Kuall Rice 2.1.7 Technical
Reference Guide

Table of Contents

I €1 To o= PSSP 1
RICE CHENt OVEIVIBIWuiieeiii et ettt e et e e e aaa s 1
EMBDEAGE ... e 1
BUNAIEA ... et 2

THIN JAVA CHIENT ..ot et e e e e e e enaans 3

WED SEIVICES ...t ettt 4
Global Configuration ParaMeELEr'Seieiiiieeiiii ettt e e e e e e e e e era e eeens 4
Rice Service Architecture and Configuration OVEIVIEWovcveeienieiiiiinieieiiineeeiieeeeenen 5
OVEIVIBIV .ttt ettt e et e et e e et et e e et et e e e e nba s 5
IMplementation DELEIISuuiiiii e 5
Accessing Rice Services and Beans UsiNg SPringovvveviieiiiiiiieiiiiieeeeii e 7
ECHPSE AN RICE ... ittt e 10
OVEIVIBIV .ttt ettt ettt e ettt e ettt b e et e et e e e enb e e e enanns 10
DoWNIOoad the TOOISceeeii et 10
Import rice into Eclipse as a project (Source distribution only)c.coooeeviviiieiinnnnnn. 11
Check out the Rice code (Non-source SVN distribution only)ccccoeveiiiinieiinnnnnn. 13

Set UP dat@hase ArIVELS ..ot 13

Set Up EClipse fOr MAVENuuiiei e 14
REDUITA RICE ...ttt e e et e e e e eens 15
INStall the datalaseccoovuiiiii 16
Installing the appropriate configuration fileScovviiiiiiiiiii e 16

Run the sample web appliCationoiiiiiiiiiii e 16
Changing Rice project dependenCiesooevviieiiiii e 17
OFNEN INOLES ...ttt ettt e e e e eae s 18
Creating Rice Enabled APpliCatioNSoooviiiiiiiiii e 20
Creating a Rice Client Application Project SKEletonccoouvieiiiiiiiiiiiiieeciieeeee 20
Reorder Eclipse Classpathcoouuuuiiiiiieie e 20

Rice Configuration SYSIEMccouuuiiiiiii et 20

Data Source and JTA CONfIQUIELIONcouuuueiiiiieieiiie et eneens 23
Version CompatiDilityuiiiiii e 26
Commitment to Compatibility in Kuali RIiCEooiiiiiiiiiiiii e 26
Keeping Your Client Application Compatible ..o 26

FZ2 S = N TSSO USUPPPPRRT 28
KEEN OVEIVIBIW ...ttt ettt ettt e ettt e e e et et e et ettt e e et et e e et enb s e eeenbnaeeeees 28
WHEE 1S KENT ...ttt e e e et eeaeeeanaee 28

KEN Configuration Par@mMELEr'Scouuuiiiiiii et et e e e e e e e e e e eees 29
KEN ChanNElS ...t 30
Channel SUDSCIIPLIONcceetie e e eees 31
KEEN PIOOUCESS ...ttt ettt e et e e et e e e et e e e s 31
AdAiNG ProQUCEN'S ...t e e e 31
KEN CONENE TYPES ..ottt ettt e e eaa e enes 31
OVEIVIBIV .ottt e et e ettt e et e ab e e e e nb e e e enanns 31
Content TYPE ALIITDULESuuniiiii e 32

KEN NOUTICEIHONS ...eevtieeieii ettt ettt e et e et e e e e e e ena s 33
Common Notification AIDULESuuiiiii e 34
MESSAZE CONENT ...ttt e 34
NOLIfiCAION RESPONSE ...ttt 36
Enterprise NOtfiCation PrOMLYcoouuiiiiiiiie e 37
MaNaging PrioritiEscooeuiieiiii e 37

KEN DEIIVEY TYPES ..ttt ettt ettt ettt ettt ettt et e e e eba e e eanens 37
Implementing the Java INLEITaCecoouueiiiii e 37

Kuali Rice 2.1.7 Technical

Reference Guide

KEN: Sending a NOETICAHIONiiuiiiiiei e e e e e e e 38
Send a Notification Using the Web Service APl ..o 38

WED SEIVICE URL ..ooiiiiiiiii e et et e e et e e eet e eeees 39
EXPOSEd WED SENVICES ..o e e 39

= NN T 1141 g o= 1o o PP 40
LT o PSPPSR 40

WED SEIVICES ..ttt et e ettt 40

G T PSPPI 41
What is Kuali Enterprise WOorkfloOW?coouuiiiiiii e 41
What iS WOrKflow, IN general?ooiviiiiii e 41
What is Kuali Enterprise Workflow, in particular?c.occoeeiiiiiiiiiin i, 41
What problems or functions does KEW SOIVE?ccouiiiiiiiiiiiiiiiieeeieecn e 42
What problems does KEW NOT SOIVE?couviiiiiiiiiii i e e e 42
With which applications can KEW integrate?cooevviieiiiiiiiiiiiiiieeeieee e 43

Can | use KEW without building an entire application?cccocoviiviiiiiiiiiecieeennn. 43
Steps to Building a KEW APPICAIONuoiiiiciii e 43
PrEIACE .. e 43
Initial Steps - Determine the ROUtiNg RUIESoovviiiiiie e, 43
Configure the Process DEfiNitioNcccouiiiiiiiiii e e 44
CHENt PIUGIN SEEPS ...iviiiiieei e e e e e e et e e e e aaeees 47
Build POStProcessor and SEIVICESovvvvuuiieiiiiieieiiie et e e e et e e e e e 49
Package PlUGIN ... e 49
Client Web AppliCation SEEPSuuiiiiieiiiceie e e e e e 49

L S 1= o1 PPN 51
KEW CONfIgUIBLIONiiieeiii e et e e e e e e e e e e e e et e e st e e et e e st e eeaneeees 51
KEW INtegration OPLIONSiiiuiieiiieei e e e e e e e e e e e e et e e e e e e e aaneeeens 51
Bundling the KEW APPlICaHIONcovuiiiiiiciie e e e e e e 53
Using the Remote Java CHENtuiiiiiiii e 56
Using the Thin Java Clientoiiiii i e 56
Picture of an Enterprise DEPIOYMENTc.vuiiiiiieii e e 59
KEW COre PalaMELEN'Sieeiiiieiiei ettt e e et e e e e e e e e e e eenes 60
KEW Configuration PrOpertie€sccuuieiiieiii e e e e e 61
Email Configurationccuiiiiiiiiii e e e e e 64
Periodic Email REMINUEISuuiiiiiieiis et e s 64
Workflow Preferences Configurationoveiuiieiiiieiiii e eee e e e e 65
(©10 110 l0) Q@]n {0 111 {10 o [N 65
Implementing KEW at your iNStitUtioNooeiiiiiiiiiciie e e e e 66
KEW AdMINISITEtioN GUITEcoovvieiiiiie e e e e e e e e e e aaa s 67
ConfigUration OVEIVIEWccuuiiiiiciii e e e e e e e e et e e e e e e e eeas 67
APPIICAION CONSEANEScivteiiiee e e e e e et e e e eaa e eees 67
Production ENVIFONMENESiiiiiiieiiiii et e e e e b 67
D 1o == o o N 68
Message Queue AAMINISEIAEiONoevvuiiiiieii e e e e e e e e e ee 69
KEW SYStEM ParamMELerSuiviiiii et e e et e e e e et e e e aa e 71
System Parameters COVEIEAciuiiiiiieiii e ee e e e s e e e e e e et eeaaees 71
Defining Workflow Processes Using DOCUMENt TYPEScvvveivieiiieeiiieeeiieeeieeeaiee e e e 75
Common Fields in Document Type XML Definitioncccoeeviiiiiiiiiiiiiecieeecieeeen, 76

(D L0 o1l 001 o AN I/ o= PP 77
Document TYPE AULNOTIZEYcivveiiii e e e 109
Document TYPE POICIESuuiiiiiii e e e e 110
INNEITEANCE ..evvn et e e e e et e e et e e e e e e eee 115
Defining Workflow Processes Using PeopleFlow - anew feature in KEWcoeeeenniiis 116
Technical Information about PEOPIEFIOWccoviiiiiiii e, 116
KEW Routing Components and Configuration GUIDEccoevuieiiiieiiiieciineeceeeeeeanan, 117

Kuali Rice 2.1.7 Technical

Reference Guide
(000101110 0= 1o g IS 1= o1 118
ROULING RUIESeiiii e e e e e e e e eaa s 124
INItiatOrROIGATLIDULEvtiieii e e eeaees 124
RoutedBYyUSErROIEAIIIDULEuiiiii e r e e 124
[N [T 011N o o L= P 124
ReqQUESLACEIVAIONNOAEiviiiii e e e e 124
NEtWOrKIAROIEAIITDULEeeveieieii e 125
UniversityldROIEALIDULEcoouii e 125
SEVAINOUE ...eteeeeei e e aea 125
Routing Configuration using KIM Responsibilitiescooovviiiiiiiiiiiicieec e, 126
Route NOde DEfINITIONuuuiiiiiiiis e e s 126
Matching Routing Nodes to Responsibilitiescoovvviiiiiiiciiic e, 127
Using the Workflow Document APoooiii e e e 127
L@ N T SO 127
WOTKFIOWDOCUMENT ...eeieeiiee et e e e e e et e e et e e e et e e e e eae e 127
WOTKFIOWINTO v e e 127
Creating an eDOoCLite APPHCAIONuiiiiiiiiieci e 128
L@ N T SO 128
L000] /00101 0| ST 129
Lazy importing of EDL StYIESiviiiii e 134
Customizing DOCUMENE SEAICHivvuiiii i e e e e e e eaeeees 139
CUSLOM SEAICH SCIEEM ...iiiiiieeeiii et e et eaaaa s 139
Hide Search Fields and Result COIUMNSooiviiiiiieiiiiiie e 140
Configure LOOKUP FUNCLIONuiiicii e e e e e 141
Application DOCUMENE SEAEUScvvvneiiieiiie e ee e e e e e e e et e e et e e e e eanas 143
Define Keyword SEarChiiiiiiiiiii e e e 143
Custom Search Criteria PrOCESSINGuuiiiiiieiiieecii e e e e e e e 144
Custom SEarch GENEIELIONuuieeeiiiieeeiii e e e e e e e e e et e et eeeere s 148
CUuStom SEArCh RESUILSvvieiiiiii e e e e e e 148
Differences between SearchableAttribute and RuleAttributecccoeveviinieninnnn, 150
DOCUMENE SECUITY .ovuniiiiieeii e e e et e e e e e e e e et e e et e e et e e et e e e eeaens 151
OVEIVIBIW .ttt ettt e e ettt e e e ettt e e e ettt e e e e ttneeeestnaeeeestnneeaees 151
SECUNtY DEFINITION ...ieuniii e e e e e e e e e e 151
Order Of EVAIUBLIONuiiiiiiieec e e e e e e e eaaens 154
Security - Warning MESSAJEScvvuuiiiiieiiiieiiie e et ee et e e e e e e e e et e e et eaan e eanas 154
S Yl I Y= N 154
Action List Configuration GUITEoiiiiiiiiiici e e e e 155
(©10 11 0/0)Q@f]n 1 To |11 [o [155
Email CUSIOMIZBIION .. .oeeiiieeeiii et ettt e et e e e et e e e eat s e e e eaenaeaaes 155
Configure a CUStOMEMaIl ALLIIDULEuuiiiiiiii e 156
Create a Custom XSLT Styl@ Shetovvncii e 157
DOCUMENE LINK ettt sttt e et e e et s e e e et n e e e et r e e e aaa s e e enaan s 159
Document Link FERIUMNESuiiiieiiiieiiiis et e e e e e eannns 159
Document Link AP ... 159
Document Link APl EXaMPIE ...uiiiiiii et 160
REPOMING GUITEuuiiiiieii e e e e e e e e e e e e e et e e e eanns 160
REPOIMING FEALUIESuiiii e e e e e e e e eees 160
The ROULING REPOIM SCrEENiiiiiiii e e e 160
The REPOI APIS ..ot e e e e e e e e 160
[00) 1 A O) (= 1 - WP 161
Interpreting REPOI RESUITScvuviiiiiie e e e e 162
WOTKFIOW PIUGIN GUITE e e e e e e e 162
OVEIVIBIW .t e ettt e ettt e e e ettt e e e et neeeettaeeeeatnaeeeestnaeeaees 162
PN ool 1Tor= o TN = 1V o 1 o 163

Kuali Rice 2.1.7 Technical

Reference Guide

PIUGIN LAYOUL ...neieiii e e e e e e e e e e e e et e e et s e e e eaneees 163
Plugin ConfigUIationuiiiiiieiiii e e e e e e e e et e eeanas 163

OJB Configuration Within @ PlUGINcooiiiiiiii e 166
Overriding Services with a Resourceloadercoevvviiiiiiiiii i, 167
KEW Usage of the Kuali SErVICE BUScouuiiiiiiiiie e 169
GENETAl USAJE . oovniiiiii et 169
Implications of using “ Synchronous’ KSB messaging with KEWc.c.cceeeenni. 169

O PP 171
1= 0011870 | P 171
PIINCIPAl eeii e e 171
1) 171

L] (018 o I PP 171

[4TSS T o PP 171
RESPONSIDIITY ..ovniiii i 172

ROIE e 172
Reference INfOrMELIoNooiiiiiiii e e 172

S Yot PP 173
USING the SEIVICES ..vuiiii e e e e e e e e 173

Lo 1= 0101 = Y7 o= PP 173
(o180 15= Y/ o/ T 175
PEIMISSIONSEIVICE ..ottt e et e et e e e et e e e eaa e 175
RESPONSIDIITYSEIVICE ..oovniii e e 176
AULNENLICAHONSEIVICE ...tiiiiiiie e e e e eaanas 176
ROIESEIVICE ...ttt et e et e e et e e e et e e e eaans 177
PEISON SEIVICE ..ttt e et e e e et e e e e et e e e eatnnaeaee 178
KimTypeService Callbacksiiiiiiiii e 178
Implementing Custom KIM TYPES ...cvvuiiiiiiiiii e e e e e et e eaa e 178
Configuring Custom KIM TYPES ...cuuuiiiiieiii e e e e e e e ean s 179
Publishing Custom KIM Types to the Kuali Service Bus...........cccoeeviiviiiiiiiiiiecinnnnns 180

LT = o= s I o PSP 180
Tabhle NAME PrefiXES .. i 180
Unmapped LAST _UPDT DT COIUMNSccuuiiiiieiii e e e e e e 181

LT) S T PP 182
KNS Configuration GUIAEuieiiiieiiii i e e e e e e aaa s 182
Database CreEationooeeuuiieeiiii et e e e e 182
KNSConfigurer and RIiCECONIQUIETiiviiciiii e e e 182
Configuring the KNS Web Application COMPONENtScccvvveiiiieiiiieeiiineriieeeeneenn 183
Module Configuration — Loading Data Dictionary and OJB Files............cccccvveennnnnnn. 185

KNS Configuration ParameerSccvuuiiiiiieiie e e e 186

KNS Business Object Frameworkcouuieiiiiiiiiiieiee e e e e e een 187
Business Object Database Table DEfinitionccoveviiiiiiiieci e, 187
Business Object Java DEfiNitionc.oiviiiiiiiii e 191

KNS Data DiCtionary OVEIVIEWciuuieiiiieeiiieeii e eiie e et e e e e e e e e e e e e et e eeteeeanaeeees 196
Business Object Data DICHONAIYuevvieiiiieiiieeiie e e e e e e e eaens 196
Document Data Dictionary OVEINVIEWcevvuniiiiieiiiieeeie e e ee e e e e e e aanees 204
Maintenance Document Data Dictionary OVEIVIEWcccuvvviiiieiiineeiiieeiiiieeieeeannns 205
Alternate/Additional Display Propertiesc.vveiiiiiiiiieiie e 212
Dynamic read-only, hidden, and required Field StateSccooveviiniiiiniiiiiiceeeeen, 214
Configuring @ KNS Client iN SPringooveoiiiiieiii e e e aae e 216
Spring JTA ConfigUIationcoceuuieiiieiiiie e e e e e e e e e e e e eaa s 216

KNS Vadidation and Business RUlES Frameworkoooeeeuiieiiiiiiieiiiiiiieeeiiinne e 217
RUIES 8N EVENES .. vttt e e et e e e et 217
Standard KNS EVENESuuiiiiiii et e et e e e e e eae e e e 218
NOEITYING USEIS OF EITOIS ..ovuiiiiiiiii e e e e e e e e e e e eaaas 220

Vi

Kuali Rice 2.1.7 Technical

Reference Guide

Creating NEW EVENES ...couuiiiiici e e e e e e e e e e aaas 220
KNS USEN M BSSA0ES ..ttt e e e e e et e e e et n et et n e aas 221
RENEVING USEr MESSAESuuiiiiiiiiieiiee e ee e e e e e e e et e e e e e e et e e e ean s 222
EFTOr IMIBSSA0ES .. euitiii ittt 222
SETULS M BSSA0ES ..ttt 223

KNS QUESEIONS N DIGlOgSevvniiiiieiiie et e e e e e e e e e e e e e e et e e aa e e eanees 223
Prompting Before Validationcoooiiiiiiiiiiiie e 223
HTML MaTKUD .ot e et e e et e e e et 225
DEriVed VaAUES SEEISuiiiiiii ettt e e et e e et eeeaa e e eeanns 226
KNS Notes and AtLACHMENESouuniiiiiiie i eaeans 227
KINS JaVasCript GUIAEuuiiiniiiii et e e e e e e e e e e et e e et e e eanaes 227
Integrating Javascript With KNS tagScovviiiiiiiiiiciee e 228
FaTeolg oo = i1 oo AN A PN 228

KINS DAt MASKING ... eeeettieeeiiii e et e e e et e e et e e e et e e e e et e e e eett e e e eett e eeeetaaeeeereaeaees 229
KINS AULNOTIZELIONeeevieecee et e e e e e e e e e e e eanans 231
Common Document AULNOMZALIONSviveiiiiee e 232
Maintenance Document AULNOMZALIONSoviiiiiiiiii e 233
Transactional Document AULhOIZaLIONSovviviiieeiiii e 235
Other AULNOTIZALIONSvuieiiiii e e e e e et e e eare e eeeee 236
Overriding Document AULNOTIZENSccovuiiiiii e 236
KNS Exception Handling and Incident REPOIINGoevviiiiiiiiiiiieii e e 237
KINS SYStemM ParaMELerSiviiiiiie e e e e e e 238
Getting text from a SyStem ParamMEteroveiiiieiiii e e 238
Using an iNdiCator ParamEtercoeeuuieiinieiiiie e e e e e e e e e e e e e e e e et e ean e eanaes 239
Parameter EVAIUBLOTSuuieiiiiiieeiii et 239
Calling missing SysStem ParameterSvviunieiiieiiieee e e e e e e e e e e s 241
Overriding RICE ParaMeEterSu.iiii i e e e e e e aanas 241
Building Screens using the KNS Tag Librariesc.ccoeiiiiiiiiicin i 241
IMPLICIE Variables ..o e 242

IR0 TS o] Gl = Y0 11 | P 242
LI S o O] 11 (o] K= R 244
Tags for KNS FUNCHONEIILY ...covveiiiiciiie e e e 246
Useful Pre-Created TahS ..ovvvn i e s 248

LT AN B S SPPPTTSPPI 249
KIRAD OVEIVIBIW ...ttt e et e et s e e et s e e e et e e e e st e e e e et e e e eaann s 249
KEY KRAD FEEIUINES .. .oieitiieeeiii ettt e e et e e et e e et e e eeatnaeeees 249
KRAD CONCEPLUAl VIEW . ouuiiiiiiciii et e e e e e e e e e e et e e e e eanas 252
KRAD REGHONE VIBW ..uiieiiiiiee e e et e et s e e e et e e e eeaaaeeeeae 253
KRAD Data DICHIONAIYevvueiiiieeiii et e e e e e e e e e e e e e e et e e et e e st e e st e e eanaeeaneenen 253
Simple Constraints, MiN / MaXcoouiiiiiiiiiie e e 254
Valid CharaCters CONSITAINTSuuieeiiiiieeeiii e e e et e et e e et e e eeaeaeeees 255
Dependency CONSITAINSovvieieiiieeiie e e e e e e e e e e e e et e e e eeanaas 256
LOOKUP CONSITAINTS ...evuueiiiieiieeii e e e e e e e e e e e e e e e e e e et e e et e e et e e anneeannaees 256
Conditional LOGIC CONSIAINTScvvuiiiiieiiiieeie e e e e e e e e e e e et e e e eeenas 256
OCUITENCES CONSITAINES ...evvieeeiiii e e ettt e et e e e e e e et e e e et s e e e eatnaeeeeaenaeaees 257
COllECtioN SIZE& CONSITAINS ...u.ieeeiiiiee et e et e e et e r et e e e e e e e e e eaeenns 258
Constraints on the Client SIAEvviiiii e 259
Changing Error MESSAEScvvueiiiieiiii e e et e e e e e e e e e et e et e et e e ann s 259
Constraint Architecture (building a custom constraint)ccooeeviveiiieeiiineeiineeennnn. 260
KRAD BUSINESS ODJECIS? ..uuiiiiiii ettt e et e e e aa s 263
R A D O - S I o =~ 7 PP 263
Installing and Configuring KRADoouiiiiiiiii e e e 263
Configure Rice without KRAD (KNS ONlY) ...oovviiiiiiii e 263
Creating the KRAD database tables / connections to data?c.ccceeeviieiiinnennnnn. 264

Vii

Kuali Rice 2.1.7 Technical

Reference Guide

KRAD Configurer and RIiCECONfIQUIET?uuiiiiii e iei e e e e e e e e e e e eens 264
Configuring Spring and MV C? ...couniii e e 264
Module Configuration — Loading Data Dictionary and OJB Files?cccceevneen. 264
Other KRAD Configuration Parameters?oeevuieiiiieeiiieeeiiieeiieeeiseeeineesnneeaens 264
Building application pages using KRADccouiiiiiiiiii e e 264
RN B = 111 o] = (= 264
Converting KNS pages to0 KRADoiiiiiiii e e e e e e e e 266
(other? E/R diagrams?, hinding paths?, pointer to javadoCs?)ccovvveviiiiiiiiiiiiiiccie e 266
T K R S L e e e e a et a e aaans 267
KIRIMS OVEIVIBIW ...ttt e e e e et e e e e et e e e et e e e e et e e e eaen s 267
What is a Rule Management System, in general?cooovvieiiiiiiiiiie e 267
What is Kuali's Rule Management System (KRMS), in particular?............c.ccceeeennnnns 267
What problems or functions does KRMS SOIVE?cocvviiiiiiiiiiiici e 268
What problems does KRMS not address?oevviiiiiiiiiiiec e 268

With which types of applications can KRMS integrat€?ccoovevvieeiiiieviineeennnennn, 268

Can | use KRM S without building a Rice application?cccocoiveiiiniiiniciieeennnn, 268
KIRIMIS CONCEPLS .ttt ettt e e e et e e e e e e et e et e e e aees 269
Namespaces, Contexts, Agendas, Rules and Propositionsc.oooevveeviiieiinceinns 269
KRMS AdMINISIration GUITEcevuvnieiiiiiee et e et e e e et e eeeaen e eeens 272
INItIAl SEL UP TASKS 1.vuiiiiiieii e e e 272

ST S PP 281
HOW t0 USE the KSB ...eiii et e e 281
g1 [0 ot (' o PP 281

BEaN BASEO SEIVICES .. iiiiiiiiiiiii e e e et e e 281
(DT o = 0 T NN == 281
Details of Supported Service ProtOCOIScvvuiiiiieii e 282
2 - (o O = o PP 282

F N)V - Y- WO 1= o P 282
NON-JaVa/INON-RICE CHEML ...iiiiiiieeei e 283

KSB REQISLTY @S @ SEIVICE . ivuiiiii i e et e e e e e e e e e e e et e ea e eees 283
Configuring the KSB CHent in SPriNgocouuiiiiiiieiee e e e e e e e e e eaaes 283
OVEIVIBIW .ttt ettt e e ettt e e e ettt e e e ettt e e e e ttneeeestnaeeeestnneeaees 283
Spring Property Configurationc..oieiiiiiiiie e e 284
Spring JTA ConfigUIationcoeiuuieiiieiiii e e e e e e e e e e e ean s 285

Put JTA and the Rice Config object in the CoreConfigurercocovveiiiiiiiineiinnenns 285
Configuring KSB WithoUt JTAoeinii e e e e e e 286
WEDXMI CONFIQUIAIONceveiii e e e e e e 287
Configuration PalraMELErSeiiiiiii e e e e e e e e e e e e e e eaneees 287
KSBCONfIQUIEr PrOPEITIES ... cvviiii e e e e e e e e e e e e e e eees 289

[= T o1 To 0 P 290
Configuring QUArtZ for KSBccuuiiiiiiciie e 292
(@0 7= v = o (0] To PP 292
Acquiring and Invoking Services Deployed on KSBccoiiiiiiiiiiiiiiiieci e 293
SErVICE INVOCATON OVEIVIEWiiiieiiieeeiii e e et e e et e et e e et e e et e e e e aae e e eanan s 293
Acquiring and invoking a service direCtlyooivviiiiiiiiii 293
Acquiring and invoking a service USiNg MESSAGINGocevueernieiiiieriiieeeineeeieeeanaeenes 295
Getting responses from service calls made with messagingcccoeeviiiiiiinciine, 296

L= T 0L P 297
SErVICE Call FAIIOVEN ... 297
Fallover With QUEUEScuuiii e e e e e e 297
Fallover With tOPICS ...cvvviiii e e 297

KSB EXCEPLION MESSAGING ...vvtuiiiieeiiieii e et et e et e e e e e et e e e e et e e et e e et e e e aaeeaaeeannns 297
KSB Messaging Paradigmsiiiiiiii e 298
QUEBLIES ... ittt ettt 298

Kuali Rice 2.1.7 Technical

Reference Guide

1] o o= P 298
MESSAGE FEICNENieiiii e 298

[Io7=o [=T 1 =12 Voo To [0S PP 299
L@ o L= ot 2 (= 1270111 0o 299
Publishing SErVICES t0 KSB .. .cuuiiiiiiciii e e eaen 299
LGS =001 1o U = 299
SEIVICE EXPOIEN .t 299
CallbackSErVICEEXPOIESvuiiii e e 300
ServiceDEfiNItioN PrOPEITIES ... covu i 301
ServiceNameSpaceURI/MESSAgEENTITYcccvuiviiiiiiiiciie e e e 302
SOAPSENVICEDEFINITION ..vueiiiiii e e et eeer e e eee 302
JaVaSErVICEDEFINITION L...iiiiii e r et e e 302
PUbliShiNg RICE SEIVICESuuiiiiiiii et e e e e e e et 302

The ReSOUrCEL0BAEr SEACK ... iiiiiiiiieiiii e 303
L@ N T SO 303
Accessing and overriding Rice services and beans from Springccoevvvviievinnennn. 304

KSB Security -- STILL NEEDS TO BE REVIEWED!!! ..o 305
L@ N T SO 305
L0110 (= 11 ES 1Y/ 0= 305
Credential SSOUICEuiiiiiiie ettt e e e e et e e et e e e era s 305

KSB connector and eXPOrter COOEueiiiniiiiiieiii et ee e ee e e e e e e e e e e e eaneees 306
SECUNLY aNd KEYSIOrESiiiiiciiii e e e e e e e e e e aanas 307

Basi CAULNENti CaLiONSEIVICE .. .oiiiii e 308
Queue and TOPIC INVOCAHONccuueiiieiiii e e e e e e e e e e e e e e e e et e et e e eaneeeanaaes 309
(@ 01= 8L T 01V o= o) o [N 309
JIo] o o2 0170 1 o] o IS 309

KSB ParaMetersoieiiiii e 310
COrE Pal@MELEN'Seeieiii e et e e e e e e 310

KSB Configurer ProPertiEScvun it e e e e e e eens 313
JAX-RS | RESTTUI SEIVICES ..oevviiiiiiiieee ittt e et e et e e e et e e e eaa e eeee 313
(02 Y2 PP 313

A SIMPIE EXAMPIE .oncec e 314
COMPOSITE SENVICES .. iiviiiiiieii et e et e e e e e e e e e e e e et e et e e ean e e ean s 315
Additional Service Definition Propertiesccouveiiiiiiiiiieiii e 316
L1075 P 317

List of Figures

1.1. Diagram of a sample embedded implementationoooieviiiiiiiiiiee e 1
1.2. Diagram of a sample bundled implementationcoooiiiiiiiii e 2
1.3. Diagram of a sample Thin Java Client implementationccouivieiiiiiiieiiiinee e 3
1.4, RESOUICE LOBOEN SEACK ...eevuueiiiii ettt ettt ettt ettt e e et e e e s 6
1.5. ROOt DIr€CLOIY SEIOCHIONiiiiiiieeeit ettt ettt et enaans 12
1.6. Root Directory Selection CONtINUEMooveuiiiiiiiiie et 13
1.7. Eclipse Classpath Variablesuuiiiiiiiie e 14
1.8, EClipse Clean BUITAuiiiiiieiiei ettt 15
1.9. Eclipse Jetty LAUNCKH ..ovuiiiiti et 17
1.10. Update EClipse ClasSpathoieeeieiiii et 18
2.1 KEN MESSA0E FIOW ...ovuiiiiiii ettt ettt e et e et e e e et e e eenaaeeees 28
2.2. KEN MESSA0E SOMAE ...vuuerieirieeet ettt ettt ettt e e e et e e et e e e eea s 29
3.1. Embedded Deployment Diagram eXampPleoooieuiieiiiiieeiiie e 53
3.2. Bundled deployment diagramuueiieeuneieii et 56
3.3. Thin client deployment diagramcoouuuiiiiiii e 59
3.4. Typical enterprise deployment of Kuali RICEcoouviiiiiiiiiici e 60
T 116 1= (= PP PP 68
3.6. INQESLION COMPIELE ... ettt ettt e e 69
3.7. MESSa08 QUEUIE SCIEEINeeeniiite ettt ettt ettt e et et ettt e e e et et et et e e e e eena e 69
3.8. Route Queue ENtry Edit SCIreanoiiiiiiiecee e 71
3.9. BlanketApproveSequential Test WOrKFIOWoouuiiiiiiiiiiiii e 80
3.10. BlanketApproveParallel Test WOrkflOWc..uuiiiiiiiiiiii e 84
3.11. NotificationTest WOrKFIOWccoouuniiiiiiie e 87
3.12. Blanket Approve Mandatory TEStc.cuuuueieriiieiiiie ettt e e e e 90
3.13. SaVe ACHION EVENE TESE ...ueuiiieiii ettt ettt e e e e e e e enaes 92
3.14. Save Action Even Test: NON-TNItIEIONuuuieiiiiieiiii e 94
3.15. Take WOrkgroup AULNOTITYcooeuuiiiiii e 96
3.16. MOVE SEQUENTIAL TESE ..vuneieeti ettt ettt ettt e et e e 98
3.17. MOVE [N PrOCESS TESE ... ceeiiiiiiie ittt ittt ettt e et e e e e e eaeeees 101
3.18. AANOC ROULE TESE ...ttt ettt ettt ettt e e et e e e e e e aa s 103
3.19. PreAPPrOVEl TESE ...eiii ittt ettt 104
320, VaATBDIES TOSE ...ttt ettt et e e e e 108
3.21. Super User ACtION ON REQUESESccuuuiiiiiiiieeeiit ettt et e et e e e e 113
3.22. Parallel and Sequential ACtiValion TYPESccuuuiiiiiiii ettt 121
3.23. Parallel-Priority ACHVAiON TYPE ...coevuieiiiii ettt 121
3.24. EDL Controll@r Chainiiiiiiieeiii ettt e e 129
3.25. Custom Search Screen:Offer Request EXaMPIEoviiiiiiiiiiiiieceei e 139
3.26. Custom Document Search: Department EXamMpPlecoooviiiiiiiiiiiiiiecce e 142
3.27. Document Search Screen: Application Document Status EXamplecooveveviiiiiiieennnens 143
3.28. Standard DOC Search RESUITS SELovvuieiiiiiii e e 148
ST T o ST P PP TSU PP UPPPPT 202
6. 1. INPUL Feld - GIrOUPEAcoetiiiiiiiii ettt et 251
6.2. KRAD CONCEPLUBI VIBIWuiiiiiiieeeeit et ettt ettt e e e et e eeeab e e 252
6.3. KRAD RE@ONAI VIBW ...ttt 253
7.1. Term LooKUP SCreen EXampPIEuuiiieii ettt e 279
7.2. Term SpecCification SCreen EXAMPIE iiieii e eeaans 280
8.1. Overview of Supported Service PrOtOCOISuuiiiiiiiieiiiii et 281
8.2. GlODbaEl RESOUICE LOBOENciieieiieeeiit ettt ettt e e e e eenes 303

List of Tables

1.1. Global Configuration PalraMELENScccuutn ittt ettt e et e e e et e eeneaeeees 4
2.1 KEN COre Par@iMeLErSccuueiiiiiiiieeee ettt et e e e e e e e eaaeees 29
2.2, KREN _CHNL T ottt ettt e et e e et e et e e et et e e e e era s 30
2.3, KREN_PRODGCR T ...tiittiiettitii ettt ettt ettt ettt et e e et e e e e e e ene s 31
2.4. Common Notification AIDULEScoouuiiiiii e 34
2.5, KREN _PRIO T ittt ettt ettt e et e e e e e enaans 37
3.1. Advantages/Disadvantages of KEW Integration OptioNScccvuuieeiiiiiieeiiiiineeeeiieeeeeiiee 52
3.2. Required Thin Client Configuration Propertiescc.uuuiiiiiiiiiiiiieeeei e 57
3.3. Optional Thin Client Configuration PrOpertieSc.uuiieiiiiiieiiie e 57
34, KEW COre Para8mMELENSuuiiiiiiiiieii ettt ettt e e e e e eees 60
3.5. KEW Configuration PrOpEITIESuueiieiiieeeeie ettt e e 61
3.6. Optiona Properties to Configure Simple SMTP Authenticationccooveiiiiiiiiiiiineiineeannn. 64
3.7. Configuration Parameters for Email REMINGErSooiiiiiiiiiiiiie e 64
3.8. KEW SyStEmM PalaMEtersSc.uuiiiiiiiiiieiiieete ettt ettt e e e e e e eees 71
3.9. Common Fields in Document Type XML Definitioncooceeuiiiiiiiiiiiiiii e 76
3.10. INitiatOrROIEATIITDULEvei ettt ettt e e et e e e ene e eees 124
3.11. RoutedBYUSEIROIEATIIDULE et 124
312, NOOPNOGE ...ttt ettt ettt e ettt e e ettt e e et et e e e enbneeeenba e aeenes 124
3.13. ReqQUESLACEIVALTIONNOGE ...ttt e e 125
3.14. NetWOrkldROIEALIIDULE ... oo 125
3.15. UniversityldROIEATLITDULEieiiei e e 125
3168, SEVAINOUE ... ettt ettt 125
3.17. Key Reference Table: Default field names and reference Keysovvvvviiiieiiiiiiieiiiiineeees 150
3.18. CommONIy OVEITIAAEN SEIVICESuuiiieiiiiee ittt 167
4.1. KIM Configuration ParaMeterSocieeueueieiiiiee et e ettt e e e e ennens 173
5.1. KNS Configuration ParameELerscouuuuiiiiiieiiii ettt e e 186
5.2. Comparison of Maintenance and Transactional DOCUMENEScccuvviuiiiinneeiiieiiieeeieeeen, 205
5.3 KNS BVENES ...ttt e et e e e 219
5.4. KNS Helper Functions for Permission CheCKSoviiiiiiiiiiiiiiiiccci e 230
5.5. Document Presentation Controller Methodsc...iviiiiiiiieiii e 232
5.6. Document AUthOrizer MEtNOOScouuuiiiiiiie e 233
6.1. Available KRAD TeMPIELESuuuieiiiiiieeeii ettt e et eeeab e e eees 265
7.1. Non-common data elements in the proposition tableccooiiiiiiii e, 270
7.2. Non-common data elements in the proposition parameter tableccoovvveiiiiiiiiiiineceennnn. 272
8.1. KSB Configuration ParamMeELErSccuuuiiiiiiiieeeii ettt e e e e e eeeni e eens 287
8.2. Properties of the ServiCeDEfINITIONoeueiiiiii e 294
8.3. ServiceDEfiNItioN ProPertiesccuuuiiiii e 301
8.4. SOAPSENVICEDEFINITIONeieiii ettt ettt ettt e e e e e eae s 302
8.5. JaVaSEIVICEDEFINITION ... iiieiie ettt e 302
8.6. COrE PalaMELEN'Sccveiiieieiii ettt et ettt et e e et e e e e e e e ean e 310

Xi

List of Examples

2.1. Example — This is an example of how to add a Priority into thetable:c.ccoooeiiiiiiinnnnnn. 37

Xii

Chapter 1. Global

Rice Client Overview

Y ou can integrate your application with Rice using several methods, each described below.

Embedded

This method includes embedding some or al of the Rice services into your application. When using this
method, a standalone Rice server for the Rice web application is still required to host the GUI screens and
some of the core services.

To embed the various Rice modules in your application, you configure them in the RiceConfigurer using
Spring. For more details on how to configure the RiceConfigurer for the different modules, please read
the Configuration Section in the Technical Resource Guide for the module you want to embed.

Figure 1.1. Diagram of a sample embedded implementation

& -
Cherd | L | | Fica
sy Applecation wnl:
' [t TR,
g % i
B E Rice E =
E. "'l Em 'I':.:.l--.' T g ;
gE §a
i I ==
Application
\ Data_
Advantages

* Integration of database transactions between client application and embedded Rice (via JTA)
» Performance: Embedded servicestalk directly to the Rice database

» No need for application plug-ins on the server

Global

» Great for Enterprise deployment: It's still a single Rice web application, but scalability is increased
because there are multiple instances of embedded services.

Disadvantages
» Can only be used by Java clients
» Morelibrary dependencies than the Thin Client method

» Requires client access to the Rice database

Bundled

This method includes the entire Rice web application and all services into your application. This method
does not require a standalone Rice server.

Each of the Rice modules provides a set of JSPs and tag libraries that you include in your application.

These are then embedded and hooked up as Struts Modules. For more details on how the web portion of
each module is configured, please read the Configuration Guide for each of the modules.

Figure 1.2. Diagram of a sample bundled implementation

|
B o

Client Rics | Clignit

ek wab hgplicaiion

P AR | Application
‘=- : _And_~
g g Rice Data
E ‘.f R
Iy SERiCEs
ol
ECE L |
i

Advantages

« All the advantages of Embedded Method
» No need to deploy a standalone Rice server
* |ded for development or quick-start applications

» May ease development and distribution

Global

 Can switch to Embedded Method for deployment in an Enterprise environment

Disadvantages

* Not desirable for Enterprise deployment when more than one application isintegrated with Rice

* More library dependencies than the Thin Client method and the Embedded Method (since it requires

additional web libraries).

Thin Java Client

This method utilizes some pre-built classes to provide an interface between your application and web

services on a standalone Rice server.

Many of the Rice services are exposed by the KSB as Java service endpoints. This means they use Java
Serialization over HTTP to communicate. If desired, they can also be secured to provide access to only

those callers with authorized digital signatures.

Figure 1.3. Diagram of a sample Thin Java Client implementation

Java Wk

Thin = Serdcey o

Colannt Endocint =
o

[

BT k)

Eanclid ceng

Rica 5

Vb Appbcalion

Application
Data

Advantages
» Relatively simple and lightweight configuration

» Fewer library dependencies

Disadvantages

» No transactional integration between client and server

Global

 Plug-ins must be deployed to the server if custom Rice components are needed

Web Services

This means directly using web services to access a standal one Rice server. This method utilizes the same
services as the Thin Java Client, but does not take advantage of pre-built binding code to access those

services.

Advantages

» Any language that supports SOAP web services can be used

Disadvantages

» No transactional integration between client and server

* Plug-ins must be deployed to the server if custom Rice components are needed

» Web Services can be slower than other integration options

Global Configuration Parameters

Table 1.1. Global Configuration Parameters

Configuration Parameter Description Sample value
app.code Together with environment, forms the app.context.name which then | kr

forms the application URL.
application.id Theunique ID for the application. A value should be chosen which will

be unique within the scope of Kuali Rice deployment and integration.

There is no default for this value but it must be defined in order for

portions of Kuali Rice to function properly.
application.host The name of the application server the application is being run on. localhost
application.http.scheme The protocol the application runs over. http

cas.url

The base URL for CAS services and pages.

https://test.kuali.org/cas-stg

config.obj file

The central OJB configuration file.

config.spring.file

Used to specify the base Spring configuration file. The default value is
"classpath:org/kuali/rice/kew/config/K EW SpringBeans.xml"

credential sSourceFactory

The name of the
org.kuali.rice.core.security.credentials.Credential sSourceFactory bean
to use for credentials to calls on the service bus.

datasource.accessToUnderlying
ConnectionAllowed

Allows the data source's pool guard access to the underlying data
connection. See: http://commons.apache.org/dbcp/apidocs/org/apache/
commong/dbcp/BasicDataSource.html
#isAccessToUnderlyingConnectionAllowed()

true

datasource.initial Size The initial number of database connections in the data source pool. | 7
See: http://commons.apache.org/dbcp/api docs/org/apache/commons/
dbcp/ BasicDataSource. html#initial Size

datasource.minldle The number of connections in the pool which can be idle without | 7
new connections being created. See: http://commons.apache.org/dbcp/
apidocs/org/apache/commons/dbcp/ BasicDataSource.html#minidlie

datasource.ojb.sequenceManager. The class used to manage database sequences in databases

className which do not support that feature. Default value is
"org.apache.ojb.broker.platforms.K ualiMySQL SequenceM anager mpl"|
datasource.pool.maxActive The maximum number of connections alowed in the data|50

source pool. See: http://commons.apache.org/dbcp/apidocs/org/apache/
commong/dbcp/ BasicDataSource.html#maxActive

Global

Configuration Parameter Description Sample vaue
environment The name of the environment. This will be used to determine if | dev

the environment the application is working within is a production

environment or not. It is also used generally to express the "name" of

the environment, for instance in the URL.
http.port The port that the application server uses; it will be appended to all URLs| 8080

within the application.

log4j.settings.props

The log4j properties of the application, set up in property form.

log4j.settings.xml

Thelog4j properties of the application, set up in XML form.

rice.additional SpringFiles

A commadelimited list of extra Spring filestoload when theapplication
starts.

additional .config.locations

A comma delimited list of additional configuration file locations to
load after the main configuration files have been loaded. Note that this
parameter only applies to the Rice standalone server.

rice.custom.ojb.properties

The file where OJB properties for the Rice application can be found.
The default is "org/kuali/rice/core/ojb/RiceOJIB.properties’

org/kuali/rice/core/ojb/RiceOJB.properties

rice.cache.disableAllCaches

Flag to disable all Spring caching in Rice

false

rice.cache.disabledCaches

Flag to disable specific Spring cachesin Rice by name. The cachenames
should be comma separated.

http://rice.kuali.org/kim/v2_0/PermissionType, http://
rice.kuali.org/kim/v2_0/TemplateType{ Permission}

ricelogging.configure

Determines whether the logging lifecycle should be loaded.

false

rice.url

The main URL to the Rice application.

${ application.url} /kr

security.directory The location where security properties exist, such as the user name and | /usr/local/rice/
password to the database.

transaction.timeout The length of time a transaction has to complete; if it goes over this| 300000
value, the transaction will be rolled back.

version The version of the Rice application. 03/19/2007 01:59 PM

Rice Service Architecture and Configuration

Overview

This document describes how the Rice Service Architecture operates.

Overview

The Rice System consists of astack of Resourceloader objectsthat contain configuration information and
expose service implementations (potentially from remote sources). Each module supplies its own Spring
context containing it's services. These Spring contexts are then wrapped by a Resourcel oader which is
used to locate and load those services.

Implementation Details

Rice is composed of a set of modules that provide distinct functionality and expose various services.
Each module loads it’ s own Spring context which contains numerous services. These Spring contexts are
wrapped by a Resourcel oader class that provides access to those services. A Resourcel oader is similar
to Spring's BeanFactory interface, since you acquire instances of services by name. Rice adds several
additional concepts, including qualification of service names by namespaces. When the RiceConfigurer
isinstantiated, it constructs a Global Resourcel oader which contains an ordered chain of Resourcel oader
instances to load services from:

Global

Figure 1.4. Resour ce L oader Stack

ClobalRessurceloader

Roal Resoarceloader
- 1

Spring ReEsourcelosder

Mol L Cantgxt

M odule M Tonng Centext

All application code should use the Global Resourcel. oader to obtain serviceinstances. The getService(...)
method iterates through each registered Resourcel oader to locate a service registered with the specified
name. In it’s default configuration, the Global Resourcel. oader contacts the following resource loaders in
the specified order:

1. Spring Resourcel oader —wraps the spring contexts for the various Rice modules
2. Plugin Registry — allows for services and classes from to be loaded from packaged plugins

3. Remote Resourcel oader — integrates with the KSB ServiceRegistry to locate and load remotely
deployed services

As shown above, the last Resourcel oader on the list is the one registered by KSB to expose services
available on the service bus. It's important that this resource loader is consulted last because it gives
priority to using locally deployed services over remote services (if the serviceis available both locally and
remotely). Thisis meant to help maximize performance.

Thin Client Implementation

<confi g>

To implement athin client version of Rice, modify the configuration files as per the following

config.xml:

<par am name="envi ronment" overri de="fal se">dev</ par an>
<par am name="appl i cation.id">rice-renote-test-client</paran>
<par am name="nessage. per si st ence" >f al se</ par an»
<par am name="ki m node" >THI N</ par an»>
<par am name="kew. mode" >THI N</ par an»>
<par am name="ksb. nmode" >THI N</ par an»>
<par am name="st andal one. appl i cati on. i d" >TRAVEL</ par an>
<par am nane="config. | ocation">/root/kuali/main/${environnent}/rice-renpte-test-client-config.xn </paran>
<par am name="confi g.| ocati on">cl asspat h: META- | NF/ common- conf i g- def aul t s. xni </ par an»>

</ config>

SpringBeans.xml;

Global

<beans xm ns="http://ww. spri ngframewor k. or g/ schema/ beans"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xm ns: p="http://ww. spri ngframework. or g/ scherma/ p"
xsi : schemaLocat i on="http://ww. spri ngfranmewor k. or g/ schena/ beans
http://ww. springfranmewor k. or g/ schema/ beans/ spri ng- beans- 3. 1. xsd" >

<bean i d="jtaTransacti onManager" cl ass="org. spri ngframework.transaction.jta.JotnFactoryBean">
<property name="defaul t Ti meout" val ue="3600"/>
</ bean>

<bean i d="bootstrapConfi g" class="org.kuali.rice.core.inpl.config.property.ConfigFactoryBean"
p:initialize="true">
<property name="configLocations">
<list>
<val ue>cl asspat h: confi g. xm </ val ue>
</list>
</ property>
</ bean>

<bean i d="coreConfigurer" class="org.kuali.rice.core.inpl.config.nodul e.CoreConfigurer" depends-
on="boot st rapConfi g"
p: transacti onManager -ref ="j t aTransact i onManager"
p: user Transacti on-ref ="jtaTransacti onManager"/ >
<bean i d="ksbConfigurer" class="org.kuali.rice.ksbh.messagi ng.confi g. KSBConfi gurer"/>
<bean i d="ki mConfigurer" class="org.kuali.rice.kimconfig.KIMonfigurer"/>

<bean i d="kewConfigurer" class="org.kuali.rice.kew config. KEWConfigurer"/>

</ beans>

Accessing Rice Services and Beans Using Spring

Rice Service as a Spring Bean

In addition to programmatically acquiring service references, you can also import Rice services into a
Spring context with the help of the Resourcel oaderServiceFactoryBean:

<I-- inport a Rice service fromthe ResourceLoader stack -->
<bean i d="aRi ceService" class="org.kuali.rice.resourcel oader. support.ResourcelLoader Servi ceFact oryBean"/ >

This class uses the Global Resourcel.oader to locate a service named the same as the ID and produces a
bean that proxies that service. The bean can thereafter be wired in Spring like any other bean.

Using Annotations

Riceincludesa Spring bean that extendsthe Spring auto-wire process (unlike the current version of Spring,
the auto-wire process in the version of Spring that's included with Rice cannot be extended). With this
bean configured into your application, you can use the @RiceService annotation to identify Rice services
to auto-wire.

Add this bean definition to the top of your Spring configuration file to configure the Spring extension:
<bean cl ass="org. kuali.rice.core.util.CRLServicelnjectionPostProcessor"/>

Add the @RiceService annotation to any field or method, following the normal Spring rules for injection
annotations. The annotation requires aname property that specifiesthe name of the serviceto inject. If the

Global

name requires a namespace other than the current context namespace, you must specify the namespace as
aprefix (for example, “{ KEW}actionListService’).

@Ri ceSer vi ce(name="wor kf | owDocunent Ser vi ce")
protected Workfl owDocunent Servi ce wor kf | owDocunent Ser vi ce;

Publishing Spring Services to the Global Resource Loader

In certain cases, it may be desirable to publish al beans in a particular Spring context to
the Resource Loader stack. Fortunately, there is an easy way to accomplish this using the
RiceSpringResourceloaderConfigurer as shown below:

<!I— Publish all services fromthis Spring context to the GRL -->
<bean cl ass="org. kuali.rice.core.resourcel oader. R ceSpri ngResour ceLoader Confi gurer"/>

<bean i d="nyServi cel" class="ny. app. package. MyServi cel"/>

<bean i d="nyServi ce2" cl ass="ny. app. package. MyServi ce2"/>

In the above example, both myServicel and myService2 would be added to a Resource L oader that would
be put at the top of the Resource Loader stack. The names of these services would be “myServicel” and
“myService2” with no namespace. To load these services you would use the following call to the Global
Resource L oader:

MyServi cel nyServicel = d obal Resour celLoader . get Servi ce(“myServicel”);

Customizing and Overriding Rice Services

Reasons for Overriding Services

The most common reason that one would want to override services in Kuali Rice is to customize the
implementation of a particular service for the purposes of institutional customization.

A good example of thisisthe Kuali Identity Management (KIM) services. KIM is bundled with reference
implementations that read identity (and other) data from the KIM database tables. In many cases an
implementer will already have an existing identity management solution that they would like to integrate
with. By overriding the service reference implementation with a custom one, it' s possible to integrate with
other institutional services (such as LDAP or other services).

Installing an Application Root Resource Loader

An alternative to using the RiceSpringResourcel oaderConfigurer to publish beans from a Spring context
to the Rice Resource Loader framework is to inject aroot Resource Loader into the RiceConfigurer.

Y ou can create an implementation of Resourcel oader that returns a custom bean instead of the Rice bean,
or you can use abuilt-in resource loader like the SpringBeanFactoryResourcel oader which wrapsa Spring
context in a Resourcel oader. Y our configuration needs to inject this bean as the RootResourcel oader of
the RiceConfigurer using the rootResourcel oader property, as shown below:

<l-- a Rice bean we want to override in our application -->
<bean i d="overri ddenRi ceBean" cl ass="my. app. package. WRi ceServi cel npl "/ >

Global

<!-- supplies services fromthis Spring context -->
<bean i d="appResour ceLoader"
class="org. kuali.rice.core.resourcel oader. Spri ngBeanFact or yResour ceLoader"/ >

<bean id="rice" class="org.kuali.rice.core.config.Ri ceConfigurer">
<property name="r oot Resour ceLoader" ref="appResourcelLoader"/>

</ bean>

Warning
Application Resource Loader and Circular Dependencies

Be careful when mixing registration of an application root resource loader and lookup of Rice
servicesviathe Global Resourcel. oader. If you are using an application resource loader to override
aRicebean, but one of your application beans requiresthat bean to beinjected during startup, you
may create acircular dependency. In this case, you have to make sure you are not unintentional ly
exposing application beans (which may not yet have been fully initialized by Spring) in the
application resource loader, or you have to arrange for the GRL lookup to occur lazily, after
Spring initialization has completed (either programmatically, or via some sort of proxy).

Replacing Rice Configuration Files

A Rice-enabled web application (including the Rice Standalone distribution) contains a RiceConfigurer
(typicaly defined in a Spring XML file) that |oads the Rice modules. Y ou can override services from the
various modules by injecting alist of additional spring filesto load asin the following example:

<bean id="rice" class="org.kuali.rice.core.config.Ri ceConfigurer">

<property nanme="additional SpringFiles" ref="appResourceLoader">

<list>

<val ue>cl asspat h: my/ app/ package/ MyCust onSpri ngFi | e. xnl </ val ue>

</list>

</ property>

</ bean>

Y ouwill need to ensure that any Spring XML filesand necessary classesthey reference arein the classpath
of your application. If you are overriding things in the Rice standlone application itself, then you would
need to place classes in the WEB-INF/classes directory of the war and any jars in the WEB-INF/lib
directory.

It's a standard behavior of Spring context loading that the last beans found in the context with a particular
id will be the versions loaded during context initialization. The additional SpringFiles property will put
any Spring files specified at the end of the list loaded by the RiceConfigurer. So any beans defined in that
file with the same id as beans in the internal Rice Spring XML files will effectively override the out-of-
the-box version of those services.

When working with the packaged Rice standalone server, you won't have access to the Spring XML
file which configures the RiceConfigurer. In this case, you can specify additional spring files using a
configuration parameter in your Rice configuration XML, asin the following example:

<param nanme="ri ce. addi ti onal Spri ngFi | es”
val ue="cl asspat h: ny/ app/ package/ MyCust onSpri ngFi | e. xm "/ >

Global

Eclipse and Rice

Warning
Recent changein Eclipse setup
Due to its unreliability, we have recently stopped relying on the Maven plugin for Eclipse to

manage the project build path. Instead, we are using the eclipse:eclipse plugin for Maven to
generate a static build path. Please note the changes in the Eclipse project setup.

Overview

This document describes how to set up an Eclipse environment for running Rice from source and/or for
developing onthe Kuali Rice project. To create your own Kuali Riceclient application, seetheinstructions
in Creating a Rice-Enabled Application.

Download the Tools

1. Install Java5 SDK - http://java.sun.com.

2. Install the Eclipse Europa Bundle for Java Developers - http://www.eclipse.org/europal

You need to allocate at least 768MB of memory for the Eclipse runtime and at least 512MB of
memory for the VM that Eclipse uses when it runs Java programs and commands.

Go to Eclipse Preferences.

On Windows: Window --> Preferences --> Java --> Installed JREs.
On Mac OS X: Eclipse --> Preferences --> Java --> Installed JREs.
Select the JRE and click Edit.

Add -Xmx768m to Default VM Arguments

3. Install Maven2 for command line usage:

Download Maven2.0.9 from http://maven.apache.org/download.html.

Install Maven2 into C:\maven on Windows or /opt/maven on Linux. This directory is called the
Maven Root directory.

Register Maven on your computer's PATH so that it can be invoked as an executable without have
to run the mvn command from the <maven_root>/bin directory all of the time.

SettheM 2_HOM E environment variable on your system to thelocation of your Maven2 installation.

4. Update .m2 repository directory (WINDOWS ONLY) By default (on Windows) maven placesthe.m2
repo directory in the user directory inside the Documents and Settings folder. The space characters
can cause issues. To avoid them we need to do the following:

a. Figure out where you want your local maven repository to be stored, i.e. C:\work\m2

b. Make sure you turn off eclipseif it has auto updating maven turned on.

10

http://maven.apache.org/guides/mini/guide-ide-eclipse.html
http://java.sun.com
http://www.eclipse.org/europa/

Global

c. Move everything from your old maven directory to your new one. Thiswill save you a considerable
amount of time. If you do not do thisthen maven will re-download all repositoriesto the new location.

d. Update your settings.xml file. This should be located in C:\Documents and Settingsiuser
\.m2\settings.xml. Add thisline to the file somewhere inside the <settings> tag:

<l ocal Reposi t or y>C: \ wor k\ n2</ | ocal Reposi tory>

Import rice into Eclipse as a project (Source distribution

only)

Note: You only need to follow these instructions if you downloaded the source distribution of Rice asa
zip file. If you are a contributing developer who will be committing code to CV'S, please skip this step
(Importing rice into Eclipse as a Project) and go to the next one instead.

1. Open Eclipse.

2. Choose File --> Import --> Existing Projects into Workspace.

11

Global

Figure 1.5. Root Directory Selection

LT Cornell Kuali website i L
‘'ene Import

Select

3 Create new projects from an archive file or directony. | g - E |

s

Select an import Source:

" type filter text)

¥ & Cencral
%, Archive File
...“'. Breakpoints
17 Existing Projects inte Works pace
L, File System
[T, Preferences
=0V E
= EB
* = JPEE
P = Plug-in Development
B = SnipEx
¥ L= Team
= = Web
B L2 Web services A
B = Orher

3. Browse for and select /javalprojects/rice (or where ever you unzipped the source distribution to) as
the root project directory and click Finish.

12

Global

Figure 1.6. Root Directory Selection Continued

'@ MNe Import

| Impaort Projects

| Select a directory bo search for existing Eclipse projects,

f®) Select root directory: /Java/projects/rice Browse...

; Select archive file:

Check out the Rice code (Non-source SVN distribution

only)

Note: You do not need to perform the stepsin this section if you have downloaded the source distribution
of Riceasazipfile.

1.

2.

3.

We recommend installing Subclipse as a plugin from your Eclipse instance (http://subclipse.tigris.org/
install.html)

Set up anew SVN repository in Eclipse: http://svn.kuali.org/reposirice

Check out the Rice code from the appropriate branch of code (i.e. branches/rice-release-1-0-0-br)

Set up database drivers

Oracle

1. If thisisthe first time you've set up Eclipse to work with Rice, Maven won't find the Oracle drivers
in the Kuali repository.

2. If you do not already have an Oracle driver saved in /java/drivers as ojdbcl4.jar, you can download
one from http://www.oracle.com/technol ogy/software/tech/java/sglj_jdbc/index.html. Saveit as/java/
drivers/ojdbcl4.jar

3. Run this command from the command line (this should al be on one line when you enter it):

UNIX
m/n install:install-file -Dgroupld=comoracle -Dartifactld=ojdbcl4

- Dversi on=10. 2. 0. 3. 0 - Dpackagi ng=j ar -Dfile=/javal/drivers/ojdbcl4.jar

Windows

nvn install:install-file -Dgroupld=comoracle -Dartifactl|d=ojdbcl4
- Dversion=10. 2. 0. 3. 0 - Dpackagi ng=jar -Dfile=c:/javal/drivers/ojdbcl4.jar

13

http://subclipse.tigris.org/install.html
http://subclipse.tigris.org/install.html
http://svn.kuali.org/repos/rice
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html

Global

Or, run the equivalent Ant target:

ant install-oracle-jar

Other databases

Thedriver for MySQL is already referenced by the Kuali Rice project. Rice does not have out-of-the-box
support for other RDBMS at this point in time. However, if you want to use other databases, it is possible
to add database support for that particular database as long as it’s supported by the Apache OJB project

(http://db.apache.org/ojb).

Set up Eclipse for Maven

If this is the first time you are using Eclipse with a project build path generated by the eclipse:eclipse
Maven plugin, you need to define the M2_REPO Classpath Variable in your Eclipse: Java > Build Path
> Classpath Variable, under the Preferences menu.

Figure 1.7. Eclipse Classpath Variables

& Frefemences

type Fiter bed

Genersl

mnt

CiC+=

Eclipdaikeell

Hilp

InstallUpdans

Inbernet

Java
Openiearanoe
Buikd Peth

Classpath Yanables
Liser Libraries
Code Coversge
Cesde Shyle
Compiles
Debug
£ b
Irralled JIRES
JUniit
Foperies Files Edebor
Fleven
Fstyn

Fll_?- r Developmerst

Pydes
RanDebug
Seraer
Team
Vahdatsain

ek and XML

e
Classpath Variables - =

A clagapath vishabls can ba sdded 1 & progect’'s clagi path, B ¢an ba wied to delwi the lociton of &
IAR file that we't part of the warkipace. Mon madilable claddpath vasiables see g8 intercally Mor
example. IRE_LIE, FRE_SRC, and BE_SRCROOT depend an the JEE setting),

Defined classpath verables

k= BLLIPESE HOME [Peon il ible) - et soltwaie schpas Hew..
) FINDBUGS_ANMOTATIONS - Cdetescfbwere eclipse’ plugins eduwuwmd. o f ;

il FRE_LIE {nem modifable, depracitad) « O data s oltwang jdkl 5 ee' b e gar Edn..
ail JRE_SRC {non modifable, depreceted) - '\ data' software!jdkl Sercaop FEmove

2 JRE_SROROOT [nen meddukle, deprecatied] = [emply)
2 JURIT_HOME (non modifiable, deprecated) - C\data'softeareechipseplagi
_("..'.lh:' SHC_HOME [fan maddubls, dipiecated) - 220 p ety sgnanes 22

k -}-'L"_FEPC - Civdate’ develiopmentimasen- repositony maven-2

OK | Cancil

The Rice project contains auto-generated build path entries that rely on the presence of this M2_REPO
variable to determine the location of dependency libraries.

14

http://db.apache.org/ojb

Global

Rebuild Rice

1. If dependency libraries have been added or removed from the Rice project, including the first time you
check out Rice, you should run the retrieve-maven-dependencies Ant target to pull down all necessary
libraries.

Note: For the Maven2 Ant tasks to work, Ant has to know where your Maven2 homeis. If you have
set the M2_HOME variable in your system environment, it will be recognized automatically. If not,
or if for some reason you want to use a different location (e.g., if you want to have multiple Maven
installations), then you can set the maven.home.dir ectory property in /root/kuali-build.properties.

2. Add the build.xml file in the root of the Rice project to your Ant view, or open a shell to the Rice
project directory and run the retrieve-maven-dependenciestarget. Y ou should see Maven retrieving any
required dependencies. If you are running this Ant task in Eclipse, then you must recognize the PATH
environment variable under Run > External Tools > Open External Tools Dialog > Environment.

3. Optiondly, if you have trouble running this Ant target, you can just run an mvn compile from the
command line to invoke a Maven compilation. This will download all dependencies into your local
maven repository.

4. Execute a clean build of the project in Eclipse:

Figure 1.8. Eclipse Clean Build

rch Run Window Help

Sl
|

Build Working Set g

v Build Automatically
= CGenerate Javadoc...
5. If your build was previously broken due to the M2_REPO classpath variable being undefined or due
to missing libraries, it should now have been built successfully.

Global

Install the database

To set up the database, please follow the instructions in the Installation Guide under Preparing the
Database.

Installing the appropriate configuration files

Note: Be sure to use an appropriate editor such as vi or Notepad when editing configuration files. For
example, we have found that WordPad can corrupt the configuration file.

To install the configuration file for the Kuali Rice sample application, you can do an Ant-based setup or
amanual setup.

Ant-based setup
1. Executetheprepare-dev-environment Ant target inthebuild.xml filelocated in theroot of the project.

2. This creates. <user home>/kuali/main/dev/sample-app-config.xml

Manual setup

1. Copy the config/templates/sample-app-config.templatexml file to <user home>/kuali/main/dev/
sample-app-config.xml.

» For Windows, your user homeis: C:\Documents and Settings\<user name>
» For Unix/Linux, your user homeis: /home/<user name>
» For Mac OS X, your user homeis. /User §<user name>
2. Add the appropriate database parameters to <user home>/kuali/main/dev/sample-app-config.xml

* Oracle

<par am name="dat asour ce. url ">j dbc: oracl e: t hi n: @ ocal host : 1521: XE</ par an>
<par am nanme="dat asour ce. user name" >or acl e. user nane</ par an>
<par am nanme="dat asour ce. passwor d" >or acl e. passwor d</ par an>

* MySQL

<par am nane="dat asour ce. url ">j dbc: nysql : / /| ocal host: 3306/ kul ri ce</ par an»
<par am nane="dat asour ce. user name" >nysql . user nane</ par an»
<par am nane="dat asour ce. passwor d" >nysql . passwor d</ par an>

Run the sample web application

» Back in Eclipse, locate and run the rice - JettyServer.launch file:

16

Global

Figure 1.9. Eclipse Jetty Launch

¥ o scriges
¥ Lok groowy- L0
¥ L= laumeh
:r!l-hﬂ"!lr P baaa WA s AT B N E Pl s g ommlonom
Mew L

y FRCE = T i

y PR - mYn R

| Open Fi
::“ ™M Open With [
) e MRS Chow In TEW e

F | maven-am-raiks
F Lk upgrades CUD‘\I’ e
| CREATEROOjEcTgrn F 1

dhallgroovy 310 o, 1]
' Paste Y

| OBdrapE Grodvy |
| dbmerge groovy M Delete)
| PeCraE0 =7 Evir 50
| setenv.bat 1912 "‘._ Problems | & Mvador | &, Daclaravon
| seramesh 1912 § L 5 J -
| wmilalgroovy 310 Build Path *
B S security Refactor T L2
¥ % shared
B 5 standalane £ Import...
F L target e Export...
B wstharndis
F % ool = Refresh F5
¥ buad xent 3054 120y Assign Working Sets...
-] LBCEMSE bt Db 172 Validate

¥y pomxenl 3375 27154 .
T READMExt 1912 oy S U L 1 1 rice - JettyServer

= Debug As "
iy rice-0.9.3 [branches fricey n--:l? & [S5 Run A Sernsr GTY m

« Point your browser to the following url: http://localhost:8080/kr-dev

Changing Rice project dependencies

If you change any of the dependenciesin any of the Rice pom.xml files, you must run the update-eclipse-
classpath Ant target to regenerate the top-level Eclipse .classpath file for the project.

17

http://localhost:8080/kr-dev

Global

Figure 1.10. Update Eclipse Classpath

& i o i
Fa: E - Fromedl kre Heda
| - DR [e o
W & WO H
e K el o ik

: MR = o -

) Bl

L

B -

. s

-

» i

CIRT

gl odh

a

At petied
F

If you change the dependencies and commit the change, when others update their local source copy they

must run the corresponding retrieve-maven-dependencies target again.

Note

Refresh your Eclipse project if dependencies (and therefore the Eclipse.classpath file) have

changed.

Other Notes

Settings.xml warning

If thisisthe first time that you have installed the Maven plugin into your Eclipse environment, you may

need to add afile called settings.xml in your <user home>/.m2 directory.

The easiest way to tell if you need to do thisis that there will be awarning in the console after building,
stating that the settings.xml fileismissing. All you need to dois create a settings.xml file with this content:

Rebuild, and the warning should no longer appear.
Note

You do NOT ever need to run any of the context menu Maven commands from inside Eclipse.

You do NOT need to run any Maven commands from the command line.

The Eclipse Maven2 plugin is a little bit flaky sometimes. Y ou might need to close Eclipse to

flush its memory.

Default workspace JDK not 1.5

If your default workspace JDK is not 1.5, you need to reconfigure the Maven external tools definitions

for Rice thisway:

18

Global

1. Open Run->External Tools->External Tools Dialog... menu item.
2. Find the m2 build category.

3. Select each preconfigured Rice external tool configuration, select the JRE tab, and ensure the JRE is
setto 1.5.

Using a custom maven repository location

The default Maven2 repository location is in your user directory; however, if you have a pre-existing
repository (or for some other reason don't want it in your user directory), you can alter Maven2'srepository
location. The current version of the Maven2 plugin has a bug that does not allow this to work (see http://
jira.codehaus.org/browse/MNGECL IPSE-314), but the 0.0.11 development version available from the
update site http://m2eclipse.codehaus.org/update-dev/ allows you to specify a custom local repository.

Note
If you make this change, you may have to delete and re-add the Maven Managed Dependencies

library to your project build path if you have an existing, invalid, Maven-managed dependencies
library.

Setting JDK Compliance version
If your default workspace JDK is not 1.5, then you also need to set the JDK compliance level to the
appropriate version for the project. You can find this by right-clicking on the Project -> Properties ->

Java Compiler -> Compiler compliance level. Be sure the Enable project specific settings checkbox is
checked.

Turn off validation
Be sureto turn off validation at the project level by right-clicking on the Project, then clicking Properties

-> Validation -> Suspend all Validators. This can be adjusted once a successful Rice project is up and
running.

ORA-12519, TNS:no appropriate service handler found

If you start seeing java.sql.SQL Exception: Listener refused the connection with the following error:
ORA-12519, TNS:no appropriate service handler found, there are a couple of things that may remedy
the problem.

1. Increase the Oracle X E connection limit:

alter system set processes=150 scope=spfile;
alter system set sessions=150 scope=spfile;

2. Lower the pool sizein your rice config.xml:

<par am nane="dat asour ce. pool . maxSi ze" >10</ par an»

Disconnect any other clients and then restart Oracle-XE.

19

http://jira.codehaus.org/browse/MNGECLIPSE-314
http://jira.codehaus.org/browse/MNGECLIPSE-314
http://m2eclipse.codehaus.org/update-dev/

Global

Creating Rice Enabled Applications

Creating a Rice Client Application Project Skeleton

In order to install a Rice client as a standalone server, please see the installation guide instructions for
Standalone Server Setup section in the Installation Guide.

Reorder Eclipse Classpath

Onceyou have completed theinstallation, you will need to import your project into eclipse and reorder the
eclipse classpath to account for a change in how the classpath was generated by maven. Navigate to your
project properties and select the Order and Export tab from the Java Build Path project property. There
will be an entry for JRE System Library at the bottom of the list that should be moved to the very top.

Rice Configuration System

The Rice Configuration System is an XML-based solution which provides capabilities similar to Java
property files, but also adds some additional features. The configuration system lets you:

 Configure keys and values

» Aggregate multiple files using asingle master file

* Build parameter values from other parameter values
» Use the parametersin Spring

» Override configuration values

Configuring Keys and Values

Below is an example of aconfiguration XML file. Note that the white space (spaces, tabs, and new lines)
is stripped from the beginning and end of the values.

<confi g>

<param name="cl i ent 1. | ocati on">/var/|ib/]jenki ns/workspace/rice-2.1.7-site-deploy/src/test/clients/
Test d i ent 1</ par an>

<param name="cl i ent 2. | ocati on">/var/|ib/] enki ns/workspace/rice-2.1.7-site-deploy/src/test/clients/
Test d i ent 2</ par an>

<par am name="ksb. cl i ent 1. port " >9913</ par an>

<par am name="ksb. cl i ent 2. port " >9914</ par an>

<par am name="ksb. t est har ness. port">9915</ par an>

<par am name="t hr eadPool . si ze" >1</ par an>

<par am name="t hr eadPool . f et chFr equency" >3000</ par an>

<par am name="bus. ref resh. r at e" >3000</ par an»

<par am nanme="keystore. al i as">ri ce</ par an»>

<par am name="keyst or e. passwor d" >super - secr et - pw</ par an»>

<par am name="keystore.file">/var/lib/jenkins/workspace/rice-2.1.7-site-depl oy/src/test/resources/keystore</
par an»
</ config>

Here is an example of the Java code required to parse the configuration XML file and convert it into a
Properties object:

Config config = new Sinpl eConfi g(configLocati ons, properties);

20

http://site.kuali.org/rice/2.1.7/reference/html/IG.html#standalone_server
http://site.kuali.org/rice/2.1.7/reference/html/IG.html#standalone_server

Global

config. parseConfig();

In the sample above, configlocations is a List<String> containing file locations using the standard
Spring naming formats (examples: file:/whatever and classpath:/whatever). The variable propertiesisa
Properties object containing the default property values.

Here is an example of retrieving a property value from Java code:

String val = ConfigContext.getCurrent ContextConfig().getProperty(“keystore.alias”);

Aggregating Multiple Files

The Rice Configuration System has a specia parameter, config.location, which you use to incorporate
the contents of another file. Typically, you use this to include parameters that are maintained by system
administratorsin securelocations. The parametersin the included file are parsed asif they had been in the
original file at that place. Here is an example:

<confi g>
<par am name="confi g.l ocation">file:/my_secure_dir/nmy_secure_file.xmn </ paran>
</ config>

Building Parameter Values from Other Parameters

Once you have defined a parameter, you can use it in the definition of another parameter. For example:

<confi g>

<par am name="appl e">red del i ci ous</ paran>

<par am name="t ast e" >yummy yummy</ par an>

<par am name="appl e. t ast e" >${ appl e} ${tast e} </ paranm>
</ config>

When this example is parsed, the value of the parameter apple.taste will be set to red delicious yummy
yummy.

Using the Parameters in Spring

Because the parameters are converted into a Properties object, you can retrieve the complete list of
parameters using this code:

config. getProperties()

You typically use this in Spring to parse a configuration and put its properties in a
PropertyPlaceHolderConfigurer so that the parameters are available in the Spring configuration file:

<bean id="config" class="org. kuali.rice.core.config.spring.ConfigFactoryBean">
<property name="configLocations">
<list>
<val ue>cl asspat h: ny-confi g. xm </ val ue>
</list>
</ property>
</ bean>

<bean i d="configProperties"
cl ass="org. spri ngframewor k. beans. f act ory. confi g. Met hodl nvoki ngFact or yBean" >
<property name="target Cbj ect" ref="config" />

21

Global

<property name="t ar get Met hod" val ue="get Properties" />
</ bean>

<bean cl ass="org. spri ngfranewor k. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property name="properties" ref="configProperties" />
</ bean>

Once this is complete, the configuration parameters can be used like standard Spring tokens in the bean
configurations:

<bean i d="dat aSource" cl ass="org. kuali.rice.core. database. XAPool Dat aSour ce" >
<property name="transacti onManager" ref="jotnl />
<property name="driverCl assNane" val ue="${dat asource.driver.nane}" />
<property name="url" val ue="${datasource.url}" />
<property name="nmaxSi ze" val ue="${dat asource. pool . maxSi ze}" />
<property name="m nSi ze" val ue="${dat asource. pool . m nSi ze}" />
<property name="nmaxWit" val ue="${datasource. pool . max\Wait}" />
<property name="val i dati onQuery" val ue="${dat asource. pool . val i dati onQuery}" />
<property name="usernane" val ue="${dat asource. usernane}" />
<property name="password" val ue="${dat asource. password}" />

</ bean>

Initializing the Configuration Context in Rice

The Config object can beinjected into the RiceConfigurer that’s configured in Spring and it will initialize
the configuration context with those configuration parameters.

Thisisdone as follows:

<bean id="config" class="org.kuali.rice.core.config.spring.Confi gFactoryBean">
</ bean>
<bean id="rice" class="org.kuali.rice.core.config.R ceConfigurer">

<property name="root Confi g” ref="config"/>
</ bean>

Overriding Configuration Values

The primary purpose of overriding configuration values is to provide a set of default values in a base
configuration file and then provide a separate file that overrides the values that need to be changed. Y ou
can also update a parameter value multiple times in the same file. Parameter values can be changed any
number of times; the last value encountered while parsing the file will be the value that is retained.

For example, when parsing the file:

<confi g>
<par am nanme="t ast e" >yummy yummy</ par an>
<par am name="t ast e" >good st uf f </ par am>
</ config>

Thefinal value of the parameter taste will be good stuff since that was the last value listed in the file.

As another example, when parsing the file:

<confi g>
<par am nane="t ast e" >yunmy yunmy</ par an>
<par am nane="appl e. t ast e" >appl e ${taste} </ paran>
<par am nane="t ast e" >good st uf f </ par an>

22

Global

</ config>

The final value of the parameter apple.taste will be apple yummy yummy. This demonstrates that
parameters that appear in the value are replaced by the current value of the parameter at that point in the
configuration file.

Additionally, you can define certain parameters in such that they won't override an existing parameter
valueif it'salready set.

As an example of this, consider the following configuration file:

<config>
<param nane="taste" override="fal se”>even yunmi er </ par an>
<par am nanme="br and. new. paranf overri de="fal se”>brand new val ue</ par an>

</ config>

If this file was loaded into a configuration context that had already parsed our previous example, then
it would notice that the taste parameter has aready been set. Since override is set to false, it would
not override that value with even yummier. However, since brand.new.param had not been defined
previoudly, it's value would be set.

Data Source and JTA Configuration

The Kuali Rice software require a Java Transaction APl (JTA) environment in which to execute database
transactions. Thisallowsfor creation and coordination of transactionsthat span multiple datasources. This
feature is something that would typically be found in a J2EE application container. However, Kuali Rice
is designed in such away that it should not require a full J2EE container. Therefore, when not running
the client or web application inside of an application server that provides a JTA implementation, you
must provide one. The default JTA environment that Kuali Rice uses is JOTM. There are other open-
source optionsavailable, such as Atomikos TransactionsEssential s, and there are al so commercial and open
source JTA implementationsthat come as part of an application server (i.e. JBoss, WebSphere, GlassFish).
Alternatively, Kuali Rice can be configured to use Bitronix.

If installing Rice using the standalone server option and afull Java application server is not being utilized,
then the libraries required for JTA will need to be moved to the serviet server which is being used.
These libraries have aready been retrieved by Maven during project set up; it is a simple matter of
moving them from the Maven repository to the libraries directory of the servlet server. Assuming, for
instance, that Tomcat is being used, the following files need to be copied from the Maven repository to
$TOMCAT_HOME/common/lib:

» {Maven repository home}/repository/javax/transaction/jta/1.0.1B/jta-1.0.1B jar

» {Maven repository home}/repositor y/jotm/jotm/2.0.10/jotm-2.0.10.jar

» {Maven repository home}/repository/jotm/jotm_jrmp_stubs/2.0.10/jotm_jrmp_stubs-1.0.10.jar
» {Maven repository home}/repository/xapool/xapool/1.5.0-patch3/xapool-1.5.0-patch3.jar

» {Maven repository home}/repository/howl/howl-logger/0.1.11/howl-logger-0.1.11.jar

» {Maven repository home}/repository/javax/r esour ce/connector -api/1.5/connector -api-1.5.jar

» {Maven repository home}/r epositor y/javax/r esour ce/connector/1.0/connector-1.0.jar

» {Maven repository home}/r epositor y/or g/obj ectweb/car ol/car ol/2.0.5/car ol-2.0.5.j ar

23

http://jotm.ow2.org/
http://www.atomikos.com/Main/TransactionsEssentials
http://docs.codehaus.org/display/BTM/Home

Global

Additionally, the{Rice pr oj ect home}config/jotm/car ol.pr oper ties configuration file needs to be moved
to STOMCAT_HOME/common/classes, this time from the built Rice project.

Configuring JOTM

Configurethe JOTM transaction manager and user transaction objectsas Spring beansin your application’s
Spring configuration file. Here is an example:

<bean i d="transacti onManager XAPool " cl ass="or g. spri ngframewor k. transacti on.jta. Jot nFact or yBean" >
<property name="defaul t Ti meout" val ue="3600"/>
</ bean>

<al i as name="transacti onManager XAPool " al i as="j taTransacti onManager"/ >
<al i as name="transacti onManager XAPool " al i as="] t aUser Transacti on"/>

Y ou can use these beansin the configuration of Spring’sJTA transaction manager and the Rice configurer.
This configuration might look like the following:

<bean i d="springTransacti onManager" class="org. springfranework.transaction.jta.JtaTransacti onManager">
<property name="user Transaction">
<ref |ocal ="userTransaction" />
</ property>
<property name="transacti onManager">
<ref |ocal ="jtaTransacti onManager" />
</ property>
</ bean>

<bean id="rice" class="org.kuali.rice.core.config.Ri ceConfigurer">
<property name="transacti onManager" ref="jtaTransacti onManager" />
<property name="user Transaction" ref="jtaUserTransaction" />

</ bean>

Configuring JOTM Transactional Data Sources

JTA requires that the datasources that are used implement the XADataSource interface. Some
database vendors, such as Oracle, have pure XA implementations of their datasources. However,
internally to Rice, we use wrappers on plain datasources using a library called XAPool. When
configuring transactional data sources that will be used within JOTM transactions, you should use the
org.kuali.rice.core.database.X APool DataSource class provided with Rice. Hereis an example of a Spring
configuration using this data source implementation:

<bean i d="nyDat aSource" class="org. kuali.rice.core. database. XAPool Dat aSour ce" >
<property name="transacti onManager" ref="jtaTransacti onManager" />
<property name="driverC assNane" val ue="${dat asource.driver.nane}" />
<property name="url" val ue="${datasource.url}" />
<property name="nmaxSi ze" val ue="${datasource. pool . maxSi ze}" />
<property name="m nSi ze" val ue="${datasource. pool . m nSi ze}" />
<property name="nmaxWit" val ue="${datasource. pool . max\Vait}" />
<property name="val i dati onQuery" val ue="${dat asource. pool . val i dati onQuery}" />
<property name="usernane" val ue="${dat asource. usernane}" />
<property name="password" val ue="${dat asource. password}" />

</ bean>

Configuring JTOM Non-Transactional Data Sources

When using the built-in instance of the Quartz scheduler that Rice creates, you will need to inject a non-
transactional data source into the RiceConfigurer in addition to the JTA transactional instance. This is
to prevent deadlocks in the database and is required by the Quartz software (the Quartz web site has

24

Global

an FAQ entry with more details on the problem). Here is an example of a non-transactional data source
configuration:

<bean i d="nonTransacti onal Dat aSour ce"
cl ass="or g. apache. cormons. dbcp. Basi cDat aSour ce" destroy-nmet hod="cl ose">
<property name="dri verC assName" val ue="${dat asource. driver.nanme}"/>
<property name="url" val ue="${datasource.url}"/>
<property name="maxActive" val ue="${datasource. pool . maxActive}"/>
<property name="m nldl e" val ue="7"/>
<property name="initial Size" value="7"/>
<property name="val i dati onQuery" val ue="${dat asource. pool . val i dati onQuery}"/>
<property name="usernane" val ue="${datasource. usernane}" />
<property name="password" val ue="${datasource. password}" />
<property name="accessToUnder|yi ngConnecti onAl | owed"
val ue="${dat asour ce. dbcp. accessToUnder | yi ngConnecti onAl | owed}"/>
</ bean>

Y ou need to either inject this non-transactional data source into the Quartz SchedulerFactory Spring bean
(if you are explicitly defining it) or into the rice bean in the Spring Beans config file as follows:

<bean id="rice" class="org.kuali.rice.config.RiceConfigurer">
<property name="nonTransacti onal Dat aSour ce" ref="nonTransacti onal Dat aSource" />

</ bean>

Configuring Bitronix

Configure the Bitronix transaction manager and user transaction objects as Spring beans in your
application’s Spring configuration file. Here is an example:

<bean i d="bt nConfi g" factory-nmethod="get Confi guration"”

cl ass="bi troni x.tm Transacti onManager Servi ces" |azy-init="true"/>
<bean i d="transacti onManagerBi troni x" cl ass="bi troni x.tm Transacti onManager Servi ces"

fact ory- net hod="get Tr ansact i onManager" depends-on="bt nConfi g" destroy-net hod="shut down" | azy-
init="true"/>

<al i as name="transacti onManager Bi troni x" alias="jtaTransacti onManager"/>
<al i as name="transacti onManager Bi troni x" alias="jtaUser Transacti on"/>

Y ou can use these beans in the configuration of the Rice configurer. This configuration might look like
the following:

<bean id="rice" class="org.kuali.rice.core.config.Ri ceConfigurer">
<property name="transacti onManager" ref="jtaTransacti onManager" />
<property name="user Transacti on" ref="jtaUser Transacti on" />

</ bean>

Configuring Bitronix Transactional Data Sources

An example configuration of Btironix Transactional Data Sources:

<bean id="ri ceDat aSourceBi troni xXa" class="bitronix.tmresource.jdbc. Pool i ngbDat aSource" init-nethod="init"
destroy-net hod="cl ose" lazy-init="true">
<property name="cl assNane" val ue="oracl e.jdbc. xa. client. O acl eXADat aSour ce" />
<property name="uni queNanme" ref="ds-random string" />
<property name="mi nPool Si ze" val ue="${dat asource. pool . m nSi ze}" />
<property name="nmaxPool Si ze" val ue="${dat asource. pool . maxSi ze}" />
<property name="useTmJoi n" val ue="true" />

25

http://www.quartz-scheduler.org/docs/faq.html
http://docs.codehaus.org/display/BTM/Home

Global

<property name="t est Query" val ue="${dat asource. pool . val i dati onQuery}" />
<property name="al | owLocal Transacti ons" val ue="true" />
<property name="driverProperties">
<pr ops>
<prop key="URL">${dat asource. url}</prop>
<prop key="user">${dat asour ce. user nane} </ pr op>
<prop key="passwor d">${dat asour ce. passwor d} </ pr op>
</ props>
</ property>
</ bean>

<bean id="ds-random string" class="org.springframework. beans. factory. confi g. Met hodl nvoki ngFact or yBean" >
<property name="stati cMet hod" val ue="org. apache. comons. | ang. RandonStri ngltil s. randomAl phanuneric"/>
<property name="argunents"><list><val ue>20</val ue></Ii st></property>

</ bean>

Configuring Bitronix Non-Transactional Data Sources

Notice the addition of the driverClassName prop in the dirverPropertiesin the non-transaction data source
configuration

<bean id="ri ceDat aSourceBitroni x" class="bitroni x.tmresource.jdbc. Pool i ngDat aSource" init-method="init"
destroy- net hod="cl ose" |azy-init="true">
<property name="cl assName" val ue="bi troni x.tmresource.jdbc.|rc.LrcXADataSource" />
<property name="uni queNanme" ref="ds-random string" />
<property name="m nPool Si ze" val ue="${dat asource. pool . m nSi ze}" />
<property name="naxPool Si ze" val ue="${dat asour ce. pool . nexSi ze}" />
<property name="useTmJoi n" val ue="true" />
<property name="testQuery" val ue="${datasource. pool . val i dati onQuery}" />
<property nanme="al | owLocal Transactions" val ue="true" />
<property name="driverProperties">
<props>
<prop key="Url">${datasource.url}</prop>
<prop key="driverC assName" >${ dat asour ce. dri ver. nane} </ pr op>
<prop key="user">${dat asource. user name} </ pr op>
<prop key="passwor d">${dat asour ce. passwor d} </ pr op>
</ props>
</ property>
</ bean>

<bean id="ds-randomstring" class="org.springframework. beans. factory. confi g. Met hodl nvoki ngFact or yBean" >
<property name="staticMethod" val ue="org.apache. commons. | ang. RandonStringUtils.randomAl phanuneric"/>
<property name="argunents"><list><val ue>20</val ue></Ii st></property>

</ bean>

Version Compatibility

Commitment to Compatibility in Kuali Rice

Fromversion 2.0 of Kuali Riceupto at least version 3.0, the project iscommitted to providing what it refers
to as "middleware" or "client-server" service compatibility. This essentially means that an application
which isaclient of the Kuali Rice Standalone Server (either it's services or it's database) should be able
to continue to function properly even if the Rice Standal one Server or it's database is upgraded to a newer
version.

More information on the scope of version compatibility in Kuali Rice can be found in the Kuali Rice
Version Compatibility Statement.

Keeping Your Client Application Compatible

There are afew rulesthat a client application using the Kuali Rice apis must following in order to ensure
the client application remains compatible once the Kuali Rice Standalone Server is updated. These rules

26

https://wiki.kuali.org/x/OABHC
https://wiki.kuali.org/x/OABHC

Global

only apply in situations where there is a standalone instance of Kuali Rice which is being integrated with.
In the case that an application is running Kuali Rice "bundled”, then compatibility is not a concern since
that application forms a single software bundle with Kuali Rice included.

First, client-server compatibility only pertains to the components of Rice which have client-server
interaction, that includes the following components and their sub-modules:

» Core Service
* KSB

« KEW

e KIM

* KEN

« KRMS

* Location

There are some components of Rice which are "framework-only" and don't contain any client-server
remoting components. These include:

» Core
« KNS
« KRAD

Thereare, additionally, some modul es of Ricewhich only run aspart of the standal one server (or in bundled
mode) and those include eDocL ite and the various "web" modules of Rice.

Only the first set of "client-server" Rice components are presently under the constraints of version
compatibility.

A summary of the rules a client application needs to follow in order to ensure they remain version
compatible is asfollows:

« If integrated with astandlone Kuali Rice server, do not configure any of the Kuali Rice componentswith
arun mode of LOCAL. The LOCAL run modeisonly for afully bundled configuration of Kuali Riceasit
interactsdirectly with al of the Kuali Rice database tablesinstead of using remotely accessible services.

» In application code, only use classes in the api or framework modules of the "client-server”
components. This should be evident from the package names for the module as they should
have "api" or "framework" in the package name (i.e. org. kuali.rice. kew. api.* and
org. kuali.rice.kimfranmework. *).

Do not write custom code which interacts directly with the Kuali Rice database tables which are part of
any of the previously mentioned "client-server" components.

» When writing code against the Rice apis or frameworks, be sure to read the javadocs and be sure to
conform to the contracts specified therein.

* When implementing “callback" services, ensure that you ae using the
Cal | backSer vi ceExporter properly as specified in the section caled
“ Callback ServiceExporter”

27

Chapter 2. KEN

KEN Overview
What is KEN?

Kuali Enterprise Notification is a form of communication between distributed systems that allows
messages to be sent securely and consistently. These messages act as notifications upon receipt and are
processed asynchronously within the service layer. The following architectural diagram represents the
flow of messagesin atypical Rice Environment.

Figure2.1. KEN Message Flow

“’-_ .
o
Library Syslam . .
b

Huali Emerprise Workllow Bursar Sysiem

Slusdant Aoinalneg Travel Raimbursamen| Syalam

R oo b e i Rl

Ened L

From a developer’s perspective the diagram below helps to represent the inner workings of how KEN
stores data from the Data Modeling Layer into the Persistence Layer.

28

KEN

Figure 2.2. KEN Message Storage

ety Brosymaer
i
LI :
HTML = (58 Prosariatan
- r =
Housali Mostwons Syslonm + JSP + JSTL | Lwy
Srruis peing
[1.F LT]
L] [
¥
Servioes
Kush
Busanss Dolad Sorvice mpis Spring | Hereous Businoss
Citjects | Bstarnien s, Rlubing, Do Logh Layes
|POICS, el Adsthorization, 6|
[
T L
SErwoes
BAS Interisces Ll
: 5 Spring | Marsis Datarmesia|
Syshem Layer
QB QRN sl impls
- 1
.-""'j
- —
——]
58
: Persisbeiia
R L] Seracey [P . HEE
Eyler s .
ity Sacsra

The following sections of documentation aim at describing the inner workings of KEN as well as how
those pieces interact with Rice, specificaly KEW. KEN itself is an interface that sits on top of KEW’s
API. Thisallowsfor registration and publishing of notifications, which then flow through KEW toresultin
aKEW action request. See KEW Overview for more information. In addition to the action list, KEW can
be optionally configured to forward these requests to the Kuali Communications Broker or KCB for short.
Thismoduleislogically related to KEN and handles dispatching messages based on the user preferences.
Once messages are dispatched, aresponse or acknowledgement can be created.

KEN Configuration Parameters

Table2.1. KEN Core Parameters

Configuration Parameter Description Default value

ken.url The base URL of the KEN webapp; this should be | ${ application.url} /ken
changed when deploying for external access

notification.resolveM essageDeliveriesJob.startDelayM S The start delay (in ms) of the job that resolves message | 5000
deliveries

notification.resolveM essageDeliveriesJob.intervaM S The interval (in ms) between runs of the message| 10000

delivery resolution job

29

KEN

Configuration Parameter Description Default value
notification.processAutoRemoval Job.startDelayM S The start delay (in ms) of the job that auto-removes| 60000
messages
notification.processAutoRemoval Job.intervaM S Theinterval (in ms) between runs of the message auto- | 60000
removal job
notification.quartz.autostartup Whether to automatically start the KEN Quartz jobs | true
notification.concurrent.jobs Whether the invocation of a KEN Quartz job can|true
overlap another KEN Quartz job running concurrently
ken.system.user The principal name of the user that KEN should use| notsys

when initiating KEN-originated documents

keb.url

The base URL of the KCB (notification broker)
webapp

$ application.url} /kch

keb.messaging.synchronous Whether notification messages are processed |false
synchronously
kch.messageprocessing.startDelayM S The start delay (in ms) of the job that processes| 50000
notification messages
kcb.messageprocessing.repeatintervaM S The interva (in ms) between runs of the notification | 30000
message processing job
keb.quartz.group Group name of the KCB Quartz job KCB-Délivery
keb.quartz.job.name Name of the KCB Quartz job M essageProcessingJobDetail
keh.maxProcessAttempts Maximum number of times that KCB will attempt to| 3
process a notification message
notification.processUndeliveredJob.intervalM S The elapsed time, in milliseconds, between runs of the | 20000
KEN process undelivered notifications job.
notification.processUndeliveredJob.startDelayM S The elapsed time, in milliseconds, between the start of | 10000

Note

the application and the first run of the KEN process
undelivered notifications job.

Asof Rice 1.0.1, The parameter kcb.smtp.host is no longer used. The smtp server settings that
are required for sending email notifications with KEN are documented in the Kuali Enterprise
Workflow (KEW) Technical Reference Guide under Email Configuration.

KEN Channels

A KEN Channél is correlated to a specific type of notification. An example of a Channel’ s use may be to
send out information about upcoming Library Events or broadcast general announcements on upcoming
concerts. Channelsare subscribed to in the act of receiving notificationsfrom apublisher or producer. They
can al so be unsubscribed to and removed from the data store from within the Ul. The Channel Definitions

are stored in the database table KREN_CHNL _T. The columns are listed as follows:

Table2.2. KREN_CHNL_T

Column Description

CHNL_ID Identifier for the Channel

NM Name of the Channel represented in the Ul

DESC_TXT Description of the Channel

SUBSCRB_IND Determines if the Channel can or cannot be subscribed to from the Ul. This also determinesiif the
channel will be displayed in the Ul

VER_NBR Version Number for the Channel

30

KEN

Channel Subscription

Channels can be subscribed to through the Ul and also through the direct access to the data store. To

add a channel that can be subscribed to simply run the following SQL statement against the data store
customizing value entries to your needs:

I NSERT | NTO KREN_CHNL_T (CHNL_I D, DESC_TXT, NV SUBSCRB_| ND, VER_NBR)

VALUES (2,' This channel is used for sending out infornmation about Library Events.','Library Events
Channel ' ,'Y'",

1)

KEN Producers

A KEN Producer submits notificationsfor processing through the system. An example of aProducer would
be a mailing daemon that represents messages sent from a University Library System.

Characteristics of a Producer:
» Producers create and send notifications to a specific destination through various Channels.
 Each Producer contains alist of Channels that it may send notifications to.

 Producer Definitions are stored in the database table KREN_PRODCR _T.

Table2.3. KREN_PRODCR_T

Column Description

CNTCT_INFO The email address identifying the Producer of the Notification.

DESC_TXT A Description of the Producer.

NM Name of the Producer.

PRODCR_ID The Producer’s Channel Identifier. Seethe KREN_CHNL_PRODCR_T table found in the database
for more information on how Producers link to Channels.

VER_NBR Version Number for the Producer.

