BlanketApproveTest</parent>
 <description>Move Sequential Test</description>
 <label>Move Sequential Test</label>

 <postProcessorName>org.kuali.rice.kew.postprocessor.DefaultPostProcessor</postProcessorName>
 <superUserGroupName namespace=”KR-WKFLW” >TestWorkgroup</superUserGroupName>
 <blanketApproveGroupName namespace=”KR-WKFLW”>TestWorkgroup</blanketApproveGroupName>
 <defaultExceptionGroupName namespace=”KR-WKFLW”> TestWorkgroup</defaultExceptionGroupName>
 <docHandler>_blank</docHandler>
 <active>true</active>
 <routePaths>
 <routePath>
 <start name="AdHoc" nextNode="WorkflowDocument" />
 <requests name="WorkflowDocument" nextNode="WorkflowDocument2" />
 <requests name="WorkflowDocument2" nextNode="Acknowledge1" />
 <requests name="Acknowledge1" nextNode="Acknowledge2" />
 <requests name="Acknowledge2" />
 </routePath>
 </routePaths>
 <routeNodes>
 <start name="AdHoc">
 <activationType>P</activationType>
 </start>
 <requests name="WorkflowDocument">
 <activationType>P</activationType>
 <ruleTemplate>WorkflowDocumentTemplate</ruleTemplate>
 </requests>
 <requests name="WorkflowDocument2">
 <activationType>P</activationType>
 <ruleTemplate>WorkflowDocument2Template</ruleTemplate>
 </requests>
 <requests name="Acknowledge1">

KEW

98

 <activationType>P</activationType>
 <ruleTemplate>Ack1Template</ruleTemplate>
 </requests>
 <requests name="Acknowledge2">
 <activationType>P</activationType>
 <ruleTemplate>Ack2Template</ruleTemplate>
 </requests>
 </routeNodes>
</documentType>

• name: This is the Document Type for Move Sequential Test.

• Parent: The parent Document Type is BlanketApproveTest. This Document Type inherits the policies
that BlanketApproveTest has.

• description: This Document Type is used to test Move Sequence.

• label: This Document Type is recognized as MoveSequentialTest type.

• postProcessorName: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor.DefaultPostProcessor.

• superUserGroupName: The super users for this Document Type are members of the TestWorkgroup.

• blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right on this
type of document.

• defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

• docHandler: The Doc Handler for this type of document is _blank.

• active: This Document Type is currently active. In other words, it is in use.

• routePath: The routing path for this Document Type is: AdHoc -> WorkflowDocument ->
WorkflowDocument2 -> Acknowledge1 -> Acknowledge2.

• routeNode: Based on the routePath, there are five nodes in the routing of this Document Type:

• The starting node for this Document Type is AdHoc. On the initiation of a document of this type, the
postProcessor in KEW activates the node AdHoc.

• The next node in the routing for this Document Type is WorkflowDocument. On request, the node is
activated, applies the rules in rule template, WorkflowDocumentTemplate, and sets the mandatory
route as true. In other words, the document must route through this node.

• The next node in the routing for this Document Type is WorkflowDocument2. On request, the node is
activated, applies the rules in rule template, WorkflowDocument2Template, and sets the mandatory
route as true. In other words, the document must route through this node.

• The next node in the routing for this Document Type is Acknowledge1. On request, the node is
activated and applies the rules in rule template, Ack1Template.

• The next node in the routing for this Document Type is Acknowledge2. On request, the node is
activated and applies the rules in rule template, Ack2Template.

KEW

99

Figure 3.16. Move Sequential Test

MoveInProcessTest

KEW

100

<documentType>
 <name>MoveInProcessTest</name>
 <parent>BlanketApproveTest</parent>
 <description>Move In Process Test</description>
 <label>Move In Process Test</label>
 <postProcessorName>org.kuali.rice.kew.postprocessor.DefaultPostProcessor</postProcessorName>
 <superUserGroupName namespace=”KR-WKFLW” >TestWorkgroup</superUserGroupName>
 <blanketApproveGroupName namespace=”KR-WKFLW”>TestWorkgroup</blanketApproveGroupName>
 <defaultExceptionGroupName namespace=”KR-WKFLW”> TestWorkgroup</defaultExceptionGroupName>
 <docHandler>_blank</docHandler>
 <active>true</active>
 <routePaths>
 <routePath>
 <start name="AdHoc" nextNode="WorkflowDocument" />
 <requests name="WorkflowDocument" nextNode="MyRadSubProcess" />
 <process name="MyRadSubProcess" nextNode="WorkflowDocumentFinal" />
 <requests name="WorkflowDocumentFinal" />
 </routePath>
 <routePath processName="MyRadSubProcess" initialNode="WorkflowDocument2">
 <requests name="WorkflowDocument2" nextNode="WorkflowDocument3" />
 <requests name="WorkflowDocument3" />
 </routePath>
 </routePaths>
 <routeNodes>
 <start name="AdHoc">
 <activationType>P</activationType>
 </start>
 <requests name="WorkflowDocument">
 <activationType>P</activationType>
 <ruleTemplate>WorkflowDocumentTemplate</ruleTemplate>
 </requests>
 <process name="MyRadSubProcess" />
 <requests name="WorkflowDocument2">
 <activationType>P</activationType>
 <ruleTemplate>WorkflowDocument2Template</ruleTemplate>
 </requests>
 <requests name="WorkflowDocument3">
 <activationType>P</activationType>
 <ruleTemplate>WorkflowDocument3Template</ruleTemplate>
 </requests>
 <requests name="WorkflowDocumentFinal">
 <activationType>P</activationType>
 <ruleTemplate>WorkflowDocumentFinalTemplate</ruleTemplate>
 </requests>
 </routeNodes>
</documentType>

• name: This is the Document Type for Move In Process Test.

• Parent: The parent Document Type for this Document Type is BlanketApproveTest. This Document
Type inherits the policies that BlanketApproveTest has.

• description: This Document Type is used to test Move In Process.

• label: This Document Type is recognized as the MoveInProcessTest type.

• postProcessorName: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor.DefaultPostProcessor.

• superUserGroupName: The super users for this Document Type are members of the TestWorkgroup.

• blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right on this
type of document.

• defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

• docHandler: The Doc Handler for this type of document is _blank.

KEW

101

• active: This Document Type is currently active. In other words, it is in use.

• routePath: The routing path for this Document Type is: AdHoc -> WorkflowDocument -> MyRadSub
Process -> WorkflowDocument2 -> WorkflowDocument3 -> WorkflowDocumentFinal. There is a sub-
process MyRadSubProcess in this path.

• routeNode: As can be seen from the routePath, there are five nodes in the routing of this Document
Type:

• The starting node for this Document Type is AdHoc. On the initiation of a document of this type, the
postProcessor in KEW activates the node AdHoc.

• The next node in the routing for this Document Type is WorkflowDocument. On request, the node
is activated, applies the rules in rule template, WorkflowDocumentTemplate, and initiates a sub
process MyRadSubProcess.

• The next node in MyRadSubProcess for this Document Type is WorkflowDocument2. On request,
the node is activated and applies the rules in rule template, WorkflowDocument2Template.

• The next node in MyRadSubProcess for this Document Type is WorkflowDocument3. O the request,
the node is activated and applies the rules in rule template, WorkflowDocument3Template.

• The next node in the routing for this Document Type is WorkflowDocumentFinal. On request, the
node is activated and applies the rules in rule template WorkflowDocumentFinalTemplate.

KEW

102

Figure 3.17. Move In Process Test

KEW

103

AdhocRouteTest

<documentType>
 <name>AdhocRouteTest</name>
 <description>AdhocRouteTest</description>
 <label>AdhocRouteTest</label>

 <postProcessorName>org.kuali.rice.kew.postprocessor.DefaultPostProcessor</postProcessorName>
 <superUserGroupName namespace=”KR-WKFLW” >TestWorkgroup</superUserGroupName>
 <blanketApproveGroupName namespace=”KR-WKFLW”>TestWorkgroup</blanketApproveGroupName>
 <defaultExceptionGroupName namespace=”KR-WKFLW”> TestWorkgroup</defaultExceptionGroupName>
 <docHandler>_blank</docHandler>
 <active>true</active>
 <routePaths>
 <routePath>
 <start name="AdHoc" nextNode="One" />
 <requests name="One" />
 </routePath>
 </routePaths>
 <routeNodes>
 <start name="AdHoc">
 <activationType>P</activationType>
 </start>
 <requests name="One">
 <activationType>S</activationType>
 <ruleTemplate>WorkflowDocumentTemplate</ruleTemplate>
 </requests>
 </routeNodes>
</documentType>

• name: This is the Document Type for Adhoc Route Test.

• description: This Document Type is used to test Ad Hoc Route.

• label: This Document Type is recognized as the AdhocRouteTest type.

• postProcessorName: the postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor.DefaultPostProcessor.

• superUserGroupName: The super users for this Document Type are members of the TestWorkgroup.

• blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right on this
type of document.

• defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

• docHandler: The Doc Handler for this type of document is _blank.

• active: This Document Type is currently active. In other words, it is in use.

• routePath: The routing path for this Document Type is: AdHoc -> One.

• routeNode: Based on the routePath, there are two nodes in the routing of this Document Type:

• The starting node for this Document Type is AdHoc. On the initiation of a document of this type, the
postProcessor in KEW activates the node AdHoc.

• The next node in the routing for this Document Type is One. On request, the node is activated by the
type S and applies the rules in rule template, WorkflowDocumentTemplate.

KEW

104

Figure 3.18. Adhoc Route Test

PreApprovalTest

<documentType>
 <name>PreApprovalTest</name>
 <description>PreApprovalTest</description>
 <label>PreApprovalTest</label>
 <postProcessorName>org.kuali.rice.kew.postprocessor.DefaultPostProcessor</postProcessorName>
 <superUserGroupName namespace=”KR-WKFLW” >TestWorkgroup</superUserGroupName>
 <blanketApproveGroupName namespace=”KR-WKFLW”>TestWorkgroup</blanketApproveGroupName>
 <defaultExceptionGroupName namespace=”KR-WKFLW”> TestWorkgroup</defaultExceptionGroupName>
 <docHandler>_blank</docHandler>
 <active>true</active>
 <routePaths>
 <routePath>
 <start name="AdHoc" nextNode="PreApprovalTestOne" />
 <requests name="PreApprovalTestOne" />
 </routePath>
 </routePaths>
 <routeNodes>
 <start name="AdHoc">
 <activationType>P</activationType>
 </start>
 <requests name="PreApprovalTestOne">
 <activationType>S</activationType>
 <ruleTemplate>WorkflowDocumentTemplate</ruleTemplate>
 </requests>
 </routeNodes>
</documentType>

• name: This is the Document Type for PreApprovalTest.

• description: This Document Type is used to test Pre-Approval.

• label: This Document Type is recognized as the PreApprovalTest type.

• postProcessorName: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor.DefaultPostProcessor.

• superUserGroupName: The super users for this Document Type are members of the TestWorkgroup.

KEW

105

• blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right on this
type of document.

• defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type. • docHandler: The Doc Handler for this type of document is
_blank.

• active: This Document Type is currently active. In other words, it is in use.

• routePath: The routing path for this Document Type is: AdHoc -> PreApprovalTestOne.

• routeNode: Based on the routePath, there are two nodes in the routing of this Document Type:

• The starting node for this Document Type is AdHoc. On the initiation of a document of this type, the
postProcessor in KEW activates the node AdHoc.

• The next node in the routing for this Document Type is PreApprovalTestOne. On request, the node
is activated by the type S and applies the rules in rule template, WorkflowDocumentTemplate.

Figure 3.19. PreApproval Test

VariablesTest

<documentType>
 <name>VariablesTest</name>
 <description>VariablesTest</description>
 <label>VariablesTest</label>

 <postProcessorName>org.kuali.rice.kew.postprocessor.DefaultPostProcessor</postProcessorName>
 <superUserGroupName namespace=”KR-WKFLW” >TestWorkgroup</superUserGroupName>
 <blanketApproveGroupName namespace=”KR-WKFLW”>TestWorkgroup</blanketApproveGroupName>
 <defaultExceptionGroupName namespace=”KR-WKFLW”> TestWorkgroup</defaultExceptionGroupName>
 <docHandler>_blank</docHandler>
 <active>true</active>
 <routePaths>
 <routePath>
 <start name="AdHoc" nextNode="setStartedVar" />
 <simple name="setStartedVar" nextNode="setCopiedVar"/>
 <simple name="setCopiedVar" nextNode="PreApprovalTestOne"/>
 <requests name="PreApprovalTestOne" nextNode="setEndedVar"/>

KEW

106

 <simple name="setEndedVar" nextNode="setGoogleVar"/>
 <simple name="setGoogleVar" nextNode="setXPathVar"/>
 <simple name="setXPathVar" nextNode="resetStartedVar"/>
 <simple name="resetStartedVar" nextNode="logNode"/>
 <simple name="logNode" nextNode="logNode2"/>
 <simple name="logNode2"/>
 </routePath>
 </routePaths>
 <routeNodes>
 <start name="AdHoc">
 <activationType>P</activationType>
 </start>
 <simple name="setStartedVar">
 <type>org.kuali.rice.kew.engine.node.var.SetVarNode</type>
 <name>started</name>
 <value>startedVariableValue</value>
 </simple>
 <simple name="setCopiedVar">
 <type>org.kuali.rice.kew.engine.node.var.SetVarNode</type>
 <name>copiedVar</name>
 <value>var:started</value>
 </simple>
 <requests name="PreApprovalTestOne">
 <activationType>S</activationType>
 <ruleTemplate>WorkflowDocumentTemplate</ruleTemplate>
 </requests>
 <simple name="setEndedVar">
 <type>org.kuali.rice.kew.engine.node.var.SetVarNode</type>
 <name>ended</name>
 <value>endedVariableValue</value>
 </simple>
 <simple name="setGoogleVar">
 <type>org.kuali.rice.kew.engine.node.var.SetVarNode</type>
 <name>google</name>
 <value>url:http://google.com</value>
 </simple>
 <simple name="setXPathVar">
 <type>org.kuali.rice.kew.engine.node.var.SetVarNode</type>
 <name>xpath</name>
 <value>xpath:concat(local-name(//documentContent),$ended)</value>
 </simple>
 <simple name="resetStartedVar">
 <type>org.kuali.rice.kew.engine.node.var.SetVarNode</type>
 <name>started</name>
 <value>aNewStartedVariableValue</value>
 </simple>
 <simple name="logNode">
 <type>org.kuali.rice.kew.engine.node.LogNode</type>
 <message>var:xpath</message>
 </simple>
 <simple name="logNode2">
 <type>org.kuali.rice.kew.engine.node.LogNode</type>
 <level>ErRoR</level>
 <log>Custom.Logger.Name</log>
 <message>THAT'S ALL FOLKS</message>
 </simple>
 </routeNodes>
</documentType>

• name: This is the Document Type for VariablesTest.

• description: This Document Type is used to test Variables.

• label: This Document Type is recognized as the VariablesTest type.

• postProcessorName: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor.DefaultPostProcessor.

• superUserGroupName: The super users for this Document Type are members of the TestWorkgroup.

• blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right on this
type of document.

KEW

107

• defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

• docHandler: The Doc Handler for this type of document is _blank.

• active: This Document Type is currently active. In other words, it is in use.

• routePath: The routing path for this Document Type is: AdHoc -> setStartedVar -> setCopiedVar ->
preApprovalTestOne -> setEndedVar -> setGoogleVar -> setXPathVar -> resetStartedVar -> logNode
-> logNode2.

• routeNode: Based on the routePath, there are ten nodes in the routing of this Document Type:

• The starting node for this Document Type is AdHoc. On the initiation of a document of this type, the
postProcessor in KEW activates the node AdHoc.

• The next node in the routing for this Document Type is setStartedVar.

• Its type is org.kuali.rice.kew.engine.node.var.SetVarNode

• Its name is started.

• Its value is startedVariableValue.

• The next node in the routing for this Document Type is setCopiedVar.

• Its type is org.kuali.rice.kew.engine.node.var.SetVarNode.

• Its name is copiedVar.

• The value that it is copying is var:started.

• The next node in the routing for this Document Type is preApprovalTestOne. On request, the node
is activated by the type S and applies the rules in rule template WorkflowDocumentTemplate.

• The next node in the routing for this Document Type is setEndedVar

• Its type is org.kuali.rice.kew.engine.node.var.SetVarNode.

• Its name is ended.

• Its value is endedVariableValue.

• The next node in the routing for this Document Type is setGoogleVar.

• Its type is org.kuali.rice.kew.engine.node.var.SetVarNode.

• Its name is google. It links to http://google.com.

• The next node in the routing for this Document Type is setXpathVar.

• Its type is org.kuali.rice.kew.engine.node.var.SetVarNode.

• Its name is xpath.

• It adds //documentContent to the current path.

• The next node in the routing for this Document Type is resetStartedVar.

KEW

108

• Its type is org.kuali.rice.kew.engine.node.var.SetVarNode.

• Its name is started.

• It resets the started node at a new node, aNewStartedVariableValue.

• The next node in the routing for this Document Type is logNode.

• Its type is org.kuali.rice.kew.engine.node.LogNode.

• It sends a message about the xpath of the variables at var:xpath.

• The next node in the routing for this Document Type is logNode2.

• Its type is org.kuali.rice.kew.engine.node.LogNode.

• Its level is ErRoR.

• It opens the log Custom.Logger.Name.

• It returns a message THAT'S ALL FOLKS.

KEW

109

Figure 3.20. Variables Test

SUApproveDocumentNotifications

KEW

110

<documentType>
 <name>SUApproveDocumentNotifications</name>
 <parent>SUApproveDocument</parent>
 <description>SUApproveDocumentNotifications</description>
 <label>SUApproveDocumentNotifications</label>

 <postProcessorName>org.kuali.rice.kew.postprocessor.DefaultPostProcessor</postProcessorName>
 <superUserGroupName namespace=”KR-WKFLW” >TestWorkgroup</superUserGroupName>
 <blanketApproveGroupName namespace=”KR-WKFLW”>TestWorkgroup</blanketApproveGroupName>
 <defaultExceptionGroupName namespace=”KR-WKFLW”> TestWorkgroup</defaultExceptionGroupName>
 <docHandler>_blank</docHandler>
 <active>true</active>
 <policies>
 <policy>
 <name>SEND_NOTIFICATION_ON_SU_APPROVE</name>
 <value>true</value>
 </policy>
 </policies>
</documentType>

• name: This is the Document Type for SuperUser Approve Document Notifications.

• description: This Document Type is used to test the SuperUser Approve Document Notifications.

• label: This Document Type is recognized as the SUApproveDocumentNotifications type.

• postProcessorName: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor.DefaultPostProcessor.

• superUserGroupName: The super users for this Document Type are members of the TestWorkgroup.

• blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right on this
type of document.

• defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

• docHandler: The Doc Handler for this type of document is _blank.

• active: This Document Type is currently active. In other words, it is in use.

• There is just one policy for this Document Type: The SEND_NOTIFICATION_ON_SU_APPROVE
policy is set true by default. In other words, notifications will be automatically sent on SuperUser's
approval.

Document Type Authorizer
The Document Type Authorizer is a component that gets called during the routing process to perform
authorization checks. Applications can customize this component, for example to introduce custom role
qualifiers or permission details, on a per-doctype basis by registering a custom

org.kuali.rice.kew.framework.document.security.DocumentTypeAuthorizer

implementation.

The DocumentTypeAuthorizer will be called to make the following checks:

• canInitiate

KEW

111

• canBlanketApprove

• canCancel

• canRecall

• canSave

• canRoute

• canSuperUserApproveSingleActionRequest

• canSuperUserApproveDocument

• canSuperUserDisapproveDocument

Document Type Policies
Document Type Policies affect workflow routing behavior.

Current Document Type polices:

• DISAPPROVE

• DEFAULT_APPROVE

• DOCUMENT_STATUS_POLICY

• INITIATOR_MUST_ROUTE

• INITIATOR_MUST_SAVE

• INITIATOR_MUST_CANCEL

• INITIATOR_MUST_BLANKET_APPROVE

• LOOK_FUTURE

• SEND_NOTIFICATION_ON_SU_APPROVE

• SUPPORTS_QUICK_INITIATE

• NOTIFY_ON_SAVE

• blanketApprovePolicy

• ALLOW_SU_POST_PROCESSOR_OVERIDE

• NOTIFY_COMPLETED_ON_RETURN

• NOTIFY_PENDING_ON_RETURN

• RECALL_NOTIFICATION

• ALLOW_SU_FINAL_APPROVAL

KEW

112

• SEND_NOTIFICATION_ON_SU_DISAPPROVE

Document Type Policies defined in the Document Type XML have this structure:

<documentType>
 <name>...</name>
 <policies>
 <policy>
 <name>DEFAULT_APPROVE</name>
 <value>true</value>
 </policy>
 <policy>
 <name>LOOK_FUTURE</name>
 <value>false</value>
 <policy>
 <policy>
 <name>DOCUMENT_STATUS_POLICY</name>
 <stringValue>APP</stringValue>
 </policy>
 </policies>
</documentType>

DISAPPROVE

The DISAPPROVE policy determines whether a document will discontinue routing (transactions). When
a document has been disapproved, the document initiator and previous approvers will receive notice of
this disapproval action.

DEFAULT_APPROVE

The DEFAULT_APPROVE policy determines whether a document will continue processing with or
without any approval requests. If a document is set to have no approval requests, its put into exception
routing. Then, the document will continue to route to the exception workgroup associated with the last
route node or to the workgroup defined in the defaultExceptionWorkgroupname.

DOCUMENT_STATUS_POLICY

The DOCUMENT_STATUS_POLICY policy sets whether to display the KEW Route Status, the
Application Document Status, or Both in the Route Log. Valid policy values are: KEW, APP, or BOTH.

The set of valid statuses for a given document type may be defined. If defined, only those values are
allowed as valid statuses. These will also be used to populate a multi-select box on the doc search screen if
this doc type is selected (see Customizing Document Search: Application Document Status). If not defined,
any string with a length of up to 64 characters may be used, and a text input field is used on the doc search
screen. An example configuration follows.

<validApplicationStatuses>
 <status>Initiated</status>
 <status>Validated</status>
 <status>Awaiting Content Aproval</status>
 <status>Org Review</status>
 <status>Approved</status>
 ...
</validApplicationStatuses>

Additionally, the valid statuses may be grouped into named categories for display and search purposes.
If defined, these categories will display in doc search (again, if the document type is selected) under the
application document status multi-select as headings under which the individual statuses are grouped.

KEW

113

These categories can be selected as well, which has an equivalent effect on the search to individually
selecting all of the statuses within the category (see Customizing Document Search: Application Document
Status). Note that not all statuses need be grouped within categories, as demonstrated below by the
"Approved" status below.

<validApplicationStatuses>
 <category name="Pre-Submit">
 <status>Initiated</status>
 <status>Validated</status>
 </category>
 <category name="In Process">
 <status>Awaiting Content Aproval</status>
 <status>Org Review</status>
 </category>
 <status>Approved</status>
 ...
</validApplicationStatuses>

In the process definition section, automatic status updates may be assigned to occur on route node
transition. Please see the section on the routePaths in this guide.

INITIATOR_MUST_ROUTE

The INITIATOR_MUST_ROUTE policy sets the rule that the user who initiates the document must
route it.

INITIATOR_MUST_SAVE

The INITIATOR_MUST_SAVE policy sets the rule that the user who initiated the document will be the
only one authorized to save the document.

INITIATOR_MUST_CANCEL

The INITIATOR_MUST_CANCEL policy sets the rule that the user who initiated the document will be
the only one authorized to cancel the document.

INITIATOR_MUST_BLANKET_APPROVE

The INITIATOR_MUST_BLANKET_APPROVE policy sets the rule that the user who initiated the
document is the only one authorized to blanket approve the document.

LOOK_FUTURE

The LOOK_FUTURE policy determines whether the document can be brought into a simulated route
from the route log. This policy simulates where the document would end up if it completed the route.

SEND_NOTIFICATION_ON_SU_APPROVE

The SEND_NOTIFICATION_ON_SU_APPROVE policy indicates to KEW that it is to send a
notification on SuperUser approval.

SUPPORTS_QUICK_INITIATE

The SUPPORTS_QUICK_INITIATE policy indicates whether the Document Type is displayed on the
Quick Links, so that users can quickly initiate instances of the document.

KEW

114

NOTIFY_ON_SAVE

The NOTIFY_ON_SAVE policy indicates whether a notification should be sent in when a save action
is applied to this Document Type.

blanketApprovePolicy

The blanketApprovePolicy policy indicates who can blanket approve a workflow document. Its values
are either ANY or NONE.

• ANY means that anybody can blanket approve the document.

• NONE means that no one can blanket approve the document.

Alternatively, the configuration of the document can be set up to specify a
blanketApproveWorkgroupName. blanketApproveWorkgroupName indicates that members of that
workgroup can blanket approve the document. You can specify either blanketApprovePolicy OR
blanketApproveWorkgroupName in the Document Type.

Since the blanket approve policy is not a true/false policy (like the others), it is specified as an element
in the Document Type XML:

<documentType>
 <name>...</name>
 .
 .
 .
 <blanketApprovePolicy>NONE</blanketApprovePolicy>
</documentType>

ALLOW_SU_POST_PROCESSOR_OVERIDE

There is currently the ability to override the "Perform Post Processor Logic" on the "Super User Action
on Action Requests" page. This functionality is configurable by document type and as such allows for
inheritance.

By default, the ALLOW_SU_POST_PROCESSOR_OVERIDE it's set to true. The checkbox appears on
the super user screen as:

Figure 3.21. Super User Action on Requests

KEW

115

In order to turn off the post processor check box, you would add this to the documentType definition:

<policies>
 <policy>
 <name>ALLOW_SU_POSTPROCESSOR_OVERRIDE</name>
 <value>false</value>
 </policy>
</policies>

Recall From Routing

Three Document Type policies affect Recall behavior. These policies are defined in the respective the
DocumentType XML. The following two policies apply to Return-To-Previous actions as well as Recall
actions:

NOTIFY_COMPLETED_ON_RETURN - Default: false toggles whether to notify previous router log
participants with FYIs when a document is recalled. This does not affect notifications to pending approvers
which are always sent.

Example:

<policy>
 <name>NOTIFY_COMPLETED_ON_RETURN</name>
 <value>true</value>
</policy>

NOTIFY_PENDING_ON_RETURN - Default: true toggles whether to notify pending approvers with
FYIs when a document is recalled. This does not affect notifications to prior approvers.

Example:

<policy>
 <name>NOTIFY_PENDING_ON_RETURN</name>
 <value>true</value>
</policy>

The following policy is Recall-specific:

RECALL_NOTIFICATION - Default: false/none

Example:

<policy>
 <name>RECALL_NOTIFICATION</name>
 <value>true</value>
 <recipients xmlns:r="ns:workflow/Rule" xsi:schemaLocation="ns:workflow/Rule resource:Rule"
 xmlns:dt="ns:workflow/DocumentType">
 <r:principalName>quickstart</r:principalName>
 <r:user>quickstart</r:user>
 <role namespace="KR-SYS" name="Technical Administrator"/>
 </recipients>
</policy>

KEW

116

ALLOW_SU_FINAL_APPROVAL

Setting this policy to false disallows Super User approval on final nodes of the document.

<policies>
 <policy>
 <name>ALLOW_SU_FINAL_APPROVAL</name>
 <value>false</value>
 </policy>
 </policies>

SEND_NOTIFICATION_ON_SU_DISAPPROVE

By default, acknowledgedments are not sent on Super User Disapproval like they are for normal
Disapprove actions. This policy can be used to enable sending of acknowledgements upon Super User
Disapproval.

<policies>
 <policy>
 <name>SEND_NOTIFICATION_ON_SU_DISAPPROVE</name>
 <value>true</value>
 </policy>
 </policies>

Inheritance

Document Types can specify a parent Document Type. This allows them to be included in a Document
Type hierarchy from which certain behavior can be inherited from their parent Document Type.

Inheritable Fields

These fields are inherited:

• superUserGroupName: Indicates members of the workgroup who can perform SuperUser actions on
the document

• blanketApproveGroupName: Indicates members of the workgroup that can blanket approve the
document.

• notificationFromAddress: Sends a notice to the sender when the transfer of the document is completed.

• messageEntity: A head and body of the message.

• policies: Indicates a set of rule(s) applied in the document. For each policy, True means policy DOES
apply, False means policy does NOT apply.

• searchable attributes: Constraint(s) assigned as the searchable criteria for a document.

• route paths/route nodes: Designated traveling points before the document reaches its destination in
a routing process.

Special notes about inheritance:

KEW

117

1. Policies: In the Policies section, there are multiple Document Type policies
(INITAITOR_MUST_ROUTE, DEFAULT_APPROVE, etc). Each policy can be overridden on an
individual basis. In contrast to the route path, there is no need to override the entire policies section for
a Document Type. For more detailed information about Document Type policies, please see Document
Type Policies (above) in this document.

2. Route paths/ route nodes: To override the route path and route node definitions of a parent Document
Type, you must override ALL route node and route path definitions. You cannot inherit and use just
part of a route path; it's all or nothing.

Document Type hierarchy and the Rules Engine

The Rules Engine follows these rules to determine its rule evaluation set for a Document Type at a
particular node:

1. The Rules Engine looks at the Rule Template name of the current node and selects all rules with that
template and that document's Document Type. It adds those rules to the rule evaluation set.

2. If the Document Type has a parent Document Type, it selects all rules with that template and that parent
Document Type and adds those to the rule evaluation set.

3. Its repeats step two until it reaches the root of the Document Type hierarchy.

4. The final rule evaluation set includes all of these rules.

Defining Workflow Processes Using
PeopleFlow - a new feature in KEW

PeopleFlow is our Kuali Rice instantiation of the "maps" concept included in the original Coeus. For all
intents and purposes it's a prioritized list of people to send requests to. PeopleFlow gives you a new type
of request activation strategy called "priority-parallel" to activate requests generated from a PeopleFlow
in the appropriate order. Essentially, it's like a mini people-based workflow that doesn't require you to
specify a KEW node in the document type for each individual who might need to approve or be notified.
You can define "Stops" in a PeopleFlow, where everything in the same stop proceeds in parallel, but all
must be done within the stop before proceeding to the next stop.

You can call/execute a PeopleFlow from within a KEW workflow node directly, or you can invoke
the Kuali Rules Managment System (KRMS) engine from an application and any PeopleFlows that get
selected during rule execution, defined in a KRMS agenda, will be called. In this way, you can integrate
business rules across applications and workflows.

The same PeopleFlow that defines a routing order among a set of persons, groups or roles can be called by
KRMS rules, with the KRMS rules defining which type of request to pass to the PeopleFlow (for example,
an "approval" routing action or a "notification").

KRMS is also a new feature in Rice 2.0. See the KRMS Technical Guide for more information on KRMS.

You can define a PeopleFlow (simple workflow) via a maintenance document. See the KEW Users' Guide
for additional details on defining a PeopleFlow.

Technical Information about PeopleFlow
(decide what needs to go here -- architecture, data model, api, troubleshooting, etc.?)

KEW

118

KEW Routing Components and Configuration
Guide

KEW has several components that you can use to configure routing. Typically a single application will
write a set of these components for reuse across multiple Document Types. These components are wired
together using an XML configuration file that you need to import into KEW. See Importing XML Files
to KEW for more information.

This document looks at defining the routing components available in KEW and how to use these
components to make a cohesive routing setup.

• RouteModule - The most basic module; it allows KEW to generate Action Requests

• RuleAttribute - A component that fits into KEW's rule system. These rules are used to build routing
paths for documents. They function for users across the organization and for multiple applications.

• XML RuleAttribute – Similar in functionality to a RuleAttribute but built using XML only

• RoleAttribute - A component that fits into KEW's rule system, but which is a pointer to outside data.
See Built-in Roles and Nodes for more information on implementing a RoleAttribute.

• PostProcessor - A component that gets called throughout the routing process and handles a set of
standard events that all eDocs (electronic documents) go through.

• DocumentType Authorizer - A component that gets called during the routing process to perform
authorization checks. Applications can customize this component on a per-doctype basis.

These components are contained in a Document Type that is defined in XML. A Document Type is the
prototype for eDocs. Below is the Document Type configuration that explains how KEW uses the eDoc
rule:

<?XML version="1.0" encoding="UTF-8"?>
<data XMLns="ns:workflow" XMLns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="ns:workflow
 resource:WorkflowData">
 <documentTypes XMLns="ns:workflow/DocumentType" xsi:schemaLocation="ns:workflow/DocumentType
 resource:DocumentType">
 <documentType>
 <name>YOURSERVICE-DOCS.RuleDocument</name>
 <parent>YOURSERVICE-DOCS</parent>
 <description>Add/Modify Workflow rules</description>
 <label>Add/Modify Workflow rules</label>
 <postProcessorName>your.package.routetemplate.RulePostProcessor</postProcessorName>
 <authorizer>your.package.CustomDocumentTypeAuthorizer</authorizer>
 <superUserGroupName>WorkflowAdmin</superUserGroupName>
 <blanketApproveGroupName>IU-WORKFLOW-RULE-BLANKET-APPROVERS</blanketApproveGroupName>
 <defaultExceptionGroupName>YOUR_EXCEPTION_TEAM</defaultExceptionGroupName>
 <docHandler>https://yourlocalIP/en-prd/Rule.do?methodToCall=docHandler</docHandler>
 <notificationFromAddress>...@yourEmailServerIP.edu</notificationFromAddress>
 <active>true</active>
 <routingVersion>1</routingVersion>
 <routePaths>
 <routePath>
 <start name="Adhoc Routing" nextNode="Rule routing Route Level" />
 <requests name="Rule routing Route Level" />
 </routePath>
 </routePaths>
 <routeNodes>
 <start name="Adhoc Routing">
 <activationType>S</activationType>
 <mandatoryRoute>false</mandatoryRoute>
 <finalApproval>false</finalApproval>
 </start>

KEW

119

 <requests name="Rule routing Route Level">
 <activationType>S</activationType>
 <ruleTemplate>RuleRoutingTemplate</ruleTemplate>
 <mandatoryRoute>true</mandatoryRoute>
 <finalApproval>false</finalApproval>
 </requests>
 </routeNodes>
 </documentType>
 </documentTypes>
</data>

Configuration Steps
Let's go through the configuration step-by-step and explain what all the pieces mean:

DocumentTypeName Definition

<name>YOURSERVICE-DOCS.RuleDocument</name>
<parent>YOURSERVICE-DOCS</parent>
<description>Add/Modify Workflow rules</description>
<label>Add/Modify Workflow rules</label>

The section above defines the Document Type's name, its parent, description, and label. The name is
used by the client application’s API to communicate with KEW. Here is a sample of code from the client
application’s API communicating with KEW:

WorkflowDocument document = new WorkflowDocument(new NetworkIdVO("username"), "DocumentTypeName");
document.routeDocument("user inputted annotation");

The above code will route a document in KEW.

• The string DocumentTypeName exists in KEW and you define it using the <name> element.

• The parent element gives the Document Type a parent Document Type. Use this for inheritance of
routing configuration and policies.

• Description is defined as shown. The document’s Description is displayed on the Document Type
report.

• Label is typically the forward-facing name for the Document Type. The label is displayed to the user
when an eDoc is in their Action List and they use it when they search for an eDoc using DocSearch.

PostProcessor Class

<postProcessorName>your.package.routetemplate.RulePostProcessor</postProcessorName>

The element above determines which class to use for the PostProcessor for this particular Document Type.
This component receives event notifications as eDocs travel through routing.

DocumentTypeAuthorizer Class

<authorizer>your.package.CustomDocumentTypeAuthorizer</authorizer>

KEW

120

The element above determines which class to use for the DocumentType Authorizer for this particular
Document Type. This component performs authorization checks as the eDoc travels through routing.

Managed Workgroups

<superUserWorkgroupName>WorkflowAdmin</superUserWorkgroupName>
<blanketApproveWorkgroupName>WorkgroupBlanketApprovers</blanketApproveWorkgroupName>

<defaultExceptionWorkgroupName>WorkflowAdmin</defaultExceptionWorkgroupName>

This section sets KEW managed workgroups in several roles in the Document Type.

• SuperUserWorkgroupName defines the workgroup that determines whether a person is allowed to
take Super User Actions on a document through the Super User interface.

• The content of element blanketApproveWorkgroupName determines which people have access to
blanket approve a document.

• defaultExceptionWorkgroup determines to which workgroup to send an eDoc of this type if it goes
into exception routing. This is an optional element. You can also define Exception Workgroups with
a route node.

docHandler

<docHandler>https://yourlocalIP/en-prd/Rule.do?methodToCall=docHandler</docHandler>

The docHandler tells KEW where to forward users when they click an eDoc link. See Document Search
for more information.

notificationFromAddress

<notificationFromAddress>...@yourEmailServerIP</notificationFromAddress>

When KEW sends an email notification to a user regarding a document of this type, the From address on
the message is the address specified here. This is helpful because users will often reply to the messages
they receive from KEW, and this allows their responses to go to an appropriate address for the Document
Type. This is an optional element. If it is not defined here, KEW uses the default From address. See the
Installation Guide for more detail.

active

<active>true</active>

Use active to define the activeness of a Document Type. KEW does not allow anyone to create eDocs of
an inactive Document Type.

routePaths

<routePaths>

KEW

121

 <routePath>
 <start name="Adhoc Routing" nextNode="Rule routing Route Level" />
 <requests name="Rule routing Route Level" />
 </routePath>
</routePaths>

The above defines the path an eDoc will travel as it progresses through its life. Start and Requests are
some of the standard node types used. There is only one stop each eDoc must make as it travels through
workflow. The eDoc starts at the step Adhoc Routing and then progresses to the request node named Rule
routing Route Level.

Additionally, an automatic progression of the application document status may be configured to occur on
route node transition with the addition of the nextAppDocStatus attribute in the elements of a routePath:

<routePaths>
 <routePath>
 <start name="Initiated" nextNode="DestinationApproval" nextAppDocStatus="Approval in Progress"/>
 <requests name="DestinationApproval" nextNode="TravelerApproval" nextAppDocStatus="Submitted"/>
 <requests name="TravelerApproval" nextNode="SupervisorApproval" />
 <requests name="SupervisorApproval" nextNode="AccountApproval" />
 <requests name="AccountApproval" />
 </routePath>
</routePaths>

This section only defines the path the eDocs will travel, and optionally the application document status
transitions. The nodes themselves are defined below.

Node Definition XML

<routeNodes>
 <start name="Adhoc Routing">
 <activationType>S</activationType>
 <mandatoryRoute>false</mandatoryRoute>
 <finalApproval>false</finalApproval>
 </start>
 <requests name="Rule routing Route Level">
 <activationType>S</activationType>
 <ruleTemplate>RuleRoutingTemplate</ruleTemplate>
 <mandatoryRoute>true</mandatoryRoute>
 <finalApproval>false</finalApproval>
 </requests>
</routeNodes>

This is the node definition XML. This determines certain behaviors each node can have.

Activation Type determines if Approve requests are activated all at once or one at a time. Any given
requests node can generate multiple rules that can then generate multiple requests. The ActivationType
value specifies if all action requests generated for all fired rules are activated immediately (P = parallel
activation), or if the set of action requests generated by each rule are activated one after the other, according
to rule order (S = sequential activation). However, to activate requests starting with those with the smallest
priority and to active all those requests in parallel the activation type of (R = priority-parallel activation).
Once all requests are approved, then the next priority will be activated. This is essentially a hyprid of the
traditional sequential and parallel activation types. Activation type is only relevant when multiple rules
are generated.

KEW

122

Figure 3.22. Parallel and Sequential Activation Types

Figure 3.23. Parallel-Priority Activation Type

The mandatoryRoute key determines if it’s mandatory to generate approval requests. If a route node is
mandatory and it doesn't generate an approve request, the document is put in exception routing.

The finalapproval key determines if this node should be the last node that has an approve request. If
approvals are generated after this step, the document is thrown into exception routing.

Finally, there is a request node named Rule routing Route Level with a key called ruleTemplate. This is
our hook into the rule system for KEW:

KEW

123

<ruleTemplate>RuleRoutingTemplate</ruleTemplate>

And this is our hook into a route module:

<routeModule>package.your.ARouteModule</routeModule>

KEW contacts the route module when the document enters that route node and the route module returns
Action Requests for KEW to deliver.

Rule Attributes

If the application integrating with KEW is using Rules to contain the routing data and RuleAttributes for
document evaluation, then the routing configuration requires more XML. Below is an XML snippet that
defines RuleAttribute; this is written in Java.

<?xml version="1.0" encoding="UTF-8"?>
<data xmlns="ns:workflow" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="ns:workflow
 resource:WorkflowData">
 <ruleAttributes XMLns="ns:workflow/RuleAttribute" xsi:schemaLocation="ns:workflow/RuleAttribute
 resource:RuleAttribute">
 <ruleAttribute>
 <name>RuleRoutingAttribute</name>
 <className>org.kuali.rice.kew.rule.RuleRoutingAttribute</className>
 <label>RuleRoutingAttribute</label>
 <description>RuleRoutingAttribute</description>
 <type>RuleAttribute</type>
 </ruleAttribute>
 </ruleAttributes>
</data>

The above defines a RuleAttribute called RuleRoutingAttribute. RuleRoutingAttribute maps to the Java
class org.kuali.rice.kew.rule.RuleRoutingAttribute. The type of this attribute is a RuleAttribute;
essentially this means the RuleAttribute's behavior is determined in a Java class. There are also
RuleAttributes made entirely from XML, but programming attributes is outside the scope of this Guide.

Rule Templates

Finally, we need to tie the RuleAttribute to the Document Type. This is done using the RuleTemplate
and it is defined using XML. The RuleTemplate schema below provides further explanation:

<?xml version="1.0" encoding="UTF-8"?>

<data xmlns="ns:workflow" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="ns:workflow
 resource:WorkflowData">
 <ruleTemplates XMLns="ns:workflow/RuleTemplate" xsi:schemaLocation="ns:workflow/RuleTemplate
 resource:RuleTemplate">
 <ruleTemplate>
 <name>RuleRoutingTemplate</name>
 <description>RuleRoutingTemplate</description>
 <attributes>
 <attribute>
 <name>RuleRoutingAttribute</name>
 <required>true</required>
 </attribute>
 </attributes>
 </ruleTemplate>
 </ruleTemplates>
</data>

KEW

124

Note

Notice that the name of this RuleTemplate, RuleRoutingTemplate, matches the name given in
the ruleTemplate element in the Document Type route node declaration. Also, notice that the
RuleAttribute made above is referenced in the RuleTemplate above in the attributes section.

<attributes>
 <attribute>
 <name>RuleRoutingAttribute</name>
 <required>true</required>
 </attribute>
</attributes>

The RuleTemplate is the join between RuleAttributes and Document Types. In this way, we can reuse
the same attribute declaration (and therefore Java logic) across Document Types.

Once the XML, condensed into a single file, is uploaded into KEW, eDocs of this type can be created and
routed from a client application.

All the content in the code examples above is aggregated into a single file below with a single surrounding
data tag:

<?xml version="1.0" encoding="UTF-8"?>
<data xmlns="ns:workflow" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="ns:workflow
 resource:WorkflowData">
 <ruleAttributes xmlns="ns:workflow/RuleAttribute" xsi:schemaLocation="ns:workflow/RuleAttribute
 resource:RuleAttribute">
 <ruleAttribute>
 <name>RuleRoutingAttribute</name>
 <className>org.kuali.rice.kew.rule.RuleRoutingAttribute</className>
 <label>foo</label>
 <description>foo</description>
 <type>RuleAttribute</type>
 </ruleAttribute>
 </ruleAttributes>
 <ruleTemplates xmlns="ns:workflow/RuleTemplate" xsi:schemaLocation="ns:workflow/RuleTemplate
 resource:RuleTemplate">
 <ruleTemplate>
 <name>RuleRoutingTemplate</name>
 <description>RuleRoutingTemplate</description>
 <attributes>
 <attribute>
 <name>RuleRoutingAttribute</name>
 <required>true</required>
 </attribute>
 </attributes>
 </ruleTemplate>
 </ruleTemplates>
 <documentTypes xmlns="ns:workflow/DocumentType" xsi:schemaLocation="ns:workflow/DocumentType
 resource:DocumentType">
 <documentType>
 <name>EDENSERVICE-DOCS.RuleDocument</name>
 <parent>EDENSERVICE-DOCS</parent>
 <description>Add/Modify Workflow rules</description>
 <label>Add/Modify Workflow rules</label>
 <postProcessorName>org.kuali.rice.kew.postprocessor.RulePostProcessor</postProcessorName>
 <superUserGroupName namespace=KR-WKFLW”>WorkflowAdmin</superUserGroupName>
 <blanketApproveGroupName namespace=KR-WKFLW”>WorkflowAdmin</blanketApproveGroupName>
 <defaultExceptionGroupName></defaultExceptionGroupName>
 <docHandler>https://yourlocalIP/en-prd/Rule.do?methodToCall=docHandler</docHandler>
 <active>true</active>
 <routingVersion>1</routingVersion>
 <routePaths>
 <routePath>
 <start name="Adhoc Routing" nextNode="Rule routing Route Level" />
 <requests name="Rule routing Route Level" />
 </routePath>
 </routePaths>
 <routeNodes>

KEW

125

 <start name="Adhoc Routing">
 <activationType>S</activationType>
 <mandatoryRoute>false</mandatoryRoute>
 </start>
 <requests name="Workflow Document Routing">
 <activationType>S</activationType>
 <ruleTemplate>RuleRoutingTemplate</ruleTemplate>
 <mandatoryRoute>true</mandatoryRoute>
 </requests>
 </routeNodes>
 </documentType>
 </documentTypes>
</data>

Routing Rules
There is a separate User Guide on how to use the Rule UI. This will show you how to create a Rule as
well as modify and delete.

InitiatorRoleAttribute
InitiatorRoleAttribute is a RoleAttribute that exposes an INITIATOR abstract role that resolves to the
initiator of the document.

Table 3.10. InitiatorRoleAttribute

Name Address

Class InitiatorRoleAttribute

Package org.kuali.rice.kew.rule

Full org.kuali.rice.kew.rule.InitiatorRoleAttribute

RoutedByUserRoleAttribute
RoutedByUserRoleAttribute is a RoleAttribute that exposes the user who routed the document.

Table 3.11. RoutedByUserRoleAttribute

Name Address

Class RoutedByUserRoleAttribute

Package org.kuali.rice.kew.rule

Full org.kuali.rice.kew.rule.RoutedByUserRoleAttribute

NoOpNode
NoOpNode is a SimpleNode implementation that is a code structure example, but has no functionality.

Table 3.12. NoOpNode

Name Address

Class NoOpNode

Package org.kuali.rice.kew.engine.node

Full org.kuali.rice.kew.engine.node.NoOpNode

RequestActivationNode
RequestActivationNode is a SimpleNode that activates any requests on it. It returns true when there are
no more requests that require activation.

KEW

126

In RequestActivationNode, the activateRequests method activates the Action Requests that are pending
at this route level of the document. The requests are processed by Priority and then by Request ID. The
requests are activated implicitly according to the route level.

Acknowledgement Requests do not cause processing to stop. Only Action Requests for Approval or
Completion cause processing to stop at the current document's route level. Inactive requests at a lower
level cause a routing exception.

Table 3.13. RequestActivationNode

Name Address

Class RequestActivationNode

Package org.kuali.rice.kew.engine.node

Full org.kuali.rice.kew.engine.node.RequestActivationNode

NetworkIdRoleAttribute
NetworkIdRoleAttribute is a RoleAttribute that routes the request to a NetworkID specified in the document
content.

Table 3.14. NetworkIdRoleAttribute

Name Address

Class NetworkIdRoleAttribute

Package org.kuali.rice.kew.engine.node

Full org.kuali.rice.kew.engine.node.NetworkIdRoleAttribute

Using NetworkIdRoleAttribute for Dynamic Routing

The RoleAttribute component in KEW allows for routing to a dynamically generated list of principals or
groups. However, in order to do this a Java class which implements the RoleAttribute interface must be
created. This is fairly simple for Java applications, but it can be painful when integrating with non-Java
applications.

Thankfully, the NetworkIdRoleAttribute class is an implementation of RoleAttribute which is provided
out of the box. This allows users to specify in XML format who the document should be routed to.

Setting up a Document Type to use NetworkIdRoleAttribute

There is some KEW setup involved in order to utilize this functionality. The following steps assume an
existing Document Type is already in place:

1. Create a "Rule Attribute" in KEW which uses the
org.kuali.rice.kew.rule.NetworkIdRoleAttribute class.

<?xml version="1.0" encoding="UTF-8"?>
<data xmlns="ns:workflow" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="ns:workflow
 resource:WorkflowData">
 <ruleAttributes xmlns="ns:workflow/RuleAttribute" xsi:schemaLocation="ns:workflow/RuleAttribute
 resource:RuleAttribute">
 <ruleAttribute>
 <name>Name.Of.My.NetworkIdRoleAttribute</name>
 <className>org.kuali.rice.kew.rule.NetworkIdRoleAttribute</className>
 <label>My Label</label>
 <description>My Description</description>

KEW

127

 <type>RuleXmlAttribute</type>
 <configuration>
 <xmlElementLabel>myNetworkId</xmlElementLabel>
 <roleNameLabel>My Role Name</roleNameLabel>
 <groupTogether>true</groupTogether>
 </configuration>
 </ruleAttribute>
 </ruleAttributes>
</data>

There are a few areas where the configuration could be changed in this rule attrbute

• name - The attribute should be named so that it can be identified as belonging to this particular
application.

• label and description - This can be anything to better describe the rule attribute

• xmlElementLabel - This will tell the attribute how it can match XML for the incoming document
to determine which xml elements represent the people the document should be routed to

• roleNameLabel - This will show up as a label in the route log next to the requests that have been
generated

• groupTogether - Indicates whether or not all people should be grouped together for the purpose of
a "first approve" role. This defaults to false.

2. Create a "Rule Template" in KEW which uses the attribute previously created. As with rule
attribute, the name and description can be customized as desired.

<?xml version="1.0" encoding="UTF-8"?>
<data xmlns="ns:workflow" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="ns:workflow
 resource:WorkflowData">
 <ruleTemplates xmlns="ns:workflow/RuleTemplate" xsi:schemaLocation="ns:workflow/RuleTemplate
 resource:RuleTemplate">
 <ruleTemplate>
 <name>Name.Of.My.NetworkIdRuleTemplate</name>
 <description>My Description</description>
 <attributes>
 <attribute>
 <name>Name.Of.My.NetworkIdRoleAttribute</name>
 <required>true</required>
 </attribute>
 </attributes>
 </ruleTemplate>
 </ruleTemplates>
</data>

3. Create a "Routing Rule" in KEW using the Rule Template that was created in the previous step.

<?xml version="1.0" encoding="UTF-8"?>
<data xmlns="ns:workflow" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="ns:workflow
 resource:WorkflowData">
 <rules xmlns="ns:workflow/Rule" xsi:schemaLocation="ns:workflow/Rule resource:Rule">
 <rule>
 <documentType>My.DocumentType.Name</documentType>
 <ruleTemplate>Name.Of.My.NetworkIdRuleTemplate</ruleTemplate>
 <description>My Network Id routing rule</description>
 <responsibilities>
 <responsibility>
 <role>org.kuali.rice.kew.rule.NetworkIdRoleAttribute!networkId</role>
 <approvePolicy>F</approvePolicy>
 <actionRequested>A</actionRequested>
 <priority>1</priority>
 </responsibility>
 </responsibilities>

KEW

128

 </rule>
 </rules>
</data>

There are a few areas where the configuration could be changed in this rule:

• documentType - This is the document type the rule should apply to.

• ruleTemplate - Use the name of the rule template previously created

• description - This can be anything to better describe the rule

• approvePolicy - 'F' if only one member of the role should approve or 'A' if all members of the role
to approve

• actionRequested - 'A' is Approve, 'K' is Acknowledge, and 'F' is FYI

4. Update the Document Type definition to add the "Route Node" configured to point at this node.
Here is an example document type:

<?xml version="1.0" encoding="UTF-8"?>
 <data xmlns="ns:workflow" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="ns:workflow
 resource:WorkflowData">
 <documentTypes xmlns="ns:workflow/DocumentType" xsi:schemaLocation="ns:workflow/DocumentType
 resource:DocumentType">
 <documentType>
 <name>My.DocumentType.Name</name>
 ...
 <routePaths>
 <routePath>
 <start name="AdHoc" nextNode="My.NetworkId.Node" />
 <requests name="My.NetworkId.Node"/>
 </routePath>
 </routePaths>
 <routeNodes>
 <start name="AdHoc">
 <activationType>P</activationType>
 </start>
 <requests name="My.NetworkId.Node">
 <activationType>P</activationType>
 <ruleTemplate>Name.Of.My.NetworkIdRuleTemplate</ruleTemplate>
 </requests>
 </routeNodes>
 </documentType>
 </documentTypes>
 </data>

There are a few areas where the configuration could be changed in this document type:

• name - This is the name of the document type

• nextNode and requests name - Set this to something that describes who the document will be routed
to (i.e. supervisor, administrator, etc.

• ruleTemplate - Use the name of the rule template previously created

Using the KEW API to Route the Document

Once the document type has been set up, the KEW api can be used to set the appropriate XML on the
document. Many of the operations include the ability to pass a DocumentContentUpdate. In this example,
the 'applicationContent' should be set to look like the following. In this case myNetworkId is the name of
the xmlElementLabel that was defined in the first step of creating the rule attribute.

KEW

129

<NetworkIdRoleAttribute>
 <myNetworkId>dev1</myNetworkId>
 <myNetworkId>dev2</myNetworkId>
 <myNetworkId>dev3</myNetworkId>
 ...
</NetworkIdRoleAttribute>

UniversityIdRoleAttribute
UniversityIdRoleAttribute is a RoleAttribute that routes requests to an Empl ID specified in the document
content.

Table 3.15. UniversityIdRoleAttribute

Name Address

Class UniversityIdRoleAttribute

Package org.kuali.rice.kew.engine.node

Full org.kuali.rice.kew.engine.node.UniversityIdRoleAttribute

SetVarNode
SetVarNode is a SimpleNode that allows you to set document variables.

The definition of SetVarnode takes these configuration parameter elements:

• Name: The name of the variable to set

• Value: The value to which to set the variable. This value is parsed according to Property/
PropertyScheme syntax. The default PropertyScheme is LiteralScheme, which evaluates the value
simply as a literal; it won't do anything but return the value.

Table 3.16. SetVarNode

Name Address

Class SetVarNode

Package org.kuali.rice.kew.engine.node.var

Full org.kuali.rice.kew.engine.node.var.SetVarNode

Routing Configuration using KIM
Responsibilities

In addition to routing workflow based on users and workgroups using routing rules, you can also
route workflow based on KIM responsibilities. This allows you to utilize group membership and role
assignments to manage who is permitted to perform approvals.

Route Node Definition
In review, you define a rule-based routing node with XML similar to:

<requests name="Rule routing Route Level">

KEW

130

 <activationType>S</activationType>
 <ruleTemplate>RuleRoutingTemplate</ruleTemplate>
 <mandatoryRoute>true</mandatoryRoute>
 <finalApproval>false</finalApproval>
</requests>

A routing node that uses KIM responsibilities can replace a rule-based routing node. You define it with
XML similar to:

<role name="Purchasing">
 <qualifierResolverClass>
org.kuali.rice.kns.workflow.attribute.DataDictionaryQualifierResolver
</qualifierResolverClass>
 <activationType>P</activationType>
</role>

Node Name

You name the routing node with the name attribute, just like for a rule-based routing node.

Qualifier Resolver

The qualifier resolver finds any qualifiers that need to be used while matching the responsibility. You can
specify it in either of two ways:

• <qualifierResolver>name</qualifierResolver> names a rule attribute which identifies the class to use

• <qualifierResolverClass>class.name</qualifierResolverClass> provides the fully-qualified name of
the Java class to use

Other Options

You can specify <responsibilityTemplateName>name</responsibilityTemplateName> to identify the
responsibility template to use. This option is not usually used since all of the responsibilities provided with
KIM use a template named Review.

You can specify <namespace>name</namespace> to identify the name space for the responsibility. This
option is usually not used since all of the responsibilities provided with KIM use a name space of KR-
WKFLW.

Matching Routing Nodes to Responsibilities
The KIM responsibility template Review defines two details:

• The name of the document type

• The name of the routing node

When you define a responsibility in KIM using this template, you specify a value for each of these
details. When a document is routed using responsibility-based routing nodes, KIM receives the type of the
document being routed and the name of the node; it then locates any responsibilities which have the same
routing node name and either the same document type name or the name of a parent document type (all
the way up to the top of the hierarchy). The list of people who gets the request consists of anyone who has
been assigned a role with any of the matching responsibilities.

KEW

131

Using the Workflow Document API
Overview

This document explains features of the workflow document API. There are two interfaces in KEW that
allow you to create a document for delivery through workflow. The WorkflowDocument interface is
designed to create a new document in the workflow system once an action has been taken, such as sending
ad hoc requests. The WorkflowInfo interface is actually a convenience class for client applications that
query workflow. Both classes assist with implementing connections to KEW.

WorkflowDocument
The process for this section of the API involves creating the initial WorkflowDocument using a
constructor to create a new routable document in KEW. Once the object is defined, it initializes by
loading an existing routeHeaderId or by constructing an empty document of a specified documentType. A
number of methods can be invoked once initialization is complete and details of how those methods would
be invoked are outlined primarily in the Java Documentation at https://test.kuali.org/rice/rice-api-1.0-
javadocs/.

Document content methods modify the properties of a document’s content. A specific case is
addAttributeDefinition(), where a WorkflowAttribute is used to generate attribute document content that
will be appended to the existing document content. Another case is adding a searchable attribute definition
with the addSearchableDefinition() method. More information on the various constructors, methods, and
objects relating to the WorkflowDocument class is available in the Java documentation found at https://
test.kuali.org/rice/rice-api-1.0-javadocs/org/kuali/rice/kew/service/WorkflowDocument.html.

WorkflowInfo
This class is the second client interface to KEW. The first time this object is initialized, the client
configuration is accessed to determine how to connect to KEW. Methods invoked from this class can
grab the routing header information based on the principleId, or return a set of Action Requests for a
document that’s in route based on the routeHeaderId, the nodeName and the principalId. More information
on the various constructors, methods, and objects relating to the WorkflowInfo class is available in the
Java documentation found at https://test.kuali.org/rice/rice-api-1.0-javadocs/org/kuali/rice/kew/service/
WorkflowInfo.html.

Creating an eDocLite Application
Overview

eDocLite is a simple, form-based system that is built into Kuali Enterprise Workflow (KEW). It facilitates
rapid development and implementation of simple documents and validation rules using XML. Use it for
simple documents with simple route paths. You can integrate it with larger applications using a database
layer post-processor component.

eDocLite uses an XSLT style sheet for custom presentation and XML to define form fields. The actual
form display is called an EDL. This diagram shows how these objects are related:

Key Ideas:

• Rapid implementation and development solution for simpler documents

• Easily re-configured

https://test.kuali.org/rice/rice-api-1.0-javadocs/
https://test.kuali.org/rice/rice-api-1.0-javadocs/
https://test.kuali.org/rice/rice-api-1.0-javadocs/org/kuali/rice/kew/service/WorkflowDocument.html
https://test.kuali.org/rice/rice-api-1.0-javadocs/org/kuali/rice/kew/service/WorkflowDocument.html
https://test.kuali.org/rice/rice-api-1.0-javadocs/org/kuali/rice/kew/service/WorkflowInfo.html
https://test.kuali.org/rice/rice-api-1.0-javadocs/org/kuali/rice/kew/service/WorkflowInfo.html

KEW

132

• Easily manageable

• Entirely web-based from design/development and user perspectives

• No java code required for developments; only XML with optional javascript for client side editing
(workflow handles execution)

• Some validation javascript is automatically generated like regular expression editing and 'required field
checking'.

Figure 3.24. EDL Controller Chain

Components

Field Definitions

You need to define eDocLite fields to capture data that is passed to the server for storage.

Key Information about eDocLite fields:

• Save eDocLite data fields as key value pairs in two columns of a single database table.

KEW

133

• Use the xml element name as the key.

• You do not need to make any database-related changes when building eDocLite web applications.

• Store documents by document number.

• Make all field names unique within a document type.

The code example below focuses on the EDL section of the eDocLite form definition. The file Edoclite.xsd
found in source under the impl/src/main/resources/schema/ directory describes the xml rules for this
section.

Note that the first few lines proceeding <edl name="eDoc.Example1.Form" relate to namespace
definitions. These are common across all eDocLites, so this guide does not discuss them.

In this example, any XML markup that has no value shown or that is not explained offers options that
are not important at this time.

<?xml version="1.0" encoding="UTF-8"?>
<data xmlns="ns:workflow" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="ns:workflow
 resource:WorkflowData">
 <edoclite xmlns="ns:workflow/eDocLite " xsi:schemaLocation="ns:workflow/eDocLite resource:eDocLite ">

 <edl name="eDoc.Example1.Form" title="Example 1">
 <security />
 <createInstructions>** Questions with an asterisk are required.</createInstructions>
 <instructions>** Questions with an asterisk are required.</instructions>
 <validations />
 <attributes />
 <fieldDef name="userName" title="Full Name">
 <display>
 <type>text</type>
 <meta>
 <name>size</name>
 <value>40</value>
 </meta>
 </display>
 <validation required="true">
 <message>Please enter your full name</message>
 </validation>
 </fieldDef>
 <fieldDef name="rqstDate" title="Requested Date of Implementation:">
 <display>
 <type>text</type>
 </display>
 <validation required="true">
 <regex>^[0-1]?[0-9](/|-)[0-3]?[0-9](/|-)[1-2][0-9][0-9][0-9]$</regex>
 <message>Enter a valid date in the format mm/dd/yyyy.</message>
 </validation>
 </fieldDef>
 <fieldDef name="requestType" title="Request Type:">
 <display>
 <type>radio</type>
 <values title="New">New</values>
 <values title="Modification">Modification</values>
 </display>
 <validation required="true">
 <message>Please select a request type.</message>
 </validation>
 </fieldDef>
 <fieldDef attributeName="EDL.Campus.Example" name="campus" title="Campus:">
 <display>
 <type>select</type>
 <values title="IUB">IUB</values>
 <values title="IUPUI">IUPUI</values>
 </display>
 <validation required="true">
 <message>Please select a campus.</message>
 </validation>
 </fieldDef>

KEW

134

 <fieldDef name="description" title="Description of Request:">
 <display>
 <type>textarea</type>
 <meta>
 <name>rows</name>
 <value>5</value>
 </meta>
 <meta>
 <name>cols</name>
 <value>60</value>
 </meta>
 <meta>
 <name>wrap</name
 <value>hard</value>
 </meta>
 </display>
 <validation required="false" />
 </fieldDef>
 <fieldDef name="fundedBy" title="My research/sponsored program work is funded by NIH or NSF.">
 <display>
 <type>checkbox</type>
 <values title="My research/sponsored program work is funded by NIH or NSF.">nihnsf</values
 </display>
 </fieldDef>
 <fieldDef name="researchHumans" title="My research/sponsored program work involves human subjects.">
 <display>
 <type>checkbox</type>
 <values title="My research/sponsored program work involves human subjects.">humans</values>
 </display>
 </fieldDef>
 </edl>
 </eDocLite>
</data>

In the EDL XML file, field definition is embodied in the edl element. This element has a name attribute
that is used to identify this file as a definition of an EDL form. It often has a title for display purposes.

Examination of this code shows that

• Individual fields have names, titles, and types. The types closely match html types.

• You can easily use simple validation attributes and sub-attributes to ensure that a field is entered if
required and that an appropriate error message is presented if no value is provided by the web user.

• Regular expressions enhance the edit criteria without using custom JavaScript. (There are several ways
that you can invoke custom JavaScript for a field, but they are not shown in this example.)

• An important field named campus has syntax that defines the value used to drive the routing destination.
(In more complex documents, several fields are involved in making the routing decision.)

XSLT Style Sheet

The next section of the EDL XML file is the XSLT style sheet. It renders the EDL that the browser will
present and contains logic to determine how data is rendered to the user.

A major workhorse of the XSLT code is contained in a style sheet library called widgets.xml. In the
example below, it's included in the style sheet using an xsl:include directive.

Workflow Java classes have API’s that offer methods that supply valuable information to the XSLT style
sheet logic. XML allows you to interrogate the current value of EDL-defined fields, and it provides a
variety of built-in functions.

Together, these helpers allow the eDocLite style sheet programmer to focus on rendering fields and
titles using library (widget) calls and to perform necessary logic using the constructs built into the XML
language(if, choose…when, etc.).

KEW

135

This is the area of eDocLite development that takes the longest and is the most tedious. Much of what the
eDocLite style sheet programmer writes focuses on which fields and titles appear, in what order, to which
users, and whether the fields are readOnly, editable, or hidden.

Below is the style sheet section of the EDL XML form for our example. It contains embedded comments.

<!-- widgets is simply more xslt that contains common functionality that greatly simplifies html rendering
It is somewhat complicated but does not require changes or full understanding unless enhancements are required.
 -->
<xsl:include href="widgets" />
<xsl:output indent="yes" method="html" omit-xml-declaration="yes" version="4.01" />

<!-- variables in the current version of xslt cannot be changed once set. Below they are set to various values
 often fed by java classes or to
values contained in workflow xml. Not all of these are used in this form but are shown because often they can
 be useful
The ones prefixed with my-class are methods that are exposed by workflow to eDocLite .-->
<xsl:variable name="actionable" select="/documentContent/documentState/actionable" />
<xsl:variable name="docHeaderId" select="/documentContent/documentState/docId" />
<xsl:variable name="editable" select="/documentContent/documentState/editable" />
<xsl:variable name="globalReadOnly" select="/documentContent/documentState/editable != 'true'" />
<xsl:variable name="docStatus" select="//documentState/workflowDocumentState/status" />
<xsl:variable name="isAtNodeInitiated" select="my-class:isAtNode($docHeaderId, 'Initiated')" />
<xsl:variable name="isPastInitiated" select="my-class:isNodeInPreviousNodeList('Initiated', $docHeaderId)" />
<xsl:variable name="isUserInitiator" select="my-class:isUserInitiator($docHeaderId)" />
<!-- <xsl:variable name="workflowUser" select="my-class:getWorkflowUser().authenticationUserId().id()" /> This
 has a unique implementation at IU -->
<xsl:param name="overrideMain" select="'true'" />

<!-- mainForm begins here. Execution of stylesheet begins here. It calls other templates which can call other
 templates.
Position of templates beyond this point do not matter. -->
<xsl:template name="mainForm">
 <html xmlns="">
 <head>
 <script language="javascript" />
 <xsl:call-template name="htmlHead" />
 </head>
 <body onload="onPageLoad()">
 <xsl:call-template name="errors" />
 <!-- the header is useful because it tells the user whether they are in 'Editing' mode or 'Read
 Only' mode. -->
 <xsl:call-template name="header" />
 <xsl:call-template name="instructions" />
 <xsl:variable name="formTarget" select="'eDocLite '" />
 <!-- validateOnSubmit is a javascript function (file: edoclite1.js) which supports edoclite forms
 and can be somewhat complicated
 but does not
 require modification unless enhancements are required. -->
 <form action="{$formTarget}" enctype="multipart/form-data" id="edoclite" method="post"
 onsubmit="return validateOnSubmit(this)">
 <xsl:call-template name="hidden-params" />
 <xsl:call-template name="mainBody" />
 <xsl:call-template name="notes" />

 <xsl:call-template name="buttons" />

 </form>
 <xsl:call-template name="footer" />
 </body>
 </html>
</xsl:template>

<!-- mainBody template begins here. It calls other templates which can call other templates. Position of
 templates do not matter. -->
<xsl:template name="mainBody">
 <!-- to debug, or see values of previously created variables, one can use the following format.
 for example, uncomment the following line to see value of $docStatus. It will be rendered at the top
 of the main body form. -->
 <!-- $docStatus=<xsl:value-of select="$docStatus" /> -->
 <!-- rest of this all is within the form table -->
 <table xmlns="" align="center" border="0" cellpadding="0" cellspacing="0" class="bord-r-t" width="80%">
 <tr>
 <td align="left" border="3" class="thnormal" colspan="1">

KEW

136

<h3>
My Page

EDL EDoclite Example
</h3>

</td>
 <td align="center" border="3" class="thnormal" colspan="2">

<h2>eDocLite Example 1 Form</h2></td>
 </tr>
 <tr>
 <td class="headercell5" colspan="100%">
User Information
</td>
 </tr>
 <tr>
 <td class="thnormal">
 <xsl:call-template name="widget_render">
 <xsl:with-param name="fieldName" select="'userName'" />
 <xsl:with-param name="renderCmd" select="'title'" />
 </xsl:call-template>
 *
 </td>
 <td class="datacell">
 <xsl:call-template name="widget_render">
 <xsl:with-param name="fieldName" select="'userName'" />
 <xsl:with-param name="renderCmd" select="'input'" />
 <xsl:with-param name="readOnly" select="$isPastInitiated" />
 </xsl:call-template>
 </td>
 </tr>
 <tr>
 <td class="headercell5" colspan="100%">
Other Information
</td>
 </tr>
 <tr>
 <td class="thnormal">
 <xsl:call-template name="widget_render">
 <xsl:with-param name="fieldName" select="'rqstDate'" />
 <xsl:with-param name="renderCmd" select="'title'" />
 </xsl:call-template>
 *
 </td>
 <td class="datacell">
 <xsl:call-template name="widget_render">
 <xsl:with-param name="fieldName" select="'rqstDate'" />
 <xsl:with-param name="renderCmd" select="'input'" />
 <xsl:with-param name="readOnly" select="$isPastInitiated" />
 </xsl:call-template>
 </td>
 </tr>
 <tr>
 <td class="thnormal">
 <xsl:call-template name="widget_render">
 <xsl:with-param name="fieldName" select="'campus'" />
 <xsl:with-param name="renderCmd" select="'title'" />
 </xsl:call-template>
 *
 </td>
 <td class="datacell">
 <xsl:call-template name="widget_render">
 <xsl:with-param name="fieldName" select="'campus'" />
 <xsl:with-param name="renderCmd" select="'input'" />
 <xsl:with-param name="readOnly" select="$isPastInitiated" />
 </xsl:call-template>
 </td>
 </tr>
 <tr>
 <td class="thnormal">
 <xsl:call-template name="widget_render">
 <xsl:with-param name="fieldName" select="'description'" />
 <xsl:with-param name="renderCmd" select="'title'" />
 </xsl:call-template>
 </td>

KEW

137

 <td class="datacell">
 <xsl:call-template name="widget_render">
 <xsl:with-param name="fieldName" select="'description'" />
 <xsl:with-param name="renderCmd" select="'input'" />
 <xsl:with-param name="readOnly" select="$isPastInitiated" />
 </xsl:call-template>
 </td>
 </tr>
 <tr>
 <td class="thnormal" colspan="2">
(Check all that apply)
</td>
 </tr>
 <tr>
 <td class="datacell" colspan="2">
 <xsl:call-template name="widget_render">
 <xsl:with-param name="fieldName" select="'fundedBy'" />
 <xsl:with-param name="renderCmd" select="'input'" />
 <xsl:with-param name="readOnly" select="$isPastInitiated" />
 </xsl:call-template>

 <xsl:call-template name="widget_render">
 <xsl:with-param name="fieldName" select="'researchHumans'" />
 <xsl:with-param name="renderCmd" select="'input'" />
 <xsl:with-param name="readOnly" select="$isPastInitiated" />
 </xsl:call-template>

 </td>
 </tr>
 <tr>
 <td class="headercell1" colspan="100%">
Supporting Materials</td>
 </tr>
 <tr>
 <td class="thnormal" colspan="100%">Use the Create Note box below to attach supporting materials to
 your request. Notes may be added with or without attachments. Click the red 'save' button on the right.</td>
 </tr>
 </table>
 <br xmlns="" />
</xsl:template>
<xsl:template name="nbsp">
 <xsl:text disable-output-escaping="yes">&nbsp;</xsl:text>
</xsl:template>
</xsl:stylesheet>
</style>

The beginning portion of this style sheet defines some XSL variables that are often useful to drive logic
choices. For simplicity, this example uses very little logic.

The isPastInitiated variable drives whether a user-defined EDL field renders readOnly or not.

The mainform often serves to call some common widget templates that add canned functionality. The
mainform then calls the mainBody template, which creates the html to render the EDL-defined fields. The
mainform then (optional) calls the notes, buttons, and footer templates.

The majority of your programming effort goes into the mainBody, where calls to widget_render generate
much of the field-specific title and value information. Various options can be passed into widgets_render
to allow client events to be executed. The mainBody is usually one or more html tables and sometimes
makes calls to programmer-defined sub-templates. The XSLT stylesheet generates the HTML rendered
by the browser.

The main and repeating theme of the example involves calling widget_render with the title of an EDL field,
followed by calling widget_render again with the input field. Widgets are a wrapper for XSLT stylesheets
that offer the ability to create HTML. Paramters offer different ways to render HTML when making calls
to widgets. Note that the variable value $isPastInitiated is passed as a parameter to widgets_render so that
the html readOnly attribute is generated when the form is past the initiator’s node.

KEW

138

Lazy importing of EDL Styles
You can configure Rice to lazily import an eDocLite style into the database on demand by setting a custom
configuration parameter.

• Create a custom stylesheet file, e.g. myricestyle.xml containing a style with a unique name, e.g.
"xyzAppStyle" and store it in a location that is locally accessible to your application server.

• Set a configuration parameter named edl.style.<style-name> with the value being a path to
the file containing your style. Following the example above, you would name your parameter
"edl.style.xyzAppStyle".

The stylesheet file could referenced could contain a full EDL, or be a standalone EDL style. On first use of
that named style by an EDL, the file will be parsed and the named style will be imported into the database.
The following example contains just an eDocLite XSL stylesheet:

<data xmlns="ns:workflow" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="ns:workflow
 resource:WorkflowData">
 <edoclite xmlns="ns:workflow/EDocLite" xsi:schemaLocation="ns:workflow/EDocLite resource:EDocLite">
 <style name="xyzAppStyle">
 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform" xmlns:wf="http://
xml.apache.org/xalan/java/org.kuali.rice.kew.edoclite.WorkflowFunctions">
 <!-- your custom stylesheet -->
 </xsl:stylesheet>
 </style>
 </edoclite>

</data>

Note that in a default Rice installation (starting in version 1.0.2), the "widgets" style is lazily imported
using this mechanism. In common-config-defaults.xml (which is located in the rice-impl jar), the following
parameter is defined:

<param name="edl.style.widgets" override="false">classpath:org/kuali/rice/kew/edl/default-widgets.xml</param>

If you wanted to override that file, you could define your own parameter in your Rice XML configuration
file using the above example as a template, but removing the override="false" attribute.

Document Type

A document type defines the workflow process for an eDocLite. You can create hierarchies where Child
document types inherit attributes of their Parents. At some level, a document type specifies routing
information. The document type definition for our first example follows. It contains routing information
that describes the route paths possible for a document.

<?xml version="1.0" encoding="UTF-8"?>
<data xmlns="ns:workflow" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="ns:workflow
 resource:WorkflowData">
 <documentTypes xmlns="ns:workflow/DocumentType" xsi:schemaLocation="ns:workflow/DocumentType
 resource:DocumentType">
 <documentType>
 <name>eDoc.Example1Doctype</name>
 <parent>eDoc.Example1.ParentDoctype</parent>
 <description>eDoc.Example1 Request DocumentType</description>
 <label>eDoc.Example1 Request DocumentType</label>
 <postProcessorName>org.kuali.rice.kew.edl.EDocLitePostProcessor</postProcessorName>
 <superUserGroupName namespace="KUALI">eDoc.Example1.SuperUsers</superUserGroupName>
 <blanketApprovePolicy>NONE</blanketApprovePolicy>
 <defaultExceptionGroupName namespace="KUALI">eDoc.Example1.defaultExceptions</
defaultExceptionGroupName>
 <docHandler>${workflow.url}/EDocLite</docHandler>

KEW

139

 <active>true</active>
 <routingVersion>2</routingVersion>
 <routePaths>
 <routePath>
 <start name="Initiated" nextNode="eDoc.Example1.Node1" />
 <requests name="eDoc.Example1.Node1" />
 </routePath>
 </routePaths>
 <routeNodes>
 <start name="Initiated">
 <activationType>P</activationType>
 <mandatoryRoute>false</mandatoryRoute>
 <finalApproval>false</finalApproval>
 </start>
 <requests name="eDoc.Example1.Node1">
 <activationType>P</activationType>
 <ruleTemplate>eDoc.Example1.Node1</ruleTemplate>
 <mandatoryRoute>false</mandatoryRoute>
 <finalApproval>false</finalApproval>
 </requests>
 </routeNodes>
 </documentType>
 </documentTypes>
</data>

The Parent element refers to a hierarchical order of the document types. Usually, you create one Root
document type with limited but common information. Then, under that, you create more specific document
types. In our example, there are only two levels.

The Root document type definition for our first example:

<?xml version="1.0" encoding="UTF-8"?>
<data xmlns="ns:workflow" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="ns:workflow
 resource:WorkflowData">
 <documentTypes xmlns="ns:workflow/DocumentType" xsi:schemaLocation="ns:workflow/DocumentType
 resource:DocumentType">
 <documentType>
 <name>eDoc.Example1.ParentDoctype</name>
 <description>eDoc.Example1 Parent Doctype</description>
 <label>eDoc.Example1 Parent Document</label>
 <postProcessorName>org.kuali.rice.kew.edl.EDocLitePostProcessor</postProcessorName>
 <superUserGroupName namespace="KUALI">eDoc.Example1.SuperUsers</superUserGroupName>
 <blanketApprovePolicy>NONE</blanketApprovePolicy>
 <docHandler>${workflow.url}/EDocLite</docHandler>
 <active>true</active>
 <routingVersion>2</routingVersion>
 <routePaths />
 </documentType>
 </documentTypes>
</data>

A Child document type can inherit most element values, although you must define certain element values,
like postProcessor, for each Child document type.

A brief explanation of elements that are not intuitive is below. You can find additional element explanations
by reading the Document Type Guide.

Parent DocType
postProcessorName - Use the default, as shown above, unless special processing is needed.

blanketApprovePolicy – When specified as NONE, this means that a user cannot click a single button
that satisfies multiple levels of approval.

dochandler - Use the default, as shown above, so URLs are automatically unique in each environment,
based on settings in the Application Constants (i.e., unique in each Test environment and unique again
in Production).

KEW

140

active - Set this element to false to disable this feature.

routingVersion - Use the default, as shown above.

Child DocType

name - The name value must exactly match the value in the EDL Association document type element.

parent - The parent value must exactly match the name value of the parent document type.

superUserGroupName - A group of people who have special privileges that can be defined using the
management service that’s part of the KIM module.

defaultExceptionGroupName - A group of people who address a document of this type when it goes
into Exception routing

routePaths and routePath - The initial elements that summarize the routing path the document will follow.
In our example, an initiator fills out an eDocLite form. When the initiator submits that form, where it is
routed depends on the value in the Campus field. There is only one destination node in our first example.
The submitted form goes to either the IUB person or the IUPUI person, depending on the selection in the
Campus field.

In most cases, a workgroup of people is the destination for an EDL form, not a single person. Workgroups
are used as destinations because anyone in the workgroup can open the document, edit it, and click an
Action button that routes the document to the next node. This prevents delays when someone is out of the
office and a document awaits their action.

When the initiator submits the document, KEW adds that document to the Action List of the destination
person or workgroup. The destination person or workgroup can then open the document, edit it (if any
fields are available for editing), and click an Action button such as Approve, which routes the document
onward. In our case, there is no further destination, so when the destination person or workgroup approves
the document, the document becomes Final (it is finished). Some real-life examples have ten or more
nodes for approvals or other actions. A document may bypass some of those nodes, depending on data
placed into the form by previous participants.

routeNodes- Redefines the route path.

activationType

• P stands for parallel and is almost always used. This value makes more sense when considered from a
target node perspective. From that perspective, it means that if a workgroup of people all received the
document in their Action List, any one, in any order, can approve it. Once it is approved by anyone in
the workgroup, it is routed to the next node, and KEW removes the document from the Action List of
all the people in the workgroup. activationType

• S stands for sequential and is reserved for special cases where rules can specify that two or more people
in a workgroup must take Action on a document, in a specific order, before KEW will route the document
to the next node.

mandatoryRoute - Use false unless there is a special condition to solve. When this parameter is set to
true, the document goes into exception routing if an approve request isn't generated by the ruleTemplate.
This means that you are only expecting an approve, and nothing else.

finalApproval - Use false unless there is a special condition to solve. When this parm is set to true, the
document goes into exception routing if approves are generated after this route node. This means this must
be the last Action, or it will go into exception routing. (Be careful, because if this parameter is set to true
and a user clicks a Return to Previous button, then the next action button clicked sends the document into
exception handling.)

KEW

141

requests name= "..." - Defines the name of the node

ruleTemplate - A named entity type that helps define which routing rule fires. In our example, the
ruleTemplate name is the same as the request name. These field values do NOT need to be the same. They
are simply identifiers.

Rule Attributes

The RuleAttribute is a mechanism that can relate directly to an edl field. Most rule attributes are of the
xml rule attribute type. This type uses an xpath statement which is used by the workflow engine to match
to a rule that fires or does not fire.

In the below example, it can be seen that the edl defined field named 'campus' and its permissible values
are defined. Then in the xpathexpression element says; when the value in the edl field named 'campus'
matches the rule that contains 'IUB' the rule will fire. Or when the value in the edl field named 'campus'
matches the rule that contains 'IUPUI' that rule will fire instead. Rules firing route a document to a person
or a workgroup of people.

To make another rule attribute for a different field, clone this one, change all references to the field 'campus'
to your different edl field name. Then cut and paste in the values section. Then in the edl definition, the
new field must carry the extra syntax 'attributeName='. For example the eld definition for campus looks
like this:

<fieldDef name="campus" title="Campus" workflowType="ALL">

Rule Routing

<?xml version="1.0" encoding="UTF-8"?>
<data xmlns="ns:workflow" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="ns:workflow
 resource:WorkflowData">
 <ruleAttributes xmlns="ns:workflow/RuleAttribute" xsi:schemaLocation="ns:workflow/RuleAttribute
 resource:RuleAttribute">
 <ruleAttribute>
 <name>EDL.Campus.Example</name>
 <className>org.kuali.rice.kew.rule.xmlrouting.StandardGenericXMLRuleAttribute</className>
 <label>EDL Campus Routing</label>
 <description>EDL School Routing</description>
 <type>RuleXmlAttribute</type>
 <routingConfig>
 <fieldDef name="campus" title="Campus" workflowType="ALL">
 <display>
 <type>select</type>
 <values title="IUB">IUB</values>
 <values title="IUPUI">IUPUI</values>
 </display>
 <validation required="false" />
 <fieldEvaluation>
 <xpathexpression>//campus = wf:ruledata('campus')</xpathexpression>
 </fieldEvaluation>
 </fieldDef>
 <xmlDocumentContent>
 <campus>%campus%</campus>
 </xmlDocumentContent>
 </routingConfig>
 </ruleAttribute>
 </ruleAttributes>

</data>

Rule attributes can have a different types such a searchable, but this type does not have to do with routing.
Instead it relates to additional columns that are displayed in doc search for a particular doc type.

KEW

142

Ingestion Order

Many components can go in at any time, but it is advisable to follow a pattern to minimize the conflicts
that can occur. A few pieces are co-dependent.

1. Basic Components:

2. Widgets.xml (If changed or not previously in the environment)

3. Kim Group(s)

4. Rule Attributes

5. Rule Template(s)

6. Parent Doctype (often no routing so data is more generic, but do put routing here if children will use
common routing.)

7. Children Doctype(s) (routing defined here or on Parent)

8. EDL Form

9. Rule routing rule (Used if rules are created; explained later- 1 per parent doctype)

10.Rules (Create or Ingest)

11.Anything else - Like optional custom Email Stylesheet

Customizing Document Search
Each document carries an XML payload that describes metadata. You can specify pieces of that metadata
to be indexed and searched on. This area focuses on the interface for searching through that data. For
each Document Search page, you must setup the XML configuration files to define the search criteria
and result fields.

Custom Search Screen
As an example of customizing a Document Search screen, we’ll use a customized Offer Request screen:

Figure 3.25. Custom Search Screen:Offer Request Example

KEW

143

What are custom document search attributes?

Custom document search attributes are associated with a document type. They specify which pieces of
document data will be made searchable for documents of that type. When you take action on a document
in the workflow engine, a background process extracts the custom search attributes from the document
and adds them to a database table where they can be queried as part of a custom document search. These
custom search attributes are defined and associated along with document types in WorkflowData XML
files, and are added to Rice via the XML ingester. They are defined within (using XPath notation) /
data/ruleAttributes/ruleAttribute tags, and are associated with specific document types within /data/
documentTypes/documentType/attributes/attribute tags.

A custom search attribute's logic is defined in a Java class that implements the SearchAttribute interface.
A SearchableAttribute implementation defines:

• What parts of the document content will be made searchable

• Which fields will be present in the document search interface

• Which columns will be shown in the search results

• What is considered valid user input for the custom search fields

There is a built in SearchAttribute implementation, SearchableXMLAttribute, that is highly configurable
via XML and will meet most requirements. If there is need for more complex or specific behavior, a custom
SearchAttribute implementation can be written and utilized as well.

DocumentSearchAttributes is much like XMLRuleAttributes, except that DocumentSearchAttributes
is responsible for drawing input fields on the Document Search form and collecting data for the query, as
opposed to analyzing data for routing evaluation (done by XMLRuleAttributes).

Hide Search Fields and Result Columns
In a search configuration, the <visibility> tag lets you configure search criteria to be included or excluded
from the entry of search criteria or from the search results. You can use the <visibility> tag on all field(s)
and column(s) in the Document Search results except for Document Id and Route Log, which must always
be visible.

Hide a result column

<visibility>
 <column visible="false"/>

</visibility>

Hide a search field

<visibility>
 <field visible="false"/>
</visibility>

Field and column visibility based on workgroup membership

Use code like this in the XML file to display column(s) and field(s) based on the user's workgroup:

KEW

144

<visibility>
 <field>
 <isMemberOfWorkgroup>WorkflowAdmin</isMemberOfWorkgroup>
 </field>
 <column>
 <isMemberOfWorkgroup>WorkflowAdmin</isMemberOfWorkgroup>
 </column>
</visibility>

The example above indicates that the field and column only display for users who are a member of the
workgroup, WorkflowAdmin.

Configure visibility for both field and column

A shortcut to configure the visibility for both fields and columns is the <fieldAndColumn> tag. A
<fieldAndColumn> example:

<visibility>
 <fieldAndColumn>
 <isMemberOfWorkgroup>WorkflowAdmin</isMemberOfWorkgroup>
 </fieldAndColumn>
</visibility>

No field visibility

Declaring <type> as hidden is equivalent to setting visibility to false. An example of <type> and
<visibility>, equivalent to a hidden field:

<searchingConfig>
 <fieldDef name="department" title="Department">
 <display>
 <type>text</type>
 </display>
 <visibility>
 <field visible="false"/>
 </visibility>
 <fieldEvaluation>
 <xpathexpression>normalize-space(substring-before(//department, ' '))</xpathexpression>
 </fieldEvaluation>
 </fieldDef>

</searchingConfig>

<!-- The above is equivalent to the following searching configuration -->

<searchingConfig>
 <fieldDef name="department" title="Department">
 <display>
 <type>hidden</type>
 </display>
 <fieldEvaluation>
 <xpathexpression>normalize-space(substring-before(//department, ' '))</xpathexpression
>
 </fieldEvaluation>
 </fieldDef>

</searchingConfig>

Configure Lookup Function
To make a lookupable available on the Document Search screen, you can use the <quickfinder> tag in
the attribute definition. You can use the terms quickfinder, lookup, and lookupable interchangeably.

KEW

145

For example, you could set up an organizational hierarchic concept such as Charts and Orgs to implement
a search. You could set up the code to perform this search using the ChartOrgLookupableImpl
institutional plugin. This is an example of a standard lookupable component.

In the institutional plug-in, ChartOrgLookupableImpl is identified in the LookupableServiceExtension
by the name of ChartOrgLookupableImplservice. ChartOrgLookupableImpl exposes two return
parameters, which are:

• Fin_coa_cd: Represents the chart code

• Org_cd: Represents the organization code

An XML example of setting up a lookupable on the Document Search screen:
ChartOrgSearchAttribute.xml

<ruleAttribute>
 <name>ChartOrgSearchAttribute</name>
 <className>org.kuali.rice.kew.docsearch.xml.StandardGenericXMLSearchableAttribute</className>
 <label>TestQuickfinderSearchAttribute</label>
 <description>TestQuickfinderSearchAttribute</description>
 <type>SearchableXmlAttribute</type>
 <searchingConfig>
 <fieldDef name="chart" title="Chart">
 <display>
 <type>text</type>
 </display>
 <quickfinder service="ChartOrgLookupableImplService" appliesTo="fin_coa_cd" draw="false"/>
 <fieldEvaluation>
 <xpathexpression>//chart</xpathexpression>
 </fieldEvaluation>
 </fieldDef>
 <fieldDef name="org" title="Organization">
 <display>
 <type>text</type>
 </display>
 <quickfinder service="ChartOrgLookupableImplService" appliesTo="org_cd" draw="true"/>
 <fieldEvaluation>
 <xpathexpression>//org</xpathexpression>
 </fieldEvaluation>
 </fieldDef>
 <xmlSearchContent>
 <chartOrg>
 <chart>%chart%</chart>
 <org>%org%</org>
 </chartOrg>
 </xmlSearchContent>
 </searchingConfig>
</ruleAttribute>

In the XML example above, there are two <quickfinder> tags representing the Chart (fin_coa_cd) and
Org (org_cd) search. Notice the draw attribute for the Org (org_cd) search is set true. This means that
a search icon will be displayed on the Document Search screen. Based on the XML code above, the final
Document Search screen looks like this:

KEW

146

Figure 3.26. Custom Document Search: Department Example

Application Document Status
If the <validApplicationStatuses> configuration is specified in the document type definition, then setting
the Document Type on the Document Search page will display a multi-select input titled "Application
Document Status" that allows you to search by application statuses or status categories.

Figure 3.27. Document Search Screen: Application Document Status Example

In the figure above, Pre-Submit is a category of statuses containing Initiated and Validated which are
individual statuses. Selecting Pre-Submit and searching will return identical results to selecting both
Initiated and Validated and then searching.

Please see Document Type Policies: DOCUMENT_STATUS_POLICY for configuration details.

Define Keyword Search
XMLSearchableAttributeStdFloatRang is an XML searchable attribute that enhances the keyword search
function. It provides multiple searchable elements for a user to select under the <searchingConfig> section.
This example is the XMLSearchableAttributeStdFloatRang attribute in the default setting:

KEW

147

<ruleAttribute>
 <name>XMLSearchableAttributeStdFloatRange</name>
 <className>org.kuali.rice.kew.docsearch.xml.StandardGenericXMLSearchableAttribute</className>
 <label>XML Searchable attribute</label>
 <description>XML Searchable attribute</description>
 <type>SearchableXmlAttribute</type>
 <searchingConfig>
 <fieldDef name="testFloatKey" title="Float in the Water">
 <display>
 <type>text</type>
 </display>
 <searchDefinition dataType="float">
 <rangeDefinition inclusive="false">
 <lower label="starting"/>
 <upper label="ending"/>
 </rangeDefinition>
 </searchDefinition>
 <fieldEvaluation>
 <xpathexpression>//putWhateverWordsIwantInsideThisTag/testFloatKey/value</xpathexpression>
 </fieldEvaluation>
 </fieldDef>
 <xmlSearchContent>
 <putWhateverWordsIwantInsideThisTag>
 <testFloatKey>
 <value>%testFloatKey%</value>
 </testFloatKey>
 </putWhateverWordsIwantInsideThisTag>
 </xmlSearchContent>
 </searchingConfig>
</ruleAttribute>

Caution

Cautions about the <searchingConfig> section:

1. <searchDefinition> identifies the search data type and search ranges.

2. <rangeDefinition> contains both the <lower> and <upper> elements that set up the
parameters for the range search.

3. If you set the <display><type> tag to be date, then KEW automatically sets:
<searchDefinition dataType="datetime">.

4. If the data type that you enter is not a datetime, then KEW sets all datePicker attributes to false.

5. Based on the dataType you enter, datePicker changes the default setting to either true or false.

6. To use a range search, you can either set <searchDefinition rangeSearch="true"> or put
the tag <rangeDefinition> under the <searchDefinition> tag. Either way, KEW will force
a range search.

Custom Search Criteria Processing

URL Parameter Options

You can modify the search criteria and the display of the search screen by passing in URL parameters. Only
use this method when the configuration desired is preferable and not required. If a particular piece of the
search criteria is required, please see the section below titled, Using a Custom Search Criteria Processor.

Force the link to display the Detailed Search screen

Use the parameter isAdvancedSearch and set the value to YES.

KEW

148

Show or Hide All Criteria and/or the Workflow Header Bar

The default value of each of these parameters must be set to true to show both the criteria and the header bar.

• To hide the header bar, use the URL parameter headerBarEnabled and set the value to false.

• To hide the search criteria (including the buttons), use the URL parameter searchCriteriaEnabled and
set the value to false.

Passing in Common Search Criteria Values

Common search criteria fields can be populated by supplying their values in the URL query parameters.
For example, the following URL specifies a search on KualiNotification documents with initiator user1:

http://yourlocalip:8080/DocumentSearch.do?documentTypeName=KualiNotification&initiatorPrincipalName=user1

Common search criteria fields include:

• documentTypeName - the document type name

• documentId - the document id

• initiatorPrincipalName - the initiator principal name

• dateCreated - the document creation date

• approverPrincipalName - the approver principal name (use with advanced search)

• viewerPrincipalName - the viewer principal name (use with advanced search)

• applicationDocumentId - the application-supplied document id (use with advanced search)

• dateApproved - the approval date (use with advanced search)

• dateLastModified - the last modified date (use with advanced search)

• dateFinalized - the finalization date (use with advanced search)

• title - the document title(use with advanced search)

For a comprehensive list of search criteria fields, consult the

org.kuali.rice.kew.impl.document.search.DocumentSearchCriteriaBo

class.

The CURRENT_USER variable

In addition to literal field values, the 'CURRENT_USER' special token is dynamically replaced with an
identifier for the currently authenticated user when the search is executed. This value can be supplied in
any field (typically a field that takes a principal name or id). Several variants allow embedding different
types of user ids:

• CURRENT_USER, CURRENT_USER.principalName, CURRENT_USER.authenticationId,
CURRENT_USER.a - the current user principal name

KEW

149

• CURRENT_USER.principalId, CURRENT_USER.workflowId, CURRENT_USER.w - the
current user principal id

• CURRENT_USER.emplId, CURRENT_USER.e - the current user employee id

Example:

http://yourlocalip:8080/DocumentSearch.do?
documentTypeName=KualiNotification&initiatorPrincipalName=CURRENT_USER

Passing in Searchable Attribute Values

Searchable attributes can be specified via URL parameters by prefixing the searchable attribute field name
with documentAttribute..

Here is an example using two <fieldDef> objects with names firstname and lastname:

http://yourlocalip:8080/DocumentSearch.do?documentAttribute.firstname=John&documentAttribute.lastname=Smith

Using a Custom Search Criteria Processor

The best way to do custom criteria processing is to implement a custom class that extends the
class org.kuali.rice.kew.docsearch.DocumentSearchCriteriaProcessor. This file is ingested as a
Workflow Attribute in KEW, using the <type> of DocumentSearchCriteriaProcessorAttribute. Once
the Workflow Attribute is ingested, you can set the name value of the ingested attribute on one or more
document type xml definitions in the Attributes section. A document type can only have one Criteria
Processor Attribute.

Creating a child class of the DocumentSearchCriteriaProcessor class, a client can override various
methods to modify the behavior of the search. The DocumentSearchCriteriaProcessor class can access
the WorkflowUser object of the user performing the search. By having access to these objects, a custom
processor class could implement dynamic hiding and showing of specific criteria fields based on ordinary
user’s data or search field data.

Show or Hide All Criteria and/or the Workflow Header Bar

Here are some helpful methods that you may override from the DocumentSearchCriteriaProcessor class
file to hide or display full criteria (including buttons) and/or the header bar:

• isHeaderBarDisplayed() – If this function returns false, KEW hides the header bar on both the
advanced and basic search screens (default return value is true).

• isBasicSearchCriteriaDisplayed() – If this function returns false, KEW hides criteria on the basic
search screen (default return value is true).

• isAdvancedSearchCriteriaDisplayed() – If this function returns false, KEW hides the criteria on the
advanced search screen (default return value is true).

Hiding Specific Fields or Criteria Using Field Key Values

The DocumentSearchCriteriaProcessor class has methods that allow classes to extend from it for basic field
display. This is based on static string key values and makes it easier for clients to allow basic field display
or to hide particular fields, whether they are searchable attributes or standard Document Search fields.

KEW

150

You may override these methods from the DocumentSearchCriteriaProcessor class to do specific field
hiding by returning a list of string keys:

• getGlobalHiddenFieldKeys() – This function returns a list of keys (strings) for fields to be hidden on
both the basic and advanced search screen.

• getBasicSearchHiddenFieldKeys() – This function returns a list of keys (strings) for fields to be hidden
on the basic search screen.

• getAdvancedSearchHiddenFieldKeys() – This function returns a list of keys (strings) for fields to be
hidden on the advanced search screen.

You can find the standard Document Search field key names in the class file
org.kuali.rice.kew.docsearch.DocumentSearchCriteriaProcessor. They are constants prefixed by
the text CRITERIA_KEY_. For example, the static criteria key for the Document Id field is
DocumentSearchCriteriaProcessor.CRITERIA_KEY_DOCUMENT_ID.

A client can also use searchable attribute <fieldDef> name values to hide fields in the same way that
you use constants. If a particular searchable attribute <fieldDef> name exists in a list returned by one of
the above hidden field key methods, the criteria processor class overrides the default behavior of that
<fieldDef> searchable attribute for visibility.

Here is a general example of a custom criteria processor class that extends
StandardDocumentSearchCriteriaProcessor:

public class CustomDocumentSearchCriteriaProcessor extends DocumentSearchCriteriaProcessor {

/**

 * Always hide the header bar on all search screens

 */

 @Override
 public boolean isHeaderBarDisplayed() {
 return Boolean.FALSE;

 }

/**
 * Always hide all criteria and buttons on the advanced search screen

 */

 @Override
 public Boolean isAdvancedSearchCriteriaDisplayed() {
 return Boolean.FALSE;
 }

/**
 * Hide the Initiator Criteria field on both Basic and Advanced Search screens
 */
 @Override
 public List<String> getGlobalHiddenFieldKeys() {
 List<String> hiddenKeys = super.getGlobalHiddenFieldKeys();
 hiddenKeys.add(DocumentSearchCriteriaProcessor.CRITERIA_KEY_INITIATOR);
 return hiddenKeys;
 }

/**
 * Hide the Document Title criteria field on the basic search screen
 * Hide the searchable attribute field with name 'givenname' on the basic search screen
 */

KEW

151

 @Override
 public List<String> getBasicSearchHiddenFieldKeys() {
 List<String> hiddenKeys = super.getAdvancedSearchHiddenFieldKeys();
 hiddenKeys.add(DocumentSearchCriteriaProcessor.CRITERIA_KEY_DOCUMENT_TITLE);
 hiddenKeys.add("givenname");
 return hiddenKeys;
 }

/**
 * Hide the Document Title criteria field on the advanced search screen
 * Hide the searchable attribute field with name 'givenname' on the basic search screen
 */

 @Override
 public List<String> getAdvancedSearchHiddenFieldKeys() {
 List<String> hiddenKeys = super.getAdvancedSearchHiddenFieldKeys();
 hiddenKeys.add(DocumentSearchCriteriaProcessor.CRITERIA_KEY_DOCUMENT_TITLE);
 hiddenKeys.add("givenname");
 return hiddenKeys;

 }
}

Custom Search Generation
The best way to do custom search generation or processing is to implement a custom class that extends
the class org.kuali.rice.kew.impl.document.lookup.DocumentSearchGenerator. This file is ingested
as a Workflow Attribute in KEW using the <type> value of DocumentSearchGeneratorAttribute. Once
the Workflow Attribute is ingested, the name value of the ingested attribute can be set on one or more
document type xml definitions in the Attributes section. A Document Type can only have one Search
Generator Attribute.

Using an extension of the DocumentSearchGenerator class, a client has access to override various
methods to modify the behavior of the search. Also, the DocumentSearchGenerator class has helper
methods that may be used to get the WorkflowUser object of the user performing the search.

Implementing a Custom Result Set Limit

To implement a custom result set limit, simply override the method
getDocumentSearchResultSetLimit() from the StandardDocumentSearchGenerator class.

Custom Search Results
You can create a Custom Search Result table using an XML rule attribute of the type
DocumentSearchRsultXMLResultProcessorAttribute.

The standard Search Result table:

Figure 3.28. Standard Doc Search Results Set

The Standard Search Result fields:

KEW

152

• Document Id

• Document Type

• Title

• Status

• Initiator

• Date Created

• Route log

The fields of Document Id and Route Log are always shown in the farthest left and right columns of the
Search Result table. These fields cannot be hidden. You can add both columns a second time in the XML
search result attributes if needed.

Custom XML Document Search Result Processor Attribute

An example of a custom XML result processor:

<ruleAttribute>
 <name>KualiContractsAndGrantsDocSearchResultProcessor</name>

 <className>org.kuali.rice.kew.docsearch.xml.DocumentSearchXMLResultProcessorImpl</className>
 <label>Contracts & Grants Document Search Result Processor</label>
 <description>Attribute to allow for custom search results for Contracts & Grants documents</
description>
 <type>DocumentSearchXMLResultProcessorAttribute</type>
 <searchResultConfig overrideSearchableAttributes="false" showStandardSearchFields="false">
 <column name="docTypeLabel" />
 <column name="docRouteStatusCodeDesc" />
 <column name="initiator" />
 <column name="dateCreated" />
 </searchResultConfig>

</ruleAttribute>

The result of the code displayed above is a Search Result table with these columns:

• Document Id

• Document Type

• Status

• Initiator

• Date Created

• Route Log

The key for the search result customization is focused on the elements and column tag(s) under the
<searchResultConfig>.

Attributes that are included in the <searchResultConfig> tag:

• overrideSearchableAttributes: The indicator of whether to display the column name attributes defined
by the searchAttribute fieldDef 'name's configured by setting the true or false

• true: Display the <column> name attributes based on searchAttribute fieldDef names.

KEW

153

• false: Display the name based on the <column> attribute.

• showStandardSearchFields: The indicator of whether to display the standard search fields by setting
the value true or false.

• true: Display the search result with the standard result fields; the name attribute of the <column> tag
should match the values in the java file DocumentSearchResult.java.

• false: Display the search result based on the custom result fields.

Attributes that can be added in a <column> tag:

• Name: The key for connecting the value of a particular attribute. For example, routeHeaderId equals
Document Id. For more information about the attribute key, please refer to the Key reference table below.

• Title: The title of the field

• Sortable: The indicator of whether to sort the search result by setting the value true or false

• true: Sort option for this column is enabled to sort either alphabetically or numerically depending
on attribute type.

• false: Sort option for this column is disabled.

For <column> with sortable = true, the field title becomes a link and when a user clicks the link, KEW
sorts the results by that column.

An example of a custom ruleAttribute:

<ruleAttribute>
 <name>KualiContractsAndGrantsDocSearchResultProcessor</name>

 <className>org.kuali.rice.kew.docsearch.xml.DocumentSearchXMLResultProcessorImpl</className>
 <label>Contracts & Grants Document Search Result Processor</label>
 <description>Attribute to allow for custom search results for Contracts & Grants documents</
description>
 <type>DocumentSearchXMLResultProcessorAttribute</type>
 <searchResultConfig overrideSearchableAttributes="true" showStandardSearchFields="false">
 <column name="docTypeLabel" />
 <column name="docRouteStatusCodeDesc" />
 <column name="initiator" />
 <column name="dateCreated" />
 <column name="proposal_number" />
 <column name="chart" />
 <column name="organization" />
 <column name="proposal_award_status" />
 <column name="agency_report_name" />
 </searchResultConfig>
</ruleAttribute>

Table 3.17. Key Reference Table: Default field names and reference keys

Field Key

Document Id routeHeaderId

Document Type docTypeLabel

Title documentTitle

Status docRouteStatusCodeDesc

Initiator initiator

Date Created dateCreated

Route Log routeLog

KEW

154

Custom Document Search Result Processor Class File

You may also use a custom Document Search Result Processor by extending the class
org.kuali.rice.kew.docsearch.StandardDocumentSearchResultProcessor and overriding individual
methods.

Differences between SearchableAttribute and
RuleAttribute

• SearchableAttribute does NOT have a workflowType attribute in the field tag.

• For SearchableAttribute, xpathexpression indicates the value's location in the document; it does not
use wf:ruledata(''). For RuleAttribute, xpathexpression is a Boolean expression.

• SearchableAttribute uses xmlSearchContent instead of xmlDocumentContent; xmlDocumentContent is
for RuleAttribute.

Document Security
Kuali Enterprise Workflow provides a declarative mechanism to facilitate Document-level security for
these three screens:

• Document Search

• Route Log

• Doc Handler Redirection

Overview
1. You can create a security definition on a Document Type, which allows you to apply varying levels

and types of security.

2. This definition is inheritable through the Document Type hierarchy.

3. If security is defined on a Document Type, rows for that Document Type that are returned from a search
apply the security constraints and filter the row if the constraints fail.

4. Security constraints are evaluated against a document when its Route Log is accessed. If the security
constraints fail, the user receives a Not Authorized message.

5. Security constraints are evaluated against a document when a Doc Handler link is clicked from either
the Action List or Document Search. If the security constraints fail, the user receives a Not Authorized
message.

Security Definition
You can define the security constraints in the Document Type XML. Here's a sample of the XML format:

<documentType>

 <security>
 <securityAttribute class="org.kuali.security.SecurityFilterAttribute"/>
 <securityAttribute name="TestSecurityAttribute"/>

KEW

155

 <initiator>true</initiator>
 <routeLogAuthenticated>true</routeLogAuthenticated>
 <searchableAttribute idType="emplid" name="emplid"/>
 <group>MyWorkgroup</group>
 <role allowed="true">FACULTY</role>
 <role allowed="true">STAFF</role>
 </security>

</documentType>

There is an implicit OR in the evaluation of these constraints. Thus, the definition above states that the
authenticated user has access to the document if:

• The attribute org.kuali.security.SecurityFilterAttribute defines the user as having access OR

• The attribute defined in the system by the name TestSecurityAttribute defines the user as having access
OR

• The user is the initiator of the document OR

• The user is on the Route Log of the document OR

• The user’s EMPL ID is equal to the searchable attribute on the document with the key of emplid OR

• The user is a member of the MyWorkgroup workgroup OR

• The user has the FACULTY role OR

• The user has the STAFF role

<initiator>

Validates that the authenticated user is or isn't the initiator of the document.

<routeLogAuthenticated>

Validates that the authenticated user is or isn't Route Log Authenticated.

Route Log Authenticated means that one of these is true:

1. The user is the initiator of the document.

2. The user has taken action on the document.

3. The user has received a request for the document (either directly or as the member of a workgroup).

Route Log Authenticated checks for security but does not simulate or check future requests.

<securityAttribute>

Validates based on a custom-defined class. Class must have implemented the SecurityAttribute interface
class. There are two methods of defining a security attribute:

• KEW Attribute Name: Specify an already-defined attribute (via KEW XML ingestion) using the XML
attribute name .

(Use of applicationId in a ruleAttribute specification sets the id of the application which contains the
implementation of the security attribute.)

KEW

156

<documentType>

 <security>
 <securityAttribute name="TestSecurityAttribute"/>
 </security>

</documentType>

• Class Name: Define the fully qualified class name using the XML attribute class.

(Use of Class Name is limited to classes which are locally defined.)

<documentType>

 <security>
 <securityAttribute class="org.kuali.security.SecurityFilterAttribute"/>
 </security>
 ...
.
</documentType>

<searchableAttribute>

Validate that the authenticated User ID of the given idType is equivalent to the searchable attribute field
with the given name.

The following id types are valid:

• emplid

• authenticationid

• uuid

• workflowid

<group>

Validate that the authenticated user is a member of the workgroup with the given name.

<role>

Validate that the authenticated user has the given role. The existence and names of these
roles are determined by your setup in KEW. (You can create these roles when you implement
WebAuthenticationService.) Typically, the roles mirror your organization structure.

For example, you may choose to expose these roles:

• STAFF

• FACULTY

• ALUMNI

• STUDENT

KEW

157

• FORMER-STUDENT

• APPLICANT

• ENROLLED

• ADMITTED

• PROSPECT

• GRADUATE

• UNDERGRADUATE

If the role is marked as allowed=true, than anyone with that role passes the security constraint. If the role
is marked as allowed=false, then if the individual has the given disallowed role but none of the allowed
roles, he or she fails the security check.

Order of Evaluation
The security constraints are evaluated in the following order. If any single constraint passes, it bypasses
evaluating the remaining constraints.

1. Security attribute

2. Initiator

3. Role

4. Workgroup

5. Searchable attribute

6. Route log authenticated

Security - Warning Messages
These security scenarios generate security warning messages:

Document Search

• If no rows are filtered because of security, the user sees the search result without any warning message
on the Document Search page.

• If rows are filtered because of security, a red warning message on top of the Document Search page
shows how many rows were filtered. For example, "19 rows were filtered for security purposes."

• If the initial result set returns more than the search result threshold (500 rows), and rows in the set
subsequently get filtered because of security, then a red warning message shows how many rows were
returned and filtered. For example, "Too many results returned, displaying only the first 450. 50 rows
were filtered for security purpose. Please refine your search."

Route Log and Doc Handler

• If the defined security constraints stop a user from viewing a document, a red warning message shows
at the top of the page if they attempt to access the Route Log. For example, "You are not authorized
to access this portion of the application."

KEW

158

Service Layer
In an out-of-the-box installation of KEW, Document Security is
handled by org.kuali.rice.kew.doctype.DocumentSecurityServiceImpl, which implements the
org.kuali.rice.kew.doctype.DocumentSecurityService service interface.

Action List Configuration Guide

Outbox Configuration
The Outbox is a standard feature on the Action List and is visible to the user in the UI by default. When
the Outbox is turned on, users can access it from the Outbox hyperlink at the top of the Action List.

The Outbox is implemented by heavily leveraging existing Action List code. When
an Action Item is deleted from the Action Item table as the result of a
user action, the item is stored in the KEW_OUT_BOX_ITM_T table, using the
org.kuali.rice.kew.actionitem.OutboxItemActionListExtension object. This object is an extension of
the ActionItemActionListExtension. The separate object exists to provide a bean for OJB mapping.

The Workflow Preferences determine if the Outbox is visible and functioning for each user. The preference
is called Use Outbox. In addition, you can configure the Outbox at the KEW level using the parameter tag:

<param name="actionlist.outbox">true</param>

When the Outbox is set to false, the preference for individual users to configure the Outbox is turned off.
By default, the Outbox is set to true at the KEW level. You can turn the Outbox off (to hide it from users)
by setting the property below to false:

<param name="actionlist.outbox.default.preference.on">false</param>

This provides backwards compatibility with applications that used earlier versions of KEW.

Note

Notes on the Outbox:

• Actions on saved documents are not displayed in the Outbox.

• The Outbox responds to all saved Filters and Action List Preferences.

• A unique instance of a document only exists in the Outbox. If a user has a document in the
Outbox and that user takes action on the document, then the original instance of that document
remains in the Outbox.

Email Customization
KEW provides default email template for Action List notification messages that are sent. However, it is
also possible to customize this either globally or on a Document Type by Document Type basis.

There are two ways to customize Action List emails:

KEW

159

1. Configure a CustomEmailAttribute

2. Creating a custom XSLT Stylesheet

To accomplish this, you must write a CustomEmailAttribute and configure it on the appropriate
DocumentType.

Configure a CustomEmailAttribute
The CustomEmailAttribute interface provides two methods for adding custom content to both the subject
and the body.

public String getCustomEmailSubject();

public String getCustomEmailBody();

Note that each of these values is appended to the end of either the subject or the body of the email. The
rest of the email still uses the standard email content.

Also, when implementing one of these components, the document is made available to you as
a RouteHeaderDTO and the action request related to the notification is made available as an
ActionRequestDTO.

Once you have implemented the CustomEmailAttribute, you need to make it available to the KEW engine
(either deployed in a plugin or available on the classpath when running embedded KEW).

Document Type Configuration

Once you make the email attribute component available to KEW, you need to configure it on the Document
Type.

First, define the attribute:

<data xmlns="ns:workflow" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="ns:workflow
 resource:WorkflowData">
 <ruleAttributes xmlns="ns:workflow/RuleAttribute" xsi:schemaLocation="ns:workflow/RuleAttribute
 resource:RuleAttribute">
 <ruleAttribute>
 <name>MyCustomEmailAttribute</name>
 <className>my.package.MyCustomEmailAttribute</className>
 <label>MyCustomEmailAttribute</label>
 <description>My Custom Email Attribute</description>
 <type>EmailAttribute</type>
 </ruleAttribute>
 </ruleAttributes>
</data>

Next, update the Document Type definition to include the attribute:

<data xmlns="ns:workflow" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="ns:workflow
 resource:WorkflowData">
 <documentTypes xmlns="ns:workflow/DocumentType" xsi:schemaLocation="ns:workflow/DocumentType
 resource:DocumentType">
 <documentType>
 <name>MyDocType</name>
 <label>My Document Type</label>
 <postProcessorName>...</postProcessorName>
 <attributes>
 <attribute>
 <name>MyCustomEmailAttribute</name>

KEW

160

 </attribute>
 </attributes>
 <routePaths>
 ...
 </routePaths>
 <routeNodes>
 ...
 </routeNodes>
 </documentType>
 </documentTypes>
</data>

These should be ingested using the XML Ingester. See Importing Files to KEW for more information on
using the XML Ingester.

Create a Custom XSLT Style Sheet

Global Email Customization

A more convenient way to customize email content declaratively is to replace the global email XSLT style
sheet in Rice. Do this by ingesting an XSLT style sheet with the name kew.email.style. This style sheet
should take input of this format for reminder emails:

<!-- root element sent depends on email content requested by the system -->
<immediateReminder|dailyReminder|weeklyReminder actionListUrl="url to ActionList" preferencesUrl="url to
 Preferences"
applicationEmailAddress="configured KEW email address" env="KEW environment string (dev/test/prd)">

 <user> <!-- the principal who received the request -->
 <name>...</name>
 <principalName>...</principalName>
 <principalId>...</principalId>
 <firstName>...</firstName>
 <lastName>...</lastName>
 <emailAddress>...</emailAddress>
 ...
 </user>
 <actionItem>
 <!-- one top-level actionItem element sent for each ActionItem; for immediate email reminders, there
 will only ever be one; for daily and weekly reminders, there may be several -->

 <!-- custom subject content produced by the CustomEmailAttribute associated with the DocumentType of
 this ActionItem, if any -->
 <customSubject>...</customSubject>

 <!-- custom body content produced by the CustomEmailAttribute associated with the DocumentType of this
 ActionItem, if any -->
 <customBody>...</customBody>

 <actionItem> <!-- the actual ActionItem -->
 <principalId>...</principalId>
 <groupId>...</groupId>
 <routeHeaderId>...</routeHeaderId>
 <actionRequestId>...</actionRequestId>
 <docTitle>...</docTitle>
 <actionItemId>...</actionItemId>
 <roleName>...</roleName>
 <dateAssigned>...</dateAssigned>
 <actionRequestCd>...</actionRequestCd>
 <docHandlerURL>...</docHandlerURL>
 <recipientTypeCode>...</recipientTypeCode>
 <actionRequestLabel>...</actionRequestLabel>
 <delegationType>...</delegationType>
 <docName>...</docName>
 <docLabel>...</docLabel>
 </actionItem>
 <actionItemPerson> <!-- see "user" element at the top, simliar content -->
 ...
 </actionItemPerson>

KEW

161

 <actionItemPrincipalId>...</actionItemPrincipalId>
 <actionItemPrincipalName>...</actionItemPrincipalName>

 <doc> <!-- the RouteHeader associated with this ActionItem -->
 <routeHeaderId>...</routeHeaderId>
 <docTitle>...</docTitle>
 <docContent>...</docContent>
 <initiatorWorkflowId>...</initiatorWorkflowId>
 <documentTypeId>...</documentTypeId>
 <docRouteStatusLabel>...</docRouteStatusLabel>
 <docRouteStatus>...</docRouteStatus>
 <createDate>...</createDate>
 ...
 </doc>
 <docInitiator>
 <principalName>...</principalName>
 <principalId>...</principalId>
 <entityId>...</entityId>
 </docInitiator>
 <documentType> <!-- DocumentType -->
 <name>...</name>
 <label>...</label>
 <description>...</description>
 <serviceNamespace>...</serviceNamespace>
 <notificationFromAddress>...</notificationFromAddress>
 <docHandlerUrl>...</docHandlerUrl>
 <documentTypeId>...</documentTypeId>
 ...
 </actionItem>

</immediateReminder|dailyReminder|weeklyReminder>

This format is used for feedback emails:

<!-- feedback form -->
<feedback actionListUrl="url to ActionList" preferencesUrl="url to Preferences"
 applicationEmailAddress="configured KEW email address" env="KEW environment string (dev/test/prd)">
 <networkId>...</networkId>
 <lastName>...</lastName>
 <routeHeaderId>...</routeHeaderId>
 <documentType>...</documentType>
 <userEmail>...</userEmail>
 <phone>...</phone>
 <timeDate>...</timeDate>
 <edenCategory>...</edenCategory>
 <comments>
 ...
 </comments>
 <pageUrl>...</pageUrl>
 <firstName>...</firstName>
 <exception>...</exception>
 <userName>...</userName>
</feedback>

In both cases, the output generated by the style sheet must be like this:

<email>
 <subject>... subject here ...</subject>
 <body>... body here ...</body>
</email>

You must then upload the custom style sheet into the style service using the standard KEW XML ingestion
mechanism:

<?xml version="1.0" encoding="UTF-8"?>
<data xmlns="ns:workflow" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="ns:workflow
 resource:WorkflowData">
<styles xmlns="ns:workflow/Style" xsi:schemaLocation="ns:workflow/Style resource:Style">

KEW

162

 <style name="kew.email.style">
 <!-- A custom global email reminder stylesheet -->
 <xsl:stylesheet version="1.0" xmlns:xsl="http://www.w3.org/1999/XSL/Transform">
 <xsl:strip-space elements="*"/>
 <xsl:template match="immediateReminder">
 ...
 </xsl:template>
 <xsl:template match="dailyReminder">
 ...
 </xsl:template>
 <xsl:template match="weeklyReminder">
 ...
 </xsl:template>
 <xsl:template match="feedback">
 ...
 </xsl:template>
 </xsl:stylesheet>
 </style>
</styles>

The global style sheet should handle all email content requests. You can use the standard include syntax
to import an existing style sheet that may implement defaults.

DocumentType-Specific Email Customization

You can also customize immediate reminder email content on a per-DocumentType basis. To do so, define
a custom email style sheet name on the DocumentType definition:

...
 <documentType>
 <name>SomeDoc</name>
 <description>a document with customized reminder email</description>
 ...
 <emailStylesheet>somedoc.custom.email.style</emailStylesheet>
 ...
 </documentType>
...

Then, upload a corresponding style sheet with a matching name, as above.

Document Link

Document Link Features
KEW provides an option for linking documents and BOs that are functionally related. The link between
related documents is created and removed in a double link double delete fashion, which means: when a
link is added/deleted from 1 document to another document, a link in the reverse direction is also added/
deleted, this feature will garuantee that searching for linked documents can be done from either side of the
link. Using this option, client applications can link documents by using document link API.

Document Link API
Document link API is exposed to the client through WorkflowDocument interface, below is the summary
of the api:

1. get all links to orgn doc

public List<DocumentLinkDTO> getLinkedDocumentsByDocId(Long id) throws
WorkflowException

KEW

163

2. get the link from orgn doc to a specifc doc

public DocumentLinkDTO getLinkedDocument(DocumentLinkDTO docLinkVO) throws
WorkflowException

3. add a link by id

public void addLinkedDocument(DocumentLinkDTO docLinkVO) throws WorkflowException

4. remove all links to this doc as orgn doc

public void removeLinkedDocuments(Long docId) throws WorkflowException

5. remove the link to the specific doc

public void removeLinkedDocument(DocumentLinkDTO docLinkVO) throws WorkflowException

Document Link API Example
It is pretty straightforward to use this api, below are some examples:

1. To add a link

WorkflowDocument doc = new WorkflowDocument(…);

DocumentLinkDTO testDocLinkVO = new DocumentLinkDTO()
testDocLinkVO.setOrgnDocId(Long.valueOf(5000));

testDocLinkVO.setDestDocId(Long.valueOf(6000));
doc.addLinkedDocument(testDocLinkVO);

2. To retrieve all links to a document

List<DocumentLinkDTO> links2 = doc.getLinkedDocumentsByDocId(Long.valueOf(5000));

3. To remove a link

doc.removeLinkedDocument(testDocLinkVO);

Reporting Guide

Reporting Features
KEW provides various options for reporting on and simulation of routing scenarios. There is a GUI for
performing these reporting functions as well as an API that you can use to run routing reports against the
system.

The Routing Report Screen
From the Rice main menu there is a link to the Routing Report screen. From this set of screens you
can enter various criteria for running reports against the routing engine. The output of this reporting is a
simulated view of the Route Log, displaying the result of the report.

KEW

164

The Report APIs
The KEW client API also provides facilities for running reports against the routing engine. At the core
of KEW is a Simulation Engine that is responsible for running these types of reports. The method for
executing these reports is on the Workflow Info object that is part of the client API. The method is defined:

public DocumentDetailVO routingReport(ReportCriteriaVO reportCriteria) throws WorkflowException;

This method takes the report criteria and returns the results of the routing report.

Report Criteria
The routing report operates under two basic modes:

1. Reports that run against existing Documents

2. Reports that simulate a Document from a Document Type

In each these cases there are certain properties that you need to set on the ReportCriteriaVO to obtain the
desired results.

In the first case, the report runs against a document that has already been created in the system. This
document already has a Document Id and may be en route. Using this style of reporting, you can run
simulations to determine where the document will go in future route nodes. For example, to run a simulation
against an existing document to determine to whom it will route in the future, execute this code:

Routing Report against a Document

WorkflowInfo info = new WorkflowInfo();
RoutingReportCriteriaVO criteria = new ReportCriteriaVO(new Long(1234));
DocumentDetailVO results = info.routingReport(criteria);
// examine results...

This runs a report against the document with ID 1234, starting at the active nodes of the document
and continuing to the terminal nodes of the document. The DocumentDetailVO will contain the Action
Requests generated during the report simulation.

You can also stop the report at a particular node or once Rice generates a request for a particular user. For
example, to stop the report simulation at a node or when Rice generates a certain user's request, configure
the report criteria like this:

Terminate Report at Node or User

WorkflowInfo info = new WorkflowInfo();

RoutingReportCriteriaVO criteria = new ReportCriteriaVO(new Long(1234), "MyNodeName");
criteria.setTargetUsers(new UserIdVO[] { new NetworkIdVO("ewestfal") });

DocumentDetailVO results = info.routingReport(criteria);

This executes the report until it reaches a node named MyNodeName or a request is generated for user
ewestfal.

In the second style of reporting, the report is run against an arbitrary Document Type and the simulation
engine creates a temporary document against which to run the report. When setting up the report criteria

KEW

165

for these scenarios, you usually populate the XML content of the document on the criteria (provided that
the routing of that document evaluates the XML). Also, the criteria need to be configured with the valid
node names (or rule templates) against which the report should be run. For example, to run a Document
Type report, you can invoke the routing report this way:

Report against a Document Type

WorkflowInfo info = new WorkflowInfo();
RouteReportCriteriaVO criteria = new ReportCriteriaVO("MyDocumentType");

criteria.setXmlContent("<accountNumber>1234</accountNumber>");

criteria.setNodeNames(new String[] { "MyNodeName" });
DocumentDetailVO results = info.routingReport(criteria);

The code above simulates the generation of requests for MyDocumentType at the MyNodeName node
with the XML given. This sort of reporting is especially useful if you simply need to determine what rules
in the rule system will fire and generate action requests under a particular scenario.

As an alternative to specifying the node names, you can also specify rule template names. This is simply
another way to target a specific node in the document. It searches the Document Type definition for nodes
with the specified rule templates and then runs the report against those nodes. Currently, the rule template
must exist on a node in the Document Type definition or an error will be thrown. In the case of our previous
example, you could simply change the line that sets the node names on the criteria to:

criteria.setRuleTemplateNames(new String[] { "MyRuleTemplate" });

As above, this is primarily useful for determining who will have requests generated to them from the KEW
rule system.