Adding Producers

The Producer can be added through direct access to the data store. To add a Producer run the following
SQL statement against the data store customizing value entries to your needs:

I NSERT | NTO KREN_PRODCR_ T (CNTCT_I NFO, DESC_TXT, NM PRCDCR | D, VER _NBR)

VALUES (' kuali-ken-testing@ornell.edu','This producer represents nessages sent fromthe general nessage
sending fornms.', ' Notification Systeni,1,1)

KEN Content Types

Overview

A Content Type is part of the message content of a notification that may be sent using KEN. It can be as
simple as a single message string, or something more complex, such as an event that might have a date
associated with it, start and stop times, and other metadata you may want to associate with the notification.

KEN is distributed with two Content Types: Simple and Event.

31

KEN

Warning

It is strongly recommended that you leave these two Content Types intact, but you can use them
as templates for creating new Content Types.

Every notification sent through KEN must be associated with aregistered Content Type. Registration of
Content Types requires administrative access to the system and is described in the KEN Content Types
section in the User Guide. The rest of this section describes the Content Type attributes that are required
for registration.

Content Type Attributes

A Content Typeis represented as a NotificationContent business object and consists of severa attributes,
described below:

id - Uniqueidentifier that KEN automatically creates when you add a Content Type

name - Thisis a unique string that identifies the content. For example, ItemOverdue might be the name
used for a notification Content Type about an item checked out from the campus library.

description - Thisisamore verbose description of the Content Type. For example, "Library item overdue
notices' might be the description for ItemOverdue.

namespace - This is the string used in the XSD schema and XML to provide validation of the content,
for example, notification/ContentTypeltemOverdue. The XSD namespace is typically the name attribute
concatenated to the notification/ContentType string. Note how it is used in the XSD and XSL examples
below.

xsd - The XSD attribute contains the complete W3C XML Schema compliant code.

<?xm version="1.0" encodi ng="UTF-8"?>
<l-- This schena defines a generic event notification type in order for it to be accepted into the system -->
<schema xm ns="http://wwmv w3. or g/ 2001/ XM_Schena"

xm ns: c="ns: notification/ comon"
xm ns: ce="ns: notification/ ContentTypel t enOver due”
target Nanespace="ns: noti fi cati on/ Cont ent Typel t emOver due"
attri buteFornDef aul t ="unqualified"
el enent For nDef aul t ="qual i fi ed" >
<annot at i on>
<docurent ati on xnl: |l ang="en">Item Overdue Schenma</docunentati on>
</ annot at i on>
<i mport nanespace="ns: notification/common" schenalLocation="resource: notification/notification-comon" />

<!-- The content el enent describes the content of the notification. It contains a nessage (a sinple

String) and a nessage el enent -->

<el enent name="content">
<conpl exType>
<sequence>
<el enent name="nessage" type="c:LongStringType"/>
<el enent ref="ce:event"/>
</ sequence>
</ conpl exType>
</ el ement >

<l-- This is the itenpverdue elenent. |t describes an item overdue notice containing a summary,

description, location, due date, and the ambunt of the fine levied -->

<el enent name="it enover due" >
<conpl exType>

<sequence>
<el enent name="summary" type="c: NonEnptyShort StringType" />
<el enent name="description" type="c: NonEnptyShortStringType" />
<el enent name="| ocation" type="c: NonEnptyShortStringType" />
<el enent nane="dueDate" type="dateTime" />
<el enent name="fine" type="deciml" />

</ sequence>

32

http://www.w3.org/XML/Schema

KEN

</ conpl exType>
</ el ement >
</ schema>

xdl - The XSD attribute contains the complete XSL code that will be used to transform a notification in
XML to html for rendering in an Action List.

<?xm version="1.0" encodi ng="UTF-8"?>

<!-- style sheet declaration: be very careful editing the follow ng, the
defaul t namespace nmust be used otherw se elenents will not match -->

<xsl : styl esheet

versi on="1. 0"

xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or nt

xm ns: n="ns: notification/ Content TypeEvent"

xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"

xsi : schemalLocati on="ns: notification/ Content Typel t enOverdue resource: notification/ ContentTypeltemOverdue"”
exclude-resul t-prefixes="n xsi">

<!-- output an htm fragnment -->
<xsl| :output nmethod="htm " indent="yes" />

<!-- match everything -->
<xsl:tenpl ate match="/n:content" >
<tabl e class="bord-all">
<xsl| :apply-tenpl ates />
</tabl e>
</ xsl : tenpl at e>

<!-- match nmessage element in the default nanmespace and render as strong -->
<xsl:tenpl ate match="n: message" >
<capti on>

<xsl : val ue-of select=".
</ caption>
</ xsl : tenpl at e>

di sabl e- out put - escapi ng="yes"/ ></ strong>

<!-- match on itenoverdue in the default namespace and display all children -->
<xsl:tenpl ate match="n:itenoverdue">
<tr>

<td class="thnormal ">Summary: </td>
<td cl ass="thnornmal "><xsl : val ue- of sel ect="n: summary" /></td>
</[tr>
<tr>
<td class="thnornmal “>ltem Description: </td>
<td cl ass="thnornmal "><xsl : val ue- of sel ect="n:description" /></td>
</[tr>
<tr>
<td class="thnormal ">Li brary: </td>
<td class="thnormal "><xsl :val ue-of sel ect="n:location" /></td>
</[tr>
<tr>
<td class="thnornmal ">Due Date: </td>
<td class="thnornal "><xsl : val ue-of sel ect="n:startDateTine" /></td>
</[tr>
<tr>
<td cl ass="thnornmal ">Fi ne: </td>
<td class="thnornal ">$<xsl : val ue-of select="n:fine" /></td>
</[tr>
</ xsl : tenpl at e>
</ xsl : styl esheet >

KEN Notifications

This document provides information about the attributes of a Natification. These attributes are elements
such as message content, who is sending the natification, who should receive it, etc. Kuali Enterprise

33

KEN

Notification (KEN) supports an arbitrary number of Content Types, such as a simple message or an event
notification. Each Content Type consists of acommon set of attributes and a content attribute.

Common Notification Attributes

Table 2.4. Common Notification Attributes

Name Type Required | Description Example
channel string yes « Name of achannel Library Events
* Must beregistered
producer string yes « Name of the producing system Library Calendar System
¢ Must be registered and given
authority to send messages on
behalf of the <Library Events>
channel
senders alist of strings yes A list of the names of people on| TestUserl, TestUser2
whose behalf the message is being
sent
recipients alist of strings yes A list of the names of groups or users| library-staff-group, TestUserl,
to whom the message isbeing sent | TestUser2
deliveryType string yes fyi or ack fyi
sendDateTime datetime no When to send the notification 2006-01-01 00:00:00.0
autoRemoveDateTime datetime no When to remove the notification 2006-01-02 00:00:00.0
priority string yes An arbitrary priority; these must be| normal
registered in KEN; the system comes
with defaults of normal, low, and
high
contentType string yes Name for the content; KEN comes|simple
set up with simple and event; new
contentTypes must be registered in
KEN
content see below yes The actual content see below

Message Content

Notifications are differentiated using the contentType attribute and the contents of the content element.
The content element can be as simple as a message string or it may be a complex structure. For example,
a simple natification may only contain a message string, whereas an Event Content Type might contain
a summary, description, location, and start and end dates and times. Examples of the Smple and Event
Content Types:

Sample XML for a Simple Notification

<?xm version="1.0" encodi ng="UTF-8"?>

<l-- A Sinmple Notification Message -->

<notification xm ns="ns:notification/NotificationRequest"
xm ns: xsi =htt p: // www. w3. or g/ 2001/ XM_Schema- i nst ance
xsi : schemalLocation="ns: notification/NotificationRequest
resource: notification/NotificationRequest">
<l-- this is the name of the notification channel -->
<l-- that has been registered in the system-->
<channel >Canpus Status Announcenent s</ channel >

<l-- this is the nane of the producing system-->
<!-- the value nmust nmatch a registered producer -->
<pr oducer >Canpus Announcenents Systenx/producer>

<l-- these are the people that the nmessage is sent on -->
<!-- behalf of -->

KEN

<sender s>
<sender >John Fereira</sender>
</ sender s>

<l-- who is the notification going to? -->
<r eci pi ent s>

<gr oup>Ever yone</ gr oup>

<user >j af 30</ user >
</recipients>

<!-- fyi or acknow edge -->
<del i veryType>fyi </ del i veryType>

<l-- optional date and time that a notification should be sent -->
<!-- use this for scheduling a single future notification to happen -->
<sendDat eTi me>2006- 01- 01T00: 00: 00</ sendDat eTi ne>

<l-- optional date and time that a notification should be renoved -->
<l-- fromall recipients' lists, b/c the message no | onger applies -->
<aut oRenpveDat eTi me>3000- 01- 01T00: 00: 00</ aut oRenpveDat eTi ne>

<l-- this is the name of the priority of the nmessage -->
<l-- priorities are registered in the system so your value -->
<I-- here nust match one of the registered priorities -->

<priority>Normal </priority>

<title>School is Cosed</title>

<l-- this is the name of the content type for the nessage -->
<l-- content types are registered in the system so your value -->
<l-- here nust match one of the registered contents -->

<cont ent Type>Si npl e</ cont ent Type>

<l-- actual content of the nmessage -->

<content xm ns="ns:notificati on/ ContentTypeSi npl e"
xsi : schemaLocati on="ns: noti fi cati on/ Cont ent TypeSi npl e
resource: notification/ Content TypeSi npl e">

<message>Snow Day! School is closed. </ message>
</ content >
</ notification>

Sample XML for an Event Notification

<?xm version="1.0" encodi ng="UTF-8"?>

<notification xm ns="ns:notification/Notificati onMessage"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemaLocati on="ns: notification/Notificati onMessage
resource: notification/Notificati onMessage">
<!-- this is the name of the notification channel -->
<I-- that has been registered in the system-->
<channel >Concerts Com ng to Canpus</ channel >

<l-- this is the name of the producing system-->
<l-- the value nust match a registered producer -->
<pr oducer >Canpus Events O fi ce</producer>

<I-- these are the people that the nmessage is sent on -->
<!-- behalf of -->
<sender s>

<sender >ag266</ sender >

35

KEN

<sender >j af 30</ sender >
</ sender s>

<l-- who is the notification going to? -->
<r eci pi ent s>
<group>Group X</ group>
<group>G oup Z</ gr oup>
<user >ag266</ user >
<user >j af 30</ user >
<user >ar h14</ user >
</recipients>

<!-- fyi or acknow edge -->
<del i veryType>fyi </ del i veryType>

<l-- optional date and time that a notification should be sent -->
<!-- use this for scheduling a single future notification to happen -->
<sendDat eTi me>2006- 01- 01 00: 00: 00. 0</ sendDat eTi me>

<l-- optional date and time that a notification should be renoved -->
<l-- fromall recipients' lists, b/c the message no | onger applies -->
<aut oRenpveDat eTi me>2007- 01- 01 00: 00: 00. 0</ aut oRenpveDat eTi me>

<l-- this is the name of the priority of the nmessage -->
<l-- priorities are registered in the system so your value -->
<I-- here nust match one of the registered priorities -->

<priority>Normal </priority>

<l-- this is the name of the content type for the nessage -->
<l-- content types are registered in the system so your value -->
<l-- here nust match one of the registered contents -->

<cont ent Type>Event </ cont ent Type>

<l-- actual content of the nmessage -->
<cont ent >
<message>CCC presents The Strokes at Cornel | </ message>

<l-- an event that it happening on canpus -->

<event xm ns="ns:notification/ContentEvent"
xsi : schemaLocati on="ns: noti fi cati on/ Cont ent Event
resource: notification/ ContentEvent">
<summar y>CCC presents The Strokes at Cornel | </ summary>
<descri ption>bl ah bl ah bl ah</descri ption>
<l ocati on>Barton Hal | </| ocati on>
<start Dat eTi me>2006- 01- 01T0O0: 00: 00</ st ar t Dat eTi me>
<st opDat eTi me>2007- 01- 01T00: 00: 00</ st opDat eTi ne>

</ event >

</ content >
</notification>

Notification Response

When KEN sends a notification, it always returns aresponse. Thisisan outlinein XML of that response:

<?xm version="1.0" encodi ng="UTF-8"?>
<response>

<st at us>success</ st at us>
</ response>

36

KEN

Enterprise Notification Priority

Managing Priorities

There is no user interface page to manage priorities so you must make changes to the list of prioritiesin
thekren_prio_t table using SQL.

The table has these columns:

Table25. KREN_PRIO_ T

Name Type Max Size Required Attribute
PRIO_ID Numeric 8 Yes 1D

NM Text 40 Yes Name
DESC_TXT Text 500 Yes Description
PRIO_ORD Numeric 4 Yes Order
VER_NBR Numeric 8 Yes Version

Example 2.1. Example— Thisisan example of how to add a Priority into the table:

I NSERT | NTO kren_prio_t (PRIOID NM DESC TXT, PRIO ORD, VER NBR) VALUES (8, 'Bulk', 'Mass notifications', 6,
1);

KEN Delivery Types

This section describes Kuali Enterprise Notification (KEN) Delivery Types, or what are sometimes called
Message Deliverers. A Message Deliverer Plugin is the mechanism used to deliver a notification to end
users. All notifications sent through KEN appear in the Action List for each recipient for which the
notification is intended. This message aso contains an Email Delivery Type that allows you to send end
users a notification summary as an email message. Note that for a Delivery Type other than the default
(KEWACctionList), the content of the notification is typically just a summary of the full notification.

Implementing the Java Interface

Creating a new Deélivery Type primarily involves implementing a Java interface called
org.kuali.rice.kew.deliverer .NotificationM essageDeliver er . The source code of the interface:

Copyri ght 2007 The Kuali Foundation

Li censed under the Educational Community License, Version 2.0 (the "License");
you may not use this file except in conpliance with the License.
You may obtain a copy of the License at

http://ww:. opensource. org/licenses/ecl 2. php

Unl ess required by applicable law or agreed to in witing, software

di stributed under the License is distributed on an "AS | S" BASI S,

W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied.
See the License for the specific |anguage governing perm ssions and
limtations under the License.

R T T T T

*
/
package org. kuali.rice. ken. deliverer;

37

KEN

import java.util.HashMap;

inport java.util.LinkedHashMap;

inport org. kuali.rice.ken.bo.NotificationMessageDelivery;
import org. kuali.rice.ken.exception.ErrorlList;

import org. kuali.rice.ken.exception.NotificationAut oRenbveExcepti on;
inport org. kuali.rice.ken.exception.NotificationMessageDeliveryException;
import org. kuali.rice.ken.exception.Notificati onMessageDi sni ssal Excepti on;

/**
* This class represents the different types of Notification Delivery Types that the system can handle.
* For exanple, an instance of delivery type could be "ActionList" or "Email" or "SMS". Any deliverer
i npl emrent ati on
* adhering to this interface can be plugged into the systemand will be automatically avail able for use.
* @uthor Kuali Rice Team (kuali-rice@oogl egroups.com
*/

public interface Notificati onMessageDeliverer {
/**
* This nmethod is responsible for delivering the passed in nmessageDelivery record.
* @ar am nessageDel i very The nessageDel i very to process
* @hrows NotificationMessageDeliveryException
&/

public void deliverMessage(Notificati onMessageDel i very nessageDel i very) throws
Noti fi cati onMessageDel i ver yExcepti on;
/**
* This nmethod handl es auto renoving a nmessage delivery froma person's list of notifications.
* @ar am nessageDel i very The nessageDel ivery to auto renove
* @hrows NotificationAut oRenbveException
*/

public void aut oRenbveMessageDel i very(Notificati onMessageDel i very nmessageDel i very) throws
Noti fi cati onAut oRenpbveExcepti on;
/**

* This nmethod dism sses/renoves the Notificati onMessageDelivery so that it is no |onger being presented to
the user

* via this deliverer. Note, whether this action is neaningful is dependent on the deliverer
inplenmentation. |If the

* deliverer cannot control the presentation of the nessage, then this nethod need not do anything.

* @ar am nessageDel i very the nessageDel ivery to dismss

* @aramthe user that caused the dismssal; in the case of end-user actions, this will nost |ikely be the
user to

* whi ch the nessage was delivered (user recipient in the Notificati onMessageDelivery object)

* @aram cause the reason the nessage was di sm ssed

*/

public void di sm ssMessageDel i very(Notificati onMessageDel i very messageDel i very, String user, String cause)
throws Notificati onMessageDi sm ssal Excepti on;

KEN: Sending a Notification

The Kuali Enterprise Natification system (KEN) provides for a way to programmaticaly send a
notification. An application may construct a notification using the KEN web service API.

Send a Notification Using the Web Service API

To send a noatification using the web service API, the notification must be constructed as an XML
document that validates agai nst aschemafor aspecific Content Type. For more detail, seethe Notifications
documentation.

To validate your notification XML, you must construct the XSD schema filename. To construct this file
name, append the Content Type value to ContentType.

38

KEN

For example, if you create anew Content Typefor alibrary book overdue notification, then the content Type
element value should be OverdueNotice and the schemafile you created for validation of the notification
XML should be ContentTypeOver dueNotice.xsd. This XML schema should be declared as a namespace
inthe content element of the notification XML. Out of the box, KEN comeswith Smple and Event Content
Types.

Web Service URL

By default, the Notification Web Service APl may be accessed at: http://yourlocalip:8080/remoting/soap/
ken/v2_0/sendNotificationService

A WSDL may be obtained using the following URL: http://yourl ocalip:8080/remoting/soap/ken/v2_0/
sendNotificationService?wsdl

Note

In the URL s above, replace yourlocalip with the hostname where KEN is deployed.

Exposed Web Services

Initially, KEN exposes a web service method to send a notification. The sendNotification method is a
simple String In/String Out method. It accepts one parameter (notificationMessageAsXml) and returns a
notificationResponse as a String. For the format of the response, see the Notification Response document
inthe TRG for KEN.

Calling the sendNotification Service from JAVA

First, create a String that includes the XML content for the notification, as described in the Naotification
Message document of the TRG for KEN. In the following example code, the XML representation
of the notification is read as a file from the file system in the main method, and the code calls the
MySendNotification method to invoke the Notification web service.

A SOAP style web services binding stub is available in the notification.jar file, as described above in
the Dependencies section.

Y ou may use this code as atemplate for sending a notification using the web service:

package edu.cornell.library.notification;

i mport org.apache. commons.io. | QUtils;
import org.kuali.notification.client.ws.stubs.NotificationWbServiceSoapBi ndi ngSt ub;

inport java.io.lOException;

import java.io.lnputStream
inport java.net.URL;

public class M/Notificati onWebServi ced i ent {
private final static String WEB_SERVICE_URL = "http://|ocal host: 8080/ notification/services/Notification";

public static void MySendNotification(String notificati onMessageAsXm) throws Exception {
URL url = new URL(WEB_SERVI CE_URL);
Noti fi cati onWebSer vi ceSoapBi ndi ngSt ub stub = new Noti ficati onWebSer vi ceSoapBi ndi ngSt ub(url, null);
String responseAsXm = stub.sendNotification(notificati onMessageAsXni);
/1 do sonething useful with the response
System out. println(responseAsXm);

39

http://yourlocalip:8080/remoting/soap/ken/v2_0/sendNotificationService
http://yourlocalip:8080/remoting/soap/ken/v2_0/sendNotificationService
http://yourlocalip:8080/remoting/soap/ken/v2_0/sendNotificationService?wsdl
http://yourlocalip:8080/remoting/soap/ken/v2_0/sendNotificationService?wsdl

KEN

public static void main(String[] args) {
I nput Stream notificati onXM. =
M/Not i fi cati onWebServi ced i ent. cl ass. get Resour ceAsSt r ean("webservi ce_notification.xm");
String notificati onMessageAsXm = "";

try {
notificati onMessageAsXm = | QUtils.toString(notificati onX\.);

} catch (1 OException ioe) {
t hrow new Runti meException("Error |oadi ng webservice_notification.xm");

}

try {
MySendNot i fication(notificati onMessageAsXm);

} catch (Exception ioe) {
throw new Runti meException("Error running webservice");

}
}

KEN Authentication
Web

KEN can support any Web Sign On technology that results in the population of the HttpServletRequest
remote user variable, exposed via the getRemoteUser accessor.

public java.lang.String getRemoteUser ()

Returns the login of the user making this request, if the user has been authenticated, or null if the user
has not been authenticated. Whether the user name is sent with each subsequent request depends on the
browser and type of authentication.

Returns: A Sring specifying the login of the user making this request, or null

The generic KEN release comes configured with CAS.

Web Services

Web service authentication is part of the development process and is not implemented by the standalone
release of Rice. The notification web service is Axis-based.

40

Chapter 3. KEW
What is Kuali Enterprise Workflow?

What

What

is workflow, in general?

Workflowisavery general term and means different thingsin different contexts. For example, it may mean
the sequence of approvals needed for a Leave Request or it may refer to a complex scientific procedure.

In our context of enterprise applications within a higher education institution, we're usually talking about
business process management when we discuss workflow. Usually, this revolves around business rules,
authorizations, and routing for approval.

A simple example is a leave request system. It needs some workflow to get the necessary people
(supervisor, etc.) to approveit. Thisis one example of the routing and approval side of aworkflow.

Y ou may also have business rules in workflow that dictate that some people get automatic approval for
leave requests. Thisis abusiness rule detail that workflow executes by automatically routing these types
of requests past the approval steps.

is Kuali Enterprise Workflow, in particular?

The Kuali Enterprise Workflow (KEW) product revolves around routing and approval of documents. It is
a stand-alone workflow engine upon which you can integrate other enterprise applications to do routing
and approvals.

In addition, KEW contains an eDocL ite system. This is a mechanism to create simple data-entry forms
directly in KEW. Y ou can also create routing rules around eDocL ite forms. eDocL ite forms are the rough
equivaent of the basic, one- or two-page forms that are commonly used to process business and get
signature approvals.

The benefit of eDocLite in KEW isthat it does not require a separate application. Y ou can use eDocL ite
in KEW simply by setting up the forms that your institution or department needs.

Overall, KEW is based on documents. In KEW, each document has a collection of transactions or things
to be done. Each transaction is approved or denied individually in KEW.

For example, John Doe may use a Leave Request document in KEW to ask for a week off in June. The
KEW Leave Request document contains enough information for his supervisor to make a decision about
John’sleave. (The document may use datakeysto retrieve external information, such as John’ spast Leave
Requests and available hours.) Once John submits his Leave Request, KEW routesit to John's supervisor
for approval. Depending on how John' s department has configured KEW for routing L eave Requests, after
John’s supervisor approves or denies his request, KEW may route it to more people for further action to
be taken.

Once John's Leave Request document is processed, it triggers a PostProcessor, which can peform any
desired additional processing. This is most commonly used to “finalize” the business transaction once
all approvers have signed off on it. In this particular example, it might call another service that would
update recordsin the L eave Request application’ s database, indicating that the individual has successfully
scheduled leave during that time period.

In addition, the KEW PostProcessor contains hooks for all the stages that a document goes through. For
example, an external application may use a KEW workflow for routing and approval of documents, and
that application may take action at each change in state of a routed document.

41

KEW

What

What

problems or functions does KEW solve?

The primary benefit of KEW workflow is the correct routing for approval of documents. It enforces your
business-specific rules about who needs to approve what documents, in which scenarios.

Simple Workflow Example

L eave Request: Each person has one other person (possibly more) who needs to approve his or her leave
requests. Inthis context, KEW isthe system that manages both the approval structure and theleaverequests
themselves (the actual approvals).

More Complex Workflow Example

Purchasing Desktop Computers: Y ou may need several business rules in KEW for this, such asarule to
enforce:

1. A dtrategic alliance requires that you buy from one vendor unless there is ajustification to not do so

2. General purchasing approval by the Purchasing Department is required when the cost of the purchase
exceeds a certain limit

3. Approva by the account owners who fund the purchase is required
In this example, KEW requires an approval if:

» The strategic alliance is not used

» Thecost limit for Purchasing Department approval is exceeded

The workflow also requires an approval by the signer (or delegate) for each spending account that you
use for the purchase.

In KEW, Approval Types are set up such as account approver, supervisor, or organizational/department
hierarchy approver. An Approva Type containsthe applicable routing and approval rules. Onceyou create
an approval type, those routing and approval rules are available for other workflow clients and scenarios.
This creates a tipping point situation, in which the more applications and business processes you set up
through workflow, the easier it gets to do new ones.

In addition, KEW can help you with distributed management of approval structures. Each group at your
institution (each college, unit, division, etc.) can create their own approval and workflow structurefor their
group, and you can centrally manage the workflow above those groups. This allows groups to manage
their own interna controls and structures, while still being subject to higher-level institutional controls.

problems does KEW NOT solve?

KEW is not a general-purpose application builder. For complex applications, you need to develop
applications separately and then integrate them with KEW. For simple forms or documents that need
approval, you can useeDocL ite, but thisonly worksin simple cases, analogousto aone- or two-page paper
form that requires signatures. It isimportant to note, however, that Kuali Rice does include a framework
called the Kuali Nervous System (KNS) that can be used to facilitate the development of more complex
applications and includes built-in integration with KEW.

KEW is not a general-purpose business rules engine. For example, it does not know that a continuation
account must be specified when an account is closed. Those types of rules are the responsibility of the

42

KEW

application itself to manage. However, this is not a clear-cut line, as KEW does manage business rules
that directly affect routing and approval.

KEW is not an Organization Hierarchy manager. For example, it will not automatically manage your
organizational hierarchies and internal structures. However, integration with these hierarchies and
structures can be accomplished using KEW, and leveraging such hierarchies for routing and approval is
avery common need for many applications.

With which applications can KEW integrate?

Can |

Nearly anything, in theory. In the current version of KEW, any application can access KEW if it can:
» Do Javamethod calls, or

+ Do remote method invocation, or

» Doweb-servicescalls, or

» Communicate with the Kuali Service Bus (KSB)

(The recommended cross-platform integration method is over web services.)

use KEW without building an entire application?

Yes, absolutely!

KEW isanincredibly powerful platform for routing and approval for enterprise (i.e., large) applications.
However, it also includes eDoclL ite, which makes it easy to develop simple business-process forms and
run them through KEW. In this situation, in its most simple form, you can do all of your work within
KEW, and most of that work isin developing your form configurations. If needed, the eDocL.ite process
can also hook into a post-processor to take an action once a document's approvals are compl ete.

Steps to Building a KEW Application

Preface

Initssimplest form, KEW is merely a set of services that can be used to submit documents to aworkflow
engine and then interact with those documents as the progress through the routing process. Therefore,
there are many different ways to build an application that uses KEW. Kuali Rice itself has afew built-in
solutions (eDocLite and KNS) that make it easier to build applications that use KEW. Alternatively, an
application can be built from scratch or retrofitted to use KEW.

In this section, we will look at some common approaches to designing and building an application which
leverages KEW. However, it is by no means exhaustive and is simply meant to get you started and give
you ideas as you embark upon development of your own applicationsthat use Kuali Enterprise Workflow.

Initial Steps - Determine the Routing Rules

Determine to whom you want to route the document and when it should be routed. For example, in the
Travel Request Sample Workflow Client Application, the steps in the routing process are:

1. Someone submits atravel request for atraveler

43

KEW

2. Traveler receives an Approve Action Item
3. Traveler's supervisor receives Approve Action ltem
4. Traveler's dean/director receives Acknowledge Action Item

5. Fiscal Officer for account(s) receives Approve Action Item

Configure the Process Definition

In KEW, process definitions are attached to Document Types. The Document Type alows for
configuration of various pieces of the business process in addition to the process definition.

The Document Type is defined in XML format. KEW can ingest files containing this Document
Type configuration to set up the specified workflows and then executes the workflows based on that
configuration.

Oneexampleof routing configurationisthe Travel Reguest application. The Document Type configuration
is defined in the following four XML files:

TravelRoutingConfiguration.xml - Defines the travelDocument Document Type, including
PostProcessor, docHandler, and routeNodes:

<?xm version="1.0" encodi ng="UTF-8"?>
<data xm ns="ns:workfl ow' xm ns:xsi="http://ww. w3. org/ 2001/ XM_Schema- i nst ance" xsi:schemaLocati on="ns: wor kf | ow
resour ce: Wor kf | owbDat a" >
<docurent Types xm ns="ns: wor kf | ow Docunment Type" xsi:schemaLocati on="ns: wor kf | ow Docunent Type
resour ce: Docunent Type" >
<docunent Type>
<name>Tr avel Request </ name>
<description>Create a New Travel Request</description>
<l abel >Travel Request</| abel >
<post Processor Name>or g. kual i . ri ce. kns. wor kf | ow. post processor. Kual i Post Processor </ post Processor Nane>
<super User G oupNarme nanmespace="TVL" >Super User Gr oup</ super User G oupNanme>
<bl anket Appr oveGr oupNanme nanespace="TVL" >Bl anket Appr oveGr oup</ bl anket Appr oveG oupNane>
<def aul t Excepti onGr oupNanme namespace="TVL" >Excepti onG oup</ def aul t Excepti onG oupNanme>

<docHandl er >${ appl i cati on.url }/travel Docunment 2. do?met hodToCal | =docHandl er </ docHandl er >
<r out ePat hs>
<r out ePat h>
<start nanme="Initiated" nextNode="Desti nati onApproval" />
<requests name="Desti nati onApproval " next Node="Travel er Approval " />
<requests name="Travel er Approval " next Node="Supervi sor Approval " />
<requests name="Supervi sor Approval " next Node="Account Approval " />
<requests name="Account Approval " />
</ r out ePat h>
</ r out ePat hs>
<r out eNodes>
<start nanme="Initiated">
<activationType>P</activati onType>
</start>
<requests name="Desti nati onApproval ">
<rul eTenpl at e>Tr avel Request - Dest i nati onRout i ng</rul eTenpl at e>
</ request s>
<requests name="Travel er Approval ">
<rul eTenpl at e>Tr avel Request - Tr avel er Rout i ng</rul eTenpl at e>
</ request s>
<requests nanme="Supervi sor Approval ">
<rul eTenpl at e>Tr avel Request - Super vi sor Rout i ng</rul eTenpl at e>
</ request s>
<requests name="Account Approval ">
<rul eTenpl at e>Tr avel Request - Account Rout i ng</ rul eTenpl at e>
</ request s>
</ r out eNodes>
</ docunent Type>
</ docunent Types>

KEW

</ dat a>

TravelRuleAttributes.xml — Defines the attributes used by the Workflow Engine to determine to whom
to route to next:

<?xm version="1.0" encodi ng="UTF-8"?>
<data xm ns="ns:workfl ow' xm ns:xsi="http://ww.w3. org/ 2001/ XM_Scheme- i nst ance" xsi:schemaLocati on="ns: wor kf | ow
resour ce: Wor kf | owbDat a" >
<rul eAttributes xm ns="ns:workfl ow Rul eAttribute" xsi:schemaLocati on="ns:workfl ow Rul eAttribute
resour ce: Rul eAttribute">
<rul eAttri bute>
<nane>Enpl oyeeAt t ri but e</ nane>
<cl assNanme>edu. sanpl eu. travel . wor kf | ow. Enpl oyeeAt tri but e</ cl assNanme>
<l abel >Enpl oyee Routi ng</| abel >
<descri pti on>Enpl oyee Routing</description>
<appl i cati onl d>TRAVEL</ appl i cati onl d>
<type>Rul eAttri bute</type>
</rul eAttribute>

<rul eAttri bute>
<nanme>Account At t ri but e</ nane>
<cl assNane>edu. sanpl eu. travel . wor kf | ow. Account At t ri but e</ cl assNane>
<l abel >Account Routi ng</| abel >
<descri pti on>Account Routing</description>
<appl i cati onl d>TRAVEL</ appl i cati onl d>
<type>Rul eAttri bute</type>

</rul eAttribute>

</rul eAttributes>
</ dat a>

TravelRuleTemplatesxml - Defines the RuleTemplates that represent each routeNode listed in the
Document Type configuration:

<?xm version="1.0" encodi ng="UTF-8"?>
<data xm ns="ns:workfl ow' xm ns:xsi="http://ww.w3. org/ 2001/ XM_Schema- i nst ance" xsi:schemalLocati on="ns: wor kf | ow
resour ce: Wr kf | owDat a" >
<rul eTenpl at es xm ns="ns: wor kf | ow Rul eTenpl at e" xsi:schemaLocati on="ns: wor kf | ow Rul eTenpl at e
resour ce: Rul eTenpl ate" >
<rul eTenpl ate al |l owOverwite="true">
<nane>Tr avel Request - Dest i nat i onRout i ng</ name>
<descri ption>Destinati on Routing</description>
<attributes>
<attribute>
<nane>Desti nati onAttri but e</ name>
</attribute>
</attributes>
</rul eTenpl at e>
<rul eTenpl ate al |l owOverwite="true">
<nane>Tr avel Request - Tr avel er Rout i ng</ nane>
<descri ption>Travel er Routing</description>
<attributes>
<attribute>
<nane>Enpl oyeeAt t ri but e</ nane>
</ attribute>
</attributes>
</rul eTenpl at e>
<rul eTenpl ate al |l owOverwite="true">
<name>Tr avel Request - Super vi sor Rout i ng</ nanme>
<descri pti on>Supervi sor Routing</description>
<attributes>
<attribute>
<nane>Enpl oyeeAt t ri but e</ nane>
</attribute>
</attributes>
</rul eTenpl at e>
<rul eTenpl ate al |l owOverwite="true">
<nanme>Tr avel Request - Account Rout i ng</ nane>
<descri ption>Travel Account Routing</description>
<attributes>
<attribute>

45

KEW

<nanme>Account At t ri but e</ nane>
</attribute>
</attributes>
</rul eTenpl at e>
</rul eTenpl at es>
</ dat a>

TravelRulesxml - Defines the rules (a rule is a combination of Document Type, Rule Template and
Responsibilities) that the workflow engine uses to determine to whom to route to next:

<?xm version="1.0" encodi ng="UTF-8"?>
<data xm ns="ns: workfl ow' xml ns:xsi="http://ww:.w3. org/ 2001/ XM_Schema- i nst ance" xsi:schenmaLocati on="ns: wor kfl ow
resour ce: Wr kf | owDat a" >
<rul es xm ns="ns: wor kfl ow Rul e" xsi:schemaLocati on="ns: workfl ow Rul e resource: Rul e">
<rul e>
<nane>Tr avel Request - Dest i nat i onLasVegas</ name>
<docurnent Type>Tr avel Request </ docunent Type>
<rul eTenpl at e>Tr avel Request - Dest i nati onRout i ng</rul eTenpl at e>
<descri ption>Destinati on Rul e</description>
<r ul eExt ensi ons>
<r ul eExt ensi on>
<attribute>DestinationAttribute</attribute>
<rul eTenpl at e>Tr avel Request - Dest i nati onRout i ng</rul eTenpl at e>
<r ul eExt ensi onVal ues>
<r ul eExt ensi onVal ue>
<key>desti nati on</ key>
<val ue>l as vegas</val ue>
</ rul eExt ensi onVal ue>
</ rul eExt ensi onVal ues>
</ rul eExt ensi on>
</ rul eExt ensi ons>
<responsibilities>
<responsi bility>
<princi pal Name>user 4</ pri nci pal Narmre>
<act i onRequest ed>A</ act i onRequest ed>
</responsibility>
</responsibilities>
</rul e>
<rul e>
<nane>Tr avel Request - Enpl oyeeRol e</ name>
<docurent Type>Tr avel Request </ docunent Type>
<rul eTenpl at e>Tr avel Request - Tr avel er Rout i ng</rul eTenpl at e>
<descri ption>Travel er Routing</description>
<responsibilities>
<responsi bility>
<rol e>edu. sanpl eu. travel . wor kf | ow. Enpl oyeeAttri but e! enpl oyee</rol e>
<act i onRequest ed>A</ act i onRequest ed>
</responsibility>
</responsibilities>
</rul e>
<rul e>
<nane>Tr avel Request - Super vi sor Rol e</ nane>
<docurnent Type>Tr avel Request </ docunent Type>
<rul eTenpl at e>Tr avel Request - Super vi sor Rout i ng</rul eTenpl at e>
<descri pti on>Supervi sor Routing</description>
<responsibilities>
<responsi bility>
<r ol e>edu. sanpl eu. travel . wor kf | ow. Enpl oyeeAttri but e! supervi sr</rol e>
<act i onRequest ed>A</ act i onRequest ed>
</responsibility>
</responsibilities>
</rul e>
<rul e>
<nane>Tr avel Request - Di r ect or Rol e</ nanme>
<docurnent Type>Tr avel Request </ docunent Type>
<rul eTenpl at e>Tr avel Request - Super vi sor Rout i ng</rul eTenpl at e>
<descri ption>Dean/ Di rect or Routing</description>
<responsibilities>
<responsi bility>
<rol e>edu. sanpl eu. travel . wor kf | ow. Enpl oyeeAttri bute! director</rol e>
<act i onRequest ed>K</ act i onRequest ed>
</responsibility>
</responsibilities
</rul e>

46

KEW

<rul e>
<name>Tr avel Request - Fi scal Of fi cer Rol e</ nanme>
<docunent Type>Tr avel Request </ docunent Type>
<rul eTenpl at e>Tr avel Request - Account Rout i ng</rul eTenpl at e>
<descri ption>Fi scal Oficer Routing</description>
<responsi bilities>
<responsi bility>
<rol e>edu. sanpl eu. travel . wor kf | ow. Account Attri but e! FO</ r ol e>
</responsi bility>
</responsibilities>
</rul e>
</rul es>
</ dat a>

Client PlugIn Steps

Your plugin should contain Java classes that correspond to the attributes defined in the XML
configuration file. The Travel Request Sample Client contains two attribute classes: EmployeeAttribute
and AccountAttribute. Each of these classes implements these two interfaces:

org. kuali.rice.kew rule. Rol eAttribute
org. kuali.rice.kew. rule.WorkflowAttribute

Using the EmployeeAttribute as an example, here are the implementations for the Rol eAttribute interface:

getRoleNames() - Returns a list of role names to display on the routing rule GUI in the KEW web
application:

private static final Map ROLE_|I NFO
static {

ROLE_I NFO = new TreeMap();

ROLE_I NFO. put (EMPLOYEE_ROLE_KEY, "Enpl oyee");

ROLE_I NFO. put (SUPERVI SOR_RCLE_KEY, "Supervisor");

ROLE_I NFO. put (DI RECTOR_ROLE_KEY, "Dean/Director");
}

public List getRol eNames() {
Li st rol eNames = new ArrayList();
for (lterator iterator = roles.keySet().iterator(); iterator.hasNext();) {
String roleName = (String) iterator.next();
rol eNanes. add(new Rol e(get d ass(), rol eNanme, roleNane));

return rol eNanes;

}
getQualifiedRoleNames() - Returns alist of strings that represents the qualified role name for the given
roleName and XML docContent which is attached to the workflow document:
/**
* Returns a String which represent the qualified role nane of this role for the given
* rol eNane and docContent.
* @aramrol eName the role name (w thout class prefix)
* @ar am docunent Cont ent the docunent content
&/

public List<String> getQualifiedRol eNanmes(String rol eNane, Docunent Content docunentContent) {
Li st<String> qualifiedRol eNames = new ArraylList<String>();
Map<String, List<String>> qualifiedRoles = (Map<String, List<String>>)roles.get(roleNane);
if (qualifiedRoles != null) {
qual i fi edRol eNanes. addAl | (qual i fi edRol es. keySet ());
} else {
throw new |1 egal Argunment Excepti on(" Test Rul eAttri bute does not support the given role " + rol eNane);

47

KEW

}
return qualifiedRol eNanes;
}
resolveQualifiedRole() - Returns alist of workflow users that are members of the given Qualified Role.
(Used to help determine to whom to route the document.):
/**

* Returns a List of Workflow Users which are nenbers of the given qualified role.
* @aram rout eCont ext the RouteContext
* @aramrol eNane the rol eNane (without class prefix)
* @aram qualifiedRole one of the the qualified role names returned fromthe {@ink
#get Qual i fi edRol eNanes(String, Docunent Content)} nethod
* @eturn Resol vedQualifiedRole containing recipients, role |abel (nmobst likely the roleNanme), and an
annot ati on
*/

publ i c Resol vedQualifiedRol e resol veQualifiedRol e(Rout eContext routeContext, String roleNane, String
qualifiedRole) {
Resol vedQual i fi edRol e resol ved = new Resol vedQual i fi edRol e();
Map<String, List<String>> qualifiedRoles = (Map<String, List<String>>)roles.get(roleNane);

if (qualifiedRoles != null) {
Li st<String> recipients = (List<String>)qualifiedRol es.get(qualifiedRole);
if (recipients = null) {
resol ved. set Qual i fi edRol eLabel (qualifiedRole);
resol ved. set Reci pi ent s(convert Princi pal | dLi st (recipients));
} else {
throw new |11 egal Argunent Excepti on(" Test Rul eAttribute does not support the qualified role " +
qual i fi edRol e);
}

} else {
throw new I egal Argunent Excepti on(" Test Rul eAttri bute does not support the given role " + rol eNane);
}

return resol ved;

Using the EmployeeAttribute example, here are the implementations for the Wor kflowAttribute interface:

getRoutingDataRows() — Returns a list of RoutingDataRows that contain the user interface level
presentation of the ruleData fields. KEW uses the ruleData fields to determine where a given document
would be routed according to the associated rule:

public List<Row> get RoutingDataRows() {
Li st <Row> rows = new ArrayLi st <Row>();
List<Field> fields = new ArrayLi st<Fi el d>();
fields.add(new Fi el d("Travel er username", "", Field. TEXT, false, USERI D FORM FI ELDNAME, "", false, false,
null, null));
rows. add(new Row(fields));
return rows;

getDocContent() - Returns a string containing this Attribute's routingData values, formatted as a series
of XML tags:

public String getDocContent() {
String docContent = "";

if (I'StringUtils.isBlank(_uuid)) {
String uuidContent = Xm Utils. encapsul at e(UUl D_PARAMETER TAGNAME, _uui d);

docContent = _attributeParser.w apAttributeContent(uuidContent);
}

return docContent;

48

KEW

validateRoutingData() - Validates routingData values in the incoming map and returns a list of errors
from the routing data. (The user interface calls validateRoutingData() during rule creation.):

public List validateRoutingData(Mp paranivap) {
List errors = new Arraylist();

String principal Nane = StringUtils.trin((String) paranivap. get (PRI NCI PAL_NAME_FORM Fl ELDNAME)) ;
if (isRequired() && StringUtils.isBlank(principal Nane)) {
errors. add(new Wor kfl owServi ceErrorl npl ("princi pal Name is required",
"accountattribute. principal Nane.required"));

}

if (I'StringUils.isBlank(principal Nane)) {
Ki nPrinci pal I nfo principal =
Kl MSer vi ceLocat or . get | denti tyServi ce().get Princi pal ByPrinci pal Nane(pri nci pal Nane) ;

if (principal == null) {
errors. add(new Workfl owServi ceErrorlnpl ("unable to retrieve user for principal Name '" +
principal Nare + "'", "accountattribute. principal Nane.invalid"));
}
if (errors.size() == 0) {

_princi pal Nane = princi pal Nane;

}

return errors,;

Build PostProcessor and Services

The PostProcessor class should implement the interface:

org. kual i .rice. kew. post processor. Post Processor Renot e

Y ou should use this interface for business logic that should execute when the document transitions to a
new status or when actions are taken on the document. The PostProcessor for the Travel Request Client
istheclass:

org. kuali.rice.kns.workfl ow. post processor. Kual i Post Processor

that implements the doRouteStatusChange() method to update the status of the travel document in the
Travel database. The KualiPostProcessor in this case is the standard PostProcessor used on all documents
that are built on the KNS framework.

Package Pluglin

Depending on how the application has been developed (i.e. embedded workflow engine vs. using the
engine asaremote service) it may be necessary to package components like the PostProcessor into a plug-
in. See the Workflow Plugln Guide for details on how to do this.

Client Web Application Steps
Build the Web Application

Beginto build aKuali Enterprise Workflow the same as you build any other Java-enabled web application.
Y oubuilditwith all thebusinesslogic for the application and, for example, communication to theworkflow
engine using web services.

49

KEW

As an example, the Travel Request Client Web Application uses Struts, Spring, and OJB.

Build the Service that Connects to the Workflow Engine

For therest of thissection, thisguiderefersto the Javaapplication communicating withthe Kuali Enterprise
Workflow as the Client Application. The Client Application needs a service that will interact with the
workflow system. This service will perform actions such as locating a document in the workflow system
and routing the document.

Below are examples from the Travel Request Sample Client. The methodsin the Travel DocumentService
class find a TravelDocument in the workflow system, save and route a Travel Document, and validate a
Travel Document.

findByDocHeader I d() - Finds a Document in the workflow engine:

public Travel Docunent findByDocHeader!d(Long docHeaderld, String principalld) {

if (docHeaderld == null) {
throw new I egal Argunent Exception("invalid (null) docHeaderld");

}
Travel Docunment result = travel Docunent Dao. fi ndByDocHeader | d(docHeader | d) ;
if (result !'=null) {
/1 convert DocAccountJoins into Financial Accounts
ArraylLi st accounts = new ArrayList();
for (lterator joins = result.getDocAccountJoins().iterator(); joins.hasNext();) {
Docunent Account Join join = (Document AccountJoin) joins.next();
Fi nanci al Account account = financial Account Servi ce. fi ndByAccount Nunber (j oi n. get Account Nunber ());
accounts. add(account) ;
resul t. set Fi nanci al Account s(accounts);
try {
Wor kf | owDocunent docunent = new Wor kf | owDocunent (princi pal 1d, result.getDocHeaderld());
} catch (Workfl owException e) {
LOG error ("caught Workfl owException: ", e);
t hrow new Runti neException(e);
}
}

return result;

The TravelDocumentServicel mpl class populates the attribute values on the workflow document
(Employee, Account) that will be used for future routing. It does this by calling its getEmpl oyeeAttribute()
and getAccountAttribute() methods and adding the results to the workflow document by calling the
addAttributeDefinition() method.

private WorkflowAttributeDefinitionVO get Enpl oyeeAttribute(Travel Docunent travel Docunent) {

Wor kf | owAt t ri but eDefi niti onDTO attrDef = new

Wor kf | owAt t ri but eDefini ti onDTQ(" edu. sanpl eu. travel . wor kf | ow. Enpl oyeeAttribute");

String princi pal Nane = travel Docunent . get Travel er User nane() ;
attrDef.addConstructor Paranet er (princi pal Nane) ;
return attrDef;

private List getAccountAttributes(Travel Docunent travel Docunent) {

Li st accounts = travel Docunent. get Fi nanci al Accounts();

Li st accountAttributes = new Arraylist();

for (lterator accountlterator = accounts.iterator(); accountlterator.hasNext();) {
Wor kf | owAt t ri but eDefi niti onDTO attrDef = new

Wor kf | owAt t ri but eDefini ti onDTQ(" edu. sanpl eu. travel . wor kfl ow. Account Attri bute");

Fi nanci al Account account = (Financi al Account)accountlterator.next();
at tr Def . addConst ruct or Par anet er (account . get Account Nunber ());
account Attributes.add(attrDef);

}

return account Attributes;

50

KEW

Build the Action Class with Workflow Lifecycle Methods

In the Travel Request Sample Client, the WorkflowDocHandler Action struts action class calls the
workflow lifecycle methods (approve, acknowledge, etc.) on the workflow document.

WorkflowDocHandler Action - Take approve action. (Each workflow action - acknowledge, complete,
etc. - islikethis):

public ActionForward approve(Acti onMappi ng mappi ng, ActionFormform HttpServletRequest request,
Ht t pSer vl et Response response) throws Exception {
LOG i nfo("entering approve() method ...");
DocHandl er For m docHandl er Form = (DocHandl er Form) form
Wor kf | owDocunent docunment = docHandl er For m get Wor kf | owDocunent ()
docurnent . appr ove(docHandl er For m get Annot ation());
saveDocunent Act i onMessage(" general . routi ng. approved", request);
LOG info("forwarding to actionTaken from approve()");
return mappi ng. fi ndForward("acti onTaken");

Set up the WorkflowDocument in the initializeBaseFor mState() method of the DispatchActionBase
from which the Struts action classes inherit. Obtain the workflow document with this line of code:

String principalld = getUserSession(request).getPrincipalld();
Wor kf | owDocunent docunent = new Wor kf | owDocunent (pri nci pal 1d, docld);

Package the Web Application
Package the Client Application (client web application) for deployment the way you normally package

web applications. The Travel Request Sample Web Application does this with an Ant build script. The
dist step of the build.xml script builds the SampleWorkflowClient.war file.

Final Steps
Deploy the Plugin

Deploy the plugin to your workflow installation. Copy the plugin directory structure to your application
plugins directory. Please see the Workflow Plugin Guide for more information.

Deploy the Client Web Application

Deploy the Client Web Application to your Application server the way you normally deploy web
applications.

KEW Configuration
KEW Integration Options

The following integration options are available to applications integrating with KEW:

e Embedded - The KEW engine is embedded into a Java application. The Standalone Rice Server is
required.

51

KEW

» Bundled - Same as Embedded mode except that the entire KEW web application is also embedded into
the Java application. The Standalone Rice Server is not required.

* Remote Java Client — A Java client is used which relies on the service bus to communicate with a
Standalone Rice Server’s KEW services.

» Thin Java Client - A thin Javaclient is used which communicates with a Standalone Rice Server over

remote service calls.

e Web Services - Interacts directly with web services on a Standalone Rice Server.

Table 3.1. Advantages/Disadvantages of KEW Integration Options

Integration Option Advantages Disadvantages
Embedded Integration of database transactions between |+ Can only be used by Javaclients
client application and embedded KEW (via
JTA) * More library dependencies than the Thin
Client model
» Performance - Embedded client talks directly
to database * Requires client application to establish
connections to Kuali Rice database
» No need for application plug-ins on the server
 Great for Enterprise deployment, thereisstill a
single shared Standal one Rice web application
but scalability isincreased because of multiple
Workflow Engines
Bundled « All the advantages of Embedded Mode « Not desirablefor Enterprisedeployment where

No need to deploy a standalone Rice server

Ideal for development or "quickstart"
applications

Application can be bundled with Rice for ease
of development/distribution

Can switch to Embedded Mode for
deployment in an Enterprise environment

more than one application is integrated with
Rice and KEW

More library dependencies than the Thin
Client model and Embedded Mode (additional
web libraries)

Remote Java Client

Relatively simple configuration

Client can access more external KEW services
from the Standal one Rice Server than the Thin
Java Client, and yet the client does not need to
have an embedded KEW engine

Requires client application to be KSB-
enabled, unlike the Thin Java Client

Cannot be used by KNS-enabled client
applications

Thin Java Client * Relatively simple configuration « No transactional integration between client
and server
« Fewer Library Dependencies
¢ Plug-ins must be deployed to the server if
custom routing components are needed
Web Services * Any language which supports web services|s No transactional integration between client

Standalone Server

can be used

and server

Plug-ins must be deployed to the server if
custom routing components are needed

Web Services can be slower than other
integration options

To effectively use any of the KEW integration modes besides bundled, a Standal one Rice Server will need

to be deployed.

Embedded Deployment Diagram

Hereisadiagram illustrating what a sample embedded deployment might look look.

52

KEW

Figure 3.1. Embedded Deployment Diagram example

Rice GLE
4
dopication Code Kuali Rice
Standalone
Emibedded KEN
Engine

r
Custom ldentiny

Graup, &6 Senaces

Bundling the KEW Application

web.xml

Bundled mode is the same as embedded mode except that the client application embeds the entire Kuali
Rice system within it (including the web application). The embedding of the web application portion is
accomplished by utilizing Struts Modules.

Configuration is the same as embedded mode, with the exception of loading the web application portions
in the web.xml:

<filter>
<filter-nanme>UserLoginFilter</filter-nane>
<filter-class>org. kuali.rice. kew web. UserLoginFilter</filter-class>

</filter>
<filter-mappi ng>
<filter-nanme>UserLoginFilter</filter-nane>

<servl et - name>act i on</ servl et - nane>
</filter-nmappi ng>

<servl et>

53

KEW

<servl et - name>act i on</ servl et - nane>
<servl et-cl ass>org. apache. struts. acti on. Acti onServl et </ servl et-cl ass>
other struts configuration if applicable
<init-paranp
<par am nane>confi g/ en</ par am nanme>
<par am val ue>/ en/ VEB- | NF/ st rut s- confi g. xm </ par am val ue>
</init-paranm>
<l oad- on- st art up>0</ | oad- on- st art up>
</servlet>

<servl et>
<servl et - name>r enot i ng</ servl et - nane>
<servl et-cl ass>org. kual i . ri ce. ksb. messagi ng. servl et. KSBDi spat cher Servl et </ servl et - cl ass>
<l oad- on- st art up>1</| oad- on- st art up>

</servl et>

<servl et>

<servl et - name>export </ servl et - nanme>

<servl et-class>org. kuali.rice. kew export.web. Export Servl et </servl et-class>
</servl et>

<servl et>

<servl et - name>at t achnment </ ser vl et - nane>

<servl et-cl ass>org. kual i . ri ce. kew. not es. web. Att achnment Servl et </ servl et -cl ass>
</servl et>

<servl et>

<servl et - name>edocl i t e</ servl et - nane>

<servl et-class>org. kuali.rice.kew edl.EDLServl et</servlet-class>
</servl et>

<servl et - mappi ng>
<servl et - name>r enot i ng</ servl et - nane>
<url -pattern>/renoting/*</url-pattern>
</ servl et - mappi ng>

<servl et - mappi ng>
<servl et - name>act i on</ servl et - nane>
<url -pattern>*.do</url-pattern>

</ servl et - mappi ng>

<servl et - mappi ng>

<servl et - name>export </ servl et - nane>
<url -pattern>/export/*</url-pattern>
</ servl et - mappi ng>

<servl et - mappi ng>

<servl et - name>at t achnent </ ser vl et - name>
<url-pattern>/en/attachment/*</url-pattern>
</ servl et - mappi ng>

<servl et - mappi ng>
<servl et - name>edocl i t e</ servl et - nane>
<url -pattern>/en/ EDocLite</url -pattern>
</ servl et - mappi ng>

org.kuali.rice.kew.web.User L oginFilter — Thisfilter isused to assist the KEW bundled web application
in determining who the authenticated user is. Specificaly, the login filter invokes the KIM identity
management service to determine the identity of the authenticated user.

KEW

<filter>

Typically, a previously executed filter will challenge the user on entry to a Rice web page for their
authentication credentials using CAS or some other form of single sign on (SSO) authentication system.

For development and testing purposes, Rice provides a simple filter implementation that will present a
simple sign on screen. This screen displays only a single login entry field and submit button. The user
can enter their username (no password) and press the submit button, and the system authenticates the user
for entry into the system.

This can be configured as follows in the web.xml:

<filter-nanme>LoginFilter</filter-name>
<filter-class>org. kuali.rice. kew web. UserLoginFilter</filter-class>

</filter>

<filter-mappi ng>
<filter-nanme>LoginFilter</filter-name>
<servl et - name>act i on</ servl et - nane>
</filter-nmappi ng>

and in therice-config.xml:

<param name="filter.login.class">org. kuali.rice.kew web. DummyLogi nFi | t er </ par an>
<param nanme="fi | t er mappi ng. | ogi n. 1" >/ *</ par an>

org.apache.struts.action.ActionServlet - The Struts servlet which loads the KEW Struts module. The
module name should be 'en'. Struts only allows a single Action Servlet so if you are using Struts in your
application, all of your Struts modules will need to be configured using the init-param elements in this
servlet definition.

org.kuali.rice.ksh.messaging.servlet.K SBDispatcher Servlet - A servlet which dispatches http requests
for the Kuali Service Bus (see KSB documentation for more details). The servliet mapping here should
correspond to the serviceServletUr| configuration parameter for the KSBConfigurer.

org.kuali.rice.kew.export.web.ExportServlet - serves exports of lookup results as XML files

org.kuali.rice kew.notes.web.AttachmentServlet - serves attachments that have been attached to
documents using the KEW Notes and Attachments framework

org.kuali.rice.kew.edl.EDL Servlet - The servlet used to interact with eDocLite documents. SeeeDocL ite
documentation for more information.

55

KEW

Bundled Deployment Diagram

Figure 3.2. Bundled deployment diagram

“!'F‘:'EEJT‘"’ h Rice CUII

Bundled Client Aoplication/Rice
Appheaton D abasa

Applicaion Code

¥
Kuali Rice (all modules)

Using the Remote Java Client

Along with the previous embedded configurations, KEW also alows for Remote Java Clients, which
communicate with KEW services that are available on the service bus. Configuration of the remote client
issimilar to that of the embedded client, except that no embedded KEW engine gets set up; instead, the
client relies on the service bus for accessing the KEW services of the Standalone Rice Server.

Caution

Limitations of Remote KEW Java Clients:

At present, KNS-enabled Java clients cannot be used as Remote KEW Java Clients.

Using the Thin Java Client

In addition to the embedded configurations discussed previously, KEW also provides a thin java client
which can be used to talk directly to two KEW services exposed on the service bus.

These KEW services are:

» WorkflowDocumentService - provides methods for creating, loading, approving and querying
documents

56

KEW

» WorkflowUtilityService - provides methods for querying for various pieces of information about the
KEW system

Additionally, accessto two KIM servicesisrequired, as Principal and Group information is needed to use
many of the methods in the KEW services above.

These KIM services are:
 kimldentityService - provides methods to query for Principal and Entity information
» kimGroupService - provides methods to query for Group information

Of course, this configuration requires Standal one Rice Server deployment. The workflow engine deployed
within Standalone Rice Server is used for processing documents that integrate using athin client.

These services are exposed on the KSB as Java services, meaning they use Java Serialization over HTTP
to communicate. Optionally, the KEW services can also be secured to provide access to only those callers

with authorized digital signatures (note that secure access is required for the KIM services). In order to
configure the thin client, the following configuration properties need to be defined.

Required Thin Client Configuration Properties

Table 3.2. Required Thin Client Configuration Properties

Property Description
encryption.key The secret key used by the encryption service; Must match the setting on
the standal one server

keystore.aias Alias of the application's key within the keystore
keystorefile Path to the application's keystore file
keystore.password Password to the keystore and the key with the configured alias
workflowdocument.javaservice.endpoint Endpoint URL for the Workflow Document service
workflowutility.javaservice.endpoint Endpoint URL for the Workflow Utility service
identity.javaservice.endpoint Endpoint URL for the KIM identity service
group.javaservice.endpoint Endpoint URL for the KIM group service

Note

Itissimplest to use anidentical keystore file and configuration in your thin client application to
that on your standalone server.

Optional Thin Client Configuration Properties

Table 3.3. Optional Thin Client Configuration Properties

Property Description

secure.workflowdocument.javaservice.endpoint true/false value indicating if endpoint is secured (defaults to true); Must
match the setting on the standal one server

secure.workflowutility.javaservice.endpoint true/false value indicating if endpoint is secured (defaults to true); Must
match the setting on the standal one server

Thin Client Spring Configuration

Here isthe Spring configuration for athin client in ThinClientSpring.xmi:

57

KEW

<! DOCTYPE beans PUBLIC "-//SPRI NG /DTD BEAN /EN' "http://ww. spri ngfranmework. or g/ dt d/ spri ng- beans. dtd">

<beans>
<l-- point Ricetothe file containing your configuration parans -->
<!-- which should include a paraneter setting kew nbde to "THI N' -->

<bean id="config" class="org.kuali.rice.core.config.spring.Confi gFactoryBean">
<property name="configLocations">

<list>
<val ue>cl asspat h: your Thi nC i ent App- confi g. xm </ val ue>
</list>
</ property>
</ bean>
<l-- Pull your configuration parans out as Properties -->

<bean i d="confi gProperties"
cl ass="org. spri ngframewor k. beans. fact ory. confi g. Met hodl nvoki ngFact or yBean" >
<property name="t arget Cbj ect" ref="config" />
<property name="t ar get Met hod" val ue="get Properties" />
</ bean>
<!-- expose configuration params to Spring -->
<bean cl ass=
"org. springframewor k. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property name="properties" ref="configProperties" />

</ bean>
<l-- The RiceConfigurer that sets up thin client nobde -->
<bean id="rice" class="org.kuali.rice.kew config. KENConfi gurer">
<l-- inject the "config" bean into our configurer -->
<property name="root Config" ref="config" />
</ bean>
</ beans>

For more details on configuring Rice for a thin client, please see the Thin Client Implementation sub-
section of this Technical Reference Guide.

Endpoint URLs

Since KEW and KIM use the KSB to expose their services, the endpoint URLs are the same as those
exported by the KSB.

An example configuration for these might be:

<par am nane=

"wor kf | owndocunent . j avaser vi ce. endpoi nt">htt p://yourl ocal i p/ kr-dev/renoti ng/ Wr kf | owDocunent Act i onsSer vi ce</
par anm»

<par am nane=

"wor kfl owutility.javaservice.endpoint">http://yourlocalip/kr-dev/renmpting/ WrkflowltilityService</paranm>
<par am nane=

"identity.javaservice.endpoint">http://yourlocalip/kr-dev/renoting/kimdentityService</paran>

<par am nane=

"group.javaservice. endpoi nt">http://yourl ocal i p/ kr-dev/renpting/ ki nGroupSer vi ce</ par an>

Thin Client Deployment Diagram

Here is a diagram showing what a thin client deployment might look like.

58

http://site.kuali.org/rice/2.1.7/reference/html/TRG.html#thin_client

KEW

Figure 3.3. Thin client deployment diagram

Aoplication
Code

KEW Thin Kuali Rice Rice

/|

Javasenallzaion

Customized

aver HTTP Services
r
Flug=in
Registry
Custom ldentity
Group, eic, serdces
Application
Flug-ins

Picture of an Enterprise Deployment

As can be seen from the various integration options described, a KEW Enterprise Deployment (and Kuali
Ricein general) might very well be a distributed environment with multiple systems communicating with
each other.

The diagram below shows what a typical Enterprise deployment of Kuali Rice might look like.

59

KEW

Figure 3.4. Typical enterprise deployment of Kuali Rice

Kuali Rice
Standalone Cluster

[=]-1]
Browsear
e¢DoC Lite
Action List
Document Search
Foute Log
Fules, aic
EEW
Embedded Other Apps
Client A Connecied

KEW Core Parameters

KEW
Embedded
Cliem B

The display below includes those basic set of parameters for rice-config.xml as the minimal parameters
to startup the Rice software. These parameters are a beginning reference to you for modification to your

rice-config.xml.

Note

Please verify that your application.url and database username/password are set correctly.

Table3.4. KEW Core Parameters

Core

Description Examples\Values
workflow.url URL to the KEW web module (i.e,
${ application.url}/en)
plugin.dir Directory from which plugins will be loaded

attachment.dir.location

Directory where attachments will be stored

As a minimum, you must enable the dummy login filter by adding these lines to the rice-config.xml file

for default login screen:

<param nanme="filter.login.class">org. kuali.rice.kew web. DummyLogi nFi | t er </ par an>
<param nanme="fi | t er mappi ng. | ogi n. 1" >/ *</ par an>

60

KEW

KEW Configuration Properties

Table 3.5. KEW Configuration Properties

Property Description Default
actionlist.outbox Determines if the KEW actionlist "outbox" (ie, | false
the actions already completed) will be viewable
by users of the Rice application.
actionlist.outbox.default.preference.on Determinesif the KEW actionlist "outbox" isthe| false

default mode for viewing the action list.

base.url Base URL under which Action List and other | Example: if your action list URL is http:/
KEW screens can be found yourlocalip/en/ActionList.do, set this property to
http://yourlocali
client.protocol Same as clientProtocol property on|embedded

KEWConfigurer, this property can be configured
in either place

data.xml.root.location

The temporary location of files being processed
by the KEW XmlPollingService

Itmp/${ environment} /kew/xml

document.lock.timeout

Used by the Oracle database platform to
determine how long database locks on the
document header are used

email.reminder.lifecycle.enabled

If true, turns on timed job to send out regular e
mails to remind users of actions still waiting in
their action list

extra.classes.dir

Directory where classes for KEW plugins are
located

extralib.dir Directory where libraries for KEW plugins are
located
kew.mode The mode that KEW will run in; choices are|loca
"local", "embedded", "remote”, or "thin"
kew.url The base URL of KEW services and pages ${ application.url}/kew
plugin.dir Directory to load plugins from if the Plugin
Registry is enabled
plugin.registry.enabled If set to true, then the Plugin Registry will be|false

enabled and any available pluginswill be loaded
(see Workflow Plugin Guide)

attachment.dir.location

When using the attachments system, this is the
directory where attachments will be stored

data.xml.loaded.location

Directory path where the XML Loader will store
successfully loaded XML files

data.xml.pending.location

Directory path where the XML Loader will look
for filesto ingest

dataxml.pollInterval Secs

Interval in secondsthat the XML Loader will poll
the pending directory for new XML filesto load

data.xml.problem.location

Directory path where the XML Loader will put
XML filesit failed to load

datasource.platform

The fully qualified class name
of an implementation of the
org.kuali.rice.core.database.platform.Platform
interface

default.note.class

The fully qualified class name
of the default implementation of
org.kuali.rice.kew.notes.CustomNoteAttribute
to use for the Notes system

org.kuali.rice.kew.notes.CustomNoteAttributel mpl

edl.config.loc Location to load the EDocLite component | classpath:META-INF/EDL Config.xml
configuration from
embedded.server Indicatesif an embedded instanceis supposed to | false

behave like a standalone server. See additional
notes below under embedded.server

Identity.useRemoteServices

Configuration parameter that governs whether a
number of common identity services (user and

61

http://yourlocalip/en/ActionList.do
http://yourlocalip/en/ActionList.do
http://yourlocalip/

KEW

Property Description Default

group service) are exported or retrieved via the
bus. If thisflag is set to true then:

1. user and group servicewill NOT be published
the bus, and

2. CoreResourceLoader will short-circuit the
resource loader stack lookup and go directly
to the bus to obtain these services,
circumventing any beans that may be defined

by local modules.
initial DelaySecs Delay in seconds after system starts up to begin
the XML Loader polling
rice.kew.enableK ENNotification Determines if KCB notifications should be sent | true

for KEW events when Action Item events occur

rice.kew.struts.config.files The struts-config.xml configuration file that the | /kew/WEB-INF/struts-config.xml
KEW portion of the Rice application will use

workflow.documentsearch.base.url The URL for the document search page ${ workflow.url}/DocumentSearch.do?
docFormK ey=88888888& amp;returnL ocation=
${ application.url}/

portal.do& amp;hideReturnLink=true

xml.pipelinelifecycle.enabled If set to true, will poll a directory for new Rice|false
configuration XML and ingest any new XML
placed in that directory

The ‘embedded.server’ Parameter

If embedded.server parameter is enabled (set to true), then two additional features will be loaded when
KEW is started:

1. XML Loader
2. Email Reminders

The XML Loader will poll a directory for XML files to ingest into the system (as configured by the
dataxml.* properties).

The Email Reminders will handle sending Daily and Weekly batch emails for users that have their
preferences set accordingly.

The ‘datasource.platform’ Parameter

KEW requires and uses the database platform implementation in order to function. These may be be
implemented differently for each support database management system.

The current functional implementations of this platform are:
* org.kuadli.rice.core.database.platform.OraclePlatform

« org.kuali.rice.core.database.platform.Oracle9iPlatform (deprecated and just an aias for the
OraclePlatform)

» org.kuali.rice.core.database.platform.MySQL Platform
Custom Servlet Filters
When running a Standalone Rice Server, you may want to implement your own filters for authentication

purposes. The system comes with a special filter that will read filter definitions and mappings from the
configuration system.

62

KEW

The Bootstrap Filter isagenericfilter that is applied to all web requests, which then delegatesto any filters
and are setup through the default configuration. This mechanism allows registration of institution-specific
filters without the necessity of modifying the web application configuration file (/WEB-INF/web.xml)
within the standal one webapp.

Filter syntax is asfollows:

<param nane="filter.filter name.class">class name of filter</paranm>

filter nameis an arbitrary name for your filter:

<param nane="filter.nyfilter.class">edu.institution.organization. MyFilter</paran>

Any number of configuration parameters may be defined for a given filter asfollows:

<param nane="filter.filter name.filter param name">filter param val ue</ parane

For example:

<param name="filter.nyfilter.col or">red</paranp

<param name="filter.nyfilter.shape">square</ paran>

For custom filtersto be invoked, they must first be mapped to requests. That is done viathefilter mapping
parameter:

<param name="filtermappi ng.filter name.optional order index">path matching expression</paran>

filter name is the name of your previously defined filter, optional order index is an optional integer used
to specify the position of the filter in the invocation order, and path matching expression is a Servlet-
specification-compatible url pattern.

<param nanme="fi |t er mappi ng. nyfilter.1">/ speci al / pat h/ </ par an>

If an order index isnot specified, it isassumed to be 0. Filters with equivalent order are ordered arbitrarily
with relation to each other (not in order of filter or mapping definition). A full example follows:

<param nane="filter.nyfilter.class">edu.institution.organization. MyFilter</paran>
<param nane="filter.nyfilter.col or">red</paranr

<param name="filter.nyfilter.shape">square</ paran>
<param nane="filter.securityfilter.class">edu.institution.organization.SecurityFilter</paran

<param nane="filter.securityfilter.secretKey">abracadabra</ paranr
<param nane="filter.conpressionfilter.class">edu.institution.organization. ConpressionFilter</paran>
<param nane="filter.conpressionfilter.conpressLevel ">5</paranm>

<param name="fi | t er mappi ng. securityfilter.1">/secure/ </ paran>

<param nane="fi | t er mappi ng. nyfilter.2">/ speci al / pat h/ </ par an>

63

KEW

<param nane="fi | t er mappi ng. conpressi onfil ter.3">/*</ paranr

Email Configuration

KEW can send emails to notify users about items in their Action List (depending on user preferences).
Email in KEW uses the JavaMail library. In order to configure email, you will need to configure the
appropriate JavaMail properties. A list of those properties can be found at the end of the page at the
following url: http://java.sun.com/products/javamail/javadocs/javax/mail/package-summary.html

In addition to these standard JavaMail properties, you can also set the following optional properties to
configure simple SMTP authentication.

Table 3.6. Optional Propertiesto Configure Simple SMTP Authentication

Property Description Examples/Vaues
mail.transport.protocol The protocol used to sending mail smtp

mail.smtp.host Thisis the host name of the SMTP smtp.secureserver.net
mail.smtp.username Theusername used for accessto the SMTP server

mail.smtp.password Thepassword used for accessto the SMTP server

Of course, if the authentication required by your mail server is beyond the abilities of the above
configuration, it is possible to override the enEmail Service loaded by the KEW module and implement
acustom email service.

In order for KEW to send out emails, several steps need to be done. In order to have KEW send out
any emails, the “SEND_EMAIL_NOTIFICATION_IND” KNS System Parameter needs to be set to
‘Y'. For emails to real people, the environment code must be set to ‘prd’. If thisis not set to ‘prd’,
an email can till be sent out to a test address. This test address is set by the KNS System Parameter,
“EMAIL_NOTIFICATION_TEST _ADDRESS’. Emails sent in a test system will only be sent to the
address specified by the EMAIL_NOTIFICATION_TEST_ADDRESS. The “from” address may also be
set with a System Parameter. To do this, set the “FROM_ADDRESS’ System Parameter to the email
address you want the KEW emails sent from. If the FROM_ADDRESS parameter doesn't exist or isn’t
set, it will default to “admin@local host”.

Periodic Email Reminders
KEW can send emails on a nightly or weekly basis to remind users about items in their Action List

(depending on user preferences). Thefollowing set of parameters configures whether the processesto send
these reminders will run, and at what time(s) of day they will do so.

Table 3.7. Configuration Parametersfor Email Reminders

Property Description Examples/Values
email.reminder.lifecycle.enabled Enable periodic KEW reminder emails true
dailyEmail.active Enable daily reminder emails true
dailyEmail.cronExpression Configures the schedule on which|001**?

the daily reminder emails are

sent - see org.quartz.CronExpression,

org.quartz.CronTrigger for information about the
format for this parameter

weeklyEmail .active Enable weekly reminder emails true

weeklyEmail.cronExpression Configures the schedule on which|002?* 2
the weekly reminder emals ae

64

http://java.sun.com/products/javamail/javadocs/javax/mail/package-summary.html

KEW

Property | Description | Examples/Values
sent - see org.quartz.CronExpression,
org.quartz.CronTrigger for information about the
format for this parameter

Workflow Preferences Configuration

Workflow users have the ability to update their preferences by going to the “ User Preferences’ page. The
default values for many of these preferences can now be configured.

For example, institutions will commonly override the default action list email preference. By default it's
set to “immediate,” but it can be configured to “no”, “daily”, “weekly”, or “immediate.” The user will still
be able to override the defaults on their User Preferences screen.

Here alist of workflow preferences that can be configured:

<!-- Default Option for Action List User Preferences. -->

<par am nanme="user Opt i ons. def aul t. col or">whi t e</ par an»>

<!-- emil

options: no, daily, weekly, imediate -->

<par am nanme="user Opti ons. defaul t. enmai | " >i medi at e</ par an>

<par am nanme="user Opti ons. defaul t. noti fyPrimary" >yes</paran®

<par am nanme="user Opt i ons. defaul t. noti f ySecondary" >no</ paran
<par am nanme="user Opt i ons. def aul t. openNewW ndow' >yes</ par an

<par am nanme="user Opti ons. defaul t. acti onLi st Si ze" >10</ par an»

<par am nanme="user Opti ons. defaul t.refreshRate" >15</paranp

<par am nanme="user Opt i ons. def aul t. showAct i onRequi red" >yes</ paran»

<par am nanme="user Opt i ons. def aul t. showDat eCr eat ed" >yes</ paran>

<par am nanme="user Opt i ons. def aul t. showDocunent Type" >yes</par an>

<par am nanme="user Opt i ons. def aul t. showDocunent St at us" >yes</ par an»>

<par am nanme="user Opti ons. defaul t. show nitiator" >yes</paran

<par am nanme="user Opt i ons. def aul t. showDel egator" >yes</ paran

<par am nanme="user Opti ons. defaul t. showTi tl e" >yes</ paran>

<par am nanme="user Opt i ons. def aul t . showor kgr oupRequest " >yes</ par anm>

<par am nanme="user Opt i ons. def aul t. showCl ear FYI " >yes</ par an»>

<par am nanme="user Opt i ons. def aul t. showLast ApprovedDat e" >no</ par an»

<par am nanme="user Opt i ons. def aul t. showCurr ent Node" >no</ par anm>

<par am nanme="user Opt i ons. def aul t. useQut Box" >yes</ paranp

<!-- delegatorFilterOnActionList: "Secondary Del egators on Action List Page" or "Secondary Del egators only on
Filter Page" -->

<par am nanme="user Opt i ons. def aul t. del egator Fi | ter OnActi onLi st" >Secondary Del egators on Action List Page</paran>

<par am nanme="user Opti ons. defaul t. pri maryDel egator Fi | ter OnActi onList" >Primary Del egates on Action List Page</

par ane

Outbox Configuration

The Outbox is a standard feature on the Action List and is visible to the user in the Ul by default. When
the Outbox is turned on, users can access it from the Outbox hyperlink at the top of the Action List.

The Outbox is implemented by heavily leveraging existing Action List code. When
an Action Item is deeted from the Action Item table as the result of a
user action, the item is stored in the KEW_OUT_BOX_ITM_T table, using the
org.kuali.rice.kew.actionitem.OutboxltemActionL istExtension object. This object is an extension of
the ActionltemActionListExtension. The separate object exists to provide a bean for OJB mapping.

TheWorkflow Preferencesdetermineif the Outbox isvisible and functioning for each user. The preference
iscaled Use Outbox. In addition, you can configure the Outbox at the KEW level using the parameter tag:

<par am nanme="act i onl i st. out box" >t rue</ par an»

65

KEW

When the Outbox is set to false, the preference for individual users to configure the Outbox is turned off.
By default, the Outbox is set to true at the KEW level. Y ou can turn the Outbox off (to hide it from users)
by setting the property below to false:

<par am nane="actionl i st. out box. defaul t. preference. on">f al se</ par an>

This provides backwards compatibility with applications that used earlier versions of KEW.

Notes on the Outbox:

 Actions on saved documents are not displayed in the Outbox.

» The Outbox respondsto all saved Filters and Action List Preferences.

* A unique instance of a document only exists in the Outbox. If a user has a document in the Outbox

and that user takes action on the document, then the original instance of that document remains in the
Outbox.

Implementing KEW at your institution

In addition to the previous discussion of KEW configuration, there are a few other aspects relevant to
implementing KEW at your institution.

Bootstrap data

Because the operation of parts of KEW is dependent on a set of Document Types and Attributes being
available within the system, there is some bootstrap XML that you will want to import. The easiest way
to do thisis to import the files in the following locations using the XML Ingester:

* kns/src/main/config/xml/RiceSampl eA ppWorkflowBootstrap.xml

* kew/src/main/config/bootstrap/edlstyle.xml

» kew/src/main/config/bootstrap/widgets.xml

Thesefiles include the following:

» Application constants: cluster-wide configuration settings

 Core document types and rules: afew primordial document types and rules are required for the system
to function

» Default "eDocLite" styles: these are required if you wish to use eDocL ite

» Default admin user and workgroup: these are depended upon (at the moment) by the core document
types and rules, as well as referred to by the default application constants

Application constants you may want to change:

» Config.Application.AdminUserList: this should be set to a space-delimited set of administrative user
names

» Workflow.AdminWorkgroup: thisshould be set to aninstitutional adminworkgroup; if the default KEW
workgroup serviceis used, this can be left to the default, WorkflowAdmin

66

KEW

e Config.Mailer.FromAddress. this should be changed to an address specific to your institution, e.g.
kew@your-university.edu

» HelpDeskActionList.helpDeskActionListName: set to an workgroup at your institution

» ApplicationContext: set to the context path of the KEW application, if it differs from the environment
default, e.g. "en-prod” instead of "en-prd"

In the core document types and rules config, you will need to change:

* superUserWorkgroupName, blanketApproveWorkgroupName, and exceptionWorkgroup: should be set
to the administrative group at your institution. If you are using the default workgroup service, this can
be left as WorkgroupAdmin

+ ensure al docHandler elements, if they specify a URL, specify: "${ base.url}/en-dev/Workgroup.do?
methodToCall=docHandler", and ensure that the base.url config parameter is specified in your
configuration (as mentioned above)

KEW Administration Guide

Thisguide providesinformation on administering aKuali Enterprise Workflow (KEW) installation. Out of
the box, KEW comeswith adefault setup that workswell in development and test environments. However,
when moving to a production environment, this setup requires adjustments. This document discusses basic
administration as well as instructions for working with some of KEW’ s administration tools.

Configuration Overview

You configure KEW primarily through the workflow.xml file. Please see the KEW Configuration
Parameters guide for more information on initial configuration of a KEW installation.

Application Constants

Application Constants are the configuration elements in KEW. Each constant is modifiable at system
runtime; any changes take effect immediately in KEW. Application Constants are stored in a cluster-safe
cache and propagated across all machines when change occurs. For more information about Application
Constants, please refer to Application Constants.

Production Environments

When rolling KEW out into a production environment, there are application constants which you may
need to change:

» ActionList.sendEmailNatification - Thisis usualy set to false in test environments so emails aren’t
generated during testing. Usualy, this is set this to true in a production environment to alow email
notifications. Y ou also need to ensure that your email service is configured properly to allow KEW to
send notifications.

» ApplicationContext - In aproduction environment, thisis usually something like en-prd. Y ou must set
this value correctly so that KEW’ s email notifications contain valid links.

» Backdoor.ShowbackDoor L ogin - The backdoor login allows users to masquerade as other users for
testing purposes. It is recommended that you set this value to false in a production environment.

67

KEW

» RouteManager Pool.numW or kers— The appropriate value for this depends on the capabilities of your
production hardware. If it's set too high, KEW may use so much of the CPU that other applications
running on the same machine are adversely impacted.

* RouteManager QueuewaitTime - In test environments, users tend to be more sensitive to immediate
feedback since they may be testing processes over the course of acouple minutesthat, in practice, occur
over a number of days. In test environments, it is recommended that you keep this value low. In a
production environment, you can reasonably increase this value without affecting the speed at which
documents are routed. This reduces thrashing on the route queue.

* RouteQueue.isRoutingByl PNumber - If you are running your production KEW system in a clustered
environment, set this value to false. This allows processing of documents in the queue to be distributed
across the entire cluster, which enhances routing performance and facilitates load balancing.

* RouteQueue.maxRetryAttempts - As with the RouteManagerQueue.waitTime constant, in a test
environment it isimportant to find out as quickly as possible if adocument is going to go into exception
routing (usually indicating a problem in that document's routing setup). In a production environment, it
may make senseto allow alonger period before adocument goes into exception routing. This constant,
in combination with the RouteQueue.timel ncrement constant, determines how long it takes a document
to be put into exception routing.

* RouteQueue.timel ncrement - Increasing this value results in a longer time before a document goes
into exception routing.

XML Ingestion

KEW relieson XML for data population and routing configuration. XML Ingester is available from the
Administrator channel in the portal. This allows import of various KEW components from XML, such
as DocumentTypes, RuleAttributes, Rules, Workgroups, and more.

Uploading an eDocLite form
To upload XML, go to Ingester Ul and select the XML file that you want to import:

Figure 3.5. Ingester

Ingester

XML File: | Choose File | no file selected

XML File: | Choose File | no file selected

XML File: | Choose File | no file selected

XML File: | Choose File | no file selected

XML File: | Choose File | no file selected

XML File: | Choose File | no file selected

XML File: | Choose File | no file selected

XML File: | Choose File | no file selected

XML File: | Choose File | no file selected

XML File: | Choose File | no file selected

upload xml data

After upload, notice the red arrow and the statement, Ingested xml doc: <name of file>:

68

KEW

Figure 3.6. Ingestion Complete

Ingester

= Ingested xml doc: 7-0AA_InterviewRequestEdl.xml

XML File:
XML File:
XML File:
XML File:
XML File:
XML File:
XML File:
XML File:
XML File:

XML File:

Message Queue Administration

The Message Queue is the main scheduling mechanism in KEW. Y ou use it to schedule documents for
asynchronous routing and to queue arbitrary units of work. When KEW places a document into exception
routing, it may become stuck after a series of failed attempts. Y ou can use the Route Queue Ul to resolve

| Choose File

no file selected

| Choose File

no file selected

[Choose File

no file selected

| Choose File

no file selected

[Choose File

no file selected

| Choose File

no file selected

[choose File

no file selected

| Choose File

no file selected

| Choose File

no file selected

| Choose File

no file selected

upload xml data

thisissue, as well asto fix new entries, if needed.

Examining the Message Queue

The main Message Queue screen:

Figure 3.7. M essage Queue Screen

Xworkflow tefresn page

Current Node Info

Message ID
Service Name: | |
Service Namespace.
IP Number: | |
Queue Status: | [ROUTING

App Specific Value 1

App Specific Value 2

Filter
((Execute Message Fetcher)

Dacuments currently in route queue: 20

20 items retrieved, displaying all items

1P Number

Servies
Namespace
RICE
RICE
RICE
RICE
RICE
RICE
RICE

Examining this sample screen, we see there are 20 entries in the message queue, one on each row. The

columns display information about each entry:

* Message Queue Id - The primary key of this route queue entry in the data store

9828162

69

KEW

» Service Name
» Service Namespace

e |PNumber - ThelP address of the machine on which the entry was created. In the environment pictured,
we havethreemachinesin our cluster. The | P number showsfrom which machine each entry was queued

up.

* Queue Status— The entry can be in astate of QUEUED, ROUTING, or EXCEPTION:
* A QUEUED entry iswaiting for aworker thread to pick it up.
* A ROUTING entry currently has aworker working on it.

* An EXCEPTION entry has a problem and the route manager cannot access it. An administrator
manually setsan EXCEPTION statusto suspend aroute queue entry until aproblem can be diagnosed.

e Queue Priority - The priority of the entry in the queue, where entries with the lowest number are
processed first

e Queue Date - The date that KEW should process this queue entry. If the queue checker runs and
discovers the queue date for an entry is equal to or earlier than the current time, it processes that entry.

e Expiration Date

e Retry Count - The number of times KEW has attempted to process the entry

» App Specific Value 1 - The parametersto be passed to the Route Queue processor such as document ID
» App Specific Value 2 - The parameters to be passed to the Route Queue processor

 Action - The Edit link in the Action column allows you to edit the route queue entry.

Once a message entry has been successfully processed, it is deleted from the queue.

Diagnosing and Fixing Problems

Sometimes it is necessary to manually edit a route queue entry that is halted inside of the queue. This
situation might happen when:

» KEW encountersan error trying to put the document into exception routing. Thiscould occur if thereisa
database error or the document's PostProcessor throws an exception when it'snotified of astatus change

» KEW isimproperly shut down in the middle of an entry being processed

 The database goes down while an entry is being processed

In al cases, the status of the entry is ROUTING, but there is no longer a worker thread processing the
entry. Currently, KEW doesn't implement any auto-detection of failure cases. To put one of these entries

in a state where it can be picked up by the route manager again, smply click the Edit link and set the
entry’s status back to QUEUED. Here's a screen shot of the Route Queue Entry - Edit screen:

70

KEW

Figure 3.8. Route Queue Entry Edit Screen

Xworkflow ks cuweue

Route Queus Entry

Existing Route Queue Values

Route Queus [d:| 1357006

Docurnent Id: | 550176

Queue Priority: | 21

Queue Status: | R
Queue Dake: | 07/12/2006
Retry Count: | 1

IP Number: | 129.79.210.179
Frocessor Class Name:

Processor Yalus:

quewve document delete

New Route Queue Yalues

1357006 2
550176 ¥
Iu_v 7
q k4
07/12/2006 T
3
129.79.210.079 b i

reset

clear

Use the Queue Status dropdown list to change the status of the entry. Y ou may also want to set the Retry
Count to zero to allow you to diagnose the problem before the document goes into exception routing.

KEW System Parameters

System Parameters Covered

Table 3.8. KEW System Parameters

Name

Vaue

Description

MAX_MEMBERS_PER PAGE

20

The maximum number of role or group members to
display at once on their documents. If the number
is above this value, the document will switch into a
paging mode with only this many rows displayed at
atime.

PREFIXES

Ms;Mrs,Mr;Dr

SUFFIXES

Jr;Sr;Mr;Md

CHECK_ENCRYPTION_SERVICE_OVERRIDE_IND

Y

Flag for enabling/disabling (Y/N) the demonstration
encryption check.

DATE_TO_STRING_FORMAT_FOR_FILE_NAME

yyyyMMdd

A single date format string that the
DateTimeService will use to format dates
to be wused in a file name when
DateTimeServicelmpl.toDateStringForFilename(Date)
is called. For a more technica description of
how characters in the parameter value will be
interpreted, please consult the Java Documentation
for javatext.SimpleDateFormat. Any changes will
be applied when the application is restarted.

DATE_TO_STRING_FORMAT_FOR_USER_INTERFACE

MM/ddlyyyy

A singledateformat string that the DateTimeService
will use to format a date to be displayed on a
web page. For a more technical description of
how characters in the parameter value will be
interpreted, please consult the Java Documentation
for javatext.SimpleDateFormat. Any changes will
be applied when the application is restarted.

DEFAULT_COUNTRY

us

Used as the default country code when relating
records that do not have a country code to records
that do have a country code, e.g. vaidating a zip
code where the country is not collected.

ENABLE_DIRECT_INQUIRIES IND

Flag for enabling/disabling direct inquiries on
screens that are drawn by the nervous system (i.e.
lookups and maintenance documents)

ENABLE_FIELD_LEVEL_HELP_IND

Indicates whether field level help links are enabled
on lookup pages and documents.

71

KEW

Name

Vaue

Description

MAX_FILE_SIZE_DEFAULT_UPLOAD

5M

Maximum file upload size for the application. Must
be an integer, optionally followed by "K", "M", or
"G". Only used if no other upload limitsarein effect.

SENSITIVE_DATA_PATTERNS

[0-91{9}:[0-9){ 3}-{0-91{ 2} -[0-9){ 4}

A semi-colon delimited list of regular expressions
that identify potentially sensitive data in strings.
These patterns will be matched against notes,
document explanations, and routing annotations.

STRING_TO_DATE_FORMATS

MM/dd/lyy;MM-dd-yy;MMMM dd,

yyyy;MMddyy

A semi-colon delimited list of strings
representing date formats that the
DateTimeService will use to parse dates when
DateTimeServicelmpl.convertToSqlDate(String) or
DateTimeServicelmpl.convertToDate(String) is
caled. Note that patterns will be applied in the
order listed (and the first applicable one will
be used). For a more technical description of
how characters in the parameter value will be
interpreted, please consult the Java Documentation
for javatext.SimpleDateFormat. Any changes will
be applied when the application is restarted.

STRING_TO_TIMESTAMP_FORMATS

MM/dd/yyyy hh:mm a

A semi-colon delimited list of strings
representing date formats that the DateTimeService
will use to parse date and times when
DateTimeServicelmpl.convertToDateTime(String)
or

DateTimeServicel mpl.convertToSgl Timestamp(String)

is called. Note that patterns will be applied in
the order listed (and the first applicable one will
be used). For a more technical description of
how characters in the parameter value will be
interpreted, please consult the Java Documentation
for javatext.SimpleDateFormat. Any changes will
be applied when the application is restarted.

TIMESTAMP_TO_STRING_FORMAT_FOR_FILE_NAME

yyyyMMdd-HH-mm-ss-S

A singledateformat string that the DateTimeService
will use to forma a dae and time
string to be used in a file name when

DateTimeServicelmpl.toDateTimeStringForFilename(Date)

is called. For a more technical description of
how characters in the parameter value will be
interpreted, please consult the Java Documentation
for javatext.SimpleDateFormat. Any changes will
be applied when the application is restarted.

TIMESTAMP_TO_STRING_FORMAT_FOR_USER_INTERFACE

MM/dd/yyyy hh:mm a

A singledateformat string that the DateTimeService
will use to format a date and time to be displayed
on a web page. For a more technical description
of how characters in the parameter value will be
interpreted, please consult the Java Documentation
for javatext.SimpleDateFormat. Any changes will
be applied when the application is restarted.

ACTIVE_FILE_TYPES

collectorlnputFileType;
procurementCardl nputFileType;
enterpriseFeederFileSetType;
assetBarcodel nventorylnputFileType;
customerL oadlnputFileType

Batch file types that are active options for the file
upload screen.

SCHEDULE_ADMIN_GROUP

KR-WKFLW:WorkflowAdmin

The workgroup to which a user must be assigned to
modify batch jobs.

DEFAULT_CAN_PERFORM_ROUTE_REPORT_IND

If Y, the Route Report button will be
displayed on the document actions bar
if the document is wusing the default

DocumentA uthorizerBase.getDocumentActionFlags
to set the canPerformRouteReport property of the
returned DocumentA ctionFlags instance.

EXCEPTION_GROUP

KR-WKFLW:WorkflowAdmin

The workgroup to which a user must be assigned to
perform actions on documents in exception routing
status.

MAX_FILE_SIZE ATTACHMENT

5M

Maximum attachment uploads size for the
application. Used by KualiDocumentFormBase.
Must beaninteger, optionally followed by "K","M",
or"G".

72

KEW

Name

Vaue

Description

PESSIMISTIC_LOCK_ADMIN_GROUP

KFS:KUALI_ROLE_SUPERVISOR

Workgroup which can perform admin deletion and
lookup functions for Pessimistic Locks.

SEND_NOTE_WORKFLOW_NOTIFICATION_ACTIONS

K

Some documents provide the functionality to send
notes to another user using a workflow FYI1 or
acknowledge functionality. This parameter specifies
the default action that will be used when sending
notes. This parameter should be one of thefollowing
2 values: "K" for acknowledge or "F" for "fyi".
Depending on the notes and workflow service
implementation, other values may be possible.

SESSION_TIMEOUT_WARNING_MESSAGE_TIME

The number of minutes before a session expires.
That user should be warned when a document uses
pessimistic locking.

SUPERVISOR_GROUP

KR-WKFLW:WorkflowAdmin

Workgroup which can perform almost any function
within Kuali.

MULTIPLE_VALUE_RESULTS _EXPIRATION_SECONDS

86400

Lookup results may continue to be persisted in
the DB long after they are needed. This parameter
represents the maximum amount of time, in seconds,
that the results will be allowed to persist in the DB
before they are deleted from the DB.

MULTIPLE_VALUE_RESULTS PER PAGE

100

Maximum number of rows that will be displayed on
alook-up results screen.

RESULTS DEFAULT_MAX_COLUMN_LENGTH

70

If a maxLength attribute has not been set on a
lookup result field in the data dictionary, then the
result column's max length will be the value of this
parameter. Set this parameter to O for an unlimited
default length or apositive value (i.e. greater than 0)
for afinite max length.

RESULTS _LIMIT

200

Maximum number of results returned in a look-up
query.

MAX_AGE

86400

Pending attachments are attachments that do not yet
have a permanent link with the associated Business
Object (BO). These pending attachments are stored
in the attachments.pending.directory (defined in the
configuration service). If the BO is never persisted,
then this attachment will become orphaned (i.e. not
associated with any BO), but will remain in this
directory. The PurgePendingAttachmentsStep batch
step deletes these pending attachment files that are
older than the value of this parameter. The unit of
thisvalueis seconds. Do not set this value too short,
asthiswill cause problems attaching files to BOs.

NUMBER_OF DAYS SINCE_LAST_UPDATE

Determines the age of the session document records
that the step will operate on, e.g. if this parameter is
set to 4, the rows with alast update timestamp ol der
that 4 days prior to when the job is running will be
deleted.

CUTOFF_TIME

02:00:00:AM

Controls when the daily batch schedule should
terminate. The scheduler service implementation
compares the start time of the schedule job from
quartz with this time on day after the schedule job
started running.

CUTOFF_TIME_NEXT_DAY_IND

Controls whether when the system is comparing
the schedule sat day & time with
the scheduleStep_ CUTOFF_TIME parameter, it
considers the specified time to apply to the day after
the schedule starts.

STATUS _CHECK_INTERVAL

30000

Time in milliseconds that the scheduleStep should
wait between iterations.

ACTION_LIST_DOCUMENT_POPUP_IND

Flag to specify if clicking on a Document ID from
the Action List will load the Document in a new
window.

ACTION_LIST_ROUTE_LOG_POPUP_IND

Flag to specify if clicking on a Route Log from
the Action List will load the Route Log in a new
window.

EMAIL_NOTIFICATION_TEST_ADDRESS

Default email address used for testing.

73

KEW

Name

Vaue

Description

HELP_DESK_NAME_GROUP

KR-WKFLW:WorkflowAdmin

The name of the group who has access to the "Help
Desk" feature on the Action List.

PAGE_SIZE_THROTTLE

Throttles the number of results returned on al users
Action Lists, regardless of their user preferences.
This is intended to be used in a situation
where excessively large Action Lists are causing
performance issues.

SEND_EMAIL_NOTIFICATION_IND

Flag to determine whether or not to send email
notification.

KIM_PRIORITY_ON_DOC TYP_PERMS IND

Flag for enabling/disabling document type
permission checks to use KIM Permissions as
priority over Document Type policies.

MAXIMUM_NODES BEFORE_RUNAWAY

The maximum number of nodes the workflow
engine will process before it determines the process
is a runaway process. This is to prevent infinite
"loops" in the workflow engine.