Interpreting Report Results
As we've seen, the object returned by the Routing Report is an instance of DocumentDetailVO. This object
extends RouteHeaderVO and provides three more pieces of data along with it:

1. An array of ActionRequestVO objects representing the action requests on the document

2. An array of ActionTakenVO objects representing the actions that have been performed against the
document

3. An array of RouteNodeInstanceVO objects that represent nodes in the document path

For reporting, the most important piece of data here is typically the ActionRequestVO objects. After
running a report, this array contains the Action Requests that were generated as the result of the simulation.
So, for example, in the example above where we run a document type report against the MyRuleTemplate
rule template, this array contains all of the Action Requests that were generated to users or workgroups
during the report simulation.

Workflow Plugin Guide

Overview
Kuali Enterprise Workflow (KEW) has a plugin framework that allows you to load code into the core
system without requiring changes to the KEW source code or configuration. This framework provides:

KEW

166

• A custom class loading space

• Hot deploy and reload capabilities

• Participation in Workflow's JTA transactions

• An application plugin for installation of routing components

Application Plugin
Use an application plugin to deploy an application area's routing components into Workflow. These routing
components might include:

• Rule attributes

• Searchable attributes

• Post processors

• Route modules

If these components require access to a data source, then the application plugin also configures the data
source and allows it to participate in Workflow's JTA transactions.

In addition to routing components, the application plugin can also configure a plugin listener and a
Resource Loader. The Resource Loader is responsible for loading resources (both Java classes and service
implementations) from the plugin and providing them to the core system.

Application plugins are hot-deployable, so a restart of the server is not required when they are added or
modified. The core system searches for plugins in a directory configured in the application configuration
(see KEW Module Configuration).

Plugin Layout
You build the plugin as a set of files and directories. You then zip this structure and place it in the
appropriate Workflow plugin space. For application plugins, this directory location is defined in the core
system configuration.

The name of the zip file (minus the .zip extension) is used as the name of the plugin. The Plugin Loader
only looks for files that end in .zip when determining whether to load and hot-deploy a plugin.

In general, application plugins can be named as desired. However, there is one reserved plugin name:

shared - A special plugin that provides a shared classloading space to all plugins (see Plugin Shared Space).

The directory structure of a plugin is similar to that of a web application. It should have this structure:

classes/

lib/
META-INF/
 workflow.xml

• classes - All java .class files that are used by the plugin should reside in this directory

KEW

167

• lib - All .jar library files that are used by the plugin should reside in this directory

• META-INF - The workflow.xml configuration file must reside in this directory

Plugin Configuration
Application plugins usually provide a subset of the functionality that an institutional plugin provides, since
the institutional plugin can provide core service overrides.

The plugin framework provides two configuration points:

1. Plugin XML Configuration (described below)

2. Transaction and DataSource Configuration

Plugin XML Configuration

The XML configuration is defined in a file called workflow.xml. The format of this file is relatively simple.
An example workflow.xml file:

<plug-in>
 <param name="my.param.1">abc</param>
 <param name="my.param.2">123</param>
 <listener>
 <listener-class>org.kuali.rice.core.ApplicationInitializeListener</listener-class>
 </listener>
 <resourceLoader class="my.ResourceLoader"/>
</plug-in>

We'll explain each of these elements in more detail below:

Plugin Parameters

The parameter configuration uses XML as the syntax. These parameters are placed into a configuration
context for the plugin. The configuration inherits (and can override) values from the parent configurations.
The configuration hierarchy is core -> institutional plugin -> application plugins.

A plugin can access its configuration using this code:

org.kuali.rice.Config config = org.kuali.rice.Core.getCurrentContextConfig();

Plugin Listeners

You can define one or more listeners that implement the interface
org.kuali.rice.kew.plugin.PluginListener. These can be used to receive plugin lifecycle notifications
from KEW.

The interface defines two methods to implement:

• Invoked when a plugin starts up

public void pluginInitialized(Plugin plugin);

• Invoked when a plugin shuts down

KEW

168

public void pluginDestroyed(Plugin plugin);

It is legal to define more than one plugin listener. Plugin listeners are started in the order in which they
appear in the configuration file (and stopped in reverse order).

Resource Loader

A plugin can define an instance of org.kuali.rice.resourceloader.ResourceLoader to handle the loading
of classes and services. When KEW attempts to load classes or locate services, it searches the institutional
plugin, then the core, then any application plugins. It does this by invoking the getObject(..) and
getService(...) methods on the plugin's ResourceLoader.

If no ResourceLoader is defined in the plugin configuration, then the default implementation
org.kuali.rice.resourceloader.BaseResourceLoader is used. The BaseResourceLoader lets you examine
the plugin's classloader for objects when requested (such as post processors, attributes, etc.). This is
sufficient for most application plugins.

For more information on configuring service overrides in a plugin, see the Overriding Services with a
ResourceLoader section below.

Configuring an Extra Classpath

Sometimes it is desirable to be able to point in a plugin to classes or library directories outside of the plugin
space. This can be particularly useful in development environments, where the plugin uses many of the
same classes as the main application that is integrating with Workflow. In these scenarios, configuring an
extra Classpath may mean you don’t need to jar or copy many common class files.

To do this, specify these properties in your plugin's workflow.xml file:

1. extra.classes.dir - Path to an additional directory of .class files or resources to include in the plugin's
classloader

2. extra.lib.dir - Path to an additional directory of .jar files to include in the plugin's classloader

The classloader then includes these classes and/or lib directories into its classloading space, in the same
manner that it includes the standard classes and lib directories. The classloader always looks in the default
locations first, and then defers to the extra classpath if it cannot locate the class or resource.

Transaction and DataSource Configuration

The easiest method to configure Datasources and Transactions is through the Spring Framework. Here is
a snippet of Spring XML that shows how to wire up a Spring Transaction Manager inside of a plugin:

<bean id="userTransaction" class="org.kuali.rice.jta.UserTransactionFactoryBean" />

<bean id="jtaTransactionManager" class="org.kuali.rice.jta.TransactionManagerFactoryBean" />

<bean id="transactionManager" class="org.springframework.transaction.jta.JtaTransactionManager">
 <property name="userTransaction" ref="userTransaction" />
 <property name="transactionManager" ref="jtaTransactionManager" />
 <property name="defaultTimeout" value="${transaction.timeout}"/>
</bean>

The factory beans in the above XML will locate the javax.trasaction.UserTransaction and
java.transaction.TransactionManager, which are configured in the core system. These can then be
referenced and injected into other beans (such as the Spring JtaTransactionManager).

KEW

169

Once you configure the transaction manager, you also need to configure any DataSources you require.
Here's an example of configuring a DataSource that participates in Atomikos JTA transactions (the default
Transaction Manager distributed with Rice Standalone).

<bean id="myDataSource" class="com.atomikos.jdbc.nonxa.NonXADataSourceBean">
 <property name="uniqueResourceName" value="myDataSource"/>
 <property name="driverClassName" value="..."/>
 <property name="url" value="..."/>
 ...
</bean>

So, the application can access it's datasource by either injecting it into Spring services or by fetching it
directly from the Spring context.

You can find more information on configuring Rice DataSources and TransactionManagers in Datasource
and JTA Configuration.

OJB Configuration within a Plugin
If your plugin needs to use OJB, there are a few other configuration steps that you need to take. First, in
your Spring file, add the following line to allow Spring to locate OJB and the JTA Transaction Manager:

<bean id="ojbConfigurer" class="org.kuali.rice.ojb.JtaOjbConfigurer">
 <property name="transactionManager" ref="jtaTransactionManager" />

</bean>

Next, for OJB to plug into Workflow's JTA transactions, you need to modify some settings in the plugin's
OJB.properties file (or the equivalent):

PersistenceBrokerFactoryClass=org.apache.ojb.broker.core.PersistenceBrokerFactorySyncImpl
ImplementationClass=org.apache.ojb.odmg.ImplementationJTAImpl
OJBTxManagerClass=org.apache.ojb.odmg.JTATxManager
ConnectionFactoryClass=org.kuali.rice.ojb.RiceDataSourceConnectionFactory
JTATransactionManagerClass=org.kuali.rice.ojb.TransactionManagerFactory

The first three properties listed are part of the standard setup for using JTA with OJB. However, there are
custom Rice implementations:

• org.kuali.rice.ojb.RiceDataSourceConnectionFactory

• org.kuali.rice.ojb.TransactionManagerFactory

• org.kuali.rice.ojb.RiceDataSourceConnectionFactory

This OJB ConnectionFactory searches your Spring Context for a bean with the same name as your jcd-
alias. Here is what an OJB connection descriptor might look like inside of a Workflow plugin:

<jdbc-connection-descriptor
 jcd-alias="myDataSource"
 default-connection="true"
 platform="Oracle9i"
 jdbc-level="3.0"
 eager-release="false"
 batch-mode="false"
 useAutoCommit="0"
 ignoreAutoCommitExceptions="false">

KEW

170

 <sequence-manager className="org.apache.ojb.broker.util.sequence.SequenceManagerNextValImpl" />
 <object-cache class="org.apache.ojb.broker.cache.ObjectCachePerBrokerImpl"/>
</jdbc-connection-descriptor>

Notice that the jcd-alias attribute matches the name of the DataSource Spring bean defined in the example
above.

Another important thing to notice in this configuration is that useAutoCommit is set to 0. This tells OJB
not to change the auto commit status of the connection because it is being managed by JTA.

Finally, when your plugin needs to use OJB, you need to use this:

org.kuali.rice.ojb.TransactionManagerFactory

This provides OJB with the javax.transaction.TransactionManager that was injected into your
JtaOjbConfigurer, as in the example above.

Overriding Services with a ResourceLoader
For a service override, you need to define a custom ResourceLoader implementation and configure it in
your workflow.xml plugin configuration file. The org.kuali.rice.resourceloader.ResourceLoader interface
defines this relative method:

public Object getService(javax.xml.namespace.QName qname);

When KEW is searching for services, it invokes this method on its plugins' ResourceLoader
implementations. The service name is a qualified name (as indicated by the use of
javax.xml.namespace.QName), but for services being located from the core, service names typically
contain only a local part and no namespace.

The easiest way to implement a custom ResourceLoader is to create a class that extends from
org.kuali.rice.resourceloader.BaseResourceLoader and just override the getService(QName) method.
The BaseResourceLoader provides standard functionality for loading objects from ClassLoaders, among
other things.

For example, if you want to override the User Service, you might implement this ResourceLoader:

public class MyResourceLoader extends BaseResourceLoader {
 public MyResourceLoader() {
 super(new QName("MyResourceLoader"));

 }

 @Override
 public Object getService(QName serviceName) {
 if ("enUserOptionsService".equals(serviceName.getLocalPart()) {
 // return your custom implementation of org.kuali.rice.kew.useroptions.UserOptionsService
 } else if (...) {
 ...
 } else if (...) {
 ...
 }
 return super.getService(serviceName);
 }
}

In the next section, we'll look at some of the services commonly overridden in an institutional plugin

KEW

171

Commonly Overridden Services

In theory, you can override any service defined in the org/kuali/workflow/resources/
KewSpringBeans.xml file in the Institutional Plugin. What follows is a list of the most commonly
overridden services:

Table 3.18. Commonly Overridden Services

Service Name Interface Description

enUserOptionsService org.kuali.rice.kew.useroptions.UserOptionsService Provides User lookup and searching
services

IdentityHelperService org.kuali.rice.kew.identity.service.IdentityHelperService Interfaces with KIM identity
management services

enEmailService org.kuali.rice.kew.mail.service.impl.DefaultEmailService Provides email sending capabilities

enNotificationService org.kuali.rice.ken.service.NotificationService Provides callbacks for notifications
within the system

enEncryptionService org.kuali.rice.core.service.EncryptionService Allows for pluggable encryption
implementations

User Service

The Workflow core uses the UserService to resolve and search for users. The UserService could be as
simple as a static set of users or as complex and integrated as a university-wide user system. Your institution
may choose how to implement this, as long as you provide capabilities for the ID types that you intend to
use. At the very least, implementations are required for the WorkflowUserId and AuthenticationUserId
types (and their corresponding VO beans). All of the UserId types must be unique across the entire set
of users.

The WorkflowUserId is typically associated with a unique numerical sequence value and the
AuthenticationUserId is typically the username or network ID of the user.

The default UserService implementation provides a persistent user store that allows you to create and edit
users through the GUI. It also caches users for improved performance and implements an XML import
for mass user import. Institutions usually override the default user service with an implementation that
integrates with their own user repository.

IdentityHelper Service

The IdentityHelper service helps to interact with the KIM identity management services in the system.
IdentityHelpers are identified in one of two ways:

1. PrincipalId - A numerical identifier for a KIM principal

2. Group – An object associated with a group of principal users numerical identifier assigned to a
Workgroup

Both of these object variables are implemented in KEW in the IdentityHelperServiceImpl file.

Email Service

The Email service is used to send emails from KEW. You can configure the default implementation when
you configure KEW (see KEW Configuration). However, if more custom configuration is needed, then
you can override the service in the plugin.

For example, you could override this service if you need to make a secure and authorized SSL connection
with an SMTP server because of security policies.

KEW

172

Notification Service

The Notification service is responsible for notifying users when they receive Action Items in their Action
List.

The default implementation simply sends an email (using the EmailService) to the user according to the
individual user’s preferences. A custom implementation might also notify other (external) systems in
addition to sending the email.

Encryption Service

The Encryption service is responsible for encrypting document content.

The default implementation uses DES to encrypt the document content. If the encryption.key
configuration parameter is set as a Base64 encoded value, then the document content is encrypted using
that key. If it is not set, then document content will not be encrypted and will be stored in the database
in plain text.

Plugin Shared Space

All plugins also load certain classes from a shared space. The shared space contains certain classes that
link with certain libraries that might exist in each application or institutional plugin's classloader (such
as OJB and Spring). Current classes that Workflow publishes in the shared space are those in the shared
module of the Rice project (rice-shared-version.jar). This is important because some of these classes link
with libraries like Spring or OJB and since the plugin needs its own copy of these libraries, it needs to
ensure that it doesn't retrieve these classes from any classloader but it's own.

KEW Usage of the Kuali Service Bus

General Usage
The Kuali Enterprise Workflow engine makes use of both synchronous service endpoints and
asynchronous messaging features from the Kuali Service Bus.

Most asynchronous processing that KEW does is implemented using asynchronous messaging on the
service bus. This includes:

1. Workflow engine processing

2. Blanket approval orchestration

3. Action processing for actions taken directly from the Action List

4. Re-resolving actions requests resulting from a responsibility change

5. Sending email reminders

6. Distributed cache flush notifications

In each of these cases, there exists a service that processes asynchronous messages and performs the
appropriate actions for each of these functions.

In terms of synchronous services, Kuali Enterprise Workflow publishes two different types of services.
One is used for performing workflow document actions (such as creating, approving, disapproving, etc.).
The other is used to perform various query or read-only operations against the workflow system.

KEW

173

Implications of using “Synchronous” KSB messaging
with KEW

For general information on synchronous messaging and its implications in the KSB, please read
“Implications of synchronous vs. asynchronous Message Deliver” in the KSB technical reference guide.

In terms of Kuali Enterprise Workflow, the usage of synchronous messing means that operations like
workflow engine processing will happen immediately and synchronously at the time it’s invoked.

The main implication here besides what is listed in the KSB documentation is that, since message exception
handling isn’t implemented, exception routing does not work when using synchronous KSB messaging.

This means that if this messaging model is being used in a batch job, or similar type of program, routing
exceptions will need to be manually caught. If it’s desired to place a document into exception status from
here, there are methods on the KEW APIs to do this manually.

174

Chapter 4. KIM
Terminology

Principal
A principal represents an entity that can authenticate. In essence, you can think of a principal as an
"account" or as an entity's authentication credentials. A principal has an ID that is used to uniquely
identify it. It also has a name that represents the principal's username and is typically what is entered when
authenticating. All principals are associated with one and only one entity.

Entity
An entity represents a person or system. Additionally, other "types" of entities can be defined in KIM.
Information like name, phone number, etc. is associated with an entity. While an entity will typically have
a single principal associated with it, it is possible for an entity to have more than one principal or even no
principals at all (in the case where the entity does not actually authenticate).

Entities have numerous attributes associated with them, including:

• Names

• Addresses

• Phone Numbers

• Email Addresses

• Entity Type

• Affiliations

• Employment Information

• External Identifiers

• Privacy Preferences

Group
A group is a collection of principals. You can create a group using both direct principal assignment and
nested group membership. All groups are uniquely identified by a namespace code plus a name. A principal
or group is a "member" of a group if it is either directly assigned to the group or indirectly assigned
(through a nested group membership). A principal or group is a "direct" member of another group only if
it is directly assigned as a member of the group, and not through a nested group assignment.

Permission
A permission is the ability to perform an action. All permissions have a permission template. Both
permissions and permission templates are uniquely identified by a namespace code plus a name. The
permission template defines the coarse-grained permission and specifies what additional permission details

KIM

175

need to be collected on permissions that use that template. For example, a permission template might have
a name of "Initiate Document," which requires a permission detail specifying the document type that can
be initiated. A permission created from the "Initiate Document" template would define the name of the
specific Document Type that can be initiated as a permission detail.

The isAuthorized and isAuthorizedByTemplateName operations on the PermissionService are used to
execute authorization checks for a principal against a permission. Permissions are always assigned to roles
(never directly to a principal or group). A particular principal will be authorized for a given permission if
the principal is assigned to a role that has been granted the permission.

Responsibility
A responsibility represents an action that a principal is requested to take. This is used for defining workflow
actions (such as approve, acknowledge, FYI) for which the principal is responsible. Responsibilities form
the basis of the workflow engine routing process.

A responsibility is very similar to a permission in a couple of ways. First, responsibilities are always
granted to a role, never assigned directly to a principal or group. Furthermore, similar to permissions, a role
has a responsibility template. The responsibility template specifies what additional responsibility details
need to be defined when the responsibility is created.

Role
You grant permissions and responsibilities to roles. Roles have a membership consisting of principals,
groups, and/or other roles. As a member of a role, the associated principal has all permissions and
responsibilities that have been granted to that role.

You can specify a qualification to any membership assignment on the role, which is extra information
about that particular member of the role. For example, a person may have the role of "Dean" but that
can be further qualified by the school they are the dean of, such as "Computer Science." You can pass
qualifications as part of authorization checks to restrict the subset of roles to check.

Reference Information
There are several collections of reference information managed within KIM:

• Address type

• Affiliation type

• Citizenship status

• Email type

• Employment status

• Employment type

• Entity name type

• Entity type

• External identifier type

• Phone number type

KIM

176

Configuration Parameters

Table 4.1. KIM Configuration Parameters

Configuration Parameter Description Default value

kim.mode The mode that KIM will run in; choices are
"LOCAL", "EMBEDDED", or "REMOTE".

LOCAL

kim.soapExposedService.jaxws.security Determines if KIM services published on the
service bus will be secured

true

kim.url The base URL of KIM services and pages. ${application.url}/kim

Services
KIM provides several service APIs with which client applications should interact. These are:

• org.kuali.rice.kim.api.role.RoleService

• org.kuali.rice.kim.api.group.GroupService

• org.kuali.rice.kim.api.identity.IdentityService

• org.kuali.rice.kim.permission.PermissionService

• org.kuali.rice.kim.responsibility.ResponsibilityService

• org.kuali.rice.kim.service.PersonService

These services act as client-side facades to the underlying KIM data and provide important features such
as caching.

In the next few sections we will look in-depth at these services. However, for more details, please see the
javadocs for these services and the services they delegate to.

Using the Services
All KIM clients should retrieve service instances using the KIM service locator class
KimApiServiceLocator. This class contains static methods to retrieve the appropriate Spring bean for the
service. An example of retrieving the IdentityService service is:

IdentityService idmSvc = KimApiServiceLocator.getIdentityService();

You would use a similar mechanism for retrieving references to the other KIM services.

IdentityService
The IdentityService is one of the services the client applications will interact with most frequently.

The IdentityService contains service methods that allow for the retrieval, creation, and upating of entity
information.

Additionally, it also provides caching for the retrieval methods to help increase the performance of service
calls for the client application.

KIM

177

Retrieving Principal Information

To retrieve the principal ID for a user, use the getPrincipalByPrincipalName method:

Principal info = identityService.getPrincipalByPrincipalName(principalName);

Note that KIM, by default, stores principal names in lower case; the PRNCPL_NM column of
KRIM_PRNCPL_T must store values in lower case. If your institution’s existing identity systems do not
handle lowercase principal names, then there are three points to override that setting:

1. org.kuali.rice.kim.impl.identity.IdentityServiceImpl method getPrincipalByPrincipalName
lowercases the principal name sent in; depending on how principals were integrated
into the system it may not need to. Note that IdentityServiceImpl method
getPrincipalByPrincipalNameAndPassword does not lowercase the principal name automatically.

2. org.kuali.rice.kim.lookup.PersonLookableHelperServiceImpl method getSearchResults also
automatically lowercases any principal name sent in; that behavior may also need to be changed

3. Finally, the file {Rice home}/impl/src/main/resources/org/kuali/rice/kim/bo/datadictionary/
KimBaseBeans.xml hold the data dictionary attribute templates for principal name as KimBaseBeans-
principalName. The forceUppercase attribute is set to false by default, but perhaps should be
overridden to true, to force uppercase principal names.

Once these three points have been overridden, you’ll be able to use uppercase principal names.

Retrieving Entity Default Information

To retrieve the default information for an entity, use one of the getEntityDefaultInfo methods:

EntityDefault infoByEntityId = identityService.getEntityDefault(entityId);

EntityDefault infoByPrincipalId = identityService.getEntityDefaultByPrincipalId(principalId);

Retrieving Reference Information

To retrieve information about a type or status code, use the getter for that type.

Types in KIM are:

• Address type

• Affiliation type

• Citizenship status

• Email type

• Employment status

• Employment type

• Entity name type

• Entity type

KIM

178

• External identifier type

• Phone type

For instance, to retrieve information on an address type code:

CodedAttribute addressType = identityService.getAddressType(code);

GroupService

Retrieving Group Membership Information

To retrieve a list of all groups in which a particular user is a member, use the getGroupsForPrincipal
method:

List<Group> groups = groupService.getGroupsByPrincipalId(principalId);

To determine if a user is a member of a particular group, use the isMemberOfGroup method:

if (groupService.isMemberOfGroup(principalId, groupId)) {
 // Do something special
}

To get a list of all members of a group, use the getMemberPrincipalIds method:

List<String> members = groupService.getMemberPrincipalIds(groupId);

Retrieving Group Information

To retrieve information about a group, use the getGroup or getGroupByNamespaceCodeAndName
methods, depending on whether you know the group’s ID or name:

Group info = groupService.getGroup(groupId);
Group info = groupService.getGroupByNamespaceCodeAndName(namespaceCode, groupName);

PermissionService

Checking Permission

To determine if a user has been granted a permission, without considering role qualifications, use the
hasPermission method:

if (permissionService.hasPermission(principalId, namespaceCode, permissionName)) {
 // Do the action
}

To determine if a user has been granted a permission, use the isAuthorized method:

if (permissionService.isAuthorized(principalId, namespaceCode, permissionName, qualification)) {

KIM

179

 // Do the action
}

Retrieving Permission Information

To retrieve a list of principals granted a permission (including any delegates), use the
getPermissionAssignees method:

List<Assignee> people = permissionService.getPermissionAssignees(namespaceCode,
 permissionName, qualification);

To retrieve a list of permissions granted to a principal, use the getAuthorizedPermissions method:

List<Permission> perms = permissionService.getAuthorizedPermissions(principalId,
 namespaceCode, permissionName, qualification);

ResponsibilityService

Checking Responsibility

To determine if a user has a responsibility, use the hasResponsibility method:

if (responsibilityService.hasResponsibility(principalId, namespaceCode, responsibilityName, qualification)) {
 // Do the action

}

Retrieving Responsibility Information

To retrieve a list of roles associated with a responsibility, use the getRoleIdsForResponsibility method:

List<String> roleIds = responsibilityService.getRoleIdsForResponsibility(responsibilityId);

AuthenticationService

Checking Authentication

The AuthenticationService is somewhat different than the other services. The AuthenticationService is
not typically deployed remotely (unlike the IdentityService, GroupService, etc.).

Instead, the role of this service is simply to extract the authenticated user’s principal name from the
HttpServletRequest and inform the client-side development framework (typically, the KNS) about
this information. KIM itself does not implement full authentication services, but rather relies on other
implementations (such as CAS or Shibboleth) to provide this functionality.

The client application can then establish a local session to store the information about the principal
that authenticated. This will typically be used in subsequent calls to the KIM services, such as making
authorization checks for the principal.

The reference implementation of the AuthenticationService simply extracts the REMOTE_USER
parameter from the request and presents that as the principal name. This is often sufficient for many

KIM

180

authentication providers that are available. However, if necessary this reference implementation can be
overridden.

There is only a single method on the IdentityManagementService related to authentication.

String principalName = authenticationService.getPrincipalName(request);

RoleService
In KIM, Roles are used as a way to associate principals, groups and other roles with permissions and
responsibilities. It is therefore not a common or recommended practice to query for whether or not a
principal is a member of a Role for the purposes of logic in a client application. It is recommended to use
permissions and the isAuthorized check to perform this sort of logic.

However, in some cases, querying for this information may be desirable. Or, in even more common cases,
one may want to use an API to add or remove members from a Role. These kinds of operations are the
responsibility of the RoleManagementService. Like the IdentityManagementService, this service is a
façade which provides caching and delegates to underlying services. Specifically, it delegates to:

• RoleService

Checking Role Assignment

To determine if a role is assigned to a principal, use the principalHasRole method:

if (roleService.principalHasRole(principalId, roleIds, qualifications)) {
 // Do something
}

Retrieving Role Information

To retrieve information on a role, use the getRole or getRoleByName method:

Role info = roleService.getRole(roleId);
Role info = roleService.getRoleByNamespaceCodeAndName(namespaceCode, roleName);

To retrieve the list of principal IDs assigned to a role, use the getRoleMemberPrincipalIds method:

Collection<String> principals = roleService.getRoleMemberPrincipalIds(namespaceCode, roleName, qualifications);

Updating Role Membership

To assign a principal to a role, use the assignPrincipalToRole method:

roleService.assignPrincipalToRole(principalId, namespaceCode, roleName, qualifications);

To remove a principal from a role, use the removePrincipalFromRole method:

roleService.removePrincipalFromRole(principalId, namespaceCode, roleName, qualifications);

KIM

181

Person Service
The PersonService is used to aggregate Entity and Principal data into a data structure called a Person. A
person is essentially a flattened collection of the various attributes on an entity (name, address, principal
id, principal name, etc). This is intended to allow client applications to more easily interact with the data
in the underlying KIM data model for entities and principals.

Retrieving Personal Information

To retrieve information on a person by principal ID, use the getPerson method:

Person person = perSvc.getPerson(principalId);

To retrieve information on a person by principal name, use the getPersonByPrincipalName method:

Person person = perSvc.getPersonByPrincipalName(principalName);

In order to search for people by a given set of criteria you can use the findPeople method:

List<Person> people = perSvc.findPeople(criteria);

In this case, criteria is a java.util.Map<String, String> which contains key-value pairs. The key is the
name of the Person property to search on, while the value is the value to search for.

KimTypeService Callbacks

Implementing Custom KIM Types
KIM uses the concept of "types" to define additional attributes for it's various objects (such as groups,
roles, permissions, etc.) and to affect their behavior.

All custom type services must implement a sub-interface of
org.kuali.rice.kim.framework.type.KimTypeService based on the kind of custom type
being created and the KIM objects it will be related to. The current type services supported by KIM are
as follows:

• GroupTypeService

• RoleTypeService

• PermissionTypeService

• ResponsibilityTypeService

• DelegationTypeService

In addition to the interfaces provided above, KIM provides a standard set of implementations of each of
these which can be extended by your application in order to inherit standard default behavior (including
integration with the KNS Data Dictionary for reading and defining custom attributes). More detailed

KIM

182

information about these base classes can be found in the KIM javadocs. Your custom type service class
should extend the appropriate subclass and only override the methods necessary to implement your custom
behavior. Use the methods in these classes as the basis for your custom code.

For example, you might define a custom PermissionTypeService by extending
org.kuali.rice.kns.kim.permission.PermissionTypeServiceBase as follows:

import org.kuali.rice.kns.kim.permission.PermissionTypeServiceBase;

public class MyPermissionTypeService extends PermissionTypeServiceBase {

 @Override
 protected boolean performMatch(Map<String, String> inputMap, Map<String, String> storedMap) {
 if (some_condition_is_true) {
 // perform custom matching logic
 ...
 } else {
 return super.performMatch(inputMap, storedMap); // execute the default logic from base class
 }
 }

}

Detailed documentation on the specific methods which can be implemented on KimTypeService and
it's various sub-interfaces can be found in the KIM javadocs.

Configuring Custom KIM Types
Groups, Roles, Permissions, Responsibilities, and Delegations can all have custom types in KIM. These
custom types can be mapped back to the KIM type services that you create. In order to do this, there are
a few things you must do:

• Register the KIM Type which points to your custom type service

• Update any of the "typed" KIM objects that you want to point to your new KIM type

• Publish your KIM type service so that it is available on the Kuali Service Bus and the Rice resource
loader framework

Currently, there is no way to register a new KIM Type without updating the KIM database using
SQL. Fortunately, this is a fairly simple thing to do. The database table storing KIM Types is named
KRIM_TYP_T. An example of how to insert a new KIM Type into this table in Oracle is below:

INSERT INTO KRIM_TYP_T (
 KIM_TYP_ID,
 NMSPC_CD,
 NM,
 SRVC_NM,
 OBJ_ID)
VALUES (
 KRIM_TYP_ID_S.NEXTVAL,
 'MyNamespace',
 'MyPermissionType',
 '{http://myapp.myu.edu}myPermissionTypeService',
 SYS_GUID())

One of the most important things to note about this is the service name (SRVC_NM) column. As we
can see in the example above, for this KIM type we are linking it to a service named {http://
myapp.myu.edu}myPermissionTypeService. This is how KIM will look up your custom type

KIM

183

service whenever it needs to load and invoke it.1 It does this through the Rice resource loading framework
which includes locally available services defined in Spring as well as services published on the Kuali
Service Bus. For KIM type services, it's generally required to deploy them onto the KSB because the user
interface components of KIM will use these when determining which custom attributes may need to be
displayed and collected on it's various screens.

More information on how to publish these services can be found in the next section.

Once the KIM type has been registered, it will be assigned an ID, this is the value of the KIM_TYP_ID
column after the record has been inserted. This ID can then be used to associate the type with the
appropriate and desired data elements in KIM.

For example, to associate the custom PermissionTypeService you created earlier with one of your
permission templates, you can execute the following SQL (assuming the ID of your new KIM type is
10000):

UPDATE KRIM_PERM_TMPL_T SET KIM_TYP_ID = '10000'
WHERE NMSPC_CD = 'MyNamespace' AND NM = 'MyPermissionTemplate'

Once this is complete, any existing or new permissions you create with this template will use your custom
KIM type and it's associated type service.

Publishing Custom KIM Types to the Kuali Service Bus
As mentioned previously, KIM type services should be published onto the Kuali Service Bus
in order to allow the KIM user interface functionality (which is typically deployed on the Rice
Standalone Server) to access the services remotely. Since KIM type services are considered
"callback" services because of the fact that the standalone server makes callbacks to them, the
org.kuali.rice.ksb.api.bus.support.CallbackServiceExporter should be used.

Information on how to export and publish a callback service can be found in the section called
“CallbackServiceExporter”.

Assuming you have already wired up your custom PermissionTypeService implementation in your Spring
file under a bean id of "myPermissionTypeService", an example Spring configuration which will publish
the service would look like the following:

<bean id="myPermissionTypeService.exporter"
 class="org.kuali.rice.ksb.api.bus.support.CallbackServiceExporter"
 p:callbackService-ref="myPermissionTypeService"
 p:serviceNameSpaceURI="http://myapp.myu.edu"
 p:localServiceName="myPermissionTypeService"
 p:serviceInterface="org.kuali.rice.kim.framework.permission.PermissionTypeService"/>

KIM Database Tables

Table Name Prefixes
The KIM tables in the Rice database are prefixed by KRIM, which stands for Kuali Rice Identity
Management.

1While the service name here is a single string value, it will be parsed into a javax.xml.namespace.QName object using that classes
valueOf(...) method. This means that, for our example of {http://myapp.myu.edu}myPermissionTypeService, it will get
parsed into a QName which is equivalent to new QName("http://myapp.myu.edu", "myPermissionTypeService").

KIM

184

Unmapped LAST_UPDT_DT Columns
Many of the KIM tables have an additional column called LAST_UPDTD_DT (of type DATE in Oracle,
DATETIME in MySQL) that isn't mapped at the ORM layer. Using this column is entirely optional, and
it is unmapped by design. Its purpose is to aid implementers with tracking changes, and with doing data
synchronization or extracts against KIM tables. The following sample PL/SQL script (Oracle only) adds
to all the tables that contain LAST_UPDATED_DT an insert and update trigger to populate it:

DECLARE
 CURSOR tables IS
 SELECT table_name
 FROM user_tab_columns
 WHERE column_name = 'LAST_UPDATE_DT'
 AND data_type LIKE 'DATE%'
 ORDER BY 1;
BEGIN
 FOR rec IN tables LOOP
 EXECUTE IMMEDIATE 'CREATE OR REPLACE TRIGGER '||LOWER(SUBSTR(rec.table_name, 1, 27))||'_tr BEFORE
 INSERT OR UPDATE ON '
 ||LOWER(rec.table_name)||' FOR EACH ROW BEGIN :new.last_update_ts := SYSDATE; END;';
 END LOOP;

END;
/

185

Chapter 5. KNS

KNS Configuration Guide
The Kuali Nervous System (KNS) is, primarily, an application development framework. Each Rice client
application can use the KNS to construct various screens and build pieces of the application with the built-
in components and services that the KNS provides.

To this end, configuration of the KNS in a client application can be accomplished by following these steps:

1. Creation of database tables in the client application’s database that the KNS requires to function.

2. Loading of the KNSConfigurer inside of the RiceConfigurer Spring bean. This includes configuring
connections to the databases.

3. Loading of the KNS struts module for the various UI components that the KNS provides in addition to
any filters or servlets that need to be defined in the client application’s web.xml.

4. Creation of a ModuleConfiguration for the application which instructs the KNS about which Data
Dictionary files and OJB repository mapping files to load.

5. Customization of the various configuration parameters that the KNS supports.

Database Creation

In order for the KNS services to work, many of them require the ability to access special tables within
the client application’s database. These tables are used to store various pieces of data; from notes and
attachments on documents to maintenance document data and much more.

These tables are included as part of either the demo-client-dataset or the bootstrap-client-dataset. These
datasets are provided with the Kuali Rice binary distributions and instructions on how to install them can
be found in the Installation Guide.

Note

It’s important to note that these tables should be installed in the client application’s database, and
not the Rice standalone server database.

KNSConfigurer and RiceConfigurer

As with the other modules, a KNSConfigurer needs to be injected into the RiceConfigurer in
order to instruct Rice to initialize the KNS module. The main purpose of this is to allow for the
applicationDataSource and the serverDataSource to be specified.

The applicationDataSource should point to the client application’s database. That database should
contain the tables from one of the client datasets.

The serverDataSource should point to the database of the Rice standalone server. This is used for allowing
access to the various KNS central services that use data in the Rice server database. This includes such
data as System Parameters, Namespaces, Campuses, States and Countries.

http://db.apache.org/ojb/

KNS

186

Here is an example of Spring configuration for a KNS client:

<bean id="rice" class="org.kuali.rice.core.config.RiceConfigurer">
 ...
 <property name="knsConfigurer">
 <bean class="org.kuali.rice.kns.config.KNSConfigurer"
>
 <property name=”applicationDataSource” ref=”applicationDataSource”/>
 <property name=”serverDataSource” ref=”riceServerDataSource”/>
 </bean>
 </property>
 ...
</bean>

Alternatively, you can just set the dataSource and serverDataSource on the RiceConfigurer itself and
that will be used for the KNS applicationDataSource and serverDataSource respectively. This is useful
when using the same database for all the different modules of Rice.

The KNSConfigurer supports some other properties as well. See the javadocs of KNSConfigurer for
more information.

Configuring the KNS Web Application Components

Loading the KNS Struts Modules

The web application framework of the KNS is built on top of the Apache Struts framework. As a result of
this, the web application components of the KNS are loaded into the client application as a struts module.
The struts module and various pieces of the Rice web content can be found in the binary distribution. They
should be copied into the root directory of your web application.

A special implementation of the Struts ActionServlet is provided to help with the loading of the struts
modules. It can be configured in the application’s web.xml as in the following example:

<servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>org.kuali.rice.kns.web.struts.action.KualiActionServlet</servlet-class>
 <init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
 </init-param>
 <load-on-startup>0</load-on-startup>
</servlet>

Notice the init-param above points to a Struts configuration file. This file is intended to be the struts
configuration file for the client application. It’s used by the KNS for doing redirects back to the main
application and is also used for adding KNS-based screens within the client application. Specifically, this
is where action mappings go if using the transactional document framework of the KNS.

There is an example file in the distributions under config/examples/struts-config.example.xml. This will
need to be renamed to struts-config.xml and copied to your web application’s WEB-INF directory. It can
then be loaded using the KualiActionServlet as seen in the example above.

In this example file you will see a reference to a message resource properties file. As is the case
with a standard Struts-based application, the resource properties file is used to load text strings for
internationalization purposes. The KNS framework requires that at least the app.title property to be set,
as in the following example:

http://struts.apache.org/1.x/

KNS

187

app.title=Recipe Sample Application

Configuring KNS Servlet Context Listeners

The KNS framework requires a couple of ServletContextListener classes to be configured in the
application’s web.xml. These include:

• org.kuali.rice.kns.web.listener.JstlConstantsInitListener

• org.kuali.rice.kns.web.listener.KualiHttpSessionListener

These should be included in the web.xml after any listeners or servlets that might be used to actually
initialize the Spring context that loads Rice.

Here is an example of what this configuration might look like in web.xml:

<listener>
 <listener-class>my.app.package.ListenerThatStartsRice</listener-class>

</listener>

<listener>
 <listener-class>org.kuali.rice.kns.web.listener.JstlConstantsInitListener</listener-class>

</listener>

<listener>
 <listener-class>org.kuali.rice.kns.web.listener.KualiHttpSessionListener</listener-class>
</listener>

Configuring KNS Message Resources

As of Rice version 1.0.1.1, messages are loaded through the new KualiPropertyMessageResourcesFactory.
This class is a factory of KualiPropertyMessageResources, which takes in a comma delimited list
of .properties files.

This is set up in the struts-config.xml files near the end of the file:

<message-resources factory=”org.kuali.rice.kns.web.struts.action.KualiPropertyMessageResourceFactory”
 parameter=”” />

When the parameter above is set to an empty string, Rice uses the default value of properties files. The
default value is set by the rice.struts.message.resources property the common-config-defaults.xml file.
This is the default setting:

<param name=”rice.struts.message.resources”>KR-
ApplicationResources,org.kuali.rice.kew.ApplicationResources,org.kuali.rice.ksb.messaging.ApplicationResources,KIM-
ApplicationResources” />

This can be overridden in rice-config.xml. This value should be in a comma delimited format. The
list of files is loaded from left to right, with any duplicated properties being overridden in that order.
Therefore, in the list default list if a property key in KR-ApplicationResources was duplicated in KIM-
ApplicationResources, the value used would be the one set in KIM-ApplicationResources.

KNS

188

Configuring AJAX Support

The KNS uses DWR to provide AJAX support. In order to enable this, the
org.kuali.rice.kns.web.servlet.KualiDWRServlet must be configured in the application’s web.xml as
follows:

<servlet>
 <servlet-name>dwr-invoker</servlet-name>
 <servlet-class>org.kuali.rice.kns.web.servlet.KualiDWRServlet</servlet-class>
 <init-param>
 <param-name>debug</param-name>
 <param-value>false</param-value>
 </init-param>
 <init-param>
 <param-name>springpath</param-name>
 <param-value>true</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>

...

<servlet-mapping>
 <servlet-name>dwr-invoker</servlet-name>
 <url-pattern>/dwr/*</url-pattern>
</servlet-mapping>

Module Configuration – Loading Data Dictionary and
OJB Files

One of the most important pieces of the KNS framework is the Data Dictionary. It’s used to define various
pieces of metadata about business objects, maintenance documents, lookups, inquiries and more. These
Data Dictionary files are authored in XML and are loaded using a ModuleConfiguration. Additionally,
business objects in the KNS are mapped to the database using an object relational mapping library called
Apache OJB. The ModuleConfiguration is also used to load those mapping files.

A ModuleConfiguration is a bean wired in Spring XML that instructs the KNS to load various pieces
of configuration for a particular module. A client application could create a single module or multiple
modules, depending on how it is organized. This configuration allows for the specification of the following:

• The module’s namespace

• The Data Dictionary files to load

• The OJB repository files to load

• The package prefix of business objects in this module

• Externalizable business object definitions

Here is an example of what this configuration might look like:

<bean id="sampleAppModuleConfiguration"
 class="org.kuali.rice.kns.bo.ModuleConfiguration">
 <property name="namespaceCode" value="tv"/>
 <property name="initializeDataDictionary" value="true"/>
 <property name="dataDictionaryPackages">
 <list>
 <value>classpath:edu/sampleu/travel/datadictionary</value>
 </list>

http://directwebremoting.org/dwr/index.html
http://db.apache.org/ojb/

KNS

189

 </property>
 <property name="databaseRepositoryFilePaths">
 <list>
 <value>OJB-repository-sampleapp.xml</value>
 </list>
 </property>
 <property name="packagePrefixes">
 <list>
 <value>edu.sampleu.travel</value>
 </list>
 </property>
</bean>

When the module is initialized by the KNS, it will load all of the Data Dictionary files into the Data
Dictionary service. Additionally, all OJB files will be loaded and merged into the main OJB repository.
The packagePrefixes are used to identify which business objects this module is responsible for.

There are more configuration options on the ModuleConfiguration. See the javadocs on this class for
more information.

KNS Configuration Parameters
The KNS supports numerous configuration parameters that can be set in the Rice configuration file. Below
is a list of these with descriptions and defaults.

Table 5.1. KNS Configuration Parameters

Property Description Default

application.url Base URL of the application.
Example: http://localhost/kr-dev

${appserver.url}/${app.context.name}

attachments.directory Directory in which to store
attachments

/tmp/${environment}/attachments

attachments.pending.directory Directory in which to store
attachments on a document or object
which have not yet been persisted

/tmp/${environment}/attachments/pending

classpath.resource.prefix The location, in the classpath, of
methods that may be called by DWR.

/WEB-INF/classes/

externalizable.help.url Base URL at which web-based help
content will be located

/${app.context.name}/kr/static/help/

externalizable.images.url Base URL at which images are located /${app.context.name}/kr/static/images/

kr.externalizable.images.url Base URL at which images that are
part of the standard Kuali Rice image
set are stored

/${app.context.name}/kr/static/images/

kr.url Base URL of the KNS struts module.
Includes the various built-in GUI
components such as lookups, inquiries,
etc.

${application.url}/kr

production.environment.code The environment code that will be
used to identify this application as a
“production” instance. Certain features
are turned off in non-production
instances (email, for example)

PRD

mail.relay.server Name of the SMTP server to use for
sending emails from the KNS

kr.incident.mailing.list The email address where exception
and incident reports should be sent

javascript.files A comma-separated list of javascript
files to load on every KNS-based web
page

See impl/src/main/resources/resources/META-
INF/common-config-defaults.xml in the source
distribution

css.files A comma-separated list of css files to
load on every KNS-based web page

See impl/src/main/resources/resources/META-
INF/common-config-defaults.xml in the source
distribution

KNS

190

Property Description Default

enable.nonproduction.data.unmasking If the current application is running
in an non-production environment,
this determines if all fields should
be unmasked in the Nervous System,
even if the field would otherwise be
masked.

false

kns.cache.parameter.max.size The maximum number of parameters
that can be stored in the kns parameter
cache

200

kns.cache.parameter.max.age.seconds The maximum age (in seconds) of
entries in the parameter cache

3600

kns.cache.nonDatabaseComponent.max.size The maximum size of the cache that
is used to store parameter components
that don’t come from the database (i.e.
are loaded from the Data Dictionary
and other locations)

50

kns.cache.nonDatabaseComponent.max.age.seconds The maximum ago (in seconds) of
entries in the parameter non-database
component cache

3600

session.document.cache.size The max size of the cache used to store
document sessions

100

portal.javascript.files A list of Javascript files to be included
int the "portal", ie the frame around the
application pages.

portal.css.files A list of CSS files to be used in
the "portal", ie the frame around the
application pages.

rice-portal/css/portal.css

rice.kns.struts.config.files The struts-config.xml configuration
file that the KNS portion of the Rice
application will use.

/kr/WEB-INF/struts-config.xml

rice.kns.illegalBusinessObjectsForSave A comma-separated list of business
objects that the KNS should not be
allowed to save

rice.kns.illegalBusinessObjectsForSave.applyCheck If set to true, the check for illegal
business objects to save will be
performed, if false, it will not

true

encryption.key The DES key to use for encrypting
data elements that are configured for
encryption in the KNS

rice.struts.message.resources The key used to load message property
files. The value should be a comma
delimited list or properties files.

KR-ApplicationResources,
org.kuali.rice.kew.ApplicationResources,
org.kuali.rice.ksb.messaging.ApplicationResources,
KIM-ApplicationResources

KNS Business Object Framework
Business Object Database Table Definition

Business object instances are typically java object representations of rows of a database table.

The addition of following columns to each database table is strongly suggested:

• Object ID

• Version number

The Object ID is used as a globally unique identifier (or GUID) of each row across all database tables. That
is, every row in every table should have a different Object ID value. It is typically defined as a VARCHAR
field of 36 characters, and should be named "OBJ_ID" in the database. A unique constraint should be
applied to the object ID column, but must NOT be part of the primary key. The KNS system will assume
that each row has a unique value.

KNS

191

The object ID value is automatically stored by the framework and/or the database layer.

KFS/Rice uses optimistic locking to provide concurrency control. Optimistic locking requires the use of
a version number field, named "VER_NBR". On Oracle, the field is defined as a NUMBER(8,0). On
MySQL, the field is defined as a DECIMAL(8). This column should NOT be part of the primary key.

About optimistic locking

Optimistic locking helps to prevent updates to stale data and consists of two steps:

1. Retrieval of a row from a database, including the value of the version number column

2. Updating/deleting a row from the database with the same primary key and version number criteria. If
updating the table, the version number will be incremented by one.

The following series of steps demonstrates how optimistic locking works:

1. User A retrieves the row for chart code "BL". The row has version number of 3.

2. User A performs an update of the "BL" record. The SQL query that updates the record would
read something like "UPDATE CA_CHART_T SET <some updates>, VER_NBR = 4 WHERE
FIN_COA_CD = "BL" and VER_NBR = 3. (The "4" refers to the incremented version number.)

3. User B retrieves the row for chart code "BL". The version number is now 4.

4. User B performs an update of the "BL" record. The SQL query that updates the record would
read something like "UPDATE CA_CHART_T SET <some updates>, VER_NBR = 5 WHERE
FIN_COA_CD = "BL" and VER_NBR = 4. (The "5" refers to the incremented version number.)

The following series of steps demonstrates how optimistic locking prevents concurrency problems.

1. User A retrieves the row for chart code "BL". The row has version number of 3.

2. User B retrieves the row for chart code "BL". Like user A, the version number is 3.

3. User A performs a update of the "BL" record. The SQL query that updates the record would
read something like "UPDATE CA_CHART_T SET <some updates>, VER_NBR = 4 WHERE
FIN_COA_CD = "BL" and VER_NBR = 3. (The "4" refers to the incremented version number.)

4. User B performs a update of the "BL" record. The SQL query that updates the record would read
something like what User A executed above (notice the version numbers). However, the previous step
already updated the version number to 4 from 3, so this update does nothing (i.e. update row count =
0) because it was trying to update the BL chart with a version number of 3. The system detects the 0
update row count, and throws an OptimisticLockingException. This exception indicates that the system
tried to update stale data.

Business Object Database Mapping

The default mapping library used by the KNS for this release is OJB from Apache. More information can
be found on the OJB website: http://db.apache.org/ojb/.

Purpose of OJB mappings

OJB repository files map the following information:

1. The BusinessObject (BO) mapped to a given database table

2. The getter/setter method in the BO mapped to a given database column

http://db.apache.org/ojb/

KNS

192

3. The fields(s) comprising foreign keys between a business object and its reference(s)

OJB documentation

Currently, OJB is used as the underlying persistence layer. It converts database rows into java objects upon
retrieval, and vice versa upon updates/deletes. This section assumes that the reader is familiar with the
basic mapping constructs/principles described on these pages:

• http://db.apache.org/ojb/docu/guides/repository.html#class-descriptor-N104E3

• http://db.apache.org/ojb/docu/guides/repository.html#field-descriptor-N105C6

• http://db.apache.org/ojb/docu/guides/repository.html#field-descriptor-N105C6

• http://db.apache.org/ojb/docu/guides/repository.html#collection-descriptor-N10770

• http://db.apache.org/ojb/docu/guides/repository.html#foreignkey

• http://db.apache.org/ojb/docu/guides/repository.html#inverse-foreignkey

• http://db.apache.org/ojb/docu/guides/basic-technique.html

OJB field-level conversions

OJB provides a way to convert data before they are persisted to and retrieved
from the database. This is accomplished by specifying a class that implements
org.apache.ojb.broker.accesslayer.conversions.FieldConversion in the <field-descriptor> element.

The following are the more often used converters in KFS/Rice:

• org.kuali.core.util.OjbCharBooleanConversion: since boolean flags are typically stored as "Y" or
"N" (i.e. strings) in the database but represented as booleans within business objects, this converter
automatically allows converts between the string and the boolean representation

• org.kuali.core.util.OjbKualiEncryptDecryptFieldConversion: provides seamless encryption of values
when persisting, and decryption when retrieving from the database. Beware that the business object
itself holds an unencrypted value, and as such, care should be taken to ensure that unencrypted sensitive
data are not exposed to unauthorized parties.

Both OJB and the KNS offer a number of FieldConversion implementations beyond these two for use in
client applications.

Example converter declaration for a sample Business Object

<field-descriptor name="bankAccountNbr" column="BNK_ACCT_NBR" jdbc-type="VARCHAR"
 conversion="org.kuali.core.util.OjbKualiEncryptDecryptFieldConversion"/>

When to use OJB vs. data dictionary relationships

OJB relationships should be used to define relationships between tables that are guaranteed to exist within
the same database.

For example, assume a sample Business Object class “Bank”. The Bank class contains a BankType
reference object. Typically a BankType class table would exist in the same database as the Bank class
table. In this example the relationship between Bank and BankType can be defined by OJB. However, a
“User” business object table typically will exist in an external system since it will likely be referenced by

KNS

193

more than one Rice client application. If a BO had a relationship with a “User” BO, the mapping would
require that the relationship be set up via the data dictionary files (which will be discussed in detail later in
this document). Any business object implementing the org.kuali.rice.kns.bo.ExternalizableBusinessObject
interface needs to be related to via the data dictionary.

Example OJB Mapping

Here is an example directly from Rice in the file OJB-repository-kns.xml:

<class-descriptor class="org.kuali.rice.kns.bo.StateImpl" table="KR_STATE_T">
 <field-descriptor name="postalCountryCode" column="POSTAL_CNTRY_CD" jdbc-type="VARCHAR" primarykey="true"
 index="true" />
 <field-descriptor name="postalStateCode" column="POSTAL_STATE_CD" jdbc-type="VARCHAR" primarykey="true"
 index="true" />
 <field-descriptor name="postalStateName" column="POSTAL_STATE_NM" jdbc-type="VARCHAR" />
 <field-descriptor name="objectId" column="OBJ_ID" jdbc-type="VARCHAR" index="true" />
 <field-descriptor name="versionNumber" column="VER_NBR" jdbc-type="BIGINT" locking="true" />
 <field-descriptor name="active" column="ACTV_IND" jdbc-type="VARCHAR"
 conversion="org.kuali.rice.kns.util.OjbCharBooleanConversion"/>

 <reference-descriptor name="country" class-ref="org.kuali.rice.kns.bo.CountryImpl" auto-retrieve="true"
 auto-update="none" auto-delete="none">
 <foreignkey field-ref="postalCountryCode" />
 </reference-descriptor>
</class-descriptor>

In this OJB mapping, we can determine the following information:

1. The KR_STATE_T table is mapped to the org.kuali.rice.kns.bo.StateImpl business object

2. The POSTAL_CNTRY_CD column is mapped to the "postalCountryCode" property of the BO (i.e.
accessed using the getPostalCountryCode and setPostalCountryCode methods), is a VARCHAR, is
indexed, and is one of the fields in the primary key

3. The POSTAL_STATE_CD column is mapped to the "postalStateCode" property of the BO, is a
VARCHAR, is indexed, and is one of the fields in the primary key

4. The OBJ_ID column is mapped to the "objectId" property, is indexed, and is a VARCHAR

5. The VER_NBR column is mapped to the "verionNumber" property, is a BIGINT, and is used for locking

6. The ACTV_IND column is mapped to the “active” property, is a VARCHAR, and uses the conversion
class org.kuali.rice.kns.util.OjbCharBooleanConversion

We can determine the following information about the "country" reference object:

1. It is of type org.kuali.rice.kns.bo.CountryImpl

2. the auto-retrieve attribute is true: When the StateImpl is retrieved from OJB, the CountryImpl object
will behave like it was retrieved as well (the proxy attribute of the ‘field-descriptor’ tag can be set to true
or false to determine whether the CountryImpl is really retrieved when the account is retrieved or not)

3. the auto-update attribute is none: When the StateImpl is updated using OJB, the CountryImpl object
will not be updated even if changes have been made to it

4. the auto-delete attribute is none: When the StateImpl is deleted using OJB, the CountryImpl object will
not be deleted

5. The <foreignkey> tag specifies the fields in the StateImpl BO that are in a foreign key relationship
and their order with the primary key fields in the CountryImpl BO. The CountryImpl BO has one

KNS

194

primary key field, and the value from StateImpl's “postalCountryCode” property is used as the value
for CountryImpl’s primary key value.

Example OJB Mapping for Collection Descriptor

A mapping may also define a collection-descriptor tag as follows:

<class-descriptor class="org.kuali.rice.kns.test.document.bo.AccountManager" table="TRV_ACCT_FO">
 <field-descriptor name="id" column="acct_fo_id" jdbc-type="BIGINT" primarykey="true" autoincrement="true"
 sequence-name="TRV_FO_ID_S" />
 <field-descriptor name="userName" column="acct_fo_user_name" jdbc-type="VARCHAR" />

 <collection-descriptor name="accounts" collection-
class="org.apache.ojb.broker.util.collections.ManageableArrayList" element-class-
ref="org.kuali.rice.kns.test.document.bo.Account" auto-retrieve="true" auto-update="object" auto-
delete="object" proxy="true" >
 <orderby name="accountNumber" sort="ASC" />
 <inverse-foreignkey field-ref="amId" />
 </collection-descriptor>
</class-descriptor>

We can determine the following information about the "accounts" collection reference:

1. The collection itself is of type org.apache.ojb.broker.util.collections.ManageableArrayList, which
keeps track of which elements have been removed from the array, to help when deleting elements.

2. Each element of the collection is of type org.kuali.rice.kns.test.document.bo.Account.

3. The auto-retrieve attribute is true: when the AccountManager is retrieved from the database, the
collection will be populated or behave as if it were populated upon accessing the collection. (the proxy
setting determines whether the database is queried when the AccountManager is retrieved from the DB
or whether it will retrieve from the DB only when the collection is accessed (i.e. lazy loading)).

4. The auto-update attribute is object: when the AccountManager is inserted or updated, the accounts
collection is inserted or updated accordingly.

5. The auto-delete attribute is object: when the AccountManager is deleted, the corresponding accounts
will be deleted as well.

6. The <orderby> tag specifies the sort order of elements in the collection. In this case, the account numbers
will be in ascending order in the collection.

7. The <inverse-foreignkey> specifies the fields of the element BO (i.e. Account) that will match the
primary key fields of the AccountManager BO. The “amId” attribute in the Account table will be used to
find objects that match the primary key of the AccountManager object, or in this case the “id” attribute.

Business Object Java Definition
Business Objects are java classes that implement the org.kuali.core.bo.BusinessObject interface.
However, a majority of business objects extend org.kuali.core.bo.PersistableBusinessObjectBase,
which implements org.kuali.core.bo.PersistableBusinessObject and
org.kuali.core.bo.BusinessObject. Business Objects which extend from the class
PersistableBusinessObjectBase also have an advantage in that they will inherit getter and setter methods
for the attributes ‘version number’ and ‘object id’.

In each application, all simple class names (i.e. ignoring the package) should be unique. If multiple
packages contain the same class name, the data dictionary may not load the duplicated classes
properly.

KNS

195

Business objects need to implement getter and setter methods for each field that is mapped between
java business objects and the database table (the mapping is described later). Therefore, if, in java, the
ACCOUNT_NM database column is named "accountName", then the getter method should be called
getAccountName and the setter should be setAccountName (i.e. the conventions follow the standard Java
bean getters and setters practices).

Objects that extend org.kuali.core.bo.BusinessObjectBase must also implement the toStringMapper
method, which returns a map of the BO's fields to be used in toString.

The org.kuali.core.bo.PersistableBusinessObjectBase class has several more methods that can be
overridden that customize the behavior of the business object. Just a few examples are customizations
that can be made upon persistence and retrieval of the business object, and how reference objects of the
business object are refreshed, as well as other methods.

Reference Objects

A reference object is a member variable of a business object that also implements the BusinessObject
interface. It refers to the database row referenced by the values in a foreign key relationship. For example,
the CampusImpl BO/table has a column for a campus type code (CAMPUS_TYP_CD). Therefore, the
CampusImpl BO may have a referenced CampusTypeImpl object, which represents the campus type row
referred to by the campus’ campus type code. Here is the CampusImpl OJB mapping:

<class-descriptor class="org.kuali.rice.kns.bo.CampusImpl" table="KRNS_CAMPUS_T">
 <field-descriptor name="campusCode" column="CAMPUS_CD" jdbc-type="VARCHAR" primarykey="true" index="true" /
>
 <field-descriptor name="campusName" column="CAMPUS_NM" jdbc-type="VARCHAR" />
 <field-descriptor name="campusShortName" column="CAMPUS_SHRT_NM" jdbc-type="VARCHAR" />
 <field-descriptor name="campusTypeCode" column="CAMPUS_TYP_CD" jdbc-type="VARCHAR" />
 <field-descriptor name="objectId" column="OBJ_ID" jdbc-type="VARCHAR" index="true" />
 <field-descriptor name="versionNumber" column="VER_NBR" jdbc-type="BIGINT" locking="true" />
 <field-descriptor name="active" column="ACTV_IND" jdbc-type="VARCHAR"
 conversion="org.kuali.rice.kns.util.OjbCharBooleanConversion" />
 <reference-descriptor name="campusType" class-ref="org.kuali.rice.kns.bo.CampusTypeImpl" auto-
retrieve="true" auto-update="none" auto-delete="none">
 <foreignkey field-ref="campusTypeCode" />
 </reference-descriptor>
</class-descriptor>

Here are bits of the CampusImpl class file:

public class CampusImpl extends PersistableBusinessObjectBase implements Campus, Inactivateable {
 private String campusCode;
 private String campusName;
 private String campusShortName;
 private String campusTypeCode;
protected boolean active;

 private CampusType campusType;
...

A collection reference is a member variable of a business object that implements java.util.Collection, with
each element in the collection being a BusinessObject. A collection reference would be appropriate to
model something like the list of Kuali Financial sub accounts of the Kuali Financial account business
object.

A reference object or collection is defined in two steps:

1. A field in a business object is created for either the reference object or collection reference

2. A relationship is mapped within either OJB (See above) or the data dictionary (See below)

KNS

196

To refresh (or retrieve) a reference object is to reload the referenced row from the database, in case the
foreign key field values or referenced data have changed.

For references mapped within the data dictionary, the framework does not have the logic to enable
refreshing of a reference. The code must both implement the logic to refresh a data dictionary defined
reference and the logic to invoke refreshing. A specific explanation can be found below.

Refreshing reference objects mapped in OJB

For references mapped within OJB, the framework automatically takes care of the logic to enable
refreshing of a reference. Under certain circumstances, it's able to automatically refresh references upon
retrieval of the main BO from the database, and refreshing can also be invoked manually.

Note that this means that if the value of a foreign key field is changed, the corresponding reference
object is not refreshed automatically. Taking the CampusImpl BO example above, if the code alters the
CampusImpl’s campusTypeCode field, the framework will not automatically retrieve the new associated
CampusTypeImpl BO reference object. To refresh the CampusImpl’s CampusTypeImpl reference object
with the new campus type code, refresh/retrieve must be manually called (see below).

Refreshing reference objects not mapped in OJB

For references with relationships that are not mapped in OJB, code will need to be written to accommodate
refreshing. A common example of this is Person object references, because institutions may decide to use
another source for Identity Management (e.g. LDAP).

Although there are alternative strategies for accommodating refreshing, typically getter methods of these
non-OJB mapped reference objects include the code that retrieves the reference object from the underlying
datasource.

In contrast to OJB-mapped references, note that this strategy allows for the automatic refreshing of
reference objects when a foreign key field value has been changed. If, in our example using CampusImpl
above, the reference object for CampusTypeImpl was not defined in OJB, the string campusTypeCode
may be changed and that would be enough to alter the getter method for CampusTypeImpl to properly
retrieve the correct row from the database.

Initializing collection references

Business objects fall into two broad, and for the most part mutually exclusive, categories: those that are
edited by maintenance documents and those that are not. This section refers only to business objects that
are edited by maintenance documents that have updatable collections.

When constructing this type of BusinessObject, initialize each of the updatable collection references to an
instance of org.kuali.rice.kns.util.TypedArrayList. TypedArrayList is a subclass of ArrayList that takes
in a java.lang.Class object in its constructor. All elements of this list must be of that type, and when the
get(int) method is called, if necessary, this list will automatically construct items of the type to avoid an
IndexOutOfBoundsException. Take the example below, the SummaryAccount BO contains an updatable
reference to a list of PurApSummaryItem objects.

public class SummaryAccount {
 private List<PurApSummaryItem> items;

 public SummaryAccount() {
 super();
 items = new TypedArrayList(PurApSummaryItem.class);
 }
}

KNS

197

When a collection is non-updatable (i.e. read only from the database), it is not necessary to initialize the
collection. OJB will take care of list construction and population.

Inactivateable Business Objects

Business objects that have active/inactive states should implement the Inactivateable interface:

public interface Inactivateable {

 public boolean isActive();

 /* Indicates whether the record is active or inactive.
 */
 public void setActive(boolean active);
 /* Sets the record to active or inactive.
 */
}

By implementing this interface, functionality such as default active checks and inactivation blocking in
the maintenance framework can be taken advantage of.

InactivateableFromTo Business Objects

Business objects that have active from and to dates (effective dating) should implement the
InactivateableFromTo interface:

public interface InactivateableFromTo extends Inactivateable {

 /* Sets the date for which record will be active
 *
@param from
* - Date value to set

 */
 public void setActiveFromDate(Date from);

 /* Gets the date for which the record become active
 *
 @return Date
 */
 public Date getActiveFromDate();

 /* Sets the date for which record will be active to
 * @param from
* - Date value to set
 */

public void setActiveToDate(Date to);

 /* Gets the date for which the record become inactive
 *
 @return Date
 */

public Date getActiveToDate();

/* Gets the date for which the record is being compared to in determining active/inactive
 *
 @return Date
 */

KNS

198

public Date getActiveAsOfDate();

 /* Sets the date for which the record should be compared to in determining active/inactive, if
 * not set then the current date will be used
 *
 @param activeAsOfDate
 * - Date value to set

*/

public void setActiveAsOfDate(Date activeAsOfDate);

}

Explanation of InactivateableFromTo fields

activeFromDate - The date for which the record becomes active (inclusive when checking active status).

activeToDate - The date to which the record is active (exclusive when checking active status).

active - The active field is calculated from the active from and to dates. If the active from date is less than
or equal to current date (or from date is null) and the current date is less than the active to date (or to date
is null) the active getter will return true, otherwise it will return false.

current - The current field is set to true for records with the greatest active from date less than or equal
to the current date.

For example say we have two employee records:

• rec 1, empl A, active from 01/01/2010, active to 01/01/2011

• rec 2, empl A, active from 03/01/2010, active to 01/01/2011

With 03/01/2010 <= current date < 01/01/2011 both of these records will be active, however only rec 2
would be current since it has a later active begin date.

To determine the maximum active begin date, records are grouped by the fields declared in the data
dictionary for the business object.

activeAsOfDate - By default when checking the active or current status the current date is used, however
this field can be set to check the status as of another date.

For example say we have a record with active from date 01/01/2010 and active to date 06/01/2010, with
the current date equal to 08/01/2010. With the active as of date empty, the current date will be used and
this record will be determined inactive. However if we set the active as of date equal to 05/01/2010 (which
falls between the active date range) and query, this record will be determined active.

Framework Support

Business objects that implement InactivateableFromTo can participate in default existence checks and
inactivation blocking functionality. In addition, the lookup framework contains special logic for searching
on InactivateableFromTo instances. This includes:

1. Translating criteria on the active field (active true or false) to criteria on the active to and from date fields

2. Translating criteria on the current field (current true of false) to criteria selecting the active record with
the greatest active from date less than or equal to the active date

KNS

199

3. Handles the active as of date when doing active or current queries

InactivateableFromToService

For finding active and current InactivateableFromTo records InactivateableFromToService can be used.
This service provides many methods for dealing with InactivateableFromTo objects in code.

Group by Attributes

In order to determine whether or not an InactivateableFromTo record is current, the framework must know
what fields of the business object to group by (see ‘current’ in ‘Explanation of InactivateableFromTo
fields’). This is configured by setting the groupByAttributesForEffectiveDating property on the data
dictionary BusinessObjectEntry.

Example:

<bean id="TravelAccountUseRate-parentBean" abstract="true" parent="BusinessObjectEntry">
 <property name="businessObjectClass" value="edu.sampleu.travel.bo.TravelAccountUseRate"/>
 <property name="inquiryDefinition">
 <ref bean="TravelAccountUseRate-inquiryDefinition"/>
 </property>
 <property name="lookupDefinition">
 <ref bean="TravelAccountUseRate-lookupDefinition"/>
 </property>
 <property name="titleAttribute" value="Travel Account Use Rate"/>
 <property name="objectLabel" value="Travel Account Use Rate"/>
 <property name="attributes">
 <list>
 <ref bean="TravelAccountUseRate-id"/>
 <ref bean="TravelAccountUseRate-number"/>
 <ref bean="TravelAccountUseRate-rate"/>
 <ref bean="TravelAccountUseRate-activeFromDate"/>
 <ref bean="TravelAccountUseRate-activeToDate"/>
 <ref bean="TravelAccountUseRate-activeAsOfDate"/>
 <ref bean="TravelAccountUseRate-active"/>
 <ref bean="TravelAccountUseRate-current"/>
 </list>
 </property>
 <property name="groupByAttributesForEffectiveDating">
 <list>
 <value>number</value>
 </list>
 </property>
</bean>

KNS Data Dictionary Overview
The data dictionary is the main repository for metadata storage and provides the glue to combining classes
related to a single piece of functionality. The data dictionary is specified in XML and allows for quick
changes to be made to functionality. The Data Dictionary files use the Spring Framework for configuration
so the notation and parsing operation will match that of the files that define the module configurers.

The contents of the data dictionary are defined by two sets of vocabularies; the ‘business object’ and the
‘document’ data.

Business Object Data Dictionary
Business Object Data Dictionary entries provide the KNS framework extra metadata about a business
object which is not provided by the persistence mapping or the class itself.

The business object data dictionary contains information about:

KNS

200

• Descriptive labels for each attribute in the business object (data dictionary terminology uses the term
“attribute” to refer to fields with getter/setter methods).

• Metadata about each attribute

• How input fields on HTML pages should be rendered for an attribute (e.g. textbox, drop down, etc.)

• The data elements from the business object that are shown to users on the KNS Inquiry page

• The data elements of the business object that can be used as criteria or shown as result data in the KNS
Lookup for the business object

The business object data dictionary does not contain information about:

• Which BO does a table correspond to (responsibility of persistence layer, e.g. OJB)

• How fields in the BO correspond to database columns (responsibility of persistence layer, e.g. OJB)

• The orientation of various fields on user interface screens

Note About Following Documentation

One thing to note is the use of ‘abstract’ parent beans within the Rice files. These are used to facilitate easy
overriding of beans from Rice in a client application or a customized Rice standalone server installation.
Take the following example where the “RealBean” may be defined within Rice:

<bean id=”RealBean” parent=”RealBean-parent” />

<bean id=”RealBean-parent” abstract=”true” />

Client applications overriding this bean definition should always retain the id “RealBean”. This allows for
any developer working with overriding data dictionary files to easily define an override using the following
parent bean structure:

<bean id=”RealBean” parent=”RealBean-client-parent” />

<bean id=”RealBean-client-parent” abstract=”true” parent=”RealBean-parent” >

<!—- any client overrides go here -->
</bean>

The setup above will take any configuration from the Rice defined “RealBean-parent” and allow the client
developer to override individual properties inside the bean. Then when anything inside Rice or the client
application references the data dictionary bean “RealBean” they will get the Rice defined values unless
they were overridden by client application developers. See the Spring Framework documentation for more
examples of this.

For the sake of this documentation, the abstract parent bean structure will be mostly ignored but its
operation is consistent throughout all data dictionary files.

Data Dictionary File Layout

A sample Data Dictionary file to show typical organization of various beans that may be defined:

<?xml version="1.0" encoding="UTF-8"?>
<beans>
 <bean id="Account" parent="Account-parentBean"/>

KNS

201

 <bean id="Account-parentBean" abstract="true" parent="BusinessObjectEntry">
 <property name="businessObjectClass" value="org.kuali.kfs.coa.businessobject.Account"/>
 <property name="inquiryDefinition" ref="Account-inquiryDefinition"/>
 <property name="lookupDefinition" ref="Account-lookupDefinition"/>
 <property name="titleAttribute" value="accountNumber"/>
 <property name="objectLabel" value="Account"/>
 <!-- Attribute definition -->
 <property name="attributes">
 <list>
 <!-- list goes here -->
 </list>
 </property>
 <!-- Collections -->
 <property name="collections">
 <list>
 <!-- list goes here -->
 </list>
 </property>
 <!-- Relationships -->
 <property name="relationships">
 <list>
 <!-- list goes here -->
 </list>
 </property>
 <!-- Inactivation blocking definitions -->
 <property name="inactivationBlockingDefinitions">
 <list>
 <!-- list goes here -->
 </list>
 </property>
 </bean>
 <bean id="Account-inquiryDefinition" parent="Account-inquiryDefinition-parentBean"/>
 <!-- Definition of ‘Account-inquiryDefinition-parentBean’ bean goes here -->
 <bean id="Account-lookupDefinition" parent="Account-lookupDefinition-parentBean"/>
 <!—Definition of ‘Account-lookupDefinition-parentBean’ bean goes here -->

</beans>

A more specific Rice example might be the CampusImpl object (whose business object data dictionary
file is Campus.xml). Here is the main bean definition from that file:

<bean id="Campus-parentBean" abstract="true" parent="BusinessObjectEntry">
 <property name="businessObjectClass" value="org.kuali.rice.kns.bo.CampusImpl"/>
 <property name="inquiryDefinition">
 <ref bean="Campus-inquiryDefinition"/>
 </property>
 <property name="lookupDefinition">
 <ref bean="Campus-lookupDefinition"/>
 </property>
 <property name="titleAttribute" value="campusCode"/>
 <property name="objectLabel" value="Campus"/>
 <property name="attributes">
 <list>
 <ref bean="Campus-campusCode"/>
 <ref bean="Campus-campusName"/>
 <ref bean="Campus-campusShortName"/>
 <ref bean="Campus-campusTypeCode"/>
 <ref bean="Campus-versionNumber"/>
 </list>
 </property>
</bean>

One of the main properties required is the businessObjectClass which defines the java implementation
class that this business object data dictionary file will be used for.

The inquiryDefinition and the lookupDefinition will be covered later in this document but for now simply
note that the property is using a <ref> tag to point to a bean id that exists elsewhere in this file.

The titleAttribute property defines the attribute of the business object that is the primary key. This is
typically used to define which attribute can be used to display the inquiry page.

KNS

202

The objectLabel property is the label that will be used for all general business object references including
where the system has collections of the business object.

Attribute Definition

Attribute definitions are used to provide metadata about the attributes (i.e. fields) of a business object. The
following is a sampling of attribute definitions from the CampusImpl business object data dictionary file:

<bean id="Campus-campusCode-parentBean" abstract="true" parent="AttributeDefinition">
 <property name="forceUppercase" value="true"/>
 <property name="shortLabel" value="Campus Code"/>
 <property name="maxLength" value="2"/>
 <property name="validationPattern">
 <bean parent="AlphaNumericValidationPattern"/>
 </property>
 <property name="required" value="true"/>
 <property name="control">
 <bean parent="TextControlDefinition" p:size="2"/>
 </property>
 <property name="summary" value="Campus Code"/>
 <property name="name" value="campusCode"/>
 <property name="label" value="Campus Code"/>
 <property name="description" value="The code uniquely identifying a particular campus."/>
</bean>

<bean id="Campus-campusTypeCode-parentBean" abstract="true" parent="AttributeDefinition">
 <property name="forceUppercase" value="true"/>
 <property name="shortLabel" value="Type"/>
 <property name="maxLength" value="2"/>
 <property name="validationPattern">
 <bean parent="AlphaNumericValidationPattern"/>
 </property>
 <property name="required" value="true"/>
 <property name="control">
 <bean parent="SelectControlDefinition"
 p:valuesFinderClass="org.kuali.rice.kns.keyvalues.CampusTypeValuesFinder" p:includeKeyInLabel="false"/>
 </property>
 <property name="summary" value="Campus Type Code"/>
 <property name="name" value="campusTypeCode"/>
 <property name="label" value="Campus Type Code"/>
 <property name="description" value="The code identifying type of campus."/>
</bean>

In client applications, it is common that several business objects share a field representing the same type
of data. For example, a country’s postal code may occur in many different tables. In these circumstances,
the use of a parent bean reference (parent="Country-postalCountryCode”) definition allows the reuse of
parts of a standard definition from the "master" business object. For instance, the StateImpl business
object (business object data dictionary file State.xml) references the postalCountryCode property of the
CountryImpl (business object data dictionary file Country.xml). Because the postalCountryCode fields
in StateImpl and CountryImpl are identical, a simple attribute definition bean in the Business Object data
dictionary file (State.xml) can be used:

<bean id="State-postalCountryCode" parent="Country-postalCountryCode-parentBean"/>

The definition of the Country-postalCountryCode-parentBean bean is seen inside the Country.xml file
(for the CountryImpl business object):

<bean id="Country-postalCountryCode-parentBean" abstract="true" parent="AttributeDefinition">
 <property name="name" value="postalCountryCode"/>
 <property name="forceUppercase" value="true"/>
 <property name="label" value="Country Code"/>
 <property name="shortLabel" value="Country Code"/>
 <property name="maxLength" value="2"/>

KNS

203

 <property name="validationPattern">
 <bean parent="AlphaNumericValidationPattern"/>
 </property>
 <property name="required" value="true"/>
 <property name="control">
 <bean parent="TextControlDefinition" p:size="2"/>
 </property>
 <property name="summary" value="Postal Country Code"/>
 <property name="description" value="The code uniquely identify a country."/>
</bean>

This type of definition (defining the attribute definition once and reusing the bean as a parent bean) can
be used inside common files as well. Rice has an AttributeReferenceDummy.xml business object data
dictionary file as well as a java object AttributeReferenceDummy.java file. This file’s sole purpose is to
place commonly defined attributes such as versionNumber (which is common across all business objects)
in a central location so that other business object attribute definitions can use them as parent beans. Here
is how the Campus business object uses the version number attribute:

<bean id="Campus-versionNumber-parentBean" abstract="true" parent="AttributeReferenceDummy-versionNumber">

All business object data dictionary files need to have the version number field bean defined. This will
verify that the UI will have the version number as a hidden field.

Business Object Data Dictionary Lookup Definition

Lookup Fields

A lookup definition contains a property called lookupFields which is made up of a list of FieldDefinitions.
These specify the fields that will be displayed on a lookup form for that business object. A typical
lookupField (shown here with the parent property for context) in the Spring configuration for a Business
Object will look like this:

<property name="lookupFields">
 <list>
 ...
 <bean parent="FieldDefinition" p:attributeName="campusCode"/>
 ...
 </list>
</property>

Lookup default values

You can set a global default for that lookup field using the defaultValue property:

<bean parent="FieldDefinition" p:attributeName="campusCode" p:defaultValue="BL"/>

The effect of this is that every time the lookup for this Business Object is rendered, the campusCode text
input will have "BL" in it.

Quickfinders

A quickfinder is a button that is rendered next to a lookup field which takes you to a lookup for a related
Business Object which that field references, which in the case of this example would be to a Campus
Business Object.

KNS

204

Quickfinder parameters

If a lookup field will have a quickfinder button on it due to a BO relationship, you may wish to set default
values for certain fields on that related Business Object's lookup form, but only when the quickfinder from
this Business Object is used.

<bean parent="FieldDefinition" p:attributeName="campusCode"
 p:quickfinderParameterString="campusTypeCode=P,active=Y" />

The effect of this is different than the defaultValue in that the defaults apply not to the lookup form Business
Object that we are currently defining lookupFields for, rather for specific fields in the related Business
Object that this lookupField (campusCode) references – but only when accessed through this quickfinder
on our parent BO's lookup form.

Example LookupDefinition with defaultValue and quickfinderParameterString

This is perhaps better explained through a simple example with two BOs that have a relationship, Building
and Campus. Here is the LookupDefinition for Building:

<bean id="Building-lookupDefinition-parentBean" abstract="true" parent="LookupDefinition" p:title="Building
 Lookup">
 ...
 <property name="lookupFields">
 <list>
 ...
 <bean parent="FieldDefinition" p:attributeName="campusCode"
 p:quickfinderParameterString="campusTypeCode=P,active=Y" defaultValue="BL"/>
 ...
 </list>
 </property>
 ...
</bean>

The defaultValue is a global default, so every time you view the Building BO's lookup it will have "BL"
in the campusCode input.

The quickfinderParameterString is much more localized, so if you go directly to the Campus BO's lookup
it will have no effect. However, if you go to the Building BO's lookup and click the quickfinder button next
to its campusCode input, the Campus BO's lookup it will have a default of "P" in the campusTypeCode
input, and a default of "Y" in the active input.

There is a related property for FieldDefinition that also applies to lookups, the
quickfinderParameterStringBuilderClass. This lets you specify a class (which must implement
the org.kuali.rice.kns.lookup.valueFinder.ValueFinder interface) which will dynamically construct a
quickfinderParameterString each time a lookup is rendered. This might be useful if e.g. you wanted to
populate a field in the related BO's lookup with the current date and time when it is accessed through the
quickfinder.

It is not valid to have both the quickfinderParameterString and the
quickfinderParameterStringBuilderClass defined on a single FieldDefinition, and you will get an exception
during Data Dictionary validation if you do so.

Totals

Support exists in the lookup framework for totaling the lookup results. If the ‘total’ property is set to true
on one or more FieldDefinition within the resultFields, the total line will be rendered and totals displayed
for each field indicated.

KNS

205

Example:

<property name="resultFields" >
 <list>
 <bean parent="FieldDefinition" p:attributeName="kemid" />
 <bean parent="FieldDefinition"
 p:attributeName="kemidObj.shortTitle" />
 <bean parent="FieldDefinition"
 p:attributeName="kemidObj.purposeCode" />
 <bean parent="FieldDefinition"
 p:attributeName="availableIncomeCash" p:total="true" />
 <bean parent="FieldDefinition"
 p:attributeName="availablePrincipalCash" p:total="true" />
 <bean parent="FieldDefinition"
 p:attributeName="availableTotalCash" p:total="true" />
 <bean parent="FieldDefinition"
 p:attributeName="kemidObj.close" />
 </list>
</property>

An additional row will be added to the lookup result table with the totals for each of these columns
indicated. The label for the total row will display in the first lookup column. By default this label is set to
'TOTALS' and can be changed in KR-ApplicationResources.properties.

Figure 5.1. Totals

The total line will not be displayed for the column if the column values are masked.

One limitation of the totaling functionality is it will not work with a column that has inquiry URLs. This
is because of the need to have a numeric value to sum on and for fields with an inquiry the URL is put
into the tag value along with the actual cell value.

Disabling Search Buttons

In certain cases the search and clear buttons for a lookup are not needed. Therefore these buttons can be
disabled in one of two ways.

The first way is to disable the buttons through the data dictionary. This is done by setting the property
disableSearchButtons to true in the data dictionary lookup definition:

<bean id="CustomerProfile-lookupDefinition" parent="CustomerProfile-lookupDefinition-parentBean"/>
<bean id="CustomerProfile-lookupDefinition-parentBean" abstract="true" parent="LookupDefinition">
<property name="title" value="Customer Profile Lookup"/>
<property name="disableSearchButtons" value="true"/>

The second way is to disable the buttons for a particular instance of a lookup by passing
disableSearchButtons=true as a request URL parameter:

KNS

206

http://localhost:8080/kr-dev/lookup.do?disableSearchButtons=true&more parms ...

Note in this scenario other calls to the lookup without this parameter will have the search buttons rendered.

Merging Custom Attributes into Lookup Definitions

There are instances when an institution would choose to add custom attributes to existing data dictionary
definitions in a client application (such as KFS or KC). The lookup and result fields representing these
custom attributes can be arranged as desired using the DataDictionaryBeanOverride. In the example
below, we wish to add a custom attribute named Campus Code to KFS’s existing Account bean.

<beans>
 ...
 <bean id=”Account” parent=”Account-parentBean">
 <property name="attributes">
 <list merge=”true”>
 <!-- list goes here -->
 <bean id=”Account.campusCode” parent=”Account-CampusCode” p:name=”Account.campusCode” />
 ...
 </list>
 </property>
 </bean>
 ...
</beans>

Once the custom attribute is defined, we create a bean that takes KFS’s Account-lookupDefinition bean
and modifies it such that Campus Code is displayed right after the Sub-Fund Group Code attribute in
the Account lookup screen and search results.

<beans>
 ...
 <bean id=”Account-lookupDefinition-override” parent=”DataDictionaryBeanOverride">
 <property name="beanName" value=”Account-lookupDefinition” />
 <property name=”fieldOverrides”>
 <list>
 <!—- Place Campus Code after Account Sub-Fund Group Code in the lookup -->
 <bean parent=”FieldOverrideForListElementInsert”>
 <property name=”propertyName” value=”lookupFields” />
 <property name=”propertyNameForElementCompare” value=”attributeName” />
 <property name=”element”>
 <bean parent=”FieldDefinition” p:attributeName=”subFundGroupCode” />
 </property>
 <property name=”insertAfter”>
 <list>
 <bean parent=”FieldDefinition” p:attributeName=”Account.campusCode” />
 </list>
 </property>
 </bean>
 <!—- Place Campus Code after Account Sub-Fund Group Code in the search results -->
 <bean parent=”FieldOverrideForListElementInsert”>
 <property name=”propertyName” value=”resultFields” />
 <property name=”propertyNameForElementCompare” value=”attributeName” />
 <property name=”element”>
 <bean parent=”FieldDefinition” p:attributeName=”subFundGroupCode” />
 </property>
 <property name=”insertAfter”>
 <list>
 <bean parent=”FieldDefinition” p:attributeName=”Account.campusCode” />
 </list>
 </property>
 </bean>
 </list>
 </property>
 </bean>
 ...

KNS

207

</beans>

Merging Custom Attributes into Inquiry Definitions

There are instances when an institution would choose to add custom attributes to existing data dictionary
definitions in a client application (such as KFS or KC). The fields representing these custom attributes
can be arranged on the inquiry screen as desired using the DataDictionaryBeanOverride. In the example
below, we wish to add a custom attribute named Campus Code to KFS’s existing Account bean.

<beans>
 ...
 <bean id=”Account” parent=”Account-parentBean">
 <property name="attributes">
 <list merge=”true”>
 <!-- list goes here -->
 <bean id=”Account.campusCode” parent=”Account-CampusCode” p:name=”Account.campusCode” />
 ...
 </list>
 </property>
 </bean>
 ...
</beans>

Once the custom attribute is defined, we create a bean that takes KFS’s Account-inquiryDefinition bean
and modifies it such that Campus Code is displayed right after the Sub-Fund Group Code attribute in
the Account inquiry screen.

<beans>
 ...
 <bean id=”Account-inquiryDefinition-override” parent=”DataDictionaryBeanOverride">
 <property name="beanName" value=”Account-inquiryDefinition” />
 <property name=”fieldOverrides”>
 <list>
 <!—- Place Campus Code after Account Sub-Fund Group Code in the Account Details section
 (inquirySections[0]) -->
 <bean parent=”FieldOverrideForListElementInsert”>
 <property name=”propertyName” value=”inquirySections[0].inquiryFields” />
 <property name=”propertyNameForElementCompare” value=”attributeName” />
 <property name=”element”>
 <bean parent=”FieldDefinition” p:attributeName=”subFundGroupCode” />
 </property>
 <property name=”insertAfter”>
 <list>
 <bean parent=”FieldDefinition” p:attributeName=”Account.campusCode” />
 </list>
 </property>
 </bean>
 </list>
 </property>
 </bean>
 ...

</beans>

Document Data Dictionary Overview
There are two different document types in KNS:

1. Maintenance Documents

Maintenance Documents create, update, copy, or inactivate either a single business object or a collection
of business objects. They are used to perform standard maintenance on data.

KNS

208

2. Transactional Documents

Transactional Documents represent an action that will occur in the system. They are treated as one-shot
documents and need not be edited and modified several times because of their approach in performing
an action.

Comparison of Maintenance and Transactional Documents

Table 5.2. Comparison of Maintenance and Transactional Documents

Transactional Documents Maintenance Documents

SQL Table(s) yes yes

OJB Mapping(s) - repository.xml yes yes

Business Object(s) yes yes

Data Dictionary File(s)(XML) Transactional Document DD File Maintenance Document DD File

Business Object DD File (discussed earlier)

Each type of dictionary defines properties such as authorizations, rules and workflow document types.

The following examples all follow the same structure with respect to the use of ‘abstract’ parent beans for
Data Dictionary beans. A detailed description of their use and why Kuali uses this type of implementation
can be found in the beginning of the ‘Business Object Data Dictionary’ section.

Maintenance Document Data Dictionary Overview

In general, documents have metadata associated with them, and the metadata for maintenance documents
exists in the document's data dictionary configuration. The data dictionary can do practically everything
for a maintenance document: it declares the user interface for the form, ties rules and document authorizers
to the document as well as the document's workflow document type.

Below is an example of a Maintenance Document Data Dictionary file from the KNS module itself. It
is for the Parameter object used within the KNS. The path (or package) org/kuali/rice/kns/document/
datadictionary/ is where the ParameterMaintenanceDocument can be found in Rice if below is difficult
to view.

<bean id="ParameterMaintenanceDocument" parent="ParameterMaintenanceDocument-parentBean"/>

<bean id="ParameterMaintenanceDocument-parentBean" abstract="true" parent="MaintenanceDocumentEntry">
 <property name="businessObjectClass" value="org.kuali.rice.kns.bo.Parameter"/>
 <property name="maintainableClass" value="org.kuali.rice.kns.document.ParameterMaintainable"/>
 <property name="maintainableSections">
 <list>
 <ref bean="ParameterMaintenanceDocument-EditParameter"/>
 </list>
 </property>
 <property name="defaultExistenceChecks">
 <list>
 <bean parent="ReferenceDefinition" p:attributeName="parameterNamespace"
 p:attributeToHighlightOnFail="parameterNamespaceCode"/>
 <bean parent="ReferenceDefinition" p:attributeName="parameterType"
 p:attributeToHighlightOnFail="parameterTypeCode"/>
 </list>
 </property>
 <property name="lockingKeys">
 <list>
 <value>parameterNamespaceCode</value>
 <value>parameterDetailTypeCode</value>
 <value>parameterApplicationNamespaceCode</value>
 <value>parameterName</value>

KNS

209

 </list>
 </property>

 <property name="documentTypeName" value="ParameterMaintenanceDocument"/>
 <property name="businessRulesClass" value="org.kuali.rice.kns.rules.ParameterRule"/>
 <property name="documentAuthorizerClass"
 value="org.kuali.rice.kns.document.authorization.MaintenanceDocumentAuthorizerBase"/>
 <property name="workflowProperties">
 <ref bean="ParameterMaintenanceDocument-workflowProperties"/>
 </property>
</bean>

<!-- Maintenance Section Definitions -->
<bean id="ParameterMaintenanceDocument-EditParameter" parent="ParameterMaintenanceDocument-EditParameter-
parentBean"/>

<bean id="ParameterMaintenanceDocument-EditParameter-parentBean" abstract="true"
 parent="MaintainableSectionDefinition">
 <property name="maintainableItems">
 <list>
 <bean parent="MaintainableFieldDefinition" p:required="true" p:name="parameterNamespaceCode"/>
 <bean parent="MaintainableFieldDefinition" p:required="true" p:name="parameterDetailTypeCode"/>
 <bean parent="MaintainableFieldDefinition" p:required="true"
 p:name="parameterApplicationNamespaceCode" p:defaultValue="KUALI"/>
 <bean parent="MaintainableFieldDefinition" p:required="true" p:name="parameterName"/>
 <bean parent="MaintainableFieldDefinition" p:required="false" p:name="parameterValue"/>
 <bean parent="MaintainableFieldDefinition" p:required="true" p:name="parameterDescription"/>
 <bean parent="MaintainableFieldDefinition" p:required="true" p:name="parameterTypeCode"/>
 <bean parent="MaintainableFieldDefinition" p:required="true" p:name="parameterConstraintCode"/>
 </list>
 </property>
 <property name="id" value="Edit Parameter"/>
 <property name="title" value="Edit Parameter"/>
</bean>

<!-- Exported Workflow Properties -->

<bean id="ParameterMaintenanceDocument-workflowProperties" parent="ParameterMaintenanceDocument-
workflowProperties-parentBean"/>

<bean id="ParameterMaintenanceDocument-workflowProperties-parentBean" abstract="true"
 parent="WorkflowProperties">
 <property name="workflowPropertyGroups">
 <list>
 <bean parent="WorkflowPropertyGroup">
 <property name="workflowProperties">
 <list>
 <bean parent="WorkflowProperty" p:path="oldMaintainableObject.businessObject"/>
 <bean parent="WorkflowProperty" p:path="newMaintainableObject.businessObject"/>
 </list>
 </property>
 </bean>
 </list>
 </property>
</bean>

Basic Setup

The first bean defined for the ParameterMaintenanceDocument data dictionary file is the main
definition bean “ParameterMaintenanceDocument-parentBean”. This bean uses the parent bean
“MaintenanceDocumentEntry”. This is how this particular business object is defined specifically as a
Maintenance Document. Inside the “ParameterMaintenanceDocument-parentBean” bean we see several
properties being set:

<property name="businessObjectClass" value="org.kuali.rice.kns.bo.Parameter"/>
<property name="maintainableClass" value="org.kuali.rice.kns.document.ParameterMaintainable"/>

KNS

210

First and foremost the Maintenance Document Data Dictionary file should define the business object that
will be maintained by this particular document using the businessObjectClass property. In this example
the fully qualified business object class is kuali.rice.kns.bo.Parameter.

The Maintenance Documents also need a maintainable class. This is defined using the maintainableClass
property and in our Parameter business object example the custom class being used is
org.kuali.rice.kns.document.ParameterMaintainable. If there are no customizations needed for the
business object then the default class org.kuali.rice.kns.maintenance.KualiMaintainableImpl should
be used. More will be discussed about custom maintainable classes later in this document.

Existence Checking

The next maintenance document specific tag is defaultExistenceChecks. Certain document validations
are so omnipresent that they can simply be declared - typically validations that certain fields of a document
are required. Here are the default existence checks for the ParameterMaintenanceDocument:

<property name="defaultExistenceChecks">
 <list>
 <bean parent="ReferenceDefinition" p:attributeName="parameterNamespace"
 p:attributeToHighlightOnFail="parameterNamespaceCode"/>
 </list>
</property>

Here we have just one default existence check. Default existence checks verify that the associated business
object for the document actually exist. For instance, in the Parameter maintenance document, if a user
enters a parameter namespace value that does not exist, the default existence check will display an error
message next to the parameterNamespaceCode attribute field after the user attempts to save or submit.

The defaultExistenceCheck tag has a few different ways it can operate. All involve setting a list of beans
that use the “ReferenceDefinition” parent bean. This bean is defined in Rice and can be used by any
Maintenance Document Data Dictionary file. The properties that may be set for the “ReferenceDefinition”
beans vary but the example shows the most common. The attributeName property is set to the KNS
attribute name of the business object which must exist for the check to pass. In this case the Namespace
object in KNS has a namespaceCode attribute. Likewise the attributeToHighlightOnFail refers to the
attribute in the Parameter business object that is used to link to the reference business object. This is the
field which will be highlighted on the user interface for the error to display. Of course, for this to work
correctly, the foreign keys to the fields must be specified as required. That will come into play in section
below about specifying the UI.

Locking keys

Since maintenance documents edit one or more business objects, there is the potential for race conditions.
For example, if two business objects were created with the same primary key field and they were both
sent into routing at the same time, the first document that is approved to ‘Final’ status in Workflow could
potentially be overwritten in the database by the second document when it goes to ‘Final’ status. The KNS
attempts to prevent these situations from arising by creating a pessimistic lock on each business object
going through workflow as part of a maintenance document. In most cases, it uses the lockingKeys tag of
the data dictionary for the maintenance document to create that locking representation. Here's the locking
representation configuration for the ParameterMaintenanceDocument:

<property name="lockingKeys">
 <list>
 <value>parameterNamespaceCode</value>
 <value>parameterDetailTypeCode</value>
 <value>parameterApplicationNamespaceCode</value>
 <value>parameterName</value>

KNS

211

 </list>
</property>

Not surprisingly, the attributes listed in the example are also the primary keys for the Parameter business
object. The locking keys above simply mean that once a certain Parameter is put into Workflow routing
with a certain set of the fields above, another document with the same exact values for all the attributes
above will be prevented from being put into Workflow. The fields used in a locking key can be anything,
as long as it marks the business object uniquely. It makes sense, then, that most locking keys are simply
the primary keys for the business object.

Defining the UI

Finally, the largest part of the maintenance document data dictionary: the definition of the UI through
the maintenanceSections property. The UI of a maintenance document is made up of one or more
maintainable sections. Each section is named, and each section creates a new tab as its visual representation
on the web form. Here is the section list property being set on the “ParameterMaintenanceDocument-
parentBean” bean (only one section in this document):

<property name="maintainableSections">
 <list>
 <ref bean="ParameterMaintenanceDocument-EditParameter"/>
 </list>
</property>

The list of beans is defined in the main Maintenance Document Entry bean while each ‘Section
Definition’ bean is defined below in the file. Here is the ParameterMaintenanceDocument example of
the “ParameterMaintenanceDocument-EditParameter” bean definition:

<bean id="ParameterMaintenanceDocument-EditParameter-parentBean" abstract="true"
 parent="MaintainableSectionDefinition">
 <property name="maintainableItems">
 <list>
 <bean parent="MaintainableFieldDefinition" p:required="true" p:name="parameterNamespaceCode"/>
 <bean parent="MaintainableFieldDefinition" p:required="true" p:name="parameterDetailTypeCode"/>
 <bean parent="MaintainableFieldDefinition" p:required="true"
 p:name="parameterApplicationNamespaceCode" p:defaultValue="KUALI"/>
 <bean parent="MaintainableFieldDefinition" p:required="true" p:name="parameterName"/>
 <bean parent="MaintainableFieldDefinition" p:required="false" p:name="parameterValue"/>
 <bean parent="MaintainableFieldDefinition" p:required="true" p:name="parameterDescription"/>
 <bean parent="MaintainableFieldDefinition" p:required="true" p:name="parameterTypeCode"/>
 <bean parent="MaintainableFieldDefinition" p:required="true" p:name="parameterConstraintCode"/>
 </list>
 </property>
 <property name="id" value="Edit Parameter"/>
 <property name="title" value="Edit Parameter"/>
</bean>

Each maintainable section is defined by using the parent bean “MaintainableSectionDefinition”. These
beans, in turn, are made up of several different properties including an id, title, and maintainableItems.
The maintainableItems property is a list of maintainable fields. Each maintainable field bean uses the
“MaintainableFieldDefinition” bean as its parent bean and lists the attribute that should be shown. That
attribute itself has typically been defined in the data dictionary configuration for the business object (see
Business Object Data Dictionary Definition below). There is also a required property which can be set
to force extra validation, though all validations described in the attributes of the business object will also
be checked.

While attributes default to using the definition set up in the data dictionary for a given field, there are a
couple of behavior modifications that can be made. One of which appears above in the required property.

KNS

212

This can override the default required behavior as defined for the business object on the Business Object
Data Dictionary file. Below are demonstrations of how some of the various changes that can be made
could potentially be done for the ParameterMaintenanceDocument data dictionary file. For instance,
default values for any field can be set by using the defaultValue property, like so:

<bean parent="MaintainableFieldDefinition">
 <property name=”name” value="parameterApplicationNamespaceCode"/>
 <property name=”required” value="true"/>
 <property name=”defaultValue” value="KUALI"/>
</bean>

The example above example sets the default value of the parameterApplicationNamespaceCode
attribute to “KUALI”.

Another property that can be used to set a field with a default value in the maintenance document data
dictionary maintainableField beans is the defaultValueFinderClass property. This property should be
set to a class that implements the interface class org.kuali.rice.kns.lookup.valueFinder.ValueFinder.
The interface has one method only: getValue(), which returns a String which will be set into the
form in the User Interface. Here is an example (not from the ParameterMaintenanceDocument
but from the IdentityManagementGenericPermissionMaintenanceDocument) on how to use the
defaultValueFinderClass property:

<bean parent="MaintainableFieldDefinition">
 <property name=”name” value="permissionId"/>
 <property name=”unconditionallyReadOnly” value="true"/>
 <property name=”required” value="true"/>
 <property name=”defaultValueFinderClass”
 value="org.kuali.rice.kim.lookup.valuefinder.NextPermissionIdValuesFinder"/>
</bean>

The above example pulls the next available id from a class for one of the Kuali Identity
Management documents. This is a very custom behavior for KIM but does highlight just one way the
defaultValueFinderClass can be used.

One other large customization that can be made is to modify the way the lookup on a particular field
operates. Lookups will be described in detail later in this documentation. Below is a simulated example
that does not exist in the Rice code:

<bean parent="MaintainableFieldDefinition">
 <property name=”name” value="reconcilerGroup.groupName"/>
 <property name=”required” value="true"/>
 <property name=”overrideFieldConversions” value="groupId:cardGroupId,groupName:reconcilerGroup.groupName"/>
 <property name=”overrideLookupClass” value="org.kuali.rice.kim.bo.impl.GroupImpl"/>
</bean>

The overrideLookupClass property will set the business object class of the lookup that should be used.
This means in our example above that the lookup for the field “reconcilerGroup.groupName” will use the
org.kuali.rice.kim.bo.impl.GroupImpl class lookup. The overrideFieldConversions property is used
to translate data attributes from the overrideLookupClass to fields that match the current Business Object
class for which the maintenance document data dictionary file is for. These are separated with the colon
character and a comma is used to delineate each field translation if more than one is to be listed. In the
example above the ‘groupId’ field (which exists on the org.kuali.rice.kim.bo.impl.GroupImpl class)
will be set into the ‘cardGroupId’ field (which should exist on the business object class of the current
maintainable data dictionary file). In some instances the overrideFieldConversions may not be necessary
if the field names are the same on the lookup’s business object class and the data dictionary’s business
object class.

KNS

213

Additional MaintainableFieldDefinition Properties

For each MaintainableFieldDefinition bean defined in a maintenance document, there are a few fields that
can help adjust the User Interface for a KNS client. Here is a sample example:

 ...
1 <property name="maintainableItems">
2 <list>
3 <bean parent="MaintainableFieldDefinition" p:name="Code" p:required="true" />
4 <bean parent="MaintainableFieldDefinition" p:name="ID" p:unconditionallyReadOnly="true" />
5 <bean parent="MaintainableFieldDefinition" p:name="Name" p:readOnlyAfterAdd="true" />
6 <bean parent="MaintainableFieldDefinition" p:name="Type" p:lookupReadOnly="true" />
7 <bean parent="MaintainableFieldDefinition" p:name="linkedJob" p:noLookup="true" />
 ...

In the example above on line 4 the field with name value “ID” has a property named
unconditionallyReadOnly that is set to “true”. This means the field will be read only and uneditable in
the User Interface at all times regardless of document state. This could be helpful when setting a default
value that the user entering the document is not allowed to change.

The property readOnlyAfterAdd set to “true” on line 5 for the “Name” field means that once the
maintenance document for this business object has been successfully saved and routed through all
appropriate approvals, the “Name” field will be read only. This is useful in certain instances when creating
a new business object.

The property lookupReadOnly in line 6 is used to change the UI so that a lookup link will be presented
for the field but the value that is displayed when returning an object from the lookup is read only. In the
example above the “Type” variable will have a lookup (as defined by the Business Object Data Dictionary
file… see the Business Object Data Dictionary section for more information) but the displayed value in the
UI for “Type” will be uneditable by user entry. It may still be changed by going to the lookup link again.

The noLookup property shown in line 7 for the “linkedJob” field is a way to override the default
functionality coming from the Business Object Data Dictionary file. If that DD file has a Lookup control
element but the lookup need to be hidden on the Maintenance Document then this attribute allows for that
functionality.

Collections

Some maintenance documents include collections of business objects. Below is an example from the
RoutingRuleMaintenanceDocument data dictionary file from Rice:

<bean id="RoutingRuleMaintenanceDocument-PersonResponsibilities-parentBean" abstract="true"
 parent="MaintainableSectionDefinition">
 <property name="id" value="PersonsMaintenance"/>
 <property name="title" value="Persons"/>
 <property name="maintainableItems">
 <list>
 <bean parent="MaintainableCollectionDefinition">
 <property name="name" value="personResponsibilities"/>
 <property name="businessObjectClass" value="org.kuali.rice.kew.rule.PersonRuleResponsibility"/>
 <property name="summaryTitle" value="Person"/>
 <property name="summaryFields">
 <list>
 <bean parent="MaintainableFieldDefinition" p:name="principalName"/>
 <bean parent="MaintainableFieldDefinition" p:name="actionRequestedCd"/>
 </list>
 </property>
 <property name="maintainableFields">
 <list>
 <bean parent="MaintainableFieldDefinition" p:name="principalName" p:required="true"/>

KNS

214

 <bean parent="MaintainableFieldDefinition" p:name="actionRequestedCd"
 p:required="true"/>
 <bean parent="MaintainableFieldDefinition" p:name="priority" p:required="true”/>
 </list>
 </property>
 <property name="duplicateIdentificationFields">
 <list>
 <bean parent="MaintainableFieldDefinition" p:name="principalName"/>
 <bean parent="MaintainableFieldDefinition" p:name="actionRequestedCd"/>
 </list>
 </property>
 </bean>
 </list>
 </property>
</bean>

To put a collection into a maintenance section, simply put an instance of a
MaintainableCollectionDefinition bean in the list that is set into the maintainableItems property of the
maintenance section.

The MaintainableCollectionDefinition bean must have a name property. The name property should
match the attribute name of the collection being maintained on the original business object. The
businessObjectClass property value specifies the class of the items in the collection.

The maintainableFields property inside the MaintainableCollectionDefinition bean works
exactly like the previously described structure of the maintainableFields property inside the
MaintainableSectionDefinition bean. The only difference is that the name property of each
MaintainableFieldDefinition refers to an attribute of the businessObjectClass that is set on the
MaintainableCollectionDefinition bean.

The summaryTitle and summaryFields properties are used for display purposes once a list element is
added to the list on the UI screen. The specified data elements will show when the full detail of the
collection item is hidden using the ‘hide/show’ button functionality of the KNS. Usually these fields are
specific to what uniquely defines the business objects contained within the collection.

The duplicateIdentificationFields property is used to identify specifically the set of fields inside the
collection element business object that cannot be duplicated in the list. In this way they act as mini-locks.
They will prevent more than one list element with the same set of fields. For instance, in the example
above, if a list element already exists with the actionRequestedCd ‘A’ and the principalName ‘john’
then another list element with those same values cannot be added.

There are also a few more advanced type attributes that can be used. Take the above example and the
abbreviated alteration below.

 ...
1 <property name="maintainableItems">
2 <list>
3 <bean parent="MaintainableCollectionDefinition" >
4 <property name="name" value="personResponsibilities"/>
5 <property name="includeAddLine" value="false"/>
6 <property name="businessObjectClass" value="org.kuali.rice.kew.rule.PersonRuleResponsibility"/
>
7 <property name="maintainableFields">
8 <list>
9 <bean parent="MaintainableFieldDefinition" p:name="newCollectionRecord"/>
 ...

The property includeAddLine on line 5 above is used to remove the UI element that allows the users to
add their own elements to the list. This is helpful in cases where the list of items may be statically generated
by code internal to the business object containing the collection.

KNS

215

On line 9 in the example above, the addition of the MaintainableFieldDefinition with the name
property value of “newCollectionRecord” is used to tell the maintenance framework that any records
currently existing in the collection are permanent - that is, there should not be delete buttons
associated with them. However, if the property includeAddLine is set to “false” (or omitted) in the
MaintainableCollectionDefinition bean above, new lines could be added to the collection and each of
the new lines could be deleted (though lines that had been previously saved and routed appropriately into
the collection could not be deleted).

Alternate/Additional Display Properties
Within the business object frameworks (lookup, inquiry, and maintenance document) an alternate or
additional property can be specified to display when a field is read-only. These properties are configured
through the data dictionary as follows:

alternateDisplayAttributeName

This property specifies an attribute on the business object that should be displayed instead of the field
attribute when the view is read-only. The property is available on the FieldDefinition for lookup result
fields and inquiries, and on the MaintainbleFieldDefinition for maintenance documents. In the case of
lookup result fields and inquiries this attribute will always be displayed since the view is always read-
only. For maintenance documents, the field attribute will display when the document is editable, and the
alternate attribute will display when the document is read-only.

<bean id="CustomerProfile-lookupDefinition" parent="CustomerProfile-lookupDefinition-parentBean"/>
<bean id="CustomerProfile-lookupDefinition-parentBean" abstract="true" parent="LookupDefinition">
 <property name="title" value="Customer Profile Lookup"/>

 <property name="defaultSort">
 <bean parent="SortDefinition">
 <property name="attributeNames">
 <list>
 <value>id</value>
 </list>
 </property>
 </bean>
 </property>
 <property name="lookupFields">
 <list>
 <bean parent="FieldDefinition" p:attributeName="id"/>
 <bean parent="FieldDefinition" p:attributeName="chartCode"/>
 <bean parent="FieldDefinition" p:attributeName="unitCode"/>
 <bean parent="FieldDefinition" p:attributeName="subUnitCode"/>
 <bean parent="FieldDefinition" p:attributeName="active"/>
 </list>
 </property>
 <property name="resultFields">
 <list>
 <bean parent="FieldDefinition" p:attributeName="id" p:alternateDisplayAttributeName="customerName"/
>
 <bean parent="FieldDefinition" p:attributeName="customerShortName"/>
 <bean parent="FieldDefinition" p:attributeName="customerDescription"/>
 <bean parent="FieldDefinition" p:attributeName="contactFullName"/>
 <bean parent="FieldDefinition" p:attributeNa ="processingEmailAddr"/>
 <bean parent="FieldDefinition" p:attributeName="defaultPhysicalCampusProcessingCode"/>
 <bean parent="FieldDefinition" p:attributeName="active"/>
 <bean parent="FieldDefinition" p:attributeName="defaultChartCode"/>
 </list>
 </property>
</bean>

In the example above, for the result field 'id' we have specified an alternateDisplayAttibuteName equal to
"customerName". When the results are rendered the value of customerName property will be displayed
and not the value of the id property. This behavior is the same within an InquiryDefinition.

KNS

216

If specified on a MaintainableFieldDefinition, again the value for the alternateDisplayAttibuteName
attribute will be displayed; however any quickfinder or lookup URL will be built using the field property
as usual. If the field is editable or hidden, the value of the field property will be used.

additionalDisplayAttributeName

This property behaves much like the alternateDisplayAttibuteName, the only difference being the value
of the additionalDisplayAttributeName attribute will be appended to the value of the field attribute, using
'*-*' as a delimiter.

Neither the alternateDisplayAttibuteName nor additionalDisplayAttributeName need to have an
AttributeDefinition defined, however they must have an accessible getter in the business object.

Automatic Translation of KualiCode fields

If enabled, fields that have references to a KualiCode class will be found and the corresponding KualiCode
name field will be set as the additionalDisplayAttributeName. The object property holding the reference
must also prefix the field name. For example, a field name of 'defaultChartCode' and reference name of
'defaultChart' would match, again assuming the type of 'defaultChart' implements KualiCode.

This automatic translation of code fields is turned on by default in the Inquiry framework, but turned off by
default in lookups and maintenance documents. It can be configured for each MaintenanceDocumentEntry,
LookupDefinition, or InquiryDefinition with the property 'translateCodes'.

For example, in the MaintenanceDocumentEntry:

<bean id="CustomerProfileMaintenanceDocument-parentBean" abstract="true" parent="MaintenanceDocumentEntry">
 <property name="businessObjectClass" value="org.kuali.kfs.pdp.businessobject.CustomerProfile"/>
 <property name="maintainableClass"
 value="org.kuali.kfs.pdp.document.datadictionary.CustomerProfileMaintenanceDocumentMaintainableImpl"/>
 <property name="maintainableSections">
 <list>
 <ref bean="CustomerProfileMaintenanceDocument-EditCustomerProfileSection1"/>
 <ref bean="CustomerProfileMaintenanceDocument-EditCustomerProfileSection2"/>
 <ref bean="CustomerProfileMaintenanceDocument-EditCustomerProfileSection3"/>
 <ref bean="CustomerProfileMaintenanceDocument-EditCustomerBank"/>
 </list>
 </property>
 <property name="defaultExistenceChecks">
 <list>
 <bean parent="ReferenceDefinition" p:attributeName="defaultChart"
 p:attributeToHighlightOnFail="defaultChartCode"/>
 <bean parent="ReferenceDefinition" p:attributeName="defaultAccount"
 p:attributeToHighlightOnFail="defaultAccountNumber"/>
 <bean parent="ReferenceDefinition" p:attributeName="defaultObject"
 p:attributeToHighlightOnFail="defaultObjectCode"/>
 <bean parent="ReferenceDefinition" p:attributeName="defaultProcessingCampus"
 p:attributeToHighlightOnFail="defaultPhysicalCampusProcessingCode"/>
 <bean parent="ReferenceDefinition" p:attributeName="state"
 p:attributeToHighlightOnFail="stateCode"/>
 <bean parent="ReferenceDefinition" p:attributeName="postalCode"
 p:attributeToHighlightOnFail="zipCode"/>
 <bean parent="ReferenceDefinition" p:attributeName="country"
 p:attributeToHighlightOnFail="countryCode"/>
 <bean parent="ReferenceDefinition" p:attributeName="transactionType"
 p:attributeToHighlightOnFail="achTransactionType"/>
 <bean parent="ReferenceDefinition" p:collection="customerBanks" p:attributeName="disbursementType"
 p:attributeToHighlightOnFail="disbursementTypeCode"/>
 <bean parent="ReferenceDefinition" p:collection="customerBanks" p:attributeName="bank"
 p:attributeToHighlightOnFail="bankCode"/>
 </list>
 </property>
 <property name="lockingKeys">
 <list>
 <value>chartCode</value>
 <value>unitCode</value>

KNS

217

 <value>subUnitCode</value>
 </list>
 </property>
 <property name="translateCodes" value="true"/>

If alternateDisplayAttributeName is specified for a field then it will override the code translation (if
applicable).

Note the Summarizable interface and SummarizableFormatter class were removed as part of this work.
If an application class implemented Summarizable it should be changed to implement the KualiCode
interface.

Dynamic read-only, hidden, and required Field states
Within the KNS lookup and maintenance frameworks there is support for dynamically altering the read-
only, hidden, or required states of a field. This functionality is configured through the data dictionary and
java code as follows:

Conditional Logic

Any conditional logic that is necessary to determine whether a field should be read-only, hidden, or
required (and editable) is implemented with java code. For maintenance documents this code is placed in
the presentation controller. The following methods are available for this purpose:

public Set<String> getConditionallyReadOnlyPropertyNames(MaintenanceDocument document)

public Set<String> getConditionallyRequiredPropertyNames(MaintenanceDocument document)

public Set<String>
getConditionallyHiddenPropertyNames(BusinessObject businessObject)

Each of these methods returns a Set of field names (prefixing for the maintainable is not necessary). These
fields will then take on the state determined by the method. The first two methods take as a parameter the
MaintenanceDocument instance which can be used to get the current values for one or more fields. The
third method is more general (because it is used for inquires as well) and takes a BusinessObject instance
as a parameter. Within the maintenance context this will again be the MaintenanceDocument and can be
cast after doing an instanceof check.

Example:

@Override
public Set<String> getConditionallyRequiredPropertyNames(MaintenanceDocument document) {
 Set<String> required = new HashSet<String>();
 SubAccount subAccount = (SubAccount) document.getNewMaintainableObject().getBusinessObject();
 if (StringUtils.isNotBlank(subAccount.getFinancialReportChartCode()) &&
 subAccount.getFinancialReportChartCode().equals("BL")) {
 required.add("a21SubAccount.costShareChartOfAccountCode");
 required.add("a21SubAccount.costShareSourceAccountNumber");
 }
 return required;
}

Only fields that have conditional states need to be considered here. For fields that are always read-only,
hidden, or required the corresponding properties on the MaintainableFieldDefinition can be set to true
through the data dictionary.

KNS

218

Sections of the maintenance document can also be conditionally set to read-only or hidden by implementing
the following methods within the presentation controller:

public Set<String> getConditionallyReadOnlySectionIds(
MaintenanceDocument document);
public Set<String> getConditionallyHiddenSectionIds(BusinessObject businessObject);

Any authorization restrictions will be applied after this logic by the document authorizer class.

For lookups conditional logic is implemented in the LookupableHelperService. Similar methods exist for
determining the read-only, hidden, or required states:

public Set<String> getConditionallyReadOnlyPropertyNames();
public Set<String> getConditionallyRequiredPropertyNames();

public Set<String> getConditionallyHiddenPropertyNames();

Each of these methods returns a Set of field names. Code implemented within these methods has
access to the lookupable helper properties. In particular the request parameters can be retrieved using
getParameters(), and the current rows using getRows(). The following convenience method is also
available for getting a property value from the field:

protected String getCurrentSearchFieldValue(String propertyName)

It is recommended to use this method to get a value for a property as opposed to the request parameters,
since the values could be different. This is because the conditional logic is applied at the end of the lookup
lifecycle and field values could have been cleared or set to other values by processing code. Therefore
basing conditional logic off these values will correctly reflect the values being returned to the search fields.

Example:

@Override
public Set<String> getConditionallyHiddenPropertyNames() {
 Set<String> hiddenPropertyNames = new HashSet<String>();

 String employeeId = getCurrentSearchFieldValue(KIMPropertyConstants.Person.EMPLOYEE_ID);
 if (StringUtils.isNotBlank(employeeId)) {
 hiddenPropertyNames.add(KFSPropertyConstants.VENDOR_NUMBER);
 hiddenPropertyNames.add(KFSPropertyConstants.VENDOR_NAME);
 }
 return hiddenPropertyNames;
}

Trigger Fields

The second part to implementing conditional logic is indicating which fields should trigger a refresh (page
post) when its value changes. The page post will call each of the conditional methods so when the page
renders the read-only, required, and hidden attributes are set according to the new field value (Note all field
values are available to the conditional methods regardless of which one triggered the refresh). To indicate a
field should trigger a refresh, set the triggerOnChange attribute to true on the MaintainableFieldDefinition:

<bean parent="MaintainableFieldDefinition" p:name="financialReportChartCode" p:triggerOnChange="true"/>

For lookups, set the triggerOnChange attribute to true on the lookup FieldDefinition within the
lookupFields property:

KNS

219

<property name="lookupFields" >
 <list>
 <bean parent="FieldDefinition" p:attributeName="payeeTypeCode"/>
 <bean parent="FieldDefinition" p:attributeName="taxNumber" />
 <bean parent="FieldDefinition" p:attributeName="firstName" />
 <bean parent="FieldDefinition" p:attributeName="lastName" />
 <bean parent="FieldDefinition" p:attributeName="vendorNumber" p:triggerOnChange="true" />
 <bean parent="FieldDefinition" p:attributeName="vendorName" />
 <bean parent="FieldDefinition" p:attributeName="employeeId" p:triggerOnChange="true" />
 <bean parent="FieldDefinition" p:attributeName="entityId" p:triggerOnChange="true" />
 <bean parent="FieldDefinition" p:attributeName="active"/>
 </list>
</property>

There is no limit to the number of trigger fields specified for a maintenance document or lookup.

Note

JavaScript was implemented to set the focus back to the next field in the tab order (from the
field that triggered the refresh) when the page refreshes. This will not work correctly if fields are
inserted between the field that triggered a refresh and the next tab field (for instance if a field
between these two was hidden or read-only, and becomes editable on refresh).

Configuring a KNS Client in Spring
The Kuali Nervous System (KNS) is installed as a Rice Module using Spring. The primary source
for configuring Spring in KNS is the KnsTestSpringBeans.xml file located in the /kns/src/test/
resources/ directory. This file uses the PropertyPlaceholderConfigurer bean to load tokens for runtime
configuration using the source file kns-test-config.xml located in the /kns/src/test/resources/META-INF
directory.

The kns-test-config.xml file contains this code snippet:

<param name="module.name">sample-app</param>
<param name="service.namespace">RICE</param>
<param name="filter.login.class">org.kuali.rice.kew.web.DummyLoginFilter</param>
<param name="filtermapping.login.1">/*</param>
<param name="config.location">classpath:META-INF/test-config-defaults.xml</param>
<param name="serviceServletUrl">http://localhost:9916/${app.context.name}/remoting/</param>
<param name="transaction.timeout">3600</param>

<param name="config.location">classpath:META-INF/common-config-test-locations.xml</param>

<param name="config.location">${alt.config.location}</param>
<param name="kns.test.port">9916</param>

This is a combination of key value pairs. When used in conjunction with Spring tokenization and the
PropertyPlaceholderConfigurer bean, the parameter name must be equal to the key value in the Spring
file so that the properties propagate successfully.

Spring JTA Configuration
When doing persistent messaging, it is best to use JTA as your transaction manager. This ensure the
messages you are sending are synchronized with the current executed transaction in your application and
also allows message persistence to be put in a different database than the application’s logic, if needed.
Currently, KNSTestSpringBeans.xml uses JOTM to configure JTA without an application server. Below
is the bean definition for JOTM that can be found in Spring.

KNS

220

<bean id="transactionManagerXAPool" class="org.springframework.transaction.jta.JotmFactoryBean">
 <property name="defaultTimeout" value="${transaction.timeout}"/>

</bean>
<bean id="dataSource" class="org.kuali.rice.database.XAPoolDataSource">
 <property name="transactionManager" ref="transactionManagerXAPool" />
 <property name="driverClassName" value="${datasource.driver.name}" />
 <property name="url" value="${datasource.url}" />
 <property name="maxSize" value="${datasource.pool.maxSize}" />
 <property name="minSize" value="${datasource.pool.minSize}" />
 <property name="maxWait" value="${datasource.pool.maxWait}" />
 <property name="validationQuery" value="${datasource.pool.validationQuery}" />
 <property name="username" value="${datasource.username}" />
 <property name="password" value="${datasource.password}" />
</bean>

Configure the TransactionManager, UserTransaction and a DataSource. Use the Rice
XAPoolDataSource class as your data source because it addresses some bugs in the
StandardXAPoolDataSource, which extends from this class.

KNS Validation and Business Rules Framework
When actions are performed on documents, there is typically some validation to accomplish on the
document; indeed, a great deal of the business logic for client application is stored in document validations.
The KNS supports a standard framework for validations as well as a way to display errors to application
end users.

Rules and Events
KNS validations are performed by rules classes, which respond to a specific application event.
An event is an object which encapsulates contextual information about something which has
been requested of a document. For instance, when a user on a maintenance document clicks a
“Route” button to route the document into workflow, the web-layer controller creates an instance of
org.kuali.rice.kns.rule.event.RouteDocumentEvent which holds the document which has just been
routed. It then passes this event instance to org.kuali.rice.kns.service.KualiRuleService.

The KualiRuleService interrogates the data dictionary entry for the document to find a rules class.
The event then invokes the rules class against itself. This is accomplished through a rule interface.
Every event has an associated rule interface; the class of this interface is returned by the Event’s
getRuleInterfaceClass() method. The event will cast the business rule from the data dictionary to the
interface which it expects, and then call a standard method against that interface.

An example will clarify this. RouteDocumentEvent expects rules implementing the rule interface
org.kuali.rice.kns.rule.RouteDocumentRule, which extends the BusinessRule interface given above.
RouteDocumentRule has a single method to implement:

public boolean processRouteDocument(Document document);

When the KualiRuleService gets the event, it finds the data dictionary entry for the given document and
generates an instance of the business rules class associated with the document. It then hands that to the
event, which attempts to perform the cast to RouteDocumentRule and call the processRouteDocument
method:

public boolean invokeRuleMethod(BusinessRule rule) {
 return ((RouteDocumentRule) rule).processRouteDocument(document);

KNS

221

}

It then returns whatever was returned by the rule.

This brings up the question of what the processRouteDocument method should actually do. Rule methods
need to accomplish two things:

1. Run the business logic associated with that event against the document. If the business logic decides the
document is valid, then a true should be returned. If the business logic, contrarily, decides the document
is not valid, a false is typically returned. The result of the method invocation then typically determines
whether the given event will be completed. For instance, if processRouteDocument returns a false,
then the document – which has only had a workflow route requested of it – will fail to route. It will
instead return to the document screen.

2. Some kind of user message should be recorded in the GlobalVariables.getMessages() thread-local
singleton. This singleton has three maps, accessible through the getErrorMap(), getWarningMap(),
and getInfoMap() methods. These maps associate an attribute on the page which caused a failure with a
user message explaining the problem. If a false is returned from the method, then it is generally expected
that the failure will be recorded in the Error map.

An excellent example of this can be found in the sample “Recipe application” which ships with Rice, in
edu.sampleu.recipe.document.rule.RecipeRules:

@Override
protected boolean processCustomSaveDocumentBusinessRules(MaintenanceDocument document) {
 boolean valid = super.processCustomSaveDocumentBusinessRules(document);
 if (valid) {
 valid &= validateIngredients(document);
 }
 return valid;
}

private boolean validateIngredients(MaintenanceDocument recipeDocument) {
 Recipe recipe = (Recipe) recipeDocument.getDocumentBusinessObject();
 String ingredients = recipe.getIngredients();
 RecipeCategory category = recipe.getCategory();
 if (category != null) {
 String categoryName = recipe.getCategory().getName();
 if(StringUtils.containsIgnoreCase(ingredients, "beef") && !StringUtils.equalsIgnoreCase(categoryName,
 "beef")) {
 putFieldError("categoryId", "error.document.maintenance.recipe.ingredients.beef");
 return false;
 }
 }
 return true;
}

In this example, the processCustomSaveDocumentBusinessRules is called when the document is saved.
In turn, the validateIngredients method is called. It checks that if the category is not null, then if “beef” is
among the ingredients, then the categoryName of the recipe must include the word “beef” in it. If that is
the case, we see that the putFieldError – a convenience method – adds the user message to the “categoryId”
attribute (meaning the error message will be displayed close to that attribute) and that false is returned,
meaning that the save is not carried out.