SHOW_ATTACHMENTS_IND

Flag to specify whether or not a file upload box
is displayed for KEW notes which alows for
uploading of an attachment with the note.

SHOW_BACK_DOOR_LOGIN_IND

Y

Flag to show the backdoor login.

TARGET_FRAME_NAME

iframe 51148

Defines the target iframe name that the KEW
internal portal uses for its menu links.

DOCUMENT_SEARCH_POPUP_IND

Y

Flag to specify if clicking on a Document ID from
Document Search will load the Document in a new
window.

DOCUMENT_SEARCH_ROUTE_LOG_POPUP_IND

Flag to specify if clicking on a Route Log from
Document Search will load the Route Log in a new
window.

FETCH_MORE_ITERATION_LIMIT

Limit of fetch moreiteration for document searches.

RESULT CAP

Maximum number of documents to return from a
search.

DOCUMENT_TYPE_SEARCH_INSTRUCTION

Enter document type information below
and click search.

Instructions for searching document types.

DEBUG_TRANSFORM_IND N Defines whether the debug transform is enabled for
eDoclLite.
USE_XSLTC_IND N Defines whether XSLTC is used for eDocL.ite.

IS LAST_APPROVER ACTIVATE FIRST IND

A flag to specify whether the
WorkflowlInfo.isLastApproverAtNode...) API
method attempts to active requests first, prior to
execution.

REPLACE_INSTRUCTION

Enter the reviewer to replace.

Instructions for replacing areviewer.

FROM_ADDRESS

ricetest@kulai.org

Default from email address for notifications. If not
set, this value defaults to admin@local host.

NOTE_CREATE_NEW_INSTRUCTION

Create or modify note information.

Instructions for creating a new note.

RESTRICT_DOCUMENT_TYPES

Commaseparated list of Document Typesto exclude
from the Rule Quicklinks.

CUSTOM_DOCUMENT_TYPES

Defines custom Document Type processesto usefor
certain types of routing rules.

DELEGATE_LIMIT

20

Specifies that maximum number of delegation rules
that will be displayed on a Rule inquiry before the
screen shows a count of delegate rules and provides
alink for the user to show them.

GENERATE_ACTION_REQUESTS IND

Flag to determine whether or not a change to
a routing rule should be applied retroactively to
existing documents.

ROUTE_LOG_POPUP_IND

Flag to specify if clicking on a Route Log from a
Routing Rule inquiry will load the Route Log in a
new window.

RULE_CACHE_REQUEUE_DELAY

5000

Amount of time after a rule change is made before
the rule cache update message is sent.

74

KEW

Name

Vaue

Description

RULE_CREATE_NEW_INSTRUCTION

Please select a rule template and
document type.

Instructions for creating a new rule.

RULE_LOCKING_ON_IND

Y

Defines whether rule locking it enabled.

RULE_SEARCH_INSTRUCTION

Use fields below to search for rules.

Instructions for the rule search.

RULE_TEMPLATE_CREATE_NEW_INSTRUCTION

Enter a rule template name and
description. Please select all necessary
rule attributes for this template.

Instructions for creating new rule templates.

RULE_TEMPLATE_SEARCH_INSTRUCTION

Use fields below to search for rule
templates.

Instructions for the rule template search.

NOTIFY_EXCLUDED_USERS_IND

Defines a group name (in the format
“namespace:name”) which contains members who
should never receive notification action requests
from KEW. Notification requests in KEW are
generated when someone disapproves or blanket
approves are exist to notify other approvers that
these actions have taken place.

The most common use for this is in the case
of “system” users who participate in workflow
transactions. In these cases, since they aren’t actual
users who would be checking their action list, it
doesn’t make sense to send them requests since they
won’t ever be fulfilled.

Defining Workflow Processes Using Document

Types

A Document Type is an object that brings workflow components together into a cohesive unit (routing
configuration). One of its primary responsihilitiesisto define the routing path for adocument. The routing
path isthe process definition for the document. It can consist of varioustypes of nodesthat perform certain
actions, such as sending action requests to responsible parties, transmitting emails, or splitting the route

path into parallel branches.

In addition to the routing path, it contains the Post Processor which receives event callbacks from the
engine, the DocHandler which is the access point into the client application from the Action List and
Access Control for certain actions. It can also define various policies that control how documents of that
type are processed by the workflow engine.

This document has four parts:

1. A detailed explanation of the common fieldsin the Document Type XML definition

2. An example of each Document Type with a description of each field iniit

3. Descriptions of the Document Type policies

4. A description of inheritance as applied to Document Types

There are some common attributesin every Document Type, but each Document Type can be customized

to provide different functions.
» Document Types
» Document Type Policies

 |nheritance

75

KEW

Common Fields in Document Type XML Definition

Table 3.9. Common Fieldsin Document Type XML Definition

Field Description

name The name of the Document Type

parent The parent Document Type of this Document Type. Each Child Document
Type inherits the attributes of its parent Document Type.

description The description of the Document Type; its primary responsibilities.

label Thelabel of the Document Type, how it’s recognized

postProcessorName The name of the postProcessor that takes charge of the routing for this
Document Type

postprocessor A component that gets called throughout the routing process and handles
aset of standard events that all eDocs (el ectronic documents) go through.

authorizer A component that gets called during the routing process to perform
authorization checks. Applications can customize this component on aper-
doctype basis.

superUserGroupName The name of a workgroup whose members are the super users of this
Document Type. Super users of this Document Type can execute a super
user document search on this Document Type.

blanketApproveGroupName The name of aworkgroup whose members have the blanketapprove rights

over this Document Type.

defaultExceptionGroupName

The name of the workgroup whose members receive an exception notice
when a document of this Document Type encounters an exception in its
routing.

docHandler

The DocHandler that handles the routing of this Document Type

active

A true or faseindicator for the active status of this document

validApplicationStatuses

The set of valid application document statuses for this document type. If
thisoptional configuration is set, the application document status will only
allow the specified values to be set.

policies

The policies that apply to this Document Type

policy

The policy that appliesto this Document Type. Use thiswhen thereisonly
one policy for the Document Type.

value: A true or false indicator for whether the action for the policy will
be taken

routingVersion

This field exists only for backward compatibility with older versions
of KEW. Originally, KEW only supported sequential routing paths (as
opposed to those with splits and joins). The KEW getDocRoutel evel()
API returns an integer that represents the numerical step in the routing
process. This number only has meaning for those documents that define
sequential routing.

* A document with a routingVersion of "1" will keep track of the route
level number.

« A document with aroutingVersion of "2" (the default, unless explicitly
defined in the Document Type configuration) will NOT keep track of
the route level number and an exception will be thrown if code attempts
to access that value. New Document Type definitions do NOT need, and
should NOT have, this flag defined.

routePaths The routing paths for this Document Type

routePath The routing path for this Document Type. Use thisfield when thereisjust
one routing path for this Document Type.

routeNode A point or node on the routing path of this Document Type

routeModule The most basic module; it allows KEW to generate Action Requests

start The starting node of this Document Type during routing

requests The requested next node in the routing of this Document Type

activationType The activation type of the next node that is requested by this Document

Type. There are two activation types:

« P: Parallel: Multiple nodes in the routing process are activated at the
sametime

76

KEW

Field Description

« S Seria or Sequentia: The nodes in the routing process are activated
oneat atime

« R: Priority-Parallel: The multiple nodes with the same priority are
activated at the same time before moving to the next priority

ruleTemplate The ruleTemplate that applies to the routing node in this Document Type

split The routing path splits into branches and can continue on any of them at
asplit.

branch One of the branchesin the routing path.

join The point in the routing path where the split branches join together.

process There is a sub-process in the routing path; in other words, some nodes in

the routing path will activate a sub-process.

simple A new nodein the routing path

« type: Thetype of the new routing node

« value: The value of the new routing node

« message: The message associated with the new routing node
« level: Therouting level of the new routing node

* log: Thelog name of the new routing node

dynamic This changes the node to dynamic when it transitions to the next node in
the routing path; therefore, the routing path is dynamic rather than static.

Document Types

Document Type Examples

BlanketApproveT est

<docunent Type>
<name>Bl anket Appr oveTest </ name>
<descri pti on>Bl anket Appr oveTest </ descri pti on>
<l abel >Bl anket Appr oveTest </ | abel >
<post Processor Name>or g. kual i . ri ce. kew. post processor . Def aul t Post Processor </ post Pr ocessor Name>
<super User G oupNarme nanmespace="KR- WKFLW >Test Wor kgr oup</ super User G- oupNane>
<bl anket Appr oveG oupName nanmespace="KR- WKFLW >Test Wor kgr oup</ bl anket Appr oveG oupNanme>
<def aul t Excepti onGr oupNanme namespace="KR- WKFLW > Test Wr kgr oup</ def aul t Excepti onG oupNane>
<docHandl er >_bl ank</ docHandl er >
<active>true</active>
<pol i ci es>
<pol i cy>
<name>DEFAULT_APPROVE</ name>
<val ue>f al se</ val ue>
</ policy>
</ policies>

</ docunent Type>

* name: Thisisthe Document Type for Blanket Approve Test.
 description: This Document Type is used to test the Blanket Approve function.
* label: This Document Type is recognized as the BlanketApproveTest type.

* postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor.Defaul tPostProcessor.

 superUser GroupName: The super users for this Document Type are members of the TestWorkgroup.

 blanketApproveGroupName: The members of the TestWorkgroup have blanketA pproval right on this
type of document.

77

KEW

« defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

» docHandler: The Doc Handler for this type of document is_blank.
* active: This Document Typeis currently Active. In other words, it isin use.

* Policiesfor this Document Type contains two policies: The DEFAULT_APPROVE policy is set false
by default. In other words, the default approve action on this type of document is NOT to approveit.

BlanketApproveSequential Test

<docunent Type>
<nane>Bl anket Appr oveSequent i al Test </ nane>
<par ent >Bl anket Appr oveTest </ par ent >
<descri pti on>Bl anket Appr oveSequent i al Test </ descri pti on>
<| abel >Bl anket Appr oveSequent i al Test </ | abel >
<post Processor Name>or g. kual i . ri ce. kew. post processor. Def aul t Post Processor </ post Pr ocessor Nanme>
<super User G oupNarme nanmespace="KR- WKFLW >Wér kf | owAdm n</ super User G oupNanme>
<bl anket Appr oveGr oupNanme nanmespace="KR- WKFLW >Test Wor kgr oup</ bl anket Appr oveG oupNanme>
<def aul t Excepti onGr oupNanme nanmespace=" KR- WKFLW >Wér kf | owAdni n</ def aul t Except i onGr oupNanme>

<docHandl er >_bl ank</ docHandl| er >
<active>true</active>
<r out ePat hs>
<r out ePat h>
<start nanme="AdHoc" next Node="Workf| owDocunment" />
<requests name="Wor kf | owDocunent" next Node="Wor kf | owDocunent 2" />
<requests name="Wor kf | owDocunent 2" next Node="Acknow edgel" />
<requests name="Acknow edgel" next Node="Acknow edge2" />
<requests name="Acknow edge2" />
</ r out ePat h>
</ r out ePat hs>
<r out eNodes>
<start nane="AdHoc">
<activationType>P</activati onType>
</start>
<requests nanme="Wor kf | owDocunent " >
<activationType>P</activati onType>
<rul eTenpl at e>Wor kf | owDocunment Tenpl at e</ rul eTenpl at e>
</ request s>
<requests name="Wor kf | owDocunent 2" >
<activationType>P</activati onType>
<rul eTenpl at e>Wor kf | owDocunent 2Tenpl at e</ rul eTenpl at e>
</ request s>
<requests name="Acknow edgel">
<activationType>P</activati onType>
<rul eTenpl at e>Ack1Tenpl at e</ rul eTenpl at e>
</ request s>
<requests name="Acknow edge2">
<activationType>P</activati onType>
<rul eTenpl at e>Ack2Tenpl at e</ rul eTenpl at e>
</ request s>
</ r out eNodes>
</ docunent Type>

» name: Thisisthe Document Type for Blanket Approve Sequential Test. Thereis a sequence of routing
nodes, and no routing node can be skipped.

» parent: The parent Document Type is BlanketApproveTest. This Document Type inherits the policies
that BlanketApproveTest has.

 description: This Document Type is used to test the Blanket Approve Sequential function.
* label: This Document Type is recognized as the blanketApproveSequential Test type.

* postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor.Defaul tPostProcessor.

78

KEW

super User GroupName: The super usersfor this Document Type are members of the WorkflowAdmin.

blanketApproveGroupName: The members of the TestWorkgroup have blanketApproveright on this
type of document.

defaultExceptionGroupName: The members of the WorkflowAdmin will receive an exception notice
for documents of this Document Type.

docHandler: The Doc Handler for this type of document is_blank.
active: This Document Typeis currently active. In other words, itisin use.

routePath: The routing path for this Document Type is. AdHoc -> WorkflowDocument ->
WorkflowDocument2 -> Acknowledgel -> Acknowledge2.

routeNode: Based on the routePath, there are five nodes in the routing of this Document Type:

» The starting node for this Document Type is AdHoc. On the initiation of a document of thistype, the
postProcessor in Kuali Enterprise Workflow (KEW) activates the node, AdHaoc.

» The next node in the routing for this Document Type is WorkflowDocument. On request, the nodeis
activated and applies the rules in rule template, WorkflowDocumentTempl ate.

» The next node in the routing for this Document Type is WorkflowDocument2. On request, the node
is activated and applies the rulesin rule template, WorkflowDocument2Templ ate.

« The next node in the routing for this Document Type is Acknowledgel. On request, the node is
activated and applies the rules in rule template, Ack1Template.

« The next node in the routing for this Document Type is Acknowledge2. On request, the node is
activated and applies the rules in rule template, Ack2Template.

79

KEW

Figure 3.9. BlanketApproveSequential Test Wor kflow

¥

Worilow Documman!

Winridow Dooument?

BlanketApproveParallel Test

80

KEW

<docurent Type>
<name>Bl anket Appr ovePar al | el Test </ nane>
<par ent >Bl anket Appr oveTest </ par ent >
<descri pti on>Bl anket Appr ovePar al | el Test </ descri ption>
<l abel >Bl anket Appr ovePar al | el Test </ | abel >
<post Processor Name>or g. kual i . ri ce. kew. post processor. Def aul t Post Processor </ post Pr ocessor Nanme>
<super User G oupNanme nanespace="KR- WKFLW >Test Wor kgr oup</ super User G- oupNane>
<bl anket Appr oveG oupNanme nanmespace="KR- WKFLW >Test Wor kgr oup</ bl anket Appr oveG oupNanme>
<def aul t Excepti onGr oupNanme nanmespace="KR- WKFLW > Test Wor kgr oup</ def aul t Excepti onG oupNane>
<docHandl er >_bl ank</ docHandl er >
<active>true</active>
<r out ePat hs>
<r out ePat h>
<start nanme="AdHoc" next Node="Workf| owDocurment" />
<requests name="Wor kf | owDocunent” next Node="Split" />
<split name="Split" next Node="Workfl| owDocunent Fi nal ">
<branch nane="B1">
<requests name="Wor kf| owDocunent 2- B1" next Node="Woér kf | owDocunent 3- B1" />
<requests name="Wor kfl owDocunent 3- B1" next Node="Joi n" />
</ branch>
<branch nane="B2">
<requests name="Wor kf| owDocunent 3- B2" next Node="Wér kf | owDocunent 2- B2" />
<requests name="Wor kfl owDocunent 2- B2" next Node="Joi n" />
</ branch>
<branch nane="B3">
<requests name="Wor kfl owDocunent 4- B3" next Node="Joi n" />
</ branch>
<join name="Join" />
</split>
<requests name="Wor kf | owDocunent Fi nal " next Node="Acknow edgel" />
<requests name="Acknow edgel" next Node="Acknow edge2" />
<requests name="Acknow edge2" />
</ r out ePat h>
</ r out ePat hs>
<r out eNodes>
<start nane="AdHoc">
<activati onType>P</activati onType>
</start>
<requests nanme="Wor kf| owDocunent " >
<activati onType>P</activati onType>
<rul eTenpl at e>Wor kf | owDocunent Tenpl at e</ rul eTenpl at e>
</ request s>
<split name="Split" />
<requests name="Wor kf| owDocunent 2- B1" >
<activati onType>P</activati onType>
<rul eTenpl at e>Wor kf | owDocunent 2Tenpl at e</ rul eTenpl at e>
</ request s>
<requests name="Wor kf| owDocunent 2- B2" >
<activati onType>P</activati onType>
<rul eTenpl at e>Wor kf | owDocunent 2Tenpl at e</ rul eTenpl at e>
</ request s>
<requests name="Wor kf| owDocunent 3- B1" >
<activati onType>P</activati onType>
<rul eTenpl at e>Wor kf | owDocunent 3Tenpl at e</ rul eTenpl at e>
</ request s>
<requests name="Wor kf| owDocunent 3- B2" >
<activati onType>P</activati onType>
<rul eTenpl at e>Wor kf | owDocunent 3Tenpl at e</ rul eTenpl at e>
</ request s>
<requests name="Wor kf| owDocunent 4- B3" >
<activati onType>P</activati onType>
<rul eTenpl at e>Wor kf | owDocunent 4Tenpl at e</ rul eTenpl at e>
</ request s>
<j oin name="Join" />
<requests name="Wor kf | owDocunent Fi nal ">
<activati onType>P</activati onType>
<rul eTenpl at e>Wor kf | owDocunent Fi nal Tenpl at e</ rul eTenpl at e>
</ request s>
<requests name="Acknow edgel" >
<activati onType>P</activati onType>
<rul eTenpl at e>Ack1Tenpl at e</ rul eTenpl at e>
</ request s>
<requests name="Acknow edge2" >
<activati onType>P</activati onType>
<rul eTenpl at e>Ack2Tenpl at e</ rul eTenpl at e>

81

KEW

</ request s>
</ r out eNodes>
</ docunent Type>

» name: Thisisthe Document Type for Blanket Approve Parallel Test. At some point in the routing, the
route path may split and a node can be skipped if another parallel node takes action on the document.

» Parent: The parent Document Type is BlanketApproveTest. This Document Type inherits the routing
that exists for BlanketApproveTest.

 description: This Document Type is used to test the Blanket Approve Parallel function.
« label: This Document Type is recognized as the blanketApproveParallel Test type.

* postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor.DefaultPostProcessor.

» superUser GroupName: The super users for this Document Type are members of the TestWorkgroup.

» blanketApproveGroupName: The membersof the TestWorkgroup have blanketA pproval right on this
type of document.

» defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

» docHandler: The Doc Handler for thistype of document is_blank.
« active: This Document Typeis currently active. In other words, itisin use.

 routePath: The routing path for this Document Type is. AdHoc -> WorkflowDocument -> split ->
B1\B2\B3 -> Join -> WorkflowDocumentFinal -> Acknowledgel -> Acknowledge2.

 routeNode: Based on the routePath, there are six nodes in the routing of this Document Type:

e The starting node for this Document Typeis AdHaoc. On the initiation of adocument of thistype, the
postProcessor in KEW activates the node, AdHoc.

* The next node in the routing for this Document Type is Wor kflowDocument. On request, the node
is activated and appliesthe rulesin rule template, Wor kflowDocument Template. Then, the routing
path splits into three branches for the next node.

* One branch is B1. On request, the node WorkflowDocument2-B1 is activated and applies the
WorkflowDocument2Template. The next node in this branch is Wor kflowDocument3-B1. On
request, the node is activated and applies the Wor kflowDocument3Template.

e One branch is B2. On request, the node WorkflowDocument3-B2 is activated and applies the
WorkflowDocument3Template. The next node in this branch is Wor kflowDocument2-B2. On
request, the node is activated and applies the Wor kflowDocument2T emplate.

« One branch is B3. On request, the node WorkflowDocument4-B3 is activated and applies the
WorkflowDocument4Template.

 Then, the routing path joins and the route merges back together into one route.

¢ The next node in the routing for this Document Type is WorkflowDocumentFinal. On request, the
node is activated and applies the rulesin rule template, Wor kflowDocumentFinal Template.

« The next node in the routing for this Document Type is Acknowledgel. On request, the node is
activated and applies the rules in rule template, Ack1Template.

82

KEW

« The next node in the routing for this Document Type is Acknowledge2. On request, the node is
activated and applies therulesin rule template, Ack2Template.

83

KEW

Figure 3.10. BlanketApproveParallel Test Wor kflow

¥

Audhos

¥

‘Wiwrkfiow Documant

¥

/ WorkSowDoourmen! Templale

]
Skt

L 4 w
WorkSowDec i -8 Wk RowDiocu marc3-B2 WiarkemDacumert-B3
¥ ¥ ¥
/ Weorkdiow Doosmen 2 Templals // ‘WorkfSowDocurmrssi Templals // WarkfivaDooumentd Template /

il
L J

Warklies Documendinagl

¥

/ WorkflowDocumesiFinalTamplate

/

NotificationT est

KEW

<docurent Type>
<nane>Not i fi cati onTest </ nane>
<description>NotificationTest</description>
<l abel >Not i fi cati onTest </ | abel >
<post Processor Name>or g. kual i . ri ce. kew. post processor. Def aul t Post Processor </ post Pr ocessor Nanme>
<super User G oupNanme nanespace="KR- WKFLW >Test Wor kgr oup</ super User G- oupNane>
<bl anket Appr oveG oupNanme nanmespace="KR- WKFLW >Test Wor kgr oup</ bl anket Appr oveG oupNane>
<def aul t Excepti onGr oupNanme nanmespace="KR- WKFLW > Test Wor kgr oup</ def aul t Excepti onG oupNane>
<docHandl er >_bl ank</ docHandl er >
<active>true</active>
<r out ePat hs>
<r out ePat h>
<start name="AdHoc" next Node="NotifyFirst" />
<requests name="NotifyFirst" nextNode="Split" />
<split name="Split" nextNode="NotifyFinal">
<branch nanme="LeftBranch">
<requests name="Noti fyLeftBranch" next Node="Join" />
</ branch>
<branch nanme="Ri ght Branch">
<requests name="Noti fyRi ght Branch" next Node="Joi n" />
</ branch>
<j oin name="Join" />
</split>
<requests name="NotifyFinal" />
</ r out ePat h>
</ r out ePat hs>
<r out eNodes>
<start nane="AdHoc">
<activati onType>P</activati onType>
</start>
<requests name="NotifyFirst">
<activati onType>P</activati onType>
<rul eTenpl at e>Not i f yFi r st Tenpl at e</ rul eTenpl at e>
</ request s>
<split name="Split" />
<requests name="Noti fyLeftBranch">
<activati onType>P</activati onType>
<rul eTenpl at e>Not i f yLef t BranchTenpl at e</ rul eTenpl at e>
</ request s>
<requests name="NotifyRi ght Branch">
<activati onType>P</activati onType>
<rul eTenpl at e>Not i f yRi ght BranchTenpl at e</ rul eTenpl at e>
</ request s>
<j oin name="Join" />
<requests name="Noti fyFi nal ">
<activati onType>P</activati onType>
<rul eTenpl at e>Not i f yFi nal Tenpl at e</ rul eTenpl at e>
</ request s>
</ r out eNodes>
</ documnent Type>

* name: Thisisthe Document Type for Notification Test. At some point in the routing, the route path
may split, and a node can be skipped if another notification node takes action on the document.

 description: This Document Type is used to test the notification function.
* label: This Document Typeis recognized as the NotificationTest type.

* postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor .DefaultPost Processor .

» superUser GroupName: The super users for this Document Type are members of the TestWorkgroup.

» blanketApproveGroupName: The membersof the TestWorkgroup have blanketA pproval right on this
type of document.

« defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

85

KEW

docHandler: The Doc Handler for this type of document is_blank.
active: This Document Typeis currently active. In other words, itisin use.

routePath: The routing path for this Document Type is. AdHoc -> NotifyFirst -> split -> LeftBranch
\RightBranch -> Join -> NotifyFinal.

routeNode: Based on the routePath, there are four nodes in the routing of this Document Type:

» 0 The starting node for this Document Typeis AdHoc. On the initiation of a document of this type,
the postProcessor in KEW activates the node, AdHoc.

» Thenext nodein the routing for this Document TypeisNotifyFirst. On request, the nodeis activated
and applies the rules in rule template, NotifyFirstTemplate. Then the routing path splits into two
branches for the next node.

e One branch is LeftBranch. On request, the node is activated and applies the
NotifyL eftBranchTemplate.

e One branch is RightBranch. On request, the node is activated and applies the
NotifyRightBranchTemplate.

» Then the routing path joins together again.

» Thenext nodeintherouting for this Document TypeisNotifyFinal. On request, the nodeis activated
and appliestherulesin rule template, NotifyFinal Template

86

KEW

Figure 3.11. NotificationTest Workflow

h 4

MosifyFirst

¥

/ MatifyFirst Tamgilata /

|
Splil

\ v

MeptifylLasftBranah MatifyRightBranch

' v

/ MotityLsfiBranchTamplale / / MotityRighiBranch Tamplats

I

MotifyFinal

¥

/ HatifyFinalTamplate /

NotificationTestChild

<docurnent Type>
<nanme>Not i fi cati onTest Chi | d</ name>
<par ent >Not i fi cati onTest </ parent >
<descri ption>NotificationTest</description>
<l abel >Not i fi cati onTest </ | abel >
<post Processor Nane>or g. kual i . ri ce. kew. post processor . Def aul t Post Processor </ post Processor Narme>
<super User G oupNarme nanespace="KR- WKFLW >Test Wor kgr oup</ super User G- oupNanme>
<bl anket Appr oveG oupNane nanespace="KR- WKFLW >Test Wor kgr oup</ bl anket Appr oveG oupNane>
<def aul t Excepti onGr oupNanme nanespace="KR- WKFLW > Test Wor kgr oup</ def aul t Excepti onG oupNane>
<docHandl er >_bl ank</ docHandl| er >
<active>true</active>
<pol i ci es>
<pol i cy>
<name>SEND_NOTI FI CATI ON_ON_SU_APPROVE</ name>
<val ue>t rue</ val ue>
</ policy>

87

KEW

</ policies>
</ docunent Type>

* name: Thisisthe Document Type for Notification Test Child.

» Parent: The parent Document Type is NotificationTest. This Document Type inherits the routing that
NotificationTest has.

 description: This Document Type is used to test the Notification function.
* label: ThisDocument Type is recognized as the NotificationTest type.

 postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor .DefaultPostProcessor .

» superUser GroupName: The super users for this Document Type are members of the TestWorkgroup.

» blanketApproveGroupName: The members of the TestWorkgroup have blanketA pproval right on this
type of document.

 defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

» docHandler: The Doc Handler for this type of document is_blank.
 active: This Document Typeis currently active. In other words, itisin use.

* Policy: There is only one policy that applies to this Document Type
SEND_NOTIFICATION_ON_SU_APPROVE. This policy currently applies to this Document Type.
In other words, a notification will be sent to the designated two users when a SuperUser approves a
document of thistype.

BlanketApproveM andatoryNodeT est

<docunent Type>
<name>Bl anket Appr oveMandat or yNodeTest </ nane>
<par ent >Bl anket Appr oveTest </ par ent >
<descri pti on>Bl anket Appr oveMandat or yNodeTest </ descri pti on>
<| abel >Bl anket Appr oveMandat or yNodeTest </ | abel >
<post Processor Nane>or g. kual i . ri ce. kew. post processor . Def aul t Post Processor </ post Processor Narme>
<super User G oupNarme nanespace="KR- WKFLW >Test Wor kgr oup</ super User G- oupNane>
<bl anket Appr oveG oupNane nanespace="KR- WKFLW >Test Wor kgr oup</ bl anket Appr oveG oupNane>
<def aul t Except i onGr oupNanme nanespace="KR- WKFLW > Test Wor kgr oup</ def aul t Excepti onG oupNane>
<docHandl er >_bl ank</ docHandl| er >
<active>true</active>
<r out ePat hs>
<r out ePat h>
<start name="AdHoc" next Node="Wérkf| owDocurent" />
<requests name="Wor kf | owDocunent" next Node="Wor kf | owDocunent 2" />
<requests name="Wor kf | owDocunent 2" next Node="Acknow edgel" />
<requests name="Acknow edgel” next Node="Acknow edge2" />
<requests name="Acknow edge2" />
</ r out ePat h>
</ r out ePat hs>
<r out eNodes>
<start name="AdHoc">
<activationType>P</ acti vati onType>
</start>
<requests name="Wor kf | owDocunent ">
<activationType>P</ acti vati onType>
<rul eTenpl at e>Wor kf | owDocunent Tenpl at e</ rul eTenpl at e>
<mandat or yRout e>t r ue</ mandat or yRout e>
</ request s>
<requests name="Wor kf | owDocunent 2" >
<activationType>P</ acti vati onType>

88

KEW

<rul eTenpl at e>Wor kf | owDocunent 2Tenpl at e</ rul eTenpl at e>
<mandat or yRout e>t r ue</ mandat or yRout e>
<fi nal Approval >true</final Approval >
</ request s>
<requests name="Acknow edgel">
<activati onType>P</activati onType>
<rul eTenpl at e>Ack1Tenpl at e</ rul eTenpl at e>
</ request s>
<requests name="Acknow edge2">
<activati onType>P</activati onType>
<rul eTenpl at e>Ack2Tenpl at e</ rul eTenpl at e>
</ request s>
</ r out eNodes>
</ docunent Type>

* name: Thisisthe Document Type for Blanket Approve Mandatory Node Test.

* Parent: The parent Document Type is BlanketApproveTest. This Document Type inherits the policies
that NotificationTest has.

* description: This Document Typeis used to test the Blanket Approve Mandatory Node.
« label: This Document Type is recognized as the BlanketApproveMandatoryNodeTest type.

* postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor .DefaultPostProcessor .

» superUser GroupName: The super users for this Document Type are members of the TestWorkgroup.

 blanketApproveGroupName: The members of the TestWorkgroup have blanketA pproval right on this
type of document.

* defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

» docHandler: The Doc Handler for thistype of document is_blank.
« active: This Document Typeis currently active. In other words, itisin use.

» routePath: The routing path for this Document Type is. AdHoc -> WorkflowDocument ->
WorkflowDocument2 -> Acknowledgel -> Acknowledge?.

* routeNode: Based on the routePath, there are five nodes in the routing of this Document Type:

» The starting node for this Document Typeis AdHoc. On the initiation of adocument of thistype, the
postProcessor in KEW activates the node AdHoc.

« Thenext nodeintherouting for this Document TypeisWor kflowDocument. On request, the nodeis
activated, appliesthe rulesin rule template, Wor kflowDocumentTemplate, and sets the mandatory
route astrue. In other words, the document must route through this node.

¢ Thenext nodeintherouting for thisDocument TypeisWor kflowDocument2. Onrequest, thenodeis
activated, appliestherulesin ruletemplate, Wor kflowDocument2T emplate, and setsthe mandatory
route astrue. In other words, the document must route through this node.

« The next node in the routing for this Document Type is Acknowledgel. On request, the node is
activated and appliestherulesin rule template, Ack1Template.

« The next node in the routing for this Document Type is Acknowledge2. On request, the node is
activated and applies the rules in rule template, Ack2Template.

89

KEW

Figure 3.12. Blanket Approve Mandatory Test

Y

‘WorkBow Diotument

[]

‘Wiorkhow Dioturmeni

KEW

SaveActionEventT est

<documnent Type>
<nane>SaveAct i onEvent Test </ name>
<descri pti on>SaveAct i onEvent Test </ descri pti on>
<| abel >SaveAct i onEvent Test </ | abel >
<post Processor Name>or g. kual i . ri ce. kew. post processor. Def aul t Post Processor </ post Pr ocessor Name>
<super User G oupNarme nanmespace="KR- WKFLW >Test Wor kgr oup</ super User G- oupNane>
<bl anket Appr oveG oupName nanmespace="KR- WKFLW >Test Wor kgr oup</ bl anket Appr oveG oupNanme>
<def aul t Excepti onGr oupName namespace="KR- WKFLW > Test Wr kgr oup</ def aul t Excepti onG oupNane>
<docHandl er >_bl ank</ docHandl er >
<active>true</active>
<pol i ci es>
<pol i cy>
<name>DEFAULT_APPROVE</ name>
<val ue>f al se</val ue>
</ policy>
</ policies>
<r out ePat hs>
<r out ePat h>
<start nanme="AdHoc" next Node="Workf| owDocurent” />
<requests name="Wor kf| owDocunment" />
</ r out ePat h>
</ r out ePat hs>
<r out eNodes>
<start nanme="AdHoc">
<activati onType>P</activati onType>
</start>
<requests name="Wor kf| owDocurnent " >
<activati onType>P</activati onType>
<rul eTenpl at e>Wor kf | owDocunment Tenpl at e</ rul eTenpl at e>
</ request s>
</ r out eNodes>
</ docunment Type>

» name: Thisisthe Document Type for Save Action Event Test.
 description: This Document Type is used to test the Blanket Approve Mandatory Node.
* label: This Document Type is recognized as the SaveActionEventTest type.

* postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor .DefaultPost Processor .

 superUser GroupName: The super users for this Document Type are members of the TestWorkgroup.

» blanketApproveGroupName: The members of the TestWorkgroup have blanketA pproval right onthis
type of document.

 defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

» docHandler: The Doc Handler for thistype of document is_blank.
« active: This Document Typeis currently active. In other words, itisin use.

* Policies for this Document Type: The DEFAULT_APPROVE policy is set false by default. In other
words, the default approve action on this type of document is NOT to approve it.

 routePath: The routing path for this Document Typeis: AdHoc -> WorkflowDocument.
* routeNode: Based on the routePath, there are two nodes in the routing of this Document Type:

« The starting node for this Document Typeis AdHoc. On the initiation of adocument of thistype, the
postProcessor in KEW activates the node AdHoc.

91

KEW

» The next node in the routing for this Document Type is Wor kflowDocument. On request, the node
is activated and applies the rulesin rule template Wor kflowDocumentTemplate.

Figure 3.13. Save Action Event Test

Aho

¥

WOk M CHCiimant

¥

/ WorkfowDooimen Templabe /

Erd

SaveActionEventTestNonl nitiator

<documnent Type>
<nane>SaveAct i onEvent Test Nonl ni ti at or </ name>
<descri pti on>SaveActi onEvent Test Wth No Initiator Only Save Required</description>
<| abel >SaveAct i onEvent Test Nonl ni ti at or </ | abel >
<post Processor Name>or g. kual i . ri ce. kew. post processor. Def aul t Post Processor </ post Processor Name>
<super User G oupNarme nanmespace="KR- WKFLW >Test Wor kgr oup</ super User G- oupNane>
<bl anket Appr oveG oupName nanmespace="KR- WKFLW >Test Wor kgr oup</ bl anket Appr oveG oupName>
<def aul t Excepti onGr oupName namespace="KR- WKFLW > Test Wr kgr oup</ def aul t Excepti onG oupName>
<docHandl er >_bl ank</ docHandl er >
<active>true</active>
<pol i ci es>
<pol i cy>
<name>DEFAULT_APPROVE</ name>
<val ue>f al se</val ue>
</ policy>
<pol i cy>
<name>| NI TI ATOR_MUST_SAVE</ name>
<val ue>f al se</val ue>
</ policy>
</ policies>
<r out ePat hs>
<r out ePat h>
<start nanme="AdHoc" next Node="Workf| owDocurent” />
<requests name="Wor kf| owDocunment" />
</ r out ePat h>
</ r out ePat hs>
<r out eNodes>
<start nanme="AdHoc">
<activati onType>P</activati onType>

92

KEW

</start>
<requests nanme="Wor kf | owDocunent " >
<activationType>P</activati onType>
<rul eTenpl at e>Wor kf | owDocunent Tenpl at e</ rul eTenpl at e>
</ request s>
</ r out eNodes>
</ docunent Type>

» name: Thisisthe Document Type for Save Action Event Test Non Initiator.
 description: This Document Type is used to test the saving of an action event by non-initiator.
« label: This Document Type is recognized as the SaveActionEventTestNonl nitiator type.

 postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor .DefaultPostProcessor .

» superUser GroupName: The super users for this Document Type are members of the TestWorkgroup.

 blanketApproveGroupName: The members of the TestWorkgroup have blanketA pproval right on this
type of document.

« defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

» docHandler: The Doc Handler for thistype of document is_blank.
* active: This Document Typeis currently active. In other words, itisin use.
 Paliciesfor this Document Type:

« The DEFAULT_APPROVE policy is set false by default. In other words, the default approve action
on thistype of document is NOT to approveit.

e TheINITIATOR_MUST_SAVE policy isset false by default. In other words, theinitiator doesNOT
have to save the document for the non-initiator to save the actions onit.

 routePath: The routing path for this Document Typeis: AdHoc -> WorkflowDocument.
» routeNode: Based on the routePath, there are two nodes in the routing of this Document Type:

e The starting node for this Document Typeis AdHaoc. On the initiation of adocument of thistype, the
postProcessor in KEW activates the node AdHoc.

< The next node in the routing for this Document Type is Wor kflowDocument. On request, the node
is activated and applies the rulesin rule template, Wor kflowDocument T emplate.

93

KEW

Figure 3.14. Save Action Even Test: Non-Initiator

Adhoc

¥

WOk Meiar CROCLITERL

¥

/ WinrSowDooument Temglae /

Erd

TakeWorkgroupAuthorityDoc

<docunent Type>

<nane>TakeWbr kgr oupAut hori t yDoc</ name>
<descri pti on>TakeWbr kgr oupAut hority Action Test</description>
<l abel >TakeWbr kgr oupAut hori t yDoc</ | abel >
<post Processor Name>or g. kual i . ri ce. kew. post processor . Def aul t Post Processor </ post Pr ocessor Nanme>
<super User G oupName nanespace="KR- WKFLW >Test Wor kgr oup</ super User G oupName>
<bl anket Appr oveG oupNanme nanmespace="KR- WKFLW >Test Wor kgr oup</ bl anket Appr oveG oupNane>
<def aul t Excepti onGr oupNanme nanmespace="KR- WKFLW > Test Wor kgr oup</ def aul t Excepti onG oupNane>
<docHandl er >_bl ank</ docHandl er >
<active>true</active>
<polici es>
<policy>
<name>DEFAULT_APPROVE</ nanme>
<val ue>f al se</val ue>
</ policy>
</ policies>
<r out ePat hs>
<r out ePat h>
<start name="AdHoc" next Node="Wor kgr oupByDocunent" />
<requests name="Wor kgr oupByDocunent" />
</ r out ePat h>
</ r out ePat hs>
<r out eNodes>
<start nane="AdHoc">
<activati onType>P</activati onType>
</start>
<requests name="Wor kgr oupByDocunent " >
<activati onType>P</activati onType>
<rul eTenpl at e>Wor kgr oupByDocunent </ r ul eTenpl at e>
</ request s>
</ r out eNodes>

</ docunent Type>

94

KEW

name: Thisisthe Document Type for Take Workgroup Authority Doc.
description: This Document Type is used to decide authorized workgroups by Document Type.
label: This Document Typeis recognized as the TakeWorkgroupAuthorityDoc type.

postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postpr ocessor .DefaultPostPr ocessor .

super User GroupName: The super users for this Document Type are members of the TestWorkgroup.

blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right onthis
type of document.

defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

docHandler: The Doc Handler for this type of document is_blank.
active: This Document Typeis currently active. In other words, itisin use.

Palicies for this Document Type: The DEFAULT_APPROVE policy is set false by default. In other
words, the default approve action on this type of document is NOT to approve it.

routePath: The routing path for this Document Type is: AdHoc -> WorkflowDocument.
routeNode: Based on the routePath, there are two nodes in the routing of this Document Type:

» The starting node for this Document Typeis AdHoc. On the initiation of adocument of thistype, the
postProcessor in KEW activates the node AdHoc.

» The next node in the routing for this Document Type is Wor kflowDocument. On request, the node
is activated and applies the rulesin rule template, Wor kflowDocumentTemplate.

95

KEW

Figure 3.15. Take Workgroup Authority

Aho

¥

WOk M CHOCLITERL

¥

/ WeoiSowDooumentTemglane /

MoveSequential Test

<docunent Type>
<name>MoveSequent i al Test </ name>
<par ent >Bl anket Appr oveTest </ par ent >
<descri pti on>Move Sequential Test</description>
<l abel >Mbve Sequential Test</|abel >

<post Processor Name>or g. kual i . ri ce. kew. post processor. Def aul t Post Processor </ post Pr ocessor Nanme>
<super User G oupNarme nanmespace="KR- WKFLW >Test Wor kgr oup</ super User G oupNane>
<bl anket Appr oveGr oupNanme nanmespace="KR- WKFLW >Test Wor kgr oup</ bl anket Appr oveG oupNanme>
<def aul t Excepti onGr oupNanme nanmespace="KR- WKFLW > Test Wor kgr oup</ def aul t Excepti onG oupNane>
<docHandl er >_bl ank</ docHandl| er >
<active>true</active>
<r out ePat hs>
<r out ePat h>
<start nanme="AdHoc" next Node="Workf| owDocunment" />
<requests name="Wor kf | owDocunent" next Node="Wor kf | owDocunent 2" />
<requests name="Wor kf | owDocunent 2" next Node="Acknow edgel" />
<requests name="Acknow edgel" next Node="Acknow edge2" />
<requests name="Acknow edge2" />
</ r out ePat h>
</ r out ePat hs>
<r out eNodes>
<start nanme="AdHoc">
<activationType>P</activati onType>
</start>
<requests name="Wor kf | owDocunent " >
<activationType>P</activati onType>
<rul eTenpl at e>Wor kf | owDocunent Tenpl at e</ rul eTenpl at e>
</ request s>
<requests name="Wor kf | owDocunent 2" >
<activationType>P</activati onType>
<rul eTenpl at e>Wor kf | owDocunent 2Tenpl at e</ rul eTenpl at e>
</ request s>
<requests name="Acknow edgel">

96

KEW

<activationType>P</activati onType>
<rul eTenpl at e>Ack1Tenpl at e</ rul eTenpl at e>
</ request s>
<requests name="Acknow edge2">
<activationType>P</activati onType>
<rul eTenpl at e>Ack2Tenpl at e</ rul eTenpl at e>
</ request s>
</ r out eNodes>
</ docunent Type>

» name: Thisisthe Document Type for Move Sequentia Test.

» Parent: The parent Document Type is BlanketApproveTest. This Document Type inherits the policies
that BlanketApproveTest has.

 description: This Document Type is used to test Move Sequence.
* label: ThisDocument Type is recognized as MoveSequential Test type.

 postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postpr ocessor .DefaultPost Processor .

» superUser GroupName: The super users for this Document Type are members of the TestWorkgroup.

 blanketApproveGroupName: The members of the TestWorkgroup have blanketA pproval right onthis
type of document.

« defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

» docHandler: The Doc Handler for thistype of document is_blank.
 active: This Document Typeis currently active. In other words, itisin use.

» routePath: The routing path for this Document Type is. AdHoc -> WorkflowDocument ->
WorkflowDocument2 -> Acknowledgel -> Acknowledge2.

 routeNode: Based on the routePath, there are five nodes in the routing of this Document Type:

e The starting node for this Document Typeis AdHaoc. On the initiation of adocument of thistype, the
postProcessor in KEW activates the node AdHoc.

< Thenext nodeintherouting for this Document TypeisWor kflowDocument. On request, the nodeis
activated, appliesthe rulesin rule template, Wor kflowDocumentTemplate, and sets the mandatory
route astrue. In other words, the document must route through this node.

< Thenext nodeintherouting for thisDocument TypeisWor kflowDocument2. Onrequest, thenodeis
activated, appliestherulesin ruletemplate, Wor kflowDocument2T emplate, and setsthe mandatory
route astrue. In other words, the document must route through this node.

< The next node in the routing for this Document Type is Acknowledgel. On request, the node is
activated and applies the rulesin rule template, Ack1Template.

< The next node in the routing for this Document Type is Acknowledge2. On request, the node is
activated and applies the rulesin rule template, Ack2Template.

97

KEW

Figure 3.16. Move Sequential Test

¥

Worilow Documman!

Winridow Dooument?

Movel nProcessT est

98

KEW

<docurent Type>
<nane>Move
<par ent >Bl
<descripti
<l abel >Mov
<post Proce
<super User
<bl anket Ap
<def aul t Ex
<docHandl e
<active>tr
<rout ePat h
<route

<s

<r

I nProcessTest </ nane>

anket Appr oveTest </ par ent >

on>Move In Process Test</description>

e In Process Test</I|abel >

ssor Name>or g. kual i . ri ce. kew. post processor. Def aul t Post Processor </ post Processor Nanme>
G oupNane nanespace="KR-WKFLW >Test Wor kgr oup</ super User G oupNane>

proveG oupNane nanespace="KR- WKFLW >Test Wor kgr oup</ bl anket Appr oveGr oupNanme>

cepti onGr oupNanme namespace="KR- WKFLW > Test Wor kgr oup</ def aul t Excepti onG oupNane>
r>_bl ank</ docHandl er >

ue</active>

s>

Pat h>

tart name="AdHoc" next Node="Wor kf | owDocunent" />

equest s name="Wor kf | owDocunment " next Node="MyRadSubProcess" />

<process name="M/RadSubProcess" next Node="Wor kfl owDocunent Fi nal " />

<r
</ rout
<route

<r

<r

</rout

</ r out ePat
<r out eNode
<start

equest s name="Wor kf | owDocunent Fi nal " />
ePat h>
Pat h processNanme="M/RadSubProcess" initial Node="Workf| owDocunent 2" >
equest s name="Wor kf | owDocunment 2" next Node="\Wér kf | owDocunent 3" />
equest s name="Wor kf | owDocunent 3" />
ePat h>
hs>
s>
nanme="AdHoc" >

<activati onType>P</activati onType>

</star
<reque

t>
sts name="Wor kf | owDocunent " >

<activati onType>P</activati onType>

<r
</requ
<proce
<reque

ul eTenpl at e>Wor kf | owDocunent Tenpl at e</ rul eTenpl at e>
est s>

ss name="M/RadSubProcess" />

sts name="Wor kf | owDocunent 2" >

<activati onType>P</activati onType>

<r
</requ
<reque

ul eTenpl at e>Wor kf | owDocunent 2Tenpl at e</ r ul eTenpl at e>
est s>
sts name="Wor kf | owDocunent 3" >

<activati onType>P</activati onType>

<r
</requ
<reque

ul eTenpl at e>Wor kf | owDocunent 3Tenpl at e</ rul eTenpl at e>
est s>
sts name="Wor kf | owDocunent Fi nal ">

<activati onType>P</activati onType>

<r

ul eTenpl at e>Wor kf | owDocunent Fi nal Tenpl at e</rul eTenpl at e>

</ request s>
</ r out eNodes>
</ documnent Type>

name: Thisisthe Document Type for Move In Process Test.

Parent: The parent Document Type for this Document Type is BlanketApproveTest. This Document
Type inherits the policies that BlanketApproveTest has.

description: This Document Typeis used to test Move In Process.
label: This Document Typeis recognized as the MovelnProcessTest type.

postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor .DefaultPost Pr ocessor .

super User GroupName: The super users for this Document Type are members of the TestWorkgroup.

blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right on this
type of document.

defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

docHandler: The Doc Handler for this type of document is_blank.

99

KEW

« active: This Document Typeis currently active. In other words, itisin use.

 routePath: Therouting path for this Document Typeis: AdHoc -> WorkflowDocument -> MyRadSub
Process -> WorkflowDocument2 -> WorkflowDocument3 -> WorkflowDocumentFinal. Thereisasub-
process MyRadSubProcess in this path.

» routeNode: As can be seen from the routePath, there are five nodes in the routing of this Document
Type:

» The starting node for this Document Typeis AdHoc. On the initiation of adocument of thistype, the
postProcessor in KEW activates the node AdHoc.

» The next node in the routing for this Document Type is Wor kflowDocument. On request, the node
is activated, applies the rules in rule template, WorkflowDocumentTemplate, and initiates a sub
process MyRadSubProcess.

» The next node in MyRadSubProcess for this Document Type is Wor kflowDocument2. On request,
the node is activated and applies the rules in rule template, Wor kflowDocument2T emplate.

» Thenext nodein MyRadSubProcessfor thisDocument TypeisW or kflowDocument3. O therequest,
the node is activated and applies the rules in rule template, Wor kflowDocument3Template.

» The next node in the routing for this Document Type is Wor kflowDocumentFinal. On request, the
node is activated and applies the rules in rule template W or kflowDocumentFinal Template.

100

KEW

Figure 3.17. Move In Process Test

Slart

¥

101

KEW

AdhocRouteT est

<docurent Type>
<nanme>AdhocRout eTest </ name>
<descri pti on>AdhocRout eTest </ descri pti on>
<l abel >AdhocRout eTest </ | abel >

<post Processor Nane>or g. kual i . ri ce. kew. post processor. Def aul t Post Processor </ post Pr ocessor Name>
<super User G oupNane namespace="KR- WKFLW >Test Wor kgr oup</ super User G- oupNane>
<bl anket Appr oveG oupNane nanespace="KR- WKFLW >Test Wor kgr oup</ bl anket Appr oveG oupNane>
<def aul t Excepti onG oupNane nanespace="KR- WKFLW > Test Wor kgr oup</ def aul t Except i onG oupNanme>
<docHandl er >_bl ank</ docHandl er >
<active>true</active>
<r out ePat hs>
<r out ePat h>
<start nanme="AdHoc" next Node="0Cne" />
<requests name="(One" />
</ r out ePat h>
</ rout ePat hs>
<r out eNodes>
<start nane="AdHoc">
<activationType>P</ activationType>
</start>
<requests name="0ne">
<activationType>S</activationType>
<rul eTenpl at e>Wor kf | owDocunent Tenpl at e</ rul eTenpl at e>
</ request s>
</ r out eNodes>
</ documnent Type>

» name: Thisisthe Document Type for Adhoc Route Test.
 description: This Document Type is used to test Ad Hoc Route.
* label: This Document Type is recognized as the AdhocRouteTest type.

* postProcessor Name: the postProcessor for this Document
org.kuali.rice.kew.postprocessor .DefaultPostProcessor .

» superUser GroupName: The super users for this Document Type are members of the TestWorkgroup.

blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right on this
type of document.

defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

docHandler: The Doc Handler for this type of document is_blank.

active: This Document Typeis currently active. In other words, itisin use.

routePath: The routing path for this Document Typeis: AdHoc -> One.

routeNode: Based on the routePath, there are two nodes in the routing of this Document Type:

« The starting node for this Document Typeis AdHaoc. On the initiation of adocument of thistype, the
postProcessor in KEW activates the node AdHoc.

¢ Thenext node in the routing for this Document Typeis One. On request, the node is activated by the
type S and appliesthe rulesin rule template, WorkflowDocumentTemplate.

102

KEW

Figure 3.18. Adhoc Route Test

h
Hellino I
h 4
one |
L 4

/ WorkflowDooument Template /

PreApproval Test

<docunent Type>
<name>Pr eAppr oval Test </ name>
<descri pti on>Pr eAppr oval Test </ descri pti on>
<| abel >Pr eAppr oval Test </ | abel >
<post Processor Name>or g. kual i . ri ce. kew. post processor . Def aul t Post Processor </ post Processor Name>
<super User G oupNarme nanmespace="KR- WKFLW >Test Wor kgr oup</ super User G- oupNane>
<bl anket Appr oveG oupNanme nanmespace="KR- WKFLW >Test Wor kgr oup</ bl anket Appr oveG oupNanme>
<def aul t Excepti onGr oupNanme nanmespace="KR- WKFLW > Test Wr kgr oup</ def aul t Excepti onG oupNane>
<docHandl er >_bl ank</ docHandl er >
<active>true</active>
<r out ePat hs>
<r out ePat h>
<start name="AdHoc" next Node="PreApproval Test One" />
<requests name="PreApproval Test One" />
</ r out ePat h>
</ r out ePat hs>
<r out eNodes>
<start nanme="AdHoc">
<activati onType>P</activati onType>
</start>
<requests name="PreApproval Test One" >
<activati onType>S</activati onType>
<rul eTenpl at e>Wor kf | owDocunent Tenpl at e</ rul eTenpl at e>
</ request s>
</ r out eNodes>
</ docunent Type>

» name: Thisisthe Document Type for PreApproval Test.
 description: This Document Typeis used to test Pre-Approval.
* label: This Document Type is recognized as the PreApprova Test type.

* postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor .DefaultPost Processor .

 superUser GroupName: The super users for this Document Type are members of the TestWorkgroup.

103

KEW

 blanketApproveGroupName: The members of the TestWorkgroup have blanketA pproval right on this
type of document.

 defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type. « docHandler: The Doc Handler for this type of document is
_blank.

* active: This Document Typeis currently active. In other words, itisin use.
 routePath: The routing path for this Document Typeis: AdHoc -> PreApproval TestOne.
» routeNode: Based on the routePath, there are two nodes in the routing of this Document Type:

» The starting node for this Document Typeis AdHaoc. On the initiation of adocument of thistype, the
postProcessor in KEW activates the node AdHoc.

* Thenext node in the routing for this Document Typeis PreApproval TestOne. On request, the node
is activated by the type S and applies the rules in rule template, Wor kflowDocumentTemplate.

Figure 3.19. PreApproval Test

W

oL I

¥

PrafpaowvalTas O

L

/ WorkfiowDotument Template /

Erd

VariablesT est

<docunent Type>
<nane>Vari abl esTest </ nanme>
<descri ption>Vari abl esTest </ descri pti on>
<| abel >Vari abl esTest </ | abel >

<post Processor Name>or g. kual i . ri ce. kew. post processor. Def aul t Post Processor </ post Pr ocessor Nanme>
<super User G oupNanme nanespace="KR- WKFLW >Test Wor kgr oup</ super User G oupName>
<bl anket Appr oveGr oupNanme nanmespace="KR- WKFLW >Test Wor kgr oup</ bl anket Appr oveG oupNane>
<def aul t Excepti onGr oupNanme nanmespace="KR- WKFLW > Test Wor kgr oup</ def aul t Excepti onG oupNane>
<docHandl er >_bl ank</ docHandl er >
<active>true</active>
<r out ePat hs>
<r out ePat h>
<start nane="AdHoc" next Node="set StartedVar" />
<si npl e nane="set StartedVar" next Node="set Copi edVar"/ >
<si npl e nane="set Copi edVar" next Node="Pr eApproval Test One"/ >
<requests name="PreApproval Test One" next Node="set EndedVar"/ >

104

KEW

<si npl e nane="set EndedVar" next Node="set Googl eVar"/ >
<si nmpl e nanme="set Googl eVar" next Node="set XPat hvar"/ >
<si nmpl e name="set XPat hVar" next Node="reset StartedVar"/>
<sinpl e nane="reset StartedVar" next Node="| ogNode"/ >
<si nmpl e name="1 ogNode" next Node="| ogNode2"/ >
<si nmpl e name="1| ogNode2"/ >
</ r out ePat h>
</ r out ePat hs>
<r out eNodes>
<start nane="AdHoc">
<activationType>P</activati onType>
</start>
<si npl e nane="set StartedVar">
<type>org. kual i . ri ce. kew. engi ne. node. var . Set Var Node</ t ype>
<nane>st ar t ed</ nanme>
<val ue>st art edVari abl eVal ue</ val ue>
</ si npl e>
<si nmpl e nanme="set Copi edVar" >
<type>org. kual i . ri ce. kew. engi ne. node. var . Set Var Node</ t ype>
<name>copi edVar </ name>
<val ue>var: started</val ue>
</ si npl e>
<requests name="PreApproval Test One" >
<activati onType>S</activati onType>
<rul eTenpl at e>Wor kf | owDocunent Tenpl at e</ rul eTenpl at e>
</ request s>
<si npl e nane="set EndedVar ">
<type>org. kual i . ri ce. kew. engi ne. node. var . Set Var Node</ t ype>
<nane>ended</ nane>
<val ue>endedVari abl eVal ue</ val ue>
</ si npl e>
<si nmpl e nanme="set Googl eVar" >
<type>org. kual i . ri ce. kew. engi ne. node. var . Set Var Node</ t ype>
<nane>googl e</ nane>
<val ue>url : http://googl e. conx/ val ue>
</ si npl e>
<si mpl e nanme="set XPat hVar" >
<type>org. kual i . ri ce. kew. engi ne. node. var . Set Var Node</ t ype>
<nane>xpat h</ nane>
<val ue>xpat h: concat (| ocal - name(// docunent Cont ent), $ended) </ val ue>
</ si npl e>
<si nmpl e name="reset StartedVar">
<type>org. kual i . ri ce. kew. engi ne. node. var . Set Var Node</ t ype>
<nane>st ar t ed</ nanme>
<val ue>aNewSt ar t edVar i abl eVal ue</ val ue>
</ si npl e>
<si npl e nane="1 ogNode" >
<type>org. kual i . ri ce. kew. engi ne. node. LogNode</ t ype>
<nmessage>var : xpat h</ nessage>
</ si npl e>
<si mpl e name="1| ogNode2" >
<type>org. kual i . ri ce. kew. engi ne. node. LogNode</ t ype>
<l evel >Er RoR</ | evel >
<l og>Cust om Logger . Nanme</ | og>
<message>THAT' S ALL FOLKS</ nmessage>
</ si npl e>
</ r out eNodes>
</ docunent Type>

* name: Thisisthe Document Type for VariablesTest.
 description: This Document Type is used to test Variables.
« label: This Document Type is recognized as the VariablesTest type.

 postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor .DefaultPostProcessor .

» superUser GroupName: The super users for this Document Type are members of the TestWorkgroup.

 blanketApproveGroupName: The members of the TestWorkgroup have blanketA pproval right on this
type of document.

105

KEW

defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

docHandler: The Doc Handler for this type of document is_blank.

active: This Document Typeis currently active. In other words, itisin use.

routePath: The routing path for this Document Type is: AdHoc -> setStartedVar -> setCopiedVar ->
preApproval TestOne -> setEndedVar -> setGoogleVar -> setXPathVar -> resetStartedVar -> logNode
-> logNode2.

routeNode: Based on the routePath, there are ten nodes in the routing of this Document Type:

» The starting node for this Document Typeis AdHaoc. On the initiation of adocument of thistype, the
postProcessor in KEW activates the node AdHoc.

» The next node in the routing for this Document Typeis setStartedVar.
« lItstypeisorg.kuali.ricekew.engine.node.var.SetVar Node
e Itsnameis started.

* ItsvaueisstartedVariableValue.

» The next node in the routing for this Document Typeis setCopiedVar.
 lItstypeisorg.kuali.ricekew.engine.node.var.SetVarNode.
 ItsnameiscopiedVar.

e Thevauethat it iscopyingisvar:started.

< Thenext node in the routing for this Document Typeis preApproval TestOne. On request, the node
is activated by the type S and appliesthe rulesin rule template Wor kflowDocumentTemplate.

¢ The next node in the routing for this Document Typeis setEndedVar
* Itstypeisorg.kuali.ricekew.engine.node.var.SetVar Node.

* Itsnameisended.
* ItsvalueisendedVariableValue.

e The next node in the routing for this Document Typeis setGoogleVar.
« lItstypeisorg.kuali.ricekew.engine.node.var.SetVar Node.
 Itsnameisgoogle. It links to http://google.com.

¢ The next node in the routing for this Document Typeis setXpathVar.
 Itstypeisorg.kuali.ricekew.engine.node.var.SetVarNode.
 Itsnameisxpath.

« It adds //documentContent to the current path.

e The next nodein the routing for this Document TypeisresetStartedVar.

106

KEW

« lItstypeisorg.kuali.ricekew.engine.node.var.SetVar Node.

* Itsnameisstarted.

* |t resetsthe started node at a new node, aNewStartedVariableValue.
« The next node in the routing for this Document Type islogNode.

« Itstypeisorg.kuali.rice.kew.engine.node.L ogNode.

« |t sends a message about the xpath of the variables at var:xpath.
« The next node in the routing for this Document Type islogNode2.

« lItstypeisorg.kuali.rice.kew.engine.node.L ogNode.

* Itslevel isErRoR.

« It opensthelog Custom.L ogger .Name.

e [treturnsamessage THAT'SALL FOLKS.

107

KEW

Figure 3.20. Variables Test

Suer Yt N

* o AT St i'
/ Canfiomn Logger Namea ’f / THATS ALL FOLES f

SUApproveDocumentNotifications

108

KEW

<docurent Type>
<nanme>SUAppr oveDocunent Not i fi cati ons</ nane>
<par ent >SUAppr oveDocunent </ par ent >
<descri pti on>SUAppr oveDocunent Not i fi cati ons</ descri pti on>
<l abel >SUAppr oveDocunent Not i fi cati ons</| abel >

<post Processor Name>or g. kual i . ri ce. kew. post processor. Def aul t Post Processor </ post Pr ocessor Nanme>
<super User G oupNanme nanespace="KR- WKFLW >Test Wor kgr oup</ super User G- oupNane>
<bl anket Appr oveG oupNanme nanmespace="KR- WKFLW >Test Wor kgr oup</ bl anket Appr oveG oupNanme>
<def aul t Excepti onGr oupNanme nanmespace="KR- WKFLW > Test Wor kgr oup</ def aul t Excepti onG oupNane>
<docHandl er >_bl ank</ docHandl er >
<active>true</active>
<pol i ci es>
<pol i cy>
<nanme>SEND_NOTI FI CATI ON_ON_SU_APPROVE</ name>
<val ue>t rue</ val ue>
</ policy>
</ policies>
</ docunent Type>

» name: Thisisthe Document Type for SuperUser Approve Document Notifications.
 description: This Document Type is used to test the SuperUser Approve Document Notifications.
* label: This Document Type is recognized as the SUApproveDocumentNotifications type.

* postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor .DefaultPostPr ocessor .

» superUser GroupName: The super users for this Document Type are members of the TestWorkgroup.

» blanketApproveGroupName: The members of the TestWorkgroup have blanketA pproval right on this
type of document.

 defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

» docHandler: The Doc Handler for thistype of document is_blank.
« active: This Document Typeis currently active. In other words, itisin use.
» Thereisjust one policy for this Document Type: The SEND_NOTIFICATION_ON_SU APPROVE

policy is set true by default. In other words, notifications will be automatically sent on SuperUser's
approval.

Document Type Authorizer

The Document Type Authorizer is a component that gets called during the routing process to perform
authorization checks. Applications can customize this component, for example to introduce custom role
qualifiers or permission details, on a per-doctype basis by registering a custom

org. kual i.rice.kew. framework. docunment . security. Docunment TypeAut hori zer

implementation.
The DocumentTypeAuthorizer will be called to make the following checks:

e canlnitiate

109

KEW

canBlanketApprove

canCancel

canRecall

canSave

canRoute
canSuperUserApproveSingleActionRequest
canSuperUserApproveDocument

canSuperUserDisapproveDocument

Document Type Policies

Document Type Policies affect workflow routing behavior.

Current Document Type polices:

DISAPPROVE

DEFAULT_APPROVE
DOCUMENT_STATUS POLICY
INITIATOR_MUST ROUTE
INITIATOR_MUST_SAVE
INITIATOR_MUST_CANCEL
INITIATOR_MUST_BLANKET_APPROVE
LOOK_FUTURE
SEND_NOTIFICATION_ON_SU_APPROVE
SUPPORTS_QUICK_INITIATE
NOTIFY_ON_SAVE

blanketApprovePolicy
ALLOW_SU_POST_PROCESSOR_OVERIDE
NOTIFY_COMPLETED_ON_RETURN
NOTIFY_PENDING_ON_RETURN
RECALL_NOTIFICATION

ALLOW_SU_FINAL_APPROVAL

110

KEW

* SEND_NOTIFICATION_ON_SU_DISAPPROVE

Document Type Policies defined in the Document Type XML have this structure:

<docurnent Type>
<name>. .. </ nane>
<pol i ci es>
<policy>
<nanme>DEFAULT_APPROVE</ nanme>
<val ue>t rue</ val ue>
</ policy>
<pol i cy>
<name>LOOK_FUTURE</ nanme>
<val ue>f al se</ val ue>
<policy>
<policy>
<name>DOCUMENT_STATUS_PCOLI CY</ nanme>
<stringVal ue>APP</ st ri ngVal ue>
</ policy>
</ policies>
</ docunent Type>

DISAPPROVE

The DI SAPPROVE policy determineswhether adocument will discontinue routing (transactions). When
a document has been disapproved, the document initiator and previous approvers will receive notice of
this disapproval action.

DEFAULT_APPROVE

The DEFAULT_APPROVE policy determines whether a document will continue processing with or
without any approval requests. If a document is set to have no approval requests, its put into exception
routing. Then, the document will continue to route to the exception workgroup associated with the last
route node or to the workgroup defined in the defaultExceptionWor kgroupname.

DOCUMENT_STATUS_POLICY

The DOCUMENT_STATUS POLICY policy sets whether to display the KEW Route Status, the
Application Document Status, or Both in the Route Log. Valid policy valuesare: KEW, APP, or BOTH.

The set of valid statuses for a given document type may be defined. If defined, only those values are
allowed asvalid statuses. These will also be used to popul ate a multi-select box on the doc search screen if
thisdoc typeisselected (see Customizing Document Search: Application Document Status). If not defined,
any string with alength of up to 64 characters may be used, and atext input field is used on the doc search
screen. An example configuration follows.

<val i dAppl i cati onSt at uses>
<status>|nitiated</status>
<status>Val i dat ed</ st at us>
<status>Awai ti ng Content Aproval </status>
<status>Org Revi ew</status>
<st at us>Appr oved</ st at us>

</val i dAppli cationSt at uses>

Additionally, the valid statuses may be grouped into named categories for display and search purposes.
If defined, these categories will display in doc search (again, if the document type is selected) under the
application document status multi-select as headings under which the individual statuses are grouped.

111

KEW

These categories can be selected as well, which has an equivalent effect on the search to individually
selecting all of the statuses within the category (see Customizing Document Search: Application Document
Status). Note that not all statuses need be grouped within categories, as demonstrated below by the
"Approved" status below.

<val i dAppl i cati onSt at uses>

<cat egory name="Pre-Submit">
<status>Initiated</status>
<st at us>Val i dat ed</ st at us>

</ cat egory>

<category nane="In Process">
<status>Awai ti ng Content Aproval </status>
<status>Org Revi ew</status>

</ cat egory>

<st at us>Appr oved</ st at us>

</val i dAppli cationSt at uses>

In the process definition section, automatic status updates may be assigned to occur on route node
transition. Please see the section on the routePaths in this guide.

INITIATOR_MUST_ROUTE

The INITIATOR_MUST_ROUTE policy sets the rule that the user who initiates the document must
route it.

INITIATOR_MUST_SAVE

ThelINITIATOR_MUST_SAVE policy setsthe rule that the user who initiated the document will be the
only one authorized to save the document.

INITIATOR_MUST_CANCEL

ThelINITIATOR_MUST_CANCEL policy setsthe rulethat the user who initiated the document will be
the only one authorized to cancel the document.

INITIATOR_MUST_BLANKET_APPROVE

The INITIATOR_MUST_BLANKET_APPROVE policy sets the rule that the user who initiated the
document is the only one authorized to blanket approve the document.

LOOK_FUTURE

The LOOK_FUTURE policy determines whether the document can be brought into a simulated route
from the route log. This policy simulates where the document would end up if it completed the route.

SEND_NOTIFICATION_ON_SU_APPROVE

The SEND_NOTIFICATION_ON_SU _APPROVE policy indicates to KEW that it is to send a
notification on SuperUser approval.

SUPPORTS_QUICK_INITIATE

The SUPPORTS QUICK _INITIATE policy indicates whether the Document Typeis displayed on the
Quick Links, so that users can quickly initiate instances of the document.

112

KEW

NOTIFY_ON_SAVE

The NOTIFY_ON_SAVE policy indicates whether a notification should be sent in when a save action
is applied to this Document Type.

blanketApprovePolicy

The blanketApprovePolicy policy indicates who can blanket appr ove aworkflow document. Its values
are either ANY or NONE.

* ANY means that anybody can blanket approve the document.

* NONE means that no one can blanket approve the document.

Alternatively, the configuration of the document can be set up to specify a
blanketApproveWorkgroupName. blanketApproveWorkgroupName indicates that members of that
workgroup can blanket approve the document. You can specify either blanketApprovePolicy OR
blanketApproveWorkgroupName in the Document Type.

Since the blanket approve policy is not a true/false policy (like the others), it is specified as an element
in the Document Type XML:

<docurent Type>
<name>. .. </ name>

<bl anket Appr ovePol i cy>NONE</ bl anket Appr ovePol i cy>
</ documnent Type>

ALLOW_SU_POST_PROCESSOR_OVERIDE

There is currently the ability to override the "Perform Post Processor Logic" on the "Super User Action
on Action Requests' page. This functionality is configurable by document type and as such allows for
inheritance.

By default, the ALLOW_SU POST PROCESSOR_OVERIDE it's set to true. The checkbox appears on
the super user screen as.

Figure 3.21. Super User Action on Requests

Super User Action on Action Requests

APPROYE Requested of employee, employee

Request Date | 04:17 PM 08/02/2010
Request Status | ACTIVE
Responsibility | Supervisor Routing
Annotation | employee
Route Level | Travelerdpproval
Rauting Priority | 1
Respansibility I1d| 2024
Action Request Id| 2

Perform Post Processor Logic| [V

=1
~
-

approve

113

KEW

In order to turn off the post processor check box, you would add this to the documentType definition:;

<pol i ci es>
<policy>
<name>ALLOW SU_POSTPROCESSOR_OVERRI DE</ name>
<val ue>f al se</ val ue>
</ policy>
</ policies>

Recall From Routing

Three Document Type policies affect Recall behavior. These policies are defined in the respective the

DocumentType XML. The following two policies apply to Return-To-Previous actions as well as Recall
actions:

NOTIFY_COMPLETED_ON_RETURN - Default: false toggles whether to notify previous router log
participantswith FY Iswhen adocument isrecalled. Thisdoesnot affect notificationsto pending approvers
which are always sent.

Example:
<pol i cy>

<name>NOT| FY_COVPLETED_ON_RETURN</ nanme>
<val ue>t rue</ val ue>

</ policy>
NOTIFY_PENDING_ON_RETURN - Default: true toggles whether to notify pending approvers with
FYlswhen adocument isrecalled. This does not affect notifications to prior approvers.
Example:

<policy>

<nanme>NOT| FY_PENDI NG_ON_RETURN</ nane>
<val ue>t rue</ val ue>
</ policy>

The following policy is Recall-specific:
RECALL_NOTIFICATION - Default: false/none

Example:

<policy>
<name>RECALL_NOTI FI CATI ON</ nanme>
<val ue>true</ val ue>
<recipi ents xmns:r="ns:workfl ow Rul e" xsi:schemaLocati on="ns: wor kfl ow Rul e resource: Rul e"
xm ns: dt =" ns: wor kf | ow Docunent Type" >
<r:princi pal Nane>qui ckstart</r: princi pal Name>
<r:user>qui ckstart</r:user>
<rol e nanespace="KR- SYS" nane="Techni cal Admi nistrator"/>
</ recipients>
</ policy>

114

KEW

ALLOW_SU_FINAL_APPROVAL

Setting this policy to false disallows Super User approval on final nodes of the document.

<pol i ci es>
<pol i cy>
<name>ALLOW SU_FI NAL_APPROVAL</ name>
<val ue>f al se</val ue>
</ policy>
</ policies>

SEND_NOTIFICATION_ON_SU_DISAPPROVE

By default, acknowledgedments are not sent on Super User Disapproval like they are for normal
Disapprove actions. This policy can be used to enable sending of acknowledgements upon Super User
Disapproval.

<pol i ci es>
<pol i cy>
<name>SEND_NOTI FI CATI ON_ON_SU_DI SAPPROVE</ nane>
<val ue>t rue</ val ue>
</ policy>
</ policies>

Inheritance

Document Types can specify a parent Document Type. This allows them to be included in a Document
Type hierarchy from which certain behavior can be inherited from their parent Document Type.

Inheritable Fields
These fields are inherited:

 superUser GroupName: Indicates members of the workgroup who can perform SuperUser actions on
the document

» blanketApproveGroupName: Indicates members of the workgroup that can blanket approve the
document.

* notificationFromAddr ess: Sendsanoticeto the sender when thetransfer of the document iscompl eted.
» messageEntity: A head and body of the message.

* policies: Indicates a set of rule(s) applied in the document. For each policy, True means policy DOES
apply, False means policy does NOT apply.

* searchableattributes: Constraint(s) assigned as the searchable criteria for a document.

 route paths/route nodes: Designated traveling points before the document reaches its destination in
arouting process.

Specia notes about inheritance:

115

KEW

1. Policiess In the Policies section, there are multiple Document Type policies
(INITAITOR_MUST _ROUTE, DEFAULT_APPROVE, etc). Each policy can be overridden on an
individual basis. In contrast to the route path, thereis no need to override the entire policies section for
aDocument Type. For more detailed information about Document Type policies, please see Document
Type Policies (above) in this document.

2. Route pathg/ route nodes: To override the route path and route node definitions of a parent Document
Type, you must override ALL route node and route path definitions. Y ou cannot inherit and use just
part of aroute path; it's all or nothing.

Document Type hierarchy and the Rules Engine

The Rules Engine follows these rules to determine its rule evaluation set for a Document Type at a
particular node:

1. The Rules Engine looks at the Rule Template name of the current node and selects all rules with that
template and that document’'s Document Type. It adds those rules to the rule evaluation set.

2. If the Document Type has a parent Document Type, it selectsall ruleswith that template and that parent
Document Type and adds those to the rule evaluation set.

3. Itsrepeats step two until it reaches the root of the Document Type hierarchy.

4. Thefinal rule evaluation set includes all of these rules.

Defining Workflow Processes Using
PeopleFlow - a new feature in KEW

PeopleFlow is our Kuali Rice instantiation of the "maps" concept included in the original Coeus. For all
intents and purposes it's a prioritized list of people to send requests to. PeopleFlow gives you a new type
of request activation strategy called "priority-parallel” to activate requests generated from a PeopleF ow
in the appropriate order. Essentially, it's like a mini people-based workflow that doesn't require you to
specify a KEW node in the document type for each individual who might need to approve or be notified.
Y ou can define "Stops' in a PeopleFlow, where everything in the same stop proceeds in parallel, but all
must be done within the stop before proceeding to the next stop.

You can call/execute a PeopleFlow from within a KEW workflow node directly, or you can invoke
the Kuali Rules Managment System (KRMS) engine from an application and any PeopleFlows that get
selected during rule execution, defined in a KRM S agenda, will be called. In this way, you can integrate
business rules across applications and workflows.

The same PeopleFlow that defines arouting order among a set of persons, groups or roles can be called by
KRM S rules, with the KRM S rules defining which type of request to pass to the PeopleFlow (for example,
an "approva" routing action or a"notification").

KRMSisalso anew featurein Rice 2.0. Seethe KRM S Technical Guide for more information on KRMS.

Y ou can define a PeopleFlow (simple workflow) viaamaintenance document. See the KEW Users Guide
for additional details on defining a PeopleFlow.

Technical Information about PeopleFlow

(decide what needs to go here -- architecture, data model, api, troubleshooting, etc.?)

116

KEW

KEW Routing Components and Configuration
Guide

KEW has several components that you can use to configure routing. Typically a single application will
write a set of these components for reuse across multiple Document Types. These components are wired
together using an XML configuration file that you need to import into KEW. See Importing XML Files
to KEW for more information.

This document looks at defining the routing components available in KEW and how to use these
components to make a cohesive routing setup.

* RouteModule - The most basic module; it allows KEW to generate Action Requests

* RuleAttribute - A component that fits into KEW's rule system. These rules are used to build routing
paths for documents. They function for users across the organization and for multiple applications.

» XML RuleAttribute— Similar in functionality to a RuleAttribute but built using XML only

* RoleAttribute - A component that fits into KEW's rule system, but which is a pointer to outside data.
See Built-in Roles and Nodes for more information on implementing a RoleAttribute.

e PostProcessor - A component that gets called throughout the routing process and handles a set of
standard events that all eDocs (electronic documents) go through.

» DocumentType Authorizer - A component that gets called during the routing process to perform
authorization checks. Applications can customize this component on a per-doctype basis.

These components are contained in a Document Type that is defined in XML. A Document Type is the
prototype for eDocs. Below is the Document Type configuration that explains how KEW uses the eDoc
rule:

<?XM. version="1.0" encodi ng="UTF-8"?>
<data XMLns="ns:wor kfl ow' XM.ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance" xsi : schemaLocati on="ns: wor kf | ow
resour ce: Wr kf | owDat a" >
<document Types XM.ns="ns: wor kf | ow Docunment Type" xsi:schemaLocati on="ns: wor kf | ow Docunent Type
resour ce: Docunent Type" >
<docunent Type>
<nanme>YOURSERVI CE- DOCS. Rul eDocunent </ nane>
<par ent >YOURSERVI CE- DOCS</ par ent >
<descri pti on>Add/ Modi fy Wrkfl ow rul es</ descri pti on>
<| abel >Add/ Modi fy Workfl ow rul es</| abel >
<post Processor Name>your . package. r out et enpl at e. Rul ePost Processor </ post Processor Nane>
<aut hori zer >your . package. Cust onDocunent TypeAut hori zer </ aut hori zer >
<super User G oupName>Wor kf | owAdm n</ super User G oupNane>
<bl anket Appr oveG oupNane>| U- WORKFLOW RULE- BLANKET- APPROVERS</ bl anket Appr oveG oupNane>
<def aul t Excepti onGr oupNanme>YOUR_EXCEPTI ON_TEAMK/ def aul t Except i onG oupNane>
<docHandl er >htt ps://yourl ocal | P/ en- prd/ Rul e. do?nmet hodToCal | =docHandl| er </ docHandl| er >
<noti ficationFromAddress>. .. @our Enai | Server| P. edu</ notificati onFromAddr ess>
<active>true</active>
<rout i ngVer si on>1</rout i ngVer si on>
<r out ePat hs>
<r out ePat h>
<start name="Adhoc Routing" next Node="Rul e routing Route Level" />
<requests name="Rul e routing Route Level" />
</ r out ePat h>
</ r out ePat hs>
<r out eNodes>
<start name="Adhoc Routing">
<activati onType>S</activati onType>
<mandat or yRout e>f al se</ mandat or yRout e>
<final Approval >f al se</fi nal Approval >
</start>

117

KEW

<requests name="Rul e routing Route Level ">
<activati onType>S</activati onType>
<rul eTenpl at e>Rul eRout i ngTenpl at e</ rul eTenpl at e>
<mandat or yRout e>t r ue</ mandat or yRout e>
<fi nal Approval >f al se</fi nal Approval >

</ request s>

</ r out eNodes>
</ docunent Type>
</ docunent Types>
</ dat a>

Configuration Steps

Let's go through the configuration step-by-step and explain what all the pieces mean:

DocumentTypeName Definition

<nanme>YOURSERVI CE- DOCS. Rul eDocunent </ nane>

<par ent >YOURSERVI CE- DOCS</ par ent >

<descri pti on>Add/ Modi fy Workfl ow rul es</ descri pti on>
<| abel >Add/ Modi fy Workfl ow rul es</| abel >

The section above defines the Document Type's name, its parent, description, and label. The name is
used by the client application’s APl to communicate with KEW. Here is a sample of code from the client
application’s APl communicating with KEW:

Wor kf | owDocunent docunment = new Wor kf | owDocunent (new Net wor kI dVQ(" user nane"), " Docunent TypeNane");
docunent . rout eDocunent ("user inputted annotation");

The above code will route a document in KEW.
» The string DocumentTypeName existsin KEW and you define it using the <name> element.

» The parent element gives the Document Type a parent Document Type. Use this for inheritance of
routing configuration and policies.

» Description is defined as shown. The document’s Description is displayed on the Document Type
report.

» Label istypically the forward-facing name for the Document Type. The label is displayed to the user
when an eDoc isin their Action List and they use it when they search for an eDoc using DocSearch.

PostProcessor Class

<post Processor Nane>your . package. r out et enpl at e. Rul ePost Processor </ post Processor Nane>

The element above determines which classto use for the PostProcessor for this particular Document Type.
This component receives event notifications as eDocs travel through routing.

DocumentTypeAuthorizer Class

<aut hori zer >your . package. Cust onDocunent TypeAut hori zer </ aut hori zer >

118

KEW

The element above determines which class to use for the DocumentType Authorizer for this particular
Document Type. This component performs authorization checks as the eDoc travels through routing.

Managed Workgroups

<super User Wor kgr oupName>Wor kf | owAdmi n</ super User Wor kgr oupNane>
<bl anket Appr oveWor kgr oupNane>Wor kgr oupBIl anket Appr over s</ bl anket Appr oveWr kgr oupNanme>

<def aul t Except i onWor kgr oupNanme>Wor kf | owAdmi n</ def aul t Excepti onWor kgr oupNanme>

This section sets KEW managed workgroups in several roles in the Document Type.

» SuperUserWorkgroupName defines the workgroup that determines whether a person is allowed to
take Super User Actions on a document through the Super User interface.

» The content of element blanketApproveWor kgroupName determines which people have access to
blanket approve a document.

 defaultExceptionWorkgroup determines to which workgroup to send an eDoc of this type if it goes
into exception routing. This is an optional element. Y ou can also define Exception Workgroups with
aroute node.

docHandler

<docHand!l er >htt ps: //your| ocal | P/ en- prd/ Rul e. do?nmet hodToCal | =docHandl er </ docHandl er >

The docHandler tells KEW where to forward users when they click an eDoc link. See Document Search
for more information.

notificationFromAddress

<notificati onFromAddress>. .. @our Emai | Server| P</ notifi cati onFromAddr ess>

When KEW sends an email notification to a user regarding a document of this type, the From address on
the message is the address specified here. Thisis helpful because users will often reply to the messages
they receive from KEW, and this allows their responses to go to an appropriate address for the Document
Type. Thisis an optional element. If it is not defined here, KEW uses the default From address. See the
Installation Guide for more detail.

active

<active>true</active>

Use active to define the activeness of a Document Type. KEW does not allow anyone to create eDaocs of
an inactive Document Type.

routePaths

<r out ePat hs>

119

KEW

<r out ePat h>
<start name="Adhoc Routing" next Node="Rule routing Route Level" />
<requests name="Rul e routing Route Level" />
</ r out ePat h>
</ r out ePat hs>

The above defines the path an eDoc will travel as it progresses through its life. Start and Requests are
some of the standard node types used. There is only one stop each eDoc must make as it travels through
workflow. The eDaoc starts at the step Adhoc Routing and then progressesto the request node named Rule
routing Route L evel.

Additionally, an automatic progression of the application document status may be configured to occur on
route node transition with the addition of the nextAppDocStatus attribute in the elements of a routePath:

<r out ePat hs>
<r out ePat h>
<start name="Initiated" nextNode="Destinati onApproval" nextAppDocStatus="Approval in Progress"/>
<requests name="Desti nati onApproval " next Node="Travel er Approval " next AppDocSt at us="Submni tted"/>
<requests name="Travel er Approval " next Node="Supervi sor Approval " />
<requests name="Supervi sor Approval " next Node="Account Approval " />
<requests nanme="Account Approval " />
</ r out ePat h>
</ r out ePat hs>

This section only defines the path the eDocs will travel, and optionally the application document status
transitions. The nodes themselves are defined below.

Node Definition XML

<r out eNodes>
<start name="Adhoc Routing">
<activati onType>S</activati onType>
<mandat or yRout e>f al se</ mandat or yRout e>
<fi nal Approval >f al se</fi nal Approval >
</start>
<requests name="Rul e routing Route Level ">
<activati onType>S</activati onType>
<rul eTenpl at e>Rul eRout i ngTenpl at e</ rul eTenpl at e>
<mandat or yRout e>t r ue</ mandat or yRout e>
<fi nal Approval >f al se</fi nal Approval >
</ request s>
</ r out eNodes>

Thisisthe node definition XML. This determines certain behaviors each node can have.

Activation Type determines if Approve requests are activated all at once or one at atime. Any given
requests node can generate multiple rules that can then generate multiple requests. The ActivationType
value specifiesif all action requests generated for all fired rules are activated immediately (P = parallel
activation), or if the set of action requests generated by each rule are activated one after the other, according
torule order (S= sequential activation). However, to activate requests starting with those with the small est
priority and to active all those requestsin parallel the activation type of (R = priority-parallel activation).
Once all requests are approved, then the next priority will be activated. Thisis essentially a hyprid of the
traditional sequential and parallel activation types. Activation type is only relevant when multiple rules
are generated.

120

KEW

Figure 3.22. Parallel and Sequential Activation Types

reguest L actination request
g ride #1 rh
multiple
rules rule #72 Mtrﬂluﬂrzfmﬂ
fired
ol Ashvalion request
Parallel Activation Type Sequential Activation Type
All Betion requests are Activated Each Betion reguest 4 activated in sequence. SubLequent Betion
at the same time: requests sets must wait for the previous set to be satisfied:
Step £1 Staep #2 Step 23

1 actvation request
LK

Figure 3.23. Parallel-Priority Activation Type
ren?)l.éeest rule #1 m‘,’w 5 I rule #4 ﬂ@
multiple .
;:Jr::; rule #2 —oE ‘“ﬂ“ﬁ@ rule #5 m
rule #3 —BE il }
Parallel-Priority Activation Type

Each action request of the same pricrity is executed at the same time starting with the
smallest pricrity and warking wp.

Step #1 Step #2 Step #3

activation roguest
&1 prigrity 1

actrvation request
#1 prigaty 1

BCHVANON fequest activabon reg

#2 priceity 1

activabon regeest
#5 peiority 3

The mandatoryRoute key determines if it's mandatory to generate approval requests. If aroute node is
mandatory and it doesn't generate an approve request, the document is put in exception routing.

L E]
1

activalion request

actrealion roquast
&3 peigrity 2 4

#3 prigrity 2

' activation request
#4 prioeity 2

activation request
2

actvalion reguas!
#5 priorty 3

The finalapproval key determines if this node should be the last node that has an approve request. If
approvals are generated after this step, the document is thrown into exception routing.

Finaly, there is arequest node named Rule routing Route Level with akey called ruleTemplate. Thisis
our hook into the rule system for KEW:

121

KEW

<rul eTenpl at e>Rul eRout i ngTenpl at e</ rul eTenpl at e>

And thisis our hook into a route module:

<r out eMbdul e>package. your . ARout eMbdul e</ r out eModul e>

KEW contacts the route module when the document enters that route node and the route module returns
Action Requests for KEW to deliver.

Rule Attributes

If the application integrating with KEW is using Rules to contain the routing data and RuleAttributesfor
document evaluation, then the routing configuration requires more XML. Below isan XML snippet that
defines RuleAttribute; thisiswritten in Java

<?xm version="1.0" encodi ng="UTF-8"?>
<data xm ns="ns:workfl ow' xm ns: xsi="http://ww.w3. or g/ 2001/ XM_Schena- i nst ance" xsi: schemaLocati on="ns: wor kf | ow
resour ce: Wr kf | owDat a" >
<rul eAttri butes XM.ns="ns: workfl ow Rul eAttribute" xsi:schemaLocation="ns:workfl ow Rul eAttribute
resource: Rul eAttribute">
<rul eAttri bute>
<nanme>Rul eRout i ngAttri but e</ name>
<cl assNanme>or g. kual i . ri ce. kew. rul e. Rul eRouti ngAttri bute</cl assNanme>
<l abel >Rul eRout i ngAttri bute</| abel >
<descri pti on>Rul eRouti ngAttri bute</description>
<type>Rul eAttri bute</type>
</rul eAttribute>
</rul eAttributes>
</ dat a>

The above defines a RuleAttribute called RuleRoutingAttribute. RuleRoutingAttribute maps to the Java
class org.kuali.rice.kew.rule.RuleRoutingAttribute. The type of this attribute is a RuleAttribute;
essentialy this means the RuleAttribute's behavior is determined in a Java class. There are aso
RuleAttributes made entirely from XML, but programming attributes is outside the scope of this Guide.

Rule Templates

Finally, we need to tie the RuleAttribute to the Document Type. This is done using the RuleTemplate
and it isdefined using XML. The RuleT emplate schema below provides further explanation:

<?xm version="1.0" encodi ng="UTF-8"?>

<data xm ns="ns: wor kfl ow' xml ns:xsi="http://ww.w3. org/ 2001/ XM_Schema- i nst ance" xsi:schemaLocati on="ns: wor kf| ow
resour ce: Wr kf | owDat a" >
<rul eTenpl at es XM.ns="ns: wor kf | ow/ Rul eTenpl ate" xsi:schenmaLocati on="ns: wor kf | ow Rul eTenpl at e
resour ce: Rul eTenpl at e" >
<rul eTenpl at e>
<nanme>Rul eRout i ngTenpl at e</ nanme>
<descri pti on>Rul eRouti ngTenpl at e</ descri pti on>
<attributes>
<attribute>
<nanme>Rul eRout i ngAt t ri but e</ name>
<requi red>true</required>
</attribute>
</attributes>
</ rul eTenpl at e>
</ rul eTenpl at es>
</ dat a>

122

KEW

Note

Notice that the name of this RuleTemplate, RuleRoutingTemplate, matches the name given in
the ruleTemplate element in the Document Type route node declaration. Also, notice that the
RuleAttribute made above is referenced in the RuleT emplate above in the attributes section.

<attributes>
<attribute>
<name>Rul eRout i ngAt tri but e</ nane>
<requi red>true</required>
</ attribute>
</attributes>

The RuleTemplate is the join between RuleAttributes and Document Types. In this way, we can reuse
the same attribute declaration (and therefore Java logic) across Document Types.

Once the XML, condensed into asinglefile, is uploaded into KEW, eDaocs of thistype can be created and
routed from a client application.

All the content in the code examples above is aggregated into asingle file bel ow with a single surrounding
datatag:

<?xm version="1.0" encodi ng="UTF-8"?>
<data xm ns="ns: wor kfl ow' xml ns:xsi="http://ww.w3. org/ 2001/ XM_Schema- i nst ance" xsi:schenmaLocati on="ns: wor kfl ow
resour ce: Wr kf | owDat a" >
<rul eAttributes xm ns="ns: workfl ow Rul eAttribute" xsi:schemaLocati on="ns:workfl ow Rul eAttribute
resour ce: Rul eAttribute">
<rul eAttri bute>
<nane>Rul eRout i ngAt t ri but e</ name>
<cl assName>or g. kual i . ri ce. kew. rul e. Rul eRout i ngAttri but e</ cl assName>
<l abel >f oo</ | abel >
<descri pti on>f oo</ descri ption>
<type>Rul eAttri bute</type>
</rul eAttribute>
</rul eAttributes>
<rul eTenpl at es xm ns="ns: wor kf | ow Rul eTenpl ate" xsi:schenmaLocati on="ns: wor kf | ow Rul eTenpl at e
resour ce: Rul eTenpl ate" >
<rul eTenpl at e>
<nane>Rul eRout i ngTenpl at e</ nanme>
<descri pti on>Rul eRout i ngTenpl at e</ descri pti on>
<attributes>
<attribute>
<nane>Rul eRout i ngAt t ri but e</ name>
<r equi red>t rue</required>
</attribute>
</ attributes>
</rul eTenpl at e>
</rul eTenpl at es>
<docurent Types xml ns="ns: wor kf | ow Docunent Type" xsi:schenmalLocati on="ns: wor kf | ow Docunent Type
resour ce: Docunent Type" >
<docurnent Type>
<nanme>EDENSERVI CE- DOCS. Rul eDocunent </ nane>
<par ent >EDENSERVI CE- DOCS</ par ent >
<descri pti on>Add/ Modi fy Workfl ow rul es</descripti on>
<l abel >Add/ Modi fy Workfl ow rul es</| abel >
<post Processor Nane>or g. kual i . ri ce. kew. post processor. Rul ePost Processor </ post Processor Nane>
<super User G oupNare nanespace=KR- WKFLW >Wor kf | owAdni n</ super User G- oupNarne>
<bl anket Appr oveG oupNane namespace=KR- WKFLW >Wor kf | owAdni n</ bl anket Appr oveG oupNane>
<def aul t Except i onGr oupNanme></ def aul t Excepti onG oupNane>
<docHandl er >ht t ps: //your| ocal | P/ en- prd/ Rul e. do?rmet hodToCal | =docHandl er </ docHandl er >
<active>true</active>
<routi ngVersi on>1</routi ngVer si on>
<r out ePat hs>
<r out ePat h>
<start nanme="Adhoc Routing" nextNode="Rul e routing Route Level" />
<requests name="Rul e routing Route Level" />
</ r out ePat h>
</ r out ePat hs>
<r out eNodes>

123

KEW

<start name="Adhoc Routing">
<activati onType>S</activati onType>
<mandat or yRout e>f al se</ mandat or yRout e>

</start>

<requests name="Wor kfl ow Docurment Routing">
<activati onType>S</activati onType>
<rul eTenpl at e>Rul eRout i ngTenpl at e</ rul eTenpl at e>
<mandat or yRout e>t r ue</ mandat or yRout e>

</ request s>

</ r out eNodes>
</ docunent Type>
</ docunent Types>
</ dat a>

Routing Rules

There is a separate User Guide on how to use the Rule Ul. This will show you how to create a Rule as
well as modify and delete.

InitiatorRoleAttribute

Initiator RoleAttribute is a RoleAttribute that exposes an INITIATOR abstract role that resolves to the
initiator of the document.

Table 3.10. Initiator RoleAttribute

Name Address

Class InitiatorRol eAttribute

Package org.kuali.rice.kew.rule

Full org.kuali.rice.kew.rule.InitiatorRol eAttribute

RoutedByUserRoleAttribute

RoutedByUser RoleAttribute is a Rol eAttribute that exposes the user who routed the document.

Table 3.11. RoutedByUser RoleAttribute

Name Address

Class RoutedByUserRol eAttribute

Package org.kuali.rice.kew.rule

Full org.kuali.rice.kew.rule.RoutedByUserRol eAttribute

NoOpNode

NoOpNode isa SimpleNode implementation that is a code structure example, but has no functionality.

Table 3.12. NoOpNode

Name Address

Class NoOpNode

Package org.kuali.rice.kew.engine.node
Full

RequestActivationNode

RequestActivationNode is a SimpleNode that activates any requests on it. It returns true when there are

no more requests that require activation.

org.kuali.rice.kew.engine.node.NoOpNode

124

KEW

In RequestActivationNode, the activateRequests method activates the Action Requests that are pending
at this route level of the document. The requests are processed by Priority and then by Request ID. The
requests are activated implicitly according to the route level.

Acknowledgement Requests do not cause processing to stop. Only Action Requests for Approval or

Completion cause processing to stop at the current document's route level. Inactive regquests at a lower
level cause arouting exception.

Table 3.13. RequestActivationNode

Name Address

Class RequestActivationNode

Package org.kuali.rice.kew.engine.node

Full org.kuali.rice.kew.engine.node.RequestActivationNode

NetworkldRoleAttribute

Networ kldRol eAttributeisaRol eAttribute that routesthe request to aNetworkI D specified inthe document
content.

Table 3.14. Networ kl dRoleAttribute

Name Address

Class NetworkldRoleAttribute

Package org.kuali.rice.kew.engine.node

Full org.kuali.rice.kew.engine.node.Networkl dRol eAttribute

UniversityldRoleAttribute

UniversityldRoleAttribute is a RoleAttribute that routes requests to an Empl 1D specified in the document
content.