Standard KNS Events
There are eight common KNS events which apply to every document – maintenance and transactional –
built within client applications. For each, the KNS does an amount of standard validation, while leaving
customization points so client applications can add more validation business logic. They are:

KNS

222

T
ab

le
 5

.3
. K

N
S

E
ve

nt
s

E
ve

nt
C

al
lin

g
ci

rc
um

st
an

ce
s

R
ul

e
in

te
rf

ac
e

an
d

m
et

ho
d

ca
lle

d
V

al
id

at
io

n
pe

rf
or

m
ed

in

D
oc

um
en

tR
ul

eB
as

e

or
g.

ku
al

i.r
ic

e.
kn

s.
ru

le
.e

ve
nt

.R
ou

te
D

oc
um

en
tE

ve
nt

C
al

le
d

w
he

n
a

do
cu

m
en

t
is

ro
ut

ed
 to

 w
or

kf
lo

w
.

or
g.

ku
al

i.r
ic

e.
kn

s.
ru

le
.R

ou
te

D
oc

um
en

tR
ul

e#
pr

oc
es

sR
ou

te
D

oc
um

en
t

Pe
rf

or
m

s
st

an
da

rd
 d

at
a

di
ct

io
na

ry
va

lid
at

io
n

or
g.

ku
al

i.r
ic

e.
kn

s.
ru

le
.e

ve
nt

.S
av

eD
oc

um
en

tE
ve

nt
C

al
le

d
w

he
n

a
do

cu
m

en
t

is
sa

ve
d.

or
g.

ku
al

i.r
ic

e.
kn

s.
ru

le
.S

av
eD

oc
um

en
tR

ul
e#

pr
oc

es
sS

av
eD

oc
um

en
t

Pe
rf

or
m

s
st

an
da

rd
 d

at
a

di
ct

io
na

ry
va

lid
at

io
n

or
g.

ku
al

i.r
ic

e.
kn

s.
ru

le
.e

ve
nt

.A
pp

ro
ve

D
oc

um
en

tE
ve

nt
C

al
le

d
w

he
n

a
w

or
kf

lo
w

ac
tio

n
is

ta

ke
n

ag
ai

ns
t

a
do

cu
m

en
t.

or
g.

ku
al

i.r
ic

e.
kn

s.
ru

le
.A

pp
ro

ve
D

oc
um

en
tR

ul
e#

pr
oc

es
sA

pp
ro

ve
D

oc
um

en
t

or
g.

ku
al

i.r
ic

e.
kn

s.
ru

le
.e

ve
nt

.B
la

nk
et

A
pp

ro
ve

D
oc

um
en

tE
ve

nt
C

al
le

d
w

he
n

a
do

cu
m

en
t

is
 b

la
nk

et
 a

pp
ro

ve
d

th
ro

ug
h

w
or

kf
lo

w
.

or
g.

ku
al

i.r
ic

e.
kn

s.
ru

le
.A

pp
ro

ve
D

oc
um

en
tR

ul
e#

pr
oc

es
sA

pp
ro

ve
D

oc
um

en
t

or
g.

ku
al

i.r
ic

e.
kn

s.
ru

le
.e

ve
nt

.A
dd

N
ot

eE
ve

nt
C

al
le

d
w

he
n

a
no

te
 is

 a
dd

ed
to

 a
 d

oc
um

en
t.

or
g.

ku
al

i.r
ic

e.
kn

s.
ru

le
.A

dd
N

ot
eR

ul
e#

pr
oc

es
sA

dd
N

ot
e

V
al

id
at

es
 t

he
 n

ot
e

(v
ia

 t
he

 d
at

a
di

ct
io

na
ry

)

or
g.

ku
al

i.r
ic

e.
kn

s.
ru

le
.e

ve
nt

.A
dd

A
dH

oc
R

ou
te

Pe
rs

on
E

ve
nt

C
al

le
d

w
he

n
an

ad

ho

c
Pe

rs
on

 to
 ro

ut
e

to
 is

 a
dd

ed
 to

a
do

cu
m

en
t.

or
g.

ku
al

i.r
ic

e.
kn

s.
ru

le
.A

dd
A

dH
oc

R
ou

te
Pe

rs
on

R
ul

e#
pr

oc
es

sA
dH

oc
R

ou
te

Pe
rs

on
V

al
id

at
es

 t
ha

t
th

e
ad

 h
oc

 r
ou

te
Pe

rs
on

 is
 v

al
id

 –
 th

at
 th

e
Pe

rs
on

’s
re

co
rd

 e
xi

st
s

an
d

th
at

 t
he

 P
er

so
n

ha
s

th
e

pe
rm

is
si

on
 t

o
ap

pr
ov

e
th

e
do

cu
m

en
t

or
g.

ku
al

i.r
ic

e.
kn

s.
ru

le
.e

ve
nt

.A
dd

A
dH

oc
R

ou
te

W
or

kg
ro

up
E

ve
nt

C
al

le
d

w
he

n
an

A

d
H

oc
w

or
kg

ro
up

to

ro

ut
e

to

is
ad

de
d

to
 a

 d
oc

um
en

t.

or
g.

ku
al

i.r
ic

e.
kn

s.
ru

le
.A

dd
A

dH
oc

R
ou

te
W

or
kg

ro
up

R
ou

te
#p

ro
ce

ss
A

dd
A

dH
oc

R
ou

te
W

or
kg

ro
up

V
al

id
at

es

th
e

ad

ho
c

ro
ut

e
w

or
kg

ro
up

 –
 t

ha
t

th
e

w
or

kg
ro

up
ex

is
ts

 a
nd

 t
ha

t
th

e
w

or
kg

ro
up

 h
as

pe
rm

is
si

on
 t

o
re

ce
iv

e
an

 a
d

ho
c

re
qu

es
t a

nd
 a

pp
ro

ve
 th

e
do

cu
m

en
t.

or
g.

ku
al

i.r
ic

e.
kn

s.
ru

le
.e

ve
nt

.S
en

dA
dH

oc
R

eq
ue

st
sE

ve
nt

C
al

le
d

w
he

n
th

e
en

d
us

er
re

qu
es

ts
 t

ha
t

ad
 h

oc
 e

ve
nt

s
be

 s
en

t.

KNS

223

Since the standard events have to perform standard validation, they have custom
methods to override. For instance, org.kuali.rice.kns.rules.DocumentRuleBase has a method
“processCustomRouteDocumentBusinessRules” and it is expected that client applications will override
this method rather than processRouteDocumentBusinessRules directly.

Maintenance documents add another event to this: org.kuali.rice.kns.rule.event.KualiAddLineEvent.
This is invoked when a new item is added to a collection on a maintenance document. The
org.kuali.rice.kns.maintenance.rules.MaintenanceDocumentRuleBase also contains a number of useful
utility methods which makes writing business rules for maintenance documents easier.

Notifying Users of Errors
When a validation results in some kind of text being displayed to the user,
GlobalVariables.getMessageMap() is used to store that text and is inquired during rendering to make sure
messages are correctly displayed. As mentioned previously, the MessageMap is made up of three different
maps: one for errors, one for warnings, and one for information messages. Each map has a “put” command
– for instance, putError; each has a “has” predicate, such as “hasErrors”; and each have the ability to get the
properties with form the keys of the map as well as any messages associated with that property. Adding, an
error message to the map is easy, as seen in this example from the IdentityManagementGroupDocument:

GlobalVariables.getMessageMap().putError("document.member.memberId", RiceKeyConstants.ERROR_EMPTY_ENTRY, new
 String[] {"Member Type Code and Member ID"});

The method takes the property that the error is most associated with, which determines where the text will
be displayed (ie, at the top of the section which contains the given property); a key to the User Message
containing the error; and an array of Strings which will be interpolated into the message using the standard
Java java.text.MessageFormat.

Further details about the use of User Messages can be found in the KNS User Messages section.

Creating New Events
While the vast majority of maintenance documents in client applications will not have custom actions, it
is common in transactional documents to have new events beyond the standard ones provided by the KNS
framework. Basically, any button created on a transactional document – one which results in a call to a
method in the transactional document’s action class – may well have an event associated with it. In that
case, there are three pieces to create for the rule: the new event, the rule instance which is called from that
event, and the default implementation for that rule.

An example from Kuali Financial Systems 3.0 will illustrate how these are used. The Cash Control
transactional document in the Accounts Receivable module has a collection of details, added via an “add”
button. To validate that action, an event was created (this code has slightly been altered for the sake of
illustration):

package org.kuali.kfs.module.ar.document.validation.event;

public final class AddCashControlDetailEvent extends KualiDocumentEventBase {
 private final CashControlDetail cashControlDetail;

 public AddCashControlDetailEvent(String errorPathPrefix, Document document, CashControlDetail
 cashControlDetail) {
 super("Adding cash control detail to document " + getDocumentId(document), errorPathPrefix, document);
 this.cashControlDetail = cashControlDetail;
 }

 public Class getRuleInterfaceClass() {

KNS

224

 return AddCashControlDetailRule.class;
 }

 public boolean invokeRuleMethod(BusinessRule rule) {
 return ((AddCashControlDetailRule)
 rule).processAddCashControlDetailBusinessRules((TransactionalDocument) getDocument(), this.cashControlDetail);
 }

}

The AddCashControlDetailEvent extends the KualiDocumentEventBase class, defined in the KNS. Note
that it encapsulates the state to check – both the document at hand and the cash control detail which is being
validated. Finally, it implements the two methods which make the rule work: the getRuleInterfaceClass()
and the invokeRuleMethod(). This works precisely as it does in the KNS RouteDocumentEvent.

The AddCashControlDetailRule looks like this:

public interface AddCashControlDetailRule<F extends TransactionalDocument > {
 public boolean processAddCashControlDetailBusinessRules(F transactionalDocument, CashControlDetail
 cashControlDetail);
}

This is very straightforward. There is a rules class, in turn, which implements this interface.
Finally, the rules have to be called; that occurs when an event is created and sent to the
KualiRuleService, which is typically done in the web layer’s controller. In our example, this occurs in the
CashControlDocumentAction:

// apply rules for the new cash control detail
rulePassed &= ruleService.applyRules(new
 AddCashControlDetailEvent(ArConstants.NEW_CASH_CONTROL_DETAIL_ERROR_PATH_PREFIX, cashControlDocument,
 newCashControlDetail));

Now the new action will be validated properly.

KNS User Messages
Functional users need a simple way to change wording of messages used throughout a KNS client
application. Those messages may even be in a language foreign to that of the Foundation shipped messages
(which are shipped in English). To facilitate ease of message changing, the KNS builds functionality on
top of the standard Java message properties mechanism.

Once the Rice application has been generated, in src/main/resources, there will be a file named
configurationServiceData.xml. That file lists a number of properties files which will be loaded:

<configuration>
 <properties fileName="KR-ApplicationResources.properties" />
 <properties fileName="KIM-ApplicationResources.properties" />
</configuration>

Each of these files are listed relative to the src/main/resources directly. A property file simply relates
messages to keys, like so (from the src/main/resources/KR-ApplicationResources.properties file):

document.question.cancel.text=Are you sure you want to cancel?

document.question.delete.text=Are you sure you want to delete?

KNS

225

document.question.deleteContext.text=Are you sure you want to delete [b]{0}[/b]?

document.question.disapprove.text=Are you sure you want to [b]disapprove[/b] this document?

document.question.saveBeforeClose.text=Would you like to save this document before you close it?

This is the standard Java property file format, with keys (for instance, “document.question.cancel.text”)
related to messages.

A message may also have escaped HTML tags and templated positions in the text for other Strings to
be interpolated in. An example of this is found in the “document.question.deleteContext.text” message.
The [b] and [/b] will be translated automatically to bold markup. The {0} will be replaced, if possible, by
another String. An example of this will be covered below.

Rice Best Practices suggest that each module in the client application have a KeyConstants class which
relates the names of user message keys to the String constants. org.kuali.rice.kns.util.RiceKeyConstants
is the key constants class for the KNS.

Developers of client applications can also override pre-existing messages. Messages are loaded in the
order listed in the configurationServiceData.xml file above, so client application specific files should be
listed later in the file. Then, if the client application user message file redefines a user message using the
same key, as so:

document.question.cancel.text=Canceling will lead to permanent disuse of this document. Are you completely
 certain this is the action you want to take?

users will be treated to the longer, more worried user message.

Retrieving User Messages
Retrieving the text for user messages can be done in a number of ways, based on the context the
user message occurs in. The easiest use case is to get the text of the message directly through
the default implementation of org.kuali.rice.kns.service.KualiConfigurationService. It has a method,
getPropertyString, which, when handed the key to the message, returns the message text.

final String message =
 KNSServiceLocator.getKualiConfigurationService().getPropertyString(RiceKeyConstants.ERROR_DATE_TIME);

This will return the String “{0} is not a valid date/time.” Note that in this case, the String will not be
interpolated; java.text.MessageFormat should be used to switch the {0} with an actual, useful String.

KualiConfigurationService also has a method, getPropertyAsBoolean, which translates the messages
(regardless of case) of “true”, “yes”, “on”, or “1” as a boolean true and everything else as a false.

Error Messages
The vast majority of user messages are warnings when an error occurs. Thankfully, as was seen in the
section on validations, the KNS handles error messages through the user messages system. For instance,
in this code:

GlobalVariables.getErrorMap().putError("someProperty", ClientApplicationConstants.ERROR_MESSAGE, new String[]
 { businessObject.getSomeProperty().toString() });

KNS

226

The error message displayed will be the one with the key
held by ClientApplicationConstants.ERROR_MESSAGE, and the value of
businessObject.getSomeProperty().toString() will be interpolated into the message.

The message must be in the user messages file loaded by KualiConfigurationService.

Struts Messages
User messages are also available to the web layer of transactional documents and user screens through the
standard Struts bean:message tag.

Messages to be loaded to struts are configured via the client application’s project configuration file, in the
rice.struts.message.resources property, like so:

<param name="rice.struts.message.resources">KR-
ApplicationResources,org.kuali.rice.kew.ApplicationResources,org.kuali.rice.ksb.messaging.ApplicationResources,KIM-
ApplicationResources</param>

Again, the files are listed relative to the src/main/resources directory. There is nothing to prevent
programmers from using one user message file for both the KualiConfigurationService messages and the
Struts messages.

Once Struts has these messages loaded, it is easy to access them in a JSP page or jsp TAG file. Indeed, a
great many of the delivered Rice tags make use of these message resources in order to display information,
as seen from this sample from the standard kul:page tag:

<title><bean:message key="app.title" /> :: ${headerTitle}</title>

In this case, the user message – set in KR-ApplicationResources.properties – with the property key of
“app.title” will be displayed (which, by default as “Kuali”).

Developers curious about further information about the bean:message tag would be advised to read Struts’
documentation of the feature: http://struts.apache.org/1.2.x/userGuide/struts-bean.html.

KNS Questions and Dialogs
Several use cases exist where extra document processing needs to occur between the submitting of a
document for routing or approval and the validation on that document. For instance, a document may be
created to purchase an airplane ticket. The initial submitter is not required to enter the airline that will
be traveled on. However, if the initial submitter attempts to route the document without an airline being
entered, a prompt can come up to ask if the submitter really meant to not enter the airline. If the answer
is yes, the document will go on to validation; if the answer is no, then the document will return to allow
the user to edit.

Prompting Before Validation
This kind of prompt is easily accomplished by giving the document an
org.kuali.rice.kns.rule.PromptBeforeValidation implementation. This is done via the data dictionary:

<bean id="BudgetAdjustmentDocument" parent="AccountingDocumentEntry">
 <property name="documentTypeName" value="BA"/>
 <property name="documentClass" value="org.kuali.kfs.fp.document.BudgetAdjustmentDocument"/>

http://struts.apache.org/1.2.x/userGuide/struts-bean.html

KNS

227

 <property name="promptBeforeValidationClass"
 value="org.kuali.kfs.fp.document.validation.impl.BudgetAdjustmentDocumentPreRules"/>
 ...
</bean>

The PromptBeforeValidation interface only has one method, processPrompts. It is responsible for
holding the current form at a current point, rendering a question, getting the answer to that question, and
applying that answer to the next forward. It provides a lot of flexibility.

If, however, all of the questions to ask the user can be formulated as yes/no questions, it is more advisable
to simply extend org.kuali.rice.kns.rules.PromptBeforeValidationBase and override the doPrompts
method. PromptBeforeValidationBase provides all the functionality necessarily to easily ask a yes/no
question or even a series of yes/no questions.

Analysis of an example from KFS should help clarify how this works.
org.kuali.kfs.module.ar.document.validation.impl.CustomerPreRules will be examined. Here is how
it overrides the doPrompts method:

@Override
public boolean doPrompts(Document document) {
 boolean preRulesOK = true;
 preRulesOK &= conditionallyAskQuestion(document);
 return preRulesOK;
}

doPrompts takes the document to act upon as a parameter and it returns a boolean variable. If true is
returned, the document will plow forward into validation. If false is returned, then the view should return
to another forward. Which forward used will be soon revealed.

Given this information, it’s obvious that the real work is occurring in conditionallyAskQuestion. And
indeed it is:

protected boolean conditionallyAskQuestion(Document document) {
 MaintenanceDocument maintenanceDocument = (MaintenanceDocument) document;
 Customer newCostomer = (Customer) maintenanceDocument.getNewMaintainableObject().getBusinessObject();
 boolean shouldAskQuestion = maintenanceDocument.isNew() && checkIfOtherCustomerSameName(newCostomer);

 if (shouldAskQuestion) {
 String questionText =
 SpringContext.getBean(KualiConfigurationService.class).getPropertyString(ArKeyConstants.CustomerConstants.MESSAGE_CUSTOMER_WITH_SAME_NAME_EXISTS);
 boolean confirm =
 super.askOrAnalyzeYesNoQuestion(ArKeyConstants.CustomerConstants.GENERATE_CUSTOMER_QUESTION_ID, questionText);
 if (!confirm) {
 super.abortRulesCheck();
 }
 }
 return true;
}

The document in this example is a maintenance document, but the method works precisely the same given
a transactional document.

Logic determines, in this case, if the customer is new and if it shares the name of an existing customer. If
that is the case, then it asks a yes/no question about if the user meant to enter a second customer with the
same name. Note that question text is specified via a User Message; this is a best practice.

The question is asked and the yes/no answer returned through the super.askOrAnalyzeYesNoQuestion.
That needs to be handed an ID which uniquely represents every asking of this question – that, in conjunction
with information from the document itself, is used to identify the user response, which ends up in the
session. The other method argument is the question text itself.

KNS

228

It returns true or false. Note though, that if the response was false, that false is not returned, but instead
a method super.abortRulesCheck(); is called.

abortRulesCheck() is simply a convenience method that sets the forward to return to as the
BASIC_MAPPING:

public void abortRulesCheck() {
 event.setActionForwardName(RiceConstants.MAPPING_BASIC);
 isAborting = true;
}

If application requirements determine that a “no” answer should navigate the user to a different mapping
than “basic”, then abortRulesCheck should not be used, but instead, a false should be returned from
the method, and the correct action forward name should be set on the event property inherited from
PromptBeforeValidationBase.

There is no limit to the number of times super.askOrAnalyzeYesNoQuestion can be called in a single
pre-rules check; several questions can be chained together.

HTML Markup
In the question framework some markup support is present for formatting the question text. This markup
follows a custom syntax as opposed to HTML. Standard HTML characters will be escaped in the question
text. This is to prevent cross-site scripting attacks. The custom syntax for the supported tags is then
translated to the corresponding HTML when rendering the question page.

The custom syntax uses brackets to indicate tags as opposed to the standard HTML left and right angle
quote characters. Like HTML, an opening and closing tag must be present: e.g. [tag] ... [/tag]. The custom
syntax does not support empty body tags: e.g. [tag/].

The following is a list of the tags supported along with the corresponding HTML translation.

* All 1 character HTML tags
Examples:
[p] ... [/p] translates to <p> </p>
[b] ... [/b] translates to

* All 2 character HTML tags
Examples:

[br] ... [/br] translates to
 </br>
[tr] ... [/tr] translates to <tr> </tr>

[td] ... [/td] translates to <td> </td>

* The font tag with color specified as hex or by name
Examples:
[font #000000] ... [/font] translates to
[font red] ... [/font] translates to

* The table tag

Example:

[table] ... [/table] translates to <table> </table>

* The table tag with style class
Example:
[table questionTable] ... [/table] translates to <table class="questionTable"> </table>

* The td tag with style class

KNS

229

Example:
[td leftTd] ... [/td] translates to <td class="leftTd"> </td>

Note since the style tag is not allowed any CSS classes used must be declared in the Kuali style sheet (by
default kuali.css). In addition be aware that the one and two character tags are not verified as valid HTML
tags. In essence, the brackets are simply replaced by the angle quotes and outputted for these tags.

When forming the question text, consideration should be given to the text length. The question text is
sent as one of the request parameters on the URL which is limited by the browser supported max length.
Keeping the text under 1000 characters will be safe across all supported browsers.

Derived Values Setters
What about those instances when a client application has a document that needs to set values based on user
input but which do not require any further user prompts before the document is validated? This is where
org.kuali.rice.kns.web.derviedvaluesetter.DerivedValuesSetter steps in.

DerivedValuesSetter has one method:

public void setDerivedValues(KualiForm form, HttpServletRequest request);

Nothing is returned, and the arguments are basically the web form and the servlet request itself. Values
can be gathered from either of those sources, and then values can be set anywhere on the form – though it
would typically be expected that the document in the KualiForm would be where everything is set.

Actual examples of DerivedValuesSetter implementations is fairly rare. There is one example from KFS
3.0 which will be used as an example, associated with the Organization Maintenance Document. First, the
DerivedValuesSetter is set in the data dictionary for the document:

<bean id="OrganizationMaintenanceDocument" parent="MaintenanceDocumentEntry">
 <property name="businessObjectClass" value="org.kuali.kfs.coa.businessobject.Organization"/>
 <property name="documentTypeName" value="ORGN"/>
 <property name="promptBeforeValidationClass"
 value="org.kuali.kfs.coa.document.validation.impl.OrgPreRules"/>
 <property name="derivedValuesSetterClass" value="org.kuali.kfs.coa.document.web.OrgDerivedValuesSetter"/>
 ...
</bean>

The actual DerivedValuesSetter itself attempts to use the PostalCodeService to set the city and state of
the organization. Here’s a simplified version:

public class OrgDerivedValuesSetter implements DerivedValuesSetter {
 public void setDerivedValues(KualiForm form, HttpServletRequest request) {
 final Organization newOrg = (Organization) ((MaintenanceDocumentBase)((KualiMaintenanceForm)
 form).getDocument()).getNewMaintainableObject().getBusinessObject();
 final String organizationZipCode = newOrg.getOrganizationZipCode();
 final String organizationCountryCode = newOrg.getOrganizationCountryCode();
 if (StringUtils.isNotBlank(organizationZipCode) && StringUtils.isNotBlank(organizationCountryCode)) {
 final PostalCode postalZipCode =
 SpringContext.getBean(PostalCodeService.class).getByPrimaryId(organizationCountryCode, organizationZipCode);
 if (ObjectUtils.isNotNull(postalZipCode)) {
 newOrg.setOrganizationCityName(postalZipCode.getPostalCityName());
 newOrg.setOrganizationStateCode(postalZipCode.getPostalStateCode());
 }
 }
 }

}

KNS

230

Here, the new Organization business object is pulled from the maintenance document, and from that, the
zip code and country code are pulled. The code attempts to use the country and zip codes to find a postal
code, and if one is found, it sets the city and state of the document.

Both PromptBeforeValidation and DerivedValuesSetter classes offer KNS client application
developers the flexibility to prompt the user or set values on a document before that document goes into
validation.

KNS Notes and Attachments
On most documents written for Rice client applications, there exists a tab at the bottom of the page, the
Notes tab. This allows document editors to attach files to the page or write explanatory notes.

How are these notes supported?

org.kuali.rice.kns.bo.PersistableBusinessObject requires methods to add and programmatically
manipulate notes on the object. Therefore, all persisting business objects in client applications support the
addition of notes to them. This allows for a great amount of flexibility. A note, represented by objects of
class org.kuali.rice.kns.bo.Note, hold both text and links to attachments—as well as the note’s creator
and the time it was created. Therefore, such text and attachments can be associated with any persisting
business object.

However, most Rice applications use Notes mostly on documents. In this case, the Note is associated
with org.kuali.rice.kns.bo.DocumentHeader objects – the header of the document. The kul:notes tag
and org.kuali.rice.kns.web.struts.action.KualiDocumentActionBase jointly provide support for adding
these kinds of notes.

The use of these notes are also authorized by a number of KIM permissions. Before notes are added, the
user is checked for having the KR-NS Add Note / Attachment permission. These permissions should
always have a permission attribute associated with document name; optionally, a permission attribute for
attachmentTypeCode can be used.

There is also the KR-NS Delete Note / Attachment permission. Two permission attributes are required
for this: both the document name, and a record for the createdBySelfOnly attribute (a boolean attribute
that may prevent end users from deleting notes created by other end users).

Finally, there is the KR-NS View Note / Attachment permission. Just as with Add Note / Attachment
permissions, it requires a document type name and can have an optional attachmentTypeCode.

Note’s attachments are handled by org.kuali.rice.kns.service.AttachmentService. By default, they
attempt to move attachments into a directory specified by the attachments.directory configuration
property; under that, each object gets its own subdirectory, with the name of the subdirectory based on
the objectId of the business object.

KNS Javascript Guide
The KNS provides a number of ways to integrate Javascript into maintenance and transactional documents.
A configuration parameter allows a core set of Javascript files to be imported on all pages. External
Javascript files specific to a limited set of documents can easily be imported into pages using the data
dictionary. Several KNS tags also support response to Javascript events.

Setting the configuration parameter is easiest of all. In the {project name}-config.xml file for most client
applications, there already exists a generated line which looks like this:

KNS

231

<param name="javascript.files">kr/scripts/core.js,kr/scripts/dhtml.js,kr/scripts/documents.js,kr/scripts/
my_common.js,kr/scripts/objectInfo.js</param>

These scripts will be pulled in on every page which uses the kul:page tag. Note that the file path is relative
to the root path of the project. It bears mentioning, too, that the css.files property works the same way
for CSS files:

<param name="css.files">kr/css/kuali.css</param>

It’s not always the best idea to include Javascript pages, which the browser must parse, onto every single
page. If only certain documents or even a single document needs a given Javascript file, it is easiest
to simply tell the data dictionary entry to import the file. Here is an example from KFS’s Account
Maintenance Document (AccountMaintenanceDocument.xml):

<bean id="AccountMaintenanceDocument" parent="AccountMaintenanceDocument-parentBean"/>

<bean id="AccountMaintenanceDocument-parentBean" abstract="true" parent="MaintenanceDocumentEntry"
 p:businessObjectClass="org.kuali.kfs.coa.businessobject.Account"
 p:maintainableClass="org.kuali.kfs.coa.document.KualiAccountMaintainableImpl">

 ...
 <property name="webScriptFiles">
 <list>
 <value>../dwr/interface/SubFundGroupService.js</value>
 <value>../scripts/coa/accountDocument.js</value>
 </list>
 </property>
 ...
</bean>

Values are expected to be relative to the base application URL of the document. In this case of a
maintenance document, the URL is /application-name/kr/maintenance.do and the javascript files are
located under /application-name/scripts, hence the “..” in the directories.

Integrating Javascript with KNS tags
As will be covered in the KNS tags section, most controls in KFS documents are rendered using the
kul:htmlControlAttribute tag. That tag has three attributes which will be passed on to the rendered
HTML control: onblur, onclick, and onchange, which will be passed on to the rendered control. (Though
there is an exception to keep in mind: radio buttons will render what was passed in the onchange attribute
as onclick, to enhance support for a highly popular legacy browser.)

Extra buttons also support Javascript, specifically the “onclick” event handler. By setting the
extraButtonOnclick property of an org.kuali.rice.kns.web.ui.ExtraButton object to the text that should
appear in the button’s onclick call, the developer gains the ability to react, with Javascript, to the button’s
click.

Incorporating AJAX
Finally, we want to make our maintenance documents as interactive as possible to facilitate efficient user
experience. In this example, KFS’s AccountMaintenanceDocument wants to instantly give an error to
users if the sub fund group assigned to the account is restricted, based on other values of the account.

To accomplish this, in the data dictionary file for the AccountMaintenanceDocument, extra JavaScript
files are imported.

KNS

232

<property name="webScriptFiles">
 <list>
 <value>../dwr/interface/SubFundGroupService.js</value>
 <value>../scripts/coa/accountDocument.js</value>
 </list>

</property>

The ../scripts/chart/accountDocument.js is a JavaScript file that defines the functions
onblur_subFundGroup and checkRestrictedStatusCode_Callback. onblur_subFundGroup uses the
SubFundGroupService, and to that successfully, DWR needs to create a JavaScript/Java bridge for that
access. That's the purpose of the inclusion of the ../dwr/interface/SubFundGroupService.js file: it's not
a real JavaScript file at all, but instead a bridge created on the fly by DWR.

Maintainable fields can then trip off the AJAX call when certain events happen:

<bean parent="MaintainableFieldDefinition" p:name="subFundGroupCode"
 p:required="true" p:webUILeaveFieldFunction="onblur_subFundGroup"
 p:webUILeaveFieldCallbackFunction="checkRestrictedStatusCode_Callback"/>

In the above example, when the user leaves the UI field for the sub-fund group code, the
onblur_subFundGroup JavaScript function will be called, and that should populate the name of the sub-
fund group in the page under the UI field.

KNS Data Masking
It is very common for business objects to have fields which are not viewable to all users. The KNS provides
very easy ways to mask fields throughout client applications.

Naturally, since certain end users can see the field unmasked, certain other users can see the field partially
masked, and a final group of users views a fully masked field, KNS data masking it integrated with KIM
permissions. Specifically, there are two KIM permissions which are consulted by KNS data masking: KR-
NS Full Unmask Field and KR-NS Partial Unmask Field. Both of these permissions have two related
permission attribute records: one for the field name, and one for the business object component name. That
masking will automatically be applied to every use of the business object’s field: on inquiries, lookups,
maintenance documents, transactional documents, and screens.

<bean id="IdentityManagementPersonDocument-taxId-parentBean" parent="AttributeDefinition" abstract="true"
 p:name="taxId" p:forceUppercase="true" p:label="Tax Identification Number" p:shortLabel="Tax Id"
 p:maxLength="100" p:required="false">
 <property name="control">
 <bean parent="TextControlDefinition" p:size="20"/>
 </property>
 <property name="attributeSecurity">
 <bean parent="AttributeSecurity">
 <property name="mask" value="true"/>
 <property name="maskFormatter">
 <bean parent="MaskFormatterLiteral" p:literal="*********"/>
 </property>
 </bean>
 </property>
</bean>

Having a KIM permission set up is not enough, however. Client application developers also
have to associate masking with the field of the business object in the business object’s data
dictionary. That is accomplished by specifying the an attribute security object with the attribute.
IdentityManagementPersonDocument’s taxId attribute has an example of an attribute security
declaration:

KNS

233

The taxId field has a TextControlDefinition for the control, and that is followed by the attribute security
declaration.

The attribute security declaration has a parent of the “AttributeSecurity” bean. There are several boolean
properties available within the AttributeSecurity bean, but the mask and partialMask properties are the
most interesting. This declaration quite simply turns masking on – if the AttributeSecurity is left null or
if masking or partialMask are false, then no masking will be applied to the attribute.

Also specified in the example is the maskFormatter. There is also a partialMaskFormatter which can
be set. A bean of any class which implements org.kuali.rice.kns.datadictionary.mask.MaskFormatter
can be used for this declaration. The KNS also provides two default implementations:
org.kuali.rice.kns.datadictionary.mask.MaskFormatterLiteral, which simply replaces a value
which should be masked by a literal String (in the example above, “*********”), and
org.kuali.rice.kns.datadictionary.mask.MaskFormatterSubString, which replaces all but a substring
of the masked value as a String (this would be useful in partial mask situations).

The final piece of the puzzle is to get the KNS to consult the KIM permission and the business object’s
data dictionary when deciding whether or not to mask the field. Of course, the KNS renders maintenance
documents, inquiry pages, and lookups automatically – it is expected that masking will be consulted in
those situations.

This leaves only the issue of transactional documents and screens, where a client application developer
has to build JSP manually. The KNS provides a number of helper functions to do permission checks.

Table 5.4. KNS Helper Functions for Permission Checks

JSP Function Call Example Description

canFullyUnmaskField ${kfunc:canFullyUnmaskField
(businessObjectClassName, fieldName,
kualiForm)}

Checks KIM permissions to determine if the field
can be fully unmasked by the current end user.

canPartiallyUnmaskField
${kfunc:canPartiallyUnmaskField
(businessObjectClassName, fieldName,
kualiForm)}

Checks KIM permissions to determine if the field
can be partially unmasked by the current end
user.

getFullyMaskedValue
${kfunc:getFullyMaskedValue (className,
fieldName, kualiForm, propertyName)}

Uses the AttributeSecurity declaration to
determine the fully masked value.

getPartiallyMaskedValue ${kfunc:getPartiallyMaskedValue
(className, fieldName, kualiForm,
propertyName)}

Uses the AttributeSecurity declaration to
determine the partially masked value.

Of course, calling these functions – especially those which do KIM permission checks – can be
computationally expensive. It is always better to check if masking has been turned on by checking the data
dictionary attribute for the field first, like so:

<c:if test="${!empty attributeEntry.attributeSecurityMask && attributeEntry.attributeSecurityMask == true }">
 <c:set var="displayMask" value="${kfunc:canFullyUnmaskField(className, fieldName,KualiForm)? 'false' :
 'true'}" />
</c:if>

Alternatively, application developers can simply use the kul:htmlControlAttribute tag – as is the
recommended practice under any circumstance – to draw the field. kul:htmlControlAttribute already
utilizes the functions described above to make sure the field is properly masked, and as such represents
the easiest way to apply masking to fields in transactional documents and screens.

Further information about KIM permissions will be covered in KNS Authorizations. The
kul:htmlControlAttribute tag will be covered in the section on Tag Libraries.

KNS

234

KNS Authorization
In most client applications, there’s going to be a need to guard certain end users from certain functionality.
Certain documents may be locked down and only accessible to a small group of users. A tab on a certain
document may only be visible based on if a System Parameter is turned on. KNS provides a standard way
to turn on and off functionality based on conditions like these.

There are two sides to this functionality. One side is that these authorizations are integrated with KIM.
KNS provides a number of contexts where KIM permissions are called and checked, to see if the current
user is permitted to perform the action. Examples of such actions are looking up business objects, initiating
documents, adding notes to a document, using a screen, or viewing a field on an inquiry or a maintenance
document.

The other side is business logic associated with such authorizations. For instance, KIM permissions may
be set up to allow any user of the client application to initiate a given document. However, there may be a
business requirement that the document can only be initiated in the month of June. Since KIM permissions
cannot capture that kind of logic, KNS provides point where programmers can create such logic.

When building KNS documents, there are two classes associated with the document which make these
authorizations: the Document Presentation Controller and the Document Authorizer.

The Document Presentation Controller is where business logic authorizations are handled. These classes
must implement the org.kuali.rice.kns.document.authorization.DocumentPresentationController.
There are also interfaces for MaintenanceDocumentPresentationController and
TransactionalDocumentPresentationController, each tailored to their respective document families.

The Document Authorizer is the class that does the KIM permission checks. Once again, there is
an interface, org.kuali.rice.kns.document.authorization.DocumentAuthorizer, which all document
authorizers must implement, and it also has two sub-interfaces, MaintenanceDocumentAuthorizer and
TransactionalDocumentAuthorizer.

In cases where an authorization is checked by both presentation controller and authorizer, the
presentation controller is called first, and then it’s result is somehow sent to the authorizer. For instance,
DocumentPresentationController has a method, getActions(), which returns a Set of Strings, each
representing a standard document action (for instance, the Route document action). That Set is then sent
as an argument to the DocumentAuthorizer; the DocumentAuthorizer only performs KIM checks for the
actions that have been handed to it.

The classes for both the document authorizer and presentation controller are set in the document in the
data dictionary. Here’s an example, from the sample travel application:

<bean id="TravelRequest" parent="TravelRequest-parentBean"/>

<bean id="TravelRequest-parentBean" abstract="true" parent="TransactionalDocumentEntry">
 <property name="documentTypeName" value="TravelRequest"/>
 <property name="documentClass" value="edu.sampleu.travel.document.TravelDocument2"/>
 <property name="documentAuthorizerClass"
 value="edu.sampleu.travel.document.authorizer.TravelDocumentAuthorizer"/>
 <property name="documentPresentationControllerClass"
 value="edu.sampleu.travel.document.authorizer.TravelDocumentPresentationController"/>
 ...
</bean>

The classes for the authorizer is given to the documentAuthorizerClass property of the main document
bean, and the presentation controller class is specified in the documentPresentationControllerClass
property. This is the same for maintenance documents as well. Once these are specified, the proper classes
will be constructed at authorization invocation contexts automatically.

KNS

235

Common Document Authorizations
There are two authorizations which are common to all documents. In both cases, the document presentation
controller is called and then the authorizer if needed.

The first common authorization is the document initialization authorization.
DocumentPresentationController has this method to be overridden for business logic about when a
document can be initialized:

public boolean canInitiate(String documentTypeName);

The DocumentAuthorizer also has a:

public boolean canInitiate(String documentTypeName, Person user);

The DocumentAuthorizer checks the KR-SYS Initiate Document permission.

The second common authorization is handled by DocumentPresentationController#getDocumentActions:

public Set<String> getDocumentActions(Document document, Person user, Set<String> documentActions);

It passes its result to DocumentAuthorizer#getDocumentActions:

This authorization actually handles many common authorizations which need to be passed to the document
presentation layer. The Set returned by the DocumentAuthorizer is converted into a Map, where each
element in the Set becomes a key of the Map. That Map can then be accessed in any web page or tag
through the KualiForm.documentActions variable.

org.kuali.rice.kns.document.authorization.DocumentPresentationControllerBase defines a number
of protected methods which are inquired when the Set returned by getDocumentActions is built.
Builders of client applications are far more likely to override one of those helper methods than override
getDocumentActions from scratch.

Table 5.5. Document Presentation Controller Methods

DocumentPresentationControllerBase method Purpose Related Authorizer Permission

protected boolean canEdit(Document
document)

Determines if the document can be edited; if false
is returned, then all fields are in a read only state

KR-NS Edit Document

protected boolean canAnnotate(Document
document)

Determines if any ad hoc requests can be added
to the document.

protected boolean canReload(Document
document)

Determines if the document can be reloaded from
the database.

protected boolean canClose(Document
document)

Determines if the document can be closed,
returning the end user to the portal.

protected boolean canSave(Document
document)

Determines if the document can be saved. KR-WKFLW Save Document

protected boolean canRoute(Document
document)

Determines if the document can be routed to
workflow.

KR-WKFLW Route Document

protected boolean canCancel(Document
document)

Determines if the document can be canceled. KR-WKFLW Cancel Document

protected boolean canCopy(Document
document)

Determines if the document can be used as the
template for a new document.

KR-NS Copy Document

KNS

236

DocumentPresentationControllerBase method Purpose Related Authorizer Permission

protected boolean
canPerformRouteReport(Document
document)

Determines if the future requests workflow
report can be viewed.

protected boolean
canAddAdhocRequests(Document document)

Determines if the document can have ad hoc
routing requests added to it.

KR-NS Send Ad Hoc Request

protected boolean
canBlanketApprove(Document document)

Determines if the document can be blanket
approved.

KR-WKFLW Blanket Approve Document

protected boolean canApprove(Document
document)

Determines if the document can be approved. KR-NS Take Requested Action

protected boolean canDisapprove(Document
document)

Determines if the document can be disapproved. KR-NS Take Requested Action

protected boolean
canSendAdhocRequests(Document
document)

Determines whether the document will be
allowed to send itself to KEW to fulfill ad hoc
requests.

KR-NS Send Ad Hoc Request

protected boolean
canSendNoteFyi(Document document)

Sends an FYI to previous approvers if a note is
added.

KR-NS Send Ad Hoc Request

protected boolean
canEditDocumentOverview(Document
document)

Determines if the fields in the document
overview (title, etc) can be edited.

KR-NS Edit Document

protected boolean canFyi(Document
document)

Determines if the document can be FYI’d. KR-NS Take Requested Action

protected boolean
canAcknowledge(Document document)

Determines if the document can be
acknowledged.

KR-NS Take Requested Action

DocumentAuthorizer also contains a number of methods which are not subject to document presentation
controller input. These are:

Table 5.6. Document Authorizer Methods

Document Authorizer method Description KIM Permission Checked

public boolean canOpen(Document
document, Person user);

Determines if the current user can open the
document

KR-NS Open Document

public boolean canReceiveAdHoc(Document
document, Person user, String
actionRequestCode);

Determines if the person, for whom there is a
proposal to add an ad hoc routing request, can
receive that ad hoc routing request

KR-WKFLW Ad Hoc Review Document

public boolean
canAddNoteAttachment(Document
document, String attachmentTypeCode,
Person user);

Determines if the current user can add a note to
the document.

KR-NS Add Note / Attachment

public boolean
canDeleteNoteAttachment(Document
document, String attachmentTypeCode,
String createdBySelfOnly, Person user);

Determines if the current user can delete a note
on a document.

KR-NS Delete Note / Attachment

public boolean
canViewNoteAttachment(Document
document, String attachmentTypeCode,
Person user);

Determines if the current user can view a note on
the document.

KR-NS View Note / Attachment

Maintenance Document Authorizations
A couple of authorizations are specific to maintenance documents. The document presentation controller
and document authorizer diverge somewhat on which methods they support to control authorizations in
documents, so each will be treated separately, save for the one method they do share.

That one method is canCreate. Here is MaintenanceDocumentPresentationController’s declaration of the
method:

public boolean canCreate(Class boClass);

KNS

237

It takes the class of the business object, of which the end user is attempting to create a new record of
through a maintenance document. Business logic can be written to determine if new records of the given
class can be created through a maintenance document.

MaintenanceDocumentAuthorizerBase checks the KR-NS Create / Maintain Record(s) to see if a new
business object of the type can be created for its corresponding check.

MaintenanceDocumentPresentationController has two methods which do not have parallels in the
MaintenanceDocumentAuthorizer. They are:

public Set<String> getConditionallyReadOnlyPropertyNames(MaintenanceDocument document);

public Set<String> getConditionallyReadOnlySectionIds(MaintenanceDocument document);

To understand this, recall that if there is a field on a maintenance document which is unconditionally read
only, that is set within the data dictionary file for that maintenance document. Of course, it brings up the
question of what to do if a field or a section is read only some times based on certain business logic and
editable at others.

The answer to this has been provided by the MaintenanceDocumentPresentationController. A Set of
the property names of the fields or names of the sections which are, given the current condition of the
MaintenanceDocument argument, currently read only is returned from the method.

MaintenanceDocumentAuthorizer’s separate methods are similar to canCreate. The first is canMaintain,
which determines if the current user can edit an already existing business object. There is also
canCreateOrMaintain, which combines the KIM permission checks when the document is routed to
make sure the routing is valid.

Finally, MaintenanceDocumentAuthorizer has a method:

public Set<String> getSecurePotentiallyReadOnlySectionIds();

Unlike most methods in MaintenanceDocumentAuthorizer, this method was actually specified to be
overridden. It returns a Set of the names of sections on a maintenance document which may be read only
based on the user.

Maintenance Document/Inquiry Authorizations

Because maintenance documents and inquiries are rendered using the same code, authorizations which
control that rendering are shared between the two. There are two such permissions: KR-NS View Inquiry
or Maintenance Document Field and KR-NS View Inquiry or Maintenance Document Section. Since
maintenance documents allow editing in addition to viewing, there are two other permissions which
control the ability of end users to edit: KR-NS Modify Maintenance Document Field and KR-NS Modify
Maintenance Document Section.

These are used only as KIM permissions, and they are invoked directly within the rendering framework.
Their purpose is as follows:

• KR-NS View Inquiry or Maintenance Document Section will only render a whole tab section to those
with the permission.

KR-NS Modify Maintenance Document Section will only allow edits for a whole tab section to those
with the permission; otherwise, the fields within the section will be rendered as read only.

KNS

238

• KR-NS View Inquiry or Maintenance Document Field will only render a field to entities granted this
permission.

• KR-NS Modify Maintenance Document Field will only allow edits of a field to entities granted this
permission; the field will otherwise be rendered as read only.

If no KIM permission is specified for a given section or field, it is assumed that it is viewable on both the
Inquiry and Maintenance Document and the field will be editable on the Maintenance Document.

There are no document presentation controller methods to override if the ability to view or edit parts of an
inquiry or maintenance document based on business logic. If a client application has such a requirement,
adventurous technical personnel are invited to look at Maintainable#getRows and Inquirable#getRows.
The subject is otherwise outside the scope of this document.

Transactional Document Authorizations
There is only one major authorization which is added to
TransactionalDocumentPresentationController and TransactionalDocumentAuthorizer: getEditModes.
Much like DocumentPresentationController#getDocumentActions(),
TransactionalDocumentPresentationController#getEditModes() takes as an argument the document
the authorization is being asked of and returns a Set of Strings.

Unlike DocumentPresentationController#getDocumentActions(), though,
TransactionalDocumentPresentationController#getEditModes() does not have a set of standard
actions it returns. Instead, it is designed specifically to allow any kind of action through the web
presentation layer. There, the edit modes can be checked and acted upon in document specific ways.

How is this helpful? In maintenance documents, since the KNS handles the rendering in a standard way, it
is easy to turn sections on and off; KIM permissions or work through the maintainable can accomplish. In
transactional documents in the other hand, rendering is more manual. However, getEditModes provides
a way for the business logic layer to communicate information to the presentation layer.

To get the presentation layer to not display a section, then, a presentation controller might be written as so:

public ExampleDocumentPresentationController extends TransactionalDocumentPresentationController {
 public Set<String> getEditModes(Document document) {
 final ExampleDocument exampleDocument = (ExampleDocument)document;
 Set<String> editModes = new HashSet<String>();
 if (exampleDocument.dontShowExtraSection()) {
 editModes.add("NO_EXTRA_SECTION");
 }
 return editModes;
 }

}

Then, in Example.jsp, we may have code that looks like this:

<c:if test="${!KualiForm.editingMode['NO_EXTRA_SECTION']}">
 <kul:tab tabTitle="Extra Section" defaultOpen="true" tabErrorKey="${Constants.EXTRA_SECTION_ERRORS}">
 ...
 </kul:tab>

</c:if>

Edit Modes also go through the document authorizer, meaning that there is a permission associated with
them: KR-NS Use Transactional Document. Expected permission details are the document type and the
name of edit mode (in this example, “NO_EXTRA_SECTION”).

KNS

239

Other Authorizations
Finally, there are two permissions which do not affect documents but only business objects. They are:

• KR-NS Look Up Records, which determines if records of the given type can be
looked up by the current user. Client applications seeking to change this based
on business logic would likely override the business object’s implementation of
org.kuali.rice.kns.lookup.LookupableHelperService#getRows().

• KR-NS Inquire Into Records, which determines if the current user can inquire into
records of the given business object. Client applications seeking to change this
based on business logic would likely override the business object’s implementation
of org.kuali.rice.kns.lookup.LookupableHelperService#getInquiryUrl() or its implementation
of org.kuali.rice.kns.inquiry.Inquirable#getInquiryUrl(BusinessObject businessObject, String
attributeName, boolean forceInquiry), depending on the use case.

Overriding Document Authorizers
Document authorizers handle their calls to Kuali Identity Management in standard ways already. Because
this side of authorizations mostly relies on KIM configuration, there is very little reason to override
Document Authorizers. In fact, such overrides only occur to accommodate one of the two following
situations.

The first situation is when a client application-specific KIM permission which affects documents is
invoked. In this case, it is a best practice to give developers the ability to change this logic through the
document presentation controller, and then do the actual KIM permission call in the document authorizer.
Document authorizers were designed to be standard permission invocation contexts, and using them as
such makes development much easier.

The second situation is to add extra attributes to permission detail attribute sets, role qualifier attribute sets,
or to both. These extra attributes are sent on every KIM permission call performed by the authorizer. The
reason for doing this is to make sure that permissions and roles can qualify properly when the document
authorizer performs its call.

For example, imagine a role where the users are qualified by a client application specific field. The
document authorizer does not know where or how to gather the data for that field, and yet it must be sent
to KIM for the role members to be resolved correctly. Therefore, the

protected void addRoleQualification(BusinessObject businessObject, Map<String, String> attributes)

method should be overridden, and the attributes argument should be filled with values from the
businessObject (which may well be a document) to make sure the role is resolved correctly.

The same can be done for permission details:

protected void addPermissionDetails(BusinessObject businessObject, Map<String, String> attributes)

Finally, if a certain attribute is used both in finding the permission via the permission details and resolving
the role, then the following method should be overridden; it will add the attribute to both:

protected void addStandardAttributes(Document document, Map<String, String> attributes)

KNS

240

KNS Exception Handling and Incident
Reporting

Any complex Java system are subject to the occurrences of exceptions. From missed assignments which
cause NullPointerExceptions to network issues which cause SQLExceptions be thrown, the unexpected
happens—even in Rice applications.

Because of this, Rice builds on top of Struts’ exception mechanism to provide an easy way for exceptions
to be handled and for incidents to be reported to the proper maintenance group.

When a developer creates a Rice application, there should be several struts-config.xml files created. The
developer’s own struts-config.xml, of course, exists in {project_root}/src/main/webapp/WEB-INF. It will
automatically be created with the following entry:

<global-exceptions>
 <exception type="java.lang.Throwable"
 handler="org.kuali.rice.kns.web.struts.pojo.StrutsExceptionIncidentHandler"
 key="meaningless" />
</global-exceptions>

This tells Struts that if any exceptions—or even Errors for that matter!—
reach the Struts request processor, then it is to redirect the application to the
org.kuali.rice.kns.web.struts.pojo.StrutsExceptionIncidentHandler. This handler, in turn, redirects to
the following forward:

<action path="/kualiExceptionIncidentReport"
 type="org.kuali.rice.kns.web.struts.action.KualiExceptionHandlerAction">
 <forward name="basic" path="/kr/kualiExceptionIncidentReport.do" />
</action>

This forward does a number of things. First, it sends the
exception to org.kuali.rice.kns.service.KualiExceptionIncidentService#getExceptionIncident
to wrap the exception, and then reports the wrapped exception to
org.kuali.rice.kns.service.KualiExceptionIncidentService#report.

In the default implementation, org.kuali.rice.kns.service.KualiExceptionIncidentService#report
emails the mailing list specified in the KualiExceptionIncidentServiceImpl.REPORT_MAIL_LIST
configuration parameter. The rest of the mail can be configured by overriding the service bean’s message
template:

<bean id="knsExceptionIncidentService"
 class="org.kuali.rice.kns.service.impl.KualiExceptionIncidentServiceImpl">
 <property name="mailService"><ref bean="mailService"/></property>
 <property name="messageTemplate">
 <bean class="org.kuali.rice.kns.mail.MailMessage">
 <!-- The property place holder below must be specified in common-config-default.xml or any other
 KNS configuration file -->
 <property name="fromAddress">
 <value>${kr.incident.mailing.list}</value>
 </property>
 </bean>
 </property>
</bean>

Then the action redirects the user to the error page. In production environments, this page simply notes that
an error occurred and that it had been reported to the system’s administrators. Helpfully, it also provides

KNS

241

a text box so the user can describe the steps leading up to the incident. In development environments, this
page also displays the top stack trace of the exception which occurred.

With this reporting mechanism, incidents are properly reported and can be responded to and fixed.

KNS System Parameters
Often times, there are changes in functionality in a client application which functional users want to have
control over without an undue technical burden. For instance, a certain set of documents may be associated
with a bank; information about a bank is shown on the screen of each of the documents. If more documents
are among those to show bank information, functional users would love it if they could just create one
maintenance document and that change took effect. By coding with system parameters, such functionality
is achievable within the KNS.

A System Parameter is simply a business object which holds text. That text will be used in one of three
standard ways: simply as text itself, as an indicator of whether certain logic should be performed or not; or
to see if a value from logic falls within a certain set of values. The advantage of using System Parameters
is that they are easily changed since a maintenance document already exists as part of the KNS for them.

Parameters are used either for configuration, as described above, or for validation – for instance, if a field
on a document can only have one of a certain number of values, and those values need to be changed by
a functional user, then a System Parameter would be helpful.

It should be noted that the maintenance of System Parameters is only authorized to those granted the KR-
NS Maintain System Parameter KIM permission.

Getting text from a system parameter
The data from a system parameter can be retrieved through the ParameterService#getParameterValue
method, using the parameter’s name to identify the parameter. The parameter’s name has three
components: a namespace, a parameter detail type code, and a name field.

The namespace matches a KNS module’s namespace code, typically the namespace code of the module
which invokes the parameter. For instance, parameters called within the KNS itself use the base namespace
code of “KR-NS”

The name of the parameter should be unique within certain constraints: it must be unique with the
namespace, the parameter detail type code, and, as will be covered below, the application namespace. This
means that, for instance, if a client application is written with two modules, both modules could create a
system parameter with the same name because they would have different namespace codes. Indeed, system
parameters within the same module can be named the same thing if they have differing parameter detail
type codes.

The parameter detail type code is the most difficult to understand. To understand why, the method signature
of ParameterService#getParameterValue must be investigated.

public String getParameterValue(Class<? extends Object> componentClass, String parameterName);

Instead of a String namespaceCode and a String parameterDetailTypeCode, a Class is sent in. That class
typically represents the class which will make use of this specific system parameter. From that class is
determined both the namespace code and the parameter detail type code.

Finding the namespace code is typically done by looking at the package prefixes in the
module configuration. If a class needs to be in a different namespace, it can have the

KNS

242

@org.kuali.rice.kns.service.ParameterConstants.NAMESPACE annotation can be used to specify
something different.

There is also an @org.kuali.rice.kns.service.ParameterConstants.COMPONENT annotation which
can be used to specify a specific parameter detail type code. If that is missing, though, then an algorithm
inspects the class to see what parameter detail type code is most appropriate:

• If the class represents a transactional class, then the parameter detail type code will the
sample name of the class with the trailing expected “Document” removed. For instance,
org.kuali.kfs.fp.document.DisbursementVoucherDocument has a parameter detail type code of
“DisbursementVoucher”

• If the class represents a business object, then the parameter detail type code will be the simple class
name. Business object class “org.kuali.kfs.fp.businessobject.PayeeDetail” will have a parameter detail
type code of “PayeeDetail”

• Any other class will use the simple class name. This particular behavior will eventually be deprecated.

Based on these standards, it should be easy to tell what the parameter detail type code for a given parameter
should be.

The parameter’s value is then a simple lookup using the class making the call to ParameterService and
the name of the parameter:

final String parameterValue = KNSLocator.getParameterService().getParameterValue(this.getClass(),
 "SIMPLE_VALUE");

The parameterValue can then be used for whatever purpose the business logic requires.

Using an indicator parameter
An indicator parameter’s text is either “Y” or “N”; invoking that parameter as an indicator
parameter simply means that the text will be translated to its corresponding boolean
value. It is accessed through ParameterService#getIndicatorParameter, which works much as
ParameterService#getParameterValue does:

if (KNSLocator.getParameterService().getParameterIndicator(this.getClass(), "EXECUTE_LOGIC_IND")) {
 // do something...
}

Parameter Evaluators
Using parameter text is fine if there is only one value in the text. However, very often a parameter may
need to be associated with several pieces of text.

For instance, the first example of the System Parameters section talked about having bank information
applied to a collection of documents. It seems inefficient to create a bunch of indicator parameters for this.
It would be better to create one parameter with a number of document types in the txt.

This is easily done. The standard way is to list the document types in the text, separated by semi-colons
as so: FirstDocumentType;SecondDocumentType;ThirdDocumentType

While that could be retrieved via the ParameterService#getParameterValue method and then split, there’s
a much better way to examine the value: through the use of a parameter evaluator.

KNS

243

ParameterEvaluators are simply objects which take values from the environment and see if they made the
constraints of the parameter. It will do the parsing of the parameter itself and then attempt to match that
against an input value:

KNSServiceLocator.getParameterService().getParameterEvaluator(ParameterConstants.NERVOUS_SYSTEM_DOCUMENT,
 “BANK_DOCUMENT_TYPES”, document.getDocumentType()).evaluationSucceeds();

This looks at the KR-NS / Document / BANK_DOCUMENT_TYPES parameter, splits its semi-colon
valued, and then matches document.getDocumentType() against each of the values returned from the
split.

The constraint code of the system parameter, mentioned earlier, is invoked at this point.
evaluationSucceeds() will return true if document.getDocumentType() is within the values in the
parameter and the parameter constraint code is “A” (“allow”). If, on the other hand, the constraint code is
“D” (“deny”) and the document type is matched in the parameter’s values, a false will be returned – the
document type sent in is denied by the parameter.

(Parameter accessed through getParameterValue() and getIndicatorParameter() should simply set their
constraint code to “A”).

System parameters used for validation can add errors if the evaluation fails through the parameter value:

KNSServiceLocator.getParameterService().getParameterEvaluator(ParameterConstants.NERVOUS_SYSTEM_DOCUMENT,
 “VALID_DOCUMENT_TYPES”, document.getDocumentType()).evaluateAndAddError(document.getClass(),
 “errorPropertyName”, “error.invalid.document.type.message”);

In this example, if the value of document.getDocumentType() does not match the values in the parameter,
an error will automatically be added to errorPropertyName on the document, and the user message with
the key of error.invalid.document.type.message will be shown. Once against, the system parameter’s
constraint code is used to determine if the value succeeds or not.

The parameter evaluator can handle more complex situations as well. Take an example where a validation
needs to check that, if a business object has a certain “dispersementCode”, then a child business object has
a specific “reimbursementCode”. In this case, the system parameter’s value might look like this: A=Z

This means that if the dispursementCode of the parent is A, then the reimbursementCode of the parent
must be Z. This parameter can be used with the semi-colon to form a list: A=Z;B=X;C=K

The ParameterEvaluator call is again straightforward:

if (KNSServiceLocator.getParameterService().getParameterEvaluator(this.getClass(), "PARENT_CHILD_MATCH",
 parent.getDisbursementCode(), child.getReimbursementCode().evaluationSuceeds()) {
 // do something...
}

Here, getParameterEvalutor is given the parameter class, the name of the parameter, the code of the parent
and then the code of the child, but works as ParameterEvaluator worked before.

What if the parent’s disbursementCode allowed two different reimbursementCode’s? Then the parameter’s
text would look like this: A=Z,Y;B=X,Y;C=K,J,L

Commas separate the child’s distinct values. The invocation of the parameter evaluator is precisely the
same as the call above:

KNS

244

ParameterService#getParameterValues() can return a parsed version of a multiple value parameter, and
there is a version of ParameterService#getParameterValue() which takes in a constrained value for
parameters in the form of “A=B”; if given the value “A”, it will simply return “B”.

Calling missing System Parameters
All of the methods which use a parameter’s value – ParameterService#getParameterValue,
ParameterService#getIndicatorParameter, and ParameterService#getParameterEvaluator – will
throw an exception if the system parameter with the specified name cannot be found. If there is an
expectation in the code that a parameter may not be found in the database, then it is advisable to call
ParameterService#parameterExists method first. If the method returns true, then it is safe to use any of
the methods above to utilize the parameter’s value.

This is often useful in cases where there is a parameter that is different from document to document, but
for which there exists a default fallback case. It would work like this:

final ParameterService parameterService = KNSLocator.getParameterService();
if (parameterService.parameterExists(document.getClass(), "EXAMPLE_VALUE")) {
 return parameterService.getParameterValue(document.getClass(), "EXAMPLE_VALUE");
} else {
 return parameterService.getParameterValue(ParameterConstants.NERVOUS_SYSTEM_DOCUMENT, "EXAMPLE_VALUE");
}

In this example, ParameterService#parameterExists is called to see if there’s a parameter named
“EXAMPLE_VALUE” with the namespace and parameter detail code of “document”. If that exists, then
it returns the value of that parameter. If it does not exist, it uses the more general KR-NS / Document /
EXAMPLE_VALUE parameter.

Overriding Rice Parameters
Rice comes with a number of system parameters which affect KIM, the KNS, and KEW. They have
namespace codes “KR-IDM”, “KR-NS”, and “KR-WKFLW” respectively. These provide defaults for Rice
behavior which occurs in sample applications.

This poses a problem. If a client application is built to be used with a standalone Rice server, then each client
application would have to share the defaults set in these system parameters. To allow client applications
to have the ability to set these Rice system parameters separately from other client applications in a shared
Rice server, the application namespace code field was added.

For instance, Rice applications come with a system parameter KR-NS / All / DEFAULT_COUNTRY
which lists the default country code used in the application. If, for some reason, a client application
needed a separate DEFAULT_COUNTRY, a new system parameter would need to be created through the
maintenance document. The existing system parameter and the new system parameter would differ only
in their values and in their application namespace codes.

All Rice system parameters come with the default Rice application namespace code of “KUALI”. If the
client application’s version of the KR-NS / All / DEFAULT_COUNTRY had an application namespace
code matching that of the app.namespace configuration property of the client application, then that would
be used before the KR-NS / All / DEFAULT_COUNTRY parameter with the “KUALI” application
namespace.

Building Screens using the KNS Tag Libraries
The Kuali Nervous System handles the rendering of several pieces of standard functionality: maintenance
documents, inquiry pages, and lookups. However, that leaves two pieces of functionality where writing

KNS

245

JSP is required: on transactional documents and on non-document screens. However, even though JSP
coding is required in these cases, the KNS still provides a wealth of rendering functionality through the
use of tag libraries.

This section examines several categories of the most used tags that are provided by the KNS.

Implicit Variables
The KNS provides a number of implicit variables which can be used in the context of JSP pages. These
variables exist to give the web layer the ability to read variables from the other KNS layers.

For instance, the variable Constants is used to give web layer developers access to
org.kuali.rice.kns.util.KNSConstants, as so:

<c:if test="${KualiForm.documentActions[Constants.KUALI_ACTION_CAN_EDIT]}">
 Howdy, end user! You can edit this page!
</c:if>

Client applications often overload this variable to hold not only KNS constants but application
specific constants as well. There is also a RiceConstants variable which holds the constants in
org.kuali.rice.core.api.util.RiceConstants, a KewApiConstants which holds all of the constants
in org.kuali.rice.kew.util.KewApiConstants, and a PropertyConstants which holds the values in
org.kuali.rice.kns.util.KNSPropertyConstants.

All configuration properties are loaded into a variable ConfigProperties

<p>
application namespace is <c:out value="${ConfigProperties['config.namespace']}" />
</p>

The entirety of the data dictionary as also exposed in the map constant DataDictionary. The keys for this
map are either the simple class name of a business object:

<c:set var="countryBODataDictionaryEntry" value="${DataDictionary['CountryImpl']}" />

Or, for documents, the KEW document type name:

<c:set var="identityManagementPersonDocumentEntry"
 value="${DataDictionary['IdentityManagementPersonDocument']}" />

Data dictionary values can then be accessed via JSP EL.

The final implicit variable to mention is KualiForm. This is the Struts form for the current page. For JSP
pages supporting transactional documents, values from the document can be read through KualiForm. As
such, this implicit variable is practically the most used.

These implicit variables work together to support the various tags the KNS provides.

Tags for Layout
KNS applications have a standard look, and client application developers will want to preserve that look.
KNS layout tags provide an easy way to use the KNS look and feel.

First of all, JSP pages using tag libraries need to have @taglib directives added to the page:

KNS

246

The KNS tag library is typically imported with the kul: prefix:

Thankfully, a collection of common JSTL, Struts, and Rice tags are readily imported using a single import
at the top of any custom developed JSP page:

Having done that, the developer can use the kul:page tag to draw the main outline of the page, such as in
this example, from KFS’s Format Disbursements page (formatselection.jsp):

The kul:page simply draws the frame around the page. It has two required attributes: the docTitle, which
is the title it will use for the page in the gray bar which runs along the top, and the transactionalDocument
attribute, which should only be true if the JSP page is supporting a transactional document.