Table 3.15. UniversityldRoleAttribute

Name Address

Class UniversityldRoleAttribute

Package org.kuali.rice.kew.engine.node

Full org.kuali.rice.kew.engine.node.UniversityldRol eAttribute
SetVarNode

SetVarNode is a SimpleNode that allows you to set document variables.
The definition of SetVarnode takes these configuration parameter elements:

* Name: The name of the variable to set

* Value The value to which to set the variable. This value is parsed according to Property/
PropertyScheme syntax. The default PropertyScheme is LiteralScheme, which evaluates the value
simply as aliteral; it won't do anything but return the value.

Table 3.16. SetVVar Node

Name Address
Class SetVarNode
Package org.kuali.rice.kew.engine.node.var

125

KEW

Name | Address

Full | org.kuali.rice.kew.engine.node.var.SetVarNode

Routing Configuration using KIM
Responsibilities

In addition to routing workflow based on users and workgroups using routing rules, you can also
route workflow based on KIM responsihilities. This alows you to utilize group membership and role
assignments to manage who is permitted to perform approvals.

Route Node Definition

In review, you define arule-based routing node with XML similar to:

<requests name="Rul e routing Route Level ">
<activati onType>S</activati onType>
<rul eTenpl at e>Rul eRout i ngTenpl at e</ rul eTenpl at e>
<mandat or yRout e>t r ue</ mandat or yRout e>
<fi nal Approval >f al se</fi nal Approval >
</ request s>

A routing node that uses KIM responsibilities can replace a rule-based routing node. Y ou define it with
XML similar to:

<rol e name="Pur chasi ng">
<qual i fi er Resol ver Cl ass>
org. kuali.rice.kns.workflow attribute.DatabDi ctionaryQualifierResol ver
</ qualifierResol verd ass>
<activati onType>P</activati onType>
</role>

Node Name

Y ou name the routing node with the name attribute, just like for a rule-based routing node.

Qualifier Resolver

The qualifier resolver finds any qualifiers that need to be used while matching the responsibility. Y ou can
specify it in either of two ways:

» <qualifier Resolver >name</qualifier Resolver > names arul e attribute which identifies the classto use

» <qualifier Resolver Class>class.name</qualifier Resolver Class> providesthe fully-qualified name of
the Javaclassto use

Other Options

Y ou can specify <responsibilityTemplateName>name</responsibility TemplateName> to identify the
responsibility templateto use. Thisoptionisnot usually used since all of the responsibilities provided with
KIM use atemplate named Review.

Y ou can specify <namespace>name</namespace> to i dentify the name space for the responsibility. This
option is usually not used since all of the responsibilities provided with KIM use a name space of KR-
WKFLW.

126

KEW

Matching Routing Nodes to Responsibilities

The KIM responsibility template Review defines two details:
» The name of the document type
» The name of the routing node

When you define a responsibility in KIM using this template, you specify a value for each of these
details. When adocument is routed using responsibility-based routing nodes, KIM receivesthe type of the
document being routed and the name of the node; it then locates any responsibilities which have the same
routing node name and either the same document type name or the name of a parent document type (all
theway up to thetop of the hierarchy). Thelist of people who gets the request consists of anyone who has
been assigned arole with any of the matching responsibilities.

Using the Workflow Document API

Overview

This document explains features of the workflow document API. There are two interfaces in KEW that
allow you to create a document for delivery through workflow. The WorkflowDocument interface is
designed to create a new document in the workflow system once an action has been taken, such as sending
ad hoc requests. The Workflowlnfo interface is actually a convenience class for client applications that
query workflow. Both classes assist with implementing connectionsto KEW.

WorkflowDocument

The process for this section of the API involves creating the initial WorkflowDocument using a
constructor to create a new routable document in KEW. Once the object is defined, it initializes by
loading an existing routeHeader|d or by constructing an empty document of a specified documentType. A
number of methods can be invoked onceinitialization is complete and details of how those methods would
be invoked are outlined primarily in the Java Documentation at https://test.kuali.org/rice/rice-api-1.0-

javadocy/.

Document content methods modify the properties of a document’s content. A specific case is
addAttributeDefinition(), where a Wor kflowAttribute is used to generate attribute document content that
will be appended to the existing document content. Another caseis adding a searchable attribute definition
with the addSear chableDefinition() method. More information on the various constructors, methods, and
objects relating to the WorkflowDocument class is available in the Java documentation found at https.//
test.kuali.org/ricef/rice-api-1.0-javadocs/org/kuali/rice/kew/service/WorkflowDocument.html .

WorkflowlInfo

This class is the second client interface to KEW. The first time this object is initialized, the client
configuration is accessed to determine how to connect to KEW. Methods invoked from this class can
grab the routing header information based on the principleld, or return a set of Action Requests for a
document that’ sin route based on the routeHeader | d, the nodeName and the principal |d. Moreinformation
on the various constructors, methods, and objects relating to the WorkflowInfo class is available in the
Java documentation found at https.//test.kuali.org/rice/rice-api-1.0-javadocs/org/kuali/rice/kew/service/
Workflowlnfo.html.

127

https://test.kuali.org/rice/rice-api-1.0-javadocs/
https://test.kuali.org/rice/rice-api-1.0-javadocs/
https://test.kuali.org/rice/rice-api-1.0-javadocs/org/kuali/rice/kew/service/WorkflowDocument.html
https://test.kuali.org/rice/rice-api-1.0-javadocs/org/kuali/rice/kew/service/WorkflowDocument.html
https://test.kuali.org/rice/rice-api-1.0-javadocs/org/kuali/rice/kew/service/WorkflowInfo.html
https://test.kuali.org/rice/rice-api-1.0-javadocs/org/kuali/rice/kew/service/WorkflowInfo.html

KEW

Creating an eDocLite Application

Overview

eDocLiteisasimple, form-based system that isbuilt into Kuali Enterprise Workflow (KEW). It facilitates
rapid development and implementation of simple documents and validation rules using XML. Use it for
simple documents with simple route paths. Y ou can integrate it with larger applications using a database
layer post-processor component.

eDocLite uses an XSLT style sheet for custom presentation and XML to define form fields. The actual
form display is called an EDL. This diagram shows how these objects are related:

Key ldeas:

» Rapid implementation and devel opment solution for simpler documents
» Easily re-configured

 Easily manageable

» Entirely web-based from design/development and user perspectives

* No java code required for developments; only XML with optional javascript for client side editing
(workflow handles execution)

» Some validation javascript is automatically generated like regular expression editing and ‘required field
checking'.

128

KEW

Figure 3.24. EDL Controller Chain

EDL Controller
Chain
Empny
HTHML
SE S B — L Document
Serdel Dacument
Euali Fice
stanclalone Pra
Processors HSLT
Syl eshest
Transformation
¥Path-Dased:
mﬂﬁw Canfig
Processors
Post Fopulated
Processaors . XML
. | BELment
Components

Field Definitions
Y ou need to define eDoclL ite fields to capture data that is passed to the server for storage.
Key Information about eDocL ite fields:
» SaveeDoclite datafields as key value pairsin two columns of a single database table.
» Usethe xml element name as the key.
* You do not need to make any database-related changes when building eDocL ite web applications.

* Store documents by document number.

Make al field names unique within a document type.

129

KEW

The code example below focuses on the EDL section of the eDocL ite form definition. Thefile Edoclite.xsd
found in source under the impl/src/main/resources/schemal directory describes the xml rules for this
section.

Note that the first few lines proceeding <edl name="eDoc.Examplel.Form" relate to namespace
definitions. These are common across al eDocl ites, so this guide does not discuss them.

In this example, any XML markup that has no value shown or that is not explained offers options that
are not important at thistime.

<?xm version="1.0" encodi ng="UTF-8"?>
<data xm ns="ns:workfl ow' xm ns:xsi="http://ww.w3. org/ 2001/ XM_Schema- i nst ance" xsi:schemaLocati on="ns: wor kf | ow
resour ce: Wor kf | owbDat a" >
<edoclite xm ns="ns:workfl ow eDocLite " xsi:schemaLocati on="ns:workfl ow eDocLite resource:eDocLite ">

<ed!

nane="eDoc. Exanpl el. Form' titl e="Exanple 1">
<security />
<createlnstructions>** Questions with an asterisk are required.</createlnstructions>
<instructions>** Questions with an asterisk are required.</instructions>
<validations />
<attributes />
<fi el dDef name="userNane" title="Full Nane">
<di spl ay>
<type>text</type>
<net a>
<nane>si ze</ nane>
<val ue>40</ val ue>
</ met a>
</ di spl ay>
<val i dati on required="true">
<message>Pl ease enter your full name</nessage>
</validation>

</fi el dDef >
<fi el dDef name="rqstDate" titl e="Requested Date of I|nplenentation:">
<di spl ay>
<type>t ext </type>
</ di spl ay>

<val i dati on required="true">
<regex>"[0-1]?[0-9] (/|-)[0-3]?[0-9](/]|-)[1-2][0-9][0-9][0-9] $</regex>
<message>Enter a valid date in the format mm dd/yyyy. </ message>
</validation>

</fi el dDef >
<fi el dDef name="request Type" title="Request Type:">
<di spl ay>

<t ype>radi o</ type>

<val ues title="New'>New</val ues>

<val ues title="Modification">Mdification</val ues>
</ di spl ay>
<val i dati on required="true">

<message>Pl ease sel ect a request type.</nessage>
</validation>

</fi el dDef >
<fi el dDef attributeName="EDL. Canpus. Exanpl e" name="canpus" titl e="Canpus: ">
<di spl ay>

<type>sel ect </t ype>

<val ues title="1UB">I UB</val ues>

<val ues title="1UPU ">l UPU </ val ues>
</ di spl ay>
<val i dati on required="true">

<nmessage>Pl ease sel ect a campus. </ nessage>
</validation>

</fi el dDef >
<fi el dDef name="description" title="Description of Request:">
<di spl ay>
<t ype>t ext ar ea</t ype>
<net a>

<name>r ows</ name>
<val ue>5</val ue>
</ met a>
<net a>
<nane>col s</ nane>
<val ue>60</ val ue>
</ net a>

130

KEW

<met a>
<nanme>wr ap</ nane
<val ue>har d</ val ue>

</ net a>
</ di spl ay>
<val i dation required="fal se" />
</fi el dDef >
<fi el dDef name="fundedBy" title="M research/sponsored programwork is funded by NIH or NSF.">
<di spl ay>

<t ype>checkbox</type>
<values title="M research/sponsored programwork is funded by N H or NSF.">ni hnsf</val ues
</ di spl ay>
</fi el dDef >
<fi el dDef name="researchHumans" title="M/ research/sponsored programwork involves human subjects.">
<di spl ay>
<t ype>checkbox</type>
<values title="M research/sponsored programwork involves human subj ects.">humans</ val ues>
</ di spl ay>
</fi el dDef >

</ edl >
</ eDocLite>

</ dat a>

Inthe EDL XML file, field definition is embodied in the edl e ement. This e ement has a name attribute

that is used to identify this file as a definition of an EDL form. It often has atitle for display purposes.
Examination of this code shows that

* Individual fields have names, titles, and types. The types closely match html types.

* You can easily use simple validation attributes and sub-attributes to ensure that a field is entered if

required and that an appropriate error message is presented if no value is provided by the web user.

» Regular expressions enhance the edit criteriawithout using custom JavaScript. (There are several ways

that you can invoke custom JavaScript for afield, but they are not shown in this example.)

» Animportant field named campus has syntax that defines the value used to drive the routing destination.

(In more complex documents, several fields are involved in making the routing decision.)

XSLT Style Sheet

The next section of the EDL XML fileisthe XSLT style sheet. It renders the EDL that the browser will

present and contains logic to determine how data is rendered to the user.

A magjor workhorse of the XSLT code is contained in a style sheet library caled widgets.xml. In the

example below, it'sincluded in the style sheet using an xdl:include directive.

Workflow Java classes have API’ sthat offer methods that supply valuable information to the XSLT style
sheet logic. XML allows you to interrogate the current value of EDL-defined fields, and it provides a

variety of built-in functions.

Together, these helpers allow the eDoclL.ite style sheet programmer to focus on rendering fields and
titles using library (widget) calls and to perform necessary logic using the constructs built into the XML

language(if, choose...when, etc.).

Thisisthe area of eDocL ite development that takes the longest and is the most tedious. Much of what the
eDocL ite style sheet programmer writes focuses on which fields and titles appear, in what order, to which

users, and whether the fields are readOnly, editable, or hidden.

Below isthe style sheet section of the EDL XML form for our example. It contains embedded comments.

<l-- widgets is sinply nore xslt that contains common functionality that greatly sinplifies htnl rendering
It is somewhat conplicated but does not require changes or full understanding unl ess enhancenents are required.

-->

131

KEW

<xsl :include href="w dgets" />
<xsl : out put indent="yes" method="htm " omit-xmnl-declaration="yes" version="4.01" />

<l-- variables in the current version of xslt cannot be changed once set. Below they are set to various val ues
often fed by java classes or to

val ues contained in workflow xm . Not all of these are used in this formbut are shown because often they can
be useful

The ones prefixed with nmy-class are nmethods that are exposed by workflow to eDoclLite .-->

<xsl:variabl e nane="acti onabl e" sel ect ="/ docunent Cont ent/docunent St at e/ acti onabl e" />

<xsl :vari abl e nane="docHeader|d" sel ect ="/ docunent Cont ent/docunent St at e/ docl d" />

<xsl :vari abl e nane="edi tabl e" sel ect ="/ docunent Cont ent/ docunent St at e/ edi t abl e" />

<xsl :vari abl e nane="gl obal ReadOnl y" sel ect ="/ docunent Cont ent/ docunent State/editable != "true'" />

<xsl :variabl e nane="docSt at us" sel ect ="// docunent St at e/ wor kf | owDocunent St at e/ st atus" />

<xsl :vari abl e name="i sAt Nodel ni ti at ed" sel ect="my-cl ass: i sAt Node($docHeaderld, 'Initiated)" />

<xsl :variabl e name="i sPastlnitiated" sel ect="my-cl ass:isNodel nPrevi ousNodeList('Initiated , $docHeaderld)" />

<xsl :variabl e name="isUserlnitiator" sel ect="my-class:isUserlnitiator($docHeaderld)" />

<l-- <xsl:variabl e name="wor kf| owser" sel ect ="my-cl ass: get Wr kfl owser (). aut henticati onUserld().id()" /> This
has a uni que inplenentation at U -->

<xsl : param name="overri deMai n" select=""true'" />

<!-- mai nForm begi ns here. Execution of stylesheet begins here. It calls other tenplates which can call other
t enpl at es.
Position of tenplates beyond this point do not matter. -->

<xsl : tenpl at e nane="nai nFor n{' >
<htm xm ns="">
<head>
<script |anguage="javascript" />
<xsl:call-tenpl ate name="htnm Head" />
</ head>
<body onl oad="onPageLoad()">
<xsl:call-tenpl ate name="errors" />
<I-- the header is useful because it tells the user whether they are in 'Editing’ node or 'Read
Only' node. -->
<xsl:cal |l -tenpl ate name="header" />
<xsl:call-tenplate nane="instructions" />
<xsl :variabl e name="fornrarget" select="'eDocLite '" />
<l-- validateOnSubmit is a javascript function (file: edoclitel.js) which supports edoclite forns
and can be sonewhat conplicated
but does not
require nodification unl ess enhancenents are required. -->
<form action="{$fornmrarget}" enctype="nultipart/formdata" id="edoclite" method="post"
onsubm t="return validateOnSubnit(this)">
<xsl:call-tenpl ate nane="hi dden- parans" />
<xsl:call -tenpl at e name="nmai nBody" />
<xsl:call-tenpl ate name="notes" />

<xsl:call-tenpl ate name="buttons" />

</forme
<xsl:call-tenpl ate name="footer" />
</ body>
</htm >
</ xsl : tenpl at e>
<!-- mainBody tenplate begins here. It calls other tenplates which can call other tenplates. Position of
tenpl ates do not matter. -->
<xsl : t enpl at e nanme="nai nBody" >
<l-- to debug, or see values of previously created variables, one can use the follow ng format.

for exanple, uncomment the following line to see value of $docStatus. It will be rendered at the top
of the main body form -->

<!-- $docStatus=<xsl:val ue-of select="%docStatus" /> -->
<l-- rest of this all is within the formtable -->
<tabl e xm ns="" align="center" border="0" cell paddi ng="0" cel | spaci ng="0" class="bord-r-t" w dth="80% >
<tr>
<td align="left" border="3" class="thnormal" col span="1">

<h3>
M/ Page

EDL EDoclite Exanple
</ h3>

</td>
<td align="center" border="3" class="thnormal" col span="2">

<h2>eDoclLite Exanple 1 Fornx/h2></td>

</tr>

132

KEW

<tr>
<td cl ass="headercel | 5" col span="100% >
User | nformation
</td>
</tr>
<tr>
<td class="thnornal ">
<xsl:call-tenpl ate name="w dget _render">
<xsl:w th-param name="fi el dName" sel ect=""
<xsl:w t h- param name="r ender Cmd" sel ect ="'
</ xsl:call-tenpl at e>
*
</td>
<td cl ass="datacel | ">
<xsl:call-tenpl ate name="w dget _render">
<xsl:w th-param name="fi el dName" sel ect=""
<xsl:w t h- param name="r ender Cmd" sel ect ="'
<xsl:w th-param name="readOnl y" sel ect ="$i
</ xsl:call-tenpl at e>
</td>
</tr>
<tr>
<td cl ass="headercel | 5" col span="100% >
Ct her | nfornmati on
</td>
</tr>
<tr>
<td class="thnornal ">
<xsl:call-tenpl ate name="w dget _render">
<xsl:w th-param name="fi el dName" sel ect=""
<xsl:w t h-param name="r ender Cmd" sel ect =""
</ xsl:call-tenpl at e>
*
</td>
<td cl ass="datacel | ">
<xsl:call-tenpl ate name="w dget _render">
<xsl:w th-param name="fi el dName" sel ect=""
<xsl:w t h-param name="r ender Cmd" sel ect =""
<xsl:w th-param name="readOnl y" sel ect ="$i
</ xsl:call-tenpl at e>
</td>
</tr>
<tr>
<td class="thnornal ">
<xsl:call-tenpl ate name="w dget _render">
<xsl:w th-param name="fi el dName" sel ect=""
<xsl:w t h-param name="r ender Cmd" sel ect ="'
</ xsl:call-tenpl at e>
*
</td>
<td class="datacel | ">
<xsl:call-tenpl ate name="w dget _render">
<xsl:w th-param nanme="fi el dName" sel ect=""
<xsl:w t h-param name="r ender Cmd" sel ect =""
<xsl:w th-param name="readOnl y" sel ect ="$i
</ xsl:call-tenpl at e>
</td>
</tr>
<tr>
<td class="thnornal ">
<xsl:call-tenpl ate name="w dget _render">
<xsl:w th-param nanme="fi el dName" sel ect=""
<xsl:w t h- param name="r ender Cmd" sel ect ="'
</ xsl:call-tenpl at e>
</td>
<td cl ass="datacel | ">
<xsl:call-tenpl ate name="w dget _render">
<xsl:w th-param nanme="fi el dName" sel ect=""
<xsl:w t h-param name="r ender Cmd" sel ect =""
<xsl:w th-param name="readOnl y" sel ect ="$i
</ xsl:call-tenpl at e>
</td>
</tr>
<tr>
<td class="thnormal" col span="2">
(Check all that apply)
</td>

user Nane'" />

title' " />
user Nane'" />
input'" />

sPastlnitiated"

rgstDate'" />
title' " />

rgstDate'" />
input'" />
sPastlnitiated"

canpus'" />
title' " />

canmpus'" />
input'" />
sPastlnitiated"

description'" />
title' " />

description'" />
input'" />
sPastlnitiated"

/>

133

KEW

</tr>
<tr>
<td class="datacel|" col span="2">
<xsl:call-tenpl ate name="w dget _render">
<xsl:w th-param name="fi el dName" sel ect=""'fundedBy'" />
<xsl :w t h- param name="r ender Cmd" sel ect=""input'" />
<xsl:w t h-param name="readOnl y" sel ect="8$i sPastInitiated" />
</ xsl:call-tenpl at e>

<xsl:call-tenpl ate name="w dget _render">
<xsl:w th-param name="fi el dName" sel ect="'researchHunans' " />
<xsl :w t h- param name="r ender Cmd" sel ect=""input'" />
<xsl:w t h-param name="readOnl y" sel ect="8$i sPastlnitiated" />
</ xsl:call-tenpl at e>

</td>
</tr>
<tr>

<td cl ass="headercel | 1" col span="100% >
Supporting Material s</td>
</tr>
<tr>
<td class="thnormal" col span="100% >Use the Create Note box below to attach supporting materials to
your request. Notes may be added with or without attachnments. dick the red 'save' button on the right.</td>
</tr>
</tabl e>
<br xm ns="" />
</ xsl : tenpl at e>
<xsl : tenpl ate nane="nbsp">
<xsl : text disabl e-out put - escapi ng="yes" >&anp; nbsp; </ xsl : t ext >
</ xsl : tenpl at e>
</ xsl : styl esheet >
</styl e>

The beginning portion of this style sheet defines some XSL variables that are often useful to drive logic
choices. For simplicity, this example uses very little logic.

TheisPastInitiated variable drives whether a user-defined EDL field renders readOnly or not.

The mainform often serves to call some common widget templates that add canned functionality. The
mainform then calls the mainBody template, which creates the html to render the EDL-defined fields. The
mainform then (optional) calls the notes, buttons, and footer templates.

The magjority of your programming effort goes into the mainBody, where calls to widget_render generate
much of the field-specific title and value information. Various options can be passed into widgets render
to allow client events to be executed. The mainBody is usually one or more html tables and sometimes
makes calls to programmer-defined sub-templates. The XSLT stylesheet generates the HTML rendered
by the browser.

Themain and repeating theme of the exampleinvolves calling widget_render with thetitle of an EDL field,
followed by calling widget_render again with theinput field. Widgets are awrapper for XSLT stylesheets
that offer the ability to create HTML. Paramters offer different ways to render HTML when making calls
to widgets. Note that the variable value $isPastlnitiated is passed as a parameter to widgets_render so that
the html readOnly attribute is generated when the form is past the initiator’ s node.

Lazy importing of EDL Styles

Y ou can configure Riceto lazily import an eDocL ite style into the database on demand by setting a custom
configuration parameter.

» Create a custom stylesheet file, eg. myricestylexml containing a style with a unique name, e.g.
"xyzAppStyle" and storeit in alocation that islocally accessible to your application server.

134

KEW

e Set a configuration parameter named edl.style<style-name> with the value being a path to
the file containing your style. Following the example above, you would name your parameter
"edl.stylexyzAppStyle".

The stylesheet file could referenced could contain afull EDL, or be astandalone EDL style. Onfirst use of
that named style by an EDL, the filewill be parsed and the named style will be imported into the database.
The following example contains just an eDocLite XSL stylesheet:

<data xm ns="ns: workfl ow' xm ns:xsi="http://ww.w3. org/ 2001/ XM_Schema- i nst ance" xsi:schenmaLocati on="ns: wor kfl ow
resour ce: Wr kf | owDat a" >
<edoclite xm ns="ns: workfl ow EDocLite" xsi:schemaLocati on="ns: workfl ow EDocLite resource: EDocLite">
<styl e nane="xyzAppStyle">
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3.org/ 1999/ XSL/ Transforn xm ns:wf="http://
xm . apache. or g/ xal an/j ava/ org. kual i . ri ce. kew. edocl i t e. Wor kf | owFuncti ons" >
<l-- your custom styl esheet -->
</ xsl :styl esheet >
</style>
</ edoclite>

</ dat a>

Note that in a default Rice installation (starting in version 1.0.2), the "widgets" style is lazily imported
using thismechanism. In common-config-defaults.xml (whichislocated intherice-impl jar), thefollowing
parameter is defined:

<param name="ed| . styl e. wi dgets" override="fal se">cl asspath: org/ kuali/rice/kew edl/defaul t-w dgets. xn </ paran>

If you wanted to override that file, you could define your own parameter in your Rice XML configuration
file using the above example as a template, but removing the override="false" attribute.

Document Type

A document type defines the workflow process for an eDocLite. Y ou can create hierarchies where Child
document types inherit attributes of their Parents. At some level, a document type specifies routing
information. The document type definition for our first example follows. It contains routing information
that describes the route paths possible for a document.

<?xm version="1.0" encodi ng="UTF-8"?>
<data xm ns="ns: wor kfl ow' xml ns:xsi="http://ww.w3. org/ 2001/ XM_Schema- i nst ance" xsi:schenmaLocati on="ns: wor kfl ow
resour ce: Wr kf | owDat a" >
<docurnent Types xml ns="ns: wor kf | ow Docunent Type" xsi:schenmalLocati on="ns: wor kf | ow Docunent Type
resour ce: Docunent Type" >
<docunent Type>
<nane>eDoc. Exanpl elDoct ype</ name>
<par ent >eDoc. Exanpl el. Par ent Doct ype</ par ent >
<descri pti on>eDoc. Exanpl el Request Docunent Type</descri ption>
<l abel >eDoc. Exanpl el Request Docunent Type</| abel >
<post Processor Nane>or g. kual i . ri ce. kew. edl . EDocLi t ePost Processor </ post Processor Nane>
<super User G oupNarme nanespace="KUALI " >eDoc. Exanpl el. Super User s</ super User G- oupNane>
<bl anket Appr ovePol i cy>NONE</ bl anket Appr ovePol i cy>
<def aul t Excepti onGr oupNanme nanespace="KUALI ">eDoc. Exanpl el. def aul t Excepti ons</
def aul t Except i onG oupNane>
<docHandl er >${ wor kf | ow. ur| }/ EDocLi t e</ docHandl er >
<active>true</active>
<rout i ngVer si on>2</r out i ngVer si on>
<r out ePat hs>
<r out ePat h>
<start nanme="Initiated" nextNode="eDoc. Exanpl el. Nodel" />
<requests name="eDoc. Exanpl el. Nodel" />
</ r out ePat h>
</ r out ePat hs>
<r out eNodes>
<start nanme="Initiated">
<activationType>P</activati onType>

135

KEW

<mandat or yRout e>f al se</ mandat or yRout e>
<fi nal Approval >f al se</fi nal Approval >

</start>

<requests name="eDoc. Exanpl el. Nodel" >
<activati onType>P</activati onType>
<rul eTenpl at e>eDoc. Exanpl el. Nodel</rul eTenpl at e>
<mandat or yRout e>f al se</ mandat or yRout e>
<fi nal Approval >f al se</fi nal Approval >

</ request s>

</ r out eNodes>
</ docunent Type>
</ docunent Types>
</ dat a>

The Parent element refers to a hierarchical order of the document types. Usually, you create one Root
document typewith limited but common information. Then, under that, you create more specific document
types. In our example, there are only two levels.

The Root document type definition for our first example:

<?xm version="1.0" encodi ng="UTF-8"?>
<data xm ns="ns: workfl ow' xml ns:xsi="http://ww.w3. org/ 2001/ XM_Schema- i nst ance" xsi:schemaLocati on="ns: wor kf| ow
resour ce: Wr kf | owDat a" >
<docunent Types xml ns="ns: wor kf | ow Docunent Type" xsi:schenmalLocati on="ns: wor kf | ow Docunent Type
resour ce: Docunent Type" >
<docunent Type>
<nanme>eDoc. Exanpl el. Par ent Doct ype</ name>
<descri pti on>eDoc. Exanpl el Parent Doctype</description>
<l abel >eDoc. Exanpl el Parent Docunent</| abel >
<post Processor Nane>or g. kual i . ri ce. kew. edl . EDocLi t ePost Processor </ post Processor Nane>
<super User G oupNarme nanespace="KUALI " >eDoc. Exanpl el. Super User s</ super User G- oupNane>
<bl anket Appr ovePol i cy>NONE</ bl anket Appr ovePol i cy>
<docHandl er >${ wor kf | ow. ur| }/ EDocLi t e</ docHandl er >
<active>true</active>
<rout i ngVer si on>2</ r out i ngVer si on>
<routePaths />
</ docunent Type>
</ docunent Types>
</ dat a>

A Child document type can inherit most element values, although you must define certain element values,
like postProcessor, for each Child document type.

A brief explanation of elementsthat are not intuitiveisbelow. Y ou can find additional element explanations
by reading the Document Type Guide.

Parent DocType
postProcessor Name - Use the default, as shown above, unless special processing is needed.

blanketApprovePoalicy — When specified as NONE, this means that a user cannot click a single button
that satisfies multiple levels of approval.

dochandler - Use the default, as shown above, so URLs are automatically unique in each environment,
based on settings in the Application Constants (i.e., unique in each Test environment and unique again
in Production).

active - Set this element to false to disable this feature.

routingVersion - Use the default, as shown above.

Child DocType

name - The name value must exactly match the value in the EDL Association document type element.

136

KEW

parent - The parent value must exactly match the name value of the parent document type.

superUser GroupName - A group of people who have specia privileges that can be defined using the
management service that’ s part of the KIM module.

defaultExceptionGroupName - A group of people who address a document of this type when it goes
into Exception routing

routePathsandroutePath - Theinitial elementsthat summarizetherouting path the document will follow.
In our example, an initiator fills out an eDocLite form. When the initiator submits that form, where it is
routed depends on the value in the Campus field. There is only one destination node in our first example.
The submitted form goes to either the IUB person or the [IUPUI person, depending on the selection in the
Campus field.

In most cases, aworkgroup of peopleisthe destination for an EDL form, not asingle person. Workgroups
are used as destinations because anyone in the workgroup can open the document, edit it, and click an
Action button that routes the document to the next node. This prevents delays when someoneis out of the
office and a document awaits their action.

When the initiator submits the document, KEW adds that document to the Action List of the destination
person or workgroup. The destination person or workgroup can then open the document, edit it (if any
fields are available for editing), and click an Action button such as Approve, which routes the document
onward. In our case, thereis no further destination, so when the destination person or workgroup approves
the document, the document becomes Final (it is finished). Some real-life examples have ten or more
nodes for approvals or other actions. A document may bypass some of those nodes, depending on data
placed into the form by previous participants.

routeNodes- Redefines the route path.
activationType

» P standsfor parallel and is amost aways used. This value makes more sense when considered from a
target node perspective. From that perspective, it means that if aworkgroup of people all received the
document in their Action List, any one, in any order, can approve it. Once it is approved by anyonein
the workgroup, it is routed to the next node, and KEW removes the document from the Action List of
all the people in the workgroup. activationType

» Sstandsfor sequential and isreserved for special cases where rules can specify that two or more people
inaworkgroup must take Action on adocument, in aspecific order, before KEW will route the document
to the next node.

mandatoryRoute - Use false unless there is a specia condition to solve. When this parameter is set to
true, the document goes into exception routing if an approve request isn't generated by the ruleTemplate.
This means that you are only expecting an approve, and nothing else.

finalApproval - Use false unless there is a special condition to solve. When this parm is set to true, the
document goesinto exception routing if approves are generated after this route node. This means this must
be the last Action, or it will go into exception routing. (Be careful, because if this parameter is set to true
and a user clicks a Return to Previous button, then the next action button clicked sends the document into
exception handling.)

requests name="..." - Defines the name of the node

ruleTemplate - A named entity type that helps define which routing rule fires. In our example, the
ruleTemplate name is the same as the request name. These field values do NOT need to be the same. They
are simply identifiers.

137

KEW

Rule Attributes

The RuleAttribute is a mechanism that can relate directly to an edl field. Most rule attributes are of the
xml rule attribute type. This type uses an xpath statement which is used by the workflow engine to match
to arulethat fires or does not fire.

In the below example, it can be seen that the edl defined field named ‘campus' and its permissible values
are defined. Then in the xpathexpression element says; when the value in the edl field named ‘campus
matches the rule that contains 'lUB' the rule will fire. Or when the value in the edl field named ‘campus
matches the rule that contains 'TUPUI'" that rule will fire instead. Rulesfiring route adocument to a person
or aworkgroup of people.

Tomakeanother ruleattributefor adifferent field, clonethisone, changeall referencesto thefield ‘campus
to your different edl field name. Then cut and paste in the values section. Then in the edl definition, the
new field must carry the extra syntax 'attributeName=". For example the eld definition for campus looks
like this:

<fiel dDef name="canpus" title="Canpus" workf|owlype="ALL">

Rule Routing

<?xm version="1.0" encodi ng="UTF-8"?>
<data xm ns="ns:workfl ow' xm ns:xsi="http://ww.w3. org/ 2001/ XM_Schema- i nst ance" xsi:schemaLocati on="ns: wor kf | ow
resour ce: Wor kf | owbDat a" >
<rul eAttributes xm ns="ns:workfl ow Rul eAttribute" xsi:schemaLocati on="ns:workfl ow Rul eAttribute
resour ce: Rul eAttribute">

<rul eAttri bute>

<nane>EDL. Canpus. Exanpl e</ nane>
<cl assNane>or g. kual i . ri ce. kew. rul e. xm routi ng. St andar dGeneri cXM_Rul eAt tri but e</ cl assNane>
<l abel >EDL Canpus Routi ng</| abel >
<descri pti on>EDL School Routing</description>
<type>Rul eXm Attri bute</type>
<rout i ngConfi g>
<fi el dDef name="canpus" title="Canmpus" workfl| owType="ALL">
<di spl ay>
<type>sel ect </t ype>
<val ues title="1UB">| UB</val ues>
<val ues title="1UPU ">l UPU </ val ues>
</ di spl ay>
<val i dati on required="fal se" />
<fi el dEval uati on>
<xpat hexpr essi on>// canpus = wf: rul edat a(' canpus') </ xpat hexpr essi on>
</fiel dEval uati on>
</fi el dDef >
<xm Docunent Cont ent >
<campus>%anpus%</ canpus>
</ xm Docunent Cont ent >
</ routingConfig>

</rul eAttribute>

</rul eAttributes>

</ dat a>

Rule attributes can have a different types such a searchable, but this type does not have to do with routing.
Instead it relates to additional columnsthat are displayed in doc search for a particular doc type.

Ingestion Order

Many components can go in at any time, but it is advisable to follow a pattern to minimize the conflicts
that can occur. A few pieces are co-dependent.

1. Basic Components:

138

KEW

o o0 A WDN

8.
9.

. Widgets.xml (If changed or not previously in the environment)
. Kim Group(s)

. Rule Attributes

. Rule Template(s)

. Parent Doctype (often no routing so data is more generic, but do put routing here if children will use

common routing.)

. Children Doctype(s) (routing defined here or on Parent)

EDL Form

Rule routing rule (Used if rules are created; explained later- 1 per parent doctype)

10.Rules (Create or Ingest)

11.Anything else - Like optional custom Email Stylesheet

Customizing Document Search

Each document carries an XML payload that describes metadata. Y ou can specify pieces of that metadata
to be indexed and searched on. This area focuses on the interface for searching through that data. For
each Document Search page, you must setup the XML configuration files to define the search criteria
and result fields.

Custom Search Screen

As an example of customizing a Document Search screen, we'll use a customized Offer Request screen:

Figure 3.25. Custom Sear ch Screen: Offer Request Example

Document Search El detailed search || superuser search || clear saved searches Searches R

* reguired field

Document Type: |OfferRequest LY s |
Initiator: LY s |
Document Id:

Group Viewer: | (%

Date Created From: || | [

Date Created To: [| [
oAA#: [
Department: ’7

Campus: I: v:

School: I: ¢:|
Name this search (optional):

search clear cancel

What are custom document search attributes?

Custom document search attributes are associated with a document type. They specify which pieces of
document data will be made searchable for documents of that type. When you take action on a document
in the workflow engine, a background process extracts the custom search attributes from the document
and adds them to a database table where they can be queried as part of a custom document search. These

139

KEW

custom search attributes are defined and associated along with document types in WorkflowData XML
files, and are added to Rice via the XML ingester. They are defined within (using XPath notation) /
data/ruleAttributes/ruleAttribute tags, and are associated with specific document types within /data/
document Types/documentType/attributes/attribute tags.

A custom search attribute's logic is defined in a Java class that implements the SearchAttribute interface.
A SearchableAttribute implementation defines:

» What parts of the document content will be made searchable

» Which fields will be present in the document search interface

» Which columns will be shown in the search results

» What is considered valid user input for the custom search fields

There isabuilt in SearchAttribute implementation, SearchableX ML Attribute, that is highly configurable
viaXML and will meet most requirements. If thereisneed for more complex or specific behavior, acustom
SearchAttribute implementation can be written and utilized as well.

DocumentSear chAttributes is much like XM L RuleAttributes, except that DocumentSearchAttributes
isresponsible for drawing input fields on the Document Search form and collecting data for the query, as
opposed to analyzing data for routing evaluation (done by XML RuleAttributes).

Hide Search Fields and Result Columns

In asearch configuration, the <visibility> tag lets you configure search criteriato be included or excluded
from the entry of search criteria or from the search results. Y ou can use the <visibility> tag on all field(s)
and column(s) in the Document Search resultsexcept for Document | d and Route L og, which must always
bevisible.

Hide a result column

<visibility>
<col umm vi si bl e="fal se"/>

</visibility>

Hide a search field

<visibility>
<field visible="fal se"/>
</visibility>

Field and column visibility based on workgroup membership

Use code like thisin the XML file to display column(s) and field(s) based on the user's workgroup:

<visibility>
<field>
<i sMerber Of Wor kgr oup>Wr kf | owAdni n</ i sMenber OF Wor kgr oup>
</field>
<col utm>
<i sMerber Of Wor kgr oup>Wor kf | owAdni n</ i sMenber OF Wor kgr oup>
</ col utm>
</visibility>

140

KEW

The example above indicates that the field and column only display for users who are a member of the
workgroup, WorkflowAdmin.

Configure visibility for both field and column

A shortcut to configure the visibility for both fields and columns is the <fiedldAndColumn> tag. A
<fieldAndColumn> example:

<visibility>
<fi el dAndCol umm>
<i sMenber Of Wor kgr oup>Wor kf | owAdni n</ i sMenber Of Wor kgr oup>
</fi el dAndCol um>
</visibility>

No field visibility

Declaring <type> as hidden is equivalent to setting visibility to false. An example of <type> and
<vigibility>, equivalent to a hidden field:

<sear chi ngConfi g>
<fi el dDef name="departnment" titl e="Departnent">
<di spl ay>
<type>text</type>
</ di spl ay>
<visibility>
<field visible="fal se"/>
</visibility>
<fi el dEval uation>
<xpat hexpr essi on>nor mal i ze- space(substri ng-before(//department, ' '))</xpathexpression>
</fiel dEval uati on>
</fiel dDef >

</ sear chi ngConfi g>

<l-- The above is equivalent to the follow ng searching configuration -->

<sear chi ngConfi g>
<fi el dDef name="departnent" titl e="Departnent">
<di spl ay>
<t ype>hi dden</type>
</ di spl ay>
<fi el dEval uation>
<xpat hexpr essi on>nor mal i ze- space(substring-before(//department, ' '))</xpathexpression

</fiel dEval uati on>
</fiel dDef >

</ sear chi ngConfi g>

Configure Lookup Function

To make a lookupable available on the Document Search screen, you can use the <quickfinder> tag in
the attribute definition. Y ou can use the terms quickfinder, lookup, and lookupable interchangesbly.

For example, you could set up an organizational hierarchic concept such asChartsand Orgstoimplement
a search. You could set up the code to perform this search using the ChartOrgL ookupablel mpl
institutional plugin. Thisis an example of a standard lookupable component.

In the institutional plug-in, ChartOrgL ookupablel mpl isidentified in the LookupableServiceExtension
by the name of ChartOrgL ookupablelmplservice. ChartOrglL ookupablel mpl exposes two return
parameters, which are:

141

KEW

» Fin_coa_cd: Represents the chart code

e Org_cd: Represents the organization code

An XML example of seting up a lookupable on the Document Search

ChartOrgSear chAttributexml

<rul eAttri bute>
<name>Chart Or gSear chAt t ri but e</ name>

<cl assNane>or g. kual i . ri ce. kew. docsear ch. xm . St andar dGener i cXM.Sear chabl eAttri but e</ cl assName>

<l abel >Test Qui ckfi nder Sear chAttri but e</| abel >
<descri pti on>Test Qui ckfi nder Sear chAttri but e</ descri pti on>
<t ype>Sear chabl eXm Attri bute</type>
<sear chi ngConfi g>
<fiel dDef name="chart" title="Chart">

<di spl ay>
<type>t ext </type>
</ di spl ay>

<qui ckfi nder service="Chart O gLookupabl el npl Servi ce"

<fi el dEval uation>
<xpat hexpressi on>// chart </ xpat hexpr essi on>
</fi el dEval uati on>

</fi el dDef >
<fiel dDef name="org" title="COrganization">
<di spl ay>
<type>t ext </type>
</ di spl ay>

<qui ckfi nder service="Chart O gLookupabl el npl Servi ce"

<fi el dEval uati on>
<xpat hexpressi on>// or g</ xpat hexpr essi on>
</fiel dEval uati on>
</fi el dDef >
<xm Sear chCont ent >
<chart Org>
<chart >%hart %/ chart >
<or g>%or g%/ or g>
</chart Org>
</ xm Sear chCont ent >
</ sear chi ngConfi g>
</rul eAttri bute>

appl i esTo="fin_coa_cd" draw="fal se"/>

appl i esTo="org_cd" draw="true"/>

screen:

In the XML example above, there are two <quickfinder> tags representing the Chart (fin_coa cd) and
Org (org_cd) search. Notice the draw attribute for the Org (org_cd) search is set true. This means that
asearch icon will be displayed on the Document Search screen. Based on the XML code above, the final

Document Search screen looks like this:

Figure 3.26. Custom Document Sear ch: Department Example

Detailed Search Superuser Search Clear Saved Searches

Xworkflow ...

Search for a Document:

Add/modify EDEN workgroup

Document Type: o

Initiator Network Id: || a,
Document Id; T
fram |

Date Created: 4

Hame this search (optional]?

search

Nothing found to display

clear

142

KEW

Application Document Status

If the <validA pplicationStatuses> configuration is specified in the document type definition, then setting
the Document Type on the Document Search page will display a multi-select input titled "Application
Document Status' that allows you to search by application statuses or status categories.

Figure 3.27. Document Search Screen: Application Document Status Example

Document Search H detailed search || superuser search || clear saved searches
* required field

Document Type: lAppIicatiDnStatus ExampleDo 4 l-:l

Initiator: || GV Ex|
Document ld: |
Pre-Submit
- Initiated
Application Document Status: | |- Validated
In Process
- Awaiting Content Aproval |~

Date Created From: 3
Date Created To: 3

Travel Account Number: |

MName this search (optional): |

search clear cancel

In the figure above, Pre-Submit is a category of statuses containing I nitiated and Validated which are
individual statuses. Selecting Pre-Submit and searching will return identical results to selecting both
Initiated and Validated and then searching.

Please see Document Type Policies: DOCUMENT_STATUS POLICY for configuration details.

Define Keyword Search

XML Searchabl eAttributeStdFloatRang is an XML searchable attribute that enhances the keyword search
function. It provides multiple searchable elementsfor auser to sel ect under the <searchingConfig> section.
This example is the XML Searchabl eAttributeStdFl oatRang attribute in the default setting:

<rul eAttri bute>
<name>XM._Sear chabl eAt t ri but eSt dFl oat Range</ nanme>
<cl assNane>or g. kual i . ri ce. kew. docsear ch. xm . St andar dGener i cXM.Sear chabl eAttri but e</ cl assNanme>
<l abel >XM. Searchabl e attribute</|abel >
<descri pti on>XM. Searchabl e attribute</description>
<t ype>Sear chabl eXm Attri but e</type>
<sear chi ngConfi g>
<fi el dDef name="testFl oatKey" title="Float in the Water">

<di spl ay>
<type>t ext </type>
</ di spl ay>

<sear chDefinition dataType="fl oat">
<rangeDefinition inclusive="fal se">
<l ower | abel ="starting"/>
<upper | abel ="endi ng"/>
</ rangeDefinition>
</ sear chDef i ni ti on>
<fi el dEval uati on>
<xpat hexpr essi on>// put What ever Wor dsl want | nsi deThi sTag/ t est Fl oat Key/ val ue</ xpat hexpr essi on>
</fiel dEval uati on>

143

KEW

</fi el dDef >
<xnm Sear chCont ent >
<put What ever Wor dsl want | nsi deThi sTag>
<t est Fl oat Key>
<val ue>% est Fl oat Key%</ val ue>
</ t est Fl oat Key>
</ put What ever Wor dsl want | nsi deThi sTag>
</ xm Sear chCont ent >
</ sear chi ngConf i g>
</rul eAttribute>

Caution
Cautions about the <searchingConfig> section:
1. <searchDefinition> identifies the search data type and search ranges.

2. <rangeDefinition> contains both the <lower> and <upper> elements that set up the
parameters for the range search.

3. If you set the <display><type> tag to be date, then KEW automaticaly sets
<sear chDefinition dataType="datetime" >.

4. If the datatypethat you enter isnot adatetime, then KEW setsall datePicker attributesto false.
5. Based onthedataTypeyou enter, datePicker changesthe default setting to either true or false.
6. To use arange search, you can either set <sear chDefinition rangeSearch="true" > or put

the tag <rangeDefinition> under the <sear chDefinition> tag. Either way, KEW will force
arange search.

Custom Search Criteria Processing

URL Parameter Options
Y ou can modify the search criteriaand the display of the search screen by passing in URL parameters. Only
use this method when the configuration desired is preferable and not required. If aparticular piece of the
search criteriaisrequired, please see the section below titled, Using a Custom Search Criteria Processor.
Force the link to display the Detailed Search screen
Use the parameter isAdvancedSear ch and set the valueto YES.
Show or Hide All Criteria and/or the Workflow Header Bar
Thedefault value of each of these parameters must be set to true to show both the criteriaand the header bar.

» To hide the header bar, use the URL parameter header Bar Enabled and set the value to false.

» To hidethe search criteria (including the buttons), use the URL parameter sear chCriteriaEnabled and
set the value to false.

Passing in Common Search Criteria Values

Common search criteria fields can be populated by supplying their values in the URL query parameters.
For example, the following URL specifies a search on KualiNotification documents with initiator user 1:

144

KEW

http://yourlocal i p: 8080/ Docunent Sear ch. do?docunent TypeNanme=Kual i Noti ficati on& nitiatorPrinci pal Nane=user1

Common search criteriafields include:

documentTypeName - the document type name

documentld - the document id

initiator PrincipalName - the initiator principal name

dateCreated - the document creation date

approver PrincipalName - the approver principal name (use with advanced search)

viewer PrincipalName - the viewer principal name (use with advanced search)
applicationDocumentl d - the application-supplied document id (use with advanced search)
dateApproved - the approval date (use with advanced search)

datel astM odified - the last modified date (use with advanced search)

dateFinalized - the finalization date (use with advanced search)

title - the document title(use with advanced search)

For acomprehensive list of search criteriafields, consult the

org. kuali.rice.kew.inpl.docunment.search. Docunent SearchCriteri aBo

class.

The CURRENT_USER variable

In addition to literal field values, the ' CURRENT_USER' special token is dynamically replaced with an
identifier for the currently authenticated user when the search is executed. This value can be supplied in
any field (typicaly afield that takes a principal name or id). Several variants allow embedding different

types of user ids:

CURRENT_USER, CURRENT_USER.principalName, CURRENT_USER.authenticationld,

CURRENT _USER.a - the current user principal name

CURRENT_USER.principalld, CURRENT_USER.workflowld, CURRENT_USER.w - the

current user principal id

CURRENT_USER.emplld, CURRENT_USER:.e - the current user employeeid

Example:

http://yourlocal i p: 8080/ Docunent Sear ch. do?
docunent TypeNane=Kual i Noti fication& nitiatorPrinci pal Name=CURRENT_USER

Passing in Searchable Attribute Values

Searchabl e attributes can be specified viaURL parameters by prefixing the searchabl e attribute field name

with documentAttribute..

145

KEW

Here is an example using two <fieldDef> objects with names firstname and lastname:

http://yourl ocal i p: 8080/ Docunment Sear ch. do?docunent Attri bute. firstname=John&ocunent Attribute.|astname=Snith

Using a Custom Search Criteria Processor

The best way to do custom criteria processing is to implement a custom class that extends the
class org.kuali.rice.kew.docsear ch.DocumentSearchCriteriaProcessor. This file is ingested as a
Workflow Attribute in KEW, using the <type> of DocumentSear chCriteriaProcessor Attribute. Once
the Workflow Attribute is ingested, you can set the name value of the ingested attribute on one or more
document type xml definitions in the Attributes section. A document type can only have one Criteria
Processor Attribute.

Creating a child class of the DocumentSear chCriteriaProcessor class, a client can override various
methods to modify the behavior of the search. The DocumentSear chCriteriaProcessor class can access
the WorkflowUser object of the user performing the search. By having access to these objects, a custom
processor class could implement dynamic hiding and showing of specific criteriafields based on ordinary
user’s data or search field data.

Show or Hide All Criteria and/or the Workflow Header Bar

Here are some hel pful methods that you may override from the DocumentSear chCriteriaProcessor class
file to hide or display full criteria (including buttons) and/or the header bar:

* isHeaderBarDisplayed() — If this function returns false, KEW hides the header bar on both the
advanced and basic search screens (default return value istrue).

 isBasicSearchCriteriaDisplayed() — If this function returns false, KEW hides criteria on the basic
search screen (default return valueistrue).

» isAdvancedSearchCriteriaDisplayed() — If this function returns false, KEW hides the criteria on the
advanced search screen (default return value istrue).

Hiding Specific Fields or Criteria Using Field Key Values

The DocumentSearchCriteriaProcessor classhas methodsthat allow classesto extend fromit for basic field
display. Thisis based on static string key values and makesit easier for clientsto allow basic field display
or to hide particular fields, whether they are searchable attributes or standard Document Search fields.

Y ou may override these methods from the DocumentSear chCriteriaProcessor class to do specific field
hiding by returning alist of string keys:

» getGlobalHiddenFieldK eys() — This function returns alist of keys (strings) for fields to be hidden on
both the basic and advanced search screen.

» getBasicSear chHiddenFieldK eys() — Thisfunction returnsalist of keys(strings) for fieldsto be hidden
on the basic search screen.

» getAdvancedSear chHiddenFieldK eys() — This function returns alist of keys (strings) for fieldsto be
hidden on the advanced search screen.

You can find the standard Document Search field key names in the class file
org.kuali.rice.kew.docsear ch.DocumentSear chCriteriaProcessor. They are constants prefixed by

146

KEW

the text CRITERIA_KEY . For example, the static criteria key for the Document Id field is
DocumentSear chCriteriaProcessor.CRITERIA_KEY_DOCUMENT _ID.

A client can also use searchable attribute <fieldDef> name values to hide fields in the same way that
you use constants. If a particular searchable attribute <fieldDef> name existsin alist returned by one of
the above hidden field key methods, the criteria processor class overrides the default behavior of that
<fieldDef> searchable attribute for visibility.

Here is a genera example of a custom criteria processor class that extends
StandardDocumentSear chCriteriaProcessor :

public class CustonDocunment SearchCriteriaProcessor extends Docurent SearchCriteriaProcessor {

/**
* Always hide the header bar on all search screens
*/

@verride
publ i ¢ bool ean i sHeader Bar Di spl ayed() {
return Bool ean. FALSE;

| **

* Always hide all criteria and buttons on the advanced search screen
*/

@verride

publ i ¢ Bool ean i sAdvancedSearchCriteriaDi splayed() {
return Bool ean. FALSE;

}

/**
* Hide the Initiator Criteria field on both Basic and Advanced Search screens
&/
@verride
public List<String> getd obal Hi ddenFi el dKeys() {
Li st<String> hi ddenKeys = super. get d obal Hi ddenFi el dKeys() ;
hi ddenKeys. add(Docunent Sear chCri teri aProcessor. CRI TERI A_KEY_I NI TI ATOR) ;
return hi ddenKeys;

/**
* Hide the Docunment Title criteria field on the basic search screen
* Hi de the searchable attribute field with name 'givennanme' on the basic search screen
&/
@verride
public List<String> getBasi cSearchH ddenFi el dkeys() {
Li st<String> hi ddenKeys = super. get AdvancedSear chHi ddenFi el dKeys();
hi ddenKeys. add(Docunent Sear chCri teri aProcessor. CRI TERI A_KEY_DOCUMENT_TI TLE) ;
hi ddenKeys. add("gi vennane") ;
return hi ddenKeys;

/**
* H de the Docunment Title criteria field on the advanced search screen
* Hi de the searchable attribute field with name 'givennanme' on the basic search screen
&/

@verride

public List<String> get AdvancedSear chHi ddenFi el dKeys() {
Li st<String> hi ddenKeys = super. get AdvancedSear chHi ddenFi el dKeys();
hi ddenKeys. add(Docunent Sear chCri teri aProcessor. CRI TERI A_KEY_DOCUMENT_TI TLE) ;
hi ddenKeys. add("gi vennane") ;

147

KEW

return hi ddenKeys;

Custom Search Generation

The best way to do custom search generation or processing is to implement a custom class that extends
the class org.kuali.rice.kew.impl.document.lookup.DocumentSear chGenerator. This file is ingested
as a Workflow Attribute in KEW using the <type> value of DocumentSearchGeneratorAttribute. Once
the Workflow Attribute is ingested, the name value of the ingested attribute can be set on one or more
document type xml definitions in the Attributes section. A Document Type can only have one Search
Generator Attribute.

Using an extension of the DocumentSear chGenerator class, a client has access to override various

methods to modify the behavior of the search. Also, the DocumentSear chGenerator class has helper
methods that may be used to get the WorkflowUser object of the user performing the search.

Implementing a Custom Result Set Limit

To implement a custom result set limit, smply override the method
getDocument Sear chResultSetL imit() from the Standar dDocument Sear chGener ator class.

Custom Search Results

You can creste a Custom Search Result table using an XML rule attribute of the type
DocumentSear chRsultXM L ResultProcessor Attribute.

The standard Search Result table:

Figure 3.28. Standard Doc Sear ch Results Set

20 items retrieved, displaying all items.

W Document e Title Status Initiator Date Created Rl-uu_ute

admin 12/05/2011 03:23

3091 Waiver Request ENROUTE admin PM _‘1

3085 Permission New GenericPermissionBo - KRMS Testing Perm MS FINAL 2dmin, LA il DR _\1
admin PM

3084 KRMS Term Maintenance Document New TermBo - New Term Document FINAL 2dmin, 12/05/2011 02:48 g
admin PM

3083 KRMS Term Specification Maintenance New TermSpecificationBo - New Term Specification FINAL admin 12/05/2011 02:45 _j.,

— Dacument Document admin PM

The Standard Search Result fields:
» Document Id

* Document Type

o Title

» Status

* Initiator

» Date Created

* Routelog

148

KEW

Thefields of Document Id and Route L og are always shown in the farthest |eft and right columns of the
Search Result table. These fields cannot be hidden. Y ou can add both columns a second time in the XML
search result attributes if needed.

Custom XML Document Search Result Processor Attribute

An example of a custom XML result processor:

<rul eAttribute>
<name>Kual i Cont r act SAndGr ant sDocSear chResul t Pr ocessor </ name>

<cl assName>or g. kual i . ri ce. kew. docsear ch. xm . Docurment Sear chXMLResul t Pr ocessor | npl </ cl assName>
<l abel >Contracts &anp; Grants Document Search Result Processor</|abel >
<description>Attribute to allow for customsearch results for Contracts &anp; G ants docunments</
descri pti on>
<t ype>Docunent Sear chXMLResul t Processor Attri but e</type>
<sear chResul t Confi g overri deSearchabl eAttri butes="fal se" showStandar dSear chFi el ds="f al se">
<col um nane="docTypeLabel " />
<col utm nane="docRout eSt at usCodeDesc" />
<colum nane="initiator" />
<col utm nane="dat eCreat ed" />
</ sear chResul t Conf i g>

</rul eAttri bute>

The result of the code displayed above is a Search Result table with these columns:
» Document Id

* Document Type

o Status

* Initiator

 Date Created

* RouteLog

The key for the search result customization is focused on the elements and column tag(s) under the
<searchResultConfig>.

Attributes that are included in the <searchResultConfig> tag:

 overrideSearchableAttributes: Theindicator of whether to display the column name attributes defined
by the searchAttribute fieldDef 'name's configured by setting the true or false

* true: Display the <column> name attributes based on searchAttribute fieldDef names.
« false: Display the name based on the <column> attribute.

 showStandar dSear chFields: The indicator of whether to display the standard search fields by setting
the value true or false.

« true: Display the search result with the standard result fields; the name attribute of the <column> tag
should match the values in the java file DocumentSear chResult.java.

« false: Display the search result based on the custom result fields.

Attributes that can be added in a <column> tag:

149

KEW

* Name: The key for connecting the value of a particular attribute. For example, routeHeader|d equals
Document Id. For moreinformation about the attribute key, pleaserefer to the K ey referencetable bel ow.

» Title Thetitle of thefield

» Sortable: Theindicator of whether to sort the search result by setting the value true or false

* true: Sort option for this column is enabled to sort either aphabetically or numerically depending
on attribute type.

« false: Sort option for this column is disabled.

For <column> with sortable = true, the field title becomes a link and when a user clicks the link, KEW
sorts the results by that column.

An example of acustom ruleAttribute:

<rul eAttri bute>

<nanme>Kual i Contract sAndGr ant sDocSear chResul t Processor </ nane>

<cl assNane>or g. kual i . ri ce. kew. docsear ch. xm . Docunent Sear chXM.Resul t Processor | npl </ cl assName>
<l abel >Contracts &anp; Grants Docunent Search Result Processor</|abel >
<description>Attribute to allow for custom search results for Contracts &anp; G ants docunents</

descri ption>

<t ype>Docunent Sear chXM_Resul t Processor At tri but e</ t ype>
<sear chResul t Confi g overrideSearchabl eAttri butes="true" showStandardSear chFi el ds="fal se">

<col um
<col um
<col um
<col um
<col um
<col um
<col um
<col um
<col um

name="
name="
name="
name="
name="
name="
name="
name="
name="

docTypelLabel " />

docRout eSt at usCodeDesc" />
initiator" />

dat eCreated" />

proposal _nunber" />

chart" />

organi zation" />

proposal _award_status" />
agency_report_nanme" />

</ sear chResul t Conf i g>

</rul eAttribute>

Table3.17. Key Reference Table

. Default field names and reference keys

Field Key

Document Id routeHeaderld

Document Type docTypel abel

Title documentTitle

Status docRouteStatusCodeDesc
Initiator initiator

Date Created dateCreated

Route Log routel.og

Custom Document Search Result Processor Class File

You may aso use a custom Document Search Result Processor by extending the class
org.kuali.rice.kew.docsear ch.Standar dDocumentSear chResultProcessor and overriding individual
methods.

Differences between SearchableAttribute and
RuleAttribute

 SearchableAttribute does NOT have aworkflowType attribute in the field tag.

150

KEW

 For SearchableAttribute, xpathexpression indicates the value's location in the document; it does not
use wf:ruledata(''). For RuleAttribute, xpathexpression is a Boolean expression.

» Searchabl eAttribute uses xml SearchContent instead of xml DocumentContent; xmlDocumentContent is
for RuleAttribute.

Document Security

Kuali Enterprise Workflow provides a declarative mechanism to facilitate Document-level security for
these three screens:

» Document Search
* RouteLog

* Doc Handler Redirection

Overview

1. You can create a security definition on a Document Type, which allows you to apply varying levels
and types of security.

2. Thisdefinition isinheritable through the Document Type hierarchy.

3. If security isdefined on aDocument Type, rowsfor that Document Typethat arereturned from asearch
apply the security constraints and filter the row if the constraints fail.

4. Security constraints are evaluated against a document when its Route L og is accessed. If the security
constraints fail, the user receives a Not Authorized message.

5. Security constraints are evaluated against a document when a Doc Handler link is clicked from either
the Action List or Document Sear ch. If the security constraintsfail, the user receivesaNot Authorized

message.
Security Definition

Y ou can define the security constraints in the Document Type XML. Here's a sample of the XML format:

<docunent Type>

<security>
<securityAttribute class="org.kuali.security.SecurityFilterAttribute"/>
<securityAttribute name="Test SecurityAttribute"/>
<initiator>true</initiator>
<rout eLogAut hent i cat ed>t r ue</ r out eLogAut hent i cat ed>
<searchabl eAttribute i dType="enplid" name="enplid"/>
<gr oup>MyWor kgr oup</ gr oup>
<rol e all owed="true">FACULTY</r ol e>
<rol e al |l oned="true">STAFF</rol e>

</security>

</ docunent Type>

There is an implicit OR in the evaluation of these constraints. Thus, the definition above states that the
authenticated user has access to the document if:

151

KEW

» The attribute or g.kuali.security.SecurityFilter Attribute defines the user as having access OR

 Theattribute defined in the system by the name T est Secur ityAttributedefinesthe user ashaving access
OR

» The user istheinitiator of the document OR

» The user is on the Route L og of the document OR

» Theuser'sEMPL ID isequal to the searchable attribute on the document with the key of emplid OR
» Theuser isamember of the MyWorkgroup workgroup OR

* Theuser hasthe FACULTY role OR

* Theuser hasthe STAFF role
<initiator>

Validates that the authenticated user is or isn't the initiator of the document.

<routeLogAuthenticated>
Validates that the authenticated user is or isn't Route Log Authenticated.
Route Log Authenticated means that one of theseis true:
1. The user istheinitiator of the document.
2. The user has taken action on the document.
3. The user hasreceived arequest for the document (either directly or as the member of aworkgroup).

Route Log Authenticated checks for security but does not simulate or check future requests.

<securityAttribute>

Validates based on a custom-defined class. Class must have implemented the SecurityAttribute interface
class. There are two methods of defining a security attribute:

» KEW Attribute Name: Specify an already-defined attribute (via KEW XML ingestion) using the XML
attribute name .

(Use of applicationld in a ruleAttribute specification sets the id of the application which contains the
implementation of the security attribute.)

<documnent Type>

<security>
<securityAttribute name="Test SecurityAttribute"/>
</security>

</ docunent Type>

 Class Name: Define the fully qualified class name using the XML attribute class.

152

KEW

(Use of Class Nameislimited to classes which are locally defined.)

<docunent Type>

<security>
<securityAttribute class="org.kuali.security.SecurityFilterAttribute"/>
</security>

</ docunent Type>

<searchableAttribute>

<group>

<role>

Validate that the authenticated User ID of the given idType is equivalent to the searchable attribute field
with the given name.

Thefollowing id types are valid:

emplid
authenticationid
uuid

workflowid

Validate that the authenticated user is a member of the workgroup with the given name.

Validate that the authenticated user has the given role. The existence and names of these
roles are determined by your setup in KEW. (You can create these roles when you implement
WebAuthenticationService.) Typically, the roles mirror your organization structure.

For example, you may choose to expose these roles:

STAFF

FACULTY

ALUMNI

STUDENT

FORMER-STUDENT

APPLICANT

ENROLLED

ADMITTED

PROSPECT

153

KEW

¢« GRADUATE
« UNDERGRADUATE
If theroleis marked as allowed=true, than anyone with that rol e passes the security constraint. If therole

is marked as allowed=false, then if the individual has the given disallowed role but none of the allowed
roles, he or shefails the security check.

Order of Evaluation

The security constraints are evaluated in the following order. If any single constraint passes, it bypasses
evaluating the remaining constraints.

1. Security attribute
2. Initiator

3. Role

4. Workgroup

5. Searchable attribute

6. Route log authenticated

Security - Warning Messages

These security scenarios generate security warning messages.

Document Search

* If norows arefiltered because of security, the user sees the search result without any warning message
on the Document Sear ch page.

« If rows are filtered because of security, a red warning message on top of the Document Sear ch page
shows how many rows were filtered. For example, "19 rows were filtered for security purposes.”

* If the initial result set returns more than the search result threshold (500 rows), and rows in the set
subsequently get filtered because of security, then a red warning message shows how many rows were
returned and filtered. For example, "Too many results returned, displaying only the first 450. 50 rows
were filtered for security purpose. Please refine your search.”

Route Log and Doc Handler

« If the defined security constraints stop a user from viewing a document, a red warning message shows
at the top of the page if they attempt to access the Route Log. For example, "You are not authorized
to access this portion of the application.”

Service Layer

In an out-of-the-box installation of KEW, Document Security is
handled by org.kuali.rice.kew.doctype.DocumentSecurityServicelmpl, which implements the
org.kuali.rice.kew.doctype.DocumentSecurityService service interface.

154

KEW

Action List Configuration Guide

Outbox Configuration

The Outbox is a standard feature on the Action List and isvisible to the user in the Ul by default. When
the Outbox is turned on, users can access it from the Outbox hyperlink at the top of the Action List.

The Outbox is implemented by heavily leveraging existing Action List code. When
an Action Item is deleted from the Action Item table as the result of a
user action, the item is stored in the KEW_OUT _BOX ITM_T table, using the
org.kuali.rice.kew.actionitem.OutboxltemActionL istExtension object. This object is an extension of
the ActionltemActionListExtension. The separate object exists to provide a bean for OJB mapping.

TheWorkflow Preferences determineif the Outbox isvisible and functioning for each user. The preference
iscalled Use Outbox. In addition, you can configure the Outbox at the KEW level using the parameter tag:

<par am nane="act i onl i st. out box" >t r ue</ par an>

When the Outbox is set to false, the preference for individual users to configure the Outbox is turned off.
By default, the Outbox is set to true at the KEW level. Y ou can turn the Outbox off (to hideit from users)
by setting the property below to false:

<par am name="acti onl i st. out box. def aul t. pref erence. on">f al se</ par an»>

This provides backwards compatibility with applications that used earlier versions of KEW.

Note

Notes on the Outbox:
 Actions on saved documents are not displayed in the Outbox.
» The Outbox respondsto all saved Filtersand Action List Preferences.

» A unique instance of a document only exists in the Outbox. If a user has a document in the
Outbox and that user takes action on the document, then the original instance of that document
remainsin the Outbox.

Email Customization

KEW provides default email template for Action List notification messages that are sent. However, it is
also possible to customize this either globally or on a Document Type by Document Type basis.

There are two ways to customize Action List emails:
1. Configure a CustomEmail Attribute
2. Creating acustom XSLT Stylesheset

To accomplish this, you must write a CustomEmailAttribute and configure it on the appropriate
DocumentType.

155

KEW

Configure a CustomEmailAttribute

The CustomEmail Attribute interface provides two methods for adding custom content to both the subject
and the body.

public String get CustonEmail Subject();

public String getCustonEmail Body();

Note that each of these values is appended to the end of either the subject or the body of the email. The
rest of the email still uses the standard email content.

Also, when implementing one of these components, the document is made available to you as
a RouteHeaderDTO and the action request related to the notification is made available as an
ActionRequestDTO.

Once you have implemented the CustomEmail Attribute, you need to make it avail able to the KEW engine
(either deployed in a plugin or available on the classpath when running embedded KEW).

Document Type Configuration

Onceyou makethe email attribute component availableto KEW, you need to configureit on the Document
Type.

First, define the attribute:

<data xm ns="ns:workfl ow' xm ns:xsi="http://ww.w3. org/ 2001/ XM_Schema- i nst ance" xsi: schemaLocati on="ns: wor kf | ow
resour ce: Wr kf | owDat a" >
<rul eAttributes xm ns="ns:workfl ow Rul eAttribute" xsi:schemalLocati on="ns:workfl ow Rul eAttribute
resource: Rul eAttribute">
<rul eAttri bute>
<nanme>M/Cust onEngi | At tri but e</ nane>
<cl assNanme>ny. package. MyCust onEmai | At t ri but e</ cl assNanme>
<l abel >MyCust onEnai | Attri but e</ | abel >
<descripti on>My Custom Emai|l Attribute</description>
<type>Emai | Attribute</type>
</rul eAttribute>
</rul eAttributes>
</ dat a>

Next, update the Document Type definition to include the attribute;

<data xm ns="ns: workfl ow' xml ns:xsi="http://ww.w3. org/ 2001/ XM_Schema- i nst ance" xsi:schenmaLocati on="ns: wor kfl ow
resour ce: Wor kf | owDat a" >
<docurent Types xml ns="ns: wor kf | ow Docunent Type" xsi:schenmalLocati on="ns: wor kf | ow Docunent Type
resour ce: Docunent Type" >
<docurnent Type>
<name>M/DocType</ nane>
<l abel >My Docunent Type</| abel >
<post Processor Nane>. . . </ post Pr ocessor Nane>
<attributes>
<attribute>
<nanme>M/Cust onEngi | At tri but e</ nane>
</attribute>
</ attributes>
<r out ePat hs>

</ r out ePat hs>
<r out eNodes>

</ r out eNodes>
</ docunent Type>
</ docunent Types>

156

KEW

</ dat a>

These should be ingested using the XML Ingester. See Importing Files to KEW for more information on
using the XML Ingester.

Create a Custom XSLT Style Sheet

Global Email Customization

A more convenient way to customize email content declaratively isto replace the global email XSLT style
sheet in Rice. Do this by ingesting an XSLT style sheet with the name kew.email.style. This style sheet
should take input of this format for reminder emails:

<!-- root element sent depends on email content requested by the system-->

<i medi at eRem nder | dai | yRem nder | weekl yRemi nder actionListUrl="url to ActionList" preferencesUrl="url to
Pref erences”

appl i cati onEmai | Address="confi gured KEW emai | address" env="KEW environnment string (dev/test/prd)">

<user> <!-- the principal who received the request -->
<name>. .. </ nane>
<princi pal Narme>. .. </ princi pal Name>
<principal I d> ..</principalld>
<firstNanme>...</firstNane>
<l ast Nane>. . . </ | ast Name>
<emai | Address>. .. </ enai | Addr ess>

</ user >

<actionlten»
<l-- one top-level actionltemelement sent for each Actionltem for inmediate enail reminders, there
will only ever be one; for daily and weekly rem nders, there nay be several -->
<!-- custom subject content produced by the CustonEnmil Attribute associated with the Docunment Type of

this Actionltem if any -->
<cust onBubj ect >. . . </ cust onBubj ect >

<!-- custom body content produced by the CustonEmail Attribute associated with the Docunent Type of this
Actionltem if any -->
<cust onBody>. . . </ cust onBody>

<actionlten> <!-- the actual Actionltem-->
<principal I d> ..</principalld>
<groupl d>. .. </ groupl d>
<rout eHeader | d>. . . </ r out eHeader | d>
<actionRequest|d>...</actionRequest|d>
<docTitle>. ..</docTitle>
<actionltenm d>. ..</actionltenl d>
<rol eNanme>. . . </ rol eNane>
<dat eAssi gned>. . . </ dat eAssi gned>
<acti onRequest Cd>. .. </ acti onRequest Cd>
<docHandl er URL>. . . </ docHandI er URL>
<r eci pi ent TypeCode>. . . </ r eci pi ent TypeCode>
<acti onRequest Label >. .. </ acti onRequest Label >
<del egati onType>. .. </ del egati onType>
<docNane>. . . </ docNane>
<docLabel >. .. </ docLabel >

</ actionltenr

<actionltenPerson> <!-- see "user" elenent at the top, sinliar content -->

</ acti onl t enPer son>
<actionltenPrincipalld> ..</actionltenPrincipalld>
<actionltenPrinci pal Nane>. .. </actionltenPrincipal Namre>

<doc> <!-- the RouteHeader associated with this Actionltem-->
<rout eHeader | d>. . . </ r out eHeader | d>
<docTitle>. ..</docTitl e>
<docCont ent >. . . </ docCont ent >
<initiatorWrkflow d>...</initiatorWrkfl ow d>
<docurnent Typel d>. . . </ docunent Typel d>
<docRout eSt at usLabel >. . . </ docRout eSt at usLabel >
<docRout eSt at us>. . . </ docRout eSt at us>

157

KEW

<creat eDat e>. .. </createDat e>

</ doc>

<docl ni ti ator>
<princi pal Name>. . . </ pri nci pal Name>
<principal ld> ..</principalld>
<entityld>. ..</entityld>

</doclnitiator>

<document Type> <!-- Docunent Type -->
<nane>. .. </ name>
<l abel >...</| abel >
<descri ption>...</description>
<servi ceNanmespace>. .. </ servi ceNanespace>
<notificationFromAddress>...</notificationFromAddress>
<docHandl er Ur | >, . . </ docHandl er Ur | >
<documnent Typel d>. .. </ docunent Typel d>

</ actionltenm>

</ i medi at eReni nder | dai | yRemi nder | weekl yRem nder >

Thisformat is used for feedback emails:

<!-- feedback form-->
<f eedback actionListUl="url to ActionList" preferencesUl ="url to Preferences"
appl i cati onEmai | Addr ess="confi gured KEW enai| address" env="KEW environnment string (dev/test/prd)">
<net wor kl d>. . . </ net wor kI d>
<l ast Nanme>. . . </| ast Nane>
<rout eHeader | d>. . . </ r out eHeader | d>
<documnent Type>. .. </ docunent Type>
<user Emai | >. .. </ user Enai | >
<phone>. .. </ phone>
<tineDate>...</tineDate>
<edenCat egory>. .. </ edenCat egor y>
<comment s>

</ comrent s>

<pageUr | >...</pagelrl| >

<firstName>...</firstName>

<exception>...</exception>

<user Name>. . . </ user Nanme>
</ f eedback>

In both cases, the output generated by the style sheet must be like this:

<emui | >
<subj ect>... subject here ...</subject>
<body>... body here ...</body>

</ enmail >

Y ou must then upload the custom style sheet into the style service using the standard KEW XML ingestion
mechanism:

<?xm version="1.0" encodi ng="UTF-8"?>
<data xm ns="ns: wor kfl ow' xml ns:xsi="http://ww:.w3. org/ 2001/ XM_Schema- i nst ance" xsi:schenmaLocati on="ns: wor kfl ow
resour ce: Wor kf | owDat a" >
<styl es xm ns="ns:workfl ow Styl e" xsi:schemaLocati on="ns: workflow Style resource: Styl e">
<styl e nane="kew. email .style">
<!-- A customglobal email rem nder stylesheet -->
<xsl :styl esheet version="1.0" xn ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf or m' >
<xsl:strip-space el enents="*"/>
<xsl:tenpl ate match="i nredi at eRem nder" >

</ xsl:tenpl at e>
<xsl :tenpl ate mat ch="dai | yRem nder">

</ xsl:tenpl at e>
<xsl : tenpl ate mat ch="weekl yRem nder" >

158

KEW

</ xsl : tenpl at e>
<xsl : tenpl at e mat ch="f eedback">

</ xsl : tenpl at e>
</ xsl : styl esheet >
</styl e>
</styl es>

The global style sheet should handle all email content requests. Y ou can use the standard include syntax
to import an existing style sheet that may implement defaults.

DocumentType-Specific Email Customization

Y ou can al so customize immediate reminder email content on aper-DocumentType basis. To do so, define
acustom email style sheet name on the DocumentType definition:

<docurnent Type>
<name>SonmeDoc</ name>
<descri ption>a docunment with custom zed rem nder enmil </description>

<enui | Styl esheet >somedoc. cust om enmi | . styl e</ enai | Styl esheet >

</ docunent Type>

Then, upload a corresponding style sheet with a matching name, as above.

Document Link

Document Link Features

KEW provides an option for linking documents and BOs that are functionally related. The link between
related documents is created and removed in a double link double delete fashion, which means: when a
link is added/del eted from 1 document to another document, alink in the reverse direction is also added/
deleted, thisfeature will garuantee that searching for linked documents can be done from either side of the
link. Using this option, client applications can link documents by using document link API.

Document Link API

Document link APl is exposed to the client through WorkflowDocument interface, below isthe summary
of the api:

1. get dl linksto orgn doc

public List<DocumentLinkDTO> getLinkedDocumentsByDocld(Long id) throws
WorkflowException

2. get the link from orgn doc to a specifc doc

public DocumentLinkDTO getLinkedDocument(DocumentLinkDTO docLinkVO) throws
WorkflowException

3. add alink by id

public void addLinkedDocument(DocumentLinkDTO docLinkV O) throws WorkflowException

159

KEW

4. remove al linksto this doc as orgn doc
public void removelL inkedDocuments(L ong docld) throws WorkflowException
5. remove the link to the specific doc

public void removel inkedDocument(DocumentLinkDTO docLinkV O) throws WorkflowException

Document Link API Example
Itis pretty straightforward to use this api, below are some examples:

1. Toadd alink

Wor kf | owDocunent doc = new Wor kf | owDocunent (..);

Docunent Li nkDTO t est DocLi nkVO = new Docunent Li nkDTQ()
t est DocLi nkVO. set Or gnDocl d(Long. val ue (5000)) ;

t est DocLi nkVO. set Dest Docl d(Long. val ueC (6000)) ;
doc. addLi nkedDocunent (t est DocLi nkVO) ;

2. Toretrieve al links to a document

Li st <Docunent Li nkDTCG> | i nks2 = doc. get Li nkedDocunent sByDocl d(Long. val ueOf (5000)) ;

3. Toremovealink

doc. renovelLi nkedDocunent (t est DocLi nkVO) ;

Reporting Guide

Reporting Features

KEW provides various options for reporting on and simulation of routing scenarios. There is a GUI for
performing these reporting functions as well as an API that you can use to run routing reports against the
system.

The Routing Report Screen

From the Rice main menu there is a link to the Routing Report screen. From this set of screens you
can enter various criteria for running reports against the routing engine. The output of this reporting isa
simulated view of the Route L og, displaying the result of the report.

The Report APIs

The KEW client APl also provides facilities for running reports against the routing engine. At the core
of KEW is a Simulation Engine that is responsible for running these types of reports. The method for
executing these reportsis on the Workflow Info object that is part of the client API. The method is defined:

publ i ¢ Docunent Det ai | VO routi ngReport(ReportCriteriaVO reportCriteria) throws Wrkfl owException;

160

KEW

This method takes the report criteria and returns the results of the routing report.

Report Criteria

The routing report operates under two basic modes:
1. Reports that run against existing Documents
2. Reportsthat simulate a Document from a Document Type

In each these cases there are certain properties that you need to set on the ReportCriteriaV O to obtain the
desired results.

In the first case, the report runs against a document that has already been created in the system. This
document aready has a Document Id and may be en route. Using this style of reporting, you can run
simulationsto determinewhere the document will goinfutureroute nodes. For example, torunasimulation
against an existing document to determine to whom it will route in the future, execute this code:

Routing Report against a Document

Wor kfl ow nfo info = new Workfl ow nfo();

RoutingReportCriteriaVO criteria = new ReportCriteriaVO(new Long(1234));
Docunent Detai | VO results = info.routingReport(criteria);

/'l exami ne results...

This runs a report against the document with ID 1234, starting at the active nodes of the document
and continuing to the terminal nodes of the document. The DocumentDetail VO will contain the Action
Requests generated during the report simulation.

Y ou can also stop the report at a particular node or once Rice generates arequest for aparticular user. For
example, to stop the report simulation at a node or when Rice generates a certain user's request, configure
the report criterialike this:

Terminate Report at Node or User

Wor kfl ow nfo info = new Workfl ow nfo();

RoutingReportCriteriavVO criteria = new ReportCriteriaVO(new Long(1234), "M/NodeNane");
criteria.setTargetUsers(new UserldvVdJ] { new Networkl dvVQ("ewestfal") });

Docunent Detai | VO results = info.routingReport(criteria);

This executes the report until it reaches a node named MyNodeName or a request is generated for user
ewestfal.

In the second style of reporting, the report is run against an arbitrary Document Type and the simulation
engine creates a temporary document against which to run the report. When setting up the report criteria
for these scenarios, you usualy populate the XML content of the document on the criteria (provided that
the routing of that document evaluates the XML). Also, the criteria need to be configured with the valid
node names (or rule templates) against which the report should be run. For example, to run a Document
Type report, you can invoke the routing report this way:

Report against a Document Type

Wor kfl ow nfo info = new Workfl ow nfo();

161

KEW

Rout eReportCriteriaVO criteria = new ReportCriteriaVQ("MDocunent Type");
criteria.setXm Cont ent ("<account Number >1234</ account Nunber >") ;

criteria.setNodeNames(new String[] { "M/NodeNane" });
Docunent Detai | VO results = info.routingReport(criteria);

The code above simulates the generation of requests for MyDocumentType at the MyNodeName node
with the XML given. This sort of reporting is especially useful if you simply need to determine what rules
in the rule system will fire and generate action requests under a particular scenario.

As an alternative to specifying the node names, you can also specify rule template names. Thisis simply
another way to target a specific node in the document. It searches the Document Type definition for nodes
with the specified rule templates and then runs the report against those nodes. Currently, the rule template
must exist on anodein the Document Type definition or an error will be thrown. In the case of our previous
example, you could simply change the line that sets the node names on the criteria to:

criteria.setRul eTenpl ateNanes(new String[] { "M/Rul eTenpl ate" });

Asabove, thisisprimarily useful for determining who will have requests generated to them from the KEW
rule system.

Interpreting Report Results

Aswe've seen, the object returned by the Routing Report isan instance of DocumentDetailVO. This object
extends RouteHeaderVVO and provides three more pieces of data along with it:

1. Anarray of ActionRequestV O objects representing the action requests on the document

2. An array of ActionTakenVO abjects representing the actions that have been performed against the
document

3. Anarray of RouteNodel nstanceV O objects that represent nodes in the document path

For reporting, the most important piece of data here is typically the ActionRegquestVO objects. After
running areport, thisarray containsthe Action Regueststhat were generated asthe result of the simulation.
So, for example, in the exampl e above where we run adocument type report against the MyRuleTemplate
rule template, this array contains all of the Action Requests that were generated to users or workgroups
during the report simulation.

Workflow Plugin Guide

Overview

Kuali Enterprise Workflow (KEW) has a plugin framework that allows you to load code into the core
system without requiring changes to the KEW source code or configuration. This framework provides:

» A custom class loading space
» Hot deploy and reload capabilities
* Participation in Workflow's JTA transactions

» An application plugin for installation of routing components

162

KEW

Application Plugin

Usean application plugin to deploy an application area's routing componentsinto Workflow. Theserouting
components might include:

* Ruleattributes
» Searchable attributes
* Post processors
» Route modules

If these components require access to a data source, then the application plugin also configures the data
source and allows it to participate in Workflow's JTA transactions.

In addition to routing components, the application plugin can aso configure a plugin listener and a
Resource Loader. The Resource Loader is responsible for loading resources (both Java classes and service
implementations) from the plugin and providing them to the core system.

Application plugins are hot-deployable, so arestart of the server is not required when they are added or
modified. The core system searches for plugins in a directory configured in the application configuration
(see KEW Module Configuration).

Plugin Layout

You build the plugin as a set of files and directories. You then zip this structure and place it in the
appropriate Workflow plugin space. For application plugins, this directory location is defined in the core
system configuration.

The name of the zip file (minus the .zip extension) is used as the name of the plugin. The Plugin Loader
only looks for filesthat end in .zip when determining whether to load and hot-deploy a plugin.

In general, application plugins can be named as desired. However, there is one reserved plugin name:
shared - A special pluginthat providesashared classloading spaceto all plugins(see Plugin Shared Space).
The directory structure of aplugin is similar to that of aweb application. It should have this structure:

cl asses/

l'i b/
META- | NF/
wor kf | ow. xm

 classes- All java .classfilesthat are used by the plugin should reside in this directory
* lib - All jar library files that are used by the plugin should reside in this directory

* META-INF - The workflow.xml configuration file must reside in this directory

Plugin Configuration

Application pluginsusually provide a subset of the functionality that an institutional plugin provides, since
theinstitutional plugin can provide core service overrides.

The plugin framework provides two configuration points:

163

KEW

1. Plugin XML Configuration (described below)

2. Transaction and DataSource Configuration

Plugin XML Configuration

The XML configurationisdefinedin afile called workflow.xml. Theformat of thisfileisrelatively simple.
An example workflow.xml file;

<pl ug-in>
<par am nane="ny. param 1" >abc</ par an»
<par am name="ny. par am 2" >123</ par an>
<li stener>
<listener-class>org. kuali.rice.core.ApplicationlnitializelListener</|istener-class>
</listener>
<resour ceLoader cl ass="my. ResourcelLoader"/>
</ pl ug-in>

WEe'l explain each of these elementsin more detail below:

Plugin Parameters
The parameter configuration uses XML as the syntax. These parameters are placed into a configuration
context for the plugin. The configuration inherits (and can override) values from the parent configurations.
The configuration hierarchy is core -> institutional plugin -> application plugins.

A plugin can access its configuration using this code:

org. kuali.rice.Config config = org. kuali.rice. Core. get Current Cont ext Config();

Plugin Listeners

You can define one or more listeners that implement the interface
org.kuali.ricekew.plugin.PluginListener. These can be used to receive plugin lifecycle notifications
from KEW.

The interface defines two methods to implement:

* Invoked when a plugin starts up

public void pluginlnitialized(Plugin plugin);

* Invoked when a plugin shuts down

public void plugi nDestroyed(Pl ugin plugin);

It islegal to define more than one plugin listener. Plugin listeners are started in the order in which they
appear in the configuration file (and stopped in reverse order).

Resource Loader

A plugin can define an instance of org.kuali.rice.resour celoader .Resour cel. oader to handle the loading
of classes and services. When KEW attemptsto load classes or locate services, it searches the institutional

164

KEW

plugin, then the core, then any application plugins. It does this by invoking the getObject(..) and
getService(...) methods on the plugin's Resourcel oader.

If no ResourceLoader is defined in the plugin configuration, then the default implementation
org.kuali.rice.resour celoader .BaseResour cel oader isused. The BaseResourcel oader letsyou examine
the plugin's classloader for objects when requested (such as post processors, attributes, etc.). This is
sufficient for most application plugins.

For more information on configuring service overrides in a plugin, see the Overriding Services with a
Resourceloader section below.

Configuring an Extra Classpath

Sometimesit isdesirableto be ableto point in aplugin to classesor library directories outside of the plugin
space. This can be particularly useful in development environments, where the plugin uses many of the
same classes as the main application that isintegrating with Workflow. In these scenarios, configuring an
extra Classpath may mean you don't need to jar or copy many common class files.

To do this, specify these propertiesin your plugin's wor kflow.xml file:

1. extra.classes.dir - Path to an additional directory of .classfiles or resources to include in the plugin's
classloader

2. extra.lib.dir - Path to an additional directory of .jar filesto include in the plugin's classloader

The classloader then includes these classes and/or lib directories into its classloading space, in the same
manner that it includes the standard classes and lib directories. The classloader always|ooksin the default
locations first, and then defers to the extra classpath if it cannot locate the class or resource.

Transaction and DataSource Configuration

The easiest method to configure Datasources and Transactions is through the Spring Framework. Hereis
a snippet of Spring XML that shows how to wire up a Spring Transaction Manager inside of a plugin:

<bean i d="user Transacti on" class="org.kuali.rice.jta.UserTransacti onFactoryBean" />
<bean id="jtaTransacti onManager" class="org.kuali.rice.jta.Transacti onManager Fact oryBean" />

<bean i d="transacti onManager" cl ass="org.springframework.transaction.jta.JtaTransacti onManager">
<property name="user Transaction" ref="userTransaction" />
<property name="transacti onManager" ref="jtaTransacti onManager" />
<property name="defaul t Ti meout” val ue="${transaction.tinmeout}"/>

</ bean>

The factory beans in the above XML will locate the javax.trasaction.User Transaction and
java.transaction.TransactionM anager, which are configured in the core system. These can then be
referenced and injected into other beans (such as the Spring JaTransactionManager).

Once you configure the transaction manager, you also need to configure any DataSources you require.
Here'san example of configuring a DataSource that participatesin Atomikos JTA transactions (the default
Transaction Manager distributed with Rice Standal one).

<bean i d="nyDat aSour ce" cl ass="com at om kos. j dbc. nonxa. NonXADat aSour ceBean" >
<property name="uni queResour ceNane" val ue="nyDat aSource"/>

<property nanme="driverd assName" val ue="..."/>
<property name="url" value="..."/>
</ bean>

165

KEW

So, the application can access it's datasource by either injecting it into Spring services or by fetching it
directly from the Spring context.

Y ou can find moreinformation on configuring Rice DataSources and TransactionManagersin Datasource
and JTA Configuration.

OJB Configuration within a Plugin

If your plugin needs to use OJB, there are a few other configuration steps that you need to take. First, in
your Spring file, add the following line to allow Spring to locate OJB and the JTA Transaction Manager:

<bean i d="o0j bConfigurer" class="org.kuali.rice.ojb.Jtag bConfigurer">
<property name="transacti onManager" ref="jtaTransacti onManager" />

</ bean>

Next, for OJB to plug into Workflow's JTA transactions, you need to modify some settingsin the plugin's
OJB.propertiesfile (or the equivalent):

Per si st enceBr oker Fact or yC ass=or g. apache. oj b. br oker . cor e. Per si st enceBr oker Fact or ySyncl npl
I mpl enent ati onCl ass=or g. apache. oj b. odng. | npl enent at i onJTAI npl

QIBTxManager Cl ass=or g. apache. oj b. odng. JTATxManager

Connect i onFactoryC ass=org. kual i . ri ce. oj b. Ri ceDat aSour ceConnecti onFactory

JTATr ansact i onManager Cl ass=or g. kual i . ri ce. oj b. Transacti onManager Factory

Thefirst three properties listed are part of the standard setup for using JTA with OJB. However, there are
custom Rice implementations:

 org.kuali.rice.ojb.RiceDataSour ceConnectionFactory
 org.kuali.rice.ojb.TransactionM anager Factory
 org.kuali.rice.ojb.RiceDataSour ceConnectionFactory

This OJB ConnectionFactory searches your Spring Context for a bean with the same name as your jcd-
alias. Hereiswhat an OJB connection descriptor might look like inside of a Workflow plugin:

<j dbc- connecti on-descri pt or
j cd-al i as="nyDat aSour ce"
def aul t - connecti on="true"
pl atform="Oracl e9i "
j dbc-1evel ="3. 0"
eager -rel ease="f al se"
bat ch- node="f al se"
useAut oConmi t =" 0"
i gnor eAut oConmi t Except i ons="f al se">

<sequence- manager cl assName="org. apache. oj b. broker. util.sequence. SequenceManager Next Val I npl " />

<obj ect - cache cl ass="org. apache. oj b. br oker. cache. Obj ect CachePer Br oker | npl "/ >
</j dbc- connecti on-descri pt or>

Noticethat the j cd-alias attribute matches the name of the DataSource Spring bean defined in the example
above.

Another important thing to notice in this configuration is that useAutoCommit is set to 0. This tells OJB
not to change the auto commit status of the connection because it is being managed by JTA.

Finally, when your plugin needs to use OJB, you need to usethis:

166

KEW

org. kuali.rice.ojb. Transacti onManager Fact ory

This provides OJB with the javax.transaction.TransactionManager that was injected into your
JaOjbConfigurer, asin the example above.

Overriding Services with a ResourceLoader

For a service override, you need to define a custom Resourcel oader implementation and configure it in
your workflow.xml plugin configuration file. The org.kuali.rice.resourcel oader.Resourcel. oader interface
defines this relative method:

public Object getService(javax.xmn .nanmespace. QNanme gnane);

When KEW is searching for services, it invokes this method on its plugins Resourcel oader

implementations. The service name

is a quadified name (as indicated by the use of

javax.xml.namespace.QName), but for services being located from the core, service names typically
contain only alocal part and no namespace.

The easiest way to implement a custom ResourceLoader is to create a class that extends from
org.kuali.rice.resour celoader .BaseResour cel. oader and just override the get Ser vice(QName) method.
The BaseResourcel oader provides standard functionality for loading objects from ClassL oaders, among

other things.

For example, if you want to override the User Service, you might implement this Resourceloader:

public class MyResourcelLoader extends BaseResourcelLoader {
publ i ¢ MyResour celLoader () {
super (new QName(" MyResour ceLoader"));

}
@verride

public Object getService(Q\ane serviceNane) {

if ("enUserOptionsService". equal s(serviceNane. get Local Part()) {

/1 return your custominplenentation of org.kuali.rice.kew useroptions. User Opti onsService

} elseif (...) {

}oelseif (...) {

}

return super.get Servi ce(servi ceNane) ;

In the next section, we'll look at some of the services commonly overridden in an institutional plugin

Commonly Overridden Services

In theory,

you can override any service defined

in the org/kuali/workflow/resources/

KewSpringBeans.xml file in the Institutional Plugin. What follows is a list of the most commonly
overridden services:

Table 3.18. Commonly Overridden Services

Service Name

Interface

Description

enUserOptionsService

org.kuali.rice.kew.useroptions.UserOptionsService

Provides User lookup and searching
services

167

KEW

Service Name Interface Description

IdentityHelperService org.kuali.rice.kew.identity.service.ldentityHel perService Interfaces with KIM identity
management services

enEmail Service org.kuali.rice.kew.mail.service.impl.DefaultEmail Service Provides email sending capabilities

enNotificationService org.kuali.rice.ken.service.NotificationService Provides callbacks for notifications

within the system

enEncryptionService org.kuali.rice.core.service.EncryptionService Allows for pluggable encryption
implementations

User Service

The Workflow core uses the UserService to resolve and search for users. The UserService could be as
simpleasastatic set of usersor ascomplex and integrated asauniversity-wide user system. Y our ingtitution
may choose how to implement this, aslong as you provide capabilities for the ID types that you intend to
use. At thevery least, implementations are required for the Wor kflowUser I d and AuthenticationUser | d
types (and their corresponding VO beans). All of the Userld types must be unique across the entire set
of users.

The WorkflowUserld is typically associated with a unique numerical sequence value and the
AuthenticationUser1d istypically the username or network 1D of the user.

The default UserService implementation provides a persistent user store that allows you to create and edit
users through the GUI. It also caches users for improved performance and implements an XML import

for mass user import. Ingtitutions usually override the default user service with an implementation that
integrates with their own user repository.

IdentityHelper Service

The IdentityHelper service helps to interact with the KIM identity management services in the system.
|dentityHelpers are identified in one of two ways:

1. Principalld - A numerical identifier for aKIM principal

2. Group — An object associated with a group of principal users numerical identifier assigned to a
Workgroup

Both of these object variables are implemented in KEW in the I dentityHel perServicelmpl file.

Email Service
The Email serviceis used to send emailsfrom KEW. Y ou can configure the default implementation when
you configure KEW (see KEW Configuration). However, if more custom configuration is needed, then

you can override the service in the plugin.

For example, you could override this service if you need to make a secure and authorized SSL connection
with an SMTP server because of security policies.

Notification Service

The Notification service is responsible for notifying users when they receive Action Itemsin their Action
List.

The default implementation simply sends an email (using the Email Service) to the user according to the
individual user's preferences. A custom implementation might also notify other (external) systems in
addition to sending the email.

168

KEW

Encryption Service
The Encryption service is responsible for encrypting document content.
The default implementation uses DES to encrypt the document content. If the encryption.key
configuration parameter is set as a Base64 encoded value, then the document content is encrypted using

that key. If it is not set, then document content will not be encrypted and will be stored in the database
in plain text.