This example uses a number of other attributes as well. The headerTitle is what will show in the browser’s
title bar. showDocumentInfo will treat the page as a document page and will attempt to, for instance,
show a link for document type. The errorKey is the key for errors which should be associated with the
top level of the page (in this case, it likely should have been neglected). Finally, the htmlFormAction is
the url to the action that the form within the page – every page is assumed to have HTML form data, so
an HTML form variable is constructed for it – should post to.

There’s also a convenience tag that encapsulates the kul:page with all of the attributes needed for
documents turned on: the aptly named kul:documentPage, exemplified here from the sample travel app:

The only required attribute here is documentTypeName; the docTitle will display the label from the data
dictionary entry associated with this document, and the value for the transactionalDocument attribute
will also be determined from the data dictionary entry. All other attributes will simply be passed along
to the kul:page tag.

The kul:documentPage tag makes sure that not only is the document title splashed across at the top of the
page with a light gray, scrubbed looking background graphic, but also shows common read-only document
information: document number, KEW workflow status, initiator, and when the document was created.

The next most distinctive visual feature of KNS pages are the tabs which visually organize related
information (through headers, it organizes the information for sight disabled end users as well). The KNS
provides a main tag to draw these: not surprisingly, it’s the kul:tab tag.

Here is an example of the tag, again from travelDocument2.jsp, which is part of the sample travel
application:

There is only one required attribute for the tab: defaultOpen, which declares whether the tab should be
initially rendered as open or closed (all tabs can be opened or closed once rendered). However, this example
gives us a number of other useful attributes as well. tabTitle is the name that will appear in the tab; while
not required, best practice suggests that developers provide one so the tab have a label even when closed.
tabErrorKey lists the keys that will be associated with this tab; when those errors are rendered, their
messages will be associated with the given tab.

Another thing to notice in the example was the inclusion of a div with class “tab-container”. In practice,
practically all KNS tabs have such a tab included. This leads to the natural question of why the tab is not
part of the tag itself.

The div with a class of “h2-container” draws a header stripe at the top of the tab, with a black background
and white text. This distinctive visual element should be used to mark off sub-sections of the tab.

There is also a kul:subtab. This visually provides an in-set tab, typically set off with a stripe that has a gray
background and bolded black text. KIM’s Identity Management Person Document, has such an example.
It includes the tag personContact.tag, which builds a tab:

This splits the various sub-sections into distinctive visual elements.

KNS

247

The only required attribute for the tag is width, which specifies the width of the sub-element (kul:subtab’s
are sometimes shorter than their surrounding tab – while they are always rendered with some padding, the
amount of padding and thus the amount of visual separation can be increased as width is decreased).

Sub tabs often have titles, specified through the subTabTitle attribute. Whereas all tabs have hide/show
buttons, they can be turned off from sub tabs through the use of the noShowHideButton attribute.

Finally, sub tabs are often associated with lookups, they have two attributes, lookedUpBODisplayName
and lookedUpCollectionName, which allow results of lookups to be displayed in the sub tab itself.

Astute readers will have noticed an important visual point about tabs: the tab is rendered with the tab title
in an offset visual element (like the tab in a file folder) and behind it is the gray background of the tab
above. However, the top tab does not have a tab above it. Therefore, for that special top tab, there is a
kul:tabTop which is identical to the kul:tab tag, save that it visually looks like the top tab. Also, to round
off the bottom tab, there is a tag, kul:panelFooter, which takes no attributes, which will round off the
bottom corners of the set of tabs.

It should be noted that for documents, general practice is that the top tab provides the standard set of fields
that all KNS documents have: the document description, which is a required field, as well as a text area
for the document explanation and an internal Org Doc #. Since this is standard, the KNS provides a tag,
kul:documentOverview, which displays these fields and which is commonly the top tab of the document
(thus obviating the need for the developer to use the kul:tabTop tag).

Practically all documents will share this line of code as the top tab. The editingMode attribute is required,
but will practically always be the value of KualiForm.editingMode.

Armed with these visual layout tags, client application developers are ready to start filling in pages with
form controls.

Tags for Controls
Certainly, controls can be hard coded in JSP files as HTML. However, the KNS provides several tags which
provide standard functionality to controls – thus preserving the flexibility of declaring control information
in the data dictionary as well as supporting masking, accessibility, and a number of other concerns without
the application developer needing to concern with those details.

The basic tag for showing a field is kul:htmlControlAttribute. Dozens of examples can be found in even
the simplest Rice client application. Here is the tag being used in travelDocument2.jsp in the Rice sample
travel application:

<table width="100%" border="0" cellpadding="0" cellspacing="0" class="datatable">
 <tr>
 <kul:htmlAttributeHeaderCell labelFor="document.traveler" attributeEntry="${travelAttributes.traveler}"
 align="left" />
 <td><kul:htmlControlAttribute property="document.traveler"
 attributeEntry="${travelAttributes.traveler}" readOnly="${readOnly}" /></td>
 </tr>
 <tr>
 <kul:htmlAttributeHeaderCell labelFor="document.origin" attributeEntry="${travelAttributes.origin}"
 align="left" />
 <td><kul:htmlControlAttribute property="document.origin" attributeEntry="${travelAttributes.origin}"
 readOnly="${readOnly}" /></td>
 </tr>
 ...
</table>

This example has two controls which will appear on the form: one for document.traveler and one for
document.origin. This is set via the property attribute; that attribute is required. Also required is the

KNS

248

attributeEntry attribute, which takes in the DataDictionary attribute entry for the attribute that is being
displayed:

<c:set var="travelAttributes" value="${DataDictionary.TravelRequest.attributes}" />

There are also many optional attributes. One is seen in both examples above: readOnly, which determines
if the field will simply have a read only version of its value displayed, or a control will be displayed. This
attribute allows a lot of flexibility about when a field will be readOnly or not. Typically, though, readOnly
is determined based on the whether there’s an action “can edit” in the form’s documentActions map:

<c:set var="readOnly" value="${!KualiForm.documentActions[Constants.KUALI_ACTION_CAN_EDIT]}" />

As covered earlier, masking is handled automatically if the field is read only. If the value of the property
should not be displayed at all, the attribute readOnlyBody can be set to true and the value of the tag’s
body is displayed if the control attribute is rendered read only.

Among the other optional attributes are html attributes which are applied directly to the drawn control,
such as onblur, onclick, and onchange. There is a styleClass, which is where a CSS class can be specified
to render the value or control in.

Note that the type of control is not specified here. The data dictionary entry will be referred to, and that
control definition will used to determine which control will be rendered. Select controls will use a values
finder to find the values to display in the drop down. This means that controls can be changed without
altering the JSP, which is a major strength.

The only exception to be aware of is that if a text control document contains a date, there is an attribute,
datePicker, should be set to true.

Also in the example, the tag kul:htmlAttributeHeaderCell is used. It displays the label for the
field in a <td> cell. There aren’t officially any required attributes, though one of the following three
would have a value set: attributeEntry, attributeEntryName, and literalLabel. literalLabel will
force the header cell to simply display the given String. attributeEntry, on the other hand, will use
a data dictionary attribute to find an appropriate label; it needs to be handed the proper label much
as the kul:htmlControlAttribute uses. attributeEntryName takes the full name of a data dictionary
attribute (such as “DataDictionary.TravelRequest.attributes.origin”). The label will come from the data
dictionary, though the tag will do all of the lookup itself.

There are a number of other attributes exist which control how the html of the <td> tag will render. width,
rowspan, colspan, align, and labelFor, as well as several others exist to customize the look of the tag.

What if a label is being rendered outside a table? For that, there is a kul:htmlAttributeLabel
tag. It allows attributeEntry and attributeEntryName attributes which work just as they do in
kul:htmlAttributeHeaderCell. literalLabel is not supported (since it is assumed that a literal label would
simply be written into the JSP).

This too has a number of other attributes. Developers should consider three of these attributes.
useShortLabel uses the short label in the data dictionary attribute instead of the regular label. noColon is
a boolean. If it is set to true, then there will not be a colon rendered after the label. Finally, forceRequired
means that a symbol will let end users know that the field is required.

There is also a convenience tag which belongs on every JSP page supporting a transactional tag, right after
the kul:documentPage tag: kul:hiddenDocumentFields. Here is its use in travelDocument2.jsp:

<kul:documentPage showDocumentInfo="true" htmlFormAction="travelDocument2"

KNS

249

 documentTypeName="TravelRequest" renderMultipart="true" showTabButtons="true" auditCount="0">
<kul:hiddenDocumentFields />

This will make sure that the docId and document.documetNumber will be preserved to repopulate the
form after an action occurs on the document by creating HTML hidden controls to carry the values through
the POST.

There are two optional attributes, used to ask for the saving of more variables.
If includeDocumentHeaderFields has a value of true, it will make sure that
document.documentHeader.documentNumber is saved. Setting includeEditMode will preserve the
edit modes determined for the document.

Finally, kul:errors should be mentioned. As previously seen, errors are typically associated with pages
and tabs via errorKeys. If an error should show up not associated with a page or a tab but rather with
some other visual element, then the kul:errors tab can display those.

There are no required attributes. If only the errors with a certain set of keys should be displayed, then
the keyMatch attribute should be set. Otherwise, all remaining messages will be rendered. Forcing the
rendering of all remaining messages can be forced by setting the displayRemaining attribute to true. An
errorTitle, warningTitle, and infoTitle can also be set to separate the message sections. Defaults are
provided if these attributes are not set.

Tags for KNS Functionality
Developers of transactional documents or screens will often want to hook into KNS functionality, such as
inquiries and lookups. A set of tags makes this easily accomplished.

For instance, in Rice client applications, many controls have a question mark icon next to them, which
allows the user to do a lookup and return the value into the control. To get one of those to display, the
kul:lookup tag must be utilized, precisely as it is on travelRequest2.jsp:

<kul:htmlControlAttribute property="travelAccount.number" attributeEntry="${accountAttributes.number}"
 readOnly="${readOnly}" />
<kul:lookup boClassName="edu.sampleu.travel.bo.TravelAccount" fieldConversions="number:travelAccount.number" />
<kul:directInquiry boClassName="edu.sampleu.travel.bo.TravelAccount"
 inquiryParameters="travelAccount.number:number" />

Right after the travelAccount.number control is rendered, the kul:lookup tag will render the question
mark lookup icon.

It takes the class of the business object it will perform a lookup against through the required boClassName
attribute. The fieldConversions attribute is not strictly required but often used: it is a list of attributes from
the result business object matched by a colon with the field that it should populate in the document upon
return. kul:lookup also has support for a lookupParameters tag, which will populate the lookup with
values from the document. There are a number of other optional attributes as well.

Also in this example is the kul:directInquiry tag. If the travelAccount.number field is filled in, then clicking
the directInquiry tag will open up an inquiry page for the value given.

It, too, needs the class of the business object it is inquiring on through the required boClassName attribute.
The non-required inquiryParameter attribute tells the tag which values to take from the document to use
as keys for the inquiry page.

What if the value is read only and an inquiry should be displayed? In that case, the kul:inquiry tag should
be used. Here is an example from the KFS procurementCardTransactions.tag:

KNS

250

<kul:inquiry boClassName="org.kuali.kfs.fp.businessobject.ProcurementCardTransactionDetail"
 keyValues="documentNumber=${currentTransaction.documentNumber}&financialDocumentTransactionLineNumber=
${currentTransaction.financialDocumentTransactionLineNumber}" render="true">
 <bean:write name="KualiForm" property="document.transactionEntries[${ctr}].transactionReferenceNumber" />

</kul:inquiry>

The kul:inquiry works much like the <a> tag it renders. Any text within the body of the tag is rendered
as the text for the link. It, too, requires the boClassName attribute which specifies which business object
will be rendered on.

It also requires two other attributes, keyValues and render. render is an odd attribute. It decides whether
the inquiry link will be rendered or not. This allows some display level logic to check whether the field
should actually be rendered on. If render is false, then only the text of the tag’s body will be rendered.

keyValues hands in the query string to pass to the inquiry page, theoretically with the keys the inquiry
page will need to find the record to display.

kul:inquiry has no optional attributes.

A variation of the kul:lookup tag also exists, which supports multiple value lookups,
kul:multipleValueLookup. Here is an example from KC’s awardKeywords.tag:

<kul:multipleValueLookup boClassName="org.kuali.kra.bo.ScienceKeyword" lookedUpCollectionName="keywords"
 anchor="${tabKey}"/>

Once again, boClassName of the business object class to be looked up is a required attribute. Also required
is the lookedUpCollectionName attribute. Once the multiple values are returned from the lookup, the
KNS will attempt to populate the named collection on the document with the values.

In this example, anchor is an optional attribute. It gives the link to return to an anchor to navigate to when
it returns to the page. This is helpful on long pages. There is also an attribute lookedUpBODisplayName
which will control the label for the business object being looked up.

Last, but by no means least, among these tags is the reliable kul:documentControls tag. Every JSP
supporting a transactional document will include this tag, as it draws the row of controls on the very
bottom of the page, thereby allowing end users to route, save, approve, cancel, and otherwise work with
the document. travelRequest2.jsp uses it:

<kul:panelFooter />
<kul:documentControls transactionalDocument="false" />

Properly utilized this control appears just beneath the kul:panelFooter. The only required attribute is the
transactionalDocument attribute, though, ironically, that attribute is never used within the tag. It therefore
does not matter if false or true is entered as the value.

The other main attributes to be aware of support adding extra buttons. There are two mechanisms. In
the first, by specifying the extraButtonSource, extraButtonProperty, and extraButtonAlt attributes,
a single extra button will be rendered. For the image source, it will use extraButtonSource, with the
alternate text specified by extraButtonAlt. The extraButtonProperty specifies the property of action to
call (for instance, the property of the route button is “methodToCall.route”).

That’s fine for one extra button, but what if multiple extra buttons need to be added? The KNS supports
this as well. org.kuali.rice.kns.web.struts.form.KualiForm has a List property named extraButtons.

KNS

251

The List is made up of org.kuali.rice.kns.web.ui.ExtraButton objects. Each ExtraButton object,
in turn, has an extraButtonProperty, extraButtonSource, and extraButtonAltText properties which
can be set. Those properties have the same effect as the extraButtonSource, extraButtonProperty,
and extraButtonAlt attributes covered above. ExtraButton objects have two extra properties as well:
extraButtonParams and extraButtonOnclick which provide the ability to hand extra parameters to the
action and the ability for javascript to react to the button click respectively.

The form can have its extraButtons list populated before reaching the presentation layer. Most often, this
is accomplished by simply overriding the form’s getExtraButtons() method. Then the extra buttons are
simply sent from the form into the kul:documentControls tag, as so:

<kul:documentControls transactionalDocument="false" extraButtons="${KualiForm.extraButtons}" />

The kul:documentControls tag will then render all of the extra buttons. Given its extra flexibility, this
is the preferred method of adding extra buttons.

Useful Pre-Created Tabs
Finally, the KNS provides a number of tabs that happen to exist on most documents.

For instance, practically every document has the ability to add notes. If that functionality is to be turned
off, it’s much easier to do in the data dictionary – so frankly, every document should have a place to
enter notes. Documents should also have the route log of the document, and a place where ad hoc KEW
recipients can be added. The KNS makes adding all of these tabs easy:

<kul:notes />
<kul:adHocRecipients />
<kul:routeLog />

The names of the tags are self-explanatory; and as easy as that, these three standard tabs have been added
to the document.

252

Chapter 6. KRAD

KRAD Overview
New for Rice 2.0, the Kuali Rapid Application Development (KRAD) framework eases the development of
enterprise web applications by providing reusable solutions and tooling that enable developers to build in
a rapid and agile fashion. KRAD is a complete framework for web developers that provides infrastructure
in all the major areas of an application (client, business, and data), and integrates with other modules of
the Rice middleware project.

KRAD expands the Kuali development platform and will eventually replace the Kuali Nervous System
(KNS). KRAD supports the KNS document types - Lookups, Inquiries, and Maintenance pages - while
it also provides more flexibility in user interface layouts, for example, beyond the "vertical" tab section
and collection layouts typical of KNS-based applications. In addition, KRAD eliminates the need for a
transaction document type, as maintenance documents can now handle full transactional interactions.

KRAD differs from KNS in some key ways:

• The KNS look-and-feel was targetted at administrative users, KRAD enables rich web applications
targetted at a wide range of user types.

• KNS has little built-in rich user interface support whereas KRAD includes this.

• KNS is Struts 1.x based whereas KRAD is Spring-MVC based.

KRAD uses the following:

• Spring Beans and Expression Language

• Apache Tiles as the templating engine

• Fluid Skinning System for CSS

• jQuery as the javascript library, including jQuery UI widgets

• And other plugins providing functionality, such as AJAX

Key KRAD Features
Built upon a rich JQuery library of standards and Fluid Skinning System's (FSS) set of cascading style
sheets, KRAD provides a set of rich user Interface components, such as the following. Note that jQuery
themes are widget-oriented, while the FSS provides support for whole pages and applications, so they are
compatible with each other.

The key KRAD User Interface Framework (UIF) components include, but are not limited to, the following:

• Navigation objects: Left menu and Horizontal tabs navigation

• Layout managers: Grid, Box, Table and Stacked

• Widgets: Light-box, Disclosure, Breadcrumb, Date picker, Growl, Direct inquiry, Inquiry, QuickFinder,
RichTable, Suggest, Tabs, Tree

KRAD

253

• Controls: Checkbox, Checkbox group, File, KIM Group, Hidden, Select, TextArea, Text, User

• Containers: Group, Link group, Navigation group, Tab group, Tree group

• Fields: Input field, Field Group, Action, Ajax Action, Blank, Data, Errors, Generic, Header, iFrame,
Image, Label, Link, Lookup Input, Message

• View Types: Lookup, Inquiry, Maintenance, Transactional

• General Features: Constraints (simple, valid characters, case, must occurs, dependency, custom),
Watermarks, Help summary & description, Messages (constraint, instructional, required, error,
informational, warning), Validation (client-side, dirty fields validation, exception handling - incident
page), Remote fields, Progressive Disclosure, Audo Code-name translation (auto-completion), Dialogs
(questions and prompts), Focus and anchoring handling, Tabbing order, Field queries, Information
properties, Hidden properties, Default Values, Disabled, Alternate and Additional Display Properties,
Read-Only fields request override, Attribute security and masking, Add/Delete line handling, Form
Edit Modes, Property editors, Property replacers, Component refresh, Component Modifiers, Collection
filters, Show/Hide inactive, EL Language for XML Config, Support for all JS events, Integration with
KIM and KEW.

For example, see the information below on KRAD's Input field, and how this field can be grouped with
others of the constructs listed above to make for a richer UI experience than what was possible in KNS.

An Input field enables user input. This means that this "grouped" field control will display an entry field for
user input, and can optionally include instructions, a watermark, constraint text, a lookup widget, inquiry
widget, and/or help widget, and includes a place for error messages associated with the field to appear.
This could be considered the most complex of all fields, and additional information on this field can be
found in the Developers' Guide.

KRAD

254

Figure 6.1. Input Field - Grouped

The information below provides additional conceptual and relational information on the KRAD
architecture, classes and user interface patterns that are supported "out-of-the-box.

KRAD

255

KRAD Conceptual view

Figure 6.2. KRAD Conceptual View

For additional high-level views of information on the layout managers and fields, see the KRAD Users'
Guide.

KRAD

256

KRAD Relational View
Figure 6.3. KRAD Relational View

KRAD Data Dictionary
(Need direction on what of the KNS information should be copied here and what other new information
should be included.)

KRAD enhancements to the Data Dictionary include, but are not limited to, the following:

• Simple Constraints, Min/Max

• Valid Characters Constraints

• Dependency Constraints

• Lookup Constraints

• Conditional Logic Constraints

• Occurrences Constraints - Collection size constraints

• Constraints on the client side

• Changing Error Messages

• Custom Constraints

In the earliest versions of the Kuali Nervous System, it was recognized that forcing developers to write
Java-based rules to check if a required field was filled in or if it matched a date pattern was a hefty load
of work that easily could be transferred to the data dictionary.

KRAD

257

Every AttributeDefinition defined for a property of a data object had the ability to be paired with
a validation. For instance, let's take a generic date field from KFS's org/kuali/kfs/sys/businessobject/
datadictionary/GenericAttributes.xml file.

Code snippet example follows:

1. <bean id="GenericAttributes-genericDate" parent="GenericAttributes-genericDate-parentBean"/>
2. <bean id="GenericAttributes-genericDate-parentBean" abstract="true" parent="AttributeDefinition">
3. <property name="name" value="genericDate"/>
4. <property name="forceUppercase" value="false"/>
5. <property name="label" value="Generic Date Style Attribute"/>
6. <property name="shortLabel" value="GenericDate"/>
7. <property name="maxLength" value="22"/>
8. <property name="validationPattern" ref="DateValidation"/>
9. <property name="control" ref="DateControl" />
10. <property name="formatterClass" value="org.kuali.rice.kns.web.format.DateFormatter"/>
11. </bean>

It's a simple enough example, but lines 7 and 8 pack quite a bit of power. Together, they limit the length
of the field to a size which can fit in the database (evidently twenty-two characters) and they add the
DateValidation, which requires that any user input fits a certain pattern defined as a regular expression.
Two lines of configuration, and the developer gets a fair amount of error checking.

That's wonderful, of course, but it has limits. For example, there's no way to only run constraints based
on the values present in other attributes. There wasn't a general way to enforce a data type for a user input
value. There wasn't a way to say, for instance, that one or another field was required - either a field was
required or it wasn't.

Such logic, not that much more complex, all required a Java-based rules solution. Much more complex
logic is available than ever before. Not only that, but it can be enabled to work on the client side via
JavaScript as well.

Finally, for even more flexibility, the processors which act on the constraints have been pulled out into
injectable classes - meaning that applications can override the logic for a constraint if needed. Furthermore,
constraints need not act only on AttributeDefinitions; new interfaces have been developed which allow
any configuration class to participate in being validated. Obviously, there's a lot of functionality to cover -
from the classic constraints which continue on in the framework to the powerful constraints that the Kuali
Student team contributed to KRAD.

The information below includes an overview of the specific "built-in" KRAD constraints available to
developers. We'll also cover the architecture of the constraint framework, with a special emphasis on how
constraint logic may be overridden, how new constraints would be constructed, and how non-attributes
could have Constraint logic built for them.

Information on each of the KRAD-packaged constraints is below, followed by a look at the constraint
architecture itself.

Simple Constraints, Min / Max
As is covered in more detail in the Constraint Architecture section that follows this this
documentation of the constraints packaged with KRAD, every constraint in KRAD implements the
org.kuali.rice.kns.datadictionary.validation.constraint.Constraint interface. This interface is a simple
marker interface. Children of that interface tend to define the data they would need from the configuration
to figure out if the value put into the attribute is valid or not.

KRAD

258

For instance, in the GenericAttributes-genericDate example in the introduction section above, the
maxLength property is set to 22. One would expect a length-based constraint to require a getMaxLength()
method which could then be fed to the Constraint to find the maximum length.

org.kuali.rice.kns.datadictionary.validation.constraint.SimpleConstraint defines what we might call a
"nervous system classic" constraint. It is built from normal fields on AttributeDefinition - required;
maxLength and minLength (the latter has been added as part of KRAD); exclusiveMin and exclusiveMax;
and finally, minOccurs and maxOccurs, which will be covered in more detail below.

The required constraint, of course, means that some value must be set for the attribute. The maxLength and
minLength attributes typically apply to String data, which must be a certain size. Likewise, exclusiveMin
and exclusiveMax apply to numeric data which must fit within some set range.

Valid Characters Constraints
Another hold over from the Kuali Nervous System constraints, ValidCharactersConstraint exists to make
sure that a String value matches against a regular expression. For instance, let's say that a KRAD
application requires that all phone numbers must be in the form of (###) ###-#### (Evidently, the attribute
does not yet accept international numbers...but as developers, we must rest assured that's coming, and is
the requirement.)

In the data dictionary for that attribute, the following could be set.

Code snippet example follows:

1. <bean id="DataObject-phoneNumber" parent="AttributeDefinition">
2. <property name="name" value="phoneNumber" />
3. <property name="validCharactersConstraint">
4. <bean class="org.kuali.rice.kns.datadictionary.validation.constraint.ValidCharactersConstraint">
5. <property name="value" value="\(\d{3}\) \d{3}-\d{4}" />
6. </bean>
7. </property>
8. </bean>

In lines 3 through 7, we set the validCharactersConstraint property on the AttributeDefinition, handing
the bean we just created a regex which should match the phone number pattern which the requirements
say all phone numbers should match.

This regex is passed in as the value property to the ValidCharactersConstraint bean.
A number of ValidCharacterConstraints are defined in org/kuali/rice/kns/bo/datadictionary/
DataDictionaryBaseTypes.xml. Among those are "UrlPatternConstraint", "DatePatternConstraint",
"CreditcardPatternConstraint", "NonWhitespacePatternConstraint", "IntegerPatternConstraint",
"PhoneUSPatternConstraint", and "TimePatternConstraint", as a mere sampling. As of the time of this
writing, the constraints only worked for javascript side validation. However, work was being done to build
server side equivalencies of all of these patterns.

Finally, note that the ValidCharactersConstraint has a second property, "jsValue". In most cases, Java's
regular expression engine (ValidCharactersConstraint uses the built-in regular expression engine) will
accept the same expressions as the JavaScript engine. That's good, because the same regular expression
can be passed to the client and handled client side, as will be covered in more detail soon.

The best idea is to keep validation regular expressions to the use of broadly supported features (outside
of POSIX, which Java supports but which most JavaScript engines do not), and keep on eye on engine
comparison pages such as http://en.wikipedia.org/wiki/Comparison_of_regular_expression_engines. The
KRAD team is attempting to avoid differences, though, and create a single pattern for both JavaScript
and Java.

KRAD

259

Dependency Constraints
Dependency constraints are used to define a set of PrerequisiteConstraint dependencies on an attribute. A
PreRequisiteConstraint is simply used to denote that some other attribute be required. If the attribute is
non-empty and has dependency constraints, each pre-requisite constraint attribute must also be non-empty.
Note the prerequisite constraint is also used in the MustOccurConstraint. Unlike the MustOccurConstraint
which requires that a minimum or maximum number of prerequisite constraints be satisfied, a dependency
constraint requires that all pre-requisite constraints be satisfied.

A code snippet example follows:

1. <bean id="DataObject-phoneNumber" parent="AttributeDefinition">
2. <property name="name" value="phoneNumber"/>
3. <property name="dependencyConstraints">
4. <list>
5. <bean class="org.kuali.rice.kns.datadictionary.validation.constraint.PrerequisiteConstraint"
 p:attributePath="phoneExtension" />
6. </list>
7. </property>
8. </bean>

Lookup Constraints
These are constraints on values returned from lookups into an attribute. As of the time of this writing,
they're still in process of implementation.

Conditional Logic Constraints
All of the constraints so far covered are static, in a fashion. Once declared, they will apply to their attributes
no matter what. However, let's say that a constraint should only be tested when the attribute has a certain
value. How could the constraint be turned off if that value isn't present and only be applied if the attribute
has the given value?

The final constraint to look at is org.kuali.rice.kns.datadictionary.validation.constraint.CaseConstraint,
which will turn on and off child constraints if attributes match certain values. The classic example of using
this is in an international address form. If the country code is the United States, then the state code should
be filled in as well. If the country code is for Canada or Turkey, a province should be filled in. That would
be done via a configuration like this.

A code snippet example follows:

 1. <bean id="DataObject-countryCode" parent="AttributeDefinition">
 2. <property name="name" value="countryCode"/>
 3. <property name="caseConstraint">
 4. <bean class="org.kuali.rice.kns.datadictionary.validation.constraint.CaseConstraint">
 5. <property name="whenConstraint">
 6. <list>
 7. <bean class="org.kuali.rice.kns.datadictionary.validation.constraint.WhenConstraint">
 8. <property name="values">
 9. <list>
10. <value>US</value>
11. </list>
12. </property>
13. <property name="constraint">
14. <bean
 class="org.kuali.rice.kns.datadictionary.validation.constraint.PrerequisiteConstraint"p:attributePath="state" /
>
15. </property>
16. </bean>

KRAD

260

17. <bean class="org.kuali.rice.kns.datadictionary.validation.constraint.WhenConstraint">
18. <property name="values">
19. <list>
20. <value>CA</value>
21. <value>TR</value>
22. </list>
23. </property>
24. <property name="constraint">
25. <bean
 class="org.kuali.rice.kns.datadictionary.validation.constraint.PrerequisiteConstraint"p:attributePath="province"/
>
26. </property>
27. </bean>
28. </list>
29. </property>
30. </bean>
31. </property>
32. </bean>

Obviously, for such a powerful constraint, configuration becomes a bit more complex. A CaseConstraint
has a List of WhenConstraints. WhenConstraints match values to constraints that should be run when the
attribute's value matches the WhenConstraint's values. Here, values are hard coded (lines 8 through 12
and lines 18 through 23) but they need not be. If the values are in other attributes, a List of valuePaths
can be specified.

A WhenConstraint also has one child constraint to match. In both of the WhenConstraints above, a
PrerequisiteConstraint is used to make sure that another attribute - either state or province - is non-empty
(lines 14 and 25). Any Constraint could be used as the child of the WhenConstraint - a SimpleConstraint,
another CaseConstraint, and so on. The ability to turn on and off constraints such can lead to very powerful
validations being built directly in the DataDictionary.

Ocurrences Constraints
An occurrence constraint states that for a given attribute to be valid, a certain number of prerequisite
conditions must be matched. A prerequisite condition simply means that another attribute with a specified
attribute path is non-empty (so Strings must have some text in them; Collections must have at least one
member; or the attribute must otherwise not be null). These constraints thus handle situations where one
or more of a number of fields are required.

An occurrence constraint is specified via the MustOccurConstraint constraint. Let's say that an application
requires either a phone number, an e-mail address, or a time for showing up be specified as contact
information. The following example sets up that validation in the data dictionary, adding the error to the
phone number attribute (though the same constraint could be copied to the other attributes just as easily).

A code snippet example follows:

1. <bean id="DataObject-phoneNumber" parent="DataObjectEntry">
2. <property name="objectClass" value="edu.sampleu.contact.ContactInformation" />
3. <property name="mustOccurConstraints">
4. <list>
5. <bean class="org.kuali.rice.kns.datadictionary.validation.constraint.MustOccurConstraint">
6. <property name="min" value="1" />
7. <property name="max" value="3"/>
8. <property name="prerequisiteConstraints">
9. <list>
10. <bean
 class="org.kuali.rice.kns.datadictionary.validation.constraint.PrerequisiteConstraint"p:attributePath="phoneNumber"/
>
11. <bean
 class="org.kuali.rice.kns.datadictionary.validation.constraint.PrerequisiteConstraint"p:attributePath="emailAddress"/
>
12. <bean
 class="org.kuali.rice.kns.datadictionary.validation.constraint.PrerequisiteConstraint"p:attributePath="showUpTime"/
>

KRAD

261

13. </list>
14. </property>
15. </bean>
16. </list>
17. </property>
18. </bean>

Lines 1 and 2 surprising show that this constraint has been set at the DataObjectEntry level, not that
of the AttributeDefinition. While MustOccurConstraints can be set in pretty much the same way on
AttributeDefinitions, since several attributes are involved, it makes more sense to have the validation at
a higher level. At the time of this writing, MustOccurConstraint is the only validation which can be set
at the DataObjectLevel.

The min and max properties of lines 6 and 7 tell the constraint how many of the following properties must
be present and the maximum number of filled in properties we expect. Here, the min is 1 - so at least one
of the properties must be filled in - and the max is 3, so if all three are filled in, the validation will still
work fine. If there was a desire to only have one attribute filled in, the max could have been set to 1.

The MustOccurConstraint has a list of prerequisiteConstraints - lines 8 through 14 - which describe which
attributes are grouped by this constraint.

A MustOccurConstraint can also have a list of child MustOccurConstraints. Why would such a thing be
desirable? Because it provides a way to set up nested validations. Let's say that, instead of specifying
a show up time, we had an address which needed to be filled in. If that was the case, we'd need every
field of the address - street, city, state, and zip filled in - for the constraint to pass. In that case, we would
have left min and max at 1 and 3 respectively; but instead of line 12, we would have specified a value
for the property mustOccurConstraints at line 15, and added a list of constraints asking for all the address
attributes to be filled in.

Collection Size Constraints
Another common rule situation is when a collection is the child of a data object or document, and for that
data object or document to be valid, a certain number of elements must be available in the collection. For
instance, on an Add Course Document, one would expect the "courses" collection to have at least one
course in it and to be less than the total number of courses a student is allowed to take in a semester or
quarter. Therefore in the data dictionary entry for the data object, one adds a constraint as follows,

A code snippet example follows:

 1. <bean name="AddCourseDocument" parent="BusinessObjectEntry">
 2. ...
 3. <property name="collections">
 4. <list>
 5. <bean parent="CollectionDefinition" p:name="courses" p:label="Courses">
 6. <property name="minOccurs" value="1" />
 7. <property name="maxOccurs" value="74" />
 8. </bean>
 9. </list>
10. </property>
11. ...
12. </bean>

Evidently, some students can take up to seventy four classes. Busy student. CollectionSizeConstraint is
handled as a special type of SimpleConstraint (though only for use with CollectionDefinitions). Simply
set the minOccurs and maxOccurs for the attribute and there will be an error if the collection size falls
outside those limits. Naturally, either the minOccurs or maxOccurs can be left out for collections which
should be unbounded in either lower or upper size limit.

KRAD

262

Constraints on the client side
One of the tasks that org.kuali.rice.kns.uif.field.AttributeField does in its Finalization stage is to convert
constraints to JavaScript. For all of the following constraints, AttributeField automatically will push the
Constraint to the client side:

• Exclusive Minimum and Inclusive Maximum constraints

• ValidCharactersConstraint

• CaseConstraint

• DependencyConstraint

• MustOccursConstraint

• PreRequisiteConstraint

When the user attempts to take action on the page, this level of Constraints will kick in - meaning that
feedback comes much more quickly. These constraints will always be called when buttons such as save,
submit, or approve - buttons where business logic would typically be evaluated - are clicked. They will
also occur on onBlur's for most fields.

There are, however, certain constraints which apply to multiple fields: CaseConstraints and
PreRequisiteConstraints, to name two instances. Which onBlur issues the error among all of those fields?
Generally, KRAD attempts to not give an error until the user has gone past a point where she or he could
have prevented said error. For instance, if oneField has a DependencyConstraint on two other fields, but
those two other fields render later and lower on the page, then KRAD will associate the validation with
the last, bottom-most field of those the constraint applies to. In an interesting corollary, KRAD will issue
an error on the onFocus event for a field which has already been visited if an error occurs with that field.

Of course, the constraints are still run just the same on the server side once the page has been submitted;
that way, if the user has scripting turned off, the constraints are still run and user input data gets validated.

Changing Error Messages
All of the covered constraints are associated with standard error messages. For instance, if a "required"
constraint has been violated, the user will get the following message:

 Phone Number is a required field.

This has taken the label from the attribute which violated the constraint and formatted that into the standard
error.required message in the KR-ApplicationResources.properties file.

With most of the constraints, the message can be overridden on the constraint, by specifying the
"messageKey" property. For instance, a configuration like this:

Code snippet example follows:

1. <bean class="org.kuali.rice.kns.datadictionary.validation.constraint.MustOccurConstraint">
2. <property name="min" value="1" />
3. <property name="max" value="3" />
4. <property name="messageKey" value="error.must.be.able.to.track.down" />

KRAD

263

Instead of using the standard message, the error message that is shown will be the message associated with
the "error.must.be.able.to.track.down" key. This allows for a great deal more flexibility in what message
gets displayed - though, the classic messages will still show up as they always did if nothing else is
specified.

Constraint Architecture (building a custom constraint)
The constraints that come standard with KRAD provide a lot of power through configuration. For example,
validating user input will be easier than ever. And the constraint sub-system of KRAD was built with the
realization that even more constraints will be added in the future. Because of that, there needs to be an
easy way for Kuali application developers or even future versions of Rice to add new constraints into the
system. And so, there is.

A constraint is a marker interface which is implemented by any Constraint bean (Java). These Constraint
beans are purely configuration - they only hold what regex should be parsed against, if a field
is required or not: basic information. The Constraint, in turn, is passed to an implementation of
org.kuali.rice.kns.datadictionary.validation.processor.ConstraintProcessor.

Note that implementations of ConstraintProcessors can be genericized with both the type of value that the
processor expects and the type of Constraint that the processor will work on. Most ConstraintProcessor
implementations only genericize the Constraint, accepting any Object as a value to validate.

ConstraintProcessors have four methods:

• First, the getName() method returns the name that the constraint processor holds.

• The getConstraintType() method returns the implementation of Constraint that this processor has the
business logic for.

• The isOptional() method returns a boolean: true if the processor can be turned off in certain situations
by another piece of code, false otherwise.

The only constraint which is currently optional is the ExistenceConstraint; it is turned off by passing a
false in the doOptionalProcessing parameter of DictionaryValidationService#processConstraints.

• The final method is the one that contains the ConstraintProcessor's business logic: process. Process
takes in DictionaryValidationResult, a value of some type, the Constraint information to apply to
the value, and an AttributeValueReader if the value needs yet to be read; it returns an instance of
org.kuali.rice.kns.datadictionary.validation.result.ProcessorResult.

ProcessorResults typically wrap instances of
org.kuali.rice.kns.datadictionary.validation.result.ConstraintValidationResult. A
ConstraintValidationResult encapsulates a number of possible outcomes for the validation, all generated
by org.kuali.rice.kns.datadictionary.validation.result.DictionaryValidationResult.

DictionaryValidationResult's addError method, for example, returns a ConstraintValidationResult which
contains an error about a constraint being broken. Likewise, DictionaryValidationResult's addSuccess
method indicates that the result of the constraint test was positive - the value passed the constraint.

The other outcomes that DictionaryValidationResult can generate is addWarning - which gives an
informative message that something is wrong with the attribute's value but which will not "fail";
addSkipped, which says that the value could not be tested and therefore the validation was not run; and
finally addNoConstraint, which means that the constraint was configured in such way as to not run for
the given value or at all.

DictionaryValidationResults wrap ConstraintValidationResults in a way which provides easy access to
these results in the data dictionary. These ConstraintValidationResults are passed back to KRAD wrapped

KRAD

264

within the ProcessorResults; the ProcessorResults then ensures that proper logic - whether that be the
display of a message, the stopping of logic, or - if everything passed - carrying on with the transaction
- occurs.

That covers ConstraintProcessors. Now on to how they are called from within an application. An
implementation of org.kuali.rice.kns.service.DictionaryValidationService is responsible for checking all
of the attributes which are passed in as part of a request into a KRAD form. The configuration of the default
implementation of DictionaryValidationService has all of the ConstraintProcessors for KRAD passed into
it. See the following code snippets. For example, if we assume the following 5 lines of code,

 3. <property name="collectionConstraintProcessors">
 4. <list>
 5. <bean class="org.kuali.rice.kns.datadictionary.validation.processor.CollectionSizeConstraintProcessor"/>
 6. </list>
 7. </property>

Lines 3 through 7 above are the collectionConstraintProcessors - constraints which apply to collections.
Here is where CollectionSizeConstraint - the constraint that handles the maxOccurs and minOccurs
constraint attributes - goes.

In line 5, the CollectionSizeConstraintProcessor is injected in. DictionaryValidationServiceImpl then
matches the active Constraints on an attribute with the ConstraintProcessors passed in, and runs the logic
against the constrained attribute. If the ConstraintProcessor acts only on a single attribute, it is passed into
the elementConstraintProcessor property.

ConstraintProcessors are supplied to engines which validate against constraints -
DictionaryValidationServiceImpl, for instance - via ConstraintProviders. Different implementations of the
org.kuali.rice.kns.datadictionary.validation.constraint.provider.ConstraintProvider interface can exist;
their job is to map an implementation of Constrainable (a simple interface all Constraints implement) to
constraint processors, as can be seen in lines 29-79 below.

The usefulness of ConstraintProviders can be seen in the example. Lines 31-64 shows the mapping
for the AttributeDefinitionConstraintProvider - constraints which can be run against an attribute
definition. Lines 65-77 shows that only one constraint - the MustOccurConstraint - can be run
for ObjectDictionaryEntryConstraintProviders, meaning this is the sole constraint supported by data
dictionary entries for entire data objects.

Code snippet example follows:

 1. <bean id="dictionaryValidationService"
 class="org.kuali.rice.kns.service.impl.DictionaryValidationServiceImpl">
 ...
 contents trimmed
 ...
 2. <!-- Collection constraint processors are classes that determine if a feature of a collection of objects
 satisfies some constraint -->
 3. <property name="collectionConstraintProcessors">
 4. <list>
 5. <bean class="org.kuali.rice.kns.datadictionary.validation.processor.CollectionSizeConstraintProcessor"/>
 6. </list>
 7. </property>
 8. <!-- Element constraint processors are classes that determine if a passed value is valid for a specific
 constraint at the individual object or object attribute level -->
 9. <property name="elementConstraintProcessors">
10. <list>
11. <bean class="org.kuali.rice.kns.datadictionary.validation.processor.CaseConstraintProcessor"
12. parent="mandatoryElementConstraintProcessor"/>
13. <bean class="org.kuali.rice.kns.datadictionary.validation.processor.ExistenceConstraintProcessor"/>
14. <bean class="org.kuali.rice.kns.datadictionary.validation.processor.DataTypeConstraintProcessor"
15. parent="mandatoryElementConstraintProcessor"/>

KRAD

265

16. <bean class="org.kuali.rice.kns.datadictionary.validation.processor.RangeConstraintProcessor"
17. parent="mandatoryElementConstraintProcessor"/>
18. <bean class="org.kuali.rice.kns.datadictionary.validation.processor.LengthConstraintProcessor"
19. parent="mandatoryElementConstraintProcessor"/>
20. <bean class="org.kuali.rice.kns.datadictionary.validation.processor.ValidCharactersConstraintProcessor"
21. parent="mandatoryElementConstraintProcessor"/>
22. <bean class="org.kuali.rice.kns.datadictionary.validation.processor.PrerequisiteConstraintProcessor"
23. parent="mandatoryElementConstraintProcessor"/>
24. <bean class="org.kuali.rice.kns.datadictionary.validation.processor.MustOccurConstraintProcessor"
25. parent="mandatoryElementConstraintProcessor"/>
26. </list>
27. </property>
28. <!-- Constraint providers are classes that map specific constraint types to a constraint resolver, which
 takes a constrainable definition -->
29. <property name="constraintProviders">
30. <list>
31. <bean
 class="org.kuali.rice.kns.datadictionary.validation.constraint.provider.AttributeDefinitionConstraintProvider">
32. <!--
33. individual constraint resolvers can be injected as a map keyed by constraint type as string, or
 the default
34. resolvers can be instantiated into the map by adding 'init-method="init"' to the bean
 declaration above
35. -->
36. <property name="resolverMap">
37. <map>
38. <entry key="org.kuali.rice.kns.datadictionary.validation.constraint.CaseConstraint">
39. <ref bean="dictionaryValidationCaseConstraintResolver"/>
40. </entry>
41. <entry key="org.kuali.rice.kns.datadictionary.validation.constraint.ExistenceConstraint">
42. <ref bean="dictionaryValidationDefinitionConstraintResolver"/>
43. </entry>
44. <entry key="org.kuali.rice.kns.datadictionary.validation.constraint.DataTypeConstraint">
45. <ref bean="dictionaryValidationDefinitionConstraintResolver"/>
46. </entry>
47. <entry key="org.kuali.rice.kns.datadictionary.validation.constraint.LengthConstraint">
48. <ref bean="dictionaryValidationDefinitionConstraintResolver"/>
49. </entry>
50. <entry key="org.kuali.rice.kns.datadictionary.validation.constraint.ValidCharactersConstraint">
51. <ref bean="dictionaryValidationValidCharactersConstraintResolver"/>
52. </entry>
53. <entry key="org.kuali.rice.kns.datadictionary.validation.constraint.PrerequisiteConstraint">
54. <ref bean="dictionaryValidationPrerequisiteConstraintsResolver"/>
55. </entry>
56. <entry key="org.kuali.rice.kns.datadictionary.validation.constraint.MustOccurConstraint">
57. <ref bean="dictionaryValidationMustOccurConstraintsResolver"/>
58. </entry>
59. <entry key="org.kuali.rice.kns.datadictionary.validation.constraint.CollectionSizeConstraint">
60. <ref bean="dictionaryValidationDefinitionConstraintResolver"/>
61. </entry>
62. </map>
63. </property>
64. </bean>
65. <bean
 class="org.kuali.rice.kns.datadictionary.validation.constraint.provider.ObjectDictionaryEntryConstraintProvider">
66. <!--
67. individual constraint resolvers can be injected as a map keyed by constraint type as string, or the
 default
68. resolvers can be instantiated into the map by adding 'init-method="init"' to the bean declaration
 above
69. -->
70. <property name="resolverMap">
71. <map>
72. <entry key="org.kuali.rice.kns.datadictionary.validation.constraint.MustOccurConstraint">
73. <ref bean="dictionaryValidationMustOccurConstraintsResolver"/>
74. </entry>
75. </map>
76. </property>
77. </bean>
78. </list>
79. </property>
80. </bean>

Other ConstraintProviders packed into Rice at the time of this writing
are CollectionDefinitionConstraintProvider - constraints which work for collection

KRAD

266

definitions; and ComplexAttributeDefinitionConstraintProvider, which supports constraints for
"ComplexAttributeDefinitions" - data dictionary entries for attributes on one DataObject which are
represented by another data object.

KRAD Business Objects?
(Need direction on what of the KNS information should be copied here and what new information should
be included or if this section is not needed.)

KRAD Class Libraries?
(Need direction on what new information should be included here or if this section is not needed.)

Installing and Configuring KRAD
Before developing with KRAD and after installing and configuring Rice, here are the additional steps
you'll need to follow to configure KRAD before starting to develop an application.

This information below assumes you already have Rice installed and configured for your database. Below
are the additional tasks required to configure KRAD. For more information, see the KRAD Installation
Guide and KRAD javadocs.

(TBD - Revise the section heads below as needed and then populate with info. Include instructions for
setting up a Rice project, include assumptions for what is already done and not covered in the instructions,
such as setting up all else needed for development environment - what are pre-reqs, what are co-reqs, etc..)

Configure Rice without KRAD (KNS Only)

In some cases it may be desirable to only use the KNS without KRAD. For example if you're timelines
push a conversion to KRAD out into the future, you may see some benefits with startup performance and
with memory usage.

You can override the kradApplicationModuleConfiguration bean to not include any of the files in the UIF
folder. That is, you only need to include these files:

<property name="dataDictionaryPackages">
<list>
<value>classpath:org/kuali/rice/krad/bo/datadictionary/AdHocRoutePerson.xml</value>
<value>classpath:org/kuali/rice/krad/bo/datadictionary/AdHocRouteWorkgroup.xml</value>
<value>classpath:org/kuali/rice/krad/bo/datadictionary/Attachment.xml</value>
<value>classpath:org/kuali/rice/krad/bo/datadictionary/AttributeReferenceDummy.xml</value>
<value>classpath:org/kuali/rice/krad/bo/datadictionary/AttributeReferenceElements.xml</value>
<value>classpath:org/kuali/rice/krad/bo/datadictionary/BusinessObjectAttributeEntry.xml</value>
<value>classpath:org/kuali/rice/krad/bo/datadictionary/DataDictionaryBaseTypes.xml</value>
<value>classpath:org/kuali/rice/krad/bo/datadictionary/DocumentHeader.xml</value>
<value>classpath:org/kuali/rice/krad/bo/datadictionary/Note.xml</value>
<value>classpath:org/kuali/rice/krad/bo/datadictionary/NoteType.xml</value>
<value>classpath:org/kuali/rice/krad/bo/datadictionary/PessimisticLock.xml</value>
</list>
</property>

Likewise, this can be done for the ‘baselinePackages’ property on the dataDictionaryService bean.

KRAD

267

Creating the KRAD database tables / connections to
data?

KRAD Configurer and RiceConfigurer?

Configuring Spring and MVC?

Module Configuration – Loading Data Dictionary and
OJB Files?

Other KRAD Configuration Parameters?

Configure guest user access
Some views might have to be exposed to users that does not have a Rice user. In these cases we can
configure certain views to allow guest user access.

To bypass the normal login mechanism you can change the BootstrapFilter configuration. The
BootstrapFilter is a Rice filter which at runtime reads a series of filter configurations, constructs and
initializes those filters, and invokes them when it is invoked. This allows runtime user configuration of
arbitrary filters in the webapp context. The BootstrapFilter configuration allows for excluding certain
requests. In the sample application we excluded the kradguest servlet requests from the DummyLoginFilter
and added a the AutoLoginFilter for those requests. The AutoLoginFilter allows automatic login with
the user specified via filter init parameter. With this setup any requests to the kradguest servlet will be
automatically logged in as guest and it will bypass the DummyLoginFilter.

sample-app-config.xml

 <param name="filter.login.class">org.kuali.rice.kew.web.DummyLoginFilter</param>
 <param name="filtermapping.login.1">/*</param>
 <param name="filterexclude.login">.*/kr-kradguest/.*</param>

 <param name="filter.guestlogin.class">org.kuali.rice.krad.web.filter.AutoLoginFilter</param>
 <param name="filtermapping.guestlogin.2">/kr-kradguest/*</param>
 <param name="filter.guestlogin.autouser">guest</param>

KRAD has configured a kradguest servlet mapping that can be used for the purpose of allowing guest
access. The setup of controllers mapped to the kradguest servlet can be done in the kradguest-
servlet.xml :

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:p="http://www.springframework.org/schema/p"
 xmlns:context="http://www.springframework.org/schema/context"
 xmlns:tx="http://www.springframework.org/schema/tx"
 xmlns:mvc="http://www.springframework.org/schema/mvc" xmlns:aop="http://www.springframework.org/
schema/aop"

KRAD

268

 xsi:schemaLocation="http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans-3.0.xsd
 http://www.springframework.org/schema/context
 http://www.springframework.org/schema/context/spring-context-3.0.xsd
 http://www.springframework.org/schema/mvc
 http://www.springframework.org/schema/mvc/spring-mvc-3.0.xsd
 http://www.springframework.org/schema/tx
 http://www.springframework.org/schema/tx/spring-tx-3.0.xsd http://www.springframework.org/schema/aop
 http://www.springframework.org/schema/aop/spring-aop-2.0.xsd">

 <import resource="krad-base-servlet.xml"/>

 <!-- Add controller beans for any requests that the krad guest servlet must handle -->
 <bean id="UifComponentsTestController" class="edu.sampleu.demo.kitchensink.UifGuestController"/>

 </beans>

You can map any controller to the kradguest servlet but view access is
still not restricted. To do this you can extend your controller and add
a check for the views that must allow guest access in the controller
start method.

Ex :

@Controller
 @RequestMapping(value = "/guestviews")
 public class UifGuestController extends UifControllerBase {

 /**
 * @see
 org.kuali.rice.krad.web.controller.UifControllerBase#createInitialForm(javax.servlet.http.HttpServletRequest)
 */
 @Override
 protected UifComponentsTestForm createInitialForm(HttpServletRequest request) {
 return new UifComponentsTestForm();
 }

 /**
 * Initial method called when requesting new view
 *
 * <p>
 * For guest access we check that only certain views can be called through this controller.
 * </p>
 *
 * @param form - model
 * @param result - binding result
 * @param request - servlet request
 * @param response - servlet response
 * @return
 */
 @Override
 @RequestMapping(params = "methodToCall=start")
 public ModelAndView start(@ModelAttribute("KualiForm") UifFormBase form, BindingResult result,
 HttpServletRequest request, HttpServletResponse response) {
 if (!form.getViewId().equals("UifGuestUserView")) {
 throw new RuntimeException("Guest user not allowed to acces this view : " + form.getViewId());
 }
 return super.start(form,result,request,response);
 }
 }

With the setup as described above only
requests to http://localhost:8080/kr-dev/kr-kradguest/guestviews?
viewId=UifGuestUserView&methodToCall=start will be logged in
automatically as guest.

KRAD

269

Building application pages using KRAD
This information assumes you've already installed Rice. Once Rice is installed and set up, you can use
KRAD to build applications. You can use the code snippet templates covered below, and you can look
through the codebase itself or the sample application to see the code snippets for each of the KRAD
features, and then copy/paste them to use in your developing application.

KRAD Templates
Live templates contain predefined code fragments. You can use them to insert frequently-used or custom
code constructs into your source code file quickly, efficiently, and accurately.

Loading the KRAD Templates

The following have been tested in the IntelliJ IDE.

Download the KRAD Templates File and place into the following location: (ACTION/TO-DO -- Need to
specify the link where we will maintain this long-term!)

• Windows: <your home directory>\.<product name><version number>\config\templates

• Linux: ~\.<product name><version number>\config\templates

• MacOS: ~/Library/Preferences/<product name><version number>/templates

Using Templates

While in an XML file, type the template abbreviation and then the space key. The completion key (setup
as space) can be changed if desired by going to settings-live templates. Your cursor will then be inserted
into the location specified by the template (marked with the END variable).

Available KRAD Templates

Table 6.1. Available KRAD Templates

Abbreviation Description Code

@ Inserts the expression
placeholders

@{$END}

action Generates an action
field

<bean parent="ActionField" p:actionLabel="END" p:methodToCall=""/>

alink Generates an action
link field

<bean parent="ActionLinkField" p:actionLabel="END" p:methodToCall=""/>

be Generates a bean tag <bean parent="END"/>

cc Generates a checkbox
control

<bean parent="CheckboxControl"/>

cgc Generate a checkbox
group control

<property name="control"> <bean parent="CheckboxGroupControl"/> </property> <property
name="optionsFinder"> <bean class="END"/> </property>

dc Generates a date
control

<bean parent="DateControl" p:size="END"/>

fc Generates a file control <bean parent="FileControl" p:size="END"/>

fg Generates a field group <bean parent="FieldGroup" p:label="END"> <property name="items"> <list> </list> </
property> </bean>

fi Generates a field
inquiry

<property name="fieldInquiry.dataObjectClassName" value="END $CLASS$"/> <property
name="fieldInquiry.inquiryParameters" value=""/>

fl Generates a field
lookup

<property name="fieldLookup.dataObjectClassName" value="END $CLASS$"/
> <property name="fieldLookup.fieldConversions" value=""/> <property
name="fieldLookup.lookupParameters" value=""/>

KRAD

270

Abbreviation Description Code

fs Generates a field
suggest

<property name="fieldSuggest.render" value="true"/> <property
name="fieldSuggest.suggestQuery.dataObjectClassName" value="END $CLASS$"/>
<property name="fieldSuggest.sourcePropertyName" value=""/>

group Generates a group <bean id="END" parent="Group" p:title="" p:instructionalText=""> <property name="items">
<list> </list> </property> </bean>

hfg Generates a field group
with horizontal layout

<bean parent="HorizontalFieldGroup" p:label="END"> <property name="items"> <list> </list>
</property> </bean>

image Generates an image
field

<bean parent="ImageField" p:label="END" p:altText=""
p:source="@#ConfigProperties['krad.externalizable.images.url']"/>

input Generates an input field <bean parent="InputField" p:propertyName="END" p:label=""> <property name="control"> </
property> </bean>

link Generates a link field <bean parent="LinkField" p:linkLabel="END" p:hrefText=""/>

mess Generates a message
field

<bean parent="MessageField" p:messageText="END"/>

page Generates a page <bean id="END" parent="Page" p:title=""> <property name="items"> <list> </list> </property>
</bean>

prop Inserts a property tag <property name="END" value=""/>

rc Generates a radio group
control

<property name="control"> <bean parent="RadioGroupControl"/> </property> <property
name="optionsFinder"> <bean class="END"/> </property>

sc Generates a select
control

<property name="control"> <bean parent="SelectControl"/> </property> <property
name="optionsFinder"> <bean class="END"/> </property>

section Generates a section
group

<bean id="END" parent="GroupSection" p:title="" p:instructionalText=""> <property
name="items"> <list> </list> </property> </bean>

sstack Generates a collection
group section with
stacked layout

<bean id="END" parent="CollectionGroupSection" p:layoutManager.numberOfColumns=""
p:title="" p:instructionalText=""> <property name="collectionObjectClass" value="$CLASS$"/
> <property name="propertyName" value=""/> <property name="layoutManager.summaryTitle"
value="" /> <property name="layoutManager.summaryFields" value="" /> <property
name="items"> <list> </list> </property> </bean>

stable Generates a collection
group section with
table layout

<bean id="END" parent="CollectionGroupSectionTableLayout"
p:layoutManager.numberOfColumns="" p:title="" p:instructionalText=""> <property
name="collectionObjectClass" value="$CLASS$"/> <property name="propertyName" value=""/>
<property name="layoutManager.sequencePropertyName" value=""/> <property name="items">
<list> </list> </property> </bean>

stack Generates a collection
group with stacked
layout

<bean id="END" parent="CollectionGroup" p:layoutManager.numberOfColumns="" p:title=""
p:instructionalText=""> <property name="collectionObjectClass" value="$CLASS$"/> <property
name="propertyName" value=""/> <property name="layoutManager.summaryTitle" value="" />
<property name="layoutManager.summaryFields" value="" /> <property name="items"> <list> </
list> </property> </bean>

table Generates a collection
group with table layout

<bean id="END" parent="CollectionGroupTableLayout"
p:layoutManager.numberOfColumns="" p:title="" p:instructionalText=""> <property
name="collectionObjectClass" value="$CLASS$"/> <property name="propertyName" value=""/>
<property name="layoutManager.sequencePropertyName" value=""/> <property name="items">
<list> </list> </property> </bean>

tac Generates a text area
control

<bean parent="TextAreaControl" p:rows="END" p:cols=""/>

tc Generates a text control <bean parent="TextControl" p:size="END"/>

view Generates a view <bean id="END" parent="FormView"> <property name="title" value=""/>
<property name="navigation"> <ref bean=""/> </property> <property name="items">
<list> </list> </property> <property name="additionalCssFiles" ref=""/> <property
name="additionalJsFiles" ref=""/> <property name="viewHelperServiceClass" value=""/>
<property name="defaultBindingObjectPath" vaue=""/> <property name="formClass" value=""/>
</bean>

Creating your own Templates

See http://www.jetbrains.com/idea/webhelp/live-templates.html

Please post back and share!

Converting KNS pages to KRAD

http://www.jetbrains.com/idea/webhelp/live-templates.html

KRAD

271

(other? E/R diagrams?, binding paths?, pointer
to javadocs?)

272

Chapter 7. KRMS
KRMS Overview

What is a Rule Management System, in general?
Wikipedia defines a business rule management system, in general, as follows: "a software system used
to define, deploy, execute, monitor and maintain the variety and complexity of decision logic that is used
by operational systems within an organization or enterprise. This logic, also referred to as business rules,
includes policies, requirements, and conditional statements that are used to determine the tactical actions
that take place in applications and systems."

A key aspect of a rules management system is that it enables rules to be defined and maintained separately
from application code. This modularity has the potential to reduce application maintenance costs, enable
increased automation and application flexibility, and to enable business analysts and business process
experts who are not developers and who reside outside of the IT organizations in the business departments
themselves, to be more directly involved in creating and managing their rules.

A rules management system in general includes a repository of decision logic and a rules engine that can
be executed by applications in a run-time environment. Again from wikipedia: "... provides the ability
to: register, define, classify, and manage all the rules, verify consistency of rules definitions (”Gold-level
customers are eligible for free shipping when order quantity > 10” and “maximum order quantity for Silver-
level customers = 15”), define the relationships between different rules, and relate some of these rules to
IT applications that are affected or need to enforce one or more of the rules."

What is Kuali's Rule Management System (KRMS), in
particular?

Kuali's Rule Management System (KRMS) supports the creation, maintenance, storage and retrieval of
business rules and agendas (ordered sets of business rules) within business contexts (e.g., for a particular
department or for a particular university-wide process).

KRMS enables you to define a set of rules within a particular business unit or for a particular set of
applications. These business rules test for certain conditions and define the set of actions that result when
conditions are met. KRMS enables you to call and use this logic from any application, without having to
re-write and manage all the rules' logic within the application.

Integration with organizational hierarchies and structures can be accomplished today using KEW for
routing and approval, and KEW also has a legacy rule system of its own that can be used to make routing
decisions. But before KRMS, managing general customizable business logic such as "if the transaction
date is in the future OR the transaction date is less than the account activation date then flag the transaction
for review" was the responsibility of the applications themselves. KRMS now offers a way to manage this
type of logic externally in a repository that allows for business analysts to change it without having to
modify application code.

Because KRMS is a general-purpose business rules management system, you can use it for many things,
for example, you can define a rule to specify that when an account is closed, a continuation account must
be specified. You can also define rules to manage your organizational hierarchies and internal structures.
You can define compound propositional logic, for example, "Must meet":

• P1 - 12 credits of FirstYearScience (CLU set)

http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Business_rule

KRMS

273

AND

• P2 - Completed CALC101 with grade >= B+

AND

• p3 - Average of B+ on last 12 credits

What problems or functions does KRMS solve?

KRMS gives business applications a powerful tool to externalize logic in places where customization will
often be needed. This lowers the costs of adopting and administering the application by reducing the need
for changes to the software itself, and allows the application to more fluidly reflect the institution's desired
business processes.

There are a wide variety of actions that KRMS rules can be used to govern:

• Workflow Action rules - e.g. route an approval request

• Notification rules - e.g. send a notification to these people

• Validation rules - e.g. display this validation error message

• Questionnaire rules - e.g. administer this questionaire

• Custom-developed actions

For example, calling a KRMS set of rules (an agenda) from your application can result in routing a
document to a PeopleFlow*, which is a new feature in KEW in Rice 2.0, or to any other action you define
in KRMS.

* Essentially, it's like a mini people-based workflow that doesn't require you to specify a KEW node in
the document type for each role, group or individual who might need to approve or be notified.

What problems does KRMS not address?
Some rule engines are built upon special algorithms that allow for forward or backward chaining (one
example is Rete) that make them suitable for efficiently evaluating highly complex systems of what are
known as production rules. The default engine implementation for KRMS is not designed upon such an
algorithm, and it does not support either forward or backward chaining.

With which types of applications can KRMS integrate?
Any Rice-based application can use KRMS.

Can I use KRMS without building a Rice application?
The project has aspirations to increase Rice's modularity, and some strides have been made, but at the time
of this writing the answer is no.

http://en.wikipedia.org/wiki/Forward_chaining
http://en.wikipedia.org/wiki/Backward_chaining
http://en.wikipedia.org/wiki/Rete_algorithm

KRMS

274

KRMS Concepts

Namespaces, Contexts, Agendas, Rules and
Propositions

Namespaces are the top level container in KRMS. They contain Contexts, KRMS Types, and all things
related to Terms. There isn't a namespace entity in the KRMS schema, they are specified via namespace
code fields on the applicable child entities.

Rules in KRMS are placed into ordered sets called Agendas. The order of the Rules in an Agenda
determines the sequencing: which rule gets evaluated first, second and so on. The Agenda also enables
you to include conditional branching logic between Rules.

In turn, Agendas are are created in Contexts, which may represent any categories of rules that are relevant
within your institution. For example, they will frequently correspond to document types, but they could
be more finely grained to encompass only a certain kind of rule that you might run, e.g. you might
have a context called "Proposal Validations". In some university environments, the following might be
relevant contexts: Awards, Proposals, IRB reviews, Course co-requisites, Course pre-requisites, Student
plan evaluations, and so on.

Each Context contains its own agendas, and each Agenda contains its own rules. Rules aren't shared across
agendas (though you can copy/paste, they become unique Rule instances), and Agendas aren't shared
across Contexts. There is no Context hierarchy, that is, Agendas and Rules can't be inherited across contexts
within any sort of hierarchy.

The following diagram outlines the hierarchy of entities in KRMS (note that some entities are omitted)

You'll also note that many of the entities in the above diagram are KRMS Types. In most cases (the notable
exception is Context) what that means is that you can develop and integrate custom implementations of
the engine objects associated with those entities. These include:

KRMS

275

• Agendas with custom selection and execution code

• Actions with custom execution code

• Rules with custom evaluation and Action triggering code

• Propositions with custom evaluation code

• Term Resolvers with custom value resolution code

Propositions

Rules consist of propositions, and KRMS supports the following three main types of propositions:

1. Simple Propositions - a proposition of the form lhs op rhs where lhs=left-hand side, rhs=right-hand
side, and op=operator

2. Compound Propositions - a proposition consisting of more than one simple proposition and a boolean
algebra operator (AND, OR) between each of the simple propositions

3. Custom Propositions - a proposition which can optionally be parameterized by some set of values.
Evaluation logic is implemented "by hand" and returns true or false.

The data model is designed in such a way to support each of these.

Next we'll look at each of the proposition tables in detail.

Proposition - krms_prop_t

Every proposition in the repository will have an entry in this table. Propositions are reference by a rule or
another proposition (in the case of compound propositions). Propositions are never re-used across multiple
rules.

Here is a summary of the non-common data elements in this proposition table:

Table 7.1. Non-common data elements in the proposition table

Column Description

prop_id A generated primary key identifier for the proposition

desc_txt A plain-text description of the proposition

typ_id Defines the PropositionType for the proposition. Defined in the krms_typ_t table.

dscrm_typ_cd Discriminator type code which defines if the proposition is compound or simple. Valid values are C and S.

Proposition Parameters - krms_prop_parm_t

Each proposition can have zero or more parameters. The proposition parameter is the primary data element
used to define the proposition. These parameters will be one of the following three types:

1. Constant Values

• numbers

• strings

• dates

KRMS

276

• etc.

2. Terms

• data available in the execution environment and/or resolved by a term resolver

3. Functions

• resolve to a value

• could themselves take parameters of their own

• typically defined externally to KRMS and then plugged in via a custom term resolver

4. Operators

• one of a set of built-in "functions"

• The full set of (currently) supported operators are as follows:

• =

• !=

• >

• <

• >=

• <=

To that end, the proposition parameter list should be modeled as a list in Reverse Polish Notation (RPN).
This allows for arbitrary nesting of parameters, which may have parameters of their own. However, this
requires that each function explicitly define the number of arguments that it expects. This will be specified
when the function is defined, so the proposition system can assume this is available. This requirement does
prohibit the use of functions that have a variable arity since the model currently does not have anyway to
group parameters. So this will currently be unsupported.

Examples of proposition parameter lists defined using RPN are as follows:

• [campusCode, "BL", =] equivalent to campusCode="BL"

• [totalDollarAmount, availableAmount, >] equivalent to totalDollarAmount > availableAmount

• [award, getTotalDollarAmountForAward, award, getAvailableAmountForAward, >] equivalent to
getTotalDollarAmount(award) > getAvailableAmountForAward(award)

In the cases above the following are constants:

• "BL"

The following are terms:

• campusCode

• totalDollarAmount

http://en.wikipedia.org/wiki/Reverse_Polish_notation

KRMS

277

• availableAmount

• award

The following are functions:

• getTotalDollarAmountForAward

• getAvailableAmountForAward

And the following are operators:

• =

• >

Here is a summary of the non-common data elements in this proposition parameter table:

Table 7.2. Non-common data elements in the proposition parameter table

Column Description

prop_parm_id A generated primary key identifier for the proposition parameter

prop_id The proposition which this parameter applies to

parm_val the value of the parameter

parm_typ_cd Indicates whether the parameter value represents a constant, term, or function. Valid values are C, T, F, O

seq_no Defines the order of the parameter within the larger parameter list.

KRMS Administration Guide
(work in progress - content tdb. The below preface is patterned after the KEW TRG - what will admins
need to administer for KRMS? I've put in some placeholder content-topics for a TOC skeleton.)

This guide provides information on administering a Kuali Rules Management System (KRMS) installation.
Out of the box, KRMS comes with a default setup that works well in development and test environments.
However, when moving to a production environment, this setup requires adjustments. This document
discusses basic administration as well as instructions for working with some of KRMS’ administration
tools.

Initial Set up tasks
In this section we cover the types of tasks you'll need to do as a one-time setup at your institute in order
for you and others to be able to define KRMS agendas for use by applications.

What do I have to install so that people can use KRMS?

What do I have to create or customize so that people can work with
business contexts, agendas, and rules?

Below are the constructs you will need to point to or create for your institute:

• Use existing Namespaces or set up Namespaces for KRMS

• Use an existing Agenda Type service or set up an Agenda Type service for KRMS

KRMS

278

• Use existing Types or set up Types for KRMS

• Use existing Contexts or configure new Contexts for KRMS

• Specify Terms

• Create Term Resolvers

• Create Parameterized Terms

Below are the instructions for doing these tasks.

Point to or Set up Namespaces

You can use existing Namespaces or set up Namespaces specifically for KRMS (include information on
how to do both of these).

Point to or Set up an Agenda Type service for KRMS

You can use an existing Agenda Type service or set up an Agenda Type service specifically for KRMS
(include information on how to do both of these).

For example, below is a code snippet for setting up the Agenda Type service:

<bean id="campusAgendaTypeService"
 class="edu.sampleu.krms.impl.CampusAgendaTypeService">
 <property name="configurationService" ref="configurationService"/>
</bean>

Point to or Set up the Types for KRMS

You can use existing Types or set up Types for KRMS (include information on how to do both of these).

Below is example SQL Server code to insert the Type into the Agenda Type service -- be sure to replace the
content of the 2nd parenthetical expressions in each of the following examples with your defined values:

• First, add the Type(s) itself:

insert into krms_typ_t (typ_id, nm, nmspc_cd, srvc_nm, actv, ver_nbr) values ('T6', 'Campus Agenda',
'KRMS_TEST', 'campusAgendaTypeService', 'Y', 1);

• Next, add the campus attribute(s) to the Campus Agenda Type:

insert into krms_attr_defn_t (ATTR_DEFN_ID, NM, NMSPC_CD, LBL, CMPNT_NM, DESC_TXT)
values ('Q9901', 'Campus', 'KRMS_TEST', 'campus label', null, 'the campus which this agenda is valid
for');

insert into krms_typ_attr_t (TYP_ATTR_ID, SEQ_NO, TYP_ID, ATTR_DEFN_ID) values ('T6A', 1,
'T6', 'Q9901');

Point to or Set up Contexts for KRMS

You can use existing Contexts or configure new Contexts for KRMS. There is graphical user interface
support for configuring a new Context, through a maintenance page. For example, in the Rice demo /
sample application, on the Main menu page, under KRMS Rules, select the Context Lookup.

KRMS

279

You can search for existing Contexts or create a new one. To create a new one, select "Create New" at
the top right on the context lookup page:

The resulting Context Maintenance screen enables you to define a new Context. The Context ID must
be unique:

KRMS

280

After creating your Context(s), you must 1) set "CampusAgendaType" as valid*, 2) set "Route to
PeopleFlow" action as valid* for them, and 3) make the Type(s) you created valid for your Context(s).
See the following examples, and replace the content of each of the 2nd parenthetical expressions with
your defined values:

• insert into krms_cntxt_vld_agenda_t (cntxt_vld_agenda_id, cntxt_id, agenda_typ_id, ver_nbr) values
('agendaid', 'contextid', 'agendatypeid', version#);

• insert into krms_cntxt_vld_actn_t (cntxt_vld_actn_id, cntxt_id, actn_typ_id, ver_nbr) values
('agendaid', 'contextid', 'agendatypeid', version#);

• insert into krms_cntxt_vld_agenda_t (cntxt_vld_agenda_id, cntxt_id, agenda_typ_id, ver_nbr) values
(''agendaid', 'contextid', 'agendatypeid', version#);

Specify the Terms for KRMS

You can point to existing terms or specify new terms for KRMS (include information on how to do both
of these).

To specify newTerms, you will probably want to first create term categories. See the following examples,
and replace the content of each of the 2nd parenthetical expressions with your defined values:

• Example - Generic Workflow Properties

• • insert into krms_ctgry_t (ctgry_id, nm, nmspc_cd, ver_nbr) values ('CAT02', 'Workflow Document
Properties', 'KR-SAP', '1');

• Example - Travel Account Properties

KRMS

281

• • insert into krms_ctgry_t (ctgry_id, nm, nmspc_cd, ver_nbr) values ('CAT03', 'Travel Account
Properties', 'KR-SAP', '1');

And next, you can use existing Terms or configure new Terms for KRMS. There is graphical user interface
support for configuring a new Term, through a maintenance page. For example, in the Rice demo / sample
application, on the Main menu page, under KRMS Rules, select the Term Specification Lookup and, after
completing that, select the Term Lookup.

You can search for existing Term Specifications and Terms or create new ones. To create a new one, select
"Create New" at the top right on the term specification lookup page or copy and then modify an existing
one. See example Term Specification Lookup screen below:

KRMS

282

If you copy an existing term specification, be sure to give it a new and unique name before you change
and save or submit it. Below is a view of the term specification screen showing the types of attributes
you can associate with it.

KRMS

283

After creating your term specifications (your categories of terms), you can use the Term Lookup screen to
add or create new terms. See the example Term Lookup screen below:

KRMS

284

Figure 7.1. Term Lookup screen example

If you copy an existing term, be sure to change the name to a new and unique term before you save or submit
it. Below is a view of the term specification screen showing the types of attributes you can associate with it.

KRMS

285

Figure 7.2. Term specification screen example

286

Chapter 8. KSB
How to Use the KSB

Introduction
The Kuali Service Bus (KSB) is a lightweight service bus designed to allow developers to quickly develop
and deploy services for remote and local consumption. You can deploy services to the bus using Spring
or programmatically. Services must be named when they are deployed to the bus. Services are acquired
from the bus using their name.

At the heart of the KSB is a service registry. This registry is a listing of all services available for
consumption on the bus. The registry provides the bus with the information necessary to achieve load
balancing, failover and more.

Bean Based Services
Typically, KSB programming is centered on exposing Spring-configured beans to other calling code using
a number of different protocols. Using this paradigm the client developer and the organization can rapidly
build and consume services, often a daunting challenge using other buses.

Figure 8.1. Overview of Supported Service Protocols

Diagram Notes
This drawing is conceptual and not representative of a true deployment architecture. Essentially, the
KSB is a registry with service calling behavior on the client end (Java client). All policies and behaviors
(Asynchronous as opposed to Synchronous) are coordinated on the client. The client offers some very
attractive messaging features:

• Synchronization of message sending with currently running transaction (meaning all messages sent
during a transaction are ONLY sent if the transaction is successfully committed)

• Failover - If a call to a service comes back with a 404 (or various other network-related errors), it will
try to call other services of the same name on the bus. This is for both sync and async calls.

• Load balancing - Clients will round-robin call services of the same name on the bus. Proxy instances,
however, are bound to single machines if you want to keep a line of communication open to a single
machine for long periods of time.

KSB

287

• Topics and Queues

• Persistent messages - When using message persistence a message cannot be lost. It will be persisted
until it is sent.

Details of Supported Service Protocols

Java Rice Client

As Consumer

If configured for the KSB, a Java Rice Client can invoke any service in the KSB Registry using these
protocols:

1. Synchronously

• SOAP WS p2p using KSB Spring configuration

• Java call if it is within the same JVM

• Spring HTTP Remoting

2. Asynchronously

• Messaging Queues – As a Consumer, a Java Rice Client can invoke a one-shot deal for calling a
KSB-registered service asynchronously

• Java, SOAP, Spring HTTP Remoting

• Messaging Topics - As a Consumer listening to a topic, the Java Rice Client will receive a broadcast
message

As Producer

You can register Spring-defined services in the KSB Registry through the KSB Configurer. Consumers
can call these services as described in other sections.

Any Java Client

As Consumer

A Java Client, regardless of whether or not it's a Rice Client configured for the KSB, can invoke any
web service:

1. As a SOAP WS p2p using a straight-up WS call through CXF, Axis, etc. If the external web service is
not registered on the KSB, the Java client must discover the service on its own.

2. Through Java if they are within the same JVM

3. Through Spring HTTP Remoting; you must know the endpoint URL of the service.

As Producer

1. Currently, you can't leverage the KSB and its registry for exposing any of its services. It is possible to
bring up the registry and register services without the rest of the KSB.

KSB

288

2. A Java Client can expose its web services directly using XFire (CXF), Axis, etc.

3. You can bring up only the registry for discovery. However, the registry can't be a 'service;' it can only
be a piece of code talking to a database.

Non-Java/Non-Rice Client

As Consumer

A non-Java/non-Rice Client that knows nothing about the KSB or its registry can only invoke web
services synchronously using:

• SOAP WS p2p using straight-up WS call through native language-specific WS libs

• Discovery cannot be handled by leveraging the KSB Registry at this time.

As Producer

1. Currently cannot register services on KSB in registry

2. Can still produce services, but they can’t be called leveraging the KSB; clients need to discover and
invoke the services directly (on their own).

KSB Registry as a Service
As of the 2.0 version of Rice, the ServiceRegistry is now itself a service. In order to bring the registry
online for the client application, the application needs to configure a URL similar to the following:

<param name="rice.ksb.registry.serviceUrl">http://localhost:8080/kr-dev/remoting/serviceRegistrySoap</param>

Currently, this connector is only configured to understand a SOAP interface to the service registry which
is secured by digital signatures. This is the only type of interface to the registry that the standalone server
currently publishes. Additionally, only a single URL to the registry can be configured at the current time.
If someone wants to do load balancing amongst potential registry endpoints, then a hardware or software
load balancer could be configured to do this.

Configuring the KSB Client in Spring

Overview
The Kuali Service Bus (KSB) is installed as a Kuali Rice (Rice) Module using Spring. Here is an example
XML snippet showing how to configure Rice and KSB using Spring:

<beans>
 ...
 <bean id="coreConfigurer" class="org.kuali.rice.core.impl.config.module.CoreConfigurer">
 <property name="dataSource" ref="riceDataSource${connection.pool.impl}" />
 <property name="nonTransactionalDataSource" ref="riceNonTransactionalDataSource" />
 <property name="transactionManager" ref="transactionManager${connection.pool.impl}" />
 <property name="userTransaction" ref="jtaUserTransaction" />
 </bean>

 <bean id="ksbConfigurer" class="org.kuali.rice.ksb.messaging.config.KSBConfigurer"/>

KSB

289

</beans>

Spring Property Configuration
The KSBTestHarnessSpring.xml located in the project folder under /ksb/src/test/resources/ is a good
starting place to explore KSB configuration in depth. The first thing the file does is use a
PropertyPlaceholderConfigurer to bring tokens into the Spring file for runtime configuration. The source of
the tokens is the xml file: ksb-test-config.xml located in the /ksb/src/test/resources/META-INF directory.

<bean id="config" class="org.kuali.rice.core.config.spring.ConfigFactoryBean">
 <property name="configLocations">
 <list>
 <value>classpath:META-INF/ksb-test-config.xml</value>
 </list>
 </property>
</bean>

<bean class="org.springframework.beans.factory.config.MethodInvokingFactoryBean">
 <property name="staticMethod"
 value="org.kuali.rice.core.impl.config.property.ConfigInitializer.initialize"/>
 <property name="arguments">
 <list>
 <ref bean="config"/>
 </list>
 </property>
</bean>

<bean class="org.springframework.beans.factory.config.PropertyPlaceholderConfigurer">
 <property name="properties" value="#{config.getProperties()}" />
</bean>

Note

• Properties are passed into the Rice configurer directly. These could be props loaded from
Spring and injected into the bean directly.

• You could use the Rice configuration subsystem for configuration.

• A JTA TransactionManager and UserTransaction are also being injected into the
CoreConfigurer.

As mentioned above, this allows tokens to be used in the Spring file. If you are not familiar with tokens,
they look like this in the Spring file: ${datasource.pool.maxSize}

Let's take a look at the ksb-test-config.xml file:

<config>
 <param name="config.location">classpath:META-INF/common-derby-connection-config.xml</param>
 <param name="config.location">classpath:META-INF/common-config-test-locations.xml</param>
 <param name="client1.location">/var/lib/jenkins/workspace/rice-2.2-release-sitedeploy/target/checkout/src/
test/clients/TestClient1</param>
 <param name="client2.location">/var/lib/jenkins/workspace/rice-2.2-release-sitedeploy/target/checkout/src/
test/clients/TestClient2</param>
 <param name="ksb.client1.port">9913</param>
 <param name="ksb.client2.port">9914</param>
 <param name="ksb.testharness.port">9915</param>
 <param name="threadPool.size">1</param>
 <param name="threadPool.fetchFrequency">3000</param>
 <param name="bus.refresh.rate">3000</param>
 <param name="bam.enabled">true</param>
 <param name="transaction.timeout">3600</param>
 <param name="keystore.alias">rice<param>

KSB

290

 <param name="keystore.password">keystorepass</param>
 <param name="keystore.file">/var/lib/jenkins/workspace/rice-2.2-release-sitedeploy/target/checkout/src/
test/resources/keystore/ricekeystore</param>
 <param name="keystore.location">/var/lib/jenkins/workspace/rice-2.2-release-sitedeploy/target/checkout/src/
test/resources/keystore/ricekeystore</param>
 <param name="use.clearDatabaseLifecycle">true</param>
 <param name="use.sqlDataLoaderLifecycle">true</param>
 <!-- bus messaging props -->
 <param name="message.delivery">synchronous</param>
 <param name="message.persistence">true</param>
 <param name="useQuartzDatabase">false</param>
 <param name="config.location">${additional.config.locations}</param>
 <param name="config.location">${alt.config.location}</param>
</config>

This is an XML file for configuring key value pairs. When used in conjunction with Spring tokenization
and the PropertyPlaceHolderConfigurer bean, the parameter name must be equal to the key value in the
Spring file so that the properties propagate successfully.

Spring JTA Configuration
When doing persistent messaging it is best practice to use JTA as your transaction manager. This
ensures that the messages you are sending are synchronized with the current executed transaction in your
application. It also allows message persistence to be put in a different database than the application’s logic
if needed. Currently, KSBTestHarnessSpring.xml uses JOTM to configure JTA without an application
server. Bitronix is another JTA product that could be used in Rice and you could consider using it instead
of JOTM. Below is the bean definition for JOTM that you can find in Spring:

<bean id="jotm" class="org.springframework.transaction.jta.JotmFactoryBean">
 <property name="defaultTimeout" value="${transaction.timeout}"/>

</bean>
<bean id="dataSource" class="org.kuali.rice.database.XAPoolDataSource">
 <property name="transactionManager" ref="jotm" />
 <property name="driverClassName" value="${datasource.driver.name}" />
 <property name="url" value="${datasource.url}" />
 <property name="maxSize" value="${datasource.pool.maxSize}" />
 <property name="minSize" value="${datasource.pool.minSize}" />
 <property name="maxWait" value="${datasource.pool.maxWait}" />
 <property name="validationQuery" value="${datasource.pool.validationQuery}" />
 <property name="username" value="${datasource.username}" />
 <property name="password" value="${datasource.password}" />

</bean>

Bittronix’s configuration is similar. Datasources for both are set up in
org.kuali.rice.core.RiceDataSourceSpringBeans.xml. If using JOTM, use the Rice XAPoolDataSource
class as your data source because it addresses some bugs in the StandardXAPoolDataSource, which
extends from this class.

Put JTA and the Rice Config object in the
CoreConfigurer

Next, you must inject the JOTM into the RiceConfigurer:

<bean id="rice" class="org.kuali.rice.core.impl.config.module.CoreConfigurer">
 <property name="dataSource" ref="dataSource" />
 <property name="transactionManager" ref="jotm" />
 <property name="userTransaction" ref="jotm" />
<...more.../>

KSB

291

Configuring JTA from an appserver is no different, except the TransactionManager and UserTransaction
are going to be fetched using a JNDI FactoryBean from Spring.

Note

You set the serviceNamespace property in the example above by injecting the name into the
RiceConfigurer. You can do this instead of setting the property in the configuration system.

Configuring KSB without JTA
You can configure KSB by injecting a PlatformTransactionManager into the KSBConfigurer.

• This eliminates the need for JTA. Behind the scenes, KSB uses Apache's OJB as its Object Relational
Mapping.

• Before you can use PlatformTransactionManager, you must have a client application set up the OJB
so that KSB can use it.

This is a good option if you are an OJB shop and you want to continue using your current setup without
introducing JTA into your stack. Normally, when a JTA transaction is found, the message is not sent until
the transaction commits. In this case, the message is sent immediately.

Let's take a look at the KSBTestHarnessNoJtaSpring.xml file. Instead of JTA, the following transaction
and DataSource configuration is declared:

<bean id="ojbConfigurer" class="org.springmodules.orm.ojb.support.LocalOjbConfigurer" />

<bean id="transactionManager" class="org.springmodules.orm.ojb.PersistenceBrokerTransactionManager">
 <property name="jcdAlias" value="dataSource" />
</bean>

<bean id="dataSource" class="org.springframework.jdbc.datasource.DriverManagerDataSource">
 <property name="driverClassName">
 <value>${datasource.driver.name}</value>
 </property>
 <property name="url">
 <value>${datasource.url}</value>
 </property>
 <property name="username">
 <value>${datasource.username}</value>
 </property>
 <property name="password">
 <value>${datasource.password}</value>
 </property>
</bean>

The RiceNoJtaOJB.properties file needs to include the Rice connection factory property value:

ConnectionFactoryClass=org.kuali.rice.core.framework.persistence.ojb.RiceDataSourceConnectionFactory

Often, the DataSource is pulled from JNDI using a Spring FactoryBean. Next, we inject the DataSource
and transactionManager (now a Spring PlatformTransactionManager).

<bean id="rice" class="org.kuali.rice.core.impl.config.module.CoreConfigurer">
 <property name="dataSource" ref="dataSource" />
 <property name="nonTransactionalDataSource" ref="dataSource" />
 ...
</bean

KSB

292

<bean id="ksbConfigurer" class="org.kuali.rice.ksb.messaging.config.KSBConfigurer">
 <property name="platformTransactionManager" ref="transactionManager" />
 <... more .../>
</bean>

Notice that the transactionManager is injected into the KSBConfigurer directly. This is because only KSB,
and not Rice, supports this type of configuration. The DataSource is injected normally. When doing this, the
OJB setup is entirely in the hands of the client application. That doesn't mean anything more than providing
an OJB.properties object at the root of the classpath so OJB can load itself. KSB will automatically register
its mappings with OJB, so they don't need to be included in the repository.xml file.

web.xml Configuration
To allow external bus clients to invoke services on the bus-connected node, you must configure the
KSBDispatcherServlet in the web applications web.xml file. For example:

<servlet>
 <servlet-name>remoting</servlet-name>
 <servlet-class>org.kuali.rice.ksb.messaging.servlet.KSBDispatcherServlet</servlet-class>
 <load-on-startup>1</load-on-startup>

</servlet>

<servlet-mapping>
 <servlet-name>remoting</servlet-name>
 <url-pattern>/remoting/*</url-pattern>
</servlet-mapping>

This allows bus-exposed services to be accessed at a URL like http://yourlocalip:8080/myapp/remoting/
[KSB:service name]. Notice how this URL corresponds to the configured serviceServletUrl property on
the KSBConfigurer.

Configuration Parameters
The service bus leverages the Rice configuration system for its configuration. Here is a comprehensive set
of configuration parameters that you can use to configure the Kuali Service Bus:

Table 8.1. KSB Configuration Parameters

Parameter Required Default Value

bam.enabled Whether Business Action Messaging is enabled false

bus.refresh.rate How often the service bus will update the
services it has deployed in minutes.

60

dev.mode no false

message.persistence no true

message.delivery no asynch

message.off no false

ksb.mode The mode that KSB will run in; choices are
"local", "embedded", or "remote".

LOCAL

ksb.url The base URL of KSB services and pages. ${application.url}/ksb

RouteQueue.maxRetryAttempts no 5

RouteQueue.timeIncrement no 5000

Routing.ImmediateExceptionRouting no false

RouteQueue.maxRetryAttemptsOverride no None

KSB

293

Parameter Required Default Value

rice.ksb.batch.mode A service bus mode suitable for running batch
jobs; it, like the KSB dev mode, runs only local
services.

false

rice.ksb.struts.config.files The struts-config.xml configuration file that the
KSB portion of the Rice application will use.

/ksb/WEB-INF/struts-config.xml

rice.ksb.web.forceEnable no false

threadPool.size The size of the KSB thread pool. 5

useQuartzDatabase no true

ksb.org.quartz.* no None

rice.ksb.config.allowSelfSignedSSL no false

dev.mode

Indicates whether this node should export and consume services from the entire service bus. If set to true,
then the machine will not register its services in the global service registry. Instead, it can only consume
services that it has available locally. In addition to this, other nodes on the service bus will not be able to
"see" this node and will therefore not forward any messages to it.

message.persistence

If true, then messages will be persisted to the datastore. Otherwise, they will only be stored in memory.
If message persistence is not turned on and the server is shutdown while there are still messages that need
to be sent, those messages will be lost. For a production environment, it is recommended that you set
message.persistence to true.

message.delivery

Can be set to either synchronous or asynchronous. If this is set to synchronous, then messages that are
sent in an asynchronous fashion using the KSB API will instead be sent synchronously. This is useful in
certain development and unit testing scenarios. For a production environment, it is recommended that you
set message delivery to asynchronous.

Note

It is strongly recommended that you set message.delivery to asynchronous for all cases except
for when implementing automated tests or short-lived programs that interact with the service bus.

message.off

If set to true, then asynchronous messages will not be sent. In the case that message persistence is turned
on, they will be persisted in the message store and can even be picked up later using the Message Fetcher.
However, if message persistence is turned off, these messages will be lost. This can be useful in certain
debugging or testing scenarios.

RouteQueue.maxRetryAttempts

Sets the default number of retries that will be executed if a message fails to be sent. You can also customize
this retry count for a specific service (see Exposing Services on the Bus).

RouteQueue.timeIncrement

Sets the default time increment between retry attempts. As with RouteQueue.maxRetryAttempts, you can
also configure this at the service level.

KSB

294

Routing.ImmediateExceptionRouting

If set to true, then messages that fail to be sent will not be retried. Instead, their MessageExceptionHandler
will be invoked immediately.

RouteQueue.maxRetryAttemptsOverride

If set with a number, it will temporarily set the retry attempts for ALL services going into exception routing.
You can set the number arbitrarily high to prevent all messages in a node from making it to exception
routing if they are having trouble. The message.off param produces the same result.

useQuartzDatabase

When using the embedded Quartz scheduler started by the KSB, indicates whether that Quartz scheduler
should store its entries in the database. If this is true, then the appropriate Quartz properties should be set
as well. (See ksb.org.quartz.* below).

ksb.org.quartz.*

Can be used to pass Quartz properties to the embedded Quartz scheduler. See the configuration
documentation on the Quartz site. Essentially, any property prefixed with ksb.org.quartz. will have the
"ksb." portion stripped and will be sent as configuration parameters to the embedded Quartz scheduler.

rice.ksb.config.allowSelfSignedSSL

If true, then the bus will allow communication using the https protocol between machines with self-signed
certificates. By default, this is not permitted and if attempted you will receive an error message like this:

Note

It is best practice to only set this to 'true' in non-production environments!

rice.ksb.web.forceEnable

publish the KSB user interface components (such as the Message Queue, Thread Pool, Service Registry
screens) even when the ksb.mode is not set to local.

KSBConfigurer Properties
In addition to the configuration parameters that you can specify using the Rice configuration system, the
KSBConfigurer bean itself has some properties that can be injected in order to configure it:

exceptionMessagingScheduler

By default, KSB uses an embedded Quartz scheduler for scheduling the retry of messages that fail to be
sent. If desired, a Quartz scheduler can instead be injected into the KSBConfigurer and it will use that
scheduler instead. See Quartz Scheduling for more detail.

messageDataSource

Specifies the javax.sql.DataSource to use for storing the asynchronous message queue. If not specified,
this defaults to the DataSource injected into the RiceConfigurer.

If this DataSource is injected, then the registryDataSource must also be injected and vice-versa.

http://www.quartz-scheduler.org/

KSB

295

nonTransactionalMessageDataSource

Specifies the javax.sql.DataSource to use that matches the messageDataSource property. This datasource
instance must not be transactional. If not specified, this defaults to the nonTransactionalDataSource
injected into the RiceConfigurer.

registryDataSource

Specifies the javax.sql.DataSource to use for reading and writing from the Service Registry. If not
specified, this defaults to the DataSource injected into the RiceConfigurer.

If this DataSource is injected, then the messageDataSource must also be injected and vice-versa.

services

Specifies a list of Java service definitions relating to SOAP to use as part of messaging.

KSB Configurer
The application needs to do one more thing to begin publishing services to the bus: Configure the
KSBConfigurer object. This can be done using Spring or programmatically. We'll use Spring because it's
the easiest way to get things configured:

<bean id="jotm" class="org.springframework.transaction.jta.JotmFactoryBean">
 <property name="defaultTimeout" value="${transaction.timeout}"/>
</bean>

<bean id="dataSource" class=" org.kuali.rice.core.database.XAPoolDataSource ">
 <property name="transactionManager" ref="jotm"/>
 <property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
 <property name="maxSize" value="25"/>
 <property name="minSize" value="2"/>
 <property name="maxWait" value="5000"/>
 <property name="validationQuery" value="select 1 from dual"/>
 <property name="url" value="jdbc:oracle:thin:@LOCALHOST:1521:XE"/>
 <property name="username" value="myapp"/>
 <property name="password" value="password"/>
</bean>

<bean id="nonTransactionalDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
 <property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
 <property name="url" value="jdbc:oracle:thin:@LOCALHOST:1521:XE"/>
 <property name="maxActive" value="50"/>
 <property name="minIdle" value="7"/>
 <property name="initialSize" value="7"/>
 <property name="validationQuery" value="select 1 from dual"/>
 <property name="username" value="myapp"/>
 <property name="password" value="password"/>
 <property name="accessToUnderlyingConnectionAllowed" value="true"/>
</bean>

<bean id="coreConfigurer" class="org.kuali.rice.core.impl.config.module.CoreConfigurer">
 <property name="dataSource" ref="datasource" />
 <property name="nonTransactionalDataSource" ref="nonTransactionalDataSource" />
 <property name="transactionManager" ref="jotm" />
 <property name="userTransaction" ref="jotm" />
</bean>

<bean id="ksbConfigurer" class="org.kuali.rice.ksb.messaging.config.KSBConfigurer"/>

The application is now ready to deploy services to the bus. Let's take a quick look at the Spring file above
and what's going on there: The following configures JOTM, which is currently required to run KSB.

KSB

296

<bean id="jotm" class="org.springframework.transaction.jta.JotmFactoryBean" />

Next, we configure the XAPoolDataSource and the non transactional BasicDataSource. This is pretty
much standard data source configuration stuff. The XAPoolDataSource is configured through Spring and
not JNDI so it can take advantage of JTOM. Servlet containers, which don't support JTA, require this
configuration step so the datasource will use JTA.

<bean id="dataSource" class=" org.kuali.rice.core.database.XAPoolDataSource ">
 <property name="transactionManager" ref="jotm"/>
 <property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
 <property name="url" value="jdbc:oracle:thin:@LOCALHOST:1521:XE"/>
 <property name="maxSize" value="25"/>
 <property name="minSize" value="2"/>
 <property name="maxWait" value="5000"/>
 <property name="validationQuery" value="select 1 from dual"/>
 <property name="username" value="myapp"/>
 <property name="password" value="password"/>
</bean>

<bean id="nonTransactionalDataSource" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close">
 <property name="driverClassName" value="oracle.jdbc.driver.OracleDriver"/>
 <property name="url" value="jdbc:oracle:thin:@LOCALHOST:1521:XE"/>
 <property name="maxActive" value="50"/>
 <property name="minIdle" value="7"/>
 <property name="initialSize" value="7"/>
 <property name="validationQuery" value="select 1 from dual"/>
 <property name="username" value="myapp"/>
 <property name="password" value="password"/>
 <property name="accessToUnderlyingConnectionAllowed" value="true"/>
</bean>

Next, we configure the bus:

<bean id="rice" class="org.kuali.rice.core.config.CoreConfigurer">
 <property name="dataSource" ref="dataSource" />
 <property name="nonTransactionalDataSource" ref="nonTransactionalDataSource" />
 <property name="transactionManager" ref="jotm" />
 <property name="userTransaction" ref="jotm" />
</bean>

<bean id="ksbConfigurer" class="org.kuali.rice.ksb.messaging.config.KSBConfigurer">
 <property name="registryDataSource" ref="dataSource" />
 <property name="bamDataSource" ref="dataSource" />
 <property name="messageDataSource" ref="dataSource" />
 <property name="nonTransactionalMessageDataSource" ref="nonTransactionalDataSource" />
</bean>

We are injecting JOTM, and the datasources. The injection of the KSBConfigurer class into the
ksbConfigurer property tells this instance of Rice to start the Service Bus. The final necessary step is
making sure the configuration parameter 'application.id' is set properly to some value that will identify all
services deployed from this node as a member of this node.

At this point, the application is configured to use the bus, both for publishing services and to send
messages to services. Usually, applications will publish services on the bus using the KSBConfigurer or
the SoapServiceExporter classes. See Acquiring and invoking services for more detail.

Implications of “synchronous” vs. “asynchronous” Message
Delivery

As noted in Configuration Parameters, it is possible to configure message delivery to run asynchronously or
synchronously. It is imported to understand that asynchronous messing should be used in almost all cases.

KSB

297

Asynchronous messing will result in messages being sent in a separate thread after the original transaction
that requested the message to be sent is committed. This is the appropriate behavior in a “fire-and-forget”
messaging model. The option to configure message deliver as synchronous was added for two reasons:

1. To allow for the implementation of automated unit tests which could perform various tests without
having to right “polling” code to wait for asynchronous messing to complete.

2. For short-lived programs (such as batch programs) which need to send messages. This allows for a
guarantee that all messages will be sent prior to the application being terminated.

The second case is the only case where synchronous messaging should be used in a production setting, and
even then it should be used with care. Synchronous message processing in Rice currently has the following
major differences from asynchronous messaging that need to be understood:

1. Order of Execution

2. Exception Handling

Order of Execution

In asynchronous messaging, messages are queued up until the end of the transaction, and then sent after
the transaction is committed (technically, they are sent when the transaction is committed).

In synchronous messaging, messages are processed immediately when they are “sent”. This results in a
different ordering of execution when using these two different messaging models.

Exception Handling

In asynchronous messaging, whenever there is a failure processing a message, an exception handler is
invoked. Recovery from such failures can include resending the message multiple times, or recording and
handling the error in some other way. Since all of this is happening after the original transaction was
committed, it does not affect the original processing which invoked the sending of the message.

With synchronous messaging, since the message processing is invoked immediately and the calling code
blocks until the processing is complete, any errors raised during messaging will be thrown back up to
the calling code. This means that if you are writing something like a batch program which relies on
synchronous messaging, you must be aware of this and add code to handle any errors if you want to deal
with them gracefully.

Another implication of this is that message exception handlers will not be invoked in this case.
Additionally, because an exception is being thrown, this will typically trigger a rollback in any transaction
that the calling code is running. So transactional issues must be dealt with as well. For example, if the
failure of a single message shouldn’t cause the sending of all messages in a batch job to fail, then each
message will need to be sent in it’s own transaction, and errors handled appropriately.

Configuring Quartz for KSB

Quartz Scheduling
The Kuali Service Bus (KSB) uses Quartz to schedule delayed tasks, including retry attempts for messages
that cannot be sent the first time. By default, KSB uses an embedded quartz scheduler that can be configured
by passing parameters starting with “ksb.org.quartz.” into the Rice configuration.

If the application is already running a quartz scheduler, you can inject a custom quartz scheduler using
code like this:

KSB

298

<bean class="org.kuali.rice.ksb.messaging.config.KSBConfigurer">
 ...
 <property name="exceptionMessagingScheduler">
 <bean class="org.springframework.scheduling.quartz.SchedulerFactoryBean">
 ...
 </bean>
 </property>
</bean>

When you do this, KSB will not create an embedded scheduler but will instead use the one provided.

Acquiring and Invoking Services Deployed on
KSB
Service invocation overview

1. Acquired and called directly

• Automatic Failover

• No Persistence

• Direct call - Request/Response

2. Acquired and called through the MessageHelper

• Automatic Failover

• Message Persistence

• KSB Exception Messaging

• Callback Mechanisms

In the examples below, notice that the client code is unaware of the protocol with which the underlying
service is deployed. Given a connector for a given protocol and a compatible service definition, you could
move a service to different protocols as access needs change without affecting dependent client code.

Acquiring and invoking a service directly
The easiest way to call a service is to grab it and invoke it directly. This uses a direct request/response
pattern and what you see is what you get. You will wait for the processing the call takes on the other
side plus the cost of the remote connection time. Any exceptions thrown will come across the wire in a
protocol-acceptable way.

This code acquires a SOAP-based service and calls it:

QName serviceName = new QName("testNameSpace", "soap-repeatTopic");

SOAPService soapService = (SOAPService) GlobalResourceLoader.getService(serviceName);
soapService.doTheThing("hello");

The SOAPService interface needs to be in the client classpath and bindable to the WSDL. The easiest
way to achieve this in Java is to create a bean that is exported as a SOAP service. This is the server-side
service declaration in a Spring file:

KSB

299

<bean id="ksbConfigurer" class="org.kuali.rice.ksb.messaging.config.KSBConfigurer">
 ...
 <property name="services">
 <list>
 <bean class="org.kuali.rice.ksb.api.bus.support.SoapServiceDefinition">
 <property name="service">
 <ref bean="soapService" />
 </property>
 <property name="localServiceName" value="soap-repeatTopic" />
 <property name="serviceNameSpaceURI" value="testNameSpace" />
 <property name="priority" value="3" />
 <property name="queue" value="false" />
 <property name="retryAttempts" value="1" />
 </bean>
 ...
 </list>
 </property>
</bean>

This declaration exposes the bean soapService on the bus as a SOAP available service. The Web Service
Definition Language is available at the serviceServletUrl + serviceNameSpaceURI + localServiceName
+ ?wsdl.

This next code snippet acquires and calls a Java base service:

EchoService echoService = (EchoService)GlobalResourceLoader.getService(new QName("TestCl1", "echoService"));
String echoValue = "echoValue";
String result = echoService.echo(echoValue);

Again, the interface is all that is required to make the call. This is the server-side service declaration that
deploys a bean using Spring’s HttpInvoker as the underlying transport:

<bean id="ksbConfigurer" class="org.kuali.rice.ksb.messaging.config.KSBConfigurer">
 ...
 <property name="services">
 <list>
 <bean class="org.kuali.rice.ksb.api.bus.support.SoapServiceDefinition">
 <property name="service" ref="echoService" />
 <property name="serviceInterface"
 value="org.kuali.rice.ksb.messaging.remotedservices.EchoService" />
 <property name="localServiceName" value="soap-echoService" />
 <property name="busSecurity" value="false"></property>
 </bean>
 ...
 </list>
 </property>
</bean>

Below is a description of each property on the ServiceDefinition (JavaServiceDefinition and
SOAPServiceDefinition):

Table 8.2. Properties of the ServiceDefinition

property required default description

busSecurity no yes (JavaServiceDefinition), no
(SOAPServiceDefinition)

For Java-based services, message is digitally
signed before calling the service and verified
at the node hosting the service. For SOAP
services, WSS4J is used to digitally sign the
SOAP request/response in accordance with the
WS Security specification. More info on Bus
Security here.

localServiceName yes none The local name of the QName that makes up the
complete service name.

KSB

300

property required default description

messageExceptionHandler no DefaultMessageExceptionHandler Name of the MessageExceptionHandler that is
called when a service call fails. This is called
after the retryAttempts or millisToLive policy
of the service or Node has been met.

millisToLive no none Used instead of retryAttempts. Only considered
in case of error when invoking service. Defines
how long the message should continue to be
tried before being put into KSB Exception
Messaging.

priority no 5 Only applies when asynchronous messaging is
enabled. The lower the priority is, the sooner
the message will be executed. For example,
if 100 priority 10 messages are waiting for
invocation and a priority 5 message is sent, the
priority 5 message will be executed first.

queue no true If true, the service will behave like a queue in
that there is only one real service call when a
message is sent.

If false, the service will behave like a topic. All
beans bound to the service name will be sent a
message when a message is sent to the service.

Use queues for operations you only want
to happen once (for example, to route a
document). Use topics for notifications across a
cluster (for example, to invalidate cache entry).

retryAttempts no 7 Determines the number of times a service
can be invoked before being put into KSB
Exception Messaging (the error state)

service yes none The bean to be exposed for invocation on the
bus

serviceEndPoint no serviceServletUrl + serviceName This can be explicitly set to create an alternate
service end point, different from the one the bus
automatically creates.

serviceName yes serviceNameSpaceURI + localServiceName If localServiceName and
serviceNameSpaceURI are omitted, the QName
of the service. This can be used instead of the
localServiceName and serviceNameSpaceURI
convenience methods.

serviceNameSpaceURI no messageEntity property or message.entity
config param is used

The namespaceURI of the QName that makes
up the complete service name. If set to "" (blank
string) the property is NOT included in the
construction of the QName representing the
service and the service name will just be the
localServiceName with no namespace.

Acquiring and invoking a service using messaging
To make a call to a service through messaging, acquire the service by its name using the MessageHelper:

QName serviceName = new QName("testAppsSharedQueue", "sharedQueue");

KEWSampleJavaService testJavaAsyncService = (KEWSampleJavaService)
 KsbApiServiceLocator.getMessageHelper().getServiceAsynchronously(serviceName);

At this point, the testJavaAsyncService can be called like a normal JavaBean:

testJavaAsyncService.invoke(new ClientAppServiceSharedPayloadObj("message content", false));

Because this is a queue, a single message is sent to one of the beans bound to the service name
new QName("testAppsSharedQueue", "sharedQueue"). That 'message' is the call 'invoke' and it takes a

KSB

301

ClientAppServiceSharedPayloadObj. Typically, messaging is done asynchronously. Messages are sent
when the currently running JTA transaction is committed - that is, the messaging layer automatically
synchronizes with the current transaction. So, using JTA, even though the above is coded in line with code,
invocation is normally delayed until the transaction surrounding the logic at runtime is committed.

When not using JTA, the message is sent asynchronously (by a different thread of execution), but it's sent
ASAP.

To review, the requirements to use a service that is exposed to the bus on a different machine are:

1. The service name

2. The interface to which to cast the returned service proxy object

3. The ExceptionMessageHandler required by the service in case invocation fails

Note

Typically, service providers give clients a JAR with this content or organizations maintain a JAR
with this content.

To complete the example: Below is the Spring configuration used to expose this service to the bus. This
is taken from the file TestClient1SpringBeans.xml:

<!-- bean declaration -->
<bean id="sharedQueue" class=" org.kuali.rice.ksb.testclient1.ClientApp1SharedQueue" />

<bean id="ksbConfigurer" class="org.kuali.rice.ksb.messaging.config.KSBConfigurer">
 ...
 <property name="services">
 <list>
 <bean class=" org.kuali.rice.ksb.messaging.JavaServiceDefinition">
 <property name="service" ref="sharedQueue" />
 <property name="localServiceName" value="sharedQueue" />
 <property name="serviceNameSpaceURI" value="testAppsSharedQueue" />
 </bean>
 <... more .../>
 </list>
 </property>
</bean>

This is located in the Spring file of the application exposing the service (in other words, the location in
which the actual invocation will occur). The client does not need a Spring configuration to invoke the
service.

There are two messaging call paradigms, called Topics and Queues. When any number of services is
declared a Topic, then those services are invoked at least once or multiple times. If any number of services
is declared a Queue, then one and only one service name will be invoked.

Getting responses from service calls made with
messaging

You can use Callback objects to get responses from service calls made using messaging. Acquiring a
service for use with a Callback:

QName serviceName = new QName("TestCl1", "testXmlAsyncService");
SimpleCallback callback = new SimpleCallback();
KSBXMLService testXmlAsyncService = (KSBXMLService)
 KsbApiServiceLocator.getMessageHelper().getServiceAsynchronously(serviceName, callback);

KSB

302

testXmlAsyncService.invoke("message content");

When the service is invoked asynchronously, the AsynchronousCallback object's (the SimpleCallback
class above) callback method is called.

When message persistence is turned on, this object is serialized with any method call made through the
messaging API. Take into consideration that this object (and the result of a method call) may survive
machine restart and therefore it’s recommended that you NOT depend on certain transient in-memory
resources.

Failover

Service call failover
Failover works the same whether making direct service calls or using messaging.

Services exported to the bus have automatic failover from the client’s perspective. For example, if service
A is deployed on machines 1 and 2 and a client happens to get a proxy that points to machine 1 but machine
1 crashes, the KSB will automatically detect that the exception is a result of some network issue and direct
the call to machine 2. KSB then removes machine 1 from the registry so new clients to the bus don't try to
acquire the service. When machine 1 returns to the network it will register itself with the service registry
and therefore the bus.

When a message calls a service, the failover rules determine which service KSB assigns (topic or queue)
to the message.

Failover with queues
Because queues require only one call between all beans bound to the queue, if a single call to a queue fails,
failover to the next bean occurs. If successful, the call is done. If it is not successful, it continues until a
suitable bean is found. If none is found, the message is marked for retry later. Eventually, the message
either goes to KSB exception messaging or successfully completes.

Failover with topics
If a machine in a topic is unavailable, a failed call to that machine will continue to be retried until that call
is successful or that call goes into KSB exception messaging.

KSB Exception Messaging
Exception Messaging is the set of services and configuration options that handle messages that cannot
be delivered successfully. Exception Messaging is primarily used by configuring your service using
the properties outlined in KSB Module Configuration. When services are configured to use message
persistence and there is a problem invoking a service, the persisted message or service call is relied upon
to make another call to that service until the call is either:

1. Successful

2. Certain configuration policies have been met and the message goes into the Exception state

The Exception state means that KSB can't doing anything more with this message. The message will not
invoke properly. That generally means that some sort of technical intervention is required by both the
consumer and the provider of the service to determine what the problem is.

KSB

303

All Exception behavior is configurable at the service level by setting the name of the class to be used as
MessageExceptionHandler. This class determines what to do when a client of a service cannot invoke a
message. The DefaultMessageExceptionHandler is enough to meet most requirements.

When a message is put into the Exception state, KSB puts it back into the message store and marks it
with a status of 'E'. At that point, it is up to the person responsible for monitoring this node on the bus to
determine what to do with the message.

Because the node exposing the service configures the MessageExceptionHandler, any clients depending
on the service need that MessageExceptionHandler and any dependent code and configuration.

KSB Messaging Paradigms
KSB supports two types of messaging paradigms; Queues and Topics, and the differences are explained
below. These are very similar to JMS messaging concepts. An open source solution was not used for
KSB messaging because an open source JMS provider wasn’t found that provided JTA synchronization,
discovery, failover, and load balancing. Many claim such features, but when put to the test in real world
scenarios (i.e., machines going down and coming back up, databases failing, network connectivity issues);
none managed to reliably deliver messages.

The advantage here is that we can apply these messaging concepts to any support protocol with which
we can communicate.

Queues
When any number of services is bound to a queue and a method is invoked, one and only one service
gets the invocation.

Topics
When any number of services is bound to a topic and a method is invoked, all services are invoked AT
LEAST once or multiple times.

Message Fetcher
org.kuali.rice.ksb.messaging.MessageFetcher is a Runnable that needs to be configured by the client
application to retrieve stored messages from the database that weren’t processed when the node went down.
This can happen for many reasons. The machine can be under load and just crash.

When message persistence is enabled, a service that fails or throws an Exception stores preprocessed
messages in the database until they can be resent. This makes certain that a crash or emergency restart of
your machine will not result in message loss.

The KSB does not automatically fetch all these messages and attempt to invoke them when it starts, because
often the KSB is started when the services the messages are bound for are not yet started. For now, you
need to decide when to call the run method on the MessageFetcher. Because it's a Runnable, you could also
put the MessageFetcher in the KSBThreadPool that is available on the KSBServiceLocator. You could
wrap it in a TimerTask, etc. All that is required is this:

new MessageFetcher((Integer) null).run()

Unfortunately, the cast to Integer is required. The MessageFetcher also has a constructor that takes a long
variable as a parameter. This can be used to pull any message in the message store and put it in memory
for invocation. Integer is a fetch size; null means all.

KSB

304

Load Balancing
Load balancing between service calls is automatic. If there are multiple nodes that expose services of the
same name, clients will randomly acquire proxies to each endpoint bound to that name.

Object Remoting
As of Rice 2.0, Object remoting support has been removed.

Publishing Services to KSB
You can publish Services on the service bus either by configuring them directly in the application's
KSBConfigurer module definition, or by using the PropertyConditionalServiceBusExporter bean. In either
case, a ServiceDefinition is provided that specifies various bus settings and the target Spring bean.

KSBConfigurer

A service can be exposed by explicitly registering it with the KSBConfigurer module, services property:

<bean class="org.kuali.rice.ksb.messaging.config.KSBConfigurer">
 <property name="serviceServletUrl" value="${base url}/MYAPP/remoting/" />
 ...
 <property name="services">
 <list>
 <bean class="org.kuali.rice.ksb.api.bus.support.SoapServiceDefinition">
 <property name="service">
 <ref bean="mySoapService" />
 </property>
 <property name="serviceInterface"><value>org.myapp.services.MySOAPService</value></property>
 <property name="localServiceName" value="myExposedSoapService" />
 </bean>
 <bean class="org.kuali.rice.ksb.api.bus.support.JavaServiceDefinition">
 <property name="service">
 <ref bean="myJavaService" />
 </property>
 <property name="serviceInterface">
 <value>org.myapp.services.MyJavaService</value></property>
 <property name="localServiceName" value="myExposedJavaService" />
 </bean>

Service Exporter

You can also publish Services in any context using the ServiceBusExporter (or
PropertyConditionalServiceBusExporter) bean. Note that KSBConfigurer must also be defined in your
RiceConfigurer.

<bean id="myapp.serviceBus"
 class="org.kuali.rice.krad.config.GlobalResourceLoaderServiceFactoryBean">
 <property name="serviceName" value="rice.ksb.serviceBus"/>
</bean>

<bean id="myAppServiceExporter"
 class="org.kuali.rice.ksb.api.bus.support.ServiceBusExporter"
 abstract="true">
 <property name="serviceBus" ref="myapp.serviceBus"/>
</bean>

KSB

305

<bean id="myJavaService.exporter" parent="myAppServiceExporter">
 <property name="serviceDefinition">
 <bean class="org.kuali.rice.ksb.api.bus.support.JavaServiceDefinition">
 <property name="service">
 <ref bean="myJavaService" />
 </property>
 <property name="serviceInterface">
 <value>org.myapp.services.MyJavaService</value>
 </property>
 <property name="localServiceName" value="myExposedJavaService" />
 </bean>
 </property>
</bean>

<bean id="mySoapService.exporter" parent="myAppServiceExporter">
 <property name="serviceDefinition">
 <bean class="org.kuali.rice.ksb.api.bus.support.SoapServiceDefinition">
 <property name="service">
 <ref bean="mySoapService" />
 </property>
 <property name="serviceInterface">
 <value>org.myapp.services.MySOAPService</value>
 </property>
 <property name="localServiceName" value="myExposedSoapService" />
 </bean>
 </property>

</bean>

CallbackServiceExporter
The term "Callback Service" refers to services that client applications write and configure and which are
used by various modules of Rice including KIM, KEW, and KRMS. Because of the naming convention
on these, they are often referred to as "Type Services". These include:

• KIM

• RoleTypeService

• PermissionTypeService

• GroupTypeService

• etc.

• KRMS

• ActionTypeService

• PropositionTypeService

• AgendaTypeService

• etc.

• KEW

• PeopleFlowTypeService

These are typically called back into from the Rice Standalone Server when needing information for
rendering of various components in the server-side user interface. Additionally, in some cases they can
also be used to provide custom processing hooks for different components of the various Kuali Rice
frameworks.

KSB

306

Version Compatibility for Callback Services

Callback services (like all services in Rice) can be evolved over time and across versions. This means that
new functionality might be added to them. Since the Rice Standalone Server interacts with these services
remotely, it really needs to know what version of a particular callback service that the client application
is running. They also must be published as the appropriate type of service endpoint that the standalone
server knows how to talk to (i.e. SOAP instead of Java Serialization). Thankfully, the KSB service registry
can store metadata about a service which includes the service version. However, in order to for this to
work properly the client application must be sure they publish the service with a version that matches the
version of Rice they are using.

In order to make this easier on client applications, a helper has been implemented which can be used for
this purpose in Rice.

Callback Service Exporter Helper

There is a helper class which can be used by client applications to
export these callback services onto the Kuali Service Bus. The class is
org.kuali.rice.ksb.api.bus.support.CallbackServiceExporter. This is a class
which can be wired up inside of a Spring context in order to publish a callback service to the KSB with
the appropriate Rice version. The version of Rice is packaged up into the Rice jars inside of a file called
common-config-defaults.xml and it uses the version that matches the version of Rice in the POM when
the jar was packaged.

Typical configuration might look like the following:

<bean id="sampleAppPeopleFlowTypeService.exporter"
 class="org.kuali.rice.ksb.api.bus.support.CallbackServiceExporter"
 p:serviceBus-ref="rice.ksb.serviceBus"
 p:callbackService-ref="sampleAppPeopleFlowTypeService"
 p:serviceNameSpaceURI="http://rice.kuali.org/sample-app"
 p:localServiceName="sampleAppPeopleFlowTypeService"
 p:serviceInterface="org.kuali.rice.kew.framework.peopleflow.PeopleFlowTypeService"/>

The javadocs for CallbackServiceExporter provide more detail on the options for publishing of
callback services.

ServiceDefinition properties
ServiceDefinitions define how the service is published to the KSB. Currently KSB supports three types of
services: Java RPC (via serialization over HTTP), SOAP, and JMS.

Basic parameters

All service definitions support these properties:

Table 8.3. ServiceDefinition Properties

Property Description Required

Service The reference to the target service bean yes

localServiceName The "local" part of the service name; together with a
namespace this forms a qualified name, or QName

yes

serviceNameSpaceURI The "namespace" part of the service name; together
with a local name forms a qualified name, or QName

Not required; if omitted, the
Core.currentContextConfig().getMessageEntity()
is used when exporting the service

KSB

307

Property Description Required

serviceEndpoint URL at which the service can be invoked by a remote
call

Not required; defaults to the serviceServletUrl
parameter defined in the Rice config

retryAttempts Number of attempts to retry the service invocation on
failure; for services with side-effects you are advised
to omit this property

Not required; defaults to 0

millisToLive Number of milliseconds the call should persist
before resulting in failure

Not required; defaults to no limit (-1)

Priority Priority Not required; defaults to 5

MessageExceptionHandler Reference to a MessageExceptionHandler that
should be invoked in case of exception

Not required; default implementation handles retries
and timeouts

busSecurity Whether to enable bus security for the service Not required; defaults to ON

ServiceNameSpaceURI/MessageEntity
ServiceNameSpaceURI is the same as the Message Entity that composes the qualified name under which
the service is exposed. When omitted, this namespace defaults to the message entity configured for Rice
(e.g., in the RiceConfigurer), thereby qualifying the local name. Note: Although this implicit qualification
occurs during export, you must always specify an explicit message entity when acquiring a resource, for
example:

GlobalResourceLoader.getService(new QName("MYAPP", "myExposedSoapService"))

SOAPServiceDefinition

Table 8.4. SOAPServiceDefinition

Property Description Required

serviceInterface The interface to expose and from which to generate the
WSDL

Not required; if omitted the first interface implemented by
the class is used

JavaServiceDefinition

Table 8.5. JavaServiceDefinition

Property Description Required

serviceInterface The interface to expose Not required; if omitted, all application-layer interfaces
implemented by the class are exposed

serviceInterfaces A list of interfaces to expose Not required; if omitted, all application-layer interfaces
implemented by the class are exposed

Publishing Rice services
We show how you can "import" Rice services into the client Spring application context in Configuring
KSB Client in Spring. Using this technique, you can also publish Rice services on the KSB:

<!-- import a Rice service from the ResourceLoader stack -->
<bean id="myapp.aRiceService" class="org.kuali.rice.krad.config.GlobalResourceLoaderServiceFactoryBean">
 <property name="serviceName" value="aRiceService"/>
</bean

<!-- if Rice does not publish this service on the bus, one can explicitly publish it -->
<bean id="myAppServiceExporter"
 class="org.kuali.rice.ksb.api.bus.support.ServiceBusExporter"
 abstract="true">

KSB

308

 <property name="serviceBus" ref="myapp.serviceBus"/>
</bean>

<bean id="myJavaService.exporter" parent="myAppServiceExporter">
 <property name="serviceDefinition">
 <bean class="org.kuali.rice.ksb.api.bus.support.JavaServiceDefinition">
 <property name="service">
 <ref bean="aRiceService" />
 </property>
 <property name="serviceInterface" value="org.kuali.rice...SomeInterface" />
 <property name="localServiceName" value="aPublishedRiceService" />
 </bean>
 </property>
</bean>

Warning

Not all Rice services are intended for public use. Do not arbitrarily expose them on the bus

The ResourceLoader Stack

Overview
Rice is composed of a set of modules that provide distinct functionality and expose various services.

• Services in Rice are accessible by the ResourceLoader, which can be thought of as analogous to
Spring's BeanFactory interface. (In fact, Rice modules themselves back ResourceLoaders with Spring
bean factories.)

• Services can be acquired by name. (Rice adds several additional concepts, including qualification of
service names by namespaces.)

• When the RiceConfigurer is instantiated, it constructs a GlobalResourceLoader that is composed of
an initial RootResourceLoader (which may be provided by the application via the RiceConfigurer), as
well as resource loaders supplied by each module:

Figure 8.2. Global Resource Loader

KSB

309

The GlobalResourceLoader is the top-level entry point through which all application code should go to
obtain services. The getService call will iterate through each registered ResourceLoader, looking for the
service of the specified name. If the service is found, it is returned, but if it is not found, ultimately the
call will reach the RemoteResourceLoader. The Root ResourceLoader is registered by the KSB module
that exposes services that have been registered on the bus.

Accessing and overriding Rice services and beans from
Spring

ResourceLoaderFactoryBean

In addition to programmatically acquiring service references, you can also import Rice services into a
Spring context with the help of the GlobalResourceLoaderServiceFactoryBean:

This bean is bean-name-aware and will produce a bean of the same name obtained from Rice's resource
loader stack. The bean can then be wired in Spring like any other bean.

Installing an application root resource loader

Applications can install their own root ResourceLoader to override beans defined by Rice. To do so,
inject a bean that implements the ResourceLoader interface into the RiceConfigurer rootResourceLoader
property. For example:

<!-- a Rice bean we want to override in our application -->
<bean id="overriddenRiceBean" class="my.app.package.MyRiceServiceImpl"/>

<!-- supplies services from this Spring context -->
<bean id="appResourceLoader" class="org.kuali.rice.core.impl.resourceloader.SpringBeanFactoryResourceLoader"/>
<bean id="coreConfigurer" class="org.kuali.rice.core.impl.config.module.CoreConfigurer">
 <property name="dataSource" ref="standaloneDataSource" />
 <property name="transactionManager" ref="atomikosTransactionManager" />
 <property name="userTransaction" ref="atomikosUserTransaction" />
 <property name="rootResourceLoader" ref="appResourceLoader"/>
</bean>

Warning

Application ResourceLoader and Circular Dependencies

Be careful when mixing registration of an application root resourceloader and lookup of Rice
services through the GlobalResourceLoader. If you are using an application resourceloader to
override a Rice bean, but one of your application beans requires that bean to be injected during
startup, you may create a circular dependency. In this case, you will either have to make sure you
are not unintentionally exposing application beans (which may not yet have been fully initialized
by Spring) in the application resourceloader, or you will have to arrange for the GRL lookup
to occur lazily, after Spring initialization has completed (either programmatically or through a
proxy).

Overriding Rice services: Alternate method

A Rice-enabled webapp (including the Rice Standalone distribution) contains a multiple module
configurers, typically defined in an xml Spring context file. These load the Rice modules. Each module
has its own ResourceLoader, which is typically backed by an XML Spring context file. Overriding and/or
setting global beans and/or services (such as data sources and transaction managers) is done as described

KSB

310

above. However, because in each module services can be injected into each other, overriding module
services involves overriding the respective module’s Spring context file.

The cleanest way to do this is to set the rice.*.addtionalSpringFiles to an accessible spring beans file that
overrides one or more spring beans in the existing module's context. Each rice module has a corresponding
configuration parameter that can be pointed to a file that will override any existing services.

<param name="rice.kew.additionalSpringFiles">classpath:myapp/config/MyAppKewOverrideSpringBeans.xml</param>

<param name="rice.ksb.additionalSpringFiles">classpath:myapp/config/MyAppKsbOverrideSpringBeans.xml</param>

<param name="rice.krms.additionalSpringFiles">classpath:myapp/config/MyAppKrmsOverrideSpringBeans.xml</param>

<param name="rice.kim.additionalSpringFiles">classpath:myapp/config/MyAppKimOverrideSpringBeans.xml</param>

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE beans PUBLIC "-//SPRING//DTD BEAN//EN" "http://www.springframework.org/dtd/spring-beans.dtd">
<!-- override of KNS encryption service -->
<beans>

 <!-- override encryption services -->
 <bean id="encryptionService" class="edu.my.school.myapp.service.impl.MyEncryptionServiceImpl" lazy-
init="true">
 <property name="cipherAlgorithm" value="${encryption.cipherAlg}"/>
 <property name="keyAlgorithm" value="${encryption.keyAlg}"/>
 <property name="key" value="${encryption.key}"/>
 <property name="enabled" value="${encryption.busEncryption}"/>
 </bean>

</beans>

KSB Security -- STILL NEEDS TO BE
REVIEWED!!!!