Plugin Shared Space

All plugins also load certain classes from a shared space. The shared space contains certain classes that
link with certain libraries that might exist in each application or institutional plugin's classloader (such
as OJB and Spring). Current classes that Workflow publishes in the shar ed space are those in the shared
modul e of the Rice project (rice-shar ed-version.jar). Thisisimportant because some of these classeslink
with libraries like Spring or OJB and since the plugin needs its own copy of these libraries, it needs to
ensure that it doesn't retrieve these classes from any classloader but it's own.

KEW Usage of the Kuali Service Bus

General Usage

The Kuali Enterprise Workflow engine makes use of both synchronous service endpoints and
asynchronous messaging features from the Kuali Service Bus.

Most asynchronous processing that KEW does is implemented using asynchronous messaging on the
service bus. Thisincludes:

1. Workflow engine processing

2. Blanket approval orchestration

3. Action processing for actions taken directly from the Action List

4. Re-resolving actions requests resulting from aresponsibility change
5. Sending email reminders

6. Distributed cache flush notifications

In each of these cases, there exists a service that processes asynchronous messages and performs the
appropriate actions for each of these functions.

In terms of synchronous services, Kuali Enterprise Workflow publishes two different types of services.
Oneis used for performing workflow document actions (such as creating, approving, disapproving, etc.).
The other is used to perform various query or read-only operations against the workflow system.

Implications of using “Synchronous” KSB messaging
with KEW

For general information on synchronous messaging and its implications in the KSB, please read
“Implications of synchronous vs. asynchronous Message Deliver” in the KSB technical reference guide.

169

KEW

In terms of Kuali Enterprise Workflow, the usage of synchronous messing means that operations like
workflow engine processing will happen immediately and synchronousdly at the timeit’ s invoked.

Themainimplication here besideswhat islisted in the KSB documentation isthat, since message exception
handling isn’t implemented, exception routing does not work when using synchronous KSB messaging.

This means that if this messaging model is being used in a batch job, or similar type of program, routing
exceptions will need to be manually caught. If it’s desired to place a document into exception status from
here, there are methods on the KEW APIsto do this manually.

170

Chapter 4. KIM

Terminology

Principal

A principal represents an entity that can authenticate. In essence, you can think of a principal as an
"account” or as an entity's authentication credentials. A principal has an ID that is used to uniquely
identify it. It al'so has aname that represents the principal's username and is typically what is entered when
authenticating. All principals are associated with one and only one entity.

Entity

An entity represents a person or system. Additionally, other "types' of entities can be defined in KIM.
Information like name, phone number, etc. is associated with an entity. While an entity will typically have
asingle principal associated withit, it is possible for an entity to have more than one principal or even no
principals at al (in the case where the entity does not actually authenticate).

Entities have numerous attributes associated with them, including:
* Names

* Addresses

» Phone Numbers

» Email Addresses

» Entity Type

* Affiliations

» Employment Information

» Externa Identifiers

* Privacy Preferences

Group

A group is a collection of principals. Y ou can create a group using both direct principal assignment and
nested group membership. All groupsare uniquely identified by anamespace code plusaname. A principal
or group is a "member" of a group if it is either directly assigned to the group or indirectly assigned
(through a nested group membership). A principa or group isa"direct" member of another group only if
it isdirectly assigned as a member of the group, and not through a nested group assignment.

Permission

A permission is the ability to perform an action. All permissions have a permission template. Both
permissions and permission templates are uniquely identified by a namespace code plus a name. The
permission template definesthe coarse-grai ned permission and specifieswhat additional permission details

171

KIM

need to be collected on permissions that use that template. For example, a permission template might have
aname of "Initiate Document,” which requires a permission detail specifying the document type that can
be initiated. A permission created from the "Initiate Document” template would define the name of the
specific Document Type that can be initiated as a permission detail.

TheisAuthorized and isAuthorizedByTemplateName operations on the Per missionSer vice are used to
execute authorization checksfor aprincipal against apermission. Permissions are always assigned to roles
(never directly to aprincipal or group). A particular principal will be authorized for a given permission if
the principal is assigned to arole that has been granted the permission.

Responsibility

Role

A responsibility representsan action that aprincipal isrequested to take. Thisisused for defining workflow
actions (such as approve, acknowledge, FY 1) for which the principal is responsible. Responsibilities form
the basis of the workflow engine routing process.

A responsibility is very similar to a permission in a couple of ways. First, responsibilities are always
granted to arole, never assigned directly to aprincipal or group. Furthermore, similar to permissions, arole
has a responsibility template. The responsibility template specifies what additional responsibility details
need to be defined when the responsibility is created.

You grant permissions and responsibilities to roles. Roles have a membership consisting of principals,
groups, and/or other roles. As a member of a role, the associated principal has all permissions and
responsibilities that have been granted to that role.

You can specify a qualification to any membership assignment on the role, which is extra information
about that particular member of the role. For example, a person may have the role of "Dean" but that
can be further qualified by the school they are the dean of, such as "Computer Science." Y ou can pass
qualifications as part of authorization checks to restrict the subset of roles to check.

Reference Information

There are several collections of reference information managed within KIM:
» Addresstype

» Affiliation type

» Citizenship status

» Email type

» Employment status

» Employment type

 Entity name type

* Entity type

» External identifier type

» Phone number type

172

KIM

Configuration Parameters

Table4.1. KIM Configuration Parameters

Configuration Parameter

Description

Default value

kim.mode

The mode that KIM will run in; choices are
"LOCAL", "EMBEDDED", or "REMOTE".

LOCAL

kim.soapExposedService.jaxws.security

Determines if KIM services published on the
service bus will be secured

true

kim.url

Services

The base URL of KIM services and pages.

H application.url} /kim

KIM provides several service APIswith which client applications should interact. These are:

 org.kuali.rice.kim.api.role.RoleService

 org.kuali.rice.kim.api.group.GroupService

» org.kuali.rice.kim.api.identity.ldentityService

 org.kuali.rice.kim.permission.Per missionService

» org.kuali.rice.kim.responsibility.ResponsibilityService

 org.kuali.ricekim.service.PersonService

These services act as client-side facades to the underlying KIM data and provide important features such

as caching.

In the next few sections we will look in-depth at these services. However, for more details, please see the
javadocs for these services and the services they delegate to.

Using the Services

All KIM clients should

retrieve service instances using the KIM service locator

class

KimApiServicel ocator. This class contains static methods to retrieve the appropriate Spring bean for the
service. An example of retrieving the I dentityService serviceis:

IdentityService idnBvc = Ki mApi Servi ceLocator. getldentityService();

Y ou would use a similar mechanism for retrieving references to the other KIM services.

ldentityService

The I dentityService is one of the services the client applications will interact with most frequently.

The I dentitySer vice contains service methods that allow for the retrieval, creation, and upating of entity

information.

Additionally, it also provides caching for the retrieval methodsto help increase the performance of service

callsfor the client application.

173

KIM

Retrieving Principal Information

To retrieve the principal 1D for a user, use the getPrincipal ByPrincipalName method:

Principal info = identityService.getPrincipal ByPrincipal Name(princi pal Nane) ;

Note that KIM, by default, stores principa names in lower case; the PRNCPL_NM column of
KRIM_PRNCPL_T must store valuesin lower case. If your ingtitution’ s existing identity systems do not
handle lowercase principal hames, then there are three points to override that setting:

1.

org.kuali.ricekim.impl.identity.ldentityServicelmpl method getPrincipalByPrincipalName
lowercases the principal name sent in; depending on how principals were integrated
into the system it may not need to. Note that IdentityServicelmpl method
getPrincipal ByPrincipalNameAndPassword does not lowercase the principal name automatically.

. org.kuali.ricekim.lookup.PersonL ookableHelper Servicelmpl method getSearchResults also

automatically lowercases any principal hame sent in; that behavior may also need to be changed

Finally, the file {Rice home}/impl/src/main/resources/org/kuali/rice/kim/bo/datadictionary/
KimBaseBeans.xml hold the datadictionary attribute templatesfor principal name asKimBaseBeans-
principalName. The forceUppercase attribute is set to false by default, but perhaps should be
overridden to true, to force uppercase principal names.

Once these three points have been overridden, you'll be able to use uppercase principal names.

Retrieving Entity Default Information

To retrieve the default information for an entity, use one of the getEntityDefaultlnfo methods:

EntityDefaul t

EntityDef aul t

infoByEntityld = identityService.getEntityDefault(entityld);

infoByPrincipalld = identityService.getEntityDefaultByPrincipalld(principalld);

Retrieving Reference Information

To retrieve information about a type or status code, use the getter for that type.

TypesinKIM are:

Addresstype
Affiliation type
Citizenship status
Email type
Employment status
Employment type
Entity name type

Entity type

174

KIM

» External identifier type
* Phonetype

For instance, to retrieve information on an address type code:

CodedAttribute addressType = identityService. get AddressType(code);

GroupService

Retrieving Group Membership Information

To retrieve a list of al groups in which a particular user is a member, use the getGroupsFor Principal
method:

Li st <Group> groups = groupServi ce. get G oupsByPrinci pal | d(principalld);

To determine if auser isamember of a particular group, use the isM ember OfGroup method:

if (groupService.isMenberOf Group(principalld, groupld)) {
/1 Do sonething speci al
}

To get alist of all members of agroup, use the getM ember Principall ds method:

Li st<String> nenbers = groupService. get Menber Pri nci pal | ds(groupl d);

Retrieving Group Information

To retrieve information about a group, use the getGroup or getGroupByNamespaceCodeAndName
methods, depending on whether you know the group’s ID or hame:

G oup info = groupService. get G oup(groupld);
G oup info = groupService. get G oupByNanespaceCodeAndNane(nanmespaceCode, groupNane);
PermissionService

Checking Permission

To determine if a user has been granted a permission, without considering role qualifications, use the
hasPer mission method:

if (perm ssionService. hasPerm ssion(principalld, namespaceCode, perni ssionName)) {
/1 Do the action
}

To determine if auser has been granted a permission, use the isAuthorized method:

if (perm ssionService.isAuthorized(principalld, nanespaceCode, perm ssionNarme, qualification)) {

175

KIM

/1 Do the action

Retrieving Permission Information

To retrieve a list of principals granted a permission (including any delegates), use the
getPer missionAssignees method:

Li st <Assi gnee> peopl e = perni ssi onServi ce. get Per m ssi onAssi gnees(nanespaceCode,
perm ssi onNane, qualification);

Toretrieve alist of permissions granted to a principal, use the getAuthorizedPer missions method:

Li st <Per m ssi on> perns = permn ssi onServi ce. get Aut hori zedPer ni ssi ons(princi pal I d,
nanespaceCode, perni ssionNane, qualification);

ResponsibilityService

Checking Responsibility

To determine if auser has aresponsibility, use the hasResponsibility method:

if (responsibilityService.hasResponsibility(principalld, namespaceCode, responsibilityNanme, qualification)) {
/1 Do the action

Retrieving Responsibility Information

Toretrieve alist of roles associated with aresponsibility, use the getRolel dsFor Responsibility method:

Li st<String> rol elds = responsi bilityService. getRol el dsFor Responsi bility(responsibilityld);

AuthenticationService

Checking Authentication

The AuthenticationService is somewhat different than the other services. The AuthenticationServiceis
not typically deployed remotely (unlike the I dentityService, GroupService, etc.).

Instead, the role of this service is smply to extract the authenticated user’s principal name from the
HttpServietRequest and inform the client-side development framework (typically, the KNS) about
this information. KIM itself does not implement full authentication services, but rather relies on other
implementations (such as CAS or Shibboleth) to provide this functionality.

The client application can then establish a local session to store the information about the principal
that authenticated. This will typically be used in subsequent calls to the KIM services, such as making
authorization checks for the principal.

The reference implementation of the AuthenticationService simply extracts the REMOTE_USER
parameter from the request and presents that as the principal name. This is often sufficient for many

176

KIM

authentication providers that are available. However, if necessary this reference implementation can be
overridden.

Thereis only a single method on the | dentityM anagement Ser vice related to authentication.

String principal Name = authenticati onService. getPrinci pal Name(request);

RoleService

In KIM, Roles are used as a way to associate principals, groups and other roles with permissions and
responsibilities. It is therefore not a common or recommended practice to query for whether or not a
principal isamember of a Role for the purposes of logic in aclient application. It is recommended to use
permissions and the isAuthorized check to perform this sort of logic.

However, in some cases, querying for thisinformation may be desirable. Or, in even more common cases,
one may want to use an API to add or remove members from a Role. These kinds of operations are the
responsibility of the RoleM anagementService. Like the | dentityM anagementService, this serviceisa
facade which provides caching and del egates to underlying services. Specifically, it delegates to:

* RoleService

Checking Role Assignment

To determineif aroleisassigned to a principal, use the principalHasRole method:

if (roleService.principal HasRol e(principalld, rolelds, qualifications)) {
/1 Do sonet hi ng
}

Retrieving Role Information

To retrieve information on arole, use the getRole or getRoleByName method:

Rol e info
Rol e info

rol eServi ce. get Rol e(rol el d);
rol eServi ce. get Rol eByNanespaceCodeAndNane(nanespaceCode, rol eNane);

Toretrieve thelist of principal IDs assighed to arole, use the getRoleM ember Principal | ds method:

Col | ection<String> principals = rol eService. get Rol eMenber Pri nci pal | ds(namespaceCode, rol eName, qualifications);

Updating Role Membership

To assign aprincipal to arole, use the assignPrincipal T oRole method:

rol eServi ce. assi gnPri nci pal ToRol e(princi pal 1 d, namespaceCode, rol eNane, qualifications);

To remove aprincipal from arole, use the removePrincipal FromRole method:

rol eService. renovePrinci pal FronRol e(princi pal I d, namespaceCode, rol eNanme, qualifications);

177

KIM

Person Service

The PersonServiceis used to aggregate Entity and Principal datainto adatastructure called aPerson. A
person is essentially aflattened collection of the various attributes on an entity (name, address, principal
id, principa name, etc). Thisisintended to allow client applications to more easily interact with the data
in the underlying KIM data model for entities and principals.

Retrieving Personal Information

To retrieve information on a person by principal |D, use the getPer son method:

Person person = per Svc. get Person(principal ld);

To retrieve information on a person by principal name, use the getPer sonByPrincipalName method:

Person person = per Svc. get Per sonByPri nci pal Name(pri nci pal Nane) ;

In order to search for people by a given set of criteriayou can use the findPeople method:

Li st <Per son> peopl e = perSvc. findPeopl e(criteria);

In this case, criteriais ajava.util.Map<String, String> which contains key-value pairs. The key is the
name of the Person property to search on, while the value is the value to search for.

KimTypeService Callbacks
Implementing Custom KIM Types

KIM uses the concept of "types' to define additiona attributes for it's various objects (such as groups,
roles, permissions, etc.) and to affect their behavior.

All custom type services must implement a sub-interface of
org. kuali.rice.kimfranmework.type. Ki nilypeSer vi ce based on thekind of custom type
being created and the KIM objects it will be related to. The current type services supported by KIM are
asfollows:

* GroupTypeService

Rol eTypeSer vi ce

» Perm ssi onTypeService

* Responsi bilityTypeService

e Del egati onTypeService

In addition to the interfaces provided above, KIM provides a standard set of implementations of each of

these which can be extended by your application in order to inherit standard default behavior (including
integration with the KNS Data Dictionary for reading and defining custom attributes). More detailed

178

KIM

information about these base classes can be found in the KIM javadocs. Y our custom type service class
should extend the appropriate subclass and only override the methods necessary to implement your custom
behavior. Use the methods in these classes as the basis for your custom code.

For example, you might define a custom Perm ssionTypeService by extending
org. kual i .rice. kns. ki m perm ssi on. Perm ssi onTypeSer vi ceBase asfollows:

import org. kuali.rice.kns. ki mpernission. Perm ssi onTypeSer vi ceBase;
public class MyPerm ssionTypeService extends Perm ssi onTypeServi ceBase {

@verride
prot ected bool ean perfornivatch(Map<String, String> inputMap, Map<String, String> storedMVap) {
if (some_condition_is_true) {
/1 perform custom nat ching | ogic
} else {
return super. performvat ch(input Map, storedMap); // execute the default logic frombase class

}

Detailed documentation on the specific methods which can be implemented on Ki nirypeSer vi ce and
it's various sub-interfaces can be found in the KIM javadocs.

Configuring Custom KIM Types

Groups, Roles, Permissions, Responsibilities, and Delegations can al have custom typesin KIM. These
custom types can be mapped back to the KIM type services that you create. In order to do this, there are
afew things you must do:

* Register the KIM Type which pointsto your custom type service
» Update any of the "typed" KIM objects that you want to point to your new KIM type

» Publish your KIM type service so that it is available on the Kuali Service Bus and the Rice resource
loader framework

Currently, there is no way to register a new KIM Type without updating the KIM database using
SQL. Fortunately, this is a fairly simple thing to do. The database table storing KIM Types is hamed
KRI M_TYP_T. An example of how to insert anew KIM Type into thistablein Oracleis below:

I NSERT | NTO KRIM TYP_T (
KIM_TYP_I D,
NVSPC_CD,
NM
SRVC_NM
OBJ_I D)

VALUES (
KRI M_TYP_I D_S. NEXTVAL,
' MyNanmespace' ,
' MyPer m ssi onType',
"{http://nyapp. nyu. edu} myPer m ssi onTypeServi ce',
SYS QU D())

One of the most important things to note about this is the service name (SRVC_NM) column. As we
can see in the example above, for this KIM type we are linking it to a service named { htt p://
nyapp. myu. edu} myPer m ssi onTypeSer vi ce. Thisis how KIM will look up your custom type

179

KIM

service whenever it needs to load and invokeit.! It does this through the Rice resource |oading framework
which includes locally available services defined in Spring as well as services published on the Kuali
Service Bus. For KIM type services, it's generally required to deploy them onto the KSB because the user
interface components of KIM will use these when determining which custom attributes may need to be
displayed and collected on it's various screens.

More information on how to publish these services can be found in the next section.

Once the KIM type has been registered, it will be assigned an ID, thisis the value of the KI M_TYP_I D
column after the record has been inserted. This ID can then be used to associate the type with the
appropriate and desired data elementsin KIM.

For exampl e, to associate the custom Per ni ssi onTypeSer vi ce you created earlier with one of your
permission templates, you can execute the following SQL (assuming the ID of your new KIM type is
10000):

UPDATE KRI M_PERM TMPL_T SET KIMTYP_ID = ' 10000'
VWHERE NVBPC _CD = ' MyNanespace' AND NM = ' MyPer ni ssi onTenpl at e’

Oncethisis complete, any existing or new permissions you create with thistemplate will use your custom
KIM type and it's associated type service.

Publishing Custom KIM Types to the Kuali Service Bus

As mentioned previously, KIM type services should be published onto the Kuali Service Bus
in order to allow the KIM user interface functionality (which is typically deployed on the Rice
Standalone Server) to access the services remotely. Since KIM type services are considered
"callback" services because of the fact that the standalone server makes callbacks to them, the
org. kuali.rice.ksb. api . bus. support. Cal | backSer vi ceExport er should be used.

Information on how to export and publish a callback service can be found in the section called
“ CallbackServiceExporter”.

Assuming you have already wired up your custom PermissionTypeService implementation in your Spring
file under abean id of "myPermissionTypeService", an example Spring configuration which will publish
the service would look like the following:

<bean i d="nmyPerm ssi onTypeServi ce. exporter"
class="org. kual i .rice.ksb. api . bus. support. Cal | backServi ceExporter"
p: cal | backSer vi ce-ref ="nyPer m ssi onTypeSer vi ce"
p: servi ceNanmeSpaceURI ="htt p: // myapp. nyu. edu”
p: | ocal Servi ceNanme="nnyPer ni ssi onTypeSer vi ce"
p: servi cel nterface="org. kuali.rice.kimframework. perm ssion. Perni ssi onTypeService"/>

KIM Database Tables

Table Name Prefixes

The KIM tables in the Rice database are prefixed by KRIM, which stands for Kuali Rice Identity
M anagement.

Ywhile the service name here is a single string value, it will be parsed into a j avax. xnl . namespace. QNane object using that classes
val uef (...) method. This means that, for our example of { htt p: // myapp. myu. edu} myPer m ssi onTypeSer vi ce, it will get
parsed into a QName which isequivalent tonew QName(" http:// myapp. myu. edu”, "nyPerm ssi onTypeService").

180

KIM

Unmapped LAST _UPDT DT Columns

Many of the KIM tables have an additional column called LAST_UPDTD_DT (of type DATE in Oracle,
DATETIME in MySQL) that isn't mapped at the ORM layer. Using this column is entirely optional, and
it is unmapped by design. Its purpose is to aid implementers with tracking changes, and with doing data
synchronization or extracts against KIM tables. The following sample PL/SQL script (Oracle only) adds
to al the tables that contain LAST_UPDATED_DT an insert and update trigger to populate it:

DECLARE
CURSCR tables IS
SELECT t abl e_nane
FROM user _t ab_col ums
VWHERE col umm_nane = ' LAST_UPDATE_DT'
AND dat a_t ype LIKE ' DATE%

ORDER BY 1;
BEQ N
FOR rec I N tables LOOP
EXECUTE | MVEDI ATE ' CREATE OR REPLACE TRI GGER ' || LONER(SUBSTR(rec.table_name, 1, 27))||'_tr BEFORE

I NSERT OR UPDATE ON '
| | LOAER(rec.table_name)||' FOR EACH ROWBEG N : new. | ast_update_ts : = SYSDATE; END;';

END LOOP;

END;
/

181

Chapter 5. KNS
KNS Configuration Guide

The Kuali Nervous System (KNS) is, primarily, an application devel opment framework. Each Rice client
application can use the KNSto construct various screens and build pieces of the application with the built-
in components and services that the KNS provides.

Tothisend, configuration of the KNSin aclient application can be accomplished by following these steps:
1. Creation of database tablesin the client application’ s database that the KNS requires to function.

2. Loading of the KNSConfigurer inside of the RiceConfigurer Spring bean. Thisincludes configuring
connections to the databases.

3. Loading of the KNS struts module for the various Ul components that the KNS providesin addition to
any filters or servlets that need to be defined in the client application’s web.xml.

4. Creation of a ModuleConfiguration for the application which instructs the KNS about which Data
Dictionary files and OJB repository mapping files to load.

5. Customization of the various configuration parameters that the KNS supports.

Database Creation

In order for the KNS services to work, many of them require the ability to access special tables within
the client application’s database. These tables are used to store various pieces of data; from notes and
attachments on documents to maintenance document data.and much more.

These tables are included as part of either the demo-client-dataset or the bootstrap-client-dataset. These
datasets are provided with the Kuali Rice binary distributions and instructions on how to install them can
be found in the Installation Guide.

Note

It'simportant to note that these tables should be installed in the client application’ s database, and
not the Rice standal one server database.

KNSConfigurer and RiceConfigurer

As with the other modules, a KNSConfigurer needs to be injected into the RiceConfigurer in
order to instruct Rice to initialize the KNS module. The main purpose of this is to alow for the
applicationDataSour ce and the server DataSour ce to be specified.

The applicationDataSour ce should point to the client application’s database. That database should
contain the tables from one of the client datasets.

The server DataSour ce should point to the database of the Rice standalone server. Thisisused for allowing
access to the various KNS central services that use data in the Rice server database. This includes such
data as System Parameters, Namespaces, Campuses, States and Countries.

182

http://db.apache.org/ojb/

KNS

Here is an example of Spring configuration for aKNS client:

<bean id="rice" class="org.kuali.rice.core.config.R ceConfigurer">

<property name="knsConfi gurer">
<bean cl ass="org. kual i.rice.kns. confi g. KNSConfi gurer"

<property name="applicati onDat aSource” ref="applicati onDataSource”/>
<property name="server Dat aSource” ref="riceServer Dat aSource”/>

</ bean>
</ property>

</ bean>

Alternatively, you can just set the dataSour ce and ser ver DataSour ce on the RiceConfigurer itself and
that will be used for the KNS applicationDataSour ce and ser ver DataSour ce respectively. Thisis useful
when using the same database for all the different modules of Rice.

The KNSConfigurer supports some other properties as well. See the javadocs of KNSConfigurer for
more information.

Configuring the KNS Web Application Components

Loading the KNS Struts Modules

<servl et>

The web application framework of the KNS is built on top of the Apache Struts framework. As aresult of
this, the web application components of the KNS are loaded into the client application as a struts module.
The struts modul e and various pieces of the Rice web content can be found in the binary distribution. They
should be copied into the root directory of your web application.

A special implementation of the Struts ActionServlet is provided to help with the loading of the struts
modules. It can be configured in the application’s web.xml as in the following example:

<servl et - name>act i on</ ser vl et - nane>
<servl et-class>org. kuali.rice.kns.web.struts. action. Kual i Acti onServl et</servlet-class>
<init-paran»
<par am nane>conf i g</ par am nane>
<par am val ue>/ VEB- | NF/ st rut s- confi g. xm </ par am val ue>
</init-paranm
<l oad- on- st art up>0</ | oad- on- st artup>

</ servl et>

Notice the init-param above points to a Struts configuration file. This file is intended to be the struts
configuration file for the client application. It's used by the KNS for doing redirects back to the main
application and is also used for adding KNS-based screens within the client application. Specifically, this
is where action mappings go if using the transactional document framework of the KNS.

Thereisan examplefilein the distributions under config/examples/str uts-config.example.xml. Thiswill
need to be renamed to struts-config.xml and copied to your web application’s WEB-I NF directory. It can
then be loaded using the KualiActionServlet as seen in the example above.

In this example file you will see a reference to a message resource properties file. As is the case
with a standard Struts-based application, the resource properties file is used to load text strings for
internationalization purposes. The KNS framework requires that at least the app.title property to be set,
asin the following example:

183

http://struts.apache.org/1.x/

KNS

app. title=Reci pe Sanpl e Application

Configuring KNS Servlet Context Listeners

The KNS framework requires a couple of ServletContextListener classes to be configured in the
application’ s web.xml. These include:

» org.kuali.rice.knsweb.listener.JstIConstantsl nitListener
» org.kuali.rice.knsweb.listener .KualiHttpSessionL istener

These should be included in the web.xml after any listeners or servlets that might be used to actually
initialize the Spring context that loads Rice.

Here is an example of what this configuration might look like in web.xml:

<listener>
<l i stener-cl ass>ny. app. package. Li st ener That Start sRi ce</|i st ener-cl ass>

</listener>

<l istener>
<l istener-class>org. kuali.rice.kns.web.|istener.Jstl ConstantslnitListener</listener-class>

</listener>

<listener>
<listener-class>org. kuali.rice.kns.web.|istener.KualiHttpSessionListener</listener-class>
</listener>

Configuring KNS Message Resources

Asof Riceversion 1.0.1.1, messages areloaded through the new Kuali PropertyM essageResourcesFactory.
This class is a factory of KualiPropertyMessageResources, which takes in a comma delimited list
of .propertiesfiles.

Thisisset up in the struts-config.xml files near the end of thefile;

<message-resources factory="org. kuali.rice.kns.web.struts.action. Kual i PropertyMessageResour ceFact ory”
parameter="" />

When the parameter above is set to an empty string, Rice uses the default value of properties files. The
default value is set by the rice.struts.message.resources property the common-config-defaultsxml file.
Thisisthe default setting:

<param name="ri ce.struts. message. r esour ces” >KR-
Appl i cati onResour ces, org. kual i . rice. kew. Appl i cati onResour ces, org. kual i . rice. ksb. nessagi ng. Appl i cati onResour ces, KI M
Appl i cati onResources” />

This can be overridden in rice-config.xml. This value should be in a comma delimited format. The
list of filesis loaded from left to right, with any duplicated properties being overridden in that order.
Therefore, in the list default list if a property key in KR-ApplicationResources was duplicated in KIM-
ApplicationResources, the value used would be the one set in KIM-ApplicationResources.

184

KNS

Configuring AJAX Support

The KNS uses DWR to provide AJAX support. In order to enable this, the
org.kuali.ricekns.web.servlet.K ualiDWRServlet must be configured in the application’s web.xml as
follows:

<servl et>
<servl et - name>dw - i nvoker </ ser vl et - name>
<servl et-cl ass>org. kual i . ri ce. kns. web. servl et. Kual i DWRSer vl et </ servl et - cl ass>
<init-paranp
<par am name>debug</ par am name>
<par am val ue>f al se</ par am val ue>
</init-paranm>
<init-paranmp
<par am name>spri ngpat h</ par am name>
<par am val ue>t rue</ par am val ue>
</init-paranm>
<l oad- on- st art up>1</| oad- on- st art up>
</ servlet>

<servl et - mappi ng>
<servl et - name>dw - i nvoker </ ser vl et - name>
<url-pattern>/dw/*</url-pattern>

</ servl et - mappi ng>

Module Configuration — Loading Data Dictionary and
OJB Files

One of the most important pieces of the KNS framework isthe Data Dictionary. It' s used to define various
pieces of metadata about business objects, maintenance documents, lookups, inquiries and more. These
Data Dictionary files are authored in XML and are loaded using a M oduleConfiguration. Additionally,
business objectsin the KNS are mapped to the database using an object relational mapping library called
Apache OJB. The M oduleConfiguration is also used to load those mapping files.

A ModuleConfiguration is a bean wired in Spring XML that instructs the KNS to |oad various pieces
of configuration for a particular module. A client application could create a single module or multiple
modul es, depending on how it isorganized. Thisconfiguration allowsfor the specification of thefollowing:

» The modul€ s namespace

» The DataDictionary filesto load

e The OJB repository filesto load

» The package prefix of business objectsin this module
» Externalizable business object definitions

Here is an example of what this configuration might look like:

<bean i d="sanpl eAppMdul eConfi gurati on"
class="org. kual i .rice. kns. bo. Modul eConfi guration">
<property name="nanmespaceCode" val ue="tv"/>
<property name="initializeDataDi ctionary" val ue="true"/>
<property nanme="dat aDi cti onaryPackages" >

<list>
<val ue>cl asspat h: edu/ sanpl eu/ travel / dat adi cti onary</ val ue>
</list>

185

http://directwebremoting.org/dwr/index.html
http://db.apache.org/ojb/

KNS

</ property>

<property nanme="dat abaseRepositoryFil ePat hs">

<list>

<val ue>QJB-r eposi t ory- sanpl eapp. xm </ val ue>

</list>

</ property>

<property name="packagePrefixes">

<list>

<val ue>edu. sanpl eu. travel </ val ue>

</list>

</ property>

</ bean>

When the module is initialized by the KNS, it will load all of the Data Dictionary files into the Data
Dictionary service. Additionally, all OJB files will be loaded and merged into the main OJB repository.
The packagePr efixes are used to identify which business objects this module is responsible for.

There are more configuration options on the M oduleConfiguration. See the javadocs on this class for

more information.

KNS Configuration Parameters

The KNS supports numerous configuration parametersthat can be set in the Rice configuration file. Below
isalist of these with descriptions and defaults.

Table5.1. KNS Configuration Parameters

Property

Description

Default

application.url

Base URL of the application.
Example: http://local host/kr-dev

¥ appserver.url}/${ app.context.name}

attachments.directory

Directory in which to store
attachments

Jtmp/${ environment} /attachments

attachments.pending.directory

Directory in which to store
attachments on a document or object
which have not yet been persisted

Jtmp/${ environment} /attachments/pending

classpath.resource.prefix

The location, in the classpath, of
methods that may be called by DWR.

/WEB-INF/classes/

externalizable.help.url

Base URL at which web-based help
content will be located

/¥{ app.context.name} /kr/static/help/

externalizable.images.url

Base URL at which images are located

/$¥{ app.context.name} /kr/static/images/

kr.externalizable.images.url

Base URL at which images that are
part of the standard Kuali Rice image
set are stored

/${ app.context.name} /kr/static/images/

kr.url

Base URL of the KNS struts module.
Includes the various built-in GUI
components such aslookups, inquiries,
etc.

$ application.url} /kr

production.environment.code

The environment code that will be
used to identify this application as a
“production” instance. Certain features
are turned off in non-production
instances (email, for example)

PRD

mail.relay.server

Name of the SMTP server to use for
sending emails from the KNS

kr.incident.mailing.list

The email address where exception
and incident reports should be sent

javascript.files A comma-separated list of javascript | See impl/src/main/resources/resourcess META-
files to load on every KNS-based web | INF/common-config-defaults.xml in the source
page distribution

cssfiles A comma-separated list of cssfilesto| See impl/src/main/resources/resources META-

load on every KNS-based web page

INF/common-config-defaults.xml in the source
distribution

186

KNS

Property

Description

Default

enable.nonproduction.data.unmasking

If the current application is running
in an non-production environment,
this determines if al fields should
be unmasked in the Nervous System,
even if the field would otherwise be
masked.

false

kns.cache.parameter.max.size

The maximum number of parameters
that can be stored in the kns parameter
cache

kns.cache.parameter.max.age.seconds

The maximum age (in seconds) of
entriesin the parameter cache

kns.cache.nonDatabaseComponent.max.size

The maximum size of the cache that
is used to store parameter components
that don’t come from the database (i.e.
are loaded from the Data Dictionary
and other locations)

kns.cache.nonDatabaseComponent.max.age.seconds

The maximum ago (in seconds) of
entries in the parameter non-database
component cache

3600

session.document.cache.size

The max size of the cache used to store
document sessions

portal javascript.files

A list of Javascript files to be included
intthe"portal”, ie the frame around the
application pages.

portal.cssfiles

A list of CSS files to be used in
the "portal", ie the frame around the
application pages.

rice-portal/css/portal .css

rice kns.struts.config.files

The struts-config.xml configuration
file that the KNS portion of the Rice
application will use.

/kr/WEB-INF/struts-config.xml

rice.kns.illegal BusinessObjectsForSave

A comma-separated list of business
objects that the KNS should not be
allowed to save

rice.kns.illegal BusinessObj ectsForSave.applyCheck

If set to true, the check for illegal
business objects to save will be
performed, if false, it will not

true

encryption.key

The DES key to use for encrypting
data elements that are configured for
encryption in the KNS

rice.struts.message.resources

The key used to |oad message property
files. The value should be a comma
delimited list or propertiesfiles.

KNS Business Object Framework

KR-ApplicationResources,
org.kuali.rice.kew.ApplicationResources,
org.kuali.rice.ksh.messaging.A pplicationResources,
KIM-ApplicationResources

Business Object Database Table Definition

Business object instances are typically java object representations of rows of a database table.

The addition of following columns to each database table is strongly suggested:

e Object ID

* Version number

The Object ID isused asaglobally uniqueidentifier (or GUID) of each row acrossall databasetables. That
is, every row in every table should have adifferent Object ID value. It istypically definedasaVARCHAR
field of 36 characters, and should be named "OBJ _ID" in the database. A unique constraint should be
applied to the object ID column, but must NOT be part of the primary key. The KNS system will assume

that each row has a unique value.

187

KNS

The object ID value is automatically stored by the framework and/or the database layer.

KFS/Rice uses optimistic locking to provide concurrency control. Optimistic locking requires the use of
a version number field, named "VER_NBR". On Oracle, the field is defined as a NUMBER(8,0). On
MySQL, thefield is defined asa DECIMAL(8). This column should NOT be part of the primary key.

About optimistic locking

Optimistic locking helps to prevent updates to stale data and consists of two steps:

1

2.

Retrieval of arow from a database, including the value of the version number column

Updating/del eting a row from the database with the same primary key and version number criteria. If
updating the table, the version number will be incremented by one.

The following series of steps demonstrates how optimistic locking works:

1

2.

User A retrievesthe row for chart code "BL". The row has version number of 3.

User A performs an update of the "BL" record. The SQL query that updates the record would
read something like "UPDATE CA_CHART_T SET <some updates>, VER_NBR = 4 WHERE
FIN_COA_CD ="BL" and VER_NBR = 3. (The "4" refersto the incremented version number.)

User B retrieves the row for chart code "BL". The version number is now 4.

User B performs an update of the "BL" record. The SQL query that updates the record would
read something like "UPDATE CA_CHART_T SET <some updates>, VER_NBR = 5 WHERE
FIN_COA_CD ="BL" and VER_NBR =4. (The "5" refers to the incremented version number.)

The following series of steps demonstrates how optimistic locking prevents concurrency problems.

1
2.

User A retrieves the row for chart code "BL". The row has version number of 3.

User B retrieves the row for chart code "BL". Like user A, the version number is 3.

. User A performs a update of the "BL" record. The SQL query that updates the record would

read something like "UPDATE CA_CHART_T SET <some updates>, VER_NBR = 4 WHERE
FIN_COA_CD ="BL" and VER_NBR = 3. (The"4" refersto the incremented version number.)

. User B performs a update of the "BL" record. The SQL query that updates the record would read

something like what User A executed above (notice the version numbers). However, the previous step
already updated the version number to 4 from 3, so this update does nothing (i.e. update row count =
0) because it was trying to update the BL chart with a version number of 3. The system detects the 0
update row count, and throws an OptimisticL ockingException. This exception indicates that the system
tried to update stale data.

Business Object Database Mapping

The default mapping library used by the KNS for this release is OJB from Apache. More information can
be found on the OJB website: http://db.apache.org/ojb/.

Purpose of OJB mappings

OJB repository files map the following information:

1.

2.

The BusinessObject (BO) mapped to a given database table

The getter/setter method in the BO mapped to a given database column

188

http://db.apache.org/ojb/

KNS

3. Thefields(s) comprising foreign keys between a business object and its reference(s)
OJB documentation

Currently, OJB isused asthe underlying persistence layer. It converts database rowsinto java objects upon
retrieval, and vice versa upon updates/deletes. This section assumes that the reader is familiar with the
basic mapping constructs/principles described on these pages:

« http://db.apache.org/ojb/docu/gui des/repository.html#cl ass-descriptor-N104E3

« http://db.apache.org/ojb/docu/gui des/repository.html#fiel d-descriptor-N105C6

« http://db.apache.org/ojb/docu/guides/repository .html#fiel d-descriptor-N105C6

« http://db.apache.org/ojb/docu/guides/repository.html#coll ection-descriptor-N10770
« http://db.apache.org/ojb/docu/guides/repository.html#foreignkey

« http://db.apache.org/ojb/docu/guides/repository.html#inverse-foreignkey

« http://db.apache.org/ojb/docu/guides/basi c-technique.html
OJB field-level conversions

OJB provides a way to convert data before they are persisted to and retrieved
from the database. This is accomplished by specifying a class that implements
org.apache.ojb.broker.access ayer.conversions.FieldConversion in the <field-descriptor> element.

The following are the more often used convertersin KFS/Rice:

« org.kuali.core.util.OjbCharBooleanConversion: since boolean flags are typically stored as "Y" or
"N" (i.e. strings) in the database but represented as booleans within business objects, this converter
automatically allows converts between the string and the boolean representation

* org.kuali.core.util.OjbKuaiEncryptDecryptFieldConversion: provides seamless encryption of values
when persisting, and decryption when retrieving from the database. Beware that the business object
itself holds an unencrypted value, and as such, care should be taken to ensure that unencrypted sensitive
data are not exposed to unauthorized parties.

Both OJB and the KNS offer a number of FieldConversion implementations beyond these two for usein
client applications.

Example converter declaration for a sample Business Object

<fi el d-descriptor name="bankAccount Nor" col utm="BNK_ACCT_NBR' j dbc-type="VARCHAR'
conversi on="org. kual i . core. util.Q bKual i Encrypt Decrypt Fi el dConver si on"/ >

When to use OJB vs. data dictionary relationships

OJB relationships should be used to define relationshi ps between tables that are guaranteed to exist within
the same database.

For example, assume a sample Business Object class “Bank”. The Bank class contains a BankType
reference object. Typically a BankType class table would exist in the same database as the Bank class
table. In this example the relationship between Bank and BankType can be defined by OJB. However, a
“User” business object table typically will exist in an external system sinceit will likely be referenced by

189

KNS

more than one Rice client application. If a BO had a relationship with a“User” BO, the mapping would
require that the relationship be set up viathe data dictionary files (which will be discussed in detail later in
thisdocument). Any business obj ect implementing the org.kuali.rice.kns.bo.Externalizabl eBusi nessObject
interface needs to be related to via the data dictionary.

Example OJB Mapping

Here is an example directly from Rice in the file OJB-repository-kns.xml:

<cl ass-descriptor class="org. kuali.rice.kns.bo.Statelnpl" tabl e="KR _STATE T">
<fiel d-descriptor nane="postal CountryCode" col urm="POSTAL_CNTRY_CD" jdbc-type="VARCHAR' pri marykey="true"

i ndex="true"

/>

<fiel d-descriptor nane="postal Stat eCode" col unm="POSTAL_STATE CD" j dbc-type="VARCHAR' pri marykey="true"

i ndex="true"

/>

<fiel d-descriptor nane="postal StateNanme" col unm="POSTAL_STATE_NM' j dbc-type="VARCHAR" />
<fiel d-descriptor nane="objectld" colum="0BJ_I D" jdbc-type="VARCHAR' index="true" />
<fiel d-descriptor nane="versi onNunber" col um="VER NBR' jdbc-type="BlI G NT" |ocki ng="true" />
<fiel d-descriptor nane="active" colum="ACTV_I ND" jdbc-type="VARCHAR'

conversi on="org. kual i.rice. kns. util.Q bCharBool eanConversi on"/ >

<ref erence-descriptor name="country" class-ref="org. kuali.rice.kns.bo.Countrylnpl" auto-retrieve="true"
aut o- updat e="none" aut o- del et e="none" >
<forei gnkey field-ref="postal CountryCode" />
</ reference-descriptor>
</ cl ass-descri ptor>

In this OJB mapping, we can determine the following information:

1

2.

The KR_STATE_T tableis mapped to the org.kuali.rice.kns.bo.Statel mpl business object

The POSTAL_CNTRY _CD column is mapped to the "postal CountryCode" property of the BO (i.e.
accessed using the getPostal CountryCode and setPostal CountryCode methods), is a VARCHAR, is
indexed, and is one of the fields in the primary key

. The POSTAL_STATE_CD column is mapped to the "postal StateCode" property of the BO, is a

VARCHAR, isindexed, and is one of the fields in the primary key

. The OBJ _ID column is mapped to the "objectld" property, isindexed, and isaVARCHAR
. TheVER_NBR columnismapped to the"verionNumber" property, isaBIGINT, and isused for locking

. The ACTV_IND column is mapped to the “active” property, isaVARCHAR, and uses the conversion

class org.kuali.rice.kns.util.OjbChar BooleanConver sion

We can determine the following information about the "country” reference object:

1

2.

Itisof type org.kuali.ricekns.bo.Countrylmpl

the auto-retrieve attribute is true: When the Statelmpl is retrieved from OJB, the Countrylmpl object
will behavelikeit wasretrieved aswell (the proxy attribute of the ' field-descriptor’ tag can be set to true
or false to determine whether the Countrylmpl isreally retrieved when the account is retrieved or not)

. the auto-update attribute is none: When the Statelmpl is updated using OJB, the Countrylmpl object

will not be updated even if changes have been made to it

. the auto-delete attribute is none: When the Statelmpl is deleted using OJB, the Countrylmpl object will

not be deleted

. The <foreignkey> tag specifies the fields in the Statelmpl BO that are in a foreign key relationship

and their order with the primary key fields in the Countrylmpl BO. The Countrylmpl BO has one

190

KNS

primary key field, and the value from Statelmpl's “ postal CountryCode” property is used as the value
for Countrylmpl’s primary key value.

Example OJB Mapping for Collection Descriptor

A mapping may also define a collection-descriptor tag as follows:

<cl ass-descriptor class="org.kuali.rice.kns.test.docunment.bo.Account Manager" tabl e="TRV_ACCT_FO'>

<fiel d-descriptor name="id" colum="acct_fo_id" jdbc-type="BI G NT" primarykey="true" autoincrenment="true"
sequence- nane="TRV_FO ID_S" />

<fiel d-descriptor name="user Name" col um="acct_fo_user_nanme" jdbc-type="VARCHAR"' />

<col | ecti on-descri ptor name="accounts" collection-
cl ass="org. apache. oj b. broker. util.coll ections. Manageabl eArrayLi st" el ement-cl ass-
ref="org. kual i.rice.kns.test.docunent.bo. Account" auto-retrieve="true" auto-update="object" auto-
del et e="obj ect" proxy="true" >
<or der by name="account Number" sort="ASC"' />
<i nverse-foreignkey field-ref="amd" />
</ col | ecti on-descri ptor>
</ cl ass-descri pt or>

We can determine the following information about the "accounts" collection reference:

1. The collection itself is of type org.apache.ojb.broker.util.collections.ManageableArrayList, which
keeps track of which elements have been removed from the array, to help when deleting elements.

2. Each element of the collection is of type org.kuali.rice.kns.test.document.bo.Account.

3. The auto-retrieve attribute is true: when the AccountManager is retrieved from the database, the
collection will be populated or behave asiif it were populated upon accessing the collection. (the proxy
setting determines whether the database is queried when the AccountManager is retrieved from the DB
or whether it will retrieve from the DB only when the collection is accessed (i.e. lazy loading)).

4. The auto-update attribute is object: when the AccountManager is inserted or updated, the accounts
collection isinserted or updated accordingly.

5. The auto-delete attribute is object: when the AccountManager is deleted, the corresponding accounts
will be deleted as well.

6. The<orderby> tag specifiesthe sort order of elementsinthecollection. Inthiscase, the account numbers
will bein ascending order in the collection.

7. The <inverse-foreignkey> specifies the fields of the element BO (i.e. Account) that will match the
primary key fields of the AccountManager BO. The“amld” attributein the Account tablewill be used to
find objects that match the primary key of the AccountManager object, or in this casethe“id” attribute.

Business Object Java Definition

Business Objects are java classes that implement the org.kuali.core.bo.BusinessObject interface.
However, a mgority of business objects extend org.kuali.core.bo.PersistableBusinessObjectBase,
which implements org.kuali.core.bo.Per sistableBusinessObj ect and
org.kuali.core.bo.BusinessObject. Business Objects which extend from the class
Per sistableBusinessObj ectBase also have an advantage in that they will inherit getter and setter methods
for the attributes ‘ version number’ and ‘object id'.

In each application, all simple class names (i.e. ignoring the package) should be unique. If multiple
packages contain the same class name, the data dictionary may not load the duplicated classes
properly.

191

KNS

Business objects need to implement getter and setter methods for each field that is mapped between
java business objects and the database table (the mapping is described later). Therefore, if, in java, the
ACCOUNT_NM database column is named "accountName", then the getter method should be called
getAccountName and the setter should be setAccountName (i.e. the conventions follow the standard Java
bean getters and setters practices).

Objects that extend org.kuali.core.bo.BusinessObjectBase must also implement the toStringMapper
method, which returns a map of the BO's fields to be used in toString.

The org.kuali.core.bo.Per sistableBusinessObjectBase class has several more methods that can be
overridden that customize the behavior of the business object. Just a few examples are customizations
that can be made upon persistence and retrieval of the business object, and how reference objects of the
business object are refreshed, as well as other methods.

Reference Objects

A reference object is a member variable of a business object that also implements the BusinessObject
interface. It refersto the database row referenced by the valuesin aforeign key relationship. For example,
the Campuslmpl BO/table has a column for a campus type code (CAMPUS TYP_CD). Therefore, the
Campuslimpl BO may have areferenced CampusTypelmpl object, which represents the campus type row
referred to by the campus’ campus type code. Here is the Campusimpl OJB mapping:

<cl ass-descriptor class="org.kuali.rice.kns.bo.Canpuslnpl" tabl e="KRNS_CAMPUS_T">
<fiel d-descriptor name="canpusCode" col um="CAMPUS_CD' j dbc-type="VARCHAR' primarykey="true" index="true" /
>
<fi el d-descriptor name="canpusNanme" col um="CAMPUS_NM' j dbc-type="VARCHAR"' />
<fi el d-descri ptor name="canpusShortName" col utm="CAMPUS_SHRT_NM' j dbc-type="VARCHAR" />
<fiel d-descriptor name="canpusTypeCode" col um="CAMPUS_TYP_CD"' j dbc-type="VARCHAR" />
<fiel d-descriptor name="objectld" colum="0BJ_I D" jdbc-type="VARCHAR"' index="true" />
<fiel d-descriptor name="versi onNunber” col um="VER_NBR"' j dbc-type="BI G NT" | ocki ng="true" />
<fiel d-descriptor name="active" colum="ACTV_I ND' jdbc-type="VARCHAR'
conversion="org. kual i . rice. kns. util.Q bCharBool eanConver si on" />
<ref erence-descriptor name="canpusType" cl ass-ref="org. kuali.rice.kns.bo.CanmpusTypel npl " aut o-
retrieve="true" auto-update="none" auto-delete="none">
<forei gnkey fiel d-ref="canpusTypeCode" />
</reference-descriptor>
</ cl ass-descri pt or>

Here are bits of the Campusimpl classfile:

public class Canpusl npl extends Persistabl eBusi nessObj ect Base i npl enents Canpus, |nactivateable {
private String canpusCode;
private String canpusNane;
private String canpusShort Nane;
private String canpusTypeCode;
protected bool ean acti ve;

private CanpusType canpusType;

A collection reference is a member variable of abusiness object that implementsjava.util.Collection, with
each element in the collection being a BusinessObject. A collection reference would be appropriate to
model something like the list of Kuali Financial sub accounts of the Kuali Financial account business
object.

A reference object or collection is defined in two steps:
1. A field in abusiness object is created for either the reference object or collection reference

2. A relationship is mapped within either OJB (See above) or the data dictionary (See below)

192

KNS

To refresh (or retrieve) areference object is to reload the referenced row from the database, in case the
foreign key field values or referenced data have changed.

For references mapped within the data dictionary, the framework does not have the logic to enable
refreshing of a reference. The code must both implement the logic to refresh a data dictionary defined
reference and the logic to invoke refreshing. A specific explanation can be found below.

Refreshing reference objects mapped in OJB

For references mapped within OJB, the framework automatically takes care of the logic to enable
refreshing of areference. Under certain circumstances, it's able to automatically refresh references upon
retrieval of the main BO from the database, and refreshing can also be invoked manually.

Note that this means that if the value of a foreign key field is changed, the corresponding reference
object is not refreshed automatically. Taking the Campusimpl BO example above, if the code alters the
Campuslmpl’s campusTypeCode field, the framework will not automatically retrieve the new associated
CampusTypelmpl BO reference object. To refresh the Campuslmpl’s CampusTypel mpl reference object
with the new campus type code, refresh/retrieve must be manually called (see below).

Refreshing reference objects not mapped in OJB

For references with relationshipsthat are not mapped in OJB, code will need to be written to accommodate
refreshing. A common example of thisis Person object references, because institutions may decide to use
another source for ldentity Management (e.g. LDAP).

Although there are aternative strategies for accommodating refreshing, typically getter methods of these
non-OJB mapped reference obj ectsinclude the code that retrieves the reference object from the underlying
datasource.

In contrast to OJB-mapped references, note that this strategy alows for the automatic refreshing of
reference objects when aforeign key field value has been changed. If, in our example using Campusimpl
above, the reference object for CampusTypelmpl was not defined in OJB, the string campusTypeCode
may be changed and that would be enough to alter the getter method for CampusTypelmpl to properly
retrieve the correct row from the database.

Initializing collection references

Business objects fall into two broad, and for the most part mutually exclusive, categories: those that are
edited by maintenance documents and those that are not. This section refers only to business objects that
are edited by maintenance documents that have updatable collections.

When constructing this type of BusinessObject, initialize each of the updatable collection referencesto an
instance of org.kuali.rice.kns.util. TypedArrayList. TypedArrayList is a subclass of ArrayList that takes
in ajavalang.Class object in its constructor. All elements of this list must be of that type, and when the
get(int) method is called, if necessary, this list will automatically construct items of the type to avoid an
IndexOutOf BoundsException. Take the example below, the SummaryAccount BO contains an updatable
reference to alist of PurApSummaryltem objects.

public class SummaryAccount {
private List<PurApSummarylten itens;

public SummaryAccount () {
super();
items = new TypedArrayLi st (Pur ApSummaryltem cl ass);

193

KNS

When a collection is non-updatable (i.e. read only from the database), it is not necessary to initialize the
collection. OJB will take care of list construction and population.

Inactivateable Business Objects

Business objects that have active/inactive states should implement the Inactivateable interface:

public interface |nactivateable {
public bool ean isActive();
/* Indicates whether the record is active or inactive.
*
/ public void setActive(bool ean active);
y /* Sets the record to active or inactive.
}

By implementing this interface, functionality such as default active checks and inactivation blocking in
the maintenance framework can be taken advantage of.

InactivateableFromTo Business Objects

Business objects that have active from and to dates (effective dating) should implement the
InactivateableFromTo interface:

public interface |nactivateabl eFronifo extends I|nactivateable {

/* Sets the date for which record will be active
*

@aram from
* - Date value to set

*/
public void setActiveFronDate(Date fron);
/* Gets the date for which the record becone active
*
@eturn Date

*
/
public Date getActiveFronDate();

/* Sets the date for which record will be active to
* @aram from

* - Date value to set
S

public void setActiveToDate(Date to);

/* Gets the date for which the record becone inactive
*

@eturn Date
*/

public Date getActiveToDate();

/* Gets the date for which the record is being conpared to in determ ning active/inactive
*

@eturn Date
*/

194

KNS

public Date getActi veAsOf Date();

/* Sets the date for which the record should be conpared to in determning active/inactive, if
* not set then the current date will be used

*

@ar am acti veAsOf Dat e

*/

*

- Date value to set

public void setActiveAsOf Dat e(Date acti veAsOf Date) ;

Explanation of InactivateableFromTo fields

activeFromDate - The date for which the record becomes active (inclusive when checking active status).
activeToDate - The date to which the record is active (exclusive when checking active status).

active - The active field is calculated from the active from and to dates. If the active from dateisless than
or equal to current date (or from date is null) and the current date is less than the active to date (or to date
is null) the active getter will return true, otherwise it will return false.

current - The current field is set to true for records with the greatest active from date less than or equal
to the current date.

For example say we have two employee records:
e rec 1, empl A, active from 01/01/2010, active to 01/01/2011
» rec 2, empl A, active from 03/01/2010, active to 01/01/2011

With 03/01/2010 <= current date < 01/01/2011 both of these records will be active, however only rec 2
would be current since it has alater active begin date.

To determine the maximum active begin date, records are grouped by the fields declared in the data
dictionary for the business object.

activeAsOfDate - By default when checking the active or current status the current date is used, however
thisfield can be set to check the status as of another date.

For example say we have a record with active from date 01/01/2010 and active to date 06/01/2010, with
the current date equal to 08/01/2010. With the active as of date empty, the current date will be used and
thisrecord will be determined inactive. However if we set the active as of date equal to 05/01/2010 (which
falls between the active date range) and query, this record will be determined active.

Framework Support

Business objects that implement InactivateableFromTo can participate in default existence checks and
inactivation blocking functionality. In addition, the lookup framework contains special logic for searching
on InactivateableFromTo instances. This includes:

1. Trandating criteriaontheactivefield (activetrue or false) to criteriaon the activeto and from datefiel ds

2. Trandlating criteria on the current field (current true of false) to criteria selecting the active record with
the greatest active from date less than or equal to the active date

195

KNS

3. Handles the active as of date when doing active or current queries

InactivateableFromToService

For finding active and current InactivateableFromTo records I nactivateableFromToService can be used.
This service provides many methods for dealing with InactivateableFromTo objects in code.

Group by Attributes

In order to determine whether or not an I nactivateableFromTo record is current, the framework must know
what fields of the business object to group by (see ‘current’ in ‘Explanation of InactivateableFromTo
fields'). This is configured by setting the groupByAttributesForEffectiveDating property on the data
dictionary BusinessObjectEntry.

Example:

<bean i d="Travel Account UseRat e- par ent Bean" abstract="true" parent="Busi nessbj ect Entry">
<property name="busi nessbj ect Cl ass" val ue="edu. sanpl eu. travel . bo. Travel Account UseRat e"/ >
<property name="inquiryDefinition">
<ref bean="Travel Account UseRat e-i nqui ryDefinition"/>
</ property>
<property name="| ookupDefi nition">
<ref bean="Travel Account UseRat e-| ookupDefi ni ti on"/>
</ property>
<property name="titleAttribute" value="Travel Account Use Rate"/>
<property name="obj ect Label " val ue="Travel Account Use Rate"/>
<property name="attributes">
<list>
<ref bean="Travel Account UseRate-id"/>
<ref bean="Travel Account UseRat e- nunber"/>
<ref bean="Travel Account UseRate-rate"/>
<ref bean="Travel Account UseRat e- acti veFronDat e"/ >
<ref bean="Travel Account UseRat e- acti veToDate"/>
<ref bean="Travel Account UseRat e- acti veAsCf Dat e"/ >
<ref bean="Travel Account UseRat e-active"/>
<ref bean="Travel Account UseRate-current"/>
</list>
</ property>
<property name="groupByAttributesForEffectiveDating">
<list>
<val ue>nunber </ val ue>
</list>
</ property>
</ bean>

KNS Data Dictionary Overview

The datadictionary isthe main repository for metadata storage and provides the glue to combining classes
related to a single piece of functionality. The data dictionary is specified in XML and allows for quick
changesto be madeto functionality. The Data Dictionary files use the Spring Framework for configuration
so the notation and parsing operation will match that of the files that define the module configurers.

The contents of the data dictionary are defined by two sets of vocabularies; the ‘business object’ and the
‘document’ data.

Business Object Data Dictionary

Business Object Data Dictionary entries provide the KNS framework extra metadata about a business
object which is not provided by the persistence mapping or the class itself.

The business object data dictionary contains information about:

196

KNS

 Descriptive labels for each attribute in the business object (data dictionary terminology uses the term
“attribute” to refer to fields with getter/setter methods).

» Metadata about each attribute
e How input fields on HTML pages should be rendered for an attribute (e.g. textbox, drop down, etc.)
» The data elements from the business object that are shown to users on the KNS Inquiry page

» The data elements of the business object that can be used as criteria or shown asresult datain the KNS
L ookup for the business object

The business object data dictionary does not contain information about:
» Which BO does atable correspond to (responsibility of persistence layer, e.g. OJB)
» How fieldsin the BO correspond to database columns (responsibility of persistence layer, e.g. OJB)

» The orientation of various fields on user interface screens

Note About Following Documentation

Onething to noteisthe use of ‘abstract’ parent beanswithin the Ricefiles. These are used to facilitate easy
overriding of beans from Rice in a client application or a customized Rice standalone server installation.
Take the following example where the “RealBean” may be defined within Rice:

<bean i d="Real Bean” parent="Real Bean-parent” />

<bean i d=" Real Bean-parent” abstract="true” />

Client applications overriding this bean definition should alwaysretain theid “RealBean”. Thisallowsfor
any devel oper working with overriding datadictionary filesto easily define an override using thefollowing
parent bean structure:

<bean i d="Real Bean” parent="Real Bean-client-parent” />

<bean i d="Real Bean-client-parent” abstract="true” parent="Real Bean-parent” >

<l— any client overrides go here -->
</ bean>

The setup above will take any configuration from the Rice defined “ Real Bean-parent” and allow the client
developer to override individual properties inside the bean. Then when anything inside Rice or the client
application references the data dictionary bean “RealBean” they will get the Rice defined values unless
they were overridden by client application devel opers. Seethe Spring Framework documentation for more
examples of this.

For the sake of this documentation, the abstract parent bean structure will be mostly ignored but its
operation is consistent throughout all data dictionary files.

Data Dictionary File Layout

A sample Data Dictionary file to show typical organization of various beans that may be defined:

<?xm version="1.0" encodi ng="UTF-8"?>
<beans>
<bean i d="Account" parent="Account - parent Bean"/>

197

KNS

<bean i d="Account - parent Bean" abstract="true" parent="Busi nessChjectEntry">
<property name="busi nessObj ect Cl ass" val ue="org. kual i . kf s. coa. busi nessobj ect . Account"/ >
<property name="inqui ryDefinition" ref="Account-inquiryDefinition"/>
<property nanme="| ookupDefinition" ref="Account-| ookupDefinition"/>
<property name="titleAttribute" val ue="account Nunber"/>
<property name="obj ect Label " val ue="Account"/>

<!-- Attribute definition -->
<property name="attributes">
<list>
<!-- list goes here -->
</list>
</ property>
<!-- Collections -->
<property name="col | ecti ons">
<list>
<!-- list goes here -->
</list>
</ property>
<!-- Rel ationships -->
<property name="rel ati onshi ps">
<list>
<!-- list goes here -->
</list>
</ property>
<l-- Inactivation blocking definitions -->
<property name="inactivationBl ocki ngDefi nitions">
<list>
<l-- list goes here -->
</list>
</ property>
</ bean>
<bean i d="Account-inquiryDefinition" parent="Account-inquiryDefinition-parentBean"/>
<!-- Definition of ‘Account-inquiryDefinition-parentBean’ bean goes here -->

<bean i d="Account - | ookupDefi nition" parent="Account-| ookupDefi nition-parentBean"/>
<! —Pefinition of ‘Account-I|ookupDefinition-parentBean’ bean goes here -->

</ beans>

A more specific Rice example might be the Campusimpl object (whose business object data dictionary
fileis Campus.xml). Here is the main bean definition from that file:

<bean i d="Canpus- parent Bean" abstract="true" parent="Busi nessbj ect Entry">
<property name="busi nessbj ect G ass" val ue="org. kual i . rice. kns. bo. Canpusl| npl "/ >
<property name="inquiryDefinition">
<ref bean="Canpus-inquiryDefinition"/>
</ property>
<property name="| ookupDefinition">
<ref bean="Canpus-| ookupDefi nition"/>
</ property>
<property name="titleAttribute" val ue="canpusCode"/>
<property name="obj ect Label " val ue="Canpus"/>
<property name="attributes">
<list>
<ref bean="Canpus- canpusCode"/>
<ref bean="Canpus- canpusNanme"/>
<ref bean="Canpus- canpusShort Name"/ >
<ref bean="Canpus- canpusTypeCode"/>
<ref bean="Canpus-versi onNurmber"/ >
</list>
</ property>
</ bean>

One of the main properties required is the businessObjectClass which defines the java implementation
class that this business object data dictionary file will be used for.

TheinquiryDefinition and thelookupDefinition will be covered later in thisdocument but for now simply
note that the property is using a <ref> tag to point to a bean id that exists elsewhere in thisfile.

The titleAttribute property defines the attribute of the business object that is the primary key. Thisis
typically used to define which attribute can be used to display the inquiry page.

198

KNS

The objectL abel property isthelabel that will be used for all general business object referencesincluding
where the system has collections of the business object.

Attribute Definition

Attribute definitions are used to provide metadata about the attributes (i.e. fields) of abusiness object. The
following is a sampling of attribute definitions from the Campuslmpl business object data dictionary file:

<bean i d="Canpus- canpusCode- par ent Bean" abstract="true" parent="AttributeDefinition">
<property name="forceUppercase" value="true"/>
<property nanme="shortLabel " val ue="Canpus Code"/>
<property name="nmaxLength" val ue="2"/>
<property nanme="val i dationPattern">
<bean parent="Al phaNunericVal i dationPattern"/>
</ property>
<property name="required" value="true"/>
<property name="control ">
<bean parent="Text Control Definition" p:size="2"/>
</ property>
<property name="summary" val ue="Canpus Code"/>
<property name="nanme" val ue="canpusCode"/ >
<property nanme="I|abel " val ue="Canpus Code"/>
<property nanme="description" val ue="The code uniquely identifying a particular canpus."/>
</ bean>

<bean i d="Canpus- canpusTypeCode- par ent Bean" abstract="true" parent="AttributeDefinition">
<property name="forceUppercase" value="true"/>
<property name="shortLabel " val ue="Type"/>
<property name="nmaxLength" val ue="2"/>
<property nanme="val i dationPattern">
<bean parent="Al phaNunericVal i dationPattern"/>
</ property>
<property name="required" value="true"/>
<property name="control ">
<bean parent="Sel ect Control Definition"
p: val uesFi nder O ass="org. kual i . ri ce. kns. keyval ues. CanpusTypeVal uesFi nder" p:incl udeKeyl nLabel ="f al se"/>
</ property>
<property name="summary" val ue="Canpus Type Code"/>
<property nanme="nanme" val ue="canpusTypeCode"/>
<property name="|abel " val ue="Canpus Type Code"/>
<property name="description" val ue="The code identifying type of canpus."/>
</ bean>

In client applications, it is common that several business objects share a field representing the same type
of data. For example, a country’s postal code may occur in many different tables. In these circumstances,
the use of a parent bean reference (parent="Country-postal CountryCode") definition allows the reuse of
parts of a standard definition from the "master" business object. For instance, the Statelmpl business
object (business object data dictionary file State.xml) references the postal CountryCode property of the
Countrylmpl (business object data dictionary file Country.xml). Because the postalCountryCode fields
in Statelmpl and Countrylmpl are identical, a simple attribute definition bean in the Business Object data
dictionary file (State.xml) can be used:

<bean i d="St at e- post al CountryCode" parent="Country-postal Count ryCode- par ent Bean"/ >

The definition of the Country-postal CountryCode-par entBean bean is seen inside the Country.xml file
(for the Countrylmpl business object):

<bean i d="Country- post al CountryCode- par ent Bean" abstract="true" parent="AttributeDefinition">
<property name="nanme" val ue="postal CountryCode"/>
<property name="f orceUppercase" val ue="true"/>
<property name="| abel " val ue="Country Code"/>
<property name="short Label " val ue="Country Code"/>
<property name="maxLength" val ue="2"/>

199

KNS

<property nanme="val i dati onPattern">
<bean parent="Al phaNurericVal i dati onPattern"/>
</ property>
<property name="required" value="true"/>
<property name="control ">
<bean parent="Text Control Definition" p:size="2"/>
</ property>
<property name="summary" val ue="Postal Country Code"/>
<property name="description" val ue="The code uniquely identify a country."/>
</ bean>

This type of definition (defining the attribute definition once and reusing the bean as a parent bean) can
be used inside common files as well. Rice has an AttributeReferenceDummy.xml business object data
dictionary file as well as ajava object AttributeReferenceDummy.javafile. Thisfile's sole purposeisto
place commonly defined attributes such asver ssonNumber (which iscommon across all business objects)
in a central location so that other business object attribute definitions can use them as parent beans. Here
is how the Campus business object uses the version number attribute:

<bean i d="Canpus-versi onNunber - par ent Bean" abstract="true" parent="Attri buteReferenceDunmmy-versi onNunmber" >

All business object data dictionary files need to have the version number field bean defined. This will
verify that the Ul will have the version number as a hidden field.

Business Object Data Dictionary Lookup Definition

Lookup Fields

A lookup definition contains aproperty called lookupFields which is made up of alist of FieldDefinitions.
These specify the fields that will be displayed on a lookup form for that business object. A typical
lookupField (shown here with the parent property for context) in the Spring configuration for a Business
Object will look like this:

<property name="I| ookupFi el ds">
<list>

-<.bc-3an parent ="Fi el dDefini ti on" p:attributeNane="canpusCode"/ >
<Ilist>
</ property>
Lookup default values

You can set aglobal default for that lookup field using the defaultV alue property:

<bean parent="Fi el dDefinition" p:attributeNane="canpusCode" p:defaultVal ue="BL"/>

The effect of thisisthat every time the lookup for this Business Object is rendered, the campusCode text
input will have "BL" in it.

Quickfinders
A quickfinder is abutton that is rendered next to alookup field which takes you to alookup for arelated

Business Object which that field references, which in the case of this example would be to a Campus
Business Object.

200

KNS

Quickfinder parameters

If alookup field will have a quickfinder button on it due to a BO relationship, you may wish to set default
valuesfor certain fields on that related Business Object's lookup form, but only when the quickfinder from
this Business Object is used.

<bean parent="Fi el dDefi nition" p:attributeNanme="canpusCode"
p: qui ckfi nder Par anet er St ri ng="canpusTypeCode=P, acti ve=Y" />

Theeffect of thisisdifferent than the defaultV aluein that the defaults apply not to thelookup form Business
Object that we are currently defining lookupFields for, rather for specific fields in the related Business
Object that this lookupField (campusCaode) references — but only when accessed through this quickfinder
on our parent BO's lookup form.

Example LookupDefinition with defaultValue and quickfinderParameterString

Thisis perhaps better explained through a simple example with two BOsthat have arelationship, Building
and Campus. Here is the LookupDefinition for Building:

<bean i d="Bui | di ng-| ookupDefi ni ti on- parent Bean" abstract="true" parent="LookupDefinition" p:title="Building
Lookup" >

<property name="| ookupFi el ds" >
<list>

<bean parent="Fi el dDefinition" p:attributeName="canpusCode"
p: qui ckfi nder Par anet er St ri ng="canpusTypeCode=P, acti ve=Y" def aul t Val ue="BL"/ >
</list>
</ property>

</ bean>

The defaultValue is aglobal default, so every time you view the Building BO's lookup it will have "BL"
in the campusCode input.

The quickfinderParameterString is much more localized, so if you go directly to the Campus BO's lookup
it will have no effect. However, if you go to the Building BO'slookup and click the quickfinder button next
to its campusCode input, the Campus BO's lookup it will have a default of "P" in the campusTypeCode
input, and a default of "Y" in the active input.

There is a related property for FieldDefinition that also applies to lookups, the
quickfinderParameterStringBuilderClass. This lets you specify a class (which must implement
the org.kuali.rice.kns.lookup.valueFinder.ValueFinder interface) which will dynamically construct a
quickfinderParameterString each time a lookup is rendered. This might be useful if e.g. you wanted to
populate afield in the related BO's lookup with the current date and time when it is accessed through the
quickfinder.

It is not wvaid to have both the quickfinderParameterString and the
quickfinderParameter StringBuilder Class defined on asingle FieldDefinition, and you will get an exception
during Data Dictionary validation if you do so.

Totals
Support exists in the lookup framework for totaling the lookup results. If the ‘total’ property is set to true

on one or more FieldDefinition within the resultFields, the total line will be rendered and totals displayed
for each field indicated.

201

KNS

Example:

<property name="resul tFi el ds" >
<list>
<bean parent="Fi el dDefinition" p:attributeNane="kem d" />
<bean parent="Fi el dDefi ni ti on"
p:attribut eName="kem dQbj . shortTitle" />
<bean parent="Fi el dDefi ni ti on"
p: attribut eName="kem dQbj . pur poseCode" />
<bean parent="Fi el dDefi ni ti on"
p: attribut eName="avail abl el nconeCash" p:total ="true" />
<bean parent="Fi el dDefi ni ti on"
p: attri but eName="avail abl ePri nci pal Cash" p:total ="true" />
<bean parent="Fi el dDefi ni ti on"
p: attribut eName="avai |l abl eTot al Cash" p:total ="true" />
<bean parent="Fi el dDefi ni ti on"
p: attribut eName="kem dbj . cl ose" />
</list>
</ property>

An additional row will be added to the lookup result table with the totals for each of these columns
indicated. The label for the total row will display in the first lookup column. By default thislabel is set to
"TOTALS and can be changed in KR-ApplicationResources.properties.

Figure5.1. Totals

Thetotal linewill not be displayed for the column if the column values are masked.

One limitation of the totaling functionality isit will not work with a column that has inquiry URLSs. This
is because of the need to have a numeric value to sum on and for fields with an inquiry the URL is put
into the tag value along with the actual cell value.

Disabling Search Buttons

In certain cases the search and clear buttons for alookup are not needed. Therefore these buttons can be
disabled in one of two ways.

The first way is to disable the buttons through the data dictionary. This is done by setting the property
disableSearchButtons to true in the data dictionary lookup definition:

<bean i d="Cust ormer Profil e-1 ookupDefi nition" parent="CustomerProfile-|ookupDefinition-parentBean"/>
<bean i d="CustonerProfile-|ookupDefinition-parentBean" abstract="true" parent="LookupDefinition">
<property name="title" val ue="Customer Profile Lookup"/>

<property name="di sabl eSear chButtons" val ue="true"/>

The second way is to disable the buttons for a particular instance of a lookup by passing
disableSearchButtons=true as a request URL parameter:

202

KNS

http://1ocal host: 8080/ kr - dev/ | ookup. do?di sabl eSear chButt ons=true&mre parns ...

Notein this scenario other callsto thelookup without this parameter will have the search buttons rendered.

Merging Custom Attributes into Lookup Definitions

There are instances when an institution would choose to add custom attributes to existing data dictionary
definitions in a client application (such as KFS or KC). The lookup and result fields representing these
custom attributes can be arranged as desired using the DataDictionaryBeanOverride. In the example
below, we wish to add a custom attribute named Campus Code to KFS's existing Account bean.

<beans>

<bean i d="Account” parent="Account - parent Bean">
<property name="attributes">
<list merge="true”>
<!-- list goes here -->
<bean i d="Account. canpusCode” parent="Account - CanpusCode” p: name="Account. canpusCode” />

</list>
</ property>
</ bean>

</ beans>

Once the custom attribute is defined, we create a bean that takes KFS's Account-lookupDefinition bean
and modifies it such that Campus Code is displayed right after the Sub-Fund Group Code attribute in
the Account lookup screen and search results.

<beans>

<bean i d="Account - | ookupDefi ni ti on-overri de” parent="DataDi cti onaryBeanOverri de">
<property name="beanNanme" val ue="Account-| ookupDefi nition” />
<property name="fiel dOverri des” >
<list>
<I— Pl ace Campus Code after Account Sub-Fund G oup Code in the | ookup -->
<bean parent="Fi el dOverri deForLi st El ement | nsert”>
<property name="propertyNanme” val ue="| ookupFi el ds” />
<property name="propertyNanmeFor El ement Conpare” val ue="attri buteNanme” />
<property name="el ement” >
<bean parent="Fi el dDefi nition” p:attributeName="subFundG oupCode” />
</ property>
<property name="insertAfter”>
<list>
<bean parent="Fi el dDefi nition” p:attributeName="Account.canpusCode” />
</list>
</ property>
</ bean>
<! — Pl ace Canpus Code after Account Sub-Fund G oup Code in the search results -->
<bean parent="Fi el dOverri deForLi st El ement | nsert”>
<property name="propertyNanme” val ue="resul tFields” />
<property name="propertyNanmeFor El ement Conpare” val ue="attri buteNanme” />
<property name="el ement” >
<bean parent="Fi el dDefi nition” p:attributeName="subFundG oupCode” />
</ property>
<property name="insertAfter”>

<list>
<bean parent="Fi el dDefi nition” p:attributeName="Account.canpusCode” />
</list>
</ property>
</ bean>
</list>
</ property>

</ bean>

203

KNS

</ beans>

Merging Custom Attributes into Inquiry Definitions

There are instances when an institution would choose to add custom attributes to existing data dictionary
definitions in a client application (such as KFS or KC). The fields representing these custom attributes
can be arranged on the inquiry screen as desired using the DataDictionar yBeanOverride. In the example
below, we wish to add a custom attribute named Campus Code to KFS's existing Account bean.

<beans>

<bean i d="Account” parent="Account-parent Bean">
<property name="attributes">
<list merge="true">
<I-- list goes here -->
<bean i d="Account. canpusCode” parent="Account - CanpusCode” p: name="Account. canpusCode” />

</list>

</ property>
</ bean>
</ beans>
Once the custom attribute is defined, we create a bean that takes KFS's Account-inquiryDefinition bean
and modifies it such that Campus Code is displayed right after the Sub-Fund Group Code attribute in
the Account inquiry screen.
<beans>

<bean i d="Account-i nqui ryDefinition-overri de” parent="DatabD cti onaryBeanOverri de">
<property name="beanNanme" val ue="Account-i nquiryDefinition” />
<property name="fiel dOverri des”>
<list>
<! — Pl ace Canpus Code after Account Sub-Fund G oup Code in the Account Details section
(inquirySections[0]) -->
<bean parent="Fi el dOverri deForLi st El ement| nsert”>
<property name="propertyNanme” val ue="inquirySections[0].inquiryFields” />
<property name="propertyNanmeFor El ement Conpare” val ue="attri buteNanme” />
<property nanme="el ement” >
<bean parent="Fi el dDefi nition” p:attributeName="subFundG oupCode” />
</ property>
<property name="insertAfter”>

<list>
<bean parent="Fi el dDefi nition” p:attributeName="Account.canpusCode” />
</list>
</ property>
</ bean>
</list>
</ property>
</ bean>

</ beans>

Document Data Dictionary Overview

There are two different document typesin KNS:
1. Maintenance Documents

Maintenance Documents create, update, copy, or inactivate either asingle business object or acollection
of business objects. They are used to perform standard maintenance on data.

204

KNS

2. Transactional Documents
Transactional Documents represent an action that will occur in the system. They are treated as one-shot

documents and need not be edited and modified several times because of their approach in performing
an action.

Comparison of Maintenance and Transactional Documents

Table 5.2. Comparison of Maintenance and Transactional Documents

Transactional Documents Maintenance Documents
SQL Table(s) yes yes
OJB Mapping(s) - repository.xml yes yes
Business Object(s) yes yes
Data Dictionary File(s)(XML) Transactional Document DD File Maintenance Document DD File
Business Object DD File (discussed earlier)

Each type of dictionary defines properties such as authorizations, rules and workflow document types.

Thefollowing examples all follow the same structure with respect to the use of ‘abstract’ parent beans for
DataDictionary beans. A detailed description of their use and why Kuali uses thistype of implementation
can be found in the beginning of the ‘ Business Object Data Dictionary’ section.

Maintenance Document Data Dictionary Overview

In general, documents have metadata associated with them, and the metadata for maintenance documents
exists in the document's data dictionary configuration. The data dictionary can do practically everything
for amaintenance document: it declaresthe user interface for the form, tiesrules and document authorizers
to the document as well as the document's workflow document type.

Below is an example of a Maintenance Document Data Dictionary file from the KNS module itself. It
is for the Parameter object used within the KNS. The path (or package) or g/kuali/ricelkns/document/
datadictionary/ iswherethe Par ameter M aintenanceDocument can befoundin Riceif below isdifficult
to view.

<bean i d="Par anet er Mai nt enanceDocunent " par ent =" Par anet er Mai nt enanceDocunent - par ent Bean"/ >

<bean i d="Par anet er Mai nt enanceDocunent - par ent Bean" abstract="true" parent="Mi ntenanceDocunent Entry">
<property nanme="busi nessObj ect Cl ass" val ue="org. kuali.rice. kns. bo. Paraneter"/>
<property name="nmai ntai nabl el ass" val ue="org. kual i .rice. kns. docunent . Par anet er Mai nt ai nabl e"/ >
<property name="nai ntai nabl eSecti ons">

<list>
<ref bean="Par anet er Mai nt enanceDocunent - Edi t Par aneter "/ >
</list>

</ property>
<property nanme="def aul t Exi st enceChecks" >
<list>
<bean parent ="Ref erenceDefinition" p:attributeName="paranet er Nanespace"
p: attribut eToH ghl i ght OnFai | =" par anet er NanmespaceCode" / >
<bean parent ="Ref erenceDefinition" p:attributeName="paraneter Type"
p: attribut eToH ghl i ght OnFai | =" par anet er TypeCode" / >
</list>
</ property>
<property name="I| ocki ngKeys" >
<list>
<val ue>par anet er NanmespaceCode</ val ue>
<val ue>par anet er Det ai | TypeCode</ val ue>
<val ue>par anet er Appl i cati onNamespaceCode</ val ue>
<val ue>par anet er Nanme</ val ue>

205

KNS

</list>
</ property>

<property name="docunent TypeNanme" val ue="Par anet er Mai nt enanceDocunent "/ >
<property name="busi nessRul esCl ass" val ue="org. kuali.rice.kns.rul es. ParaneterRul e"/>
<property name="docunent Aut hori zer d ass"
val ue="org. kual i . ri ce. kns. docurent . aut hori zat i on. Mai nt enanceDocunent Aut hori zer Base"/ >
<property name="wor kf | owProperties">
<ref bean="Par anmet er Mai nt enanceDocunent - wor kf | owPr operti es"/>
</ property>
</ bean>

<!-- Maintenance Section Definitions -->
<bean i d="Par anmet er Mai nt enanceDocunent - Edi t Par anet er" par ent =" Par anet er Mai nt enanceDocunent - Edi t Par anet er -
par ent Bean"/ >

<bean i d="Par anmet er Mai nt enanceDocunent - Edi t Par anmet er - par ent Bean" abstract="true"
par ent =" Mai nt ai nabl eSecti onDefinition">
<property name="nai ntai nabl el t ens" >
<list>
<bean parent =" Mai nt ai nabl eFi el dDefi niti on" p:required="true" p:name="paranmet er NanespaceCode"/ >
<bean parent =" Mai nt ai nabl eFi el dDefi niti on" p:required="true" p:name="paraneter Detai | TypeCode"/>
<bean parent =" Mai nt ai nabl eFi el dDefi ni ti on" p:required="true"
p: nane="par anet er Appl i cati onNanespaceCode" p: def aul t Val ue="KUALI "/ >
<bean parent =" Mai nt ai nabl eFi el dDef i niti on" p:required="true" p:name="paraneter Nane"/>
<bean parent =" Mi nt ai nabl eFi el dDefi ni ti on" requi red="fal se" p: nanme="paranet er Val ue"/ >
<bean parent =" Mai nt ai nabl eFi el dDefi ni ti on" requi red="true" p:nane="paraneterDescription"/>
<bean parent =" Mi nt ai nabl eFi el dDefi ni ti on" requi red="true" p:nane="paraneter TypeCode"/ >
<bean parent =" Mai nt ai nabl eFi el dDefi ni ti on" requi red="true" p:nane="paraneter Constraint Code"/ >
</list>
</ property>
<property name="id" val ue="Edit Paraneter"/>
<property name="title" value="Edit Parameter"/>
</ bean>

p:
p:
p:
p:

<!-- Exported Workflow Properties -->

<bean i d="Par anmet er Mai nt enanceDocunent - wor kf | owPr operti es" parent =" Par amet er Mai nt enanceDocunent -
wor kf | owPr operti es- par ent Bean"/ >

<bean i d="Par anmet er Mai nt enanceDocunent - wor kf | owPr oper ti es- par ent Bean" abstract="true"
par ent =" Wor kf | owPr operti es">
<property name="wor kf| owPr opertyG oups" >
<list>
<bean parent ="Wor kf | owPr opert yG oup" >
<property name="wor kf | owProperties">
<list>
<bean parent ="Wor kf| owProperty" p:path="ol dMai nt ai nabl eCbj ect . busi nessChj ect"/ >
<bean parent ="Wor kf| owProperty" p:path="newVai nt ai nabl eCbj ect. busi nessCbj ect"/ >

</list>
</ property>
</ bean>
</list>
</ property>

</ bean>

Basic Setup

The first bean defined for the ParameterMaintenanceDocument data dictionary file is the main
definition bean “ParameterMaintenanceDocument-parentBean”. This bean uses the parent bean
“MaintenanceDocumentEntry”. This is how this particular business object is defined specificaly as a
Maintenance Document. Inside the “ ParameterMai ntenanceDocument-parentBean” bean we see severa
properties being set:

<property nanme="busi nessObj ect Cl ass" val ue="org. kuali.rice. kns. bo. Paraneter"/>
<property name="nai ntai nabl ed ass" val ue="org. kual i . rice. kns. docunent . Par anet er Mai nt ai nabl e"/ >

206

KNS

First and foremost the Maintenance Document Data Dictionary file should define the business object that
will be maintained by this particular document using the businessObj ectClass property. In this example
the fully qualified business object classis kuali.rice.kns.bo.Parameter.

The Maintenance Documents also need amaintainable class. Thisis defined using the maintainableClass
property and in our Parameter business object example the custom class being used is
org.kuali.ricekns.document.Parameter Maintainable. If there are no customizations needed for the
business object then the default class org.kuali.rice.kns.maintenance.K ualiM aintainablel mpl should
be used. More will be discussed about custom maintainable classes later in this document.

Existence Checking

The next maintenance document specific tag is defaultExistenceChecks. Certain document validations
are so omnipresent that they can simply be declared - typically validationsthat certain fields of adocument
arerequired. Here are the default existence checks for the Parameter M aintenanceDocument:

<property name="def aul t Exi st enceChecks" >

<list>

<bean parent="ReferenceDefinition" p:attributeName="paraneter Nanespace"
p: attributeToH ghl i ght OnFai | =" par armet er NanmespaceCode" / >

</list>
</ property>

Herewe havejust one default existence check. Default existence checks verify that the associated business
object for the document actually exist. For instance, in the Parameter maintenance document, if a user
enters a parameter namespace value that does not exist, the default existence check will display an error
message hext to the par ameter NamespaceCode attribute field after the user attempts to save or submit.

The defaultExistenceCheck tag has afew different waysit can operate. All involve setting alist of beans
that use the “ReferenceDefinition” parent bean. This bean is defined in Rice and can be used by any
Maintenance Document Data Dictionary file. The propertiesthat may be set for the “ ReferenceDefinition”
beans vary but the example shows the most common. The attributeName property is set to the KNS
attribute name of the business object which must exist for the check to pass. In this case the Namespace
object in KNS has a namespaceCode attribute. Likewise the attributeT oHighlightOnFail refers to the
attribute in the Par ameter business object that is used to link to the reference business object. Thisisthe
field which will be highlighted on the user interface for the error to display. Of course, for this to work
correctly, the foreign keys to the fields must be specified as required. That will come into play in section
below about specifying the Ul.

Locking keys

Since maintenance documents edit one or more business objects, there is the potential for race conditions.
For example, if two business objects were created with the same primary key field and they were both
sent into routing at the same time, the first document that is approved to ‘Final’ statusin Workflow could
potentially be overwritten in the database by the second document when it goesto ‘Final’ status. The KNS
attempts to prevent these situations from arising by creating a pessimistic lock on each business object
going through workflow as part of a maintenance document. In most cases, it uses the lockingK eystag of
the data dictionary for the maintenance document to create that locking representation. Here's the locking
representation configuration for the Par ameter M aintenanceDocument:

<property name="I| ocki ngKeys" >

<list>

<val ue>par anet er NanmespaceCode</ val ue>

<val ue>par anet er Det ai | TypeCode</ val ue>

<val ue>par anet er Appl i cati onNamespaceCode</ val ue>
<val ue>par anet er Name</ val ue>

207

KNS

</list>
</ property>

Not surprisingly, the attributes listed in the example are also the primary keys for the Parameter business
object. The locking keys above simply mean that once a certain Parameter is put into Workflow routing
with a certain set of the fields above, another document with the same exact values for all the attributes
above will be prevented from being put into Workflow. The fields used in alocking key can be anything,
as long as it marks the business object uniquely. It makes sense, then, that most locking keys are simply
the primary keys for the business object.

Defining the Ul

Finally, the largest part of the maintenance document data dictionary: the definition of the Ul through
the maintenanceSections property. The Ul of a maintenance document is made up of one or more
mai ntai nabl e sections. Each section isnamed, and each section createsanew tab asitsvisual representation
on the web form. Here is the section list property being set on the “ParameterM aintenanceDocument-
parentBean” bean (only one section in this document):

<property name="mai ntai nabl eSecti ons">

<list>

<ref bean="Par anmet er Mai nt enanceDocunent - Edi t Par anet er "/ >

</list>
</ property>

The list of beans is defined in the main Maintenance Document Entry bean while each ‘Section
Definition’ bean is defined below in the file. Here is the Parameter M aintenanceDocument exampl e of
the “ ParameterMai ntenanceDocument-EditParameter” bean definition:

<bean i d="Par anmet er Mai nt enanceDocunent - Edi t Par anet er - par ent Bean" abstract="true"
par ent =" Mai nt ai nabl eSecti onDefinition">
<property name="nai ntai nabl el t ens" >
<list>

<bean parent =" Mi nt ai nabl eFi el dDefi niti on" p:required="true" p:name="paranmet er NanmespaceCode"/ >
<bean parent =" Mai nt ai nabl eFi el dDef i niti on" p:required="true" p:name="paraneter Detail TypeCode"/>
<bean parent =" Mai nt ai nabl eFi el dDefi ni ti on" p:required="true"

p: name="par anet er Appl i cati onNamespaceCode" p: def aul t Val ue="KUALI "/ >

</l
</ pr ope

<bean parent =" Mi nt ai nabl eFi el dDefi niti on" p:required="true" p:name="paraneter Nane"/>
<bean parent =" Mai nt ai nabl eFi el dDef i niti on" p:required="fal se" p:nanme="paraneter Val ue"/>
<bean parent =" Mai nt ai nabl eFi el dDefi niti on" p:required="true" p:name="paraneterDescription"/>
<bean parent =" Mai nt ai nabl eFi el dDef i niti on" p:required="true" p:name="paraneter TypeCode"/>
<bean parent =" Mai nt ai nabl eFi el dDef i niti on" p:required="true" p:name="paraneter Constrai nt Code"/>
ist>
rty>

<property name="id" val ue="Edit Paraneter"/>
<property name="title" value="Edit Paranmeter"/>

</ bean>

Each maintainable section is defined by using the parent bean “MaintainableSectionDefinition”. These
beans, in turn, are made up of severa different propertiesincluding an id, title, and maintainablel tems.
The maintainableltems property is alist of maintainable fields. Each maintainable field bean uses the
“MaintainableFieldDefinition” bean as its parent bean and lists the attribute that should be shown. That
attribute itself has typically been defined in the data dictionary configuration for the business object (see
Business Object Data Dictionary Definition below). There is also arequired property which can be set
to force extra validation, though all validations described in the attributes of the business object will also
be checked.

While attributes default to using the definition set up in the data dictionary for a given field, there are a
couple of behavior modificationsthat can be made. One of which appears abovein therequired property.

208

KNS

This can override the default required behavior as defined for the business object on the Business Object
Data Dictionary file. Below are demonstrations of how some of the various changes that can be made
could potentially be done for the Par ameter M aintenanceDocument data dictionary file. For instance,
default values for any field can be set by using the defaultValue property, like so:

<bean parent =" Mi nt ai nabl eFi el dDefi ni ti on">
<property name="nanme” val ue="paraneter Appl i cati onNanespaceCode"/>
<property name="required” value="true"/>
<property name="def aul t Val ue” val ue="KUALI"/>

</ bean>

The example above example sets the default value of the parameter ApplicationNamespaceCode
attribute to “KUALI".

Another property that can be used to set a field with a default value in the maintenance document data
dictionary maintainableField beans is the defaultValueFinder Class property. This property should be
set to a class that implements the interface class org.kuali.rice.kns.lookup.valueFinder .ValueFinder.
The interface has one method only: getValue(), which returns a String which will be set into the
form in the User Interface. Here is an example (not from the Parameter M aintenanceDocument
but from the |dentityManagementGenericPer missionM aintenanceDocument) on how to use the
defaultValueFinder Class property:

<bean parent =" Mai nt ai nabl eFi el dDefi ni ti on">
<property name="nanme” val ue="perm ssionld"/>
<property name="uncondi ti onal | yReadOnl y” val ue="true"/>
<property name="required” value="true"/>
<property name="def aul t Val ueFi nder Cl ass”
val ue="org. kual i . ri ce. ki m | ookup. val uefi nder. Next Per m ssi onl dVal uesFi nder"/>
</ bean>

The above example pulls the next available id from a class for one of the Kuali Identity
Management documents. This is a very custom behavior for KIM but does highlight just one way the
defaultValueFinder Class can be used.

One other large customization that can be made is to modify the way the lookup on a particular field
operates. Lookups will be described in detail later in this documentation. Below is a simulated example
that does not exist in the Rice code:

<bean parent =" Mai nt ai nabl eFi el dDef i ni ti on">
<property name="nanme” val ue="reconcil er G oup. gr oupNane"/ >
<property name="required” value="true"/>
<property name="overri deFi el dConversi ons” val ue="groupl d: car dG oupl d, gr oupNane: r econci | er G oup. gr oupNane"/ >
<property name="overrideLookupCl ass” val ue="org. kuali.rice.kimbo.inpl.G ouplnpl"/>
</ bean>

The overridel ookupClass property will set the business object class of the lookup that should be used.
This meansin our example above that the lookup for the field “reconcilerGroup.groupName” will use the
org.kuali.rice.kim.bo.impl.Grouplmpl class lookup. The overrideFieldConversions property is used
to trandlate data attributes from the overrideL ookupClassto fiel ds that match the current Business Object
class for which the maintenance document data dictionary file is for. These are separated with the colon
character and a comma is used to delineate each field trandlation if more than one is to be listed. In the
example above the ‘groupld’ field (which exists on the org.kuali.rice.kim.bo.impl.Grouplmpl class)
will be set into the ‘cardGroupld’ field (which should exist on the business object class of the current
maintainable data dictionary file). In someinstancesthe overrideFieldConver sions may not be necessary
if the field names are the same on the lookup’ s business object class and the data dictionary’s business
object class.

209

KNS

Additional MaintainableFieldDefinition Properties

NOoO g~ WNPRE

For each Maintai nabl eFiel dDefinition bean defined in amaintenance document, there are afew fields that
can help adjust the User Interface for a KNS client. Here is a sample example:

<property name="mai ntai nabl el t ens" >
<list>

<bean parent =" Mai nt ai nabl eFi el dDefi ni ti on"
<bean parent =" Mai nt ai nabl eFi el dDef i ni ti on"
<bean parent =" Mai nt ai nabl eFi el dDefi ni ti on"
<bean parent =" Mai nt ai nabl eFi el dDef i ni ti on"
<bean parent =" Mai nt ai nabl eFi el dDef i ni ti on"

name="Code" p:required="true" />

name="1D" p:unconditional |l yReadOnl y="true" />
name="Nanme" p:readOnl yAfter Add="true" />
:nane="Type" p:|ookupReadOnly="true" />
name="1i nkedJob" p: noLookup="true" />

TEEEE

In the example above on line 4 the field with name value “ID” has a property named
unconditionallyReadOnly that is set to “true’. This means the field will be read only and uneditable in
the User Interface at al times regardless of document state. This could be helpful when setting a default
value that the user entering the document is not alowed to change.

The property readOnlyAfterAdd set to “true” on line 5 for the “Name” field means that once the
maintenance document for this business object has been successfully saved and routed through all
appropriate approvals, the“Name” field will be read only. Thisisuseful in certain instanceswhen creating
anew business object.

The property lookupReadOnly in line 6 is used to change the Ul so that alookup link will be presented
for the field but the value that is displayed when returning an object from the lookup is read only. In the
example abovethe“Type” variable will have alookup (as defined by the Business Object Data Dictionary
file... seethe Business Object Data Dictionary section for moreinformation) but the displayed valueinthe
Ul for “Type” will be uneditable by user entry. It may still be changed by going to the lookup link again.

The noLookup property shown in line 7 for the “linkedJob” field is a way to override the default
functionality coming from the Business Object Data Dictionary file. If that DD file has a Lookup control
element but the lookup need to be hidden on the Maintenance Document then this attribute allows for that
functionality.

Collections

Some maintenance documents include collections of business objects. Below is an example from the
RoutingRuleM ai ntenanceDocument data dictionary file from Rice:

<bean i d="Routi ngRul eMai nt enanceDocunent - Per sonResponsi bi | i ti es- parent Bean" abstract="true"

par ent =" Mai nt ai nabl eSecti onDefinition">
<property name="id" val ue="PersonsMi nt enance"/ >
<property name="title" val ue="Persons"/>
<property name="nmai ntai nabl el t ens" >
<list>

<bean parent =" Mai nt ai nabl eCol | ecti onDefinition">
<property name="nanme" val ue="personResponsibilities"/>
<property name="busi nessbj ect Cl ass" val ue="org. kuali.rice. kew. rul e. PersonRul eResponsi bility"/>
<property name="summaryTitle" val ue="Person"/>
<property name="sumraryFi el ds">
<list>
<bean parent =" Mai nt ai nabl eFi el dDef i ni ti on" p: name="pri nci pal Nane"/>
<bean parent =" Mai nt ai nabl eFi el dDef i ni ti on" p: name="acti onRequest edCd"/>
</list>
</ property>
<property name="nmai nt ai nabl eFi el ds" >
<list>
<bean parent =" Mai nt ai nabl eFi el dDef i niti on" p: name="pri nci pal Nane" p:required="true"/>

210

KNS

<bean parent =" Mai nt ai nabl eFi el dDefi ni ti on" p: name="acti onRequest edCd"

p:required="true"/>

<bean parent =" Mai nt ai nabl eFi el dDefi niti on" p:name="priority" p:required="true”/>
</list>
</ property>
<property name="duplicateldentificationFields">
<list>
<bean parent =" Mai nt ai nabl eFi el dDef i ni ti on" p: name="pri nci pal Nane"/>
<bean parent =" Mai nt ai nabl eFi el dDef i ni ti on" p: name="acti onRequest edCd"/>
</list>
</ property>
</ bean>

</list>

</ property>

</ bean>

©CO~NVOOaMWNEPRE

To put a collection into a maintenance section, simply put an instance of a
MaintainableCollectionDefinition bean in the list that is set into the maintainablel tems property of the
maintenance section.

The MaintainableCollectionDefinition bean must have a name property. The name property should
match the attribute name of the collection being maintained on the origina business object. The
businessObj ectClass property value specifies the class of the itemsin the collection.

The maintainableFields property inside the MaintainableCollectionDefinition bean works
exactly like the previously described structure of the maintainableFields property inside the
MaintainableSectionDefinition bean. The only difference is that the name property of each
MaintainableFieldDefinition refers to an attribute of the businessObjectClass that is set on the
M aintainableCollectionDefinition bean.

The summaryTitle and summaryFields properties are used for display purposes once alist element is
added to the list on the Ul screen. The specified data elements will show when the full detail of the
collection item is hidden using the ‘ hide/show’ button functionality of the KNS. Usually these fields are
specific to what uniquely defines the business objects contained within the collection.

The duplicatel dentificationFields property is used to identify specifically the set of fields inside the
collection element business object that cannot be duplicated in thelist. In thisway they act as mini-locks.
They will prevent more than one list element with the same set of fields. For instance, in the example
above, if alist element already exists with the actionReguestedCd ‘A’ and the principalName ‘john’
then another list element with those same values cannot be added.

There are also a few more advanced type attributes that can be used. Take the above example and the
abbreviated alteration below.

<property nanme="nmai ntai nabl el tens" >
<list>

<bean parent =" Mai nt ai nabl eCol | ecti onDefinition" >
<property nanme="nanme" val ue="personResponsibilities"/>
<property nanme="incl udeAddLi ne" val ue="fal se"/>
<property nanme="busi nessObj ect Cl ass" val ue="org. kual i.rice. kew. rul e. PersonRul eResponsi bility"/

<property nanme="mai ntai nabl eFi el ds" >
<list>
<bean parent =" Mai nt ai nabl eFi el dDefi nition" p:name="newCol | ecti onRecord"/>

The property includeAddLine on line 5 above is used to remove the Ul element that allows the users to
add their own elementsto thelist. Thisishelpful in caseswherethelist of items may be statically generated
by code internal to the business object containing the collection.

211

KNS

On line 9 in the example above, the addition of the MaintainableFieldDefinition with the name
property value of “newCollectionRecord” is used to tell the maintenance framework that any records
currently existing in the collection are permanent - that is, there should not be delete buttons
associated with them. However, if the property includeAddLine is set to “false” (or omitted) in the
MaintainableCollectionDefinition bean above, new lines could be added to the collection and each of
the new lines could be deleted (though lines that had been previously saved and routed appropriately into
the collection could not be deleted).

Alternate/Additional Display Properties

Within the business object frameworks (lookup, inquiry, and maintenance document) an alternate or
additional property can be specified to display when afield is read-only. These properties are configured
through the data dictionary as follows:

alternateDisplayAttributeName

This property specifies an attribute on the business object that should be displayed instead of the field
attribute when the view is read-only. The property is available on the FieldDefinition for lookup result
fields and inquiries, and on the MaintainbleFieldDefinition for maintenance documents. In the case of
lookup result fields and inquiries this attribute will always be displayed since the view is always read-
only. For maintenance documents, the field attribute will display when the document is editable, and the
alternate attribute will display when the document is read-only.

<bean i d="CustomerProfil e-1 ookupDefinition" parent="CustomerProfile-|ookupDefinition-parentBean"/>
<bean i d="Cust omer Profil e-1 ookupDefi ni ti on-parent Bean" abstract="true" parent="LookupDefinition">
<property name="title" val ue="Customer Profile Lookup"/>

<property name="defaul t Sort">

<bean parent="SortDefinition">

<property name="attri buteNames">

<list>
<val ue>i d</ val ue>
</list>

</ property>

</ bean>

</ property>
<property name="| ookupFi el ds" >

<list>

cattri but eNane="id"/>

cattri but eNane="chart Code"/ >
cattri but eNane="unit Code"/>
cattri but eNane="subUni t Code"/ >
cattribut eNane="active"/>

<bean parent="Fi el dDefi ni ti on"
<bean parent="Fi el dDefi ni ti on"
<bean parent="Fi el dDefi ni ti on"
<bean parent="Fi el dDefi ni ti on"
<bean parent="Fi el dDefi ni ti on"

T T T T T

</list>

</ property>
<property name="resul t Fi el ds">

<list>

<bean parent="Fi el dDefinition" p:attributeName="id" p:alternateD splayAttributeName="cust onmer Name"/

°

cattri but eNane="cust oner Short Nane"/ >

cattri but eNane="cust oner Descri ption"/>

;attri but eNane="cont act Ful | Nane"/ >

cattributeNa ="processi ngEnai | Addr"/>

cattri but eNane="def aul t Physi cal CanpusProcessi ngCode"/ >
cattribut eNane="active"/>

cattri but eNane="def aul t Chart Code"/ >

<bean parent="Fi el dDefi ni ti on"
<bean parent="Fi el dDefi ni ti on"
<bean parent="Fi el dDefi ni ti on"
<bean parent="Fi el dDefi ni ti on"
<bean parent="Fi el dDefi ni ti on"
<bean parent="Fi el dDefi ni ti on"
<bean parent="Fi el dDefi ni ti on"

T T T T T T T

</list>

</ property>

</ bean>

In the example above, for the result field 'id' we have specified an alternateDisplayAttibuteName equal to
"customerName". When the results are rendered the value of customerName property will be displayed
and not the value of the id property. This behavior is the same within an InquiryDefinition.

212

KNS

If specified on a MaintainableFieldDefinition, again the value for the alternateDisplayAttibuteName
attribute will be displayed; however any quickfinder or lookup URL will be built using the field property
asusual. If thefield is editable or hidden, the value of the field property will be used.

additionalDisplayAttributeName

This property behaves much like the alternateDisplayAttibuteName, the only difference being the value
of the additional DisplayAttributeName attribute will be appended to the value of the field attribute, using
-' asadelimiter.

Neither the aternateDisplayAttibuteName nor additional DisplayAttributeName need to have an
AttributeDefinition defined, however they must have an accessible getter in the business object.

Automatic Translation of KualiCode fields

If enabled, fieldsthat have referencesto aKualiCode classwill be found and the corresponding KualiCode
name field will be set as the additional DisplayAttributeName. The object property holding the reference
must also prefix the field name. For example, afield name of 'defaultChartCode' and reference name of
'defaultChart’ would match, again assuming the type of 'defaultChart’ implements KualiCode.

Thisautomatic trangl ation of code fieldsisturned on by default in the Inquiry framework, but turned off by
default in lookups and maintenance documents. It can be configured for each MaintenanceDocumentEntry,
L ookupDefinition, or InquiryDefinition with the property ‘translateCodes.

For example, in the MaintenanceDocumentEntry:

<bean i d="Cust oner Profil| eMai nt enanceDocunent - par ent Bean" abstract="true" parent="Mai ntenanceDocunent Entry">
<property name="busi nessbj ect Cl ass" val ue="org. kual i . kf s. pdp. busi nessobj ect. CustonerProfile"/>
<property name="nai ntai nabl ed ass"
val ue="org. kual i . kf s. pdp. docunent . dat adi cti onary. Cust oner Prof i | eMai nt enanceDocunent Mai nt ai nabl el nmpl "/ >
<property name="nai ntai nabl eSecti ons">
<list>
<ref bean="Custoner Profil eMai nt enanceDocunent - Edi t Cust onmer Profi | eSecti onl"/>
<ref bean="Custoner Profil eMai nt enanceDocunent - Edi t Cust onmer Prof i | eSecti on2"/>
<ref bean="Custoner Profil eMai nt enanceDocunent - Edi t Cust onmer Profi | eSecti on3"/>
<ref bean="Custoner Profil eMai nt enanceDocunent - Edi t Cust onmer Bank"/ >
</list>
</ property>
<property name="def aul t Exi st enceChecks" >
<list>
<bean parent="ReferenceDefinition" p:attributeName="defaul tChart"
p:attributeToH ghli ght OnFai | =" def aul t Chart Code"/ >
<bean parent="ReferenceDefinition" p:attributeName="defaul t Account"
p: attributeToH ghl i ght OnFai | =" def aul t Account Nurber "/ >
<bean parent="ReferenceDefinition" p:attributeName="defaul t bject"
p: attributeToH ghl i ght OnFai | =" def aul t Obj ect Code"/ >
<bean parent="ReferenceDefinition" p:attributeName="defaul t Processi ngCanpus"
p: attributeToH ghl i ght OnFai | =" def aul t Physi cal CanpusPr ocessi ngCode"/ >
<bean parent="ReferenceDefinition" p:attributeName="state"
p: attributeToH ghl i ght OnFai | =" st at eCode"/ >
<bean parent="Ref erenceDefinition" p:attributeName="postal Code"
p: attributeToH ghl i ght OnFai | =" zi pCode"/ >
<bean parent="ReferenceDefinition" p:attributeName="country"
p: attributeToH ghl i ght OnFai | =" count r yCode" / >
<bean parent="ReferenceDefinition" p:attributeName="transacti onType"
p: attributeToH ghlight OnFai | ="achTransacti onType"/ >
<bean parent ="Ref erenceDefinition" p:collection="custonmerBanks" p:attributeName="di sbursenent Type"
p: attributeToH ghl i ght OnFai | =" di sbur senent TypeCode"/ >
<bean parent ="Ref erenceDefinition" p:collection="customerBanks" p:attributeName="bank"
p: attribut eToH ghl i ght OnFai | =" bankCode"/ >
</list>
</ property>
<property name="I| ocki ngKeys" >
<list>
<val ue>chart Code</ val ue>
<val ue>uni t Code</ val ue>

213

KNS

<val ue>subUni t Code</ val ue>
</list>
</ property>
<property name="transl at eCodes" val ue="true"/>

If alternateDisplayAttributeName is specified for a field then it will override the code trandation (if
applicable).

Note the Summarizable interface and SummarizableFormatter class were removed as part of this work.
If an application class implemented Summarizable it should be changed to implement the KualiCode
interface.

Dynamic read-only, hidden, and required Field states

Within the KNS lookup and maintenance frameworks there is support for dynamically altering the read-
only, hidden, or required states of afield. This functionality is configured through the data dictionary and
javacode as follows:

Conditional Logic

Any conditional logic that is necessary to determine whether a field should be read-only, hidden, or
required (and editable) is implemented with java code. For maintenance documents this code is placed in
the presentation controller. The following methods are available for this purpose:

public Set<String> getConditional |l yReadOnl yPropertyNanmes(Mai nt enanceDocunent documnent)

public Set<String> getConditional | yRequiredPropertyNanmes(Mi ntenanceDocunent docunent)

public Set<String>
get Condi ti onal | yHi ddenPr opert yNanes(Busi nessObj ect busi nessbj ect)

Each of these methods returns a Set of field names (prefixing for the maintainable is not necessary). These
fieldswill then take on the state determined by the method. The first two methods take as a parameter the
MaintenanceDocument instance which can be used to get the current values for one or more fields. The
third method is more general (becauseit isused for inquires as well) and takes a BusinessObject instance
as a parameter. Within the maintenance context this will again be the MaintenanceDocument and can be
cast after doing an instanceof check.

Example:

@verride
public Set<String> getConditional | yRequiredPropertyNanmes(Mi nt enanceDocunent docunent) {

Set <String> required = new HashSet<String>();
SubAccount subAccount = (SubAccount) docunent. get NewMai nt ai nabl eQbj ect (). get Busi nessObj ect ();
if (StringUils.isNotBl ank(subAccount. getFi nanci al Report Chart Code()) &&
subAccount . get Fi nanci al Report Chart Code() . equal s("BL")) {
requi red. add("a21SubAccount . cost Shar eChar t Of Account Code") ;
requi red. add("a21SubAccount . cost Shar eSour ceAccount Nurmber ") ;
}

return required;

Only fields that have conditional states need to be considered here. For fields that are always read-only,
hidden, or required the corresponding properties on the MaintainableFieldDefinition can be set to true
through the data dictionary.

214

KNS

Sectionsof the maintenance document can al so be conditionally set to read-only or hidden by implementing
the following methods within the presentation controller:

public Set<String> getConditionallyReadOnl ySectionlds(
Mai nt enanceDocunent docunent);
public Set<String> getConditionallyH ddenSecti onl ds(Busi nessObj ect busi nessObject);

Any authorization restrictions will be applied after thislogic by the document authorizer class.

For lookups conditional logic isimplemented in the L ookupableHel perService. Similar methods exist for
determining the read-only, hidden, or required states:

public Set<String> getConditionallyReadOnl yPropertyNanes();
public Set<String> getConditionallyRequiredPropertyNanes();

public Set<String> getConditionallyH ddenPropertyNanes();

Each of these methods returns a Set of field names. Code implemented within these methods has
access to the lookupable helper properties. In particular the request parameters can be retrieved using
getParameters(), and the current rows using getRows(). The following convenience method is also
available for getting a property value from the field:

protected String getCurrent SearchFi el dval ue(String propertyNane)

It is recommended to use this method to get a value for a property as opposed to the request parameters,
since the values could be different. Thisis because the conditional logic isapplied at the end of the lookup
lifecycle and field values could have been cleared or set to other values by processing code. Therefore
basing conditional logic off these valueswill correctly reflect the values being returned to the search fields.

Example:

@verride
public Set<String> getConditional |l yH ddenPropertyNames() {
Set <String> hi ddenPropertyNames = new HashSet <String>();

String enpl oyeel d = get Current Sear chFi el dVal ue(KI MPr opert yConst ants. Per son. EMPLOYEE | D) ;
if (StringUtils.isNotBlank(enployeeld)) {

hi ddenPr opert yNanes. add(KFSPr oper t yConst ant s. VENDOR_NUMBER) ;

hi ddenPr opert yNanes. add(KFSPr oper t yConst ant s. VENDOR_NAME) ;

return hi ddenPropertyNanes;

Trigger Fields

The second part to implementing conditional logic isindicating which fields should trigger arefresh (page
post) when its value changes. The page post will call each of the conditional methods so when the page
rendersthe read-only, required, and hidden attributes are set according to the new field value (Note al field
valuesareavailableto the conditional methods regardless of which onetriggered therefresh). Toindicatea
field should trigger arefresh, set the triggerOnChange attribute to true on the M ai ntai nabl eFi el dDefinition:

<bean parent =" Mai nt ai nabl eFi el dDef i ni ti on" p: name="fi nanci al Report Chart Code" p:trigger OnChange="true"/>

For lookups, set the triggerOnChange attribute to true on the lookup FieldDefinition within the
lookupFields property:

215

KNS

<property name="| ookupFi el ds" >
<list>
<bean parent="Fi el dDefi ni ti on"
<bean parent="Fi el dDefi ni ti on"
<bean parent="Fi el dDefi ni ti on"
<bean parent="Fi el dDefi ni ti on"
<bean parent="Fi el dDefi ni ti on"
<bean parent="Fi el dDefi ni ti on"
<bean parent="Fi el dDefi ni ti on"
<bean parent="Fi el dDefi ni ti on"
<bean parent="Fi el dDefi ni ti on"
</list>
</ property>

;attri but eNane="payeeTypeCode"/ >

cattributeNanme="t axNunber" />

cattributeNane="firstNane" />

attributeName="I| ast Nane" />

attri but eName="vendor Nunber" p:trigger OnChange="true" />
attribut eName="vendor Nanme" />

;attri but eNane="enpl oyeel d" p:trigger OnChange="true" />
cattributeNane="entityld" p:trigger OnChange="true" />
cattributeNane="active"/>

TTTTTTTTT

Thereisno limit to the number of trigger fields specified for a maintenance document or lookup.

Note

JavaScript was implemented to set the focus back to the next field in the tab order (from the
field that triggered the refresh) when the page refreshes. Thiswill not work correctly if fields are
inserted between the field that triggered a refresh and the next tab field (for instance if a field
between these two was hidden or read-only, and becomes editable on refresh).

Configuring a KNS Client in Spring

The Kuali Nervous System (KNS) is installed as a Rice Module using Spring. The primary source
for configuring Spring in KNS is the KnsTestSpringBeans.xml file located in the /kng/src/test/
resour ces directory. Thisfile uses the PropertyPlaceholder Configur er bean to load tokens for runtime
configuration using the source file kns-test-config.xml located in the /kns/sr c/test/r esour cesM ETA-INF
directory.

The kns-test-config.xml file contains this code snippet:

<par am name="nodul e. nane" >sanpl e- app</ par an»

<par am nane="ser vi ce. nanespace" >Rl CE</ par an>

<param name="filter.| ogin.class">org. kuali.rice.kew web. DummyLogi nFi | t er </ par an»

<param nane="fi |t er mappi ng. | ogi n. 1" >/ *</ par an>

<par am narme="confi g.| ocati on">cl asspat h: META- | NF/ t est - conf i g- def aul t s. xnml </ par an»>

<par am nane="servi ceServl et Url ">http://| ocal host: 9916/ ${ app. cont ext . nane}/ renot i ng/ </ par an>
<par am nane="transaction. ti neout " >3600</ par an>

<par am nane="confi g. | ocati on">cl asspat h: META- | NF/ common- confi g-test -1 ocati ons. xm </ par an®>

<param nane="confi g. | ocation">${alt.config.|ocation}</parany
<par am nane="kns. t est. port">9916</ par an>

This is a combination of key value pairs. When used in conjunction with Spring tokenization and the
PropertyPlaceholder Configurer bean, the parameter name must be equal to the key value in the Spring
file so that the properties propagate successfully.

Spring JTA Configuration

When doing persistent messaging, it is best to use JTA as your transaction manager. This ensure the
messages you are sending are synchronized with the current executed transaction in your application and
also allows message persistence to be put in a different database than the application’s logic, if needed.
Currently, KNSTestSpringBeans.xml uses JOTM to configure JTA without an application server. Below
is the bean definition for JOTM that can be found in Spring.

216

KNS

<bean i d="transacti onManager XAPool " cl ass="or g. spri ngframewor k. t ransacti on.jta. Jot nfFact or yBean" >
<property nanme="defaul t Ti meout” val ue="${transaction.tinmeout}"/>

</ bean>

<bean i d="dat aSource" class="org. kuali.rice. database. XAPool Dat aSour ce">
<property name="transacti onManager" ref="transacti onManager XAPool " />
<property nanme="driverCl assNane" val ue="${dat asource. driver.nane}" />
<property name="url" val ue="${datasource.url}" />
<property name="naxSi ze" val ue="${dat asource. pool . mexSi ze}" />
<property name="m nSi ze" val ue="${dat asource. pool . n nSi ze}" />
<property name="nmaxWit" val ue="${dat asource. pool . max\Wai t}" />
<property nanme="validationQuery" val ue="${datasource. pool . val i dati onQuery}" />
<property nanme="usernane" val ue="${dat asource. usernane}" />
<property nanme="password" val ue="${dat asource. password}" />

</ bean>

Configure the TransactionManager, UserTransaction and a DataSource. Use the Rice
XAPoolDataSource class as your data source because it addresses some bugs in the
Standar dX APool DataSour ce, which extends from this class.

KNS Validation and Business Rules Framework

When actions are performed on documents, there is typically some validation to accomplish on the
document; indeed, agreat deal of the businesslogic for client application is stored in document validations.
The KNS supports a standard framework for validations as well as away to display errors to application
end users.

Rules and Events

KNS validations are performed by rules classes, which respond to a specific application event.
An event is an object which encapsulates contextual information about something which has
been requested of a document. For instance, when a user on a maintenance document clicks a
“Route” button to route the document into workflow, the web-layer controller creates an instance of
org.kuali.ricekns.rule.event.RouteDocumentEvent which holds the document which has just been
routed. It then passes this event instance to or g.kuali.rice.kns.service.K ualiRuleSer vice.

The KualiRuleService interrogates the data dictionary entry for the document to find a rules class.
The event then invokes the rules class against itself. This is accomplished through a rule interface.
Every event has an associated rule interface; the class of this interface is returned by the Event's
getRulelnterfaceClass() method. The event will cast the business rule from the data dictionary to the
interface which it expects, and then call a standard method against that interface.

An example will clarify this. RouteDocumentEvent expects rules implementing the rule interface
org.kuali.rice kns.rule.RouteDocumentRule, which extends the BusinessRule interface given above.
RouteDocumentRul e has a single method to implement:

publ i ¢ bool ean processRout eDocunent (Docunment docunent);

When the KualiRuleService gets the event, it finds the data dictionary entry for the given document and
generates an instance of the business rules class associated with the document. It then hands that to the
event, which attempts to perform the cast to RouteDocumentRule and call the processRouteDocument
method:

publ i ¢ bool ean i nvokeRul eMet hod(Busi nessRul e rule) {
return ((RouteDocunent Rul e) rule).processRout eDocunent (docunent);

217

KNS

@verride

It then returns whatever was returned by the rule.

This brings up the question of what the processRouteDocument method should actually do. Rule methods
need to accomplish two things:

1.

Run the business | ogic associated with that event against the document. If the businesslogic decidesthe
document isvalid, then atrue should be returned. If the businesslogic, contrarily, decides the document
isnot valid, afalseistypically returned. The result of the method invocation then typically determines
whether the given event will be completed. For instance, if processRouteDocument returns a false,
then the document — which has only had a workflow route requested of it — will fail to route. It will
instead return to the document screen.

. Some kind of user message should be recorded in the GlobalVariables.getM essages() thread-local

singleton. This singleton has three maps, accessible through the getError M ap(), getWar ningM ap(),
and getl nfoM ap() methods. These maps associate an attribute on the page which caused afailurewith a
user message explaining the problem. If afalseisreturned from the method, thenitisgenerally expected
that the failure will be recorded in the Error map.

An excellent example of this can be found in the sample “Recipe application” which ships with Rice, in
edu.sampl eu.recipe.document.rule.RecipeRul es:

prot ected bool ean processCust onSaveDocunent Busi nessRul es(Mai nt enanceDocunment docunent) {
bool ean valid = super. processCust onSaveDocunent Busi nessRul es(docunent) ;
if (valid) {
valid &= validatel ngredi ent s(docunent);

}

return valid;

}

private bool ean val i dat el ngredi ent s(Mai nt enanceDocunent reci peDocunent) {
Reci pe reci pe = (Reci pe) reci peDocunent. get Docunent Busi nessObj ect () ;
String ingredients = recipe.getlngredients();
Reci peCat egory category = reci pe. get Category();
if (category !'= null) {
String categoryName = recipe. getCategory().getName();
if(StringUtils.containslgnoreCase(ingredients, "beef") &% !StringUtils.equal sl gnoreCase(categoryNane,

"beef")) {

}
}

put Fi el dError ("categoryld", "error.docunent. mai ntenance. recipe.ingredients. beef");
return fal se;

return true;

In this example, the processCustomSaveDocumentBusinessRules is called when the document is saved.
In turn, the validatel ngredients method is called. It checksthat if the category isnot null, then if “beef” is
among the ingredients, then the categoryName of the recipe must include the word “beef” init. If that is
the case, we see that the putFieldError —aconvenience method — adds the user messageto the “ categoryld”
attribute (meaning the error message will be displayed close to that attribute) and that false is returned,
meaning that the save is not carried out.

Standard KNS Events

There are eight common KNS events which apply to every document — maintenance and transactional —
built within client applications. For each, the KNS does an amount of standard validation, while leaving
customization points so client applications can add more validation business logic. They are:

218

KNS

s aq
SIUSAS J0Y Pe Tey) sisenbal
SN pus By UsYM poIED

JUSATSISENDSHOOHP VPUSS U3 NI'SUY 30 L' I[leny B0

"Juswinoop ayiano.dde pue sanbai
20y pe Ue aARo) 0} uossiwied
sey dno.biom ay) eyl pue sisixe
dnoubxiom ayr reyr — dnoibxiom
s;nos 20y pe dyr sAEpleA

[dN0.B>3J0ABINOHI0HP VPP ¥SS200.d4#81N0HdN0.IBI0 AN INOHOIOHP PP V'8 [NJ'SUX a0 LI*

1eny 610

"JuBLINOOP € 0} pappe
S| 0] anol 0] dnoibxiom
20H py ue usym ps|ed

JUBATANO.IBNJIOAMPINOHIOHP WPP Y IUSAS'3INI'SUX '3 LI 1feny 610

JUBLUNOOP
ay1 anoidde o1 uossiwied ayl sey
uosed 8y} ey} pue SsIxe plodel
S ucsiad 8yl Ul — pleA S| Uosied
aIno1 90y pe 3y} eyl sSEpleA

UOS BSINOHIOH /SSI0.0S NHUOS BB INOHIOHP VPP W/ 9 IS 8o L

1enyBio

“Juswinoop e
0] psppes|0131N0J 0} ucsled
o0y pe ue uwsym pa|ed

JUBAJUOS BRINOHIOHP VPPV USAS'3 [NI'SUX D0 1° ey B0

(Areuondip "JUBWINJOP B 0}

'Ep 3} BIA) Sj0U By} SSRPIRA 9JONPP V/SS300.1048 INYSIONPP '3 IN'SU3 301" 1eny B0 | pappe s18jou e Uoym pa|feD JUSAZRIONPP Y IUSASD NI'SUX 80 L°1[en>| B0
“MO|{IoM
ybnoJy} panoidde wuUe(q SI

JuBWN20gaA0.dd ssa00.d#e Inygiuswnooganoidd s nusuyad 1 ileny B0 | Juswnoop © usym pajed | ueAZiuawndoganodd yiexue|g iuanaa|nI'suy 8oLl ieny Bio

“JusWINOop
e suEBe uaXYe) S| uonoe

JuBWINo0geA0.dd yssa00.1d#e [ndiuswnooganoidd e inasuyaolr ieny 610 | MO|plIom B usym pa|ed JUBATIUBWINOO R0 W 1UBAS 8 INI'SUX 30 1" 1feny 610
uolepieA ‘peres
Aeuoo1p elep prepues swiojied JUBLUNDO (RARSSSI00MA0 INHIUBLUINOOJBARS 9 NI'SUY 8911 1feny 610 |S| Jusnoop © uaym pa|eDd JUSATIUBLUNIOCPAES JUBAD'BNI'SUY 01 1feny 6o

uolepien “MO|J>JOM 0} peINo.

Areuonoip eep plepue)s swiojed JUBLINDORINOXSSA000A [NYIUBLLINIOGRIN0Y B NJ'SUX 901" [fen3 B0 | S| JUSWINDOP © LdYM pa|eD JUBAZILBWUNO0JEIN0Y JUSAS'3INI'SUN 31 1feny Blo
asege NYiuewndoq

ul paw.ojied uolepieA Po|[ed poyIeL pue adeeiula|ny SaoUeISWINDLI Bul|eD Weng

SIWLAZ SN '€Galde L

219

KNS

Since the standard events have to peform standard validation, they have custom
methods to override. For instance, org.kuali.rice.kns.rules.DocumentRuleBase has a method
“processCustomRouteDocumentBusinessRules’ and it is expected that client applications will override
this method rather than processRouteDocumentBusinessRules directly.

Maintenance documents add another event to this: org.kuali.rice.kns.rule.event.KualiAddLineEvent.
This is invoked when a new item is added to a collection on a maintenance document. The
org.kuali.rice.kns.maintenance.rules.MaintenanceDocumentRuleBase also contains a number of useful
utility methods which makes writing business rules for maintenance documents easier.

Notifying Users of Errors

When a validation results in some kind of text being displayed to the user,
GlobalVariables.getM essageM ap() isused to store that text and isinquired during rendering to make sure
messages are correctly displayed. As mentioned previously, the MessageMap is made up of three different
maps: onefor errors, one for warnings, and one for information messages. Each map hasa* put” command
—for instance, putError; each hasa“has’ predicate, such as*haskErrors’; and each havethe ability to get the
propertieswith form the keys of the map aswell as any messages associated with that property. Adding, an
error message to the map is easy, as seen in this example from the IdentityM anagementGroupDocument:

d obal Vari abl es. get MessageMap() . put Error (" docunent . menber . menber | d", R ceKeyConst ants. ERROR_EMPTY_ENTRY, new
String[] {"Menber Type Code and Menber 1D'});

The method takes the property that the error is most associated with, which determines where the text will
be displayed (ie, at the top of the section which contains the given property); a key to the User Message
containing the error; and an array of Stringswhich will be interpolated into the message using the standard
Javajava.text.M essageFor mat.

Further details about the use of User Messages can be found in the KNS User Messages section.

Creating New Events

While the vast magjority of maintenance documentsin client applications will not have custom actions, it
iscommon in transactional documentsto have new events beyond the standard ones provided by the KNS
framework. Basically, any button created on a transactional document — one which resultsin acall to a
method in the transactional document’s action class — may well have an event associated with it. In that
case, there are three piecesto create for the rule: the new event, the rule instance which is called from that
event, and the default implementation for that rule.

An example from Kuali Financial Systems 3.0 will illustrate how these are used. The Cash Control
transactional document in the Accounts Receivable module has a collection of details, added viaan “add”
button. To validate that action, an event was created (this code has dightly been altered for the sake of
illustration):

package org. kual i . kfs. nodul e. ar. docunent . val i dati on. event;

public final class AddCashControl Detail Event extends Kual i Docunent Event Base {
private final CashControl Detail cashControl Detail;

publ i ¢ AddCashControl Detail Event (String errorPathPrefix, Docunment docunent, CashControl Detail
cashControl Detail) {

}

super (" Addi ng cash control detail to document " + getDocunent!|d(docunment), errorPathPrefix, docunent);
this.cashControl Detail = cashControl Detail;

public Class getRulelnterfaceC ass() {

220

KNS

return AddCashControl Detail Rul e. cl ass;
}

publ i ¢ bool ean i nvokeRul eMet hod(Busi nessRul e rule) {
return ((AddCashControl Detail Rul e)
rul e). processAddCashCont r ol Det ai | Busi nessRul es((Transacti onal Docunent) get Docunent (), this.cashControl Detail);
}

The AddCashControl Detail Event extends the KualiDocumentEventBase class, defined in the KNS. Note
that it encapsul atesthe state to check — both the document at hand and the cash control detail whichisbeing
validated. Finally, it implements the two methods which make the rule work: the getRulel nter faceClass()
and the invokeRuleM ethod(). Thisworks precisely asit doesin the KNS RouteDocumentEvent.

The AddCashControl Detail Rule looks like this:

public interface AddCashControl Detai | Rul e<F extends Transacti onal Docunent > {
publ i ¢ bool ean processAddCashControl Det ai | Busi nessRul es(F transacti onal Docunent, CashContr ol Det ai |
cashControl Detail);

}

This is very straightforward. There is a rules class, in turn, which implements this interface.
Finally, the rules have to be cdled; that occurs when an event is created and sent to the
KualiRuleService, which istypically donein the web layer’s controller. In our example, this occursin the
CashControlDocumentAction:

/1 apply rules for the new cash control detail

rul ePassed &= rul eServi ce. appl yRul es(new
AddCashCont rol Det ai | Event (Ar Const ant s. NEW CASH_CONTROL_DETAI L_ERRCR_PATH_PREFI X, cashContr ol Docurnent,
newCashControl Detail));

Now the new action will be validated properly.

KNS User Messages

Functional users need a simple way to change wording of messages used throughout a KNS client
application. Those messages may even bein alanguageforeign to that of the Foundation shipped messages
(which are shipped in English). To facilitate ease of message changing, the KNS builds functionality on
top of the standard Java message properties mechanism.

Once the Rice application has been generated, in src/main/resources, there will be a file named
configurationServiceData.xml. That file lists anumber of properties files which will be |oaded:

<confi guration>
<properties fileName="KR-ApplicationResources. properties" />
<properties fileName="KI M ApplicationResources. properties" />
</ configuration>

Each of these files are listed relative to the src/main/resources directly. A property file simply relates
messages to keys, like so (from the src/main/resources/K R-ApplicationResources.propertiesfile):

docunent . questi on. cancel . text=Are you sure you want to cancel ?

docunent . question. del ete.text=Are you sure you want to del ete?

221

KNS

docunent . questi on. del et eCont ext.text=Are you sure you want to delete [b]{0}[/b]?
docunent . questi on. di sapprove. text=Are you sure you want to [b]disapprove[/b] this docunent?

docunent . questi on. saveBef oreC ose. text=Wul d you |like to save this document before you close it?

Thisis the standard Java property file format, with keys (for instance, “document.question.cancel .text”)
related to messages.

A message may also have escaped HTML tags and templated positions in the text for other Strings to
be interpolated in. An example of this is found in the “document.question.del eteContext.text” message.
The[b] and [/b] will be trandated automatically to bold markup. The {0} will be replaced, if possible, by
another String. An example of thiswill be covered below.

Rice Best Practices suggest that each module in the client application have a KeyConstants class which
relates the names of user message keysto the String constants. or g.kuali.rice.kns.util.RiceK eyConstants
isthe key constants class for the KNS.

Developers of client applications can also override pre-existing messages. Messages are loaded in the
order listed in the configurationServiceDataxml file above, so client application specific files should be
listed later in the file. Then, if the client application user message file redefines a user message using the
same key, as so:

docunent . questi on. cancel . text=Canceling will |ead to pernmanent disuse of this docunent. Are you conpletely
certain this is the action you want to take?

users will be treated to the longer, more worried user message.

Retrieving User Messages

Retrieving the text for user messages can be done in a number of ways, based on the context the
user message occurs in. The easiest use case is to get the text of the message directly through
the default implementation of org.kuali.rice.kns.service.K ualiConfigurationService. It has a method,
getPropertyString, which, when handed the key to the message, returns the message text.

final String nessage =
KNSSer vi ceLocat or . get Kual i Confi gur ati onService().get PropertyString(Ri ceKeyConst ants. ERROR_DATE_TI ME) ;

This will return the String “{0} is not a valid date/time.” Note that in this case, the String will not be
interpolated; java.text.M essageFor mat should be used to switch the {0} with an actual, useful String.

KualiConfigurationService also has a method, getPropertyAsBoolean, which translates the messages
(regardless of case) of “true’, “yes’, “on”, or “1” asaboolean true and everything else as afase.

Error Messages

The vast majority of user messages are warnings when an error occurs. Thankfully, as was seen in the
section on validations, the KNS handles error messages through the user messages system. For instance,
in this code:

d obal Vari abl es. get Error Map() . put Error ("sonmeProperty”, CientApplicationConstants. ERROR MESSAGE, new String[]
{ busi nessCbj ect. get SoneProperty().toString() });

222

KNS

The error message displayed will be the one with the key
held by ClientApplicationConstants ERROR_MESSAGE, and the value of
businessObj ect.get SomePr operty().toString() will be interpolated into the message.

The message must be in the user messages file loaded by KualiConfigurationService.

Struts Messages

User messages are also available to the web layer of transactional documents and user screens through the
standard Struts bean: message tag.

Messages to be loaded to struts are configured viathe client application’s project configuration file, in the
rice.struts.message.r esour ces property, like so:

<param name="ri ce. struts. message. r esour ces" >KR-
Appl i cati onResour ces, org. kual i . rice. kew. Appl i cati onResour ces, org. kual i . rice. ksb. nessagi ng. Appl i cati onResour ces, KI M
Appl i cat i onResour ces</ par an>

Again, the files are listed relative to the src/main/resources directory. There is nothing to prevent
programmers from using one user message file for both the KualiConfigurationService messages and the
Struts messages.

Once Struts has these messages |oaded, it is easy to access them in a JSP page or jsp TAG file. Indeed, a
great many of the delivered Rice tags make use of these message resourcesin order to display information,
as seen from this sample from the standard kul: page tag:

<title><bean: message key="app.title" /> :: ${headerTitle}</title>
In this case, the user message — set in KR-ApplicationResources.properties — with the property key of
“app.title” will be displayed (which, by default as“Kuali”).

Developers curious about further information about the bean:message tag would be advised to read Struts
documentation of the feature: http://struts.apache.org/1.2.x/userGuide/struts-bean.html.

KNS Questions and Dialogs

Several use cases exist where extra document processing needs to occur between the submitting of a
document for routing or approval and the validation on that document. For instance, a document may be
created to purchase an airplane ticket. The initial submitter is not required to enter the airline that will
be traveled on. However, if the initial submitter attempts to route the document without an airline being
entered, a prompt can come up to ask if the submitter really meant to not enter the airline. If the answer
is yes, the document will go on to validation; if the answer is no, then the document will return to allow
the user to edit.

Prompting Before Validation

This kind of prompt is easly accomplished by giving the document an
org.kuali.rice.kns.rule.PromptBeforeValidation implementation. Thisis done viathe data dictionary:

<bean i d="Budget Adj ust ment Docunment " par ent =" Account i ngDocunment Entry" >
<property name="docunment TypeNanme" val ue="BA"/>
<property name="docunment ass" val ue="org. kual i . kf s. f p. docunent . Budget Adj ust ment Docunent "/ >

223

http://struts.apache.org/1.2.x/userGuide/struts-bean.html

KNS

<property name="pronpt Bef oreVal i dati onCd ass"
val ue="org. kual i . kf s. f p. docunent . val i dati on. i npl . Budget Adj ust ment Docunent Pr eRul es"/ >

</ bean>

The PromptBeforeValidation interface only has one method, processPrompts. It is responsible for
holding the current form at a current point, rendering a question, getting the answer to that question, and
applying that answer to the next forward. It provides alot of flexibility.

If, however, all of the questionsto ask the user can be formulated as yes/no questions, it is more advisable
to simply extend org.kuali.rice.kns.rules.PromptBeforeValidationBase and override the doPrompts
method. PromptBeforeValidationBase provides all the functionality necessarily to easily ask a yes/no
guestion or even a series of yes/no questions.

Anaysis of an example from KFS should help clarify how this works.
org.kuali.kfs.module.ar .document.validation.impl.Customer PreRules will be examined. Here is how
it overrides the doPrompts method:

@verride

publ i c bool ean doPronpts(Docunent docunent) {
bool ean preRul esOK = true;
preRul esOK &= condi tional | yAskQuesti on(docunent);
return preRul esCK;

doPrompts takes the document to act upon as a parameter and it returns a boolean variable. If true is
returned, the document will plow forward into validation. If falseis returned, then the view should return
to another forward. Which forward used will be soon revealed.

Given this information, it's obvious that the real work is occurring in conditionallyAskQuestion. And
indeed it is:

prot ected bool ean conditional | yAskQuesti on(Docunent docunent) {
Mai nt enanceDocunent mai nt enanceDocunent = (Mai nt enanceDocunent) docunent;
Cust omer newCost omer = (Customner) mai nt enanceDocunent . get NewMai nt ai nabl eQbj ect () . get Busi nessObj ect () ;
bool ean shoul dAskQuesti on = mai nt enanceDocunent.i sNew() && checkl f G her Cust oner SaneNane(newCost oner) ;

if (shoul dAskQuestion) {
String questionText =
Spri ngCont ext . get Bean(Kual i Confi gurati onService. cl ass). get PropertyString(ArKeyConst ants. Cust oner Const ant s. MESSAGE_CUSTOVER_W TH_
bool ean confirm =
super. askOr Anal yzeYesNoQuest i on(Ar KeyConst ant s. Cust oner Const ant s. GENERATE_CUSTOVER_QUESTI ON_I D, questi onText);
if (tconfirm {
super . abort Rul esCheck();
}
}

return true;

The document in this exampl e is a maintenance document, but the method works precisely the same given
atransactional document.

Logic determines, in this case, if the customer is new and if it shares the name of an existing customer. If
that isthe case, then it asks a yes/no question about if the user meant to enter a second customer with the
same name. Note that question text is specified viaa User Message; thisis a best practice.

The question is asked and the yes/no answer returned through the super .askOr AnalyzeY esNoQuestion.
That needsto be handed an 1D which uniquely representsevery asking of thisquestion—that, in conjunction
with information from the document itself, is used to identify the user response, which ends up in the
session. The other method argument is the question text itself.

224

KNS

It returns true or false. Note though, that if the response was false, that false is not returned, but instead
amethod super .abortRulesCheck(); is called.

abortRulesCheck() is simply a convenience method that sets the forward to return to as the
BASIC_MAPPING:

public void abortRul esCheck() {
event . set Acti onFor war dNanme(Ri ceConst ant s. MAPPI NG _BASI O) ;
i sAborting = true;

If application requirements determine that a“no” answer should navigate the user to a different mapping
than “basic”, then abortRulesCheck should not be used, but instead, a false should be returned from
the method, and the correct action forward name should be set on the event property inherited from
PromptBeforeValidationBase.

There is no limit to the number of times super.askOr AnalyzeY esNoQuestion can be called in asingle
pre-rules check; several questions can be chained together.

HTML Markup

In the question framework some markup support is present for formatting the question text. This markup
follows a custom syntax as opposed to HTML. Standard HTML characters will be escaped in the question
text. This is to prevent cross-site scripting attacks. The custom syntax for the supported tags is then
trandlated to the corresponding HTML when rendering the question page.

The custom syntax uses brackets to indicate tags as opposed to the standard HTML left and right angle
guote characters. Like HTML, an opening and closing tag must be present: e.g. [tag] ... [/tag]. The custom
syntax does not support empty body tags: e.g. [tag/].

Thefollowing isalist of the tags supported along with the corresponding HTML translation.

* All 1 character HTM. tags

Exanpl es:
[p] ... [/p] translates to <p> </p>
[b] ... [/b] translates to

* All 2 character HTM. tags

Exanpl es:

[br] ... [/br] translates to
 </br>

[tr] . [/tr] translates to <tr> </tr>

[td] ... [/td] translates to <td> </td>

* The font tag with color specified as hex or by nane

Exanpl es:

[font #000000] ... [/font] translates to
[font red] ... [/font] translates to

* The table tag

Exanpl e:

[table] ... [/table] translates to <table> </table>

* The table tag with style class

Exanpl e:

[tabl e questionTable] ... [/table] translates to <table class="questionTable"> </table>

* The td tag with style class

225

KNS

Exanpl e:
[td leftTd] ... [/td] translates to <td class="leftTd"> </td>

Note since the style tag is not allowed any CSS classes used must be declared in the Kuali style sheet (by
default kuali.css). In addition be aware that the one and two character tags are not verified asvalid HTML
tags. In essence, the brackets are simply replaced by the angle quotes and outputted for these tags.

When forming the question text, consideration should be given to the text length. The question text is
sent as one of the request parameters on the URL which is limited by the browser supported max length.
Keeping the text under 1000 characters will be safe across all supported browsers.

Derived Values Setters

What about those instances when aclient application has adocument that needsto set val ues based on user
input but which do not require any further user prompts before the document is validated? This is where
org.kuali.rice kns.web.derviedvaluesetter .DerivedValuesSetter stepsin.

DerivedValuesSetter has one method:

public void setDerivedVal ues(Kuali Formform HttpServletRequest request);

Nothing is returned, and the arguments are basically the web form and the servlet request itself. Values
can be gathered from either of those sources, and then values can be set anywhere on the form —though it
would typically be expected that the document in the K ualiForm would be where everything is set.

Actua examples of DerivedValuesSetter implementationsisfairly rare. Thereis one example from KFS
3.0 which will be used as an example, associated with the Organization Maintenance Document. First, the
DerivedValuesSetter is set in the data dictionary for the document:

<bean i d="0Organi zati onMai nt enanceDocunent " par ent =" Mai nt enanceDocunent Ent ry" >
<property name="busi nessQbj ect C ass" val ue="org. kual i . kf s. coa. busi nessobj ect. O gani zati on"/ >
<property name="docunent TypeName" val ue="ORGN'/ >
<property name="pronpt Bef oreVal i dati onC ass"
val ue="org. kual i . kf s. coa. docunent . val i dati on. i npl . Or gPreRul es"/>
<property name="derivedVal uesSetterd ass" val ue="org. kual i . kf s. coa. docunment . web. Or gDer i vedVal uesSetter"/>

</ bean>

The actual DerivedValuesSetter itself attempts to use the Postal CodeSer vice to set the city and state of
the organization. Here' sa simplified version:

public class OrgDerivedVal uesSetter inplenments DerivedVal uesSetter {
public void setDerivedVal ues(Kual i Form form HttpServletRequest request) {
final Organization newdrg = (Organi zation) ((MintenanceDocunent Base) ((Kual i Mai nt enanceFor m)
form . get Docunent ()). get Newhi nt ai nabl eObj ect (). get Busi nessQbj ect () ;
final String organizationZi pCode = newOr g. get Organi zat i onZi pCode();
final String organizati onCountryCode = newOr g. get Or gani zati onCount ryCode() ;
if (StringUtils.isNotBl ank(organizationZi pCode) && StringUtils.isNotBl ank(organizati onCountryCode)) {
final Postal Code postal Zi pCode =
Spri ngCont ext . get Bean(Post al CodeSer vi ce. cl ass). get ByPri maryl d(or gani zati onCount ryCode, organi zati onZi pCode) ;
if (ObjectUils.isNotNull(postal Zi pCode)) {
newOr g. set Or gani zat i onCi t yNanme(post al Zi pCode. get Post al G t yNane());
newOr g. set Or gani zat i onSt at eCode(post al Zi pCode. get Post al St at eCode());

226

KNS

Here, the new Organization business object is pulled from the maintenance document, and from that, the
zip code and country code are pulled. The code attempts to use the country and zip codes to find a postal
code, and if oneisfound, it setsthe city and state of the document.

Both PromptBeforeValidation and DerivedValuesSetter classes offer KNS client application
developers the flexibility to prompt the user or set values on a document before that document goes into
validation.

KNS Notes and Attachments

On most documents written for Rice client applications, there exists a tab at the bottom of the page, the
Notes tab. This allows document editors to attach files to the page or write explanatory notes.

How are these notes supported?

org.kuali.ricekns.bo.PersistableBusinessObject requires methods to add and programmatically
mani pulate notes on the object. Therefore, all persisting business objectsin client applications support the
addition of notes to them. This allows for a great amount of flexibility. A note, represented by objects of
class org.kuali.rice.kns.bo.Note, hold both text and links to attachments—as well as the note’s creator
and the time it was created. Therefore, such text and attachments can be associated with any persisting
business object.

However, most Rice applications use Notes mostly on documents. In this case, the Note is associated
with org.kuali.ricekns.bo.DocumentHeader objects — the header of the document. The kul:notes tag
and org.kuali.ricekns.web.struts.action.K ualiDocumentActionBasejointly provide support for adding
these kinds of notes.

The use of these notes are also authorized by a number of KIM permissions. Before notes are added, the
user is checked for having the KR-NS Add Note / Attachment permission. These permissions should
always have a permission attribute associated with document name; optionally, a permission attribute for
attachmentTypeCode can be used.

There is also the KR-NS Delete Note / Attachment permission. Two permission attributes are required
for this: both the document name, and a record for the createdBySelfOnly attribute (a boolean attribute
that may prevent end users from deleting notes created by other end users).

Finally, there isthe KR-NS View Note / Attachment permission. Just as with Add Note/ Attachment
permissions, it requires a document type name and can have an optional attachmentTypeCode.

Note's attachments are handled by org.kuali.rice.kns.service AttachmentService. By default, they
attempt to move attachments into a directory specified by the attachments.directory configuration
property; under that, each object gets its own subdirectory, with the name of the subdirectory based on
the objectld of the business object.

KNS Javascript Guide

The KNS providesanumber of waysto integrate Javascript into maintenance and transactional documents.
A configuration parameter allows a core set of Javascript files to be imported on al pages. Externa
Javascript files specific to a limited set of documents can easily be imported into pages using the data
dictionary. Several KNS tags also support response to Javascript events.

Setting the configuration parameter is easiest of all. Inthe {project name}-config.xml file for most client
applications, there already exists a generated line which looks like this:

227

KNS

<param name="j avascript.files">kr/scripts/core.js,kr/scripts/dhtm .js,kr/scripts/docunents.js,kr/scripts/
nmy_common. j s, kr/ scri pts/objectlnfo.js</paran>

These scriptswill be pulled in on every page which usesthe kul: pagetag. Note that thefile path isrelative
to the root path of the project. It bears mentioning, too, that the css.files property works the same way
for CSSfiles:

<param nanme="css. fil es">kr/css/ kual i . css</ par an»

It's not always the best idea to include Javascript pages, which the browser must parse, onto every single
page. If only certain documents or even a single document needs a given Javascript file, it is easiest
to simply tell the data dictionary entry to import the file. Here is an example from KFS's Account
Maintenance Document (AccountMaintenanceDocument.xml):

<bean i d="Account Mai nt enanceDocunent” par ent =" Account Mai nt enanceDocunent - par ent Bean"/ >

<bean i d="Account Mai nt enanceDocunent - par ent Bean" abstract="true" parent="Mi nt enanceDocunent Entry"
p: busi nessoj ect A ass="org. kual i . kf s. coa. busi nessobj ect. Account "
p: mai nt ai nabl eCl ass="org. kual i . kf s. coa. docunent . Kual i Account Mai nt ai nabl el npl ">

<property name="webScriptFiles">
<list>
<val ue>../dw/interface/ SubFundG oupServi ce.j s</val ue>
<val ue>../scripts/coal/ account Docunent . j s</val ue>
</list>
</ property>

</ bean>

Values are expected to be relative to the base application URL of the document. In this case of a
maintenance document, the URL is /application-name/kr/maintenance.do and the javascript files are

located under /application-name/scripts, hencethe “..” in the directories.

Integrating Javascript with KNS tags

As will be covered in the KNS tags section, most controls in KFS documents are rendered using the
kul:htmlControlAttribute tag. That tag has three attributes which will be passed on to the rendered
HTML control: onblur, onclick, and onchange, which will be passed on to the rendered control. (Though
thereis an exception to keep in mind: radio buttons will render what was passed in the onchange attribute
as onclick, to enhance support for a highly popular legacy browser.)

Extra buttons also support Javascript, specifically the “onclick” event handler. By setting the
extraButtonOnclick property of an org.kuali.rice.kns.web.ui.ExtraButton object to the text that should
appear in the button’s onclick call, the devel oper gains the ability to react, with Javascript, to the button’s
click.

Incorporating AJAX

Finally, we want to make our maintenance documents as interactive as possible to facilitate efficient user
experience. In this example, KFS's AccountM aintenanceDocument wants to instantly give an error to
usersif the sub fund group assigned to the account is restricted, based on other values of the account.

To accomplish this, in the data dictionary file for the AccountM aintenanceDocument, extra JavaScript
files are imported.

228

KNS

<property name="webScriptFiles">

<list>

<val ue>../dw/interface/ SubFundG oupServi ce.j s</val ue>
<val ue>../scripts/coal/ account Docunent . j s</val ue>

</list>

</ property>

The ../scripts/chart/accountDocument.js is a JavaScript file that defines the functions
onblur_subFundGroup and checkRestrictedStatusCode_Callback. onblur_subFundGroup uses the
SubFundGroupService, and to that successfully, DWR needs to create a JavaScript/Java bridge for that
access. That's the purpose of theinclusion of the ../dwr/inter face/SubFundGroupServicejsfile: it's not
area JavaScript file at all, but instead a bridge created on the fly by DWR.

Maintainable fields can then trip off the AJAX call when certain events happen:

<bean parent ="Mai nt ai nabl eFi el dDefi ni ti on" p: name="subFundG oupCode"
p:required="true" p:webU LeaveFi el dFuncti on="onbl ur_subFundG oup"
p: webUl LeaveFi el dCal | backFuncti on="checkRestri ct edSt at usCode_Cal | back"/ >

KNS

In the above example, when the user leaves the Ul field for the sub-fund group code, the
onblur_subFundGroup JavaScript function will be called, and that should popul ate the name of the sub-
fund group in the page under the Ul field.

Data Masking

It isvery common for business objectsto havefieldswhich are not viewableto all users. The KNS provides
very easy ways to mask fields throughout client applications.

Naturally, since certain end users can see the field unmasked, certain other users can seethefield partially
masked, and afinal group of users views afully masked field, KNS data masking it integrated with KIM
permissions. Specifically, there are two KIM permissionswhich are consulted by KNS data masking: K R-
NS Full Unmask Field and KR-NS Partial Unmask Field. Both of these permissions have two related
permission attribute records: onefor the field name, and one for the business obj ect component name. That
masking will automatically be applied to every use of the business abject’s field: on inquiries, lookups,
maintenance documents, transactional documents, and screens.

<bean i d="IdentityManagenment Per sonDocurnent -t ax| d- par ent Bean" parent="AttributeDefinition" abstract="true"
p: name="t axl d" p:forceUppercase="true" p:label ="Tax ldentification Nunber" p:shortLabel ="Tax |d"
p: maxLengt h="100" p:required="fal se">
<property name="control ">
<bean parent="Text Control Definition" p:size="20"/>
</ property>
<property name="attributeSecurity">
<bean parent="AttributeSecurity">

<property name="mask" val ue="true"/>
<property name="naskFormatter">

<bean parent="MaskFormatterLiteral" p:literal ="***xxxxxxuj>
</ property>

</ bean>
</ property>

</ bean>

Having a KIM permission set up is not enough, however. Client application developers also
have to associate masking with the field of the business object in the business object's data
dictionary. That is accomplished by specifying the an attribute security object with the attribute.
I dentityM anagementPer sonDocument’s taxld attribute has an example of an attribute security
declaration:

229

KNS

Thetaxld field has a TextControlDefinition for the control, and that is followed by the attribute security
declaration.

The attribute security declaration has a parent of the “ AttributeSecurity” bean. There are several boolean
properties available within the AttributeSecurity bean, but the mask and partialMask properties are the
most interesting. This declaration quite simply turns masking on —if the AttributeSecurity isleft null or
if masking or partialMask are false, then no masking will be applied to the attribute.

Also specified in the example is the maskFormatter. There is also a partialMaskFormatter which can
be set. A bean of any class which implements or g.kuali.rice.kns.datadictionary.mask.M ask For matter
can be used for this declaration. The KNS aso provides two default implementations:
org.kuali.ricekns.datadictionary.mask.MaskFormatterLiteral, which simply replaces a value
which should be masked by a litera String (in the example above, “*******x*") " gnd
org.kuali.ricekns.datadictionary.mask.MaskFor matter SubString, which replaces all but a substring
of the masked value as a String (this would be useful in partial mask situations).

The final piece of the puzzle is to get the KNS to consult the KIM permission and the business object’s
data dictionary when deciding whether or not to mask the field. Of course, the KNS renders maintenance
documents, inquiry pages, and lookups automatically — it is expected that masking will be consulted in
those situations.

This leaves only the issue of transactional documents and screens, where a client application developer
has to build JSP manually. The KNS provides a number of helper functionsto do permission checks.

Table5.4. KNS Helper Functionsfor Permission Checks

JSP Function Call Example Description

canFullyUnmaskField ${kfunc:canFullyUnmaskField ChecksKIM permissionsto determineif thefield
(businessObjectClassName, fieldName, | can be fully unmasked by the current end user.
kualiForm)}

canPartiallyUnmaskField ChecksKIM permissionsto determineif thefield

$kfunc:canPartiallyUnmaskField can be partially unmasked by the current end

(businessObj ectClassName, fieldName, | user.

kualiForm)}

getFullyMaskedValue Uses the AttributeSecurity declaration to

$kfunc:getFullyMaskedValue (className, | determine the fully masked value.

fieldName, kualiForm, propertyName)}

getPartiallyM askedValue ${kfunc:getPartiallyM askedValue Uses the AttributeSecurity declaration to
(className, fieldName, kualiForm, | determine the partially masked value.
propertyName)}

Of course, calling these functions — especially those which do KIM permission checks — can be
computationally expensive. It isalways better to check if masking has been turned on by checking the data
dictionary attribute for the field first, like so:

<c:if test="${!enpty attributeEntry.attributeSecurityMask & attributeEntry.attributeSecurityMask == true }">
<c:set var="di spl ayMask" val ue="${kfunc: canFul | yUnmaskFi el d(cl assNanme, fi el dNanme, Kuali Form ? 'false' :
"true'}" />

</c:if>

Alternatively, application developers can simply use the kul:htmlControlAttribute tag — as is the
recommended practice under any circumstance — to draw the field. kul:htmlControl Attribute already
utilizes the functions described above to make sure the field is properly masked, and as such represents
the easiest way to apply masking to fields in transactional documents and screens.

Further information about KIM permissions will be covered in KNS Authorizations. The
kul:htmlControl Attribute tag will be covered in the section on Tag Libraries.

230

KNS

KNS Authorization

In most client applications, there' s going to be aneed to guard certain end usersfrom certain functionality.
Certain documents may be locked down and only accessible to a small group of users. A tab on acertain
document may only be visible based on if a System Parameter isturned on. KNS provides a standard way
to turn on and off functionality based on conditions like these.

There are two sides to this functionality. One side is that these authorizations are integrated with KIM.
KNS provides a number of contexts where KIM permissions are called and checked, to see if the current
user is permitted to perform the action. Examples of such actionsare looking up business objects, initiating
documents, adding notes to a document, using a screen, or viewing afield on an inquiry or amaintenance
document.

The other side is business logic associated with such authorizations. For instance, KIM permissions may
be set up to allow any user of the client application to initiate a given document. However, there may be a
business requirement that the document can only beinitiated in the month of June. Since KIM permissions
cannot capture that kind of logic, KNS provides point where programmers can create such logic.

When building KNS documents, there are two classes associated with the document which make these
authorizations: the Document Presentation Controller and the Document Authorizer.

The Document Presentation Controller is where business logic authorizations are handled. These classes
must implement the org.kuali.rice.kns.document.authorization.DocumentPresentationController.
There are also interfaces for M aintenanceDocumentPresentationController and
Transactional DocumentPresentationController, each tailored to their respective document families.

The Document Authorizer is the class that does the KIM permission checks. Once again, there is
an interface, org.kuali.rice.kns.document.authorization.DocumentAuthorizer, which al document
authorizers must implement, and it also has two sub-interfaces, MaintenanceDocumentAuthorizer and
Transactional DocumentAuthorizer.

In cases where an authorization is checked by both presentation controller and authorizer, the
presentation controller is called first, and then it's result is somehow sent to the authorizer. For instance,
DocumentPresentationController has a method, getActions(), which returns a Set of Strings, each
representing a standard document action (for instance, the Route document action). That Set is then sent
as an argument to the DocumentAuthorizer; the DocumentAuthorizer only performs KIM checks for the
actions that have been handed to it.

The classes for both the document authorizer and presentation controller are set in the document in the
data dictionary. Here' s an example, from the sample travel application:

<bean i d="Travel Request" parent="Travel Request - par ent Bean"/ >

<bean id="Travel Request - parent Bean" abstract="true" parent="Transacti onal Docurment Entry">
<property name="docunment TypeNanme" val ue="Travel Request"/>
<property name="docunent C ass" val ue="edu. sanpl eu. travel . docunment . Tr avel Docunent 2"/ >
<property name="docunent Aut hori zer d ass"
val ue="edu. sanpl eu. travel . docunent . aut hori zer. Tr avel Docunent Aut hori zer"/ >
<property name="docunent Present ati onControl | erd ass"
val ue="edu. sanpl eu. travel . docunent . aut hori zer. Tr avel Docunent Present ati onControl [er"/>

</ bean>

The classes for the authorizer is given to the documentAuthorizerClass property of the main document
bean, and the presentation controller class is specified in the documentPresentationControllerClass
property. Thisisthe same for maintenance documents as well. Once these are specified, the proper classes
will be constructed at authorization invocation contexts automatically.

231

KNS

Common Document Authorizations

There aretwo authori zations which are common to all documents. I n both cases, the document presentation
controller is called and then the authorizer if needed.

The first common authorization is the document initialization authorization.

DocumentPresentationController has this method to be overridden for business logic about when a
document can beinitialized:

public bool ean canlnitiate(String document TypeNane) ;

The DocumentAuthorizer aso has a:

public boolean canlnitiate(String docunment TypeNane, Person user);

The DocumentAuthorizer checks the KR-SY S I nitiate Document permission.

The second common authorization is handled by DocumentPresentationController#fgetDocumentActions:

public Set<String> get Docunent Acti ons(Docunent docunent, Person user, Set<String> docunentActions);

It passesits result to DocumentA uthorizer#getDocumentActions:

Thisauthorization actually handles many common authorizations which need to be passed to the document
presentation layer. The Set returned by the DocumentAuthorizer is converted into a Map, where each
element in the Set becomes a key of the Map. That Map can then be accessed in any web page or tag
through the K ualiForm.documentActions variable.

org.kuali.rice.kns.document.authorization.DocumentPresentationController Base defines a number
of protected methods which are inquired when the Set returned by getDocumentActions is built.
Builders of client applications are far more likely to override one of those helper methods than override
getDocumentActions from scratch.

Table5.5. Document Presentation Controller M ethods

DocumentPresentationControllerBase method | Purpose Related Authorizer Permission
protected boolean canEdit(Document | Determinesif the document can beedited; if false | KR-NS Edit Document
document) isreturned, then all fields arein aread only state

protected boolean canAnnotate(Document | Determines if any ad hoc requests can be added

document) to the document.

protected boolean canReload(Document | Determinesif the document can bereloaded from

document) the database.

protected boolean canClose(Document | Determines if the document can be closed,

document) returning the end user to the portal.

protected boolean canSave(Document | Determines if the document can be saved. KR-WKFLW Save Document
document)

protected boolean canRoute(Document | Determines if the document can be routed to| KR-WKFLW Route Document
document) workflow.

protected boolean canCancel(Document | Determines if the document can be canceled. KR-WKFLW Cancel Document
document)

protected boolean canCopy(Document | Determines if the document can be used as the| KR-NS Copy Document
document) template for a new document.

232

KNS

DocumentPresentationControllerBase method

Purpose

Related Authorizer Permission

protected boolean
canPer formRouteReport(Document

document)

Determines if the future requests workflow
report can be viewed.

protected boolean
canAddAdhocRequests(Document document)

Determines if the document can have ad hoc
routing requests added to it.

KR-NS Send Ad Hoc Request

protected boolean
canBlanketApprove(Document document)

Determines if the document can be blanket
approved.

KR-WKFLW Blanket Approve Document

protected boolean canApprove(Document
document)

Determines if the document can be approved.

KR-NS Take Requested Action

protected boolean canDisapprove(Document
document)

Determinesif the document can be disapproved.

KR-NS Take Requested Action

protected boolean
canSendAdhocRequests(Document

document)

Determines whether the document will be
alowed to send itself to KEW to fulfill ad hoc
requests.

KR-NS Send Ad Hoc Request

protected boolean
canSendNoteFyi(Document document)

Sends an FY| to previous approvers if anote is
added.

KR-NS Send Ad Hoc Request

protected boolean
canEditDocumentOver view(Document
document)

Determines if the fields in the document
overview (title, etc) can be edited.

KR-NS Edit Document

protected boolean canFyi(Document | Determinesif the document can be FYI'd. KR-NS Take Requested Action
document)
protected boolean | Determines if the document can be|KR-NS Take Requested Action

canAcknowledge(Document document)

acknowledged.

DocumentAuthorizer also contains a number of methods which are not subject to document presentation

controller input. These are:

Table5.6. Document Authorizer Methods

Document Authorizer method

Description

KIM Permission Checked

public boolean
document, Person user);

canOpen(Document

Determines if the current user can open the
document

KR-NS Open Document

public boolean canReceiveAdHoc(Document

Determines if the person, for whom there is a

KR-WKFLW Ad Hoc Review Document

document, Person user, String | proposal to add an ad hoc routing request, can

actionRequestCode); receive that ad hoc routing request

public boolean | Determines if the current user can add a note to | KR-NS Add Note / Attachment
canAddNoteAttachment(Document the document.

document, String attachmentTypeCode,

Person user);

public boolean | Determines if the current user can delete a note| KR-NS Delete Note / Attachment
canDeleteNoteAttachment(Document on adocument.

document, String attachmentTypeCode,

String createdBySelfOnly, Person user);

public boolean
canViewNoteAttachment(Document
document, String attachmentTypeCode,
Per son user);

Determinesif the current user can view anote on
the document.

Maintenance Document Authorizations

KR-NS View Note/ Attachment

A couple of authorizations are specific to maintenance documents. The document presentation controller
and document authorizer diverge somewhat on which methods they support to control authorizations in
documents, so each will be treated separately, save for the one method they do share.

That one method is canCr eate. Here is MaintenanceDocumentPresentationController’ s declaration of the

method:

publ i ¢ bool ean canCreate(d ass bod ass);

233

KNS

It takes the class of the business object, of which the end user is attempting to create a new record of
through a maintenance document. Business logic can be written to determine if new records of the given
class can be created through a maintenance document.

MaintenanceDocumentA uthorizerBase checks the KR-NS Create / Maintain Record(s) to see if a new
business object of the type can be created for its corresponding check.

MaintenanceDocumentPresentationController has two methods which do not have paralels in the
MaintenanceDocumentAuthorizer. They are:

public Set<String> getConditionall yReadOnl yPropertyNanmes(Mai nt enanceDocunent docunent);

public Set<String> getConditionall yReadOnl ySecti onl ds(Mai nt enanceDocunent docunent);

To understand this, recall that if there is afield on a maintenance document which is unconditionally read
only, that is set within the data dictionary file for that maintenance document. Of course, it brings up the
guestion of what to do if afield or a section is read only some times based on certain business logic and
editable at others.

The answer to this has been provided by the MaintenanceDocumentPresentationController. A Set of
the property names of the fields or names of the sections which are, given the current condition of the
MaintenanceDocument argument, currently read only is returned from the method.

MaintenanceDocumentAuthorizer’ s separate methods are similar to canCreate. ThefirstiscanMaintain,
which determines if the current user can edit an aready existing business object. There is also
canCreateOrMaintain, which combines the KIM permission checks when the document is routed to
make sure the routing is valid.

Finally, MaintenanceDocumentAuthorizer has a method:

public Set<String> getSecurePotentiallyReadOnl ySectionlds();

Unlike most methods in MaintenanceDocumentAuthorizer, this method was actually specified to be
overridden. It returns a Set of the names of sections on a maintenance document which may be read only
based on the user.

Maintenance Document/Inquiry Authorizations

Because maintenance documents and inquiries are rendered using the same code, authorizations which
control that rendering are shared between the two. There are two such permissions; KR-NS View Inquiry
or Maintenance Document Field and KR-NS View Inquiry or Maintenance Document Section. Since
maintenance documents allow editing in addition to viewing, there are two other permissions which
control the ability of end usersto edit: KR-NS Modify Maintenance Document Field and KR-NS Modify
Maintenance Document Section.

These are used only as KIM permissions, and they are invoked directly within the rendering framework.
Their purposeis asfollows:

* KR-NS View Inquiry or Maintenance Document Section will only render a whole tab section to those
with the permission.

KR-NS Modify Maintenance Document Section will only allow edits for a whole tab section to those
with the permission; otherwise, the fields within the section will be rendered as read only.

234

KNS

* KR-NS View Inquiry or Maintenance Document Field will only render afield to entities granted this
permission.

* KR-NS Modify Maintenance Document Field will only alow edits of a field to entities granted this
permission; the field will otherwise be rendered as read only.

If no KIM permission is specified for agiven section or field, it is assumed that it is viewable on both the
Inquiry and Maintenance Document and the field will be editable on the Maintenance Document.

There are no document presentation controller methods to overrideif the ability to view or edit parts of an
inquiry or maintenance document based on business logic. If a client application has such a requirement,
adventurous technical personnel areinvited to look at M aintainableftgetRows and | nquir able#getRows.
The subject is otherwise outside the scope of this document.

Transactional Document Authorizations

There is only one major authorization which is added to
Transactional DocumentPresentationController and Transactional DocumentAuthorizer: getEditM odes.
Much like DocumentPresentationController #getDocumentActions(),

Transactional DocumentPr esentationController #getEditM odes() takes as an argument the document
the authorization is being asked of and returns a Set of Strings.

Unlike DocumentPresentationController #getDocumentActions(), though,
Transactional DocumentPresentationController#getEditModes() does not have a set of standard
actions it returns. Instead, it is designed specifically to allow any kind of action through the web
presentation layer. There, the edit modes can be checked and acted upon in document specific ways.

How isthis helpful ? In maintenance documents, since the KNS handles the rendering in a standard way, it
is easy to turn sections on and off; KIM permissions or work through the maintainable can accomplish. In
transactional documents in the other hand, rendering is more manual. However, getEditM odes provides
away for the business logic layer to communicate information to the presentation layer.

To get the presentation layer to not display a section, then, a presentation controller might be written as so:

publ i ¢ Exanpl eDocunent Present ati onControl | er extends Transacti onal Docunent Presentati onController {
public Set<String> get Edi t Modes(Docunent docunent) {

final Exanpl eDocunent exanpl eDocunent = (Exanpl eDocunent)docunent;
Set<String> edi t Modes = new HashSet <String>();
i f (exanpl eDocunent. dont ShowExtraSection()) {

edi t Modes. add(" NO_EXTRA_SECTI ON') ;

return editMdes;

}

Then, in Example.jsp, we may have code that looks like this:

<c:if test="${!Kuali Form editingMde[' NO EXTRA SECTION]}">
<kul :tab tabTitle="Extra Section" defaul tQpen="true" tabErrorKey="${Constants. EXTRA_SECTI ON_ERRORS} ">

</ kul : t ab>

</c:if>

Edit Modes aso go through the document authorizer, meaning that there is a permission associated with
them; KR-NS Use Transactional Document. Expected permission details are the document type and the
name of edit mode (in this example, “NO_EXTRA_SECTION").

235

KNS

Other Authorizations

Finally, there are two permissions which do not affect documents but only business objects. They are:

* KR-NS Look Up Records, which determines if records of the given type can be
looked up by the current user. Client applications seeking to change this based
on business logic would likely override the business object's implementation of
org.kuali.rice.kns.lookup.L ookupableHelper Ser vicetiget Rows().

* KR-NS Inquire Into Records, which determines if the current user can inquire into
records of the given business object. Client applications seeking to change this
based on business logic would likely override the business object’'s implementation
of org.kuali.rice.kns.lookup.L ookupableHe per ServicettgetlnquiryUrl() or its implementation
of org.kuali.ricekns.inquiry.lnquirabletgetinquiryUrl(BusinessObject businessObject, String
attributeName, boolean for cel nquiry), depending on the use case.

Overriding Document Authorizers

Document authorizers handle their callsto Kuali Identity Management in standard ways already. Because
this side of authorizations mostly relies on KIM configuration, there is very little reason to override
Document Authorizers. In fact, such overrides only occur to accommodate one of the two following
situations.

The first situation is when a client application-specific KIM permission which affects documents is
invoked. In this case, it is a best practice to give developers the ability to change this logic through the
document presentation controller, and then do the actual KIM permission call in the document authorizer.
Document authorizers were designed to be standard permission invocation contexts, and using them as
such makes devel opment much easier.

The second situation isto add extraattributesto permission detail attribute sets, role qualifier attribute sets,
or to both. These extra attributes are sent on every KIM permission call performed by the authorizer. The
reason for doing this is to make sure that permissions and roles can qualify properly when the document
authorizer performsits call.

For example, imagine a role where the users are qualified by a client application specific field. The
document authorizer does not know where or how to gather the data for that field, and yet it must be sent
to KIM for the role members to be resolved correctly. Therefore, the

protected void addRol eQual i fication(Busi nessCbj ect busi nessObject, Map<String, String> attributes)

method should be overridden, and the attributes argument should be filled with values from the
businessObject (which may well be a document) to make sure the role is resolved correctly.

The same can be done for permission details:

protected void addPerm ssi onDet ai | s(Busi nessCbj ect busi nessObj ect, Map<String, String> attributes)

Finally, if acertain attribute is used both in finding the permission viathe permission details and resolving
the role, then the following method should be overridden; it will add the attribute to both:

protected void addStandardAttri butes(Document docunment, Map<String, String> attributes)

236

KNS

KNS Exception Handling and Incident
Reporting

Any complex Java system are subject to the occurrences of exceptions. From missed assignments which
cause NullPointerExceptions to network issues which cause SQL Exceptions be thrown, the unexpected
happens—even in Rice applications.

Because of this, Rice builds on top of Struts’ exception mechanism to provide an easy way for exceptions
to be handled and for incidents to be reported to the proper maintenance group.

When a developer creates a Rice application, there should be several struts-config.xml files created. The
developer’s own struts-config.xml, of course, existsin { project_root}/src/main/webapp/WEB-INF. It will
automatically be created with the following entry:

<gl obal - excepti ons>
<exception type="java.l ang. Thr onabl e"
handl er="org. kual i . ri ce. kns. web. struts. poj 0. St rut sExcepti onl nci dent Handl er"
key="neani ngl ess" />
</ gl obal - excepti ons>

This tells Struts that if any exceptions—or even Errors for that matter!—
reech the Struts request processor, then it is to redirect the application to the
org.kuali.rice kns.web.struts.pojo.StrutsExceptionl ncidentHandler. Thishandler, in turn, redirectsto
the following forward:

<action path="/kual i Excepti onl nci dent Report"

type="org. kuali.rice.kns.web. struts. action. Kual i Excepti onHandl er Acti on">
<f orward name="basi c" path="/kr/kual i Excepti onl nci dent Report.do" />

</ action>

This forward does a number of things. First, it sends the
exception to org.kuali.rice.kns.service K ualiExceptionl ncidentSer vicetfget Exceptionl ncident
to wrap the exception, and then reports the wrapped exception to
org.kuali.rice.kns.service. K ualiExceptionl ncident Ser vicetr eport.

In the default implementation, org.kuali.rice.kns.service.K ualiExceptionlncidentSer vicetreport
emails the mailing list specified in the KualiExceptionlncidentServicelmpl.REPORT_MAIL_LIST
configuration parameter. The rest of the mail can be configured by overriding the service bean’ s message
template:

<bean i d="knsExcepti onl nci dent Servi ce"
class="org. kuali.rice.kns.service.inpl.KualiExceptionlncidentServicel npl">
<property name="mail Servi ce"><ref bean="mail Service"/></property>
<property nanme="nessageTenpl ate">
<bean cl ass="org. kuali.rice.kns. mail.Muil Message">
<l-- The property place hol der bel ow nmust be specified in common-config-default.xm or any other
KNS configuration file -->
<property nanme="fromAddress" >
<val ue>${kr.incident.mailing.list}</value>
</ property>
</ bean>
</ property>
</ bean>

Then the action redirectsthe user to the error page. In production environments, this page simply notesthat
an error occurred and that it had been reported to the system’s administrators. Helpfully, it also provides

237

KNS

atext box so the user can describe the steps leading up to the incident. In development environments, this
page also displays the top stack trace of the exception which occurred.

With this reporting mechanism, incidents are properly reported and can be responded to and fixed.

KNS System Parameters

Often times, there are changes in functionality in a client application which functional users want to have
control over without an undue technical burden. For instance, a certain set of documents may be associated
with abank; information about abank is shown on the screen of each of the documents. If more documents
are among those to show bank information, functional users would love it if they could just create one
maintenance document and that change took effect. By coding with system parameters, such functionality
is achievable within the KNS.

A System Parameter is simply a business object which holds text. That text will be used in one of three
standard ways: simply astext itself, asan indicator of whether certain logic should be performed or not; or
to seeif avalue from logic falls within a certain set of values. The advantage of using System Parameters
isthat they are easily changed since a maintenance document already exists as part of the KNS for them.

Parameters are used either for configuration, as described above, or for validation —for instance, if afield
on adocument can only have one of a certain number of values, and those values need to be changed by
afunctional user, then a System Parameter would be helpful.

It should be noted that the maintenance of System Parametersis only authorized to those granted the KR-
NS Maintain System Parameter KIM permission.

Getting text from a system parameter

The data from a system parameter can be retrieved through the Par ameter Ser vicetiget Par ameter Value
method, using the parameter’'s name to identify the parameter. The parameter's name has three
components: a namespace, a parameter detail type code, and a name field.

The namespace matches a KNS modul€’' s namespace code, typically the namespace code of the module
whichinvokesthe parameter. For instance, parameters called within the KNSitself use the base namespace
code of “KR-NS’

The name of the parameter should be unique within certain constraints: it must be unique with the
namespace, the parameter detail type code, and, aswill be covered below, the application namespace. This
means that, for instance, if a client application is written with two modules, both modules could create a
system parameter with the same name because they would have different namespace codes. Indeed, system
parameters within the same module can be named the same thing if they have differing parameter detail
type codes.

The parameter detail type codeisthe most difficult to understand. To understand why, the method signature
of Parameter Ser vicetfgetPar ameter Value must be investigated.

public String getParaneterVal ue(C ass<? extends Object> conponentC ass, String paraneterNane);

Instead of a String namespaceCode and a String parameterDetail TypeCode, a Classis sent in. That class
typically represents the class which will make use of this specific system parameter. From that classis
determined both the namespace code and the parameter detail type code.

Finding the namespace code is typically done by looking at the package prefixes in the
module configuration. If a class needs to be in a different namespace, it can have the

238

KNS

@org.kuali.rice.kns.service.Parameter Constants NAM ESPACE annotation can be used to specify
something different.

There is also an @org.kuali.rice.kns.service.Parameter Constants. COMPONENT annotation which
can be used to specify a specific parameter detail type code. If that is missing, though, then an algorithm
inspects the class to see what parameter detail type code is most appropriate:

» If the class represents a transactional class, then the parameter detail type code will the
sample name of the class with the trailing expected “Document” removed. For instance,
org.kuali kfs.fp.document.Disbur sementVoucher Document has a parameter detail type code of
“DisbursementV oucher”

« If the class represents a business object, then the parameter detail type code will be the simple class
name. Business object class “ org.kuali.kfs.fp.businessobject.PayeeDetail” will have a parameter detail
type code of “PayeeDetail”

» Any other classwill use the simple class name. This particular behavior will eventually be deprecated.

Based on these standards, it should be easy to tell what the parameter detail type codefor agiven parameter
should be.

The parameter’s value is then a simple lookup using the class making the call to ParameterService and
the name of the parameter:

final String paraneterVal ue = KNSLocat or. get Par anet er Ser vi ce() . get Par anet er Val ue(t hi s. get d ass(),

"SI MPLE_VALUE") ;

The parameterValue can then be used for whatever purpose the business logic requires.

Using an indicator parameter

An indicator parameter's text is either “Y” or “N”; invoking that parameter as an indicator
parameter simply means that the text will be trandated to its corresponding boolean
value. It is accessed through Parameter Servicetgetl ndicator Parameter, which works much as
Par ameter Ser vicettget Par ameter Value does:

i f (KNSLocat or. get Paranet er Servi ce(). get Paranet er|ndi cator(this.getCd ass(), "EXECUTE_LOG C IND")) {

}

/1 do sonething...

Parameter Evaluators

Using parameter text is fine if there is only one value in the text. However, very often a parameter may
need to be associated with several pieces of text.

For instance, the first example of the System Parameters section talked about having bank information
applied to acollection of documents. It seemsinefficient to create abunch of indicator parametersfor this.
It would be better to create one parameter with a number of document types in the txt.

Thisis easily done. The standard way is to list the document types in the text, separated by semi-colons
as so: FirstDocument Type; SecondDocumentType; ThirdDocumentType

While that could be retrieved viathe Parameter ServicettgetParameterV alue method and then split, there's
amuch better way to examine the value: through the use of a parameter evaluator.

239

KNS

ParameterEvaluators are simply objects which take values from the environment and see if they made the
constraints of the parameter. It will do the parsing of the parameter itself and then attempt to match that
against an input value:

KNSSer vi ceLocat or . get Par anet er Ser vi ce() . get Par anet er Eval uat or (Par anet er Const ant s. NERVOUS_SYSTEM DOCUMENT,

“ BANK_DOCUMENT_TYPES”, docunent. get Docunent Type()) . eval uati onSucceeds();

This looks at the KR-NS / Document / BANK_DOCUMENT_TYPES parameter, splits its semi-colon
valued, and then matches document.getDocumentType() against each of the values returned from the

split.

The constraint code of the system parameter, mentioned earlier, is invoked at this point.
evaluationSucceeds() will return true if document.getDocumentType() is within the values in the
parameter and the parameter constraint codeis“A” (“alow”). If, on the other hand, the constraint codeis
“D” (“deny”) and the document type is matched in the parameter’s values, a false will be returned — the
document type sent in is denied by the parameter.

(Parameter accessed through getPar ameter Value() and getl ndicator Par ameter () should simply set their
constraint codeto “A”).

System parameters used for validation can add errorsif the evaluation fails through the parameter value:

KNSSer vi ceLocat or . get Par anet er Ser vi ce() . get Par anet er Eval uat or (Par anet er Const ant s. NERVOUS_SYSTEM DOCUMENT,

“VALI D_DOCUMENT_TYPES”, docunent. get Docunent Type()). eval uat eAndAddEr r or (docunent . get G ass(),
“errorPropertyNanme”, “error.invalid.docunent.type. message”);

Inthisexample, if thevalue of document.getDocumentType() does not match the valuesin the parameter,
an error will automatically be added to error PropertyName on the document, and the user message with
the key of error.invalid.document.type.message will be shown. Once againgt, the system parameter’s
constraint code is used to determine if the value succeeds or not.

The parameter evaluator can handle more complex situations aswell. Take an example where avalidation
needsto check that, if abusiness object has acertain “ dispersementCode”, then a child business object has
a specific “reimbursementCode”. In this case, the system parameter’ s value might look like this: A=Z

This means that if the dispursementCode of the parent is A, then the reimbursementCode of the parent
must be Z. This parameter can be used with the semi-colon to form alist: A=Z;B=X;C=K

The ParameterEvaluator call is again straightforward:

i f (KNSServicelLocat or. get Paranet er Servi ce(). get Paranet er Eval uator (thi s. get G ass(), "PARENT_CH LD MATCH',

}

par ent. get Di sbur sement Code(), chil d. get Rei mbursement Code() . eval uati onSuceeds()) {
/1 do sonething...

Here, getParameterEvalutor is given the parameter class, the name of the parameter, the code of the parent
and then the code of the child, but works as ParameterEval uator worked before.

What if the parent’ s di sbursementCode allowed two different reimbursementCode’ s? Then the parameter’s
text would look like this: A=Z,Y;B=X,Y;C=K,J,L

Commas separate the child's distinct values. The invocation of the parameter evaluator is precisely the
same as the call above:

240

KNS

Par ameter Ser vicettget Par ameter Values() can return aparsed version of amultiple value parameter, and
there is a version of Parameter ServicettgetParameter Value() which takes in a constrained value for
parameters in the form of “A=B"; if given thevalue“A”, it will ssimply return “B”.

Calling missing System Parameters

All of the methods which use a parameter’'s value — Parameter ServicetfgetParameterValue,
Par ameter Servicetget| ndicator Parameter, and Parameter ServicetgetPar ameter Evaluator — will
throw an exception if the system parameter with the specified name cannot be found. If there is an
expectation in the code that a parameter may not be found in the database, then it is advisable to call
Par ameter Ser vicetipar ameter Exists method first. If the method returnstrue, then it is safe to use any of
the methods above to utilize the parameter’ s value.

This is often useful in cases where there is a parameter that is different from document to document, but
for which there exists a default fallback case. It would work like this:

final ParaneterService paraneterService = KNSLocat or. get Par anet er Servi ce();

if (paraneterService. paranet er Exi st s(docunent . get 0 ass(), "EXAWMPLE_VALUE")) {
return paraneterService. get Paranet er Val ue(docunent . get 0 ass(), "EXAWMPLE VALUE");
} else {

return paraneter Service. get Paranet er Val ue(Par anmet er Const ant s. NERVOUS_SYSTEM DOCUMENT, " EXAMPLE_VALUE");
}

In this example, Parameter Servicetparameter Exists is caled to see if there's a parameter named
“EXAMPLE_VALUE" with the namespace and parameter detail code of “document”. If that exists, then
it returns the value of that parameter. If it does not exigt, it uses the more general KR-NS/ Document /
EXAMPLE_VALUE parameter.

Overriding Rice Parameters

Rice comes with a number of system parameters which affect KIM, the KNS, and KEW. They have
namespace codes“KR-IDM”, “KR-NS’, and “ KR-WKFLW” respectively. These provide defaultsfor Rice
behavior which occurs in sample applications.

Thisposesaproblem. If aclient applicationisbuilt to be used with astandal one Rice server, then each client
application would have to share the defaults set in these system parameters. To alow client applications
to have the ability to set these Rice system parameters separately from other client applicationsin ashared
Rice server, the application namespace code field was added.

For instance, Rice applications come with a system parameter KR-NS / All / DEFAULT_COUNTRY
which lists the default country code used in the application. If, for some reason, a client application
needed a separate DEFAULT_COUNTRY, anew system parameter would need to be created through the
maintenance document. The existing system parameter and the new system parameter would differ only
in their values and in their application namespace codes.

All Rice system parameters come with the default Rice application namespace code of “KUALI”. If the
client application’s version of the KR-NS/ All / DEFAULT_COUNTRY had an application namespace
code matching that of the app.namespace configuration property of the client application, then that would
be used before the KR-NS / All / DEFAULT_COUNTRY parameter with the “KUALI” application
namespace.

Building Screens using the KNS Tag Libraries

The Kuali Nervous System handles the rendering of several pieces of standard functionality: maintenance
documents, inquiry pages, and lookups. However, that leaves two pieces of functionality where writing

241

KNS

JSP is required: on transactional documents and on non-document screens. However, even though JSP
coding is required in these cases, the KNS still provides a wealth of rendering functionality through the
use of tag libraries.

This section examines several categories of the most used tags that are provided by the KNS.

Implicit Variables

The KNS provides a number of implicit variables which can be used in the context of JSP pages. These
variables exist to give the web layer the ability to read variables from the other KNS layers.

For instance, the variable Constants is used to give web layer developers access to
org.kuali.ricekns.util. KNSConstants, as so:

<c:if test="${Kuali Form docunentActi ons[Constants. KUALI _ACTI ON_CAN_EDI T] }" >
Howdy, end user! You can edit this page!

</c:if>
Client applications often overload this variable to hold not only KNS constants but application
specific constants as well. There is also a RiceConstants variable which holds the constants in
org.kuali.rice.core.api.util.RiceConstants, a KewApiConstants which holds all of the constants
in org.kuali.ricekew.util. KewApiConstants, and a PropertyConstants which holds the values in
org.kuali.ricekns.util. KNSPropertyConstants.
All configuration properties are loaded into a variable ConfigProperties

<p>

appl i cati on nanespace is <c:out val ue="${Confi gProperties['config. nanmespace']}" />

</ p>

The entirety of the data dictionary as also exposed in the map constant DataDictionary. The keysfor this
map are either the simple class name of a business object:

<c:set var="countryBODat aDi ctionaryEntry" val ue="${DataDictionary[' Countrylnpl']}" />

Or, for documents, the KEW document type name:

<c:set var="identityManagenent Per sonDocunent Entry"
val ue="${Dat aDi cti onary[' | dentityManagenent Per sonDocunment']}" />

Data dictionary values can then be accessed via JSPEL .

Thefina implicit variable to mention is KualiForm. Thisisthe Struts form for the current page. For JSP
pages supporting transactional documents, val ues from the document can be read through KualiForm. As
such, thisimplicit variable is practically the most used.

These implicit variables work together to support the various tags the KNS provides.

Tags for Layout

KNS applications have a standard look, and client application devel opers will want to preserve that 1ook.
KNS layout tags provide an easy way to use the KNS look and feel.

First of all, JSP pages using tag libraries need to have @taglib directives added to the page:

242

KNS

The KNS tag library istypically imported with the kul: prefix:

Thankfully, acollection of common JSTL, Struts, and Rice tags are readily imported using asingle import
at the top of any custom devel oped JSP page:

Having done that, the developer can use the kul: page tag to draw the main outline of the page, such asin
this example, from KFS's Format Disbursements page (for matselection.jsp):

Thekul:page simply draws the frame around the page. It has two required attributes: the docTitle, which
isthetitleit will usefor the pageinthegray bar which runs along the top, and the tr ansactional Document
attribute, which should only be true if the JSP page is supporting a transactional document.

This example usesanumber of other attributesaswell. The header Titleiswhat will show inthe browser’s
title bar. showDocumentinfo will treat the page as a document page and will attempt to, for instance,
show alink for document type. The errorKey isthe key for errors which should be associated with the
top level of the page (in this case, it likely should have been neglected). Finally, the htmIFormAction is
the url to the action that the form within the page — every page is assumed to have HTML form data, so
an HTML form variable is constructed for it — should post to.

There's also a convenience tag that encapsulates the kul:page with all of the attributes needed for
documents turned on: the aptly named kul:documentPage, exemplified here from the sample travel app:

The only required attribute here is documentTypeName; the docTitle will display the label from the data
dictionary entry associated with this document, and the value for the transactionalDocument attribute
will also be determined from the data dictionary entry. All other attributes will simply be passed along
to the kul: page tag.

The kul:documentPage tag makes sure that not only isthe document title splashed across at the top of the
pagewith alight gray, scrubbed |ooking background graphic, but also shows common read-only document
information: document number, KEW workflow status, initiator, and when the document was created.

The next most distinctive visual feature of KNS pages are the tabs which visually organize related
information (through headers, it organizes the information for sight disabled end users aswell). The KNS
provides amain tag to draw these: not surprisingly, it’s the kul:tab tag.

Here is an example of the tag, again from travelDocument2.jsp, which is part of the sample travel
application:

There is only one required attribute for the tab: defaultOpen, which declares whether the tab should be
initially rendered asopen or closed (all tabs can be opened or closed oncerendered). However, thisexample
gives us anumber of other useful attributes aswell. tabTitle isthe name that will appear in the tab; while
not required, best practice suggests that developers provide one so the tab have alabel even when closed.
tabErrorKey lists the keys that will be associated with this tab; when those errors are rendered, their
messages will be associated with the given tab.

Another thing to notice in the example was the inclusion of adiv with class “tab-container”. In practice,
practically all KNS tabs have such atab included. This leads to the natural question of why the tab is not
part of the tag itself.

Thediv with aclass of “h2-container” draws aheader stripe at the top of the tab, with ablack background
and white text. This distinctive visual element should be used to mark off sub-sections of the tab.

Thereisasoakul:subtab. Thisvisually providesan in-set tab, typically set off with astripethat hasagray
background and bolded black text. KIM's I dentity Management Person Document, has such an example.
It includes the tag per sonContact.tag, which builds a tab:

This splits the various sub-sections into distinctive visual elements.

243

KNS

Theonly required attribute for the tag iswidth, which specifiesthe width of the sub-element (kul:subtab’s
are sometimes shorter than their surrounding tab —while they are always rendered with some padding, the
amount of padding and thus the amount of visual separation can be increased as width is decreased).

Sub tabs often have titles, specified through the subTabTitle attribute. Whereas all tabs have hide/show
buttons, they can be turned off from sub tabs through the use of the noShowHideButton attribute.

Finally, sub tabs are often associated with lookups, they have two attributes, lookedUpBODisplayName
and lookedUpCollectionName, which allow results of lookups to be displayed in the sub tab itself.

Astute readers will have noticed an important visual point about tabs: the tab is rendered with the tab title
in an offset visual element (like the tab in a file folder) and behind it is the gray background of the tab
above. However, the top tab does not have atab above it. Therefore, for that special top tab, there is a
kul:tabTop whichisidentical to the kul:tab tag, savethat it visually looks like the top tab. Also, to round
off the bottom tab, there is a tag, kul:panelFooter, which takes no attributes, which will round off the
bottom corners of the set of tabs.

It should be noted that for documents, general practice isthat the top tab provides the standard set of fields
that all KNS documents have: the document description, which is a required field, as well as atext area
for the document explanation and an internal Org Doc #. Since this is standard, the KNS provides a tag,
kul:documentOver view, which displays these fields and which is commonly the top tab of the document
(thus obviating the need for the developer to use the kul:tabTop tag).

Practically al documentswill sharethisline of code asthetop tab. The editingM ode attribute is required,
but will practically always be the value of KualiForm.editingM ode.

Armed with these visual layout tags, client application developers are ready to start filling in pages with
form controls.

Tags for Controls

Certainly, controlscan behard coded in JSPfilesasHTML. However, the KNS provides several tagswhich
provide standard functionality to controls—thus preserving the flexibility of declaring control information
inthe data dictionary aswell as supporting masking, accessibility, and anumber of other concerns without
the application developer needing to concern with those details.

The basic tag for showing a field is kul:htmlControl Attribute. Dozens of examples can be found in even
the simplest Rice client application. Hereis the tag being used in travel Document2.jsp in the Rice sample
travel application:

<tabl e w dt h="100% border="0" cel | paddi ng="0" cel | spaci ng="0" cl ass="dat at abl e">

<tr>

<kul : ht m Attri but eHeader Cel | | abel For ="docunent.travel er" attributeEntry="${travel Attributes.traveler}"
align="left" />

<td><kul : ht ml Control Attri bute property="docunent.travel er"
attributeEntry="${travel Attributes.traveler}" readOnly="${readOnly}" /></td>

</tr>
<tr>

<kul : ht m Attri but eHeader Cel | | abel For ="docunent.origin" attributeEntry="${travel Attributes.origin}"
align="left" />

<td><kul : ht ml Control Attri bute property="docunent.origin" attributeEntry="${travel Attributes.origin}"
readOnl y="${readOnl y}" /></td>

</tr>

</tabl e>

This example has two controls which will appear on the form: one for document.traveler and one for
document.origin. This is set via the property attribute; that attribute is required. Also required is the

244

KNS

attributeEntry attribute, which takes in the DataDictionary attribute entry for the attribute that is being
displayed:

<c:set var="travel Attributes" value="${DataDi ctionary. Travel Request.attributes}" />

There are also many optional attributes. Oneis seen in both examples above: readOnly, which determines
if thefield will simply have aread only version of its value displayed, or a control will be displayed. This
attribute allowsalot of flexibility about when afieldwill bereadOnly or not. Typically, though, readOnly
is determined based on the whether there’ s an action “can edit” in the form’s documentActions map:

<c:set var="readOnly" val ue="${! Kual i For m docunent Acti ons[Const ants. KUALI _ACTI ON_CAN EDI T]}" />

As covered earlier, masking is handled automatically if the field is read only. If the value of the property
should not be displayed at al, the attribute readOnlyBody can be set to true and the value of the tag’s
body is displayed if the control attribute isrendered read only.