Overview
Acegi handles the security layer for KSB. Acegi uses remote method invocation to hold the application’s
security context and to propagate this object through to the service layer.

Credentials types
There are several security types you can use to propagate the security context object:

• CAS

• USERNAME_PASSWORD

• JAAS

• X509

CredentialsSource
The CredentialsSource is an interface that helps obtain security credentials. It encapsulates the actual
source of credentials. The two ways to obtain the source are:

KSB

311

• X509CredentialsSource - X509 Certificate

• UsernamePasswordCredentialsSource - Username and Password

KSB security: Server side configuration

Here is a code snippet that shows the changes needed to configure KSB security on the server side:

<bean id="ksbConfigurer" class="org.kuali.rice.ksb.messaging.config.KSBConfigurer">
 <!-- Other properties removed -->
 <property name="services">
 <list>
 <bean class="org.kuali.rice.ksb.api.bus.support.SoapServiceDefinition">
 <property name="service">
 <ref bean="soapService" />
 </property>
 <property name="localServiceName" value="soapLocalName"/>
 <property name="serviceNameSpaceURI" value="soapNameSpace"/>
 <property name="serviceInterface" value="org.kuali.ksb.examples.SOAPEchoService"/>
 <property name="priority" value="3"/>
 <property name="retryAttempts" value="1" />
 <property name="busSecurity" value="false"></property>

 <!-- Valid Values: CAS, KERBEROS -->
 <property name="credentialsType" value="CAS"/>
 </bean>
 <bean class="org.kuali.rice.ksb.api.bus.support.JavaServiceDefinition">
 <property name="service" ref="echoService"></property>
 <property name="localServiceName" value="javaLocalName" />
 <property name="serviceNameSpaceURI" value="javaNameSpace"/>
 <property name="serviceInterface" value="org.kuali.ksb.examples.EchoService"/>
 <property name="priority" value="5" />
 <property name="retryAttempts" value="1" />
 <property name="busSecurity" value="true" />

 <!-- Valid Values: CAS, KERBEROS -->
 <property name="credentialsType" value="CAS"/>
 </bean>
 <!-- Other services removed -->
 </list>
 </property>
</bean>

KSB security: Client side configuration

<bean id="customCredentialsSourceFactory"
 class="edu.myinstituition.myapp.security.credentials.CredentialsSourceFactory" />

<bean id="coreConfigurer" class="org.kuali.rice.core.impl.config.module.CoreConfigurer">
 <!-- Other properties removed -->
 <property name="credentialsSourceFactory" ref="customCredentialsSourceFactory">
</bean>

KSB connector and exporter code

Connectors

Connectors are used by a client to connect to a service that is usually exposed through the KSB registry.
The Service Connector factory provides a bean that holds a proxy to a remote service with some contextual
information. The factory determines the type of proxy to invoke based on the service definition. The service
definition used by the server is serialized to the database and de-serialized by the client. There are different
types of connectors supported by KSB, most notable are SOAP and Java over HTTP.

KSB

312

Exporters

Services, when exported, can be secured using standard Acegi methods. A security manager and an
interceptor help organize the set of Business Objects that are exported.

Security and Keystores

Generating the Keystore

For client applications to be able to consume secured services hosted from a Rice server, the implementer
must generate a keystore. As an initial setup, KSB security relies on the creation of a keystore using the
JVM keytool as follows:

Step 1: Create the Keystore

The first step is to create the keystore and generate a public-private key combination for the client
application. When using secured services on the KSB, we require the client applications transfer their
messages digitally signed so that Rice can verify the messages authenticity. This is why we must generate
these keys.

Generate your initial Rice keystore as follows:

keytool -genkey -validity 9999 -alias rice -keyalg RSA -keystore rice.keystore -dname "cn=rice" -keypass r1c3pw
 -storepass r1c3pw

Caution

keypass and storepass should be the same.

r1c3pw is the password used for the provided example.

Step 2: Sign the Key

This generates the keystore in a file called "rice_keystore" in the current directory and generates an RSA
key with the alias of "rice". Since there is no certificate signing authority to sign our key, we must sign it
ourselves. To do this, execute the following command:

keytool -selfcert -validity 9999 -alias rice -keystore rice.keystore -keypass r1c3pw -storepass r1c3pw

Step 3: Generate the Certificate

After the application's certificate has been signed, we must export it so that it can be imported into the
Rice keystore. To export a certificate, execute the following command:

keytool -export -alias rice -file rice.cert -keystore rice.keystore -storepass r1c3pw

Step 4: Import Application Certificates

The client application's certificate can be imported using the following command:

KSB

313

keytool -import -alias rice -file client.application.cert.file -keystore rice.keystore -storepass r1c3pw

The keystore file will end up deployed wherever your keystores are stored so hang on to both of these files
and don't lose them! Also, notice that we specified a validity of 9999 days for the keystore and cert. This
is so you do not have to continually update these keystores. This will be determined by your computing
standards on how you handle key management.

Configure KSB to use the keystore

The following params are needed in the xml config to allow the ksb to use the keystore:

<param name="keystore.file">/usr/local/rice/rice.keystore</param>
<param name="keystore.alias">rice</param>
<param name="keystore.password"> password </param>

• keystore.file - is the location of the keystore

• keystore.alias - is the alias used in creating the keystore above

• keystore.password - this is the password of the alias AND the keystore. This assumes that the keystore
is up in such a way that these are the same.

BasicAuthenticationService
The BasicAuthenticationService allows services published on the KSB to be accessed securely with basic
authentication. As an example, here is how the Workflow Document Actions Service could be exposed
as a service with basic authentication.

• Add the following bean to a spring bean file that is loaded as a part of the KEW module.

<bean id="rice.kew.workflowDocumentActionServiceBasicAuthentication.exporter"
 parent="kewServiceExporter" lazy-init="false">
 <property name="serviceDefinition">
 <bean parent="kewService">
 <property name="service">
 <ref bean="rice.kew.workflowDocumentActionsService" />
 </property>
 <property name="localServiceName"
 value="workflowDocumentActionsService-basicAuthentication" />
 <property name="busSecurity"
 value="${rice.kew.workflowDocumentActionsService.secure}" />
 <property name="basicAuthentication" value="true" />
 </bean>
 </property>
</bean>

• Add the following bean to a spring bean file that is loaded as a part of the KSB module.

<bean class="org.kuali.rice.ksb.service.BasicAuthenticationCredentials">
 <property name="serviceNameSpaceURI"
 value="http://rice.kuali.org/kew/v2_0" />
 <property name="localServiceName"
 value="workflowDocumentActionsService-basicAuthentication" />
 <property name="username"
 value="${WorkflowDocumentActionsService.username}" />
 <property name="password"
 value="${WorkflowDocumentActionsService.password}" />
 <property name="authenticationService" ref="basicAuthenticationService" />

KSB

314

</bean>

• Add the following config parameters to a secure file that is loaded when the application is started.

<param name="WorkflowDocumentActionsService.username">username</param>
<param name="WorkflowDocumentActionsService.password">pw</param>

• To verify the new service can be called, it can be tested using a tool such as soapUI. Here is an example
call which will invoke the method logAnnotation on WorkflowDocumentActionsServiceImpl.

<soapenv:Envelope xmlns:soapenv="http://schemas.xmlsoap.org/soap/envelope/"
 xmlns:v2="http://rice.kuali.org/kew/v2_0">
 <soapenv:Header>
 <wsse:Security xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-
secext-1.0.xsd"
 soapenv:mustUnderstand="1">
 <wsse:UsernameToken xmlns:wsu=
 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
 wsu:Id="UsernameToken-1815911473">
 <wsse:Username>username</wsse:Username>
 <wsse:Password Type=
 "http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-username-token-
profile-1.0#PasswordText">pw</wsse:Password>
 </wsse:UsernameToken>
 </wsse:Security>
 </soapenv:Header>
 <soapenv:Body>
 <v2:logAnnotation>
 <v2:documentId>123456</v2:documentId>
 <v2:principalId>admin</v2:principalId>
 <v2:annotation>Add this annotation please.</v2:annotation>
 </v2:logAnnotation>
 <soapenv:Body>
</soapenv:Envelope>

Queue and Topic invocation
When you deploy a service, you can configure it for queue or for topic invocation using the setQueue
property on the ServiceDefinition. The default is to register it as a queue-style service. The distinction
between queue and topic invocation occurs when there is more than one service registered under the same
QName.

Queue invocation
Remote service proxies obtained through the resource loader stack using getService(QName) (ultimately
through the ServiceBus) are inherently synchronous. In the presence of multiple service registrations, the
ServiceBus will choose one at random.

When invoking services asynchronously through the MessageHelper, an asynchronous service call proxy
will be constructed with all available service definitions. The MessageServiceInvoker is called to invoke
each service. If the service is defined as a queue service, then the ServiceBus will be consulted in
a similar fashion to determine a single service to call. After the first queue service invocation the
MessageServiceInvoker will return.

Topic invocation
The simplest way to invoke a topic service is using the MessageHelper functions to invoke the service
asynchronously. As described above for an asynchronous queue invocation, an asynchronous service call

KSB

315

proxy will be constructed with the list of all of the services registered as a topic under the given name.
Each of these services will be independently obtained and invoked by the MessageServiceInvoker.

Invoking a topic synchronously, however, requires use of a synchronous service call proxy to aggregate
all of the topic's services. This functionality is not directly available via the ServiceBus API because the
ServiceBus acts as a facade for direct service invocation.

To invoke a topic synchronously, you can construct a SynchronousServiceCallProxy using
SynchronousServiceCallProxy.createInstance, passing the list of Endpoint obtained using
ServiceBus.getEndpoints(QName). This is done, for example, by MessageHelperImpl when the bus
has been forced into synchronous mode via the message.delivery config param.

The synchronous service call proxy is the same as the asynchronous service call proxy, except that it does
not queue up the invocation, it will invoke it blockingly. The same queue/topic distinctions described above
apply when you invoke a topic synchronously. Under the normal queue situation, use of the synchronous
service call proxy is not necessary because, as mentioned above, remote services obtained through the
ServiceBus are naturally synchronous. You can see this in the example below:

List<Endpoint> servicesToProxy = KsbApiServiceLocator.getServiceBus().getEndpoints(qname);

SynchronousServiceCallProxy sscp = return SynchronousServiceCallProxy.createInstance(servicesToProxy, callback,
 context, value1, value2);

KSB Parameters
Here is a comprehensive set of configuration parameters used to configure the Kuali Service Bus.

Core Parameters

Table 8.6. Core Parameters

Core Description Default

serviceServletUrl URL that maps to the KSB Servlet. It handles incoming
requests from the service bus.

${application.url}/remoting/

rice.ksb.config.allowSelfSignedSSL Indicates if self-signed certificates are permitted for https
communication on the service bus

false

application.id Application identifier for client application

keystore.file Path to the keystore file to use for security

keystore.alias Alias of the standalone server's key

keystore.password Password to access the keystore and the server's key

ksb.mode Mode in which to load the KSB module local

ksb.url The URL of the KSB web application ${application.url}/ksb

rice.ksb.struts.config.files The file that defines the struts context for the KRice KSB
struts module

/ksb/WEB-INF/struts-config.xml

dev.mode If true, application will not publish or consume services
from the central service registry, but will maintain a local
copy of the registry. This is intended only for client
application development purposes.

false

bam.enabled If true, will monitor and log the service calls made and
general business activity performed to the database.

Recommendation: Enable this only for testing purposes, as
there is a significant performance impact when enabled.

false

message.persistence If true, messages are stored in the database until sent. If
false, they are stored in memory.

true

message.delivery Specifies whether messages are sent synchronously are
asynchronously. Valid values are synchronous or async

async

KSB

316

Core Description Default

message.off If set to true, then messages will not be sent but will instead
pile up in the message queue. Intended for development and
debugging purposes only.

false

Routing.ImmediateExceptionRouting If true, messages will go immediately to exception routing
if they fail, rather than being retried

false

RouteQueue.maxRetryAttempts Default number of times to retry messages that fail to be
delivered successfully.

5

RouteQueue.maxRetryAttemptsOverride If set, will override the max retry setting for ALL services,
even if they have their own custom retry setting.

ksb.org.quartz.* Can define any property beginning with ksb.org.quartz and
it will be passed to the internal KSB quartz configuration as
a property beginning with org.quartz (more details below)

useQuartzDatabase If true, then Quartz scheduler in Rice will use a database-
backed job store; if false, then jobs will be stored in
memory

true

serviceServletUrl

The URL that resolves to the KSB servlet that handles incoming requests from the service bus. All services
exported onto the service bus use this value to construct their endpoint URLs when they are published to
the service registry. See section below on configuring the KSBDispatcherServlet. This parameter should
point to the absolute URL of where that servlet is mapped. It should include a trailing slash.

application.id

An identifier that indicates the name of the logical node on the service bus. If the application is running in
a cluster, this should be the same for each machine in the cluster. This is used for namespacing of services,
among other things. All services exported from the client application onto the service bus use this value
as their default namespace unless otherwise specified.

keystore.file, keystore.alias, keystore.password

See the documentation below on keystore management.

ksb.mode

Mode in which to load the KSB module. Valid values are local and embedded. There is currently no
difference in how the KSB module loads based on these settings. It will always try to load the KSB struts
module if a KualiActionServlet is configured.

ksb.url

The URL of the KSB web application screens

rice.ksb.struts.config.files

The file that defines the struts context for the KRice KSB struts module. The struts module is loaded
automatically if a KualiActionServlet is configured in the web.xml.

dev.mode

Indicates whether this node should export and consume services from the entire service bus. If set to false,
then the machine will not register its services in the global service registry. Instead, it can only consume
services that it has available locally. In addition to this, other nodes on the service bus will not be able to
"see" this node and will therefore not forward any messages to it.

KSB

317

message.persistence

If true, then messages will be persisted to the datastore. Otherwise, they will only be stored in memory.
If message persistence is not turned on and the server is shutdown while there are still messages that need
to be sent, those messages will be lost. For a production environment, it is recommended that message
persistence be set to true.

message.delivery

Can be set to either synchronous or async. If this is set to synchronous, then messages that are sent in
an asynchronous fashion using the KSB API will instead be sent synchronously. This is useful in certain
development and unit testing scenarios. For a production environment, it is recommended that message
delivery be set to async.

message.off

If set to true then asynchronous messages will not be sent. In the case that message persistence is turned
on, they will be persisted in the message store and can even be picked up later using the Message Fetcher.
However, if message persistence is turned off, these messages will be lost. This can be useful in certain
debugging or testing scenarios.

RouteQueue.maxRetryAttempts

Sets the default number of retries that will be executed if a message fails to be sent. This retry count can
also be customized for a specific service. (See Exposing Services on the Bus)

RouteQueue.timeIncrement

Sets the default time increment between retry attempts. As with RouteQueue.maxRetryAttempts this can
also be configured at the service level.

RouteQueue.maxRetryAttemptsOverride

If set with a number, it will temporarily set the retry attempts for ALL services going into exception routing.
A good way to prevent all messages in a node that is having trouble from making it to exception routing
is by setting the number arbitrarily high. The message.off param does the same thing.

Routing.ImmediateExceptionRouting

If set to true, then messages that fail to be sent will not be re-tried. Instead their MessageExceptionHandler
will be invoked immediately.

useQuartzDatabase

When using the embedded Quartz scheduler started by the KSB, indicates whether that Quartz scheduler
should store its entries in the database. If this is true, then the appropriate Quartz properties should be set
as well (see ksb.org.quartz.* below).

ksb.org.quartz.*

Can be used to pass Quartz properties to the embedded Quartz scheduler. See the configuration
documentation on the Quartz site. Essentially, any property prefixed with ksb.org.quartz. will have the
"ksb." portion stripped and will be sent as configuration parameters to the embedded Quartz scheduler.

KSB

318

KSB Configurer Properties
In addition to the configuration parameters available in the KRice configuration system, the
KSBConfigurer bean has some properties that can be injected to configure it:

exceptionMessagingScheduler

By default, the KSB uses an embedded Quartz scheduler for scheduling the retry of messages that fail to
be sent. If desired, a Quartz scheduler can instead be injected into the KSBConfigurer and it will use that
scheduler instead. See Quartz Scheduling for more detail.

messageDataSource

Specifies the javax.sql.DataSource to use for storing the asynchronous message queue. If not specified,
this defaults to the DataSource injected into the RiceConfigurer.

If this DataSource is injected, then the registryDataSource must also be injected, and vice-versa.

registryDataSource

Specifies the javax.sql.DataSource to use for reading and writing from the Service Registry. If not
specified, this defaults to the DataSource injected into the RiceConfigurer.

If this DataSource is injected, then the messageDataSource must also be injected, and vice-versa.

overrideServices

See Acquiring and invoking services

Services

See Acquiring and invoking services

JAX-RS / RESTful services
Rice now allows allows RESTful (JAX-RS) services to be exported and consumed on the
Kuali Service Bus (KSB). For some background on REST, see http://en.wikipedia.org/wiki/
Representational_State_Transfer.

For details on JAX-RS, see JSR-311.

Caveats
• The KSB does not currently support "busSecure" (digital signing of requests & responses) REST

services. Attempting to set a REST service's "busSecure" property to "true" will result in a
RiceRuntimeException being thrown. Rice can be customized to expose REST services in a secure way,
e.g. using SSL and an authentication mechanism such as client certificates, but that is beyond the scope
of this documentation.

• If the JAX-RS annotations on your resource class don't cover all of its public methods, then accessing
the non-annotated methods over the bus will result in an Exception being thrown.

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://jcp.org/en/jsr/detail?id=311

KSB

319

A Simple Example
To expose a simple JAX-RS annotated service on the bus, you can follow this recipe for your spring
configuration (which comes from the Rice unit tests):

<!-- The service implementation you want to expose -->

<bean id="baseballCardCollectionService"
 class="org.kuali.rice.ksb.testclient1.BaseballCardCollectionServiceImpl"/>

<!-- The service definition which tells the KSB to expose our RESTful service -->
<bean class="org.kuali.rice.ksb.messaging.RESTServiceDefinition">
 <property name="serviceNameSpaceURI" value="test" />

 <!-- as noted earlier, the servicePath property of RESTServiceDefinition can't be set here -->

 <!-- The service to expose. Refers to the bean above -->
 <property name="service" ref="baseballCardCollectionService" />

 <!-- The "Resource class", the class with the JAX-RS annotations on it. Could be the same as the -->
 <!-- service implementation, or could be different, e.g. an interface or superclass -->

 <property name="resourceClass"
value="org.kuali.rice.ksb.messaging.remotedservices.BaseballCardCollectionService" />

 <!-- the name of the service, which will be part of the RESTful URLs used to access it -->
 <property name="localServiceName" value="baseballCardCollectionService" />
</bean>

The following java interface uses JAX-RS annotations to specify its RESTful interface:

// … eliding package and imports

@Path("/")
public interface BaseballCardCollectionService {
 @GET
 public List<BaseballCard> getAll();

 /**
 * gets a card by it's (arbitrary) identifier
 */
 @GET
 @Path("/BaseballCard/id/{id}")
 public BaseballCard get(@PathParam("id") Integer id);
 /**
 * gets all the cards in the collection with the given player name
 */
 @GET
 @Path("/BaseballCard/playerName/{playerName}")
 public List<BaseballCard> get(@PathParam("playerName") String playerName);

 /**
 * Add a card to the collection. This is a non-idempotent method
 * (because you can add more than one of the same card), so we'll use @POST
 * @return the (arbitrary) numerical identifier assigned to this card by the service
 */
 @POST
 @Path("/BaseballCard")
 public Integer add(BaseballCard card);

 /**
 * update the card for the given identifier. This will replace the card that was previously
 * associated with that identifier.

KSB

320

 */
 @PUT
 @Path("/BaseballCard/id/{id}")
 @Consumes("application/xml")
 public void update(@PathParam("id") Integer id, BaseballCard card);

 /**
 * delete the card with the given identifier.
 */
 @DELETE
 @Path("/BaseballCard/id/{id}")
 public void delete(@PathParam("id") Integer id);

 /**
 * This method lacks JAX-RS annotations
 */
 public void unannotatedMethod();
}

Acquisition and use of this service over the KSB looks just like that of any other KSB service. In the
synchronous case:

BaseballCardCollectionService baseballCardCollection = (BaseballCardCollectionService)
 GlobalResourceLoader.getService(new QName("test", "baseballCardCollectionService");
);

List<BaseballCard> allMyMickeyMantles = baseballCardCollection.get("Mickey Mantle");
// baseballCardCollection.<other service method>(...)
// etc

Composite Services
It is also possible to aggregate multiple Rice service implementations into a single RESTful service where
requests to different sub-paths off of the base service URL can be handled by different underlying services.
This may be desirable to expose a RESTful service that is more complex than could be cleanly factored
into a single java service interface.

The configuration for a composite RESTfull service looks a little bit different, and as might be expected
given the one-to-many mapping from RESTful service to java services, there are some caveats to using
that service over the KSB. Here is a simple example of a composite service definition (which also comes
from the Rice unit tests):

<bean class="org.kuali.rice.ksb.messaging.RESTServiceDefinition">
 <property name="serviceNameSpaceURI" value="test" />
 <property name="localServiceName" value="kms" />
 <property name="resources">
 <list>
 <ref bean="inboxResource"/>
 <ref bean="messageResource"/>
 </list>
 </property>
 <property name="servicePath" value="/" />
</bean>

<!-- the beans referenced above are just JAX-RS annotated Java services -->
<bean id="inboxResource" class="org.kuali.rice.ksb.testclient1.InboxResourceImpl">
 <!-- ... eliding bean properties ... -->
</bean>
<bean id="messageResource" class="org.kuali.rice.ksb.testclient1.MessageResourceImpl">
 <!-- ... eliding bean properties ... -->

</bean>

KSB

321

As you can see in the bean definition above, the service name is kms, so the base service
url would by default (in a dev environment) be http://localhost:8080/kr-dev/remoting/kms/
. Acquiring a composite service such as this one on the KSB will actually return you
a org.kuali.rice.ksb.messaging.serviceconnectors.ResourceFacade, which allows you to get the
individual java services in a couple of ways, as shown in the following simple example:

ResourceFacade kmsService =
 (ResourceFacade) GlobalResourceLoader.getService(
new QName(NAMESPACE, KMS_SERVICE));

// Get service by resource name (url path)
InboxResource inboxResource = kmsService.getResource("inbox");
// Get service by resource class
MessageResource messageResource = kmsService.getResource(MessageResource.class);

Additional Service Definition Properties
There are some properties on the RESTServiceDefinition object that let you do more advanced
configuration:

Providers

JAX-RS Providers allow you to define:

• ExceptionMappers which will handle specific Exception types with specific Responses.

• MessageBodyReaders and MessageBodyWriters that will convert custom Java types to and from
streams.

• ContextResolver providers allow you to create special JAXBContexts for specific types, which will
gives you fine control over marshalling, unmarshalling, and validation.

The JAX-RS specification calls for classes annotated with @Provider to be automatically used in the
underlying implementation, but the CXF project which Rice uses under the hood does not (at the time of
this writing) support this configuration mechanism, so this configuration property is currently necessary.

Extension Mappings

Ordinarily you need to set your ACCEPT header to ask for a specific representation of a resource.
ExtensionMappings let you map certain file extensions to specific media types for your RESTful service,
so your URLs can then optionally specify a media type directly. For example you could map the .xml
extension to the media type text/xml, and then tag .xml on to the end of your resource URL to specify
that representation.

Language Mappings

language mappings allow you a way to control the the Content-Language header, which lets you specify
which languages your service can accept and provide.

Additional Information

For more information on what these properties provide, it may be helpful to consult the JAX-RS
specification, or the CXF documentation.

322

Glossary
A
Action List A list of the user's notification and workflow items. Also called the user's

Notification List. Clicking an item in the Action List displays details about that
notification, if the item is a notification, or displays that document, if it is a
workflow item. The user will usually load the document from their Action List in
order to take the requested action against it, such as approving or acknowledging
the document.

Action List Type This tells you if the Action List item is a notification or a more specific workflow
request item. When the Action List item is a notification, the Action List Type is
"Notification."

Action Request A request to a user or Workgroup to take action on a document. It designates the
type of action that is requested, which includes:

• Approve: requests an approve or disapprove action.

• Complete: requests a completion of the contents of a document. This action
request is displayed in the Action List after the user saves an incomplete
document.

• Acknowledge: requests an acknowledgment by the user that the document has
been opened - the doc will not leave the Action List until acknowledgment has
occurred; however, the document routing will not be held up and the document
will be permitted to transaction into the processed state if neccessary.

• FYI: a notification to the user regarding the document. Documents requesting
FYI can be cleared directly from the Action List. Even if a document has FYI
requests remaining, it will still be permitted to transition into the FINAL state.

Action Request Hierarchy Action requests are hierarchical in nature and can have one parent and multiple
children.

Action Requested The action one needs to take on a document; also the type of action that is requested
by an Action Request. Actions that may be requested of a user are:

• Acknowledge: requests that the users states he or she has reviewed the
document.

• Approve: requests that the user either Approve or Disapprove a document.

• Complete: requests the user to enter additional information in a document so
that the content of the document is complete.

• FYI: intended to simply makes a user aware of the document.

Action Taken An action taken on a document by a Reviewer in response to an Action Request.
The Action Taken may be:

• Acknowledged: Reviewer has viewed and acknowledged document.

• Approved: Reviewer has approved the action requested on document.

Glossary

323

• Blanket Approved: Reviewer has requested a blanket approval up to a specified
point in the route path on the document.

• Canceled: Reviewer has canceled the document. The document will not be
routed to any more reviewers.

• Cleared FYI: Reviewer has viewed the document and cleared all of his or her
pending FYI(s) on this document.

• Completed: Reviewer has completed and supplied all data requested on
document.

• Created Document: User has created a document

• Disapproved: Reviewer has disapproved the document. The document will not
being routed to any subsequent reviewers for approval. Acknowledge Requests
are sent to previous approvers to inform them of the disapproval.

• Logged Document: Reviewer has added a message to the Route Log of the
document.

• Moved Document: Reviewer has moved the document either backward or
forward in its routing path.

• Returned to Previous Node: Reviewer has returned the document to a previous
routing node. When a Reviewer does this, all the actions taken between the
current node and the return node are removed and all the pending requests on
the document are deactivated.

• Routed Document: Reviewer has submitted the document to the workflow
engine for routing.

• Saved: Reviewer has saved the document for later completion and routing.

• Superuser Approved Document: Superuser has approved the entire document,
any remaining routing is cancelled.

• Superuser Approved Node: Superuser has approved the document through all
nodes up to (but not including) a specific node. When the document gets to that
node, the normal Action Requests will be created.

• Superuser Approved Request: Superuser has approved a single pending
Approve or Complete Action Request. The document then goes to the next
routing node.

• Superuser Cancelled: Superuser has canceled the document. A Superuser can
cancel a document without a pending Action Request to him/her on the
document.

• Superuser Disapproved: Superuser has disapproved the document. A Superuser
can disapprove a document without a pending Action Request to him/her on
the document.

Glossary

324

• Superuser Returned to Previous Node: Superuser has returned the document
to a previous routing node. A Superuser can do this without a pending Action
Request to him/her on the document.

Activated The state of an action request when it is has been sent to a user’s Action List.

Activation The process by which requests appear in a user's Action List

Activation Type Defines how a route node handles activation of Action Requests. There are two
standard activation types:

• Sequential: Action Requests are activated one at a time based on routing
priority. The next Action Request isn't activated until the previous request is
satisfied.

• Parallel: All Action Requests at the route node are activated immediately,
regardless of priority

Active Indicator An indicator specifying whether an object in the system is active or not. Used as
an alternative to complete removal of an object.

Ad Hoc Routing A type of routing used to route a document to users or groups that are not in the
Routing path for that Document Type. When the Ad Hoc Routing is complete, the
routing returns to its normal path.

Annotation Optional comments added by a Reviewer when taking action. Intended to explain
or clarify the action taken or to advise subsequent Reviewers.

Approve A type of workflow action button. Signifies that the document represents a valid
business transaction in accordance with institutional needs and policies in the
user's judgment. A single document may require approval from several users, at
multiple route levels, before it moves to final status.

Approver The user who approves the document. As a document moves through Workflow,
it moves one route level at a time. An Approver operates at a particular route level
of the document.

Attachment The pathname of a related file to attach to a Note. Use the "Browse..." button to
open the file dialog, select the file and automatically fill in the pathname.

Attribute Type Used to strongly type or categorize the values that can be stored for the various
attributes in the system (e.g., the value of the arbitrary key/value pairs that can be
defined and associated with a given parent object in the system).

Authentication The act of logging into the system. The Out of the box (OOTB) authenticaton
implementation in Rice does not require a password as it is intended for testing
puposes only. This is something that must be enabled as part of an implementation.
Various authentication solutions exist, such as CAS or Shibboleth, that an
implementer may want to use depending on their needs.

Authorization Authorization is the permissions that an authenticated user has for performing
actions in the system.

Author Universal ID A free-form text field for the full name of the Author of the Note, expressed as
"Lastname, Firstname Initial"

Glossary

325

B
Base Rule Attribute The standard fields that are defined and collected for every Routing Rule These

include:

• Active: A true/false flag to indicate if the Routing Rule is active. If false, then
the rule will not be evaluated during routing.

• Document Type: The Document Type to which the Routing Rule applies.

• From Date: The inclusive start date from which the Routing Rule will be
considered for a match.

• Force Action: a true/false flag to indicate if the review should be forced to take
action again for the requests generated by this rule, even if they had taken action
on the document previously.

• Name: the name of the rule, this serves as a unique identifier for the rule. If one
is not specified when the rule is created, then it will be generated.

• Rule Template: The Rule Template used to create the Routing Rule.

• To Date: The inclusive end date to which the Routing Rule will be considered
for a match.

Blanket Approval Authority that is given to designated Reviewers who can approve a document to a
chosen route point. A Blanket Approval bypasses approvals that would otherwise
be required in the Routing For an authorized Reviewer, the Doc Handler typically
displays the Blanket Approval button along with the other options. When a Blanket
Approval is used, the Reviewers who are skipped are sent Acknowledge requests
to notify them that they were bypassed.

Blanket Approve Workgroup A workgroup that has the authority to Blanket Approve a document.

Branch A path containing one or more Route Nodes that a document traverses during
routing. When a document enters a Split Node multiple branches can be created.
A Join Node joins multiple branches together.

Business Rule 1. Describes the operations, definitions and constraints that apply to an
organization in achieving its goals.

2. A restriction to a function for a business reason (such as making a specific
object code unavailable for a particular type of disbursement). Customizable
business rules are controlled by Parameters.

C
Campus Identifies the different fiscal and physical operating entities of an institution.

Campus Type Designates a campus as physical only, fiscal only or both.

Cancel A workflow action available to document initiators on documents that have not
yet been routed for approval. Denotes that the document is void and should be
disregarded. Canceled documents cannot be modified in any way and do not route
for approval.

Glossary

326

Canceled A routing status. The document is denoted as void and should be disregarded.

CAS - Central Authentication
Service

http://www.jasig.org/cas - An open source authentication framework. Kuali Rice
provides support for integrating with CAS as an authentication provider (among
other authentication solutions) and also provides an implementation of a CAS
server that integrates with Kuali Identity Management.

Client A Java Application Program Interface (API) for interfacing with the Kuali
Enterprise Workflow Engine.

Client/Server The use of one computer to request the services of another computer over a
network. The workstation in an organization will be used to initiate a business
transaction (e.g., a budget transfer). This workstation needs to gather information
from a remote database to process the transaction, and will eventually be used to
post new or changed information back onto that remote database. The workstation
is thus a Client and the remote computer that houses the database is the Server.

Close A workflow action available on documents in most statuses. Signifies that the
user wishes to exit the document. No changes to Action Requests, Route Logs or
document status occur as a result of a Close action. If you initiate a document and
close it without saving, it is the same as canceling that document.

Comma-separated value A file format using commas as delimiters utilized in import and export
functionality.

Complete A pending action request to a user to submit a saved document.

Completed The action taken by a user or group in response to a request in order to finish
populating a document with information, as evidenced in the Document Route
Log.

Country Restricted Indicator Field used to indicate if a country is restricted from use in procurement. If there
is no value then there is no restriction.

Creation Date The date on which a document is created.

CSV See comma-separated value

D
Date Approved The date on which a document was most recently approved.

Date Finalized The date on which a document enters the FINAL state. At this point, all approvals
and acknowledgments are complete for the document.

Deactivation The process by which requests are removed from a user's Action List

Delegate A user who has been registered to act on behalf of another user. The Delegate
acts with the full authority of the Delegator. Delegation may be either Primary
Delegation or Secondary Delegation.

Delegate Action List A separate Action List for Delegate actions. When a Delegate selects a Delegator
for whom to act, an Action List of all documents sent to the Delegator is displayed.

http://www.jasig.org/cas

Glossary

327

For both Primary and Secondary Delegation the Delegate may act on any of the
entries with the full authority of the Delegator.

Disapprove A workflow action that allows a user to indicate that a document does not represent
a valid business transaction in that user's judgment. The initiator and previous
approvers will receive Acknowledgment requests indicating the document was
disapproved.

Disapproved A status that indicates the document has been disapproved by an approver as a
valid transaction and it will not generate the originally intended transaction.

Doc Handler The Doc Handler is a web interface that a Client uses for the appropriate display
of a document. When a user opens a document from the Action List or Document
Search, the Doc Handler manages access permissions, content format, and user
options according to the requirements of the Client.

Doc Handler URL The URL for the Doc Handler.

Doc Nbr See Document Number.

Document Also see E-Doc.

An electronic document containing information for a business transaction that is
routed for Actions in KEW. It includes information such as Document ID, Type,
Title, Route Status, Initiator, Date Created, etc. In KEW, a document typically has
XML content attached to it that is used to make routing decisions.

Document Id See Document Number.

Document Number A unique, sequential, system-assigned number for a document

Document Operation A workflow screen that provides an interface for authorized users to manipulate
the XML and other data that defines a document in workflow. It allows you
to access and open a document by Document ID for the purpose of performing
operations on the document.

Document Search A web interface in which users can search for documents. Users may search by
a combination of document properties such as Document Type or Document ID,
or by more specialized properties using the Detailed Search. Search results are
displayed in a list similar to an Action List.

Document Status See also Route Status.

Document Title The title given to the document when it was created. Depending on the Document
Type, this title may have been assigned by the Initiator or built automatically based
on the contents of the document. The Document Title is displayed in both the
Action List and Document Search.

Document Type The Document Type defines the routing definition and other properties for a set
of documents. Each document is an instance of a Document Type and conducts
the same type of business transaction as other instances of that Document Type.

Document Types have the following characteristics:

• They are specifications for a document that can be created in KEW

Glossary

328

• They contain identifying information as well as policies and other attributes

• They defines the Route Path executed for a document of that type (Process
Definition)

• They are hierarchical in nature may be part of a hierarchy of Document Types,
each of which inherits certain properties of its Parent Document Type.

• They are typically defined in XML, but certain properties can be maintained
from a graphical interface

Document Type Hierarchy A hierarchy of Document Type definitions. Document Types inherit certain
attributes from their parent Document Types. This hierarchy is also leveraged by
various pieces of the system, including the Rules engine when evaluating rule sets
and KIM when evaluating certain Document Type-based permissions.

Document Type Label The human-readable label assigned to a Document Type.

Document Type Name The assigned name of the document type. It must be unique.

Document Type Policy These advise various checks and authorizations for instances of a Document Type
during the routing process.

Drilldown A link that allows a user to access more detailed information about the current
data. These links typically take the user through a series of inquiries on different
business objects.

Dynamic Node An advanced type of Route Node that can be used to generate complex routing
paths on the fly. Typically used whenever the route path of a document cannot be
statically defined and must be completely derived from document data.

E
ECL 1. An acronym for Educational Community License.

2. All Kuali software and material is available under the Educational Community
License and may be adopted by colleges and universities without licensing
fees. The open licensing approach also provides opportunities for support and
implementation assistance from commercial affiliates.

E-Doc An abbreviation for electronic documents, also a shorthand reference to
documents created with eDocLite.

eDocLite A framework for quickly building workflow-enabled documents. Allows you to
define document screens in XML and render them using XSL style sheets.

Embedded Client A type of client that runs an embedded workflow engine.

Employee Status Found on the Person Document; defines the employee's current employment
classification (for example, "A" for Active).

Employee Type Found on the Person Document; defines the employee's position classification (for
example, "P" for Professional).

Glossary

329

Entity An Entity record houses identity information for a given Person, Process, System,
etc. Each Entity is categorized by its association with an Entity Type.

Entity Attribute Entities have directory-like information called Entity Attributes that are associated
with them

Entity Attributes make up the identity information for an Entity record.

Entity Type Provides categorization to Entities. For example, a “System” could be considered
an Entity Type because something like a batch process may need to interfact with
the application.

Exception A workflow routing status indicating that the document routed to an exception
queue because workflow has encountered a system error when trying to process
the document.

Exception Messaging The set of services and configuration options that are responsible for handling
messages when they cannot be successfully delivered. Exception Messaging is
set up when you configure KSB using the properties outlined in KSB Module
Configuration.

Exception Routing A type of routing used to handle error conditions that occur during the routing
of a document. A document goes into Exception Routing when the workflow
engine encounters an error or a situation where it cannot proceed, such as a
violation of a Document Type Policy or an error contacting external services.
When this occurs, the document is routed to the parties responsible for handling
these exception cases. This can be a group configured on the document or a
responsibility configured in KIM. Once one of these responsible parties has
reviewed the situation and approved the document, it will be resubmitted to the
workflow engine to attempt the processing again.

Extended Attributes Custom, table-driven business object attributes that can be established by
implementing institutions.

Extension Rule Attribute One of the rule attributes added in the definition of a rule template that extends
beyond the base rule attributes to differentiate the routing rule. A Required
Extension Attribute has its "Required" field set to True in the rule template.
Otherwise, it is an Optional Extension Attribute. Extension attributes are typically
used to add additional fields that can be collected on a rule. They also define the
logic for how those fields will be processed during rule evaluation.

F
Field Lookup The round magnifying glass icon found next to fields throughout the GUI that

allow the user to look up reference table information and display (and select from)
a list of valid values for that field.

Final A workflow routing status indicating that the document has been routed and has
no pending approval or acknowledgement requests.

Flexible Route Management A standard KEW routing scheme based on rules rather than dedicated table-based
routing.

FlexRM (Flexible Route
Module)

The Route Module that performs the Routing for any Routing Rule is defined
through FlexRM. FlexRM generates Action Requests when a Rule matches the

Glossary

330

data value contained in a document. An abbreviation of "Flexible Route Module."
A standard KEW routing scheme that is based on rules rather than dedicated table-
based routing.

Force Action A true/false flag that indicates if previous Routing for approval will be ignored
when an Action Request is generated. The flag is used in multiple contexts where
requests are generated (e.g., rules, ad hoc routing). If Force Action is False, then
prior Actions taken by a user can satisfy newly generated requests. If it is True,
then the user needs to take another Action to satisfy the request.

FYI A workflow action request that can be cleared from a user's Action List with
or without opening and viewing the document. A document with no pending
approval requests but with pending Acknowledge requests is in Processed status.
A document with no pending approval requests but with pending FYI requests is
in Final status. See also Ad Hoc Routing and Action Request.

G
Group A Group has members that can be either Principals or other Groups (nested).

Groups essentially become a way to organize Entities (via Principal relationships)
and other Groups within logical categories.

Groups can be given authorization to perform actions within applications by
assigning them as members of Roles.

Groups can also have arbitrary identity information (i.e., Group Attributes hanging
from them. Group Attributes might be values for "Office Address," "Group
Leader," etc.

Groups can be maintained at runtime through a user interface that is capable of
workflow.

Group Attribute Groups have directory-like information called Group Attributes hanging from
them. "Group Phone Number" and "Team Leader" are examples of Group
Attributes.

Group Attributes make up the identity information for a Group record.

Group Attributes can be maintained at runtime through a user interface that is
capable of workflow.

H
Hierarchical Tree Structure A hierarchical representation of data in a graphical form.

I
Initialized The state of an Action Request when it is first created but has not yet been

Activated (sent to a user’s Action List).

Initiated A workflow routing status indicating a document has been created but has not
yet been saved or routed. A Document Number is automatically assigned by the
system.

Glossary

331

Initiator A user role for a person who creates (initiates or authors) a new document for
routing. Depending on the permissions associated with the Document Type, only
certain users may be able to initiate documents of that type.

Inquiry A screen that allows a user to view information about a business object.

J
Join Node The point in the routing path where multiple branches are joined together. A Join

Node typically has a corresponding Split Node for which it joins the branches.

K
KC - Kuali Coeus TODO

KCA - Kuali Commercial
Affiliates

A designation provided to commercial affiliates who become part of the Kuali
Partners Program to provide for-fee guidance, support, implementation, and
integration services related to the Kuali software. Affiliates hold no ownership of
Kuali intellectual property, but are full KPP participants. Affiliates may provide
packaged versions of Kuali that provide value for installation or integration
beyond the basic Kuali software. Affiliates may also offer other types of training,
documentation, or hosting services.

KCB – Kuali Communications
Broker

KCB is logically related to KEN. It handles dispatching messages based on user
preferences (email, SMS, etc.).

KEN - Kuali Enterprise
Notification

A key component of the Enterprise Integration layer of the architecture
framework. Its features include:

• Automatic Message Generation and Logging

• Message integrity and delivery standards

• Delivery of notifications to a user’s Action List

KEW – Kuali Enterprise
Workflow

Kuali Enterprise Workflow is a general-purpose electronic routing infrastructure,
or workflow engine. It manages the creation, routing, and processing of electronic
documents (eDocs) necessary to complete a transaction. Other applications can
also use Kuali Enterprise Workflow to automate and regulate the approval process
for the transactions or documents they create.

KFS – Kuali Financial System Delivers a comprehensive suite of functionality to serve the financial system needs
of all Carnegie-Class institutions. An enhancement of the proven functionality of
Indiana University's Financial Information System (FIS), KFS meets GASB and
FASB standards while providing a strong control environment to keep pace with
advances in both technology and business. Modules include financial transactions,
general ledger, chart of accounts, contracts and grants, purchasing/accounts
payable, labor distribution, budget, accounts receivable and capital assets.

KIM – Kuali Identity
Management

A Kuali Rice module, Kuali Identity Management provides a standard API for
persons, groups, roles and permissions that can be implemented by an institution.
It also provdies an out of the box reference implementation that allows for a
university to use Kuali as their Identity Management solution.

Glossary

332

KNS – Kuali Nervous System A core technical module composed of reusable code components that provide
the common, underlying infrastructure code and functionality that any module
may employ to perform its functions (for example, creating custom attributes,
attaching electronic images, uploading data from desktop applications, lookup/
search routines, and database interaction).

KPP - Kuali Partners Program The Kuali Partners Program (KPP) is the means for organizations to get involved
in the Kuali software community and influence its future through voting rights to
determine software development priorities. Membership dues pay staff to perform
Quality Assurance (QA) work, release engineering, packaging, documentation,
and other work to coordinate the timely enhancement and release of quality
software and other services valuable to the members. Partners are also encouraged
to tender functional, technical, support or administrative staff members to the
Kuali Foundation for specific periods of time.

KRAD - Kuali Rapid
Application Development

TODO

KRMS - Kuali Rules
Management System

TODO

KS - Kuali Student Delivers a means to support students and other users with a student-centric system
that provides real-time, cost-effective, scalable support to help them identify
and achieve their goals while simplifying or eliminating administrative tasks.
The high-level entities of person (evolving roles-student, instructor, etc.), time
(nested units of time - semesters, terms, classes), learning unit (assigned to any
learning activity), learning result (grades, assessments, evaluations), learning
plan (intentions, activities, major, degree), and learning resources (instructors,
classrooms, equipment). The concierge function is a self-service information
sharing system that aligns information with needs and tasks to accomplish goals.
The support for integration of locally-developed processes provides flexibility for
any institution's needs.

KSB – Kuali Service Bus Provides an out-of-the-box service architecture and runtime environment for Kuali
Applications. It is the cornerstone of the Service Oriented Architecture layer of
the architectural reference framework. The Kuali Service Bus consists of:

• A services registry and repository for identifying and instantiating services

• Run time monitoring of messages

• Support for synchronous and asynchronous service and message paradigms

Kuali 1. Pronounced "ku-wah-lee". A partnership organization that produces a suite of
community-source, modular administrative software for Carnegie-class higher
education institutions. See also Kuali Foundation

2. (n.) A humble kitchen wok that plays an important role in a successful kitchen.

Kuali Foundation Employs staff to coordinate partner efforts and to manage and protect the
Foundation's intellectual property. The Kuali Foundation manages a growing
portfolio of enterprise software applications for colleges and universities. A
lightweight Foundation staff coordinates the activities of Foundation members
for critical software development and coordination activities such as source code
control, release engineering, packaging, documentation, project management,

Glossary

333

software testing and quality assurance, conference planning, and educating and
assisting members of the Kuali Partners program.

Kuali Rice Provides an enterprise-class middleware suite of integrated products that allow
both Kuali and non-Kuali applications to be built in an agile fashion, such
that developers are able to react to end-user business requirements in an
efficient manner to produce high-quality business applications. Built with Service
Oriented Architecture (SOA) concepts in mind, KR enables developers to build
robust systems with common enterprise workflow functionality, customizable
and configurable user interfaces with a clean and universal look and feel, and
general notification features to allow for a consolidated list of work "action
items." All of this adds up to providing a re-usable development framework that
encourages a simplified approach to developing true business functionality as
modular applications.

L
Last Modified Date The date on which the document was last modified (e.g., the date of the last action

taken, the last action request generated, the last status changed, etc.).

M
Maintenance Document An e-doc used to establish and maintain a table record.

Message The full description of a notification message. This is a specific field that can be
filled out as part of the Simple Message or Event Message form. This can also
be set by the programmatic interfaces when sending notifications from a client
system.

Message Queue Allows administrators to monitor messages that are flowing through the Service
Bus. Messages can be edited, deleted or forwarded to other machines for
processing from this screen.

N
Namespace A Namespace is a way to scope both Permissions and Entity Attributes Each

Namespace instance is one level of scoping and is one record in the system.
For example, "KRA" or "KC" or "KFS" could be a Namespace. Or you could
further break those up into finer-grained Namespaces such that they would roughly
correlate to functional modules within each application. Examples could be "KRA
Rolodex", "KC Grants", "KFS Chart of Accounts".

Out of the box, the system is bootstrapped with numerous Rice namespaces
which correspond to the different modules. There is also a default namespace of
“KUALI”.

Namespaces can be maintained at runtime through a maintenance document.

Note Text A free-form text field for the text of a Note

Notification Content This section of a notification message which displays the actual full message for
the notification along with any other content-type-specific fields.

Glossary

334

Notification Message The overall Notification item or Notification Message that a user sees when she
views the details of a notification in her Action List. A Notification Message
contains not only common elements such as Sender, Channel, and Title, but also
content-type-specific fields.

O
OOTB Stands for "out of the box" and refers to the base deliverable of a given feature

in the system.

Optimistic Locking A type of “locking” that is placed on a database row by a process to prevent
other processes from updating that row before the first process is complete. A
characteristic of this locking technique is that another user who wants to make
modifications at the same time as another user is permitted to, but the first one
who submits their changes will have them applied. Any subsequent changes will
result in the user being notified of the optimistic lock and their changes will not
be applied. This technique assumes that another update is unlikely.

Optional Rule Extension
Attribute

An Extension Attribute that is not required in a Rule Template. It may or may
not be present in a Routing Rule created from the Template. It can be used as
a conditional element to aid in deciding if a Rule matches. These Attributes are
simply additional criteria for the Rule matching process.

Org Doc # The originating document number.

Organization Refers to a unit within the institution such as department, responsibility center,
campus, etc.

Organization Code Represents a unique identifier assigned to units at many different levels within the
institution (for example, department, responsibility center, and campus).

P
Parameter Component Code Code identifying the parameter Component.

Parameter Description This field houses the purpose of this parameter.

Parameter Name This will be used as the identifier for the parameter. Parameter values will be
accessed using this field and the namespace as the key.

Parameter Type Code Code identifying the parameter type. Parameter Type Code is the primary key for
its’ table.

Parameter Value This field houses the actual value associated with the parameter.

Parent Document Type A Document Type from which another Document Type derives. The child type can
inherit certain properties of the parent type, any of which it may override. A Parent
Document Type may have a parent as part of a hierarchy of document types.

Parent Rule A Routing Rule in KEW from which another Routing Rule derives. The child Rule
can inherit certain properties of the parent Rule, any of which it may override. A
Parent Rule may have a parent as part of a hierarchy of Rules.

Permission Permissions represent fine grained actions that can be mapped to functionality
within a given system. Permissions are scoped to Namespace which roughly
correlate to modules or sections of functionality within a given system.

Glossary

335

A developer would code authorization checks in their application against these
permissions.

Some examples would be: "canSave", "canView", "canEdit", etc.

Permissions are aggregated by Roles.

Permissions can be maintained at runtime through a user interface that is capable
of workflow; however, developers still need to code authorization checks against
them in their code, once they are set up in the system.

Attributes

1. Id - a system generated unique identifier that is the primary key for any
Permission record in the system

2. Name - the name of the permission; also a human understandable unique
identifier

3. Description - a full description of the purpose of the Permission record

4. Namespace - the reference to the associated Namespace

Relationships

1. Permission to Role - many to many; this relationship ties a Permission record
to a Role that is authorized for the Permission

2. Permission to Namespace - many to one; this relationship allows for scoping
of a Permission to a Namespace that contains functionality which keys its
authorization checking off of said

Person Identifier The username of an individual user who receives the document ad hoc for the
Action Requested

Person Role Creates or maintains the list used in selection of personnel when preparing the
Routing Form document.

Pessimistic Locking A type of lock placed on a database row by a process to prevent other processes
from reading or updating that row until the first process is finished. This technique
assumes that another update is likely.

Plugins A plugin is a packaged set of code providing essential services that can be
deployed into the Rice standalone server. Plugins usually contains only classes
used in routing such as custom rules or searchable attributes, but can contain
client application specific services. They are usually used only by clients being
implemented by the ‘Thin Client’ method

Post Processor A routing component that is notified by the workflow engine about various events
pertaining to the routing of a specific document (e.g., node transition, status
change, action taken). The implementation of a Post Processor is typically specific
to a particular set of Document Types. When all required approvals are completed,
the engine notifies the Post Processor accordingly. At this point, the Post Processor
is responsible for completing the business transaction in the manner appropriate
to its Document Type.

Glossary

336

Posted Date/Time Stamp A free-form text field that identifies the time and date at which the Notes is posted.

Postal Code Defines zip code to city and state cross-references.

Preferences User options in an Action List for displaying the list of documents. Users can click
the Preferences button in the top margin of the Action List to display the Action
List Preferences screen. On the Preferences screen, users may change the columns
displayed, the background colors by Route Status, and the number of documents
displayed per page.

Primary Delegation The Delegator turns over full authority to the Delegate. The Action Requests
for the Delegator only appear in the Action List of the Primary Delegate. The
Delegation must be registered in KEW or KIM to be in effect.

Principal A Principal represents an Entity that can authenticate into the system. One can
roughly correlate a Principal to a login username. Entities can exist in KIM without
having permissions or authorization to do anything; therefore, a Principal must
exist and must be associated with an Entity in order for it to have access privileges.
All authorization that is not specific to Groups is tied to a Principal.

In other words, an Entity is for identity while a Principal is for access management.

Also note that an Entity is allowed to have multiple Principals associated with
it. The use case typically given here is that a person may apply to a school and
receive one log in for the application system; however, once accepted, they may
receive their official login, but use the same identity information set up for their
Entity record.

Processed A routing status indicating that the document has no pending approval requests
but still has one or more pending acknowledgement requests.

R
Recipient Type The type of entity that is receiving an Action Request. Can be a user, workgroup,

or role.

Required Rule Extension
Attribute

An Extension Attribute that is required in a Rule Template. It will be present in
every Routing Rule created from the Template.

Responsibility See Responsible Party.

Responsibility Id A unique identifier representing a particular responsibility on a rule (or from a
route module This identifier stays the same for a particular responsibility no matter
how many times a rule is modified.

Responsible Party The Reviewer defined on a routing rule that receives requests when the rule
is successfully executed. Each routing rule has one or more responsible parties
defined.

Reviewer A user acting on a document in his/her Action List and who has received an Action
Request for the document.

Rice An abbreviation for Kuali Rice.

Role Roles aggregate Permissions When Roles are given to Entities (via their
relationship with Principals) or Groups an authorization for all associated
Permissions is granted.

Glossary

337

Route Header Id Another name for the Document Id.

Route Log Displays information about the routing of a document. The Route Log is usually
accessed from either the Action List or a Document Search. It displays general
document information about the document and a detailed list of Actions Taken
and pending Action Requests for the document. The Route Log can be considered
an audit trail for a document.

Route Module A routing component that the engine uses to generate action requests at a particular
Route Node. FlexRM (Flexible Route Module) is a general Route Module that
is rule-based. Clients can define their own Route Modules that can conduct
specialized Routing based on routing tables or any other desired implementation.

Route Node Represents a step in the routing process of a document type. Route node
"instances" are created dynamically as a document goes through its routing process
and can be defined to perform any function. The most common functions are to
generate Action Requests or to split or join the route path.

• Simple: do some arbitrary work

• Requests: generate action requests using a Route Module or the Rules engine

• Split: split the route path into one or more parallel branches

• Join: join one or more branches back together

• Sub Process: execute another route path inline

• Dynamic: generate a dynamic route path

Route Path The path a document follows during the routing process. Consists of a set of
route nodes and branches. The route path is defined as part of the document type
definition.

Route Status The status of a document in the course of its routing:

• Approved: These documents have been approved by all required reviewers and
are waiting additional postprocessing.

• Cancelled: These documents have been stopped. The document’s initiator can
‘Cancel’ it before routing begins or a reviewer of the document can cancel it
after routing begins. When a document is cancelled, routing stops; it is not sent
to another Action List.

• Disapproved: These documents have been disapproved by at least one reviewer.
Routing has stopped for these documents.

• Enroute: Routing is in progress on these documents and an action request is
waiting for someone to take action.

• Exception: A routing exception has occurred on this document. Someone from
the Exception Workgroup for this Document Type must take action on this
document, and it has been sent to the Action List of this workgroup.

• Final: All required approvals and all acknowledgements have been received on
these documents. No changes are allowed to a document that is in Final status.

Glossary

338

• Initiated: A user or a process has created this document, but it has not yet been
routed to anyone’s Action List.

• Processed: These documents have been approved by all required users, and is
completed on them. They may be waiting for Acknowledgements. No further
action is needed on these documents.

• Saved: These documents have been saved for later work. An author (initiator)
can save a document before routing begins or a reviewer can save a document
before he or she takes action on it. When someone saves a document, the
document goes on that person’s Action List.

Routed By User The user who submits the document into routing. This is often the same as the
Initiator. However, for some types of documents they may be different.

Routing The process of moving a document through its route path as defined in its
Document Type. Routing is executed and administered by the workflow engine.
This process will typically include generating Action Requests and processing
actions from the users who receive those requests. In addition, the Routing process
includes callbacks to the Post Processor when there are changes in document state.

Routing Priority A number that indicates the routing priority; a smaller number has a higher routing
priority. Routing priority is used to determine the order that requests are activated
on a route node with sequential activation type.

Routing Rule A record that contains the data for the Rule Attributes specified in a Rule Template
It is an instance of a Rule Template populated to determine the appropriate
Routing. The Rule includes the Base Attributes, Required Extension Attributes,
Responsible Party Attributes, and any Optional Extension Attributes that are
declared in the Rule Template. Rules are evaluated at certain points in the routing
process and, when they fire, can generate Action Requests to the responsible
parties that are defined on them.

Technical considerations for a Routing Rules are:

• Configured via a GUI (or imported from XML)

• Created against a Rule Template and a Document Type

• The Rule Template and it’s list of Rule Attributes define what fields will be
collected in the Rule GUI

• Rules define the users, groups and/or roles who should receive action requests

• Available Action Request Types that Rules can route

• Complete

• Approve

• Acknowledge

• FYI

• During routing, Rule Evaluation Sets are “selected” at each node. Default is to
select by Document Type and Rule Template defined on the Route Node

Glossary

339

• Rules match (or ‘fire’) based on the evaluation of data on the document and
data contained on the individual rule

• Examples

• If dollar amount is greater than $10,000 then send an Approval request to Joe.

• If department is “HR” request an Acknowledgment from the
HR.Acknowledgers workgroup.

Rule Attribute Rule attributes are a core KEW data element contained in a document that controls
its Routing. It participates in routing as part of a Rule Template and is responsible
for defining custom fields that can be rendered on a routing rule. It also defines
the logic for how rules that contain the attribute data are evaluated.

Technical considerations for a Rule Attribute are:

• They might be backed by a Java class to provide lookups and validations of
appropriate values.

• Define how a Routing Rule evaluates document data to determine whether or
not the rule data matches the document data.

• Define what data is collected on a rule.

• An attribute typically corresponds to one piece of data on a document (i.e dollar
amount, department, organization, account, etc.).

• Can be written in Java or defined using XML (with matching done by XPath).

• Can have multiple GUI fields defined in a single attribute.

Rule QuickLinks A list of document groups with their document hierarchies and actions that can be
selected. For specific document types, you can create the rule delegate.

Rule Template A Rule Template serves as a pattern or design for the routing rules. All of the
Rule Attributes that include both Required and _Optional_ are contained in the
Rule Template; it defines the structure of the routing rule of FlexRM. The Rule
Template is also used to associate certain Route Nodes on a document type to
routing rules.

Technical considerations for a Rule Templates are:

• They are a composition of Rule Attributes

• Adding a ‘Role’ attribute to a template allows for the use of the Role on any
rules created against the template

• When rule attributes are used for matching on rules, each attribute is associated
with the other attributes on the template using an implicit ‘and’ logic attributes

• Can be used to define various other aspects to be used by the rule creation GUI
such as rule data defaults (effective dates, ignore previous, available request
types, etc)

Glossary

340

S
Save A workflow action button that allows the Initiator of a document to save their

work and close the document. The document may be retrieved from the initiator's
Action List for completion and routing at a later time.

Saved A routing status indicating the document has been started but not yet completed or
routed. The Save action allows the initiator of a document to save their work and
close the document. The document may be retrieved from the initiator's action list
for completion and routing at a later time.

Searchable Attributes Attributes that can be defined to index certain pieces of data on a document so that
it can be searched from the Document Search screen.

Technical considerations for a Searchable Attributes are:

• They are responsible for extracting and indexing document data for searching

• They allow for custom fields to be added to Document Search for documents
of a particular type

• They are configured as an attribute of a Document Type

• They can be written in Java or defined in XML by using Xpath to facilitate
matching

Secondary Delegation The Secondary Delegate acts as a temporary backup Delegator who acts with the
same authority as the primary Approver/the Delegator when the Delegator is not
available. Documents appear in the Action Lists of both the Delegator and the
Delegate. When either acts on the document, it disappears from both Action Lists.

Secondary Delegation is often configured for a range of dates and it must be
registered in KEW or KIM to be in effect.

Service Registry Displays a read-only view of all of the services that are exposed on the Service Bus
and includes information about them (for example, IP Address, or Endpoint URL).

Simple Node A type of node that can perform any function desired by the implementer. An
example implementation of a simple node is the node that generates Action
Requests from route modules.

SOA An acronym for Service Oriented Architecture.

Special Condition Routing This is a generic term for additional route levels that might be triggered by various
attributes of a transaction. They can be based on the type of document, attributes of
the accounts being used, or other attributes of the transaction. They often represent
special administrative approvals that may be required.

Split Node A node in the routing path that can split the route path into multiple branches.

Spring The Spring Framework is an open source application framework for the Java
platform.

State Defines U.S. Postal Service codes used to identify states.

Status On an Action List; also known as Route Status. The current location of the
document in its routing path.

http://www.springsource.org/

Glossary

341

Submit A workflow action button used by the initiator of a document to begin workflow
routing for that transaction. It moves the document (through workflow) to the next
level of approval. Once a document is submitted, it remains in 'ENROUTE' status
until all approvals have taken place.

Superuser A user who has been given special permission to perform Superuser Approvals
and other Superuser actions on documents of a certain Document Type.

Superuser Approval Authority given Superusers to approve a document of a chosen Route Node. A
Superuser Approval action bypasses approvals that would otherwise be required
in the Routing. It is available in Superuser Document Search. In most cases,
reviewers who are skipped are not sent Acknowledge Action Requests.

Superuser Document Search A special mode of Document Search that allows Superusers to access documents
in a special Superuser mode and perform administrative functions on those
documents. Access to these documents is governed by the user's membership in
the Superuser Workgroup as defined on a particular Document Type.

T
Thread pool A technique that improves overall system performance by creating a pool of

threads to execute multiple tasks at the same time. A task can execute immediately
if a thread in the pool is available or else the task waits for a thread to become
available from the pool before executing.

Title A short summary of the notification message. This field can be filled out as part
of the Simple Message or Event Message form. In addition, this can be set by the
programmatic interfaces when sending notifications from a client system.

This field is equivalent to the "Subject" field in an email.

U
URL An acronym for Uniform Resource Locator.

User A person who can log in and use the application. This term is synonymous with
“Principal” in KIM. "Whereas Entity Id represents a unique Person, Principal Id
represents a set of login information for that Person."

V
Viewer A user(s) who views a document during the routing process. This includes users

who have action requests generated to them on a document.

W
Web Service Client A type of client that connects to a standalone KEW server using Web Services.

Wildcard A character that may be substituted for any of a defined subset of all possible
characters.

Workflow Electronic document routing, approval and tracking. Also known as Workflow
Services or Kuali Enterprise Workflow (KEW). The Kuali infrastructure service

Glossary

342

that electronically routes an e-doc to its approvers in a prescribed sequence,
according to established business rules based on the e-doc content. See also Kuali
Enterprise Workflow.

Workflow Engine The component of KEW that handles initiating and executing the route path of a
document.

Workflow QuickLinks A web interface that provides quick navigation to various functions in KEW.
These include:

• Quick EDoc Watch: The last five Actions taken by this user. The user can select
and repeat these actions.

• Quick EDoc Search: The last five EDocs searched for by this user. The user can
select one and repeat that search.

• Quick Action List: The last five document types the user took action with. The
user can select one and repeat that action.

X
XML See also XML Ingester.

1. An acronym for Extensible Markup Language.

2. Used for data import/export.

XML Ingester A workflow function that allows you to browse for and upload XML data.

XML RuleAttribute Similar in functionality to a RuleAttribute but built using XML only