Among the other optional attributes are html attributes which are applied directly to the drawn control,
such asonblur, onclick, and onchange. ThereisastyleClass, which iswhere a CSS class can be specified
to render the value or control in.

Note that the type of control is not specified here. The data dictionary entry will be referred to, and that
control definition will used to determine which control will be rendered. Select controls will use avalues
finder to find the values to display in the drop down. This means that controls can be changed without
altering the JSP, which is amajor strength.

The only exception to be aware of isthat if atext control document contains a date, there is an attribute,
datePicker, should be set to true.

Also in the example, the tag kul:htmlAttributeHeader Cell is used. It displays the label for the
field in a <td> cell. There aren’t officially any required attributes, though one of the following three
would have a value set: attributeEntry, attributeEntryName, and literalLabel. literalLabel will
force the header cell to simply display the given String. attributeEntry, on the other hand, will use
a data dictionary attribute to find an appropriate label; it needs to be handed the proper label much
as the kul:htmlControlAttribute uses. attributeEntryName takes the full name of a data dictionary
attribute (such as“DataDictionary.TravelRequest.attributes.origin”). Thelabel will comefrom the data
dictionary, though the tag will do all of the lookup itself.

There are anumber of other attributes exist which control how the html of the <td> tag will render. width,
rowspan, colspan, align, and labelFor, aswell as several others exist to customize the look of the tag.

What if a label is being rendered outside a table? For that, there is a kul:htmlAttributel abel
tag. It alows attributeEntry and attributeEntryName attributes which work just as they do in
kul:htmlAttributeHeader Cell. literalL abel isnot supported (sinceit isassumed that aliteral label would
simply be written into the JSP).

This too has a number of other attributes. Developers should consider three of these attributes.
useShortL abel usesthe short label in the data dictionary attribute instead of the regular 1abel. noColon is
aboolean. If it isset to true, then there will not be a colon rendered after the label. Finally, for ceRequired
means that a symbol will let end users know that the field is required.

Thereisaso aconvenience tag which belongs on every JSP page supporting atransactional tag, right after
the kul:documentPage tag: kul:hiddenDocumentFields. Hereisits use in travel Document2.jsp:

<kul : docunent Page showDocunent | nfo="true" htnl For mActi on="travel Docunent 2"

245

KNS

docunent TypeNane="Tr avel Request" render Mul ti part="true" showTlabButtons="true" auditCount="0">
<kul : hi ddenDocunent Fi el ds />

This will make sure that the docld and document.documetNumber will be preserved to repopulate the
form after an action occurs on the document by creating HTML hidden controlsto carry the valuesthrough
the POST.

There are two optional attributes, used to ask for the saving of more variables.
If includeDocumentHeaderFields has a vaue of true, it will make sure that
document.documentHeader .documentNumber is saved. Setting includeEditM ode will preserve the
edit modes determined for the document.

Finally, kul:errors should be mentioned. As previously seen, errors are typically associated with pages
and tabs via errorKeys. If an error should show up not associated with a page or atab but rather with
some other visual element, then the kul:errorstab can display those.

There are no required attributes. If only the errors with a certain set of keys should be displayed, then
the keyMatch attribute should be set. Otherwise, all remaining messages will be rendered. Forcing the
rendering of all remaining messages can be forced by setting the displayRemaining attribute to true. An
error Title, warningTitle, and infoTitle can also be set to separate the message sections. Defaults are
provided if these attributes are not set.

Tags for KNS Functionality

Developers of transactional documents or screenswill often want to hook into KNS functionality, such as
inquiries and lookups. A set of tags makes this easily accomplished.

For instance, in Rice client applications, many controls have a question mark icon next to them, which
allows the user to do a lookup and return the value into the control. To get one of those to display, the
kul:lookup tag must be utilized, precisely asit is on travelRequest2.jsp:

<kul : ht nl Control Attribute property="travel Account.nunber" attributeEntry="${accountAttributes. nunber}"

readOnl y="${readOnl y}" />
<kul : | ookup boCd assName="edu. sanpl eu. travel . bo. Travel Account” fi el dConversi ons="nunber:travel Account. nunber" />
<kul : di rectl nquiry boC assNanme="edu. sanpl eu. travel . bo. Travel Account"

i nqui ryPar anet er s="t ravel Account . nunber: nunber" />

Right after the travel Account.number control is rendered, the kul:lookup tag will render the question
mark lookup icon.

It takesthe class of the business object it will perform alookup against through the required boClassName
attribute. ThefieldConver sionsattribute is not strictly required but often used: itisalist of attributesfrom
the result business object matched by a colon with the field that it should populate in the document upon
return. kul:lookup also has support for a lookupPar ameter s tag, which will populate the lookup with
values from the document. There are anumber of other optional attributes as well.

Alsointhisexampleisthekul:directinquiry tag. If thetravel Account.number fieldisfilled in, then clicking
the directlnquiry tag will open up an inquiry page for the value given.

It, too, needsthe class of the business object it isinquiring on through the required boClassName attribute.
The non-required inquiryPar ameter attribute tells the tag which values to take from the document to use
as keysfor the inquiry page.

What if the valueisread only and an inquiry should be displayed? In that case, the kul:inquiry tag should
be used. Here is an example from the KFS procur ementCardTransactions.tag:

246

KNS

<kul : i nquiry boC assName="org. kual i . kf s. f p. busi nessobj ect. Procur enent Car dTr ansacti onDet ai | "
keyVal ues="docunent Nunber =${ cur r ent Tr ansact i on. docunment Nunber } & i nanci al Docunent Tr ansact i onLi neNunber =
${current Transacti on. fi nanci al Docunent Transact i onLi neNunber}" render="true">
<bean:write name="Kual i Forn property="docunent.transacti onEntries[${ctr}].transacti onReferenceNunber" />

</ kul :inquiry>

The kul:inquiry works much like the <a> tag it renders. Any text within the body of the tag is rendered
asthetext for the link. It, too, requires the boClassName attribute which specifies which business object
will be rendered on.

It also requires two other attributes, keyValues and render. render isan odd attribute. It decides whether
the inquiry link will be rendered or not. This allows some display level logic to check whether the field
should actually be rendered on. If render isfalse, then only the text of the tag’s body will be rendered.

keyValues hands in the query string to pass to the inquiry page, theoretically with the keys the inquiry
page will need to find the record to display.

kul:inquiry has no optional attributes.

A variation of the kul:lookup tag also exists, which supports multiple value lookups,
kul:multipleValuel ookup. Here is an example from KC's awardK eywords.tag:

<kul : mul ti pl eVal ueLookup boCl assName="or g. kual i . kra. bo. Sci enceKeywor d" | ookedUpCol | ecti onName="keywor ds"
anchor =" ${ t abKey} "/ >

Once again, boClassName of the business object classto belooked up isarequired attribute. Also required
is the lookedUpCollectionName attribute. Once the multiple values are returned from the lookup, the
KNS will attempt to populate the named collection on the document with the values.

Inthisexample, anchor isan optional attribute. It givesthe link to return to an anchor to navigate to when
it returnsto the page. Thisis helpful on long pages. Thereisalso an attribute lookedUpBODisplayName
which will control the label for the business object being looked up.

Last, but by no means least, anong these tags is the reliable kul:documentControls tag. Every JSP
supporting a transactional document will include this tag, as it draws the row of controls on the very
bottom of the page, thereby allowing end users to route, save, approve, cancel, and otherwise work with
the document. travel Request2.jsp usesiit:

<kul : panel Footer />
<kul : docunent Control s transacti onal Docunent ="fal se" />

Properly utilized this control appears just beneath the kul:panel Footer. The only required attribute is the
transactional Document attribute, though, ironically, that attributeisnever used withinthetag. It therefore
does not matter if false or true is entered as the value.

The other main attributes to be aware of support adding extra buttons. There are two mechanisms. In
the first, by specifying the extraButtonSour ce, extraButtonProperty, and extraButtonAlt attributes,
a single extra button will be rendered. For the image source, it will use extraButtonSour ce, with the
alternate text specified by extraButtonAlt. The extraButtonProperty specifies the property of action to
call (for instance, the property of the route button is“methodT oCall.route”).

That's fine for one extra button, but what if multiple extra buttons need to be added? The KNS supports
this as well. org.kuali.rice knsweb.struts.form.KualiForm has a List property named extraButtons.

247

KNS

The List is made up of org.kuali.riceknsweb.ui.ExtraButton objects. Each ExtraButton object,
in turn, has an extraButtonProperty, extraButtonSource, and extraButtonAltText properties which
can be set. Those properties have the same effect as the extraButtonSour ce, extraButtonProperty,
and extraButtonAlt attributes covered above. ExtraButton objects have two extra properties as well:
extraButtonParams and extr aButtonOnclick which provide the ability to hand extra parameters to the
action and the ahility for javascript to react to the button click respectively.

Theform can have its extraButtonslist populated before reaching the presentation layer. Most often, this
is accomplished by simply overriding the form’s getExtraButtons() method. Then the extra buttons are
simply sent from the form into the kul:documentControls tag, as so:

<kul : docunent Control s transacti onal Docunent ="fal se" extraButtons="${Kual i Form extraButtons}" />

The kul:documentControls tag will then render al of the extra buttons. Given its extra flexibility, this
is the preferred method of adding extra buttons.

Useful Pre-Created Tabs

Finally, the KNS provides a hnumber of tabs that happen to exist on most documents.

For instance, practically every document has the ability to add notes. If that functionality is to be turned
off, it's much easier to do in the data dictionary — so frankly, every document should have a place to
enter notes. Documents should also have the route log of the document, and a place where ad hoc KEW
recipients can be added. The KNS makes adding all of these tabs easy:

<kul : notes />
<kul : adHocReci pi ents />
<kul : rout eLog />

The names of the tags are self-explanatory; and as easy as that, these three standard tabs have been added
to the document.

248

Chapter 6. KRAD
KRAD Overview

New for Rice 2.0, the Kuali Rapid Application Devel opment (KRAD) framework easesthe development of
enterprise web applications by providing reusable solutions and tooling that enable developersto build in
arapid and agile fashion. KRAD is acomplete framework for web developers that providesinfrastructure
in all the major areas of an application (client, business, and data), and integrates with other modules of
the Rice middleware project.

KRAD expands the Kuali development platform and will eventually replace the Kuali Nervous System
(KNS). KRAD supports the KNS document types - Lookups, Inquiries, and Maintenance pages - while
it also provides more flexibility in user interface layouts, for example, beyond the "vertical" tab section
and collection layouts typical of KNS-based applications. In addition, KRAD eliminates the need for a
transaction document type, as maintenance documents can now handle full transactional interactions.
KRAD differsfrom KNS in some key ways:

» The KNS look-and-feel was targetted at administrative users, KRAD enables rich web applications
targetted at awide range of user types.

* KNS haslittle built-in rich user interface support whereas KRAD includes this.
* KNSis Struts 1.x based whereas KRAD is Spring-MV C based.
KRAD usesthefollowing:
* Spring Beans and Expression Language
» Apache Tiles as the templating engine
 Fluid Skinning System for CSS
* jQuery asthejavascript library, including jQuery Ul widgets

» And other plugins providing functionality, such as AJAX

Key KRAD Features

Built upon a rich JQuery library of standards and Fluid Skinning System's (FSS) set of cascading style
sheets, KRAD provides a set of rich user Interface components, such as the following. Note that jQuery
themes are widget-oriented, while the FSS provides support for whole pages and applications, so they are
compatible with each other.

Thekey KRAD User Interface Framework (UIF) componentsinclude, but are not limited to, the following:
» Navigation objects: Left menu and Horizontal tabs navigation

» Layout managers: Grid, Box, Table and Stacked

» Widgets: Light-box, Disclosure, Breadcrumb, Date picker, Growl, Direct inquiry, Inquiry, QuickFinder,
RichTable, Suggest, Tabs, Tree

249

KRAD

 Controls: Checkbox, Checkbox group, File, KIM Group, Hidden, Select, TextArea, Text, User
 Containers: Group, Link group, Navigation group, Tab group, Tree group

» Fields: Input field, Field Group, Action, Ajax Action, Blank, Data, Errors, Generic, Header, iFrame,
Image, Labdl, Link, Lookup Input, Message

» View Types: Lookup, Inquiry, Maintenance, Transactional

e Genera Features. Constraints (simple, valid characters, case, must occurs, dependency, custom),
Watermarks, Help summary & description, Messages (constraint, instructional, required, error,
informational, warning), Validation (client-side, dirty fields validation, exception handling - incident
page), Remote fields, Progressive Disclosure, Audo Code-name translation (auto-completion), Dialogs
(questions and prompts), Focus and anchoring handling, Tabbing order, Field queries, Information
properties, Hidden properties, Default Values, Disabled, Alternate and Additional Display Properties,
Read-Only fields request override, Attribute security and masking, Add/Delete line handling, Form
Edit Modes, Property editors, Property replacers, Component refresh, Component Modifiers, Collection
filters, Show/Hide inactive, EL Language for XML Config, Support for al JS events, Integration with
KIM and KEW.

For example, see the information below on KRAD's Input field, and how this field can be grouped with
others of the constructs listed above to make for aricher Ul experience than what was possiblein KNS.

An Input field enables user input. Thismeansthat this"grouped” field control will display an entry field for
user input, and can optionally include instructions, awatermark, constraint text, alookup widget, inquiry
widget, and/or help widget, and includes a place for error messages associated with the field to appear.
This could be considered the most complex of al fields, and additional information on this field can be
found in the Developers Guide.

250

KRAD

Figure6.1. Input Field - Grouped

Input Field

Onallfields —— *Fiald Label
instructions —
Oinly for Text confrols — |Watermark...
Constraint text o
ErrorField © Field Label - Reguired |
O all fields

A keyed message

The information below provides additional conceptual and relational information on the KRAD
architecture, classes and user interface patterns that are supported "out-of-the-box.

251

KRAD

KRAD Conceptual view

Figure 6.2. KRAD Conceptual View

KRAD Classes

org.kuali.rice krad.uif

Containers Controls Fields

- CollectionGroup - CheckboxConiral - AckonFiald

- Docwment\View - CheckboxGroupConbnod - AttribudeField

- Formiiew - FileCantrol - AttributeQuery

- Group - GroupContral - BlankField

- Inquirydiew - HiddenCaontrol - ErmorsField

- LinkGroup - RadioGroupCantral - GeneratedFiald

- LoosupWiew - Salactzontral - GenericFisld

- Maintenanceiew - TextAreaCaontrol - GroupFeeld

- MavigalionGroup - TextCantrol - HeaderFiald

- ModePrototyps - UsarConiral - HrameFiald

- Pagelroup - ImageField

- TabiGroup - LabalFisld

- TreeGrowp - LinkField

- Wiew - LookupaAitributeField
- MessageFiald

Layouts Modifiers Core

- BoxlayoutManager - Comparablelnfo _ - Bindinglnfo

- GridLayouthManager - CompareFieldCraateModifier - MaintenancefctivaCollech
- StackedLayoutManager - ComponentConverifoddiar - MethodlnvokerConfig

- TablaLayouthdanager - LabelFieldSeparaiaModsdiar - PropertyRepiacar

org.kuali.rice krad.keyvalues : .
AdHocActionRequest

org.kualirice.- api.util

= ConcreteBey\Value

For additional high-level views of information on the layout managers and fields, see the KRAD Users
Guide.

252

KRAD

KRAD Relational View

Figure 6.3. KRAD Relational View

Fields Containers
A
Data
Keyed Messages

Defauit Definitions Components

madify

Controls

HTML Elements
i e Hood Configuration

KRAD

KRAD Data Dictionary

(Need direction on what of the KNS information should be copied here and what other new information
should be included.)

KRAD enhancements to the Data Dictionary include, but are not limited to, the following:

Simple Constraints, Min/Max

Valid Characters Constraints

Dependency Constraints

Lookup Constraints

Conditional Logic Constraints

Occurrences Constraints - Collection size constraints
Constraints on the client side

Changing Error Messages

Custom Constraints

In the earliest versions of the Kuali Nervous System, it was recognized that forcing developers to write
Javarbased rules to check if arequired field was filled in or if it matched a date pattern was a hefty load
of work that easily could be transferred to the data dictionary.

253

KRAD

Every AttributeDefinition defined for a property of a data object had the ability to be paired with
a validation. For instance, let's take a generic date field from KFS's org/kuali/kfs/sys/businessobject/
datadictionary/GenericAttributes.xml file.

Code snippet example follows:

1. <bean id="GenericAttributes-genericDate" parent="GenericAttributes-genericDate-parentBean"/>
2. <bean id="GCenericAttributes-genericDate-parentBean" abstract="true" parent="AttributeDefinition">
3. <property name="nanme" val ue="genericDate"/>

4. <property name="forceUppercase" val ue="fal se"/>

5. <property name="| abel " val ue="Ceneric Date Style Attribute"/>

6. <property name="shortLabel " val ue="GenericDate"/>

7. <property name="nmaxLength" val ue="22"/>

8. <property name="val i dati onPattern" ref="DateValidation"/>

9. <property name="control" ref="DateControl" />

10. <property name="formatterC ass" val ue="org. kuali.rice.kns.web.format. DateFornatter"/>

11. </ bean>

It's a simple enough example, but lines 7 and 8 pack quite a bit of power. Together, they limit the length
of the field to a size which can fit in the database (evidently twenty-two characters) and they add the
DateValidation, which requires that any user input fits a certain pattern defined as a regular expression.
Two lines of configuration, and the developer gets afair amount of error checking.

That's wonderful, of course, but it has limits. For example, there's no way to only run constraints based
on the values present in other attributes. There wasn't a general way to enforce a datatype for auser input
value. There wasn't away to say, for instance, that one or another field was required - either afield was
required or it wasn't.

Such logic, not that much more complex, al required a Java-based rules solution. Much more complex
logic is available than ever before. Not only that, but it can be enabled to work on the client side via
JavaScript aswell.

Finally, for even more flexihility, the processors which act on the constraints have been pulled out into
injectabl e classes - meaning that applications can override thelogic for aconstraint if needed. Furthermore,
constraints need not act only on AttributeDefinitions; new interfaces have been developed which allow
any configuration classto participate in being validated. Obvioudly, there'salot of functionality to cover -
from the classic constraints which continue on in the framework to the powerful constraints that the Kuali
Student team contributed to KRAD.

The information below includes an overview of the specific "built-in" KRAD constraints available to
developers. Well also cover the architecture of the constraint framework, with a special emphasis on how
constraint logic may be overridden, how new constraints would be constructed, and how non-attributes
could have Constraint logic built for them.

Information on each of the KRAD-packaged constraints is below, followed by alook at the constraint
architecture itself.

Simple Constraints, Min / Max

As is covered in more detall in the Constraint Architecture section that follows this this
documentation of the constraints packaged with KRAD, every constraint in KRAD implements the
org.kuali.rice.kns.datadictionary.validation.constraint.Constraint interface. This interface is a simple
marker interface. Children of that interface tend to define the datathey would need from the configuration
to figure out if the value put into the attribute is valid or not.

254

KRAD

For instance, in the GenericAttributes-genericDate example in the introduction section above, the
maxL ength property is set to 22. One would expect alength-based constraint to require agetMaxL ength()
method which could then be fed to the Constraint to find the maximum length.

org.kuali.rice.kns.datadictionary.validation.constraint. SimpleConstraint defines what we might call a
"nervous system classic" constraint. It is built from normal fields on AttributeDefinition - required;
maxL ength and minLength (the latter has been added as part of KRAD); exclusiveMin and exclusiveMax;
and finally, minOccurs and maxOccurs, which will be covered in more detail below.

Therequired constraint, of course, meansthat some value must be set for the attribute. The maxLength and
minLength attributes typically apply to String data, which must be a certain size. Likewise, exclusiveMin
and exclusiveMax apply to numeric data which must fit within some set range.

Valid Characters Constraints

GRNPGH>BOPE

Another hold over from the Kuali Nervous System constraints, ValidCharactersConstraint exists to make
sure that a String value matches against a regular expression. For instance, let's say that a KRAD
application requiresthat all phone numbers must bein theform of (###) ##-#iH (Evidently, the attribute
does not yet accept international numbers...but as developers, we must rest assured that's coming, and is
the requirement.)

In the data dictionary for that attribute, the following could be set.

Code snippet example follows:

<bean i d="Dat aCbj ect - phoneNunber" parent="Attri buteDefinition">
<property name="nanme" val ue="phoneNunber" />
<property name="val i dCharact ersConstrai nt">
<bean cl ass="org. kuali.rice. kns. datadictionary.validation.constraint.ValidCharactersConstraint">
<property name="val ue" value="\(\d{3}\) \d{3}-\d{4}" />
</ bean>
</ property>

In lines 3 through 7, we set the validCharactersConstraint property on the AttributeDefinition, handing
the bean we just created a regex which should match the phone number pattern which the requirements
say all phone numbers should match.

This regex is passed in as the value property to the ValidCharactersConstraint bean.
A number of ValidCharacterConstraints are defined in org/kuali/rice/lkns/bo/datadictionary/
DataDictionaryBaseTypes.xml. Among those are "UrlPatternConstraint”, "DatePatternConstraint”,
"CreditcardPatternConstraint”, "NonWhitespacePatternConstraint”, "IntegerPatternConstraint”,
"PhoneUSPatternConstraint”, and "TimePatternConstraint”, as a mere sampling. As of the time of this
writing, the constraints only worked for javascript side validation. However, work was being doneto build
server side equivalencies of all of these patterns.

Finally, note that the ValidCharactersConstraint has a second property, "jsVaue". In most cases, Java's
regular expression engine (ValidCharactersConstraint uses the built-in regular expression engine) will
accept the same expressions as the JavaScript engine. That's good, because the same regular expression
can be passed to the client and handled client side, as will be covered in more detail soon.

The best idea is to keep validation regular expressions to the use of broadly supported features (outside
of POSIX, which Java supports but which most JavaScript engines do not), and keep on eye on engine
comparison pages such as http://en.wikipedia.org/wiki/Comparison_of regular_expression_engines. The
KRAD team is attempting to avoid differences, though, and create a single pattern for both JavaScript
and Java.

255

KRAD

Dependency Constraints

Dependency constraints are used to define a set of PrerequisiteConstraint dependencies on an attribute. A
PreRequisiteConstraint is simply used to denote that some other attribute be required. If the attribute is
non-empty and has dependency constraints, each pre-requisite constraint attribute must al so be non-empty.
Note the prerequisite constraint is also used in the MustOccurConstraint. Unlike the MustOccurConstraint
which requires that aminimum or maximum number of prerequisite constraints be satisfied, adependency
constraint requires that all pre-requisite constraints be satisfied.

A code snippet example follows:

1. <bean id="DataObject-phoneNunber" parent="AttributeDefinition">

2. <property name="nanme" val ue="phoneNunber"/>

3. <property name="dependencyConstrai nts">

4. <list>

58 <bean cl ass="org. kual i .rice.kns. datadi ctionary.validation.constraint.PrerequisiteConstraint”
p: attri but ePat h="phoneExt ensi on" />

6. </list>

7. </ property>

8. </bean>

Lookup Constraints

These are constraints on values returned from lookups into an attribute. As of the time of this writing,
they're till in process of implementation.

Conditional Logic Constraints

All of the constraints so far covered are static, in afashion. Once declared, they will apply to their attributes
no matter what. However, let's say that a constraint should only be tested when the attribute has a certain
value. How could the constraint be turned off if that valueisn't present and only be applied if the attribute
has the given value?

The final constraint to look at is org.kuali.rice.kns.datadictionary.validation.constraint.CaseConstraint,
which will turn on and off child constraintsif attributes match certain values. The classic example of using
thisisin an international address form. If the country codeis the United States, then the state code should
befilled in aswell. If the country codeisfor Canadaor Turkey, a province should be filled in. That would
be done via a configuration like this.

A code snippet example follows:

1. <bean i d="Dat aObj ect - count ryCode" parent="AttributeDefinition">
2. <property name="nanme" val ue="countryCode"/>
3. <property name="caseConstraint">
4. <bean cl ass="org. kuali.rice. kns. datadictionary.validation.constraint.CaseConstrai nt">
5. <property name="whenConstraint">
6. <list>
7. <bean cl ass="org. kuali.rice.kns. datadictionary.validation.constraint.WenConstraint">
8. <property name="val ues">
9. <list>
10. <val ue>Us</ val ue>
11. </list>
12. </ property>
13. <property name="constraint">
14. <bean

class="org. kuali.rice.kns.datadi ctionary.validation.constraint.PrerequisiteConstraint"p:attributePath="state" /
>
15. </ property>
16. </ bean>

256

KRAD

17. <bean cl ass="org. kuali.rice. kns. datadictionary.validation.constraint.WenConstraint">
18. <property name="val ues">

19. <list>

20. <val ue>CA</ val ue>

21. <val ue>TR</ val ue>

22. </list>

23. </ property>

24. <property name="constraint">

25. <bean

class="org. kuali.rice. kns. datadi ctionary.validation.constraint.PrerequisiteConstraint"p:attributePath="province"/

26. </ property>
27. </ bean>

28. </list>

29. </ property>

30. </ bean>

31. </ property>
32. </bean>

Obvioudly, for such a powerful constraint, configuration becomes a bit more complex. A CaseConstraint
has aList of WhenConstraints. WhenConstraints match values to constraints that should be run when the
attribute's value matches the WhenConstraint's values. Here, values are hard coded (lines 8 through 12
and lines 18 through 23) but they need not be. If the values are in other attributes, a List of valuePaths
can be specified.

A WhenConstraint also has one child constraint to match. In both of the WhenConstraints above, a
PrerequisiteConstraint is used to make sure that another attribute - either state or province - is non-empty
(lines 14 and 25). Any Constraint could be used as the child of the WhenConstraint - a SimpleConstraint,
another CaseConstraint, and so on. The ability to turn on and off constraints such can lead to very powerful
validations being built directly in the DataDictionary.

Ocurrences Constraints

An occurrence constraint states that for a given attribute to be valid, a certain number of prerequisite
conditions must be matched. A prerequisite condition simply means that another attribute with a specified
attribute path is non-empty (so Strings must have some text in them; Collections must have at least one
member; or the attribute must otherwise not be null). These constraints thus handle situations where one
or more of anumber of fields are required.

An occurrence constraint is specified viathe MustOccurConstraint constraint. L et's say that an application
requires either a phone number, an e-mail address, or a time for showing up be specified as contact
information. The following example sets up that validation in the data dictionary, adding the error to the
phone number attribute (though the same constraint could be copied to the other attributes just as easily).

A code snippet example follows:

<bean i d="Dat aCbj ect - phoneNunber " par ent =" Dat albj ect Entry" >
<property nanme="obj ect C ass" val ue="edu. sanpl eu. cont act. Contact | nfornation" />
<property name="nust Cccur Constraints">
<list>
<bean cl ass="org. kuali.rice. kns. datadi ctionary.validation.constraint.MstQccurConstraint">
<property name="m n" val ue="1" />
<property name="max" val ue="3"/>
<property name="prerequisiteConstraints">
<list>
0. <bean
class="org. kuali.rice.kns.datadictionary.validation.constraint.PrerequisiteConstraint"p:attributePath="phoneNunber"/
>
11. <bean
class="org. kuali.rice. kns.datadi ctionary.validation.constraint.PrerequisiteConstraint"p:attributePath="enail Address"/
>
12. <bean
class="org. kuali.rice.kns.datadi ctionary.validation.constraint.PrerequisiteConstraint"p:attributePath="showlpTi ne"/
>

SEEPON@EGHHGNE

257

KRAD

</list>
</ property>
</ bean>

</list>
</ property>
</ bean>

Lines 1 and 2 surprising show that this constraint has been set at the DataObjectEntry level, not that
of the AttributeDefinition. While MustOccurConstraints can be set in pretty much the same way on
AttributeDefinitions, since several attributes are involved, it makes more sense to have the validation at
a higher level. At the time of this writing, MustOccurConstraint is the only validation which can be set
at the DataObjectLevel.

The min and max properties of lines 6 and 7 tell the constraint how many of the following properties must
be present and the maximum number of filled in properties we expect. Here, the minis 1 - so at least one
of the properties must be filled in - and the max is 3, so if all three arefilled in, the validation will still
work fine. If there was a desire to only have one attribute filled in, the max could have been set to 1.

The MustOccurConstraint hasalist of prerequisiteConstraints - lines 8 through 14 - which describe which
attributes are grouped by this constraint.

A MustOccurConstraint can also have alist of child MustOccurConstraints. Why would such a thing be
desirable? Because it provides a way to set up nested validations. Let's say that, instead of specifying
a show up time, we had an address which needed to be filled in. If that was the case, we'd need every
field of the address - street, city, state, and zip filled in - for the constraint to pass. In that case, we would
have left min and max at 1 and 3 respectively; but instead of line 12, we would have specified a value
for the property mustOccurConstraints at line 15, and added a list of constraints asking for all the address
attributes to befilled in.

Collection Size Constraints

10.
11.
12.

OCO~NOOUA~WNE

Another common rule situation is when a collection is the child of a data object or document, and for that
data object or document to be valid, a certain number of elements must be available in the collection. For
instance, on an Add Course Document, one would expect the "courses' collection to have at least one
course in it and to be less than the total number of courses a student is allowed to take in a semester or
quarter. Therefore in the data dictionary entry for the data object, one adds a constraint as follows,

A code snippet example follows:

<bean nanme="AddCour seDocunent” parent =" Busi nessbj ect Entry">

<property name="col | ecti ons">
<list>

<bean parent="Col | ecti onDefi nition" p:name="courses" p:|abel ="Courses">
<property name="m nCccurs" val ue="1" />
<property name="maxCQccurs" val ue="74" />

</ bean>

</list>
</ property>

</ bean>

Evidently, some students can take up to seventy four classes. Busy student. CollectionSizeConstraint is
handled as a special type of SimpleConstraint (though only for use with CollectionDefinitions). Simply
set the minOccurs and maxOccurs for the attribute and there will be an error if the collection size falls
outside those limits. Naturally, either the minOccurs or maxOccurs can be left out for collections which
should be unbounded in either lower or upper size limit.

258

KRAD

Constraints on the client side

One of the tasks that org.kuali.rice.kns.uif .field.AttributeField does in its Finalization stage is to convert
constraints to JavaScript. For all of the following constraints, AttributeField automatically will push the
Constraint to the client side:

* Exclusive Minimum and Inclusive Maximum constraints

ValidCharactersConstraint
» CaseConstraint

» DependencyConstraint

MustOccursConstraint
» PreRequisiteConstraint

When the user attempts to take action on the page, this level of Constraints will kick in - meaning that
feedback comes much more quickly. These constraints will always be called when buttons such as save,
submit, or approve - buttons where business logic would typically be evaluated - are clicked. They will
also occur on onBlur's for most fields.

There are, however, certain constraints which apply to multiple fields: CaseConstraints and
PreRequisiteConstraints, to name two instances. Which onBlur issues the error among all of those fields?
Generally, KRAD attempts to not give an error until the user has gone past a point where she or he could
have prevented said error. For instance, if oneField has a DependencyConstraint on two other fields, but
those two other fields render later and lower on the page, then KRAD will associate the validation with
the last, bottom-most field of those the constraint appliesto. In an interesting corollary, KRAD will issue
an error on the onFocus event for afield which has already been visited if an error occurs with that field.

Of course, the constraints are still run just the same on the server side once the page has been submitted;
that way, if the user has scripting turned off, the constraints are still run and user input data gets validated.

Changing Error Messages

POMdE

All of the covered constraints are associated with standard error messages. For instance, if a "required"
constraint has been violated, the user will get the following message:

Phone Nunber is a required field

Thishastaken thelabel from the attribute which viol ated the constraint and formatted that into the standard
error.required message in the KR-ApplicationResources.properties file.

With most of the constraints, the message can be overridden on the constraint, by specifying the"labelKey"
property. For instance, a configuration like this:

Code snippet example follows:

<bean cl ass="org. kuali.rice. kns. datadictionary.validation.constraint.MstCccurConstraint">
<property name="mn" val ue="1" />
<property name="nmax" val ue="3" />
<property nanme="| abel Key" val ue="error. nust. be. abl e.to. track.down" />

259

KRAD

Instead of using the standard message, the error message that is shown will be the message associated with
the "error.must.be.able.to.track.down" key. This alows for a great deal more flexibility in what message
gets displayed - though, the classic messages will still show up as they aways did if nothing else is
specified.

Constraint Architecture (building a custom constraint)

The constraintsthat come standard with KRAD provide alot of power through configuration. For example,
validating user input will be easier than ever. And the constraint sub-system of KRAD was built with the
realization that even more constraints will be added in the future. Because of that, there needs to be an
easy way for Kuali application developers or even future versions of Rice to add new constraints into the
system. And so, thereis.

A congtraint is a marker interface which is implemented by any Constraint bean (Java). These Constraint
beans are purely configuration - they only hold what regex should be parsed against, if a field
is required or not: basic information. The Constraint, in turn, is passed to an implementation of
org.kuali.rice.kns.datadictionary.validation.processor.ConstraintProcessor.

Note that implementations of ConstraintProcessors can be genericized with both the type of value that the
processor expects and the type of Constraint that the processor will work on. Most ConstraintProcessor
implementations only genericize the Constraint, accepting any Object as avalueto validate.

ConstraintProcessors have four methods:
* First, the getName() method returns the name that the constraint processor holds.

* The getConstraintType() method returns the implementation of Constraint that this processor has the
businesslogic for.

» TheisOptional () method returns a boolean: true if the processor can be turned off in certain situations
by another piece of code, false otherwise.

The only constraint which is currently optional is the ExistenceConstraint; it is turned off by passing a
false in the doOptional Processing parameter of DictionaryV alidationService#processConstraints.

» The fina method is the one that contains the ConstraintProcessor's business logic: process. Process
takes in DictionaryValidationResult, a value of some type, the Constraint information to apply to
the value, and an AttributeValueReader if the value needs yet to be read; it returns an instance of
org.kuali.rice.kns.datadictionary.validation.result.ProcessorResult.

ProcessorResults typically wrap instances of
org.kuali.rice.kns.datadictionary.validation.result.ConstraintV alidationResult. A

ConstraintValidationResult encapsulates a number of possible outcomes for the validation, all generated
by org.kuali.rice.kns.datadictionary.validation.result.DictionaryV alidationResult.

DictionaryVaidationResult's addError method, for example, returns a ConstraintV alidationResult which
contains an error about a constraint being broken. Likewise, DictionaryValidationResult's addSuccess
method indicates that the result of the constraint test was positive - the value passed the constraint.

The other outcomes that DictionaryValidationResult can generate is addWarning - which gives an
informative message that something is wrong with the attribute's value but which will not "fail";
addSkipped, which says that the value could not be tested and therefore the validation was not run; and
finally addNoConstraint, which means that the constraint was configured in such way as to not run for
the given value or at al.

DictionaryValidationResults wrap ConstraintV alidationResults in a way which provides easy access to
theseresultsin the data dictionary. These ConstraintV alidationResults are passed back to KRAD wrapped

260

KRAD

within the ProcessorResults; the ProcessorResults then ensures that proper logic - whether that be the
display of a message, the stopping of logic, or - if everything passed - carrying on with the transaction
- OCCUrs.

That covers ConstraintProcessors. Now on to how they are called from within an application. An
implementation of org.kuali.rice.kns.service.DictionaryValidationService is responsible for checking all
of the attributeswhich are passed in as part of arequest into aK RAD form. The configuration of the default
implementation of DictionaryV alidationService has all of the ConstraintProcessorsfor KRAD passed into
it. See the following code snippets. For example, if we assume the following 5 lines of code,

3. <property name="col | ecti onConstrai nt Processors">

4. <list>

5, <bean cl ass="org. kual i.rice. kns. datadi ctionary.validation. processor. Col |l ectionSi zeConstrai nt Processor"/>
6. </list>

7.

</ property>

Lines 3 through 7 above are the collectionConstraintProcessors - constraints which apply to collections.
Here is where CollectionSizeConstraint - the constraint that handles the maxOccurs and minOccurs
constraint attributes - goes.

In line 5, the CollectionSizeConstraintProcessor is injected in. DictionaryValidationServicelmpl then
matches the active Constraints on an attribute with the ConstraintProcessors passed in, and runs the logic
against the constrained attribute. If the ConstraintProcessor acts only on asingle attribute, it is passed into
the elementConstraintProcessor property.

CongtraintProcessors are supplied to engines which validate against constraints -
DictionaryValidationServicel mpl, for instance - viaConstraintProviders. Different implementations of the
org.kuali.rice.kns.datadictionary.validation.constraint.provider.ConstraintProvider interface can exist;
their job is to map an implementation of Constrainable (a simple interface al Constraints implement) to
constraint processors, as can be seen in lines 29-79 below.

The usefulness of ConstraintProviders can be seen in the example. Lines 31-64 shows the mapping
for the AttributeDefinitionConstraintProvider - constraints which can be run against an attribute
definition. Lines 65-77 shows that only one constraint - the MustOccurConstraint - can be run
for ObjectDictionaryEntryConstraintProviders, meaning this is the sole constraint supported by data
dictionary entries for entire data objects.

Code snippet example follows:

1. <bean id="dictionaryValidationService"
class="org. kuali.rice.kns.service.inpl.DictionaryValidationServicel npl">

contents trinmmed

2. <l-- Collection constraint processors are classes that determne if a feature of a collection of objects
satisfies some constraint -->

3. <property name="col | ecti onConstrai nt Processors">
4. <list>
58 <bean cl ass="org. kual i.rice. kns. datadi ctionary.validation. processor. CollectionSi zeConstraintProcessor"/>
6. </list>
7. </ property>
8. <l-- Elenment constraint processors are classes that determne if a passed value is valid for a specific
constraint at the individual object or object attribute |level -->
9. <property name="el ement Constrai nt Processors">
10. <list>
11. <bean cl ass="org. kuali.rice. kns. datadi cti onary.validation. processor. CaseConstrai nt Processor"
12. par ent =" mandat or yEl enent Const r ai nt Processor"/>
13. <bean cl ass="org. kuali.rice.kns. datadi ctionary.validation. processor. Exi stenceConstraintProcessor"/>
14. <bean cl ass="org. kuali.rice. kns. datadi cti onary.validation. processor. DataTypeConstrai nt Processor"
15. par ent =" mandat or yEl enent Const r ai nt Processor"/>

261

KRAD

16. <bean cl ass="org. kuali.rice.kns.datadi ctionary.validation.processor.RangeConstrai nt Processor"

17. par ent =" mandat or yEl enent Const r ai nt Processor"/>

18. <bean cl ass="org. kuali.rice.kns.datadi ctionary.validation.processor.LengthConstraintProcessor"

19. par ent =" mandat or yEl enent Const r ai nt Processor"/>

20. <bean cl ass="org. kuali.rice. kns. datadi cti onary. validation. processor. ValidCharactersConstraintProcessor"

21. par ent =" mandat or yEl enent Const r ai nt Processor"/>

22. <bean cl ass="org. kuali.rice. kns. datadi cti onary.validation. processor. PrerequisiteConstraintProcessor"

23. par ent =" mandat or yEl enent Const r ai nt Processor"/>

24. <bean cl ass="org. kuali.rice. kns. datadi cti onary. validation. processor. Mist Cccur Constrai nt Processor"

25. par ent =" mandat or yEl enent Const r ai nt Processor"/>

26. </list>

27. </ property>

28. <l-- Constraint providers are classes that map specific constraint types to a constraint resolver, which
takes a constrainable definition -->

29. <property name="constrai ntProvi ders">

30. <list>

31. <bean

class="org. kuali.rice.kns.datadictionary.validation.constraint.provider.AttributeDefinitionConstraintProvider">
32. <I--

33. indi vidual constraint resolvers can be injected as a map keyed by constraint type as string, or
the default

34. resolvers can be instantiated into the map by adding 'init-nmethod="init"' to the bean
decl arati on above

35. -->

36. <property name="resol ver Map" >

37. <map>

38. <entry key="org. kuali.rice.kns.datadictionary.validation.constraint.CaseConstraint">

39. <ref bean="dictionaryValidati onCaseConstrai nt Resol ver"/>

40. </entry>

41. <entry key="org. kuali.rice.kns.datadictionary.validation.constraint.ExistenceConstraint">

42. <ref bean="dictionaryValidationDefinitionConstraintResolver"/>

43. </entry>

44, <entry key="org. kuali.rice.kns.datadictionary.validation.constraint.DataTypeConstraint">

45. <ref bean="di ctionaryValidationDefinitionConstraintResolver"/>

46. </entry>

47. <entry key="org. kuali.rice.kns.datadictionary.validation.constraint.LengthConstraint">

48. <ref bean="dictionaryValidationDefinitionConstraintResolver"/>

49. </entry>

50. <entry key="org. kuali.rice.kns.datadictionary.validation.constraint.ValidCharactersConstraint">

51. <ref bean="dictionaryValidationValidCharactersConstraintResol ver"/>

52. </entry>

53. <entry key="org. kuali.rice.kns.datadictionary.validation.constraint.PrerequisiteConstraint">

54. <ref bean="dictionaryValidati onPrerequisiteConstraintsResol ver"/>

55. </entry>

56. <entry key="org. kuali.rice.kns.datadictionary.validation.constraint.MstCccurConstraint">

57. <ref bean="dictionaryValidati onMust Cccur Constrai nt sResol ver"/ >

58. </entry>

59. <entry key="org. kuali.rice.kns.datadictionary.validation.constraint.CollectionSizeConstraint">

60. <ref bean="dictionaryValidationDefinitionConstraintResolver"/>

61. </entry>

62. </ map>

63. </ property>

64. </ bean>

65. <bean

class="org. kuali.rice.kns.datadi ctionary.validation.constraint.provider.ObjectDictionaryEntryConstraintProvider">
66. <I--

67. i ndi vi dual constraint resolvers can be injected as a map keyed by constraint type as string, or the
def aul t

68. resol vers can be instantiated into the map by adding 'init-method="init"' to the bean declaration
above

69. -->

70. <property name="resol ver Map" >

71. <map>

72. <entry key="org. kuali.rice.kns.datadictionary.validation.constraint.MstQccurConstraint">

73. <ref bean="dictionaryValidati onMiust Cccur Constrai nt sResol ver"/ >

74. </entry>

75. </ map>

76. </ property>

77. </ bean>

78. </list>

79. </ property>
80. </bean>

Other CondraintProviders packed into Rice a the time of this writing
are CollectionDefinitionConstraintProvider - constraints which work for collection

262

KRAD

definitions; and ComplexAttributeDefinitionConstraintProvider, which supports constraints for
"ComplexAttributeDefinitions' - data dictionary entries for attributes on one DataObject which are
represented by another data object.

KRAD Business Objects?

(Need direction on what of the KNS information should be copied here and what new information should
beincluded or if this section is not needed.)

KRAD Class Libraries?

(Need direction on what new information should be included here or if this section is not needed.)

Installing and Configuring KRAD

Before developing with KRAD and after installing and configuring Rice, here are the additional steps
you'll need to follow to configure KRAD before starting to develop an application.

Thisinformation below assumes you aready have Riceinstalled and configured for your database. Below
are the additional tasks required to configure KRAD. For more information, see the KRAD Installation
Guide and KRAD javadocs.

(TBD - Revise the section heads below as needed and then populate with info. Include instructions for
setting up a Rice project, include assumptions for what is already done and not covered in the instructions,
such as setting up all else needed for devel opment environment - what are pre-regs, what are co-regs, €tc..)

Configure Rice without KRAD (KNS Only)

In some cases it may be desirable to only use the KNS without KRAD. For example if you're timelines
push a conversion to KRAD out into the future, you may see some benefits with startup performance and
with memory usage.

Y ou can override the kradA pplicationM oduleConfiguration bean to not include any of the filesin the UIF
folder. That is, you only need to include these files:

<property name="dat aD cti onaryPackages" >

<list>

<val ue>cl asspat h: org/ kual i / ri ce/ kr ad/ bo/ dat adi cti onary/ AdHocRout ePer son. xm </ val ue>

<val ue>cl asspat h: org/ kual i / ri ce/ kr ad/ bo/ dat adi cti onary/ AdHocRout eWor kgr oup. xm </ val ue>

<val ue>cl asspat h: org/ kual i / ri ce/ kr ad/ bo/ dat adi cti onary/ Attachment . xm </ val ue>

<val ue>cl asspat h: org/ kual i / ri ce/ kr ad/ bo/ dat adi cti onary/ Attri but eRef erenceDummy. xm </ val ue>
<val ue>cl asspat h: org/ kual i / ri ce/ krad/ bo/ dat adi cti onary/ Attri but eRef erenceEl ements. xm </ val ue>
<val ue>cl asspat h: org/ kual i / ri ce/ kr ad/ bo/ dat adi cti onary/ Busi nessCbj ect Attri but eEntry. xm </ val ue>
<val ue>cl asspat h: org/ kual i / ri ce/ kr ad/ bo/ dat adi cti onary/ Dat aDi cti onaryBaseTypes. xm </ val ue>
<val ue>cl asspat h: org/ kual i / ri ce/ kr ad/ bo/ dat adi cti onar y/ Docunment Header . xm </ val ue>

<val ue>cl asspat h: org/ kual i / ri ce/ kr ad/ bo/ dat adi cti onary/ Not e. xm </ val ue>

<val ue>cl asspat h: org/ kual i / ri ce/ kr ad/ bo/ dat adi cti onary/ Not eType. xm </ val ue>

<val ue>cl asspat h: org/ kual i / ri ce/ kr ad/ bo/ dat adi cti onary/ Pessi m sti cLock. xm </ val ue>

</list>

</ property>

Likewise, this can be done for the ‘ baselinePackages' property on the dataDictionaryService bean.

263

KRAD

Creating the KRAD database tables / connections to
data?

KRAD Configurer and RiceConfigurer?
Configuring Spring and MVC?

Module Configuration — Loading Data Dictionary and
OJB Files?

Other KRAD Configuration Parameters?

Building application pages using KRAD

This information assumes you've aready installed Rice. Once Rice is installed and set up, you can use
KRAD to build applications. You can use the code snippet templates covered below, and you can look
through the codebase itself or the sample application to see the code snippets for each of the KRAD
features, and then copy/paste them to use in your devel oping application.

KRAD Templates

Live templates contain predefined code fragments. Y ou can use them to insert frequently-used or custom
code constructs into your source code file quickly, efficiently, and accurately.

Loading the KRAD Templates

The following have been tested in the IntelliJ IDE.

Download the KRAD Templates File and place into the following location: (ACTION/TO-DO -- Need to
specify the link where we will maintain this long-term!)

* Windows: <your home directory>\.<product name><version number>\config\templates
 Linux: ~\.<product name><version number>\config\templates

» MacOS: ~/Library/Preferences/<product name><version number>/templates
Using Templates
Whilein an XML file, type the template abbreviation and then the space key. The completion key (setup

as space) can be changed if desired by going to settings-live templates. Y our cursor will then be inserted
into the location specified by the template (marked with the END variable).

264

KRAD

Available KRAD Templates

Table6.1. Available KRAD Templates

Abbreviation Description Code
@ Inserts the expression | @{ $END}
placeholders
action Generates an action | <bean parent="ActionField" p:actionLabel="END" p:methodToCall=""/>
field
alink Generates an action | <bean parent="ActionLinkField" p:actionLabel="END" p:methodToCall=""/>
link field
be Generatesabeantag | <bean parent="END"/>
cc Generates a checkbox | <bean parent="CheckboxControl"/>
control
cgc Generate a checkbox | <property name="control"> <bean parent="CheckboxGroupControl"/> </property> <property
group control name="optionsFinder"> <bean class="END"/> </property>
dc Generates a date| <bean parent="DateControl" p:size="END"/>
control
fc Generates afile control | <bean parent="FileControl" p:size="END"/>
fg Generates afield group | <bean parent="FieldGroup" p:label="END"> <property name="items'> <list> </list> </
property> </bean>
fi Generates a field| <property name="fieldInquiry.dataObjectClassName" value="END $CLASS$'/> <property
inquiry name="fieldInquiry.inquiryParameters" value=""/>
fl Generates a field | <property name="fieldL ookup.dataObjectClassName" value="END $CLASSS'/
lookup > <property name="fieldL ookup.fieldConversions" value=""/> <property
name="fieldL ookup.lookupParameters" value=""/>
fs Generates a field | <property name="fieldSuggest.render" vaue="true"/> <property
suggest name="fieldSuggest.suggestQuery.dataObjectClassName" value="END $CLASS$'/>
<property name="fieldSuggest.sourcePropertyName" value=""/>
group Generates agroup <bean id="END" parent="Group" p:title="" p:instructiona Text=""> <property name="items">
<list> </list> </property> </bean>
hfg Generates afield group | <bean parent="Horizontal FieldGroup" p:label="END"> <property name="items"> <list> </list>
with horizontal layout | </property> </bean>
image Generates an image| <bean parent="ImageField" p:label="$ENDS$" p:altText=""
field p:source="@#ConfigProperties] 'krad.externalizable.images.url]"/>
input Generatesaninput field | <bean parent="InputField" p:propertyName="$ENDS$" p:label=""> <property name="control"> </
property> </bean>
link Generatesalink field | <bean parent="LinkField" p:linkLabel="END" p:hrefText=""/>
mess Generates a message | <bean parent="MessageField" p:messageText="$ENDS$"/>
field
page Generates a page <beanid="END" parent="Page" p:title=""> <property name="items"> <list> </list> </property>
</bean>
prop Inserts aproperty tag | <property name="END" value=""/>
rc Generatesaradiogroup | <property name="control"> <bean parent="RadioGroupControl"/> </property> <property
control name="optionsFinder"> <bean class="END"/> </property>
s Generates a select|<property name="control"'> <bean parent="SelectControl"/> </property> <property
control name="optionsFinder"> <bean class="END"/> </property>
section Generates a section|<bean id="END" parent="GroupSection” p:title="" p:instructiona Text=""> <property
group name="items"> <list> </list> </property> </bean>
sstack Generates a collection | <bean id="END" parent="CollectionGroupSection" p:layoutManager.numberOf Columns=""
group section with|pititle="" p:instructional Text=""> <property name="collectionObjectClass' value="$CLASS$"/
stacked layout > <property name="propertyName" value=""/> <property name="layoutM anager.summaryTitle"
value="" /> <property name="layoutManager.summaryFields' vaue="" /> <property
name="items"> <list> </list> </property> </bean>
stable Generates a collection | <bean id="END" parent="CollectionGroupSectionTableL ayout"
group section with | p:layoutManager.numberOf Columns="" pititle="" piinstructional Text=""> <property

table layout

name="collectionObjectClass' value="$CLA SS$"/> <property name="propertyName" value=""/>
<property name="layoutM anager.sequencePropertyName" value=""/> <property name="items'>
<list> </list> </property> </bean>

265

KRAD

Abbreviation Description Code
stack Generates a collection | <bean id="$ENDS$" parent="CollectionGroup" p:layoutManager.numberOf Columns="" p:title=""
group with stacked | p:instructional Text=""> <property name="collectionObjectClass' value="$CLASS$"/> <property
layout name="propertyName" value=""/> <property name="layoutManager.summaryTitle" value="" />
<property name="layoutManager.summaryFields' value="" /> <property name="items"> <list> </
list> </property> </bean>
table Generates a collection | <bean id="$ENDS$" parent="CollectionGroupTableL ayout"
group with table layout | p:layoutM anager.numberOf Columns="" p:title="" pinstructional Text=""> <property
name="collectionObjectClass’ value="$CLASS$'/> <property name="propertyName" value=""/>
<property name="layoutManager.sequencePropertyName" value=""/> <property name="items">
<list> </list> </property> </bean>
tac Generates a text area|<bean parent="TextAreaControl" p:rows="END" p:cols=""/>
control
tc Generates atext control | <bean parent="TextControl" p:size="END"/>
view Generates aview <bean id="END" parent="FormView"> <property name="title" value=""/>

<property name="navigation"> <ref bean=""/> </property> <property name="items'>
<list> </list> </property> <property name="additionalCssFiles’ ref=""/> <property
name="additional JsFiles" ref=""/> <property name="viewHelperServiceClassName" value=""/>
<property name="defaultBindingObjectPath" vaue=""/> <property name="formClass" value=""/>
</bean>

Creating your own Templates

See http://www.jetbrains.com/idea/webhel p/live-templ ates.html

Please post back and share!

Converting KNS pages to KRAD

(other? E/R diagrams?, binding paths?, pointer
to javadocs?)

266

http://www.jetbrains.com/idea/webhelp/live-templates.html

Chapter 7. KRMS
KRMS Overview

What is a Rule Management System, in general?

Wikipedia defines a business rule management system, in general, as follows: "a software system used
to define, deploy, execute, monitor and maintain the variety and complexity of decision logic that is used
by operational systems within an organization or enterprise. Thislogic, also referred to as business rules,
includes policies, requirements, and conditional statements that are used to determine the tactical actions
that take place in applications and systems."

A key aspect of arules management system isthat it enables rules to be defined and maintained separately
from application code. This modularity has the potential to reduce application maintenance costs, enable
increased automation and application flexibility, and to enable business analysts and business process
experts who are not devel opers and who reside outside of the I T organizationsin the business departments
themselves, to be more directly involved in creating and managing their rules.

A rules management system in general includes a repository of decision logic and arules engine that can
be executed by applications in a run-time environment. Again from wikipedia: "... provides the ability
to: register, define, classify, and manage all the rules, verify consistency of rules definitions (" Gold-level
customersareeligiblefor free shipping when order quantity > 10" and “ maximum order quantity for Silver-
level customers = 15"), define the relationships between different rules, and relate some of these rulesto
IT applications that are affected or need to enforce one or more of the rules.”

What is Kuali's Rule Management System (KRMS), in
particular?

Kuali's Rule Management System (KRMS) supports the creation, maintenance, storage and retrieval of
business rules and agendas (ordered sets of business rules) within business contexts (e.g., for a particular
department or for a particular university-wide process).

KRMS enables you to define a set of rules within a particular business unit or for a particular set of
applications. These business rulestest for certain conditions and define the set of actions that result when
conditions are met. KRM S enables you to call and use this logic from any application, without having to
re-write and manage all the rules' logic within the application.

Integration with organizational hierarchies and structures can be accomplished today using KEW for
routing and approval, and KEW also has alegacy rule system of its own that can be used to make routing
decisions. But before KRMS, managing general customizable business logic such as "if the transaction
dateisin thefuture OR the transaction date is |lessthan the account activation date then flag the transaction
for review" was the responsibility of the applications themselves. KRM S now offers away to managethis
type of logic externally in a repository that allows for business analysts to change it without having to
modify application code.

Because KRMS is a general-purpose business rules management system, you can use it for many things,
for example, you can define arule to specify that when an account is closed, a continuation account must
be specified. You can also define rules to manage your organizational hierarchies and internal structures.
Y ou can define compound propositional logic, for example, "Must meet":

e P1- 12 credits of FirstYearScience (CLU set)

267

http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Business_rule

KRMS

What

What

AND
* P2 - Completed CALC101 with grade >= B+
AND

* p3- Average of B+ on last 12 credits

problems or functions does KRMS solve?

KRMS gives business applications a powerful tool to externalize logic in places where customization will
often be needed. Thislowers the costs of adopting and administering the application by reducing the need
for changesto the software itself, and alows the application to more fluidly reflect the institution's desired
business processes.

There are awide variety of actionsthat KRMS rules can be used to govern:

» Workflow Action rules - e.g. route an approval request

* Notification rules - e.g. send a notification to these people

 Validation rules - e.g. display this validation error message

* Questionnaire rules - e.g. administer this questionaire

» Custom-devel oped actions

For example, calling a KRMS set of rules (an agenda) from your application can result in routing a
document to a PeopleFlow*, which isanew feature in KEW in Rice 2.0, or to any other action you define

inKRMS.

* Essentialy, it's like amini people-based workflow that doesn't require you to specify a KEW node in
the document type for each role, group or individual who might need to approve or be notified.

problems does KRMS not address?

Some rule engines are built upon specia agorithms that alow for forward or backward chaining (one
example is Rete) that make them suitable for efficiently evaluating highly complex systems of what are
known as production rules. The default engine implementation for KRMS is not designed upon such an
agorithm, and it does not support either forward or backward chaining.

With which types of applications can KRMS integrate?

Can |

Any Rice-based application can use KRMS.

use KRMS without building a Rice application?

The project has aspirations to increase Rice's modularity, and some strides have been made, but at thetime
of thiswriting the answer is no.

268

http://en.wikipedia.org/wiki/Forward_chaining
http://en.wikipedia.org/wiki/Backward_chaining
http://en.wikipedia.org/wiki/Rete_algorithm

KRMS

KRMS Concepts

Namespaces, Contexts, Agendas, Rules and
Propositions

Namespaces are the top level container in KRMS. They contain Contexts, KRMS Types, and all things
related to Terms. There isn't a namespace entity in the KRMS schema, they are specified via namespace
code fields on the applicable child entities.

Rules in KRMS are placed into ordered sets called Agendas. The order of the Rules in an Agenda
determines the sequencing: which rule gets evaluated first, second and so on. The Agenda also enables
you to include conditional branching logic between Rules.

In turn, Agendas are are created in Contexts, which may represent any categories of rulesthat are relevant
within your institution. For example, they will frequently correspond to document types, but they could
be more finely grained to encompass only a certain kind of rule that you might run, e.g. you might
have a context called "Proposal Validations'. In some university environments, the following might be
relevant contexts: Awards, Proposals, IRB reviews, Course co-reguisites, Course pre-requisites, Student
plan evaluations, and so on.

Each Context containsits own agendas, and each Agendacontainsits own rules. Rules aren't shared across
agendas (though you can copy/paste, they become unique Rule instances), and Agendas aren't shared
across Contexts. Thereisno Context hierarchy, that is, Agendasand Rules can't beinherited across contexts
within any sort of hierarchy.

The following diagram outlines the hierarchy of entities in KRMS (note that some entities are omitted)

Mamespace

1..* Context 1..* KRMS Type

ryYy vy

1.7 Agenda

1..* Term Resolver

1..* Term Specification

1. Term

Category -

You'll aso notethat many of theentitiesin the above diagram are KRM S Types. In most cases (the notable
exception is Context) what that means is that you can develop and integrate custom implementations of
the engine objects associated with those entities. These include:

269

KRMS

Agendas with custom selection and execution code

» Actions with custom execution code

Rules with custom evaluation and Action triggering code

» Propositions with custom evaluation code

* Term Resolvers with custom value resolution code

Propositions

Rules consist of propositions, and KRM S supports the following three main types of propositions:

1. Simple Propositions - a proposition of the form lhs op rhs where |hs=left-hand side, rhs=right-hand
side, and op=operator

2. Compound Propositions - a proposition consisting of more than one simple proposition and a boolean
algebra operator (AND, OR) between each of the simple propositions

3. Custom Propositions - a proposition which can optionally be parameterized by some set of values.
Evaluation logic isimplemented "by hand" and returns true or false.

The data model is designed in such away to support each of these.

Next we'll look at each of the proposition tables in detail.

Proposition - krms_prop_t

Every proposition in the repository will have an entry in thistable. Propositions are reference by arule or
another proposition (in the case of compound propositions). Propositions are never re-used across multiple

rules.

Hereisasummary of the non-common data elements in this proposition table:

Table 7.1. Non-common data elementsin the proposition table

Column

Description

prop_id

A generated primary key identifier for the proposition

desc_txt

A plain-text description of the proposition

typ_id

Defines the PropositionType for the proposition. Defined in the krms_typ_t table.

dscrm_typ_cd

Discriminator type code which defines if the proposition is compound or simple. Valid valuesare C and S.

Proposition Parameters - krms_prop_parm_t

Each proposition can have zero or more parameters. The proposition parameter isthe primary dataelement
used to define the proposition. These parameters will be one of the following three types:

1. Constant Values
e numbers
* strings

» dates

270

KRMS

* etc.
2. Terms

« dataavailable in the execution environment and/or resolved by aterm resolver
3. Functions

* resolveto avaue

« could themselves take parameters of their own

« typically defined externally to KRMS and then plugged in via a custom term resolver
4. Operators

» oneof aset of built-in "functions’

» Thefull set of (currently) supported operators are as follows:

o <=

To that end, the proposition parameter list should be modeled as alist in Reverse Polish Notation (RPN).
This allows for arbitrary nesting of parameters, which may have parameters of their own. However, this
requiresthat each function explicitly define the number of argumentsthat it expects. Thiswill be specified
when the function is defined, so the proposition system can assumethisisavailable. Thisrequirement does
prohibit the use of functions that have a variable arity since the model currently does not have anyway to
group parameters. So thiswill currently be unsupported.

Examples of proposition parameter lists defined using RPN are as follows:
e [campusCode, "BL", =] equivalent to campusCode="BL"
* [totalDollarAmount, availableAmount, >] equivalent to totalDollarAmount > availableAmount

e [award, getTotalDollarAmountForAward, award, getAvailableAmountForAward, >] equivalent to
getTotal DollarAmount(award) > getAvailableA mountForAward(award)

In the cases above the following are constants:
« "BL"

Thefollowing are terms:

» campusCode

« totalDollarAmount

271

http://en.wikipedia.org/wiki/Reverse_Polish_notation

KRMS

* availableAmount

o award

The following are functions:
 getTotalDollarAmountForAward
 getAvailableAmountForAward
And the following are operators:

o >

Here isa summary of the non-common data elements in this proposition parameter table:

Table 7.2. Non-common data elementsin the proposition parameter table

Column Description

prop_parm_id A generated primary key identifier for the proposition parameter

prop_id The proposition which this parameter applies to

parm_val the value of the parameter

parm_typ_cd Indicates whether the parameter value represents a constant, term, or function. Vaid valuesareC, T, F, O
seq_no Defines the order of the parameter within the larger parameter list.

KRMS Administration Guide

(work in progress - content tdb. The below preface is patterned after the KEW TRG - what will admins
need to administer for KRMS? I've put in some placeholder content-topics for a TOC skeleton.)

Thisguide providesinformation on administering aKuali RulesManagement System (KRMS) install ation.
Out of the box, KRM S comes with a default setup that works well in development and test environments.
However, when moving to a production environment, this setup requires adjustments. This document
discusses basic administration as well as instructions for working with some of KRMS' administration
tools.

Initial Set up tasks

In this section we cover the types of tasks you'll need to do as a one-time setup at your institute in order
for you and othersto be able to define KRM S agendas for use by applications.

What do | have to install so that people can use KRMS?

What do | have to create or customize so that people can work with
business contexts, agendas, and rules?

Below are the constructs you will need to point to or create for your institute:
» Use existing Namespaces or set up Namespaces for KRMS

e Usean existing Agenda Type service or set up an Agenda Type service for KRMS

272

KRMS

e Useexisting Typesor set up Typesfor KRMS

» Use existing Contexts or configure new Contexts for KRMS
» Specify Terms

» Create Term Resolvers

* Create Parameterized Terms

Below are the instructions for doing these tasks.

Point to or Set up Namespaces

Y ou can use existing Namespaces or set up Namespaces specifically for KRMS (include information on
how to do both of these).

Point to or Set up an Agenda Type service for KRMS

You can use an existing Agenda Type service or set up an Agenda Type service specifically for KRMS
(include information on how to do both of these).

For example, below is a code snippet for setting up the Agenda Type service:

<bean i d="canpusAgendaTypeServi ce"
cl ass="edu. sanpl eu. krms. i npl . CanpusAgendaTypeServi ce" >
<property nanme="configurationService" ref="configurationService"/>
</ bean>

Point to or Set up the Types for KRMS
You can use existing Types or set up Types for KRMS (include information on how to do both of these).

Below isexample SQL Server codeto insert the Typeinto the Agenda Type service -- be sureto replacethe
content of the 2nd parenthetical expressionsin each of the following examples with your defined values:

* First, add the Type(s) itself:

insert into krms_typ_t (typ_id, nm, nmspc_cd, srve_nm, actv, ver_nbr) values ('T6', 'Campus Agenda’,
'KRMS _TEST', ‘campusAgendaTypeService, 'Y, 1);

* Next, add the campus attribute(s) to the Campus Agenda Type:

insert into krms_attr_defn_t (ATTR_DEFN_ID, NM, NMSPC_CD, LBL, CMPNT_NM, DESC_TXT)
values ('Q9901', 'Campus, 'KRMS TEST", ‘campus labdl’, null, 'the campus which this agenda is valid
for");

insert into krms_typ_attr t (TYP_ATTR_ID, SEQ NO, TYP_ID, ATTR _DEFN_ID) values ('T6A', 1,
'T6', 'Q9901");

Point to or Set up Contexts for KRMS
You can use existing Contexts or configure new Contexts for KRMS. There is graphical user interface

support for configuring a new Context, through a maintenance page. For example, in the Rice demo /
sample application, on the Main menu page, under KRM S Rules, select the Context L ookup.

273

KRMS

KRMS Rules

Maintenance Docs

= Create New Agenda
Lookups

Agenda Lookup
Conbext Lookup
Atkribute Dwefinition Lookup

Term Lookup
Term Specification Lookup

Caktegory Lookup

You can search for existing Contexts or create a new one. To create a new one, select "Create New" at
the top right on the context lookup page:

I 5 u al i g Provide Feedback

rices Administration KRAD Pmple App :: 2.0.0-b4-SNAPSHOT :: #2865 :: 2011-12-20 03:03 EST (OracleSi)

(] action list | (3] doc search | Logged in User: admin

Home »= Context Lookup

Context Lookup

Create New

Context Id: [)
Context Name:

Context Namespace: | ==

Context Type: | =

Active?: (= ¥Yes ' No . Both

(search | clearvalues | cancel

Copyright 2005-2009 The Kuali Foundation. All rights reserved.
Portions of Kuali are copyrighted by other parties as described in the Ackn mients screen.

The resulting Context Maintenance screen enables you to define a new Context. The Context ID must
be unique:

274

KRMS

| Faali s e

rices Adminlstration KRAD Rice Sample App :: 2.0.0-b4-SNAPSHOT :: #286 :: 2011-12-20 03:03 EST (Oraclesi)

[] action list | [f] doc search | Logged in User: admin

Home » Context Maintenanca

Context Maintenance

Document Number: 3055 Document Status: INITIATED

Initiator Network Id: =2dmin Creation Timaestamp: 05:40 PM 12/20/2011

[enpandall | [collizpsean |

* indicates reguired field

¥ Document Overview

* Dascriptiom:
Explanation:
Organization Document Number:

= Id: @
* Name:

= Namespace:

Type:

* Description:

Active: [

¥ Notes and Attachments (0)

After creating your Context(s), you must 1) set "CampusAgendaType" as valid*, 2) set "Route to
PeopleFlow" action as valid* for them, and 3) make the Type(s) you created valid for your Context(s).
See the following examples, and replace the content of each of the 2nd parenthetical expressions with
your defined values:

* insert into krms_cntxt_vld_agenda t (cntxt_vld_agenda id, cntxt_id, agenda_typ_id, ver_nbr) values
(‘agendaid', 'contextid', ‘agendatypeid', version#);

* insert into krms_cntxt_vid actn_t (cntxt_vld actn_id, cntxt_id, actn_typ id, ver_nbr) values
(‘agendaid', 'contextid', ‘agendatypeid', version#);

* insert into krms_cntxt_vld_agenda t (cntxt_vld_agenda id, cntxt_id, agenda_typ_id, ver_nbr) values
("agendaid', 'contextid', ‘agendatypeid', version#);

Specify the Terms for KRMS

Y ou can point to existing terms or specify new terms for KRMS (include information on how to do both
of these).

To specify newTerms, you will probably want to first create term categories. See the following examples,
and replace the content of each of the 2nd parenthetical expressions with your defined values:

» Example - Generic Workflow Properties

» « insert into krms_ctgry t (ctgry_id, nm, nmspc_cd, ver_nbr) values ('CATO02', "Workflow Document
Properties, 'KR-SAP', '1;

» Example - Travel Account Properties

275

KRMS

e o insert into krms ctgry t (ctgry_id, nm, nmspc_cd, ver_nbr) values ('CATO3', 'Travel Account
Properties, 'KR-SAP', '1Y);

And next, you can use existing Terms or configure new Termsfor KRMS. Thereisgraphical user interface
support for configuring anew Term, through a maintenance page. For example, in the Rice demo / sample
application, on the Main menu page, under KRM S Rules, select the Term Specification Lookup and, after
completing that, select the Term L ookup.

KRMS Rules

Maintenance Docs

= Create New Agenda
Lookups

Agenda Lookup
Conbext Lookup
Atkribute Dwefinition Lookup

Term Lookup
Term Specification Leokup

Caktegory Lookup

Y ou can search for existing Term Specificationsand Termsor create new ones. To create anew one, select
"Create New" at the top right on the term specification lookup page or copy and then modify an existing
one. See example Term Specification L ookup screen below:

276

KRMS

Home » Term Specification Lookup

Term Specification Lookup
Create New
ID: =
Nameaspace: B
Name:
Data Type:
Active?: [Yes (' No (» Both
[search :' (" clear values ‘.:I (" cancel :I

Actions D ¢ MNamespace o MName ¢ Description ¢ Data Type []

edit copy TERMECO1 Kuali Rules Test campusCaode null T2

edit copy TERMSEEC 001 Kuali Rules Test campusCodeTermSpec null java.lang.String

edit copy TERMSFEC 002 Kuali Rules Test bogusFundTermSpec null java.lang.String

edit copy TERMSEEC 003 Kuali Rules Test PO Value Purchase Order TE
Value

edit copy TERMSPEC 004 Kuali Rules Test PO Item Type Furchased Item T1
Type

edit copy TERMSPEC 005 Kuali Rules Test Account Charged To T1
Account

edit copy TERMSFEC 006 Kuali Rules Test Occasion Special Event T1

edit copy TERMSEEC 099 Kuali Rules Test campusSize Size in # of java.lang.Integer
students of the
campus

Showing 1 to 8 of 8 entries

If you copy an existing term specification, be sure to give it a new and unique name before you change
and save or submit it. Below is a view of the term specification screen showing the types of attributes
you can associate with it.

277

KRMS

¥ Term Specification

1D:

Namespace: | Kuali Rules Test

Name: |campusCodeTermSpec]

Data Type: | javaleng.Sting |

null

Description:
]
Active?: |/
Contexts
Look UE!Add MuIlIEIe Account Lines: %
* Context Id 4 = Context Namespace 4 = Context Name 4 * Description 4 Actions
| | [7
Y]
[conTEXTY | | Kuali Rules Test : Contextl null
[EN]
Showing 1 to 2 of 2 entries
Categories
Look Up/Add Multiple Account Lines: [CY,
= ID 4 = Namespace 4 Name 4 Actions
| & |(:J
Showing 1 to 1 of 1 entries
|: submit :I |: save :I |: blanket approve :| (close :'l cancel

After creating your term specifications (your categories of terms), you can use the Term L ookup screen to
add or create new terms. See the example Term Lookup screen below:

278

KRMS

Figure 7.1. Term Lookup screen example

Home » Term Lookup

Term Lookup
Create New
1D: =
Mamespace: Kuali Rules Test B
Name:
Data Type:
(" search :I (" clear values :I (" cancel :I

Actions ID Y I ¢ Namespace Y MName ! Data Type ¥
edit copy TERM 001 TERMSPEC_001 Kuali Rules Test campusCodeTermSpac java.lang.String
edit copy TERM_002 TERMSPEC 002 Kuali Rules Test bogusFundTermSpec java.lang.String
edit copy TERM_003 TERMSPEC 003 Kuali Rules Test FO Value TE
edit copy TERM_ 004 TERMSPEC_004 Kuali Rules Test B0 Item Type Ti
edit copy TERM_00S TERMSPEC_ 005 Kuali Rules Test #Account T1
edit copy TERM 006 TERMSPEC_0D06 Kuali Rules Test Occasion T1
edit copy TERM Qa9 TERMSPEC 599 Kuali Rules Test campusSize java.lang.Integer

Showing 1 to 7 of 7 entries

If you copy an existing term, be sureto changethe nameto anew and unique term beforeyou save or submit
it. Below isaview of theterm specification screen showing the types of attributesyou can associate with it.

279

KRMS

Figure 7.2. Term specification screen example

¥ Term Specification

1D:

Namespace: | Kuali Rules Test o

Name: |campusCodeTermSpec

Data Type: | javaleng.Sting

null

Description:

Active?:

Contexts

Look Up/Add Multiple Account Lines: Y

* Context Id 4 = Context Namespace 4 = Context Name 4 * Description 4 Actions
[] I(=
i

[conTEXTY | | Kuali Rules Test : Contextl null
LN

Showing 1 to 2 of 2 entries

Categories
Look Up/Add Multiple Account Lines: (3

= ID 4 = Namespace 4 Name 4 Actions

| I® |(2

Showing 1 to 1 of 1 entries

- —— - N N ~
& submit | [save | [blanket approve | [close) cancel

280

Chapter 8. KSB
How to Use the KSB

Introduction

Bean

TheKuali Service Bus (KSB) isalightweight service bus designed to allow devel opersto quickly develop
and deploy services for remote and local consumption. Y ou can deploy services to the bus using Spring
or programmatically. Services must be named when they are deployed to the bus. Services are acquired
from the bus using their name.

At the heart of the KSB is a service registry. This registry is a listing of all services available for
consumption on the bus. The registry provides the bus with the information necessary to achieve load
balancing, failover and more.

Based Services

Typically, KSB programming is centered on exposing Spring-configured beansto other calling code using
anumber of different protocols. Using this paradigm the client devel oper and the organization can rapidly
build and consume services, often a daunting challenge using other buses.

Figure 8.1. Overview of Supported Service Protocols

SOAPWS _

- I
o ry Enl
- Ser
sei
s ColdFusion
SOAP WS Rice Client
(non-Rice i 'en something in registn (non-Rice in == s o
7
v

.
'SOAP WS SOAP WS
P2 p2p

! T~/ Vi

‘ KSB

SOAP WS
oe SOAP WS
p2p

1
'
'

‘ ’

\]

|

. ______soaPws

p2p

Diagram Notes

This drawing is conceptual and not representative of a true deployment architecture. Essentially, the
KSB is aregistry with service calling behavior on the client end (Java client). All policies and behaviors
(Asynchronous as opposed to Synchronous) are coordinated on the client. The client offers some very
attractive messaging features:

» Synchronization of message sending with currently running transaction (meaning all messages sent
during atransaction are ONLY sent if the transaction is successfully committed)

» Failover - If acall to aservice comes back with a 404 (or various other network-related errors), it will
try to call other services of the same name on the bus. Thisis for both sync and async calls.

» Load balancing - Clients will round-robin call services of the same name on the bus. Proxy instances,
however, are bound to single machines if you want to keep a line of communication open to asingle
machine for long periods of time.

281

KSB

e Topicsand Queues

» Persistent messages - When using message persistence a message cannot be lost. It will be persisted
until it is sent.

Details of Supported Service Protocols

Java Rice Client

As Consumer

If configured for the KSB, a Java Rice Client can invoke any service in the KSB Registry using these
protocols:;

1. Synchronously
» SOAP WS p2p using KSB Spring configuration
» Javacall if it iswithin the same VM
* Spring HTTP Remoting

2. Asynchronously

» Messaging Queues — As a Consumer, a Java Rice Client can invoke a one-shot deal for calling a
K SB-registered service asynchronously

» Java, SOAP, Spring HTTP Remoting

» Messaging Topics- AsaConsumer listening to atopic, the Java Rice Client will receive a broadcast
message

As Producer

You can register Spring-defined services in the KSB Registry through the KSB Configurer. Consumers
can call these services as described in other sections.

Any Java Client

As Consumer

A Java Client, regardless of whether or not it's a Rice Client configured for the KSB, can invoke any
web service:

1. AsaSOAP WS p2p using a straight-up WS call through CXF, Axis, etc. If the external web serviceis
not registered on the KSB, the Java client must discover the service on its own.

2. Through Javaif they are within the same JVM

3. Through Spring HTTP Remoting; you must know the endpoint URL of the service.

As Producer

1. Currently, you can't leverage the KSB and its registry for exposing any of its services. It is possible to
bring up the registry and register services without the rest of the KSB.

282

KSB

2. A JavaClient can expose its web services directly using XFire (CXF), Axis, €etc.

3. You can bring up only the registry for discovery. However, the registry can't be a'service;' it can only
be a piece of code talking to a database.

Non-Java/Non-Rice Client

As Consumer

A non-Java/non-Rice Client that knows nothing about the KSB or its registry can only invoke web
services synchronously using:

* SOAP WS p2p using straight-up WS call through native language-specific WS libs

 Discovery cannot be handled by leveraging the KSB Registry at thistime.

As Producer

1. Currently cannot register services on KSB in registry

2. Can till produce services, but they can't be called leveraging the KSB; clients need to discover and
invoke the services directly (on their own).

KSB Registry as a Service

As of the 2.0 version of Rice, the ServiceRegistry is now itself a service. In order to bring the registry
online for the client application, the application needs to configure a URL similar to the following:

<param nane="ri ce. ksbh.regi stry. serviceUr | ">http://| ocal host: 8080/ kr-dev/renpting/servi ceRegi strySoap</ par an»

Currently, this connector is only configured to understand a SOAP interface to the service registry which
is secured by digital signatures. Thisisthe only type of interface to the registry that the standal one server
currently publishes. Additionally, only asingle URL to the registry can be configured at the current time.
If someone wants to do load balancing amongst potential registry endpoints, then a hardware or software
load balancer could be configured to do this.

Configuring the KSB Client in Spring

Overview

TheKuali Service Bus (KSB) isinstalled asaKuali Rice (Rice) Module using Spring. Hereisan example
XML snippet showing how to configure Rice and KSB using Spring:

<beans>

<bean id="coreConfigurer" class="org. kuali.rice.core.inpl.config.nodule.CoreConfigurer">
<property name="dataSource" ref="riceDataSource${connection.pool.inmpl}" />
<property name="nonTransacti onal Dat aSource" ref="ri ceNonTransacti onal Dat aSource" />
<property name="transacti onManager" ref="transacti onManager ${ connecti on. pool .inpl}" />
<property name="user Transacti on" ref="jtaUser Transacti on" />

</ bean>

<bean i d="ksbConfigurer" class="org.kuali.rice.ksb.nessagi ng. confi g. KSBConfi gurer"/>

283

KSB

</ beans>

Spring Property Configuration

The KSBTestHarnessSpring.xml located in the project folder under /ksh/src/test/resources/ is a good
starting place to explore KSB configuration in depth. The first thing the file does is use a
PropertyPlaceholderConfigurer to bring tokensinto the Spring filefor runtime configuration. The source of
the tokensisthe xml file: ksb-test-config.xml located in the /ksb/src/test/resourcess META-INF directory.

<bean id="config" class="org. kuali.rice.core.config.spring.ConfigFactoryBean">
<property name="configlLocations">
<list>
<val ue>cl asspat h: META- | NF/ ksb-t est-confi g. xm </ val ue>
</list>
</ property>
</ bean>

<bean cl ass="org. spri ngfranmewor k. beans. fact ory. confi g. Met hodl nvoki ngFact or yBean" >
<property name="stati cMet hod"
val ue="org. kuali.rice.core.inpl.config.property.Configlnitializer.initialize"/>
<property name="argunments">
<list>
<ref bean="config"/>
</list>
</ property>
</ bean>

<bean cl ass="org. springfranmewor k. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property name="properties" val ue="#{config.getProperties()}" />
</ bean>

Note

 Properties are passed into the Rice configurer directly. These could be props loaded from
Spring and injected into the bean directly.

* You could use the Rice configuration subsystem for configuration.

* A JTA TransactionManager and UserTransaction are also being injected into the
CoreConfigurer.

As mentioned above, this allows tokens to be used in the Spring file. If you are not familiar with tokens,
they look like thisin the Spring file: ${ datasource.pool.maxSize}

Let'stake alook at the ksb-test-config.xml file:

<config>

<par am name="confi g. | ocati on">cl asspat h: META- | NF/ conmron- der by- connect i on- confi g. xnl </ par am>

<par am nane="confi g. | ocati on">cl asspat h: META- | NF/ conmon- confi g-t est -1 ocati ons. xm </ par an®>

<param nane="cl i ent 1.l ocation">/var/lib/jenkins/workspace/rice-2.1.7-site-deploy/src/test/clients/
Test d i ent 1</ par an®»

<param nane="cl i ent 2. | ocation">/var/lib/jenki ns/workspace/rice-2.1.7-site-deploy/src/test/clients/
Test d i ent 2</ par an®

<par am nane="ksb. cl i ent 1. port">9913</ par an>

<par am nane="ksb. cl i ent 2. port">9914</ par an>

<par am nane="ksb. t est har ness. port " >9915</ par an>

<par am name="t hr eadPool . si ze" >1</ par an®>

<par am nane="t hr eadPool . f et chFr equency" >3000</ par an>

<par am name="bus. r ef resh. r at e">3000</ par an®>

<par am name="bam enabl ed" >t r ue</ par an»

<par am name="transaction. ti meout " >3600</ par an»

<par am name="keyst ore. al i as" >ri ce<par anp

284

KSB

<par am name="keyst or e. passwor d" >keyst or epass</ par an>

<par am nanme="keystore.file">/var/lib/jenkins/workspace/rice-2.1.7-site-deploy/src/test/resources/keystore/
ri cekeyst or e</ par an>

<par am name="keystore. | ocati on">/var/lib/jenkins/workspace/rice-2.1.7-site-depl oy/src/test/resources/
keyst ore/ ri cekeyst or e</ par an>

<par am nanme="use. cl ear Dat abaselLi f ecycl e" >t r ue</ par an>

<par am nane="use. sql Dat aLoader Li f ecycl e" >t r ue</ par an»

<!-- bus messagi ng props -->

<par am name="nessage. del i very" >synchr onous</ par an»

<par am name="nessage. per si st ence" >t r ue</ par an»

<par am nanme="useQuart zDat abase" >f al se</ par an»>

<par am name="confi g.| ocati on">${addi ti onal . confi g.| ocati ons}</ paran>

<par am nane="confi g. | ocation">${al t.config.|ocation}</paran>
</ config>

Thisisan XML file for configuring key value pairs. When used in conjunction with Spring tokenization
and the PropertyPlaceHolderConfigurer bean, the parameter name must be equal to the key value in the
Spring file so that the properties propagate successfully.

Spring JTA Configuration

When doing persistent messaging it is best practice to use JTA as your transaction manager. This
ensures that the messages you are sending are synchronized with the current executed transaction in your
application. It also allows message persistenceto be put in adifferent database than the application’ slogic
if needed. Currently, KSBTestHarnessSpring.xml uses JOTM to configure JTA without an application
server. Bitronix isanother JTA product that could be used in Rice and you could consider using it instead
of JOTM. Below is the bean definition for JOTM that you can find in Spring:

<bean id="jotm class="org.springframework.transaction.jta.JotnFactoryBean">
<property nanme="defaul t Ti meout” val ue="${transaction.tinmeout}"/>

</ bean>

<bean i d="dat aSource" class="org. kuali.rice. database. XAPool Dat aSour ce" >
<property name="transacti onManager" ref="jotn />
<property name="driverC assNane" val ue="${dat asource.driver.nane}" />
<property name="url" val ue="${datasource.url}" />
<property name="nmaxSi ze" val ue="${dat asource. pool . maxSi ze}" />
<property name="m nSi ze" val ue="${dat asource. pool . m nSi ze}" />
<property name="nmaxWit" val ue="${datasource. pool . max\Wait}" />
<property name="val i dati onQuery" val ue="${dat asource. pool . val i dati onQuery}" />
<property name="usernane" val ue="${dat asource. usernane}" />
<property name="password" val ue="${dat asource. password}" />

</ bean>

Bittronix’'s configuration is similar. Datasources for both ae set up in
org.kuali.rice.core.RiceDataSourceSpringBeans.xml. If using JOTM, use the Rice X APool DataSource
class as your data source because it addresses some bugs in the StandardX APoolDataSource, which
extends from this class.

Put JTA and the Rice Config object in the
CoreConfigurer

Next, you must inject the JOTM into the RiceConfigurer:

<bean id="rice" class="org.kuali.rice.core.inpl.config.nodul e. CoreConfigurer">
<property nanme="dat aSource" ref="dataSource" />
<property nanme="transacti onManager" ref="jotnt />
<property name="user Transaction" ref="jotm />

<...nore.../>

285

KSB

Configuring JTA from an appserver is no different, except the TransactionManager and UserTransaction
are going to be fetched using a JINDI FactoryBean from Spring.

Note

You set the serviceNamespace property in the example above by injecting the name into the
RiceConfigurer. You can do thisinstead of setting the property in the configuration system.

Configuring KSB without JTA

Y ou can configure KSB by injecting a PlatformTransactionManager into the KSBConfigurer.

» This eliminates the need for JTA. Behind the scenes, KSB uses Apache's OJB as its Object Relational
Mapping.

» Before you can use PlatformTransactionManager, you must have a client application set up the OJB
so that KSB can useit.

Thisis agood option if you are an OJB shop and you want to continue using your current setup without
introducing JTA into your stack. Normally, when a JTA transaction is found, the message is not sent until
the transaction commits. In this case, the message is sent immediately.

Let's take alook at the KSBTestHarnessNoJtaSoring.xml file. Instead of JTA, the following transaction
and DataSource configuration is declared:

<bean i d="o0j bConfigurer" class="org.springnodul es.orm oj b. support.Local g bConfigurer" />

<bean i d="transacti onManager" cl ass="org. spri ngnodul es. orm oj b. Per si st enceBr oker Transact i onManager " >
<property name="j cdAl i as" val ue="dataSource" />
</ bean>

<bean i d="dat aSource" cl ass="org. spri ngframework.j dbc. dat asource. Dri ver Manager Dat aSour ce" >
<property name="driver d assNane" >
<val ue>${ dat asour ce. dri ver. nane} </ val ue>
</ property>
<property name="url">
<val ue>${dat asource. url } </ val ue>
</ property>
<property nane="usernane">
<val ue>${ dat asour ce. user nane} </ val ue>
</ property>
<property name="password">
<val ue>${ dat asour ce. passwor d} </ val ue>
</ property>
</ bean>

The RiceNoJtaOJB.properties file needs to include the Rice connection factory property value:

ConnectionFactoryCd ass=org. kual i . ri ce. core. framework. persi stence. oj b. Ri ceDat aSour ceConnecti onFactory

Often, the DataSource is pulled from JNDI using a Spring FactoryBean. Next, we inject the DataSource
and transactionManager (now a Spring PlatformTransactionM anager).

<bean id="rice" class="org.kuali.rice.core.inpl.config.nodule.CoreConfigurer">
<property name="dat aSource" ref="dataSource" />
<property name="nonTransacti onal Dat aSour ce" ref="dataSource" />

</ bean

286

KSB

<bean id="ksbConfigurer" class="org. kuali.rice.ksb.nessagi ng. confi g. KSBConfi gurer">

<property name="pl at f or nilr ansact i onManager"
<... nore

</ bean>

web.xml Configuration

<servl et>

Lol >

Notice that the transactionManager isinjected into the KSBConfigurer directly. Thisisbecause only KSB,
and not Rice, supportsthistypeof configuration. The DataSourceisinjected normally. When doing this, the
0OJB setupisentirely inthe hands of the client application. That doesn't mean anything morethan providing
an OJB.properties object at theroot of the classpath so OJB can load itself. KSB will automatically register

ref ="transacti onManager" />

its mappings with OJB, so they don't need to be included in the repository.xml file.

To alow external bus clients to invoke services on the bus-connected node, you must configure the

K SBDispatcherServlet in the web applications web.xml file. For example:

<servl et - name>r enot i ng</ ser vl et - nane>
<servl et-class>org. kuali.rice.ksb. nessagi ng. servl et. KSBDi spat cher Servl et </ servl et-cl ass>
<l oad- on- st art up>1</| oad- on- st art up>

</servl et>

<servl et - mappi ng>
<servl et - name>r enot i ng</ ser vl et - nane>

<url-pattern>/renoting/*</url-pattern>

</ servl et - mappi ng>

Thisallowsbus-exposed servicesto be accessed at aURL likehttp://your localip: 8080/myapp/r emoting/
[K SB:service name]. Notice how this URL corresponds to the configured serviceServletUr| property on

the KSBConfigurer.

Configuration Parameters

The service bus leverages the Rice configuration system for its configuration. Here is acomprehensive set

of configuration parameters that you can use to configure the Kuali Service Bus:

Table 8.1. KSB Configuration Parameters

Parameter Required Default Value
bam.enabled Whether Business Action Messaging isenabled | false
bus.refresh.rate How often the service bus will update the|60
services it has deployed in minutes.
dev.mode no fase
message.persistence no true
message.delivery no asynch
message.off no false
ksh.mode The mode that KSB will run in; choices are| LOCAL
"local", "embedded", or "remote".
ksb.url The base URL of KSB services and pages. ¥ application.url} /ksb
RouteQueue.maxRetryAttempts no 5
RouteQueue.timel ncrement no 5000
Routing.lmmediateExceptionRouting no false
RouteQueue.maxRetryAttemptsOverride no None

287

KSB

Parameter Required Default Value
rice.ksh.batch.mode A service bus mode suitable for running batch | false

jobs; it, like the KSB dev mode, runs only local

services.
riceksb.struts.config.files The struts-config.xml configuration file that the | /ksb/WEB-INF/struts-config.xml

KSB portion of the Rice application will use.
rice.ksb.web.forceEnable no false
threadPool .size The size of the KSB thread pool. 5
useQuartzDatabase no true
ksh.org.quartz.* no None
rice.ksb.config.allowSelfSignedSSL no false

dev.mode

Indicates whether this node should export and consume services from the entire service bus. If set to true,
then the machine will not register its services in the global service registry. Instead, it can only consume
services that it has available locally. In addition to this, other nodes on the service bus will not be able to
"see" this node and will therefore not forward any messagesto it.

message.persistence

If true, then messages will be persisted to the datastore. Otherwise, they will only be stored in memory.
If message persistenceis not turned on and the server is shutdown while there are still messages that need
to be sent, those messages will be lost. For a production environment, it is recommended that you set
message.persistence to true.

message.delivery

Can be set to either synchronous or asynchronous. If thisis set to synchronous, then messages that are
sent in an asynchronous fashion using the KSB API will instead be sent synchronously. Thisis useful in
certain development and unit testing scenarios. For a production environment, it is recommended that you
set message delivery to asynchronous.

Note

It is strongly recommended that you set message.delivery to asynchronous for all cases except
for when implementing automated tests or short-lived programsthat interact with the service bus.

message.off
If set to true, then asynchronous messages will not be sent. In the case that message persistence is turned
on, they will be persisted in the message store and can even be picked up later using the Message Fetcher.

However, if message persistence is turned off, these messages will be lost. This can be useful in certain
debugging or testing scenarios.

RouteQueue.maxRetryAttempts

Setsthe default number of retriesthat will be executed if amessagefailsto be sent. Y ou can also customize
thisretry count for a specific service (see Exposing Services on the Bus).

RouteQueue.timelncrement

Sets the default time increment between retry attempts. As with RouteQueue.maxRetryAttempts, you can
also configure this at the service level.

288

KSB

Routing.ImmediateExceptionRouting

If set to true, then messagesthat fail to be sent will not beretried. Instead, their M essageExceptionHandl er
will beinvoked immediately.

RouteQueue.maxRetryAttemptsOverride

If set withanumber, it will temporarily set theretry attemptsfor ALL servicesgoing into exception routing.
You can set the number arbitrarily high to prevent all messages in a node from making it to exception
routing if they are having trouble. The message.off param produces the same result.

useQuartzDatabase
When using the embedded Quartz scheduler started by the KSB, indicates whether that Quartz scheduler

should store its entries in the database. If thisistrue, then the appropriate Quartz properties should be set
aswell. (See ksh.org.quartz.* below).

ksb.org.quartz.*
Can be used to pass Quartz properties to the embedded Quartz scheduler. See the configuration

documentation on the Quartz site. Essentialy, any property prefixed with ksb.org.quartz. will have the
"ksh." portion stripped and will be sent as configuration parameters to the embedded Quartz scheduler.

rice.ksb.config.allowSelfSignedSSL

If true, then the buswill allow communication using the https protocol between machineswith self-signed
certificates. By default, thisis not permitted and if attempted you will receive an error message like this:

Note

It is best practice to only set thisto 'true’ in non-production environments!

rice.ksb.web.forceEnable

publish the KSB user interface components (such as the Message Queue, Thread Pool, Service Registry
screens) even when the ksh.mode is not set to local.

KSBConfigurer Properties

In addition to the configuration parameters that you can specify using the Rice configuration system, the
KSBConfigurer bean itself has some properties that can be injected in order to configure it:

exceptionMessagingScheduler

By default, KSB uses an embedded Quartz scheduler for scheduling the retry of messages that fail to be
sent. If desired, a Quartz scheduler can instead be injected into the KSBConfigurer and it will use that
scheduler instead. See Quartz Scheduling for more detail.

messageDataSource

Specifies the javax.sgl.DataSource to use for storing the asynchronous message queue. If not specified,
this defaults to the DataSource injected into the RiceConfigurer.

If this DataSource is injected, then the registryDataSource must also be injected and vice-versa.

289

http://www.quartz-scheduler.org/

KSB

nonTransactionalMessageDataSource

Specifies the javax.sgl.DataSource to use that matches the messageDataSource property. This datasource
instance must not be transactional. If not specified, this defaults to the nonTransactional DataSource
injected into the RiceConfigurer.

registryDataSource

Specifies the javax.sgl.DataSource to use for reading and writing from the Service Registry. If not
specified, this defaults to the DataSource injected into the RiceConfigurer.

If this DataSource is injected, then the messageDataSource must also be injected and vice-versa.

services

Specifiesalist of Java service definitions relating to SOAP to use as part of messaging.

KSB Configurer

The application needs to do one more thing to begin publishing services to the bus. Configure the
K SBConfigurer object. This can be done using Spring or programmatically. We'll use Spring because it's
the easiest way to get things configured:

<bean id="jotm class="org.springframework.transaction.jta.JotnfFactoryBean">
<property nanme="defaul t Ti meout” val ue="${transaction.timeout}"/>
</ bean>

<bean i d="dat aSource" class=" org.kuali.rice.core.database. XAPool Dat aSource ">
<property name="transacti onManager" ref="jotnl/>
<property name="driverC assNanme" val ue="oracle.jdbc.driver.OacleDriver"/>
<property name="maxSi ze" val ue="25"/>
<property name="m nSi ze" val ue="2"/>
<property name="maxWait" val ue="5000"/>
<property name="val i dati onQuery" val ue="select 1 from dual"/>
<property name="url" val ue="j dbc: oracl e: t hi n: @ OCALHOST: 1521: XE"/ >
<property nanme="usernane" val ue="nyapp"/>
<property name="password" val ue="password"/>

</ bean>

<bean i d="nonTransacti onal Dat aSour ce" cl ass="org. apache. conmons. dbcp. Basi cDat aSour ce" destroy- net hod="cl ose">
<property name="driverC assNanme" val ue="oracl e.jdbc.driver.OacleDriver"/>
<property name="url" val ue="j dbc: oracl e: t hi n: @ OCALHOST: 1521: XE"/ >
<property name="maxActive" val ue="50"/>
<property name="m nldl e" val ue="7"/>
<property name="initial Size" value="7"/>
<property name="val i dati onQuery" val ue="select 1 from dual"/>
<property nanme="usernane" val ue="nyapp"/>
<property name="password" val ue="password"/>
<property name="accessToUnder|yi ngConnecti onAl | owed" val ue="true"/>

</ bean>

<bean i d="coreConfigurer" class="org.kuali.rice.core.inpl.config.nodul e.CoreConfigurer">
<property name="dat aSource" ref="datasource" />
<property name="nonTransacti onal Dat aSour ce" ref="nonTransacti onal Dat aSource" />
<property name="transacti onManager" ref="jotnl />
<property name="user Transaction" ref="jotnml />

</ bean>

<bean i d="ksbConfigurer" class="org.kuali.rice.ksb.messagi ng.confi g. KSBConfi gurer"/>

The application is now ready to deploy servicesto the bus. Let's take aquick look at the Spring file above
and what's going on there: The following configures JOTM, which is currently required to run KSB.

290

KSB

<bean id="jotm' class="org.springframework.transaction.jta.JotnFactoryBean" />

Next, we configure the XAPool DataSource and the non transactional BasicDataSource. This is pretty
much standard data source configuration stuff. The X APool DataSource is configured through Spring and
not JNDI so it can take advantage of JTOM. Servlet containers, which don't support JTA, require this
configuration step so the datasource will use JTA.

<bean i d="dat aSource" class=" org.kuali.rice.core.database. XAPool Dat aSource ">
<property name="transacti onManager" ref="jotnl/>
<property name="driverd assNanme" val ue="oracle.jdbc.driver.OacleDriver"/>
<property name="url" val ue="j dbc: oracl e: t hi n: @ OCALHOST: 1521: XE"/ >
<property name="nmaxSi ze" val ue="25"/>
<property name="m nSi ze" val ue="2"/>
<property name="maxWait" val ue="5000"/>
<property name="val i dati onQuery" val ue="select 1 from dual"/>
<property name="usernane" val ue="nyapp"/>
<property name="password" val ue="password"/>

</ bean>

<bean i d="nonTransacti onal Dat aSour ce" cl ass="org. apache. commons. dbcp. Basi cDat aSour ce" destroy-net hod="cl ose">
<property name="driverd assNanme" val ue="oracle.jdbc.driver.OacleDriver"/>
<property name="url" val ue="j dbc: oracl e: t hi n: @ OCALHOST: 1521: XE"/ >
<property name="nmaxActive" val ue="50"/>
<property name="m nldl e" val ue="7"/>
<property name="initial Size" value="7"/>
<property name="val i dati onQuery" val ue="select 1 from dual"/>
<property name="usernane" val ue="nyapp"/>
<property name="password" val ue="password"/>
<property name="accessToUnder|yi ngConnecti onAl | owed" val ue="true"/>

</ bean>

Next, we configure the bus:

<bean id="rice" class="org.kuali.rice.core.config. CoreConfigurer">
<property name="dat aSource" ref="dataSource" />
<property name="nonTransacti onal Dat aSour ce" ref="nonTransacti onal Dat aSour ce" />
<property name="transacti onManager" ref="jotnt />
<property name="user Transaction" ref="jotm />
</ bean>

<bean id="ksbConfigurer" class="org. kuali.rice.ksb. nessagi ng. confi g. KSBConfi gurer">
<property name="regi stryDat aSource" ref="dataSource" />
<property name="banDat aSour ce" ref="dataSource" />
<property name="nessageDat aSource" ref="dataSource" />
<property name="nonTransacti onal MessageDat aSour ce" ref="nonTransacti onal Dat aSource" />
</ bean>

We are injecting JOTM, and the datasources. The injection of the KSBConfigurer class into the
ksbConfigurer property tells this instance of Rice to start the Service Bus. The final necessary step is
making sure the configuration parameter ‘application.id' is set properly to some value that will identify all
services deployed from this node as a member of this node.

At this point, the application is configured to use the bus, both for publishing services and to send
messages to services. Usually, applications will publish services on the bus using the KSBConfigurer or
the SoapServiceExporter classes. See Acquiring and invoking services for more detail.

Implications of “synchronous” vs. “asynchronous” Message
Delivery

Asnoted in Configuration Parameters, it ispossibleto configure message delivery to run asynchronously or
synchronously. It isimported to understand that asynchronous messing should be used in almost all cases.

291

KSB

Asynchronous messing will result in messages being sent in a separate thread after the original transaction
that requested the message to be sent is committed. Thisisthe appropriate behavior in a“fire-and-forget”
messaging model. The option to configure message deliver as synchronous was added for two reasons;

1. To allow for the implementation of automated unit tests which could perform various tests without
having to right “polling” code to wait for asynchronous messing to complete.

2. For short-lived programs (such as batch programs) which need to send messages. This allows for a
guarantee that all messages will be sent prior to the application being terminated.

The second caseisthe only case where synchronous messaging should be used in aproduction setting, and
even then it should be used with care. Synchronous message processing in Rice currently hasthefollowing
major differences from asynchronous messaging that need to be understood:

1. Order of Execution

2. Exception Handling
Order of Execution

In asynchronous messaging, messages are queued up until the end of the transaction, and then sent after
the transaction is committed (technically, they are sent when the transaction is committed).

In synchronous messaging, messages are processed immediately when they are “sent”. Thisresultsin a
different ordering of execution when using these two different messaging models.

Exception Handling

In asynchronous messaging, whenever there is a failure processing a message, an exception handler is
invoked. Recovery from such failures can include resending the message multiple times, or recording and
handling the error in some other way. Since al of this is happening after the origina transaction was
committed, it does not affect the original processing which invoked the sending of the message.

With synchronous messaging, since the message processing is invoked immediately and the calling code
blocks until the processing is complete, any errors raised during messaging will be thrown back up to
the calling code. This means that if you are writing something like a batch program which relies on
synchronous messaging, you must be aware of this and add code to handle any errorsif you want to deal
with them gracefully.

Another implication of this is that message exception handlers will not be invoked in this case.
Additionally, because an exception is being thrown, thiswill typically trigger arollback in any transaction
that the calling code is running. So transactional issues must be dealt with as well. For example, if the
failure of a single message shouldn’t cause the sending of all messages in a batch job to fail, then each
message will need to be sent in it’s own transaction, and errors handled appropriately.

Configuring Quartz for KSB
Quartz Scheduling

The Kuali Service Bus (K SB) uses Quartz to schedule delayed tasks, including retry attempts for messages
that cannot be sent thefirst time. By default, KSB usesan embedded quartz schedul er that can be configured
by passing parameters starting with “ksh.org.quartz.” into the Rice configuration.

If the application is already running a quartz scheduler, you can inject a custom quartz scheduler using
code like this:

292

KSB

<bean cl ass="org. kual i . rice. ksbh. messagi ng. confi g. KSBConfi gurer">

<property name="excepti onMessagi ngSchedul er">
<bean cl ass="org. spri ngframewor k. schedul i ng. quart z. Schedul er Fact or yBean" >

</ bean>
</ property>
</ bean>

When you do this, KSB will not create an embedded scheduler but will instead use the one provided.

Acquiring and Invoking Services Deployed on
KSB

Service invocation overview

1. Acquired and called directly
» Automatic Failover
* No Persistence
 Direct cal - Request/Response
2. Acquired and called through the M essageHel per
» Automatic Failover
» Message Persistence
» KSB Exception Messaging
* Callback Mechanisms

In the examples below, noticethat the client codeisunawar e of the protocol with which theunderlying
serviceisdeployed. Given aconnector for agiven protocol and acompatible service definition, you could
move a service to different protocols as access needs change without affecting dependent client code.

Acquiring and invoking a service directly

The easiest way to call a service isto grab it and invoke it directly. This uses a direct request/response
pattern and what you see is what you get. You will wait for the processing the call takes on the other
side plus the cost of the remote connection time. Any exceptions thrown will come across the wirein a
protocol-acceptable way.

This code acquires a SOAP-based service and callsit:

QNarre servi ceName = new QName("t est NameSpace", "soap-repeatTopic");

SOAPSer vi ce soapServi ce = (SOAPServi ce) G obal Resour ceLoader. get Servi ce(servi ceNane) ;
soapServi ce. doTheThi ng("hel | 0");

The SOAPService interface needs to be in the client classpath and bindable to the WSDL. The easiest
way to achieve thisin Javaisto create a bean that is exported as a SOAP service. Thisis the server-side
service declaration in a Spring file:

293

KSB

<bean i d="ksbConfigurer" class="org.kuali.rice.ksb.messagi ng. confi g. KSBConfi gurer">

<property name="services">
<list>
<bean cl ass="org. kuali.rice. ksb. api . bus. support . SoapServi ceDefinition">
<property name="service">
<ref bean="soapService" />
</ property>
<property name="| ocal Servi ceNane" val ue="soap-repeat Topi c" />
<property nanme="servi ceNaneSpaceURl " val ue="t est NaneSpace" />
<property name="priority" value="3" />
<property name="queue" val ue="fal se" />
<property name="retryAttenpts" value="1" />

</ bean>
<Ilist>
</ property>

</ bean>
This declaration exposes the bean soapService on the bus as a SOAP available service. The Web Service
Definition Language is available at the serviceServletUrl + serviceNameSpaceURI + local ServiceName
+ 2wsdl.
This next code snippet acquires and calls a Java base service:

EchoServi ce echoService = (EchoServi ce)d obal Resour ceLoader . get Servi ce(new QNane(" Testd 1", "echoService"));

String echoVal ue = "echoVal ue";

String result = echoService. echo(echoVal ue);

Again, theinterface is al that is required to make the call. Thisis the server-side service declaration that
deploys a bean using Spring’ s Httplnvoker as the underlying transport:

<bean id="ksbConfigurer" class="org. kuali.rice.ksbh.nessagi ng. confi g. KSBConfi gurer">

<property name="services">
<list>

<bean cl ass="org. kuali.rice. ksb. api . bus. support. SoapServi ceDefi nition">
<property name="service" ref="echoService" />
<property name="servicelnterface"

val ue="org. kual i . ri ce. ksh. messagi ng. r enot edser vi ces. EchoServi ce" />

<property nanme="| ocal Servi ceNane" val ue="soap-echoServi ce" />
<property nanme="busSecurity" val ue="fal se"></property>

</ bean>

</list>
</ property>
</ bean>

Below is a description of each property on the ServiceDefinition (JavaServiceDefinition and
SOAPServiceDefinition):

Table 8.2. Properties of the ServiceDefinition

property required default description
busSecurity no yes (JavaServiceDefinition), no | For Java-based services, message is digitally
(SOAPServiceDefinition) signed before calling the service and verified

at the node hosting the service. For SOAP
services, WSSAJ is used to digitally sign the
SOAP request/response in accordance with the
WS Security specification. More info on Bus
Security here.

local ServiceName yes none Thelocal name of the QNamethat makes up the
complete service name.

294

KSB

property required default description

messageExceptionHandler no DefaultM essageExceptionHandler Name of the MessageExceptionHandler that is
called when a service cal fails. Thisis caled
after the retryAttempts or millisToLive policy
of the service or Node has been met.

millisToLive no none Used instead of retryAttempts. Only considered
in case of error when invoking service. Defines
how long the message should continue to be
tried before being put into KSB Exception
Messaging.

priority no 5 Only applies when asynchronous messaging is
enabled. The lower the priority is, the sooner
the message will be executed. For example,
if 100 priority 10 messages are waiting for
invocation and a priority 5 message is sent, the
priority 5 message will be executed first.

queue no true If true, the service will behave like a queue in
that there is only one real service call when a
message is sent.

If false, the service will behave like atopic. All
beans bound to the service name will be sent a
message When amessage is sent to the service.

Use queues for operations you only want
to happen once (for example, to route a
document). Usetopicsfor notificationsacrossa
cluster (for example, to invalidate cache entry).

retryAttempts no 7 Determines the number of times a service
can be invoked before being put into KSB
Exception Messaging (the error state)

service yes none The bean to be exposed for invocation on the
bus
serviceEndPoint no serviceServletUrl + serviceName This can be explicitly set to create an aternate

serviceend point, different from the onethe bus
automatically creates.

serviceName yes serviceNameSpaceURI + local ServiceName | If local ServiceName and
serviceNameSpaceURI are omitted, the QName
of the service. This can be used instead of the
local ServiceName and serviceNameSpaceURI
convenience methods.

serviceNameSpaceURI no messageEntity property or message.entity | The namespaceURI of the QName that makes
config param is used up the complete servicename. If setto"" (blank
string) the property is NOT included in the
congtruction of the QName representing the
service and the service name will just be the
local ServiceName with no namespace.

Acquiring and invoking a service using messaging
To make acall to a service through messaging, acquire the service by its name using the M essageHel per:

Narre servi ceName = new QName("t est AppsShar edQueue”, "sharedQueue");

KEWBanpl eJavaSer vi ce testJavaAsyncServi ce = (KEWsanpl eJavaSer vi ce)
KsbApi Ser vi ceLocat or . get MessageHel per (). get Servi ceAsynchr onous| y(servi ceNane) ;

At this point, the testJavaAsyncService can be called like a normal JavaBean:

t est JavaAsyncSer vi ce. i nvoke(new d i ent AppSer vi ceShar edPayl oadObj (" nessage content", false));

Because this is a queue, a single message is sent to one of the beans bound to the service name
new QName("testAppsSharedQueue”, "sharedQueue”). That 'message’ is the call 'invoke' and it takes a

295

KSB

ClientAppServiceSharedPayloadObj. Typically, messaging is done asynchronously. Messages are sent
when the currently running JTA transaction is committed - that is, the messaging layer automatically
synchronizeswith the current transaction. So, using JTA, even though the aboveis coded in linewith code,
invocation is normally delayed until the transaction surrounding the logic at runtime is committed.

When not using JTA, the message is sent asynchronously (by adifferent thread of execution), but it's sent
ASAP.

To review, the requirements to use a service that is exposed to the bus on a different machine are:
1. The service name
2. Theinterface to which to cast the returned service proxy object

3. The ExceptionMessageHandler required by the service in case invocation fails

Note

Typically, service providers give clients a JAR with this content or organizations maintain aJAR
with this content.

To complete the example: Below is the Spring configuration used to expose this service to the bus. This
is taken from the file TestClient1SpringBeans.xml:

<!-- bean declaration -->
<bean i d="sharedQueue" cl ass=" org.kuali.rice.ksb.testclientl.dientApplSharedQueue" />

<bean i d="ksbConfigurer" class="org.kuali.rice.ksbh.messagi ng. confi g. KSBConfi gurer">

<property name="services">

<list>

<bean cl ass=" org. kuali.rice.ksh. messagi ng. JavaServi ceDefinition">

<property name="servi ce" ref="sharedQueue" />
<property name="| ocal Servi ceName" val ue="shar edQueue" />
<property name="servi ceNameSpaceURI " val ue="t est AppsShar edQueue" />

</ bean>

S
</list>

nore .../>

</ property>

</ bean>

Thisis located in the Spring file of the application exposing the service (in other words, the location in
which the actual invocation will occur). The client does not need a Spring configuration to invoke the
service.

There are two messaging call paradigms, called Topics and Queues. When any number of services is
declared a Topic, then those services areinvoked at least once or multipletimes. If any number of services
is declared a Queue, then one and only one service name will be invoked.

Getting responses from service calls made with
messaging

You can use Callback objects to get responses from service calls made using messaging. Acquiring a
service for use with a Callback:

QNane serviceNane = new QNane("Testd 1", "testXm AsyncService");
Si npl eCal | back cal | back = new Si npl eCal | back() ;
KSBXM.Ser vi ce testXml AsyncServi ce = (KSBXM.Servi ce)
KsbApi Servi celLocat or. get MessageHel per (). get Servi ceAsynchronousl y(servi ceNarme, cal | back);

296

KSB

t est Xml AsyncSer vi ce. i nvoke("nessage content");

When the service is invoked asynchronously, the AsynchronousCallback object's (the SimpleCallback
class above) callback method is called.

When message persistence is turned on, this object is serialized with any method call made through the
messaging API. Take into consideration that this object (and the result of a method call) may survive
machine restart and therefore it's recommended that you NOT depend on certain transient in-memory
resources.

Failover

Service call failover

Failover works the same whether making direct service calls or using messaging.

Services exported to the bus have automatic failover from the client’ s perspective. For example, if service
A isdeployed on machines 1 and 2 and aclient happensto get a proxy that pointsto machine 1 but machine
1 crashes, the KSB will automatically detect that the exception isaresult of some network issue and direct
the call to machine 2. KSB then removes machine 1 from the registry so new clients to the bus don't try to
acquire the service. When machine 1 returnsto the network it will register itself with the service registry
and therefore the bus.

When a message calls a service, the failover rules determine which service KSB assigns (topic or queue)
to the message.

Failover with queues

Because queues require only one call between all beans bound to the queue, if asingle call to aqueuefails,
failover to the next bean occurs. If successful, the call is done. If it is not successful, it continues until a
suitable bean is found. If none is found, the message is marked for retry later. Eventually, the message
either goes to KSB exception messaging or successfully completes.

Failover with topics

If amachinein atopic isunavailable, afailed call to that machine will continue to be retried until that call
is successful or that call goesinto KSB exception messaging.

KSB Exception Messaging

Exception Messaging is the set of services and configuration options that handle messages that cannot
be delivered successfully. Exception Messaging is primarily used by configuring your service using
the properties outlined in KSB Module Configuration. When services are configured to use message
persistence and there is a problem invoking a service, the persisted message or service call isrelied upon
to make another call to that service until the call is either:

1. Successful
2. Certain configuration policies have been met and the message goes into the Exception state

The Exception state means that KSB can't doing anything more with this message. The message will not
invoke properly. That generally means that some sort of technical intervention is required by both the
consumer and the provider of the service to determine what the problemis.

297

KSB

KSB

All Exception behavior is configurable at the service level by setting the name of the class to be used as
MessageExceptionHandler. This class determines what to do when a client of a service cannot invoke a
message. The DefaultM essageExceptionHandler is enough to meet most requirements.

When a message is put into the Exception state, KSB puts it back into the message store and marks it
with a status of 'E'. At that point, it is up to the person responsible for monitoring this node on the bus to
determine what to do with the message.

Because the node exposing the service configures the MessageExceptionHandler, any clients depending
on the service need that MessageExceptionHandler and any dependent code and configuration.

Messaging Paradigms

KSB supports two types of messaging paradigms,; Queues and Topics, and the differences are explained
below. These are very similar to JIMS messaging concepts. An open source solution was not used for
K SB messaging because an open source JM S provider wasn't found that provided JTA synchronization,
discovery, failover, and load balancing. Many claim such features, but when put to the test in real world
scenarios (i.e., machines going down and coming back up, databases failing, network connectivity issues);
none managed to reliably deliver messages.

The advantage here is that we can apply these messaging concepts to any support protocol with which
we can communicate.

Queues

When any number of services is bound to a queue and a method is invoked, one and only one service
gets the invocation.

Topics

When any number of services is bound to a topic and a method is invoked, all services are invoked AT
LEAST once or multiple times.

Message Fetcher

org.kuali.rice.ksh.messaging.MessageFetcher is a Runnable that needs to be configured by the client
application to retrieve stored messages from the database that weren’t processed when the node went down.
This can happen for many reasons. The machine can be under load and just crash.

When message persistence is enabled, a service that fails or throws an Exception stores preprocessed
messages in the database until they can be resent. This makes certain that a crash or emergency restart of
your machine will not result in message |oss.

TheK SB doesnot automatically fetch all these messagesand attempt to invokethem when it starts, because
often the KSB is started when the services the messages are bound for are not yet started. For now, you
need to decide when to call the run method on the M essageFetcher. Becauseit'sa Runnable, you could also
put the MessageFetcher in the KSBThreadPool that is available on the KSBServicel ocator. You could
wrapitinaTimerTask, etc. All that isrequired isthis:

new MessageFet cher ((Integer) null).run()

Unfortunately, the cast to Integer isrequired. The MessageFetcher also has a constructor that takes along
variable as a parameter. This can be used to pull any message in the message store and put it in memory
for invocation. Integer is afetch size; null means all.

298

KSB

Load Balancing

L oad balancing between service calls is automatic. If there are multiple nodes that expose services of the
same name, clients will randomly acquire proxies to each endpoint bound to that name.

Object Remoting

As of Rice 2.0, Object remoting support has been removed.

Publishing Services to KSB

You can publish Services on the service bus either by configuring them directly in the application's
K SBConfigurer module definition, or by using the PropertyConditional ServiceBusExporter bean. In either
case, a ServiceDefinition is provided that specifies various bus settings and the target Spring bean.

KSBConfigurer

A service can be exposed by explicitly registering it with the KSBConfigurer module, services property:

<bean cl ass="org. kuali.rice. ksh. nessagi ng. confi g. KSBConf i gurer">
<property name="serviceServletUl" val ue="${base url}/MYAPP/renoting/" />

<property name="services">
<list>
<bean cl ass="org. kuali.rice. ksbh. api . bus. support. SoapServi ceDefi nition">
<property name="service">
<ref bean="nmySoapService" />
</ property>
<property name="servicel nterface"><val ue>or g. nyapp. servi ces. MySOAPSer vi ce</ val ue></ property>
<property nanme="I| ocal Servi ceNanme" val ue="nyExposedSoapService" />
</ bean>
<bean cl ass="org. kuali.rice. ksbh. api . bus. support. JavaServi ceDefi nition">
<property name="service">
<ref bean="myJavaService" />
</ property>
<property name="servicel nterface">
<val ue>or g. myapp. servi ces. MyJavaSer vi ce</ val ue></ property>
<property nanme="I| ocal Servi ceNanme" val ue="nyExposedJavaService" />
</ bean>

Service Exporter

You can aso publish Services in any context using the ServiceBusExporter (or
PropertyConditional ServiceBusExporter) bean. Note that KSBConfigurer must also be defined in your
RiceConfigurer.

<bean i d="nyapp. servi ceBus"
class="org. kual i.rice.krad. config. d obal Resour ceLoader Ser vi ceFact or yBean" >
<property name="servi ceName" val ue="ri ce. ksh. servi ceBus"/ >
</ bean>

<bean i d="nyAppServi ceExporter"
class="org. kuali.rice. ksb. api . bus. support. Servi ceBusExporter"
abstract="true">
<property name="servi ceBus" ref="myapp. servi ceBus"/>
</ bean>

299

KSB

<bean i d="myJavaServi ce. exporter" parent="myAppServi ceExporter">
<property name="servi ceDefinition">
<bean cl ass="org. kuali.rice. ksb. api . bus. support. JavaServi ceDefinition">
<property name="service">
<ref bean="nyJavaService" />
</ property>
<property name="servicelnterface">
<val ue>or g. myapp. servi ces. MyJavaSer vi ce</ val ue>
</ property>
<property name="| ocal Servi ceNane" val ue="nyExposedJavaService" />
</ bean>
</ property>
</ bean>

<bean i d="nmySoapServi ce. exporter" parent="nmyAppServi ceExporter">
<property name="servi ceDefinition">
<bean cl ass="org. kuali.rice. ksb. api . bus. support. SoapServi ceDefi niti on">
<property name="service">
<ref bean="nySoapService" />
</ property>
<property name="servicelnterface">
<val ue>or g. myapp. servi ces. MySOAPSer vi ce</ val ue>
</ property>
<property name="| ocal Servi ceNane" val ue="nmyExposedSoapService" />
</ bean>
</ property>

</ bean>

CallbackServiceExporter

The term "Callback Service" refers to services that client applications write and configure and which are
used by various modules of Rice including KIM, KEW, and KRMS. Because of the naming convention
on these, they are often referred to as "Type Services'. These include:

* KIM

RoleTypeService

¢ PermissionTypeService

GroupTypeService
e etc.
* KRMS
» ActionTypeService
« PropositionTypeService
e AgendaTypeService
e etc.
« KEW
» PeopleFlowTypeService

These are typically called back into from the Rice Standalone Server when needing information for
rendering of various components in the server-side user interface. Additionally, in some cases they can
also be used to provide custom processing hooks for different components of the various Kuali Rice
frameworks.

300

KSB

Version Compatibility for Callback Services

Callback services (like al servicesin Rice) can be evolved over time and across versions. This means that
new functionality might be added to them. Since the Rice Standalone Server interacts with these services
remotely, it really needs to know what version of a particular callback service that the client application
is running. They also must be published as the appropriate type of service endpoint that the standalone
server knows how to talk to (i.e. SOAP instead of Java Seriaization). Thankfully, the KSB service registry
can store metadata about a service which includes the service version. However, in order to for this to
work properly the client application must be sure they publish the service with aversion that matches the
version of Ricethey are using.

In order to make this easier on client applications, a helper has been implemented which can be used for
this purpose in Rice.

Callback Service Exporter Helper

There is a helper «class which can be wused by client applications to
export these callback services onto the Kuai Service Bus. The class s
org. kuali.rice. ksb. api . bus. support. Cal | backServi ceExporter. This is a class
which can be wired up inside of a Spring context in order to publish a callback service to the KSB with
the appropriate Rice version. The version of Rice is packaged up into the Rice jarsinside of afile called
common-config-defaults.xml and it uses the version that matches the version of Rice in the POM when
the jar was packaged.

Typical configuration might look like the following:

<bean i d="sanpl eAppPeopl eFl owTypeSer vi ce. exporter"
class="org. kual i .rice.ksb. api . bus. support. Cal | backSer vi ceExporter"
p: servi ceBus-ref="rice. ksb. servi ceBus"
p: cal | backSer vi ce-r ef =" sanpl eAppPeopl eFl owTypeSer vi ce"
p: servi ceNanmeSpaceURI ="http://rice. kual i . or g/ sanpl e- app"
p: | ocal Servi ceNane="sanpl eAppPeopl eFl owTypeSer vi ce"
p: servi cel nterface="org. kuali.rice. kew. framework. peopl ef | ow. Peopl eFl owTypeServi ce"/ >

The javadocs for Cal | backSer vi ceExport er provide more detail on the options for publishing of
callback services.

ServiceDefinition properties

ServiceDefinitions define how the service is published to the KSB. Currently KSB supports three types of
services: Java RPC (via serialization over HTTP), SOAP, and IMS.

Basic parameters

All service definitions support these properties:

Table 8.3. ServiceDefinition Properties

Property Description Required
Service The reference to the target service bean yes
local ServiceName The"local" part of the service name; together with a| yes

namespace this forms a qualified name, or QName

serviceNameSpaceURI The "namespace” part of the service name; together | Not required; if omitted, the
with alocal nameformsadquadlified name, or QName | Cor e.cur rentContextConfig().getM essageEntity()
is used when exporting the service

301

KSB

Property Description Required

serviceEndpoint URL at which the service can beinvoked by aremote | Not required; defaults to the serviceServletUrl
call parameter defined in the Rice config

retryAttempts Number of attemptstoretry the serviceinvocation on | Not required; defaultsto O
failure; for serviceswith side-effectsyou are advised
to omit this property

millisToLive Number of milliseconds the call should persist| Not required; defaultsto no limit (-1)
before resulting in failure

Priority Priority Not required; defaultsto 5

M essageExceptionHandler Reference to a MessageExceptionHandler that | Not required; default implementation handlesretries
should be invoked in case of exception and timeouts

busSecurity Whether to enable bus security for the service Not required; defaults to ON

ServiceNameSpaceURI/MessageEntity
ServiceNameSpaceURI is the same as the Message Entity that composes the qualified name under which
the service is exposed. When omitted, this namespace defaults to the message entity configured for Rice
(e.g., inthe RiceConfigurer), thereby qualifying the local name. Note: Although thisimplicit qualification

occurs during export, you must always specify an explicit message entity when acquiring a resource, for
example:

d obal Resour ceLoader . get Servi ce(new QName(" MYAPP", "nyExposedSoapService"))

SOAPServiceDefinition

Table 8.4. SOAPServiceDefinition

Property | Description | Required

Not required; if omitted the first interface implemented by

servicelnterface The interface to expose and from which to generate the
the classis used

WSDL

JavaServiceDefinition

Table 8.5. JavaSer viceDefinition

Property Description Required

servicelnterface The interface to expose Not required; if omitted, all application-layer interfaces
implemented by the class are exposed

servicelnterfaces A list of interfaces to expose Not required; if omitted, all application-layer interfaces
implemented by the class are exposed

Publishing Rice services

We show how you can "import" Rice services into the client Spring application context in Configuring
KSB Client in Spring. Using this technique, you can also publish Rice services on the KSB:

<l-- inport a Rice service fromthe ResourcelLoader stack -->

<bean i d="nyapp. aRi ceServi ce" class="org. kuali.rice.krad. config.d obal Resour ceLoader Servi ceFact or yBean" >
<property name="servi ceName" val ue="aRi ceService"/>

</ bean

<l-- if Rice does not publish this service on the bus, one can explicitly publish it -->
<bean i d="nyAppServi ceExporter"

class="org. kual i.rice. ksb. api . bus. support. Servi ceBusExporter"

abstract="true">

302

KSB

<property name="servi ceBus" ref="nyapp. servi ceBus"/>
</ bean>

<bean i d="nyJavaServi ce. exporter" parent="nmyAppServi ceExporter">
<property name="servi ceDefinition">
<bean cl ass="org. kuali.rice. ksb. api . bus. support. JavaServi ceDefinition">
<property name="service">
<ref bean="aRi ceService" />
</ property>
<property name="servicelnterface" value="org.kuali.rice...Sonmelnterface" />
<property name="| ocal Servi ceName" val ue="aPubl i shedRi ceService" />
</ bean>
</ property>
</ bean>

Warning

Not all Rice services areintended for public use. Do not arbitrarily expose them on the bus

The ResourceLoader Stack

Overview

Riceis composed of a set of modules that provide distinct functionality and expose various services.

» Services in Rice are accessible by the Resourcel oader, which can be thought of as analogous to
Spring's BeanFactory interface. (In fact, Rice modules themselves back Resourcel oaders with Spring
bean factories.)

» Services can be acquired by name. (Rice adds severa additional concepts, including qualification of
service names by namespaces.)

* When the RiceConfigurer is instantiated, it constructs a GlobalResourcel oader that is composed of
an initial RootResourcel.oader (which may be provided by the application via the RiceConfigurer), as
well as resource loaders supplied by each module:

Figure 8.2. Global Resource L cader

GlabiRetgurteloader

— R | g

303

KSB

The GlobalResour cel. oader isthe top-level entry point through which all application code should go to
obtain services. The getService call will iterate through each registered Resourcel. oader, looking for the
service of the specified name. If the service is found, it is returned, but if it is not found, ultimately the
call will reach the RemoteResour cel. oader. The Root Resourcel oader is registered by the KSB module
that exposes services that have been registered on the bus.

Accessing and overriding Rice services and beans from
Spring

ResourceLoaderFactoryBean

In addition to programmatically acquiring service references, you can also import Rice services into a
Spring context with the help of the GlobalResour cel. oader Ser viceFactoryBean:

This bean is bean-name-aware and will produce a bean of the same name obtained from Rice's resource
loader stack. The bean can then be wired in Spring like any other bean.

Installing an application root resource loader

Applications can install their own root Resourcel oader to override beans defined by Rice. To do so,
inject a bean that implements the Resourcel oader interface into the RiceConfigurer rootResourcel oader
property. For example:

<l-- a Rice bean we want to override in our application -->
<bean i d="overri ddenR ceBean" cl ass="ny. app. package. \yRi ceServi cel npl "/ >

<I-- supplies services fromthis Spring context -->
<bean i d="appResourceLoader" cl ass="org.kuali.rice.core.inpl.resourcel oader. Spri ngBeanFact or yResour ceLoader"/>
<bean i d="coreConfigurer" class="org.kuali.rice.core.inpl.config.nodul e.CoreConfigurer">
<property name="dat aSource" ref="standal oneDataSource" />
<property name="transacti onManager" ref="atoni kosTransacti onManager" />
<property name="user Transacti on" ref="atom kosUser Transacti on" />
<property name="r oot Resour ceLoader" ref="appResourcelLoader"/>
</ bean>

Warning

Application Resourcel oader and Circular Dependencies

Be careful when mixing registration of an application root resourceloader and lookup of Rice
services through the Global Resourcel oader. If you are using an application resourcel oader to
override a Rice bean, but one of your application beans requires that bean to be injected during
startup, you may create a circular dependency. In this case, you will either have to make sure you
are not unintentionally exposing application beans (which may not yet have been fully initialized
by Spring) in the application resourceloader, or you will have to arrange for the GRL lookup
to occur lazily, after Spring initialization has completed (either programmatically or through a

proxy).
Overriding Rice services: Alternate method

A Rice-enabled webapp (including the Rice Standalone distribution) contains a multiple module
configurers, typicaly defined in an xml Spring context file. These load the Rice modules. Each module
hasits own Resourceloader, which istypically backed by an XML Spring context file. Overriding and/or
setting global beans and/or services (such as data sources and transaction managers) is done as described

304

KSB

above. However, because in each module services can be injected into each other, overriding module
services involves overriding the respective modul€' s Spring context file.

The cleanest way to do thisisto set the rice.* .addtional SpringFiles to an accessible spring beans file that
overrides one or more spring beansin the existing modul€'s context. Each rice modul e has a corresponding
configuration parameter that can be pointed to afile that will override any existing services.

<param nane="ri ce. kew. addi ti onal Spri ngFi | es">cl asspat h: nyapp/ confi g/ MyAppKewOver ri deSpri ngBeans. xm </ par an>
<param nane="ri ce. ksb. addi ti onal Spri ngFi | es">cl asspat h: nyapp/ confi g/ MyAppKsbQOverri deSpri ngBeans. xm </ par an>
<param nane="ri ce. kr ns. addi ti onal Spri ngFi | es">cl asspat h: nyapp/ confi g/ M/AppKr nsOverri deSpri ngBeans. xnl </ par an>

<param nane="ri ce. ki m addi ti onal Spri ngFi | es">cl asspat h: nyapp/ confi g/ MyAppKi nOverri deSpri ngBeans. xm </ par an>

<?xm version="1.0" encodi ng="UTF-8"?>
<! DOCTYPE beans PUBLIC "-//SPRI NG /DTD BEAN /EN' "http://ww. spri ngframework. org/ dtd/ spri ng-beans. dtd">

<I-- override of KNS encryption service -->
<beans>
<I-- override encryption services -->
<bean i d="encryptionServi ce" class="edu. nmy.school . nyapp.service.inpl.MEncryptionServicelnpl" |azy-

init="true">
<property name="ci pher Al gorithnt val ue="${encryption.cipherAl g}"/>
<property name="keyAl gorithnt val ue="${encryption. keyAl g}"/>
<property name="key" val ue="${encryption. key}"/>
<property name="enabl ed" val ue="${encryption. busEncryption}"/>
</ bean>

</ beans>

KSB Security -- STILL NEEDS TO BE
REVIEWED!!!

Overview

Acegi handles the security layer for KSB. Acegi uses remote method invocation to hold the application’s
security context and to propagate this object through to the service layer.

Credentials types

There are several security types you can use to propagate the security context object:
« CAS

« USERNAME_PASSWORD

« JAAS

» X509

CredentialsSource

The CredentialsSource is an interface that helps obtain security credentials. It encapsulates the actual
source of credentials. The two ways to obtain the source are:

305

KSB

» X509CredentialsSource - X509 Certificate

» UsernamePasswordCredential sSource - Username and Password

KSB security: Server side configuration

Here is a code snippet that shows the changes needed to configure KSB security on the server side:

<bean i d="ksbConfigurer" class="org.kuali.rice.ksbh.messagi ng. confi g. KSBConfi gurer">

<l-- Other properties renoved -->
<property name="services">
<list>

<bean cl ass="org. kual i . rice. ksb. api . bus. support. SoapServi ceDefi nition">
<property name="service">
<ref bean="soapService" />
</ property>
<property name="| ocal Servi ceNane" val ue="soapLocal Nane"/>
<property name="servi ceNameSpaceURl " val ue="soapNanmeSpace"/ >
<property name="servi celnterface" val ue="org. kual i . ksh. exanpl es. SOAPEchoSer vi ce"/ >
<property name="priority" value="3"/>
<property name="retryAttenpts" value="1" />
<property name="busSecurity" val ue="fal se"></property>

<!-- Valid Values: CAS, KERBERCS -->
<property name="credential sType" val ue="CAS"/>

</ bean>

<bean cl ass="org. kual i .rice. ksb. api . bus. support. JavaServi ceDefi nition">
<property name="servi ce" ref="echoService"></property>
<property name="| ocal Servi ceName" val ue="j avaLocal Nanme" />
<property name="servi ceNameSpaceURl " val ue="] avaNanmeSpace"/ >
<property name="servi celnterface" val ue="org. kual i . ksh. exanpl es. EchoServi ce"/ >
<property name="priority" value="5" />
<property name="retryAttenpts" value="1" />
<property name="busSecurity" value="true" />

<!-- Valid Values: CAS, KERBERCS -->
<property name="credential sType" val ue="CAS"/>

</ bean>
<l-- Other services renoved -->
</list>
</ property>

</ bean>

KSB security: Client side configuration

<bean i d="cust onCredenti al sSour ceFact ory"
class="edu. nyi nstituition. myapp.security.credentials.Credential sSourceFactory" />

<bean i d="coreConfigurer" class="org.kuali.rice.core.inpl.config.nodul e.CoreConfigurer">

<l-- Other properties renoved -->
<property name="credenti al sSourceFactory" ref="custonCredenti al sSourceFactory">
</ bean>

KSB connector and exporter code

Connectors

Connectors are used by a client to connect to a service that is usually exposed through the KSB registry.
The Service Connector factory provides abean that holds a proxy to aremote service with some contextual
information. Thefactory determinesthetype of proxy to invokebased on the service definition. The service
definition used by the server is serialized to the database and de-serialized by the client. There are different
types of connectors supported by KSB, most notable are SOAP and Javaover HTTP.

306

KSB

Exporters

Services, when exported, can be secured using standard Acegi methods. A security manager and an
interceptor help organize the set of Business Objects that are exported.

Security and Keystores

Generating the Keystore
For client applications to be able to consume secured services hosted from a Rice server, the implementer

must generate a keystore. As an initial setup, KSB security relies on the creation of a keystore using the
JVM keytool asfollows:

Step 1: Create the Keystore
The first step is to create the keystore and generate a public-private key combination for the client
application. When using secured services on the KSB, we require the client applications transfer their

messages digitally signed so that Rice can verify the messages authenticity. Thisiswhy we must generate
these keys.

Generate your initial Rice keystore asfollows:

keyt ool -genkey -validity 9999 -alias rice -keyalg RSA -keystore rice. keystore -dnanme "cn=rice" -keypass rlc3pw
-storepass rilc3pw

Caution

keypass and storepass should be the same.

ric3pw isthe password used for the provided example.

Step 2: Sign the Key

This generates the keystore in afile called "rice_keystore" in the current directory and generates an RSA
key with the dlias of "rice". Since there is no certificate signing authority to sign our key, we must sign it
ourselves. To do this, execute the following command:

keytool -selfcert -validity 9999 -alias rice -keystore rice. keystore -keypass rl1lc3pw -storepass rlc3pw

Step 3: Generate the Certificate

After the application's certificate has been signed, we must export it so that it can be imported into the
Rice keystore. To export a certificate, execute the following command:

keytool -export -alias rice -file rice.cert -keystore rice.keystore -storepass rlc3pw

Step 4: Import Application Certificates

The client application's certificate can be imported using the following command:

307

KSB

keytool -inport -alias rice -file client.application.cert.file -keystore rice. keystore -storepass rlc3pw

The keystorefilewill end up deployed wherever your keystores are stored so hang on to both of these files
and don't lose them! Also, notice that we specified avalidity of 9999 days for the keystore and cert. This
is so you do not have to continually update these keystores. This will be determined by your computing
standards on how you handle key management.

Configure KSB to use the keystore

The following params are needed in the xml config to allow the ksb to use the keystore:

<par am nane="keystore.file">/usr/local/ricel/rice.keystore</paranr
<par am nane="keystore. al i as">ri ce</ paranp
<par am nane="keyst or e. passwor d" > password </ paranm>

» keystorefile - isthe location of the keystore
» keystore.dlias - isthe alias used in creating the keystore above

 keystore.password - thisis the password of the alias AND the keystore. This assumes that the keystore
isup in such away that these are the same.

BasicAuthenticationService

TheBasicAuthenticationSer vice allows services published on the KSB to be accessed securely with basic
authentication. As an example, here is how the Workflow Document Actions Service could be exposed
as a service with basic authentication.

» Add the following bean to a spring bean file that is loaded as a part of the KEW module.

<bean id="ri ce. kew. wor kf | owDocunent Acti onSer vi ceBasi cAut henti cati on. exporter"
par ent =" kewSer vi ceExporter” |azy-init="fal se">
<property nanme="servi ceDefinition">
<bean parent ="kewServi ce">
<property nanme="service">
<ref bean="rice. kew. wor kf | owDocunent Acti onsServi ce" />
</ property>
<property nanme="| ocal Servi ceNane"
val ue="wor kf | owDocunment Act i onsSer vi ce- basi cAut henti cation" />
<property nanme="busSecurity"
val ue="${ri ce. kew. wor kf | owDocurent Act i onsServi ce. secure}" />
<property nanme="basi cAut hentication" value="true" />
</ bean>
</ property>
</ bean>

» Add the following bean to a spring bean file that is loaded as a part of the KSB module.

<bean cl ass="org. kuali.rice.ksb. service. Basi cAut henti cati onCredenti al s">
<property name="servi ceNanmeSpaceURl "
val ue="http://rice. kuali.org/kewv2_0" />
<property name="I| ocal Servi ceNanme"
val ue="wor kf | owDocurent Act i onsSer vi ce- basi cAut henti cation" />
<property name="user name"
val ue="${ Wr kf | owDocunent Acti onsServi ce. user nane}" />
<property name="password"
val ue="${ Wr kf | owDocunent Acti onsServi ce. password}" />
<property name="aut henticationService" ref="basi cAuthenticati onService" />

308

KSB

</ bean>

» Add the following config parameters to a secure file that is |oaded when the application is started.

<par am nanme="Wor kf | owDocunent Act i onsSer vi ce. user nane" >user name</ par an>
<par am nanme="Wor kf | owDocunent Act i onsSer vi ce. passwor d" >pw</ par an>

» To verify the new service can be called, it can be tested using atool such as soapUl. Hereis an example
call which will invoke the method logAnnotation on Wor kflowDocumentActionsSer vicel mpl.

<soapenv: Envel ope xm ns: soapenv="http://schemas. xm soap. or g/ soap/ envel ope/ "

xm ns:v2="http://rice. kuali.org/kew v2_0">

<soapenv: Header >
<wsse: Security xnml ns:wsse="http://docs. oasi s-open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-wssecuri ty-
secext-1.0. xsd"

soapenv: nust Under st and="1">

<wsse: User nameToken xm ns: wsu=

"http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss-wssecurity-utility-1.0.xsd"
wsu: | d="User nameToken- 1815911473" >

<wsse: User name>user name</ wsse: User nane>
<wsse: Password Type=

"http://docs. oasi s- open. or g/ wss/ 2004/ 01/ oasi s- 200401- wss- user nane- t oken-

profile-1. 0#Passwor dText " >pw</ wsse: Passwor d>
</ wsse: User nameToken>
</ wsse: Security>
</ soapenv: Header >
<soapenv: Body>
<v2:| ogAnnot ati on>
<v2: docunent | d>123456</ v2: docunent | d>
<v2:principal | d>adm n</v2: princi pal | d>
<v2:annotation>Add this annotation pl ease.</v2:annotation>
</v2: 1 ogAnnot ati on>
<soapenv: Body>
</ soapenv: Envel ope>

Queue and Topic invocation

When you deploy a service, you can configure it for queue or for topic invocation using the setQueue
property on the ServiceDefinition. The default is to register it as a queue-style service. The distinction
between queue and topic invocation occurs when there is more than one service registered under the same
QName.

Queue invocation

Remote service proxies obtained through the resource loader stack using getService(QName) (ultimately
through the ServiceBus) are inherently synchronous. In the presence of multiple service registrations, the
ServiceBus will choose one at random.

When invoking services asynchronously through the M essageH el per, an asynchronous service call proxy
will be constructed with all available service definitions. The M essageSer vicel nvoker iscalled to invoke
each service. If the service is defined as a queue service, then the ServiceBus will be consulted in
a similar fashion to determine a single service to call. After the first queue service invocation the
M essageSer vicel nvoker will return.

Topic invocation

The simplest way to invoke a topic service is using the M essageHelper functions to invoke the service
asynchronously. As described above for an asynchronous queue invocation, an asynchronous service call

309

KSB

proxy will be constructed with the list of all of the services registered as a topic under the given name.
Each of these services will be independently obtained and invoked by the M essageSer vicel nvoker .

Invoking a topic synchronously, however, requires use of a synchronous service call proxy to aggregate
all of thetopic's services. This functionality is not directly available viathe ServiceBus APl because the
ServiceBus acts as a facade for direct service invocation.

To invoke a topic synchronously, you can construct a SynchronousServiceCallProxy using
SynchronousServiceCallProxy.createlnstance, passing the list of Endpoint obtained using
ServiceBus.getEndpoints(QName). This is done, for example, by MessageHelper | mpl when the bus
has been forced into synchronous mode via the message.delivery config param.

The synchronous service call proxy isthe same as the asynchronous service call proxy, except that it does
not queue up theinvocation, it will invokeit blockingly. The same queue/topic distinctions described above
apply when you invoke atopic synchronously. Under the normal queue situation, use of the synchronous
service call proxy is not necessary because, as mentioned above, remote services obtained through the
ServiceBus are naturally synchronous. Y ou can see thisin the example below:

Li st <Endpoi nt > servi cesToProxy = KsbApi Servi ceLocat or. get Servi ceBus() . get Endpoi nt s(gnane) ;

SynchronousServi ceCal | Proxy sscp = return SynchronousServi ceCal | Proxy. createl nstance(servi cesToProxy, call back,
context, valuel, value2);

KSB Parameters

Here is a comprehensive set of configuration parameters used to configure the Kuali Service Bus.

Core Parameters

Table 8.6. Core Parameters

Core Description Default

serviceServletUrl URL that maps to the KSB Servlet. It handles incoming | ${ application.url}/remoting/
requests from the service bus.

rice.ksh.config.allowSelfSignedSSL Indicates if self-signed certificates are permitted for https | false
communication on the service bus

application.id Application identifier for client application

keystorefile Path to the keystore file to use for security

keystore.dias Alias of the standalone server's key

keystore.password Password to access the keystore and the server's key

ksb.mode Mode in which to load the KSB module local

ksb.url The URL of the KSB web application H application.url} /ksb

riceksb.struts.config.files The file that defines the struts context for the KRice KSB | /ksb/WEB-INF/struts-config.xml
struts module

dev.mode If true, application will not publish or consume services| false

from the central service registry, but will maintain a loca
copy of the registry. This is intended only for client
application development purposes.

bam.enabled If true, will monitor and log the service calls made and | false
general business activity performed to the database.

Recommendation: Enable this only for testing purposes, as
thereis asignificant performance impact when enabled.

message.persistence If true, messages are stored in the database until sent. If | true
false, they are stored in memory.

message.delivery Specifies whether messages are sent synchronously are| async
asynchronously. Valid values are synchronous or async

310

KSB

Core Description Default

message.of f If set to true, then messageswill not be sent but will instead | false
pileupinthe message queue. I ntended for development and
debugging purposes only.

Routing.lmmediateExceptionRouting If true, messages will go immediately to exception routing | false

if they fail, rather than being retried

RouteQueue.maxRetryAttempts Default number of times to retry messages that fail to be|5
delivered successfully.

RouteQueue.maxRetryAttemptsOverride If set, will override the max retry setting for ALL services,
even if they have their own custom retry setting.

ksh.org.quartz.* Can define any property beginning with ksh.org.quartzand
it will be passed to theinternal KSB quartz configuration as
a property beginning with org.quartz (more details below)

useQuartzDatabase If true, then Quartz scheduler in Rice will use a database- | true
backed job store; if false, then jobs will be stored in
memory

serviceServletUrl

The URL that resolvesto the KSB servlet that handlesincoming requests from the service bus. All services
exported onto the service bus use this value to construct their endpoint URLs when they are published to
the service registry. See section below on configuring the KSBDispatcher Servlet. This parameter should
point to the absolute URL of where that servlet is mapped. It should include atrailing slash.

application.id

Anidentifier that indicates the name of the logical node on the service bus. If the application isrunning in
acluster, this should be the same for each machinein the cluster. Thisis used for namespacing of services,
among other things. All services exported from the client application onto the service bus use this value
astheir default namespace unless otherwise specified.

keystore.file, keystore.alias, keystore.password

See the documentation below on keystore management.

ksb.mode

Mode in which to load the KSB module. Valid values are local and embedded. There is currently no
difference in how the KSB module loads based on these settings. It will alwaystry to load the KSB struts
moduleif aKualiActionServiet is configured.

ksb.url

The URL of the KSB web application screens

rice.ksb.struts.config.files

The file that defines the struts context for the KRice KSB struts module. The struts module is loaded
automatically if a KualiActionServiet is configured in the web.xml.

dev.mode

Indicates whether this node should export and consume services from the entire service bus. If set to false,
then the machine will not register its services in the global service registry. Instead, it can only consume
servicesthat it has available locally. In addition to this, other nodes on the service bus will not be able to
"see" this node and will therefore not forward any messagesto it.

311

KSB

message.persistence

If true, then messages will be persisted to the datastore. Otherwise, they will only be stored in memory.
If message persistenceis not turned on and the server is shutdown while there are still messages that need
to be sent, those messages will be lost. For a production environment, it is recommended that message
persistence be set to true.

message.delivery
Can be set to either synchronous or async. If thisis set to synchronous, then messages that are sent in
an asynchronous fashion using the KSB API will instead be sent synchronously. Thisis useful in certain

development and unit testing scenarios. For a production environment, it is recommended that message
delivery be set to async.

message.off
If set to true then asynchronous messages will not be sent. In the case that message persistence is turned
on, they will be persisted in the message store and can even be picked up later using the Message Fetcher.

However, if message persistence is turned off, these messages will be lost. This can be useful in certain
debugging or testing scenarios.

RouteQueue.maxRetryAttempts

Sets the default number of retries that will be executed if a message fails to be sent. This retry count can
also be customized for a specific service. (See Exposing Services on the Bus)

RouteQueue.timelncrement

Sets the default time increment between retry attempts. As with RouteQueue.maxRetryAttempts this can
also be configured at the service level.

RouteQueue.maxRetryAttemptsOverride
If set withanumber, it will temporarily set theretry attemptsfor ALL servicesgoing into exception routing.

A good way to prevent all messages in a node that is having trouble from making it to exception routing
is by setting the number arbitrarily high. The message.off param does the same thing.

Routing.ImmediateExceptionRouting

If set to true, then messagesthat fail to be sent will not bere-tried. Instead their MessageExceptionHandler
will beinvoked immediately.

useQuartzDatabase

When using the embedded Quartz scheduler started by the KSB, indicates whether that Quartz scheduler
should storeits entries in the database. If thisis true, then the appropriate Quartz properties should be set
aswell (see ksh.org.quartz.* below).

ksb.org.quartz.*

Can be used to pass Quartz properties to the embedded Quartz scheduler. See the configuration
documentation on the Quartz site. Essentially, any property prefixed with ksb.org.quartz. will have the
"ksh." portion stripped and will be sent as configuration parameters to the embedded Quartz scheduler.

312

KSB

KSB Configurer Properties

In addition to the configuration parameters available in the KRice configuration system, the
KSBConfigurer bean has some properties that can be injected to configure it:

exceptionMessagingScheduler
By default, the KSB uses an embedded Quartz scheduler for scheduling the retry of messages that fail to

be sent. If desired, a Quartz scheduler can instead be injected into the KSBConfigurer and it will use that
scheduler instead. See Quartz Scheduling for more detail.

messageDataSource

Specifies the javax.sgl.DataSour ce to use for storing the asynchronous message queue. If not specified,
this defaults to the DataSource injected into the RiceConfigurer.

If this DataSource is injected, then the registryDataSource must also be injected, and vice-versa.
registryDataSource

Specifies the javax.sgl.DataSour ce to use for reading and writing from the Service Registry. If not
specified, this defaults to the DataSource injected into the RiceConfigurer.

If this DataSource is injected, then the messageDataSour ce must also be injected, and vice-versa.
overrideServices

See Acquiring and invoking services
Services

See Acquiring and invoking services

JAX-RS / RESTful services

Rice now alows alows RESTful (JAX-RS) services to be exported and consumed on the
Kuali Service Bus (KSB). For some background on REST, see http://en.wikipedia.org/wiki/
Representational_State Transfer.

For details on JAX-RS, see JSR-311.

Caveats

» The KSB does not currently support "busSecure" (digital signing of requests & responses) REST
services. Attempting to set a REST service's "busSecure" property to "true” will result in a
RiceRuntimeException being thrown. Rice can be customized to expose REST servicesin asecure way,
e.g. using SSL and an authentication mechanism such as client certificates, but that is beyond the scope
of this documentation.

« If the JAX-RS annotations on your resource class don't cover all of its public methods, then accessing
the non-annotated methods over the bus will result in an Exception being thrown.

313

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://jcp.org/en/jsr/detail?id=311

KSB

A Simple Example

To expose a simple JAX-RS annotated service on the bus, you can follow this recipe for your spring
configuration (which comes from the Rice unit tests):

<!-- The service inplenentation you want to expose -->

<bean i d="basebal | CardCol | ecti onServi ce"
class="org. kuali.rice.ksbh.testclientl. Basebal | CardCol | ecti onServicel npl"/>

<l-- The service definition which tells the KSB to expose our RESTful service -->
<bean cl ass="org. kuali.rice. ksb. nessagi ng. RESTSer vi ceDefi ni ti on">
<property name="servi ceNameSpaceURl " val ue="test" />

<l-- as noted earlier, the servicePath property of RESTServiceDefinition can't be set here -->

<I-- The service to expose. Refers to the bean above -->
<property name="service" ref="basebal | CardCol | ectionService" />

<l-- The "Resource class", the class with the JAX-RS annotations on it. Could be the same as the -->
<l-- service inplenmentation, or could be different, e.g. an interface or superclass -->

<property name="resourced ass"
val ue="org. kual i . ri ce. ksb. messagi ng. r enot edser vi ces. Basebal | Car dCol | ecti onService" />

<l-- the name of the service, which will be part of the RESTful URLs used to access it -->
<property name="| ocal Servi ceName" val ue="basebal | CardCol | ecti onServi ce" />
</ bean>

The following javainterface uses JAX-RS annotations to specify its RESTful interface:

/1 ...eliding package and inports

@ath("/")
public interface Basebal | CardCol | ecti onService {

@ET
public List<Basebal | Card> getAll();

/**
* gets a card by it's (arbitrary) identifier
&/
@ET
@at h("/Basebal | Card/id/{id}")
publ i c Basebal | Card get (@PathParan("id") Integer id);
/**
* gets all the cards in the collection with the given player nane
&/
@ET
@at h("/ Basebal | Card/ pl ayer Nane/ { pl ayer Nane} ")
public List<Basebal | Card> get (@at hParan("pl ayer Nane") String pl ayer Nane) ;

| **

* Add a card to the collection. This is a non-idenpotent nethod

* (because you can add nore than one of the same card), so we'll use @OCST
* @eturn the (arbitrary) nunerical identifier assigned to this card by the service
&/

@acsT

@Pat h("/ Basebal | Card")
public Integer add(Basebal | Card card);

/**
* update the card for the given identifier. This will replace the card that was previously
* associated with that identifier.

314

KSB

&
@ur
@at h("/Basebal | Card/id/{id}")
@onsunes("application/xm")
public void update(@at hParan("id") Integer id, BaseballCard card);

/**
* delete the card with the given identifier.
&/

@ELETE

@at h("/Basebal | Card/id/{id}")

public void del ete(@athParan("id") Integer id);

/**
* This method | acks JAX-RS annot ati ons
*
/
public void unannot at edMet hod() ;

Acquisition and use of this service over the KSB looks just like that of any other KSB service. In the
synchronous case:

Basebal | CardCol | ecti onServi ce basebal | CardCol | ecti on = (Basebal | CardCol | ecti onServi ce)
d obal Resour ceLoader . get Servi ce(new QNane("test", "basebal | CardCol | ecti onService");

)i

Li st <Basebal | Card> al | MM ckeyMant| es = basebal | CardCol | ection. get ("M ckey Mantle");
/| basebal | CardCol | ecti on. <ot her service nethod>(...)
Il etc

Composite Services

It isalso possibleto aggregate multiple Rice service implementationsinto asingle RESTful servicewhere
requeststo different sub-paths off of the base service URL can be handled by different underlying services.
This may be desirable to expose a RESTful service that is more complex than could be cleanly factored
into asingle java service interface.

The configuration for a composite RESTfull service looks alittle bit different, and as might be expected
given the one-to-many mapping from RESTful service to java services, there are some caveats to using
that service over the KSB. Hereis a simple example of a composite service definition (which also comes
from the Rice unit tests):

<bean cl ass="org. kuali.rice. ksbh. nessagi ng. RESTSer vi ceDefi ni ti on">
<property name="servi ceNanmeSpaceURl " val ue="test" />
<property nanme="| ocal Servi ceNane" val ue="kns" />
<property name="resources">
<list>
<ref bean="i nboxResource"/>
<ref bean="nmessageResource"/>
</list>
</ property>
<property nanme="servicePath" value="/" />

</ bean>

<!-- the beans referenced above are just JAX-RS annotated Java services -->

<bean i d="i nboxResource" class="org. kuali.rice.ksbh.testclientl.|nboxResourcelnpl">
<!-- ... eliding bean properties ... -->

</ bean>

<bean i d="nessageResource" class="org. kuali.rice.ksb.testclientl. MessageResourcel npl ">
<!-- ... eliding bean properties ... -->

</ bean>

315

KSB

As you can see in the bean definition above, the service name is kms, so the base service
url would by default (in a dev environment) be http://localhost:8080/kr-dev/remoting/kms/
. Acquiring a composite service such as this one on the KSB will actually return you
a org.kuali.rice.ksbh.messaging.serviceconnector s.Resour ceFacade, which alows you to get the
individual java servicesin a couple of ways, as shown in the following simple example:

Resour ceFacade knmsService =
(Resour ceFacade) d obal Resour ceLoader. get Servi ce(
new QNane(NAVESPACE, KMS_SERVI CE)) ;

/1 Get service by resource nanme (url path)

I nboxResour ce i nboxResource = knmsServi ce. get Resour ce("i nbox");

/] Get service by resource class

MessageResour ce nmessageResource = knsServi ce. get Resour ce(MessageResour ce. cl ass) ;

Additional Service Definition Properties

There are some properties on the RESTServiceDefinition object that let you do more advanced
configuration:

Providers
JAX-RS Providers allow you to define:
* ExceptionMappers which will handle specific Exception types with specific Responses.

» MessageBodyReaders and MessageBodyWriters that will convert custom Java types to and from
streams.

» ContextResolver providers allow you to create special JAXBContexts for specific types, which will
gives you fine control over marshalling, unmarshalling, and validation.

The JAX-RS specification calls for classes annotated with @Provider to be automatically used in the
underlying implementation, but the CXF project which Rice uses under the hood does not (at the time of
this writing) support this configuration mechanism, so this configuration property is currently necessary.

Extension Mappings

Ordinarily you need to set your ACCEPT header to ask for a specific representation of a resource.
ExtensionMappings et you map certain file extensions to specific media types for your RESTful service,
so your URLSs can then optionally specify a media type directly. For example you could map the .xml
extension to the media type text/xml, and then tag .xml on to the end of your resource URL to specify
that representation.

Language Mappings

language mappings allow you away to control the the Content-Language header, which lets you specify
which languages your service can accept and provide.

Additional Information

For more information on what these properties provide, it may be helpful to consult the JAX-RS
specification, or the CXF documentation.

316

Glossary
A

Action List

Action List Type

Action Request

Action Request Hierarchy

Action Requested

Action Taken

A list of the user's notification and workflow items. Also called the user's
Notification List. Clicking an item in the Action List displays details about that
notification, if the item is a natification, or displays that document, if it is a
workflow item. The user will usually load the document from their Action Listin
order to take the requested action against it, such as approving or acknowledging
the document.

Thistellsyou if the Action List item is a notification or a more specific workflow
request item. When the Action List item is a notification, the Action List Typeis
"Notification."

A request to a user or Workgroup to take action on a document. It designates the
type of action that is requested, which includes:

» Approve: requests an approve or disapprove action.

» Complete: requests a completion of the contents of a document. This action
request is displayed in the Action List after the user saves an incomplete
document.

» Acknowledge: requests an acknowledgment by the user that the document has
been opened - the doc will not leave the Action List until acknowledgment has
occurred; however, the document routing will not be held up and the document
will be permitted to transaction into the processed state if neccessary.

» FYI: anctification to the user regarding the document. Documents requesting
FY| can be cleared directly from the Action List. Even if a document has FY|
reguests remaining, it will still be permitted to transition into the FINAL state.

Action requests are hierarchical in nature and can have one parent and multiple
children.

Theaction one needsto take on adocument; also thetype of action that isrequested
by an Action Request. Actions that may be requested of a user are:

» Acknowledge: requests that the users states he or she has reviewed the
document.

» Approve: requests that the user either Approve or Disapprove a document.

» Complete: requests the user to enter additional information in a document so
that the content of the document is complete.

* FYI: intended to simply makes a user aware of the document.

An action taken on a document by a Reviewer in response to an Action Request.
The Action Taken may be:

» Acknowledged: Reviewer has viewed and acknowledged document.

» Approved: Reviewer has approved the action requested on document.

317

Glossary

Blanket Approved: Reviewer has requested a blanket approval up to aspecified
point in the route path on the document.

Canceled: Reviewer has canceled the document. The document will not be
routed to any more reviewers.

Cleared FY|: Reviewer has viewed the document and cleared all of his or her
pending FYI(s) on this document.

Completed: Reviewer has completed and supplied all data requested on
document.

Created Document: User has created a document

Disapproved: Reviewer has disapproved the document. The document will not
being routed to any subsequent reviewers for approval. Acknowledge Requests
are sent to previous approvers to inform them of the disapproval.

Logged Document: Reviewer has added a message to the Route Log of the
document.

Moved Document: Reviewer has moved the document either backward or
forward in its routing path.

Returned to Previous Node: Reviewer has returned the document to a previous
routing node. When a Reviewer does this, all the actions taken between the
current node and the return node are removed and all the pending requests on
the document are deactivated.

Routed Document: Reviewer has submitted the document to the workflow
engine for routing.

Saved: Reviewer has saved the document for later completion and routing.

Superuser Approved Document: Superuser has approved the entire document,
any remaining routing is cancelled.

Superuser Approved Node: Superuser has approved the document through all
nodes up to (but not including) a specific node. When the document getsto that
node, the normal Action Requests will be created.

Superuser Approved Request: Superuser has approved a single pending
Approve or Complete Action Request. The document then goes to the next
routing node.

Superuser Cancelled: Superuser has canceled the document. A Superuser can
cancel a document without a pending Action Request to him/her on the
document.

Superuser Disapproved: Superuser has disapproved the document. A Superuser
can disapprove a document without a pending Action Request to him/her on
the document.

318

Glossary

Activated
Activation

Activation Type

Active Indicator

Ad Hoc Routing

Annotation

Approve

Approver

Attachment

Attribute Type

Authentication

Authorization

Author Universal 1D

 Superuser Returned to Previous Node: Superuser has returned the document
to a previous routing node. A Superuser can do this without a pending Action
Request to him/her on the document.

The state of an action request when it is has been sent to auser’s Action List.
The process by which requests appear in auser's Action List

Defines how a route node handles activation of Action Requests. There are two
standard activation types:

e Sequential: Action Requests are activated one at a time based on routing
priority. The next Action Request isn't activated until the previous request is
satisfied.

» Pardle: All Action Requests at the route node are activated immediately,
regardless of priority

An indicator specifying whether an object in the system is active or not. Used as
an aternative to complete removal of an object.

A type of routing used to route a document to users or groups that are not in the
Routing path for that Document Type. When the Ad Hoc Routing is complete, the
routing returns to its normal path.

Optional comments added by a Reviewer when taking action. Intended to explain
or clarify the action taken or to advise subsequent Reviewers.

A type of workflow action button. Signifies that the document represents avalid
business transaction in accordance with institutional needs and policies in the
user's judgment. A single document may require approval from several users, at
multiple route levels, before it movesto final status.

The user who approves the document. As a document moves through Workflow,
it movesoneroute level at atime. An Approver operates at a particular route level
of the document.

The pathname of a related file to attach to a Note. Use the "Browse..." button to
open thefile dialog, select the file and automaticaly fill in the pathname.

Used to strongly type or categorize the values that can be stored for the various
attributes in the system (e.g., the value of the arbitrary key/value pairs that can be
defined and associated with a given parent object in the system).

The act of logging into the system. The Out of the box (OOTB) authenticaton
implementation in Rice does not require a password as it is intended for testing
puposesonly. Thisissomething that must be enabled aspart of animplementation.
Various authentication solutions exist, such as CAS or Shibboleth, that an
implementer may want to use depending on their needs.

Authorization is the permissions that an authenticated user has for performing
actionsin the system.

A free-form text field for the full name of the Author of the Note, expressed as
"Lastname, Firstname Initial"

319

Glossary

B

Base Rule Attribute

Blanket Approval

Blanket Approve Workgroup

Branch

Business Rule

C

Campus
Campus Type

Cancel

The standard fields that are defined and collected for every Routing Rule These
include:

» Active: A trueffase flag to indicate if the Routing Ruleis active. If false, then
the rule will not be evaluated during routing.

» Document Type: The Document Type to which the Routing Rule applies.

* From Date: The inclusive start date from which the Routing Rule will be
considered for a match.

» Force Action: atrue/false flag to indicate if the review should be forced to take
action again for the requests generated by thisrule, even if they had taken action
on the document previously.

» Name: the name of therule, this serves asaunique identifier for therule. If one
is not specified when the ruleis created, then it will be generated.

* Rule Template: The Rule Template used to create the Routing Rule.

» To Date: Theinclusive end date to which the Routing Rule will be considered
for amatch.

Authority that is given to designated Reviewerswho can approve a document to a
chosen route point. A Blanket Approval bypasses approvals that would otherwise
be required in the Routing For an authorized Reviewer, the Doc Handler typically
displaysthe Blanket Approval button along with the other options. When aBlanket
Approval is used, the Reviewers who are skipped are sent Acknowledge requests
to notify them that they were bypassed.

A workgroup that has the authority to Blanket Approve a document.

A path containing one or more Route Nodes that a document traverses during
routing. When a document enters a Split Node multiple branches can be created.
A Join Node joins multiple branches together.

1. Describes the operations, definitions and constraints that apply to an
organization in achieving its goals.

2. A restriction to a function for a business reason (such as making a specific
object code unavailable for a particular type of disbursement). Customizable
business rules are controlled by Parameters.

Identifies the different fiscal and physical operating entities of an institution.
Designates a campus as physical only, fiscal only or both.

A workflow action available to document initiators on documents that have not
yet been routed for approval. Denotes that the document is void and should be
disregarded. Canceled documents cannot be modified in any way and do not route
for approval.

320

Glossary

Canceled

CAS - Central Authentication
Service

Client

Client/Server

Close

Comma-separated value
Complete

Completed

Country Restricted Indicator

Creation Date

csv

D

Date Approved

Date Finaized

Deactivation

Delegate

Delegate Action List

A routing status. The document is denoted as void and should be disregarded.

http://www.jasig.org/cas - An open source authentication framework. Kuali Rice
provides support for integrating with CAS as an authentication provider (among
other authentication solutions) and also provides an implementation of a CAS
server that integrates with Kuali Identity Management.

A Java Application Program Interface (API) for interfacing with the Kuali
Enterprise Workflow Engine.

The use of one computer to request the services of another computer over a
network. The workstation in an organization will be used to initiate a business
transaction (e.g., abudget transfer). This workstation needs to gather information
from a remote database to process the transaction, and will eventually be used to
post new or changed information back onto that remote database. The workstation
isthus a Client and the remote computer that houses the database is the Server.

A workflow action available on documents in most statuses. Signifies that the
user wishes to exit the document. No changes to Action Requests, Route Logs or
document status occur as aresult of a Close action. If you initiate adocument and
close it without saving, it is the same as canceling that document.

A file format using commas as delimiters utilized in import and export
functionality.

A pending action request to a user to submit a saved document.
The action taken by a user or group in response to a reguest in order to finish
populating a document with information, as evidenced in the Document Route

Log.

Field used to indicate if a country is restricted from use in procurement. If there
is no value then thereis no restriction.

The date on which a document is created.

See comma-separ ated value

The date on which a document was most recently approved.

The date on which adocument entersthe FINAL state. At thispoint, all approvals
and acknowledgments are complete for the document.

The process by which requests are removed from a user's Action List
A user who has been registered to act on behalf of another user. The Delegate

acts with the full authority of the Delegator. Delegation may be either Primary
Delegation or Secondary Delegation.

A separate Action List for Delegate actions. When a Delegate selects a Delegator
for whomto act, an Action List of all documents sent to the Delegator is displayed.

321

http://www.jasig.org/cas

Glossary

Disapprove

Disapproved

Doc Handler

Doc Handler URL
Doc Nbr

Document

Document Id
Document Number

Document Operation

Document Search

Document Status

Document Title

Document Type

For both Primary and Secondary Delegation the Delegate may act on any of the
entries with the full authority of the Delegator.

A workflow action that allowsauser to indicate that adocument does not represent
a valid business transaction in that user's judgment. The initiator and previous
approvers will receive Acknowledgment requests indicating the document was
disapproved.

A status that indicates the document has been disapproved by an approver as a
valid transaction and it will not generate the originally intended transaction.

The Doc Handler is aweb interface that a Client uses for the appropriate display
of adocument. When a user opens a document from the Action List or Document
Search, the Doc Handler manages access permissions, content format, and user
options according to the requirements of the Client.

The URL for the Doc Handler.

See Document Number.

Also see E-Doc.

An electronic document containing information for a business transaction that is
routed for Actionsin KEW. It includes information such as Document ID, Type,
Title, Route Status, Initiator, Date Created, etc. In KEW, adocument typically has
XML content attached to it that is used to make routing decisions.

See Document Number.

A unique, sequential, system-assigned number for a document

A workflow screen that provides an interface for authorized users to manipulate
the XML and other data that defines a document in workflow. It alows you
to access and open a document by Document ID for the purpose of performing
operations on the document.

A web interface in which users can search for documents. Users may search by
a combination of document properties such as Document Type or Document 1D,
or by more specialized properties using the Detailed Search. Search results are
displayedin alist similar to an Action List.

See also Route Satus.

Thetitle given to the document when it was created. Depending on the Document
Type, thistitle may have been assigned by the Initiator or built automatically based
on the contents of the document. The Document Title is displayed in both the
Action List and Document Search.

The Document Type defines the routing definition and other properties for a set
of documents. Each document is an instance of a Document Type and conducts
the same type of business transaction as other instances of that Document Type.

Document Types have the following characteristics:

e They are specifications for a document that can be created in KEW

322

Glossary

Document Type Hierarchy

Document Type Label
Document Type Name

Document Type Policy

Drilldown

Dynamic Node

E

ECL

E-Doc
eDocLite

Embedded Client

Employee Status

Employee Type

e They contain identifying information as well as policies and other attributes

» They defines the Route Path executed for a document of that type (Process
Definition)

» They are hierarchical in nature may be part of a hierarchy of Document Types,
each of which inherits certain properties of its Parent Document Type.

» They are typically defined in XML, but certain properties can be maintained
from a graphical interface

A hierarchy of Document Type definitions. Document Types inherit certain
attributes from their parent Document Types. This hierarchy is also leveraged by
various pieces of the system, including the Rules engine when eval uating rule sets
and KIM when evaluating certain Document Type-based permissions.

The human-readabl e label assigned to a Document Type.
The assigned name of the document type. It must be unique.

These advise various checks and authorizations for instances of a Document Type
during the routing process.

A link that allows a user to access more detailed information about the current
data. These links typically take the user through a series of inquiries on different
business objects.

An advanced type of Route Node that can be used to generate complex routing
paths on the fly. Typically used whenever the route path of a document cannot be
statically defined and must be completely derived from document data.

1. Anacronym for Educational Community License.

2. All Kuali software and materia is available under the Educational Community
License and may be adopted by colleges and universities without licensing
fees. The open licensing approach a so provides opportunities for support and
implementation assistance from commercia affiliates.

An abbreviation for electronic documents, aso a shorthand reference to
documents created with eDoclL.ite.

A framework for quickly building workflow-enabled documents. Allows you to
define document screensin XML and render them using XSL style sheets.

A type of client that runs an embedded workflow engine.

Found on the Person Document; defines the employee's current employment
classification (for example, "A" for Active).

Found on the Person Document; defines the employee's position classification (for
example, "P" for Professional).

323

Glossary

Entity

Entity Attribute

Entity Type

Exception

Exception Messaging

Exception Routing

Extended Attributes

Extension Rule Attribute

F

Field Lookup

Final

Flexible Route Management

FlexRM (Flexible
Module)

An Entity record houses identity information for agiven Person, Process, System,
etc. Each Entity is categorized by its association with an Entity Type.

Entitieshave directory-likeinformation called Entity Attributesthat are associated
with them

Entity Attributes make up the identity information for an Entity record.

Provides categorization to Entities. For example, a“ System” could be considered
an Entity Type because something like a batch process may need to interfact with
the application.

A workflow routing status indicating that the document routed to an exception
gueue because workflow has encountered a system error when trying to process
the document.

The set of services and configuration options that are responsible for handling
messages when they cannot be successfully delivered. Exception Messaging is
set up when you configure KSB using the properties outlined in KSB Module
Configuration.

A type of routing used to handle error conditions that occur during the routing
of a document. A document goes into Exception Routing when the workflow
engine encounters an error or a situation where it cannot proceed, such as a
violation of a Document Type Policy or an error contacting external services.
When this occurs, the document is routed to the parties responsible for handling
these exception cases. This can be a group configured on the document or a
responsibility configured in KIM. Once one of these responsible parties has
reviewed the situation and approved the document, it will be resubmitted to the
workflow engine to attempt the processing again.

Custom, table-driven business object attributes that can be established by
implementing institutions.

One of the rule attributes added in the definition of a rule template that extends
beyond the base rule attributes to differentiate the routing rule. A Required
Extension Attribute has its "Required” field set to True in the rule template.
Otherwise, it isan Optional Extension Attribute. Extension attributes are typically
used to add additional fields that can be collected on arule. They also define the
logic for how those fields will be processed during rule evaluation.

The round magnifying glass icon found next to fields throughout the GUI that
allow the user to look up reference table information and display (and select from)
alist of valid values for that field.

A workflow routing status indicating that the document has been routed and has
no pending approval or acknowledgement requests.

A standard KEW routing scheme based on rules rather than dedicated table-based
routing.

The Route Module that performs the Routing for any Routing Rule is defined
through FlexRM. FlexRM generates Action Requests when a Rule matches the

324

Glossary

Force Action

Group

Group Attribute

H

Hierarchical Tree Structure

Initialized

Initiated

datavalue contained in adocument. An abbreviation of "Flexible Route Module."
A standard KEW routing schemethat isbased on rules rather than dedicated table-
based routing.

A trueffalse flag that indicates if previous Routing for approva will be ignored
when an Action Request is generated. The flag is used in multiple contexts where
requests are generated (e.g., rules, ad hoc routing). If Force Action is False, then
prior Actions taken by a user can satisfy newly generated requests. If it is True,
then the user needs to take another Action to satisfy the request.

A workflow action request that can be cleared from a user's Action List with
or without opening and viewing the document. A document with no pending
approval reguests but with pending Acknowledge requestsisin Processed status.
A document with no pending approval requests but with pending FY| requestsis
in Final status. See also Ad Hoc Routing and Action Request.

A Group has members that can be either Principals or other Groups (nested).
Groups essentially become away to organize Entities (via Principal relationships)
and other Groups within logical categories.

Groups can be given authorization to perform actions within applications by
assigning them as members of Roles.

Groupscan also havearbitrary identity information (i.e., Group Attributes hanging
from them. Group Attributes might be values for "Office Address,” "Group
Leader," etc.

Groups can be maintained at runtime through a user interface that is capable of
workflow.

Groups have directory-like information called Group Attributes hanging from
them. "Group Phone Number" and "Team Leader" are examples of Group
Attributes.

Group Attributes make up the identity information for a Group record.

Group Attributes can be maintained at runtime through a user interface that is
capable of workflow.

A hierarchical representation of datain agraphical form.

The state of an Action Request when it is first created but has not yet been
Activated (sent to auser’s Action List).

A workflow routing status indicating a document has been created but has not
yet been saved or routed. A Document Number is automatically assigned by the
system.

325

Glossary

Initiator

Inquiry

J

Join Node

K

KC - Kuali Coeus

KCA -
Affiliates

Kuali Commercid

KCB — Kuali Communications
Broker

KEN - Kuai Enterprise
Notification
KEW - Kuadi Enterprise
Workflow

KFS—Kuali Financial System

KIM -
Management

Kuali Identity

A user role for a person who creates (initiates or authors) a new document for
routing. Depending on the permissions associated with the Document Type, only
certain users may be able to initiate documents of that type.

A screen that allows a user to view information about a business object.

The point in the routing path where multiple branches are joined together. A Join
Node typically has a corresponding Split Node for which it joins the branches.

TODO

A designation provided to commercia affiliates who become part of the Kuali
Partners Program to provide for-fee guidance, support, implementation, and
integration services related to the Kuali software. Affiliates hold no ownership of
Kuali intellectual property, but are full KPP participants. Affiliates may provide
packaged versions of Kuali that provide value for installation or integration
beyond the basic Kuali software. Affiliates may also offer other types of training,
documentation, or hosting services.

KCB islogically related to KEN. It handles dispatching messages based on user
preferences (email, SMS, etc.).

A key component of the Enterprise Integration layer of the architecture
framework. Its features include:

» Automatic Message Generation and Logging
» Message integrity and delivery standards
 Délivery of notificationsto auser’s Action List

Kuali Enterprise Workflow is a general-purpose el ectronic routing infrastructure,
or workflow engine. It manages the creation, routing, and processing of electronic
documents (eDocs) necessary to complete a transaction. Other applications can
also use Kuali Enterprise Workflow to automate and regul ate the approval process
for the transactions or documents they create.

Deliversacomprehensive suite of functionality to servethefinancial system needs
of all Carnegie-Classinstitutions. An enhancement of the proven functionality of
Indiana University's Financial Information System (FIS), KFS meets GASB and
FASB standards while providing a strong control environment to keep pace with
advancesin both technol ogy and business. Modulesincludefinancial transactions,
genera ledger, chart of accounts, contracts and grants, purchasing/accounts
payable, labor distribution, budget, accounts receivable and capital assets.

A Kuali Rice module, Kuali Identity Management provides a standard API for
persons, groups, roles and permissions that can be implemented by an institution.
It also provdies an out of the box reference implementation that alows for a
university to use Kuali astheir Identity Management solution.

326

Glossary

KNS —Kuali Nervous System

KPP - Kuali Partners Program

KRAD - Kudi Rapid
Application Development
KRMS - Kuadi Rules
Management System

KS- Kuali Student

KSB —Kuali Service Bus

Kudli

Kuali Foundation

A core technical module composed of reusable code components that provide
the common, underlying infrastructure code and functionality that any module
may employ to perform its functions (for example, creating custom attributes,
attaching electronic images, uploading data from desktop applications, lookup/
search routines, and database interaction).

The Kuali Partners Program (KPP) is the means for organizations to get involved
in the Kuali software community and influence its future through voting rights to
determine software devel opment priorities. Membership dues pay staff to perform
Quality Assurance (QA) work, release engineering, packaging, documentation,
and other work to coordinate the timely enhancement and release of quality
software and other services valuableto the members. Partners are al so encouraged
to tender functional, technical, support or administrative staff members to the
Kuali Foundation for specific periods of time.

TODO

TODO

Deliversameansto support students and other users with astudent-centric system
that provides real-time, cost-effective, scalable support to help them identify
and achieve their goals while smplifying or eliminating administrative tasks.
The high-level entities of person (evolving roles-student, instructor, etc.), time
(nested units of time - semesters, terms, classes), learning unit (assigned to any
learning activity), learning result (grades, assessments, evaluations), learning
plan (intentions, activities, magjor, degree), and learning resources (instructors,
classrooms, equipment). The concierge function is a self-service information
sharing system that aligns information with needs and tasks to accomplish goals.
The support for integration of locally-devel oped processes provides flexibility for
any institution's needs.

Provides an out-of-the-box service architecture and runtime environment for Kuali
Applications. It is the cornerstone of the Service Oriented Architecture layer of
the architectural reference framework. The Kuali Service Bus consists of:

A servicesregistry and repository for identifying and instantiating services

Run time monitoring of messages

Support for synchronous and asynchronous service and message paradigms

1. Pronounced "ku-wah-le€". A partnership organization that produces a suite of
community-source, modular administrative software for Carnegie-class higher
education ingtitutions. See also Kuali Foundation

2. (n.) A humble kitchen wok that plays an important role in asuccessful kitchen.

Employs staff to coordinate partner efforts and to manage and protect the
Foundation's intellectual property. The Kuali Foundation manages a growing
portfolio of enterprise software applications for colleges and universities. A
lightweight Foundation staff coordinates the activities of Foundation members
for critical software development and coordination activities such as source code
control, release engineering, packaging, documentation, project management,

327

Glossary

Kudi Rice

L

Last Modified Date

M

Maintenance Document

Message

Message Queue

Namespace

Note Text

Notification Content

software testing and quality assurance, conference planning, and educating and
assisting members of the Kuali Partners program.

Provides an enterprise-class middleware suite of integrated products that allow
both Kuali and non-Kuali applications to be built in an agile fashion, such
that developers are able to react to end-user business requirements in an
efficient manner to produce high-quality business applications. Built with Service
Oriented Architecture (SOA) concepts in mind, KR enables developers to build
robust systems with common enterprise workflow functionality, customizable
and configurable user interfaces with a clean and universal look and fedl, and
genera notification features to allow for a consolidated list of work "action
items." All of this adds up to providing a re-usable development framework that
encourages a simplified approach to developing true business functionality as
modular applications.

The date on which the document was last modified (e.g., the date of the last action
taken, the last action request generated, the last status changed, etc.).

An e-doc used to establish and maintain atable record.

The full description of a notification message. Thisis a specific field that can be
filled out as part of the Simple Message or Event Message form. This can aso
be set by the programmatic interfaces when sending notifications from a client
system.

Allows administrators to monitor messages that are flowing through the Service
Bus. Messages can be edited, deleted or forwarded to other machines for
processing from this screen.

A Namespace is a way to scope both Permissions and Entity Attributes Each
Namespace instance is one level of scoping and is one record in the system.
For example, "KRA" or "KC" or "KFS" could be a Namespace. Or you could
further break those up into finer-grained Namespaces such that they would roughly
correlate to functional moduleswithin each application. Examples could be "KRA
Rolodex", "KC Grants', "KFS Chart of Accounts'.

Out of the box, the system is bootstrapped with numerous Rice namespaces
which correspond to the different modules. There is also a default namespace of
“KUALI".

Namespaces can be maintained at runtime through a maintenance document.

A free-form text field for the text of a Note

This section of a natification message which displays the actual full message for
the notification along with any other content-type-specific fields.

328

Glossary

Notification Message

O

OO0TB

Optimistic Locking

Optiona Rule Extension
Attribute

Org Doc #

Organization

Organization Code

P

Parameter Component Code
Parameter Description

Parameter Name
Parameter Type Code

Parameter Value

Parent Document Type

Parent Rule

Permission

The overall Notification item or Notification Message that a user sees when she
views the details of a natification in her Action List. A Notification Message
contains not only common elements such as Sender, Channel, and Title, but also
content-type-specific fields.

Stands for "out of the box" and refers to the base deliverable of a given feature
in the system.

A type of “locking” that is placed on a database row by a process to prevent
other processes from updating that row before the first process is complete. A
characteristic of this locking technique is that another user who wants to make
modifications at the same time as another user is permitted to, but the first one
who submits their changes will have them applied. Any subsequent changes will
result in the user being notified of the optimistic lock and their changes will not
be applied. This technique assumes that another update is unlikely.

An Extension Attribute that is not required in a Rule Template. It may or may
not be present in a Routing Rule created from the Template. It can be used as
a conditional element to aid in deciding if a Rule matches. These Attributes are
simply additional criteriafor the Rule matching process.

The originating document number.

Refers to a unit within the institution such as department, responsibility center,
campus, etc.

Represents aunique identifier assigned to units at many different levelswithin the
institution (for example, department, responsibility center, and campus).

Code identifying the parameter Component.
Thisfield houses the purpose of this parameter.

This will be used as the identifier for the parameter. Parameter values will be
accessed using this field and the namespace as the key.

Code identifying the parameter type. Parameter Type Code isthe primary key for
its' table.

Thisfield houses the actual value associated with the parameter.

A Document Type from which another Document Type derives. The child type can
inherit certain properties of the parent type, any of which it may override. A Parent
Document Type may have a parent as part of a hierarchy of document types.

A Routing Rulein KEW from which another Routing Rulederives. Thechild Rule
can inherit certain properties of the parent Rule, any of which it may override. A
Parent Rule may have a parent as part of a hierarchy of Rules.

Permissions represent fine grained actions that can be mapped to functionality
within a given system. Permissions are scoped to Namespace which roughly
correlate to modules or sections of functionality within a given system.

329

Glossary

Person Identifier

Person Role

Pessimistic Locking

Plugins

Post Processor

A developer would code authorization checks in their application against these
permissions.

Some examples would be; "canSave", "canView", "canEdit", etc.

Permissions are aggregated by Roles.

Permissions can be maintained at runtime through a user interface that is capable
of workflow; however, developers still need to code authorization checks against
them in their code, once they are set up in the system.

Attributes

1. Id - a system generated unique identifier that is the primary key for any
Permission record in the system

2. Name - the name of the permission; also a human understandable unique
identifier

3. Description - afull description of the purpose of the Permission record
4. Namespace - the reference to the associated Namespace
Relationships

1. Permission to Role - many to many; this relationship ties a Permission record
to aRole that is authorized for the Permission

2. Permission to Namespace - many to one; this relationship allows for scoping
of a Permission to a Namespace that contains functionality which keys its
authorization checking off of said

The username of an individual user who receives the document ad hoc for the
Action Requested

Creates or maintains the list used in selection of personnel when preparing the
Routing Form document.

A type of lock placed on a database row by a process to prevent other processes
from reading or updating that row until thefirst processisfinished. Thistechnique
assumes that another update is likely.

A plugin is a packaged set of code providing essential services that can be
deployed into the Rice standalone server. Plugins usually contains only classes
used in routing such as custom rules or searchable attributes, but can contain
client application specific services. They are usually used only by clients being
implemented by the * Thin Client’ method

A routing component that is notified by the workflow engine about various events
pertaining to the routing of a specific document (e.g., node transition, status
change, action taken). Theimplementation of aPost Processor istypically specific
to aparticular set of Document Types. When all required approvals are compl eted,
the engine notifiesthe Post Processor accordingly. At this point, the Post Processor
is responsible for completing the business transaction in the manner appropriate
to its Document Type.

330

Glossary

Posted Date/Time Stamp

Postal Code

Preferences

Primary Delegation

Principal

Processed

R

Recipient Type
Required Rule
Attribute
Responsibility
Responsibility Id
Responsible Party
Reviewer

Rice

Role

Extension

A free-formtext field that identifies the time and date at which the Notesis posted.
Defines zip code to city and state cross-references.

User optionsinan Action List for displaying thelist of documents. Userscan click
the Preferences button in the top margin of the Action List to display the Action
List Preferences screen. On the Preferences screen, users may change the columns
displayed, the background colors by Route Status, and the number of documents

displayed per page.

The Delegator turns over full authority to the Delegate. The Action Requests
for the Delegator only appear in the Action List of the Primary Delegate. The
Delegation must be registered in KEW or KIM to be in effect.

A Principal represents an Entity that can authenticate into the system. One can
roughly correlate aPrincipal to alogin username. Entitiescan existin KIM without
having permissions or authorization to do anything; therefore, a Principal must
exist and must be associated with an Entity in order for it to have access privileges.
All authorization that is not specific to Groupsistied to aPrincipal.

In other words, an Entity isfor identity whileaPrincipal isfor access management.

Also note that an Entity is allowed to have multiple Principals associated with
it. The use case typically given here is that a person may apply to a school and
receive one log in for the application system; however, once accepted, they may
receive their official login, but use the same identity information set up for their
Entity record.

A routing status indicating that the document has no pending approval requests
but still has one or more pending acknowledgement reguests.

Thetype of entity that is receiving an Action Reguest. Can be a user, workgroup,
or role.

An Extension Attribute that is required in a Rule Template. It will be present in
every Routing Rule created from the Template.

See Responsible Party.

A unique identifier representing a particular responsibility on a rule (or from a
route module Thisidentifier staysthe samefor aparticular responsibility no matter
how many times arule is modified.

The Reviewer defined on a routing rule that receives requests when the rule
is successfully executed. Each routing rule has one or more responsible parties
defined.

A user acting on adocument in his/her Action List and who hasreceived an Action
Request for the document.

An abbreviation for Kuali Rice.

Roles aggregate Permissions When Roles are given to Entities (via their
relationship with Principals) or Groups an authorization for all associated
Permissionsis granted.

331

Glossary

Route Header 1d

Route Log

Route Module

Route Node

Route Path

Route Status

Another name for the Document 1d.

Displays information about the routing of a document. The Route Log is usually
accessed from either the Action List or a Document Search. It displays general
document information about the document and a detailed list of Actions Taken
and pending Action Requests for the document. The Route Log can be considered
an audit trail for a document.

A routing component that the engine usesto generate action requests at aparticul ar
Route Node. FIexRM (Flexible Route Module) is a general Route Module that
is rule-based. Clients can define their own Route Modules that can conduct
specialized Routing based on routing tables or any other desired implementation.

Represents a step in the routing process of a document type. Route node
"instances" are created dynamically asadocument goesthroughitsrouting process
and can be defined to perform any function. The most common functions are to
generate Action Requests or to split or join the route path.

e Simple: do some arbitrary work

» Requests: generate action requests using a Route Module or the Rules engine

Split: split the route path into one or more paralléel branches

« Join: join one or more branches back together

 Sub Process: execute another route path inline

« Dynamic: generate a dynamic route path

The path a document follows during the routing process. Consists of a set of
route nodes and branches. The route path is defined as part of the document type
definition.

The status of a document in the course of its routing:

» Approved: These documents have been approved by all required reviewers and
are waiting additional postprocessing.

 Cancelled: These documents have been stopped. The document’ s initiator can
‘Cancel’ it before routing begins or a reviewer of the document can cancel it
after routing begins. When a document is cancelled, routing stops; it is not sent
to another Action List.

« Disapproved: These documents have been disapproved by at |east onereviewer.
Routing has stopped for these documents.

» Enroute: Routing is in progress on these documents and an action request is
waiting for someone to take action.

» Exception: A routing exception has occurred on this document. Someone from
the Exception Workgroup for this Document Type must take action on this
document, and it has been sent to the Action List of this workgroup.

 Final: All required approvals and all acknowledgements have been received on
these documents. No changes are allowed to a document that isin Final status.

332

Glossary

Routed By User

Routing

Routing Priority

Routing Rule

« Initiated: A user or aprocess has created this document, but it has not yet been
routed to anyone’ s Action List.

» Processed: These documents have been approved by all required users, and is
completed on them. They may be waiting for Acknowledgements. No further
action is needed on these documents.

» Saved: These documents have been saved for later work. An author (initiator)
can save a document before routing begins or areviewer can save a document
before he or she takes action on it. When someone saves a document, the
document goes on that person’s Action List.

The user who submits the document into routing. This is often the same as the
Initiator. However, for some types of documents they may be different.

The process of moving a document through its route path as defined in its
Document Type. Routing is executed and administered by the workflow engine.
This process will typicaly include generating Action Requests and processing
actionsfrom the userswho receive those requests. |n addition, the Routing process
includes callbacksto the Post Processor when there are changesin document state.

A number that indicatesthe routing priority; asmaller number has ahigher routing
priority. Routing priority is used to determine the order that requests are activated
on aroute node with sequential activation type.

A record that containsthe datafor the Rule Attributes specified in aRule Template
It is an instance of a Rule Template populated to determine the appropriate
Routing. The Rule includes the Base Attributes, Required Extension Attributes,
Responsible Party Attributes, and any Optional Extension Attributes that are
declared in the Rule Template. Rules are evaluated at certain pointsin the routing
process and, when they fire, can generate Action Requests to the responsible
parties that are defined on them.

Technical considerations for a Routing Rules are:
» Configured viaa GUI (or imported from XML)
 Created against a Rule Template and a Document Type

» The Rule Template and it’s list of Rule Attributes define what fields will be
collected in the Rule GUI

* Rules define the users, groups and/or roles who should receive action requests
» Available Action Request Types that Rules can route

e Complete

e Approve

» Acknowledge

* FYI

* During routing, Rule Evaluation Sets are “ selected” at each node. Default isto
select by Document Type and Rule Template defined on the Route Node

333

Glossary

Rule Attribute

Rule QuickLinks

Rule Template

* Rules match (or ‘fire’) based on the evaluation of data on the document and
data contained on theindividual rule

» Examples
« |f dollar amount isgreater than $10,000 then send an Approval request to Joe.

e If depatment is “HR” request an Acknowledgment from the
HR.Acknowledgers workgroup.

Rule attributes are acore KEW data el ement contained in adocument that controls
its Routing. It participatesin routing as part of a Rule Template and is responsible
for defining custom fields that can be rendered on a routing rule. It also defines
the logic for how rules that contain the attribute data are evaluated.

Technical considerations for a Rule Attribute are:

e They might be backed by a Java class to provide lookups and validations of
appropriate values.

 Define how a Routing Rule evaluates document data to determine whether or
not the rule data matches the document data.

» Definewhat datais collected on arule.

» Anattribute typically correspondsto one piece of dataon adocument (i.edollar
amount, department, organization, account, etc.).

e Can be written in Java or defined using XML (with matching done by XPath).
» Can have multiple GUI fields defined in asingle attribute.

A list of document groups with their document hierarchies and actions that can be
selected. For specific document types, you can create the rule delegate.

A Rule Template serves as a pattern or design for the routing rules. All of the
Rule Attributes that include both Required and _Optional_ are contained in the
Rule Template; it defines the structure of the routing rule of FlexRM. The Rule
Template is also used to associate certain Route Nodes on a document type to
routing rules.

Technical considerations for a Rule Templates are:
e They are acomposition of Rule Attributes

e Adding a‘Rol€’ attribute to a template allows for the use of the Role on any
rules created against the template

» When rule attributes are used for matching on rules, each attribute is associated
with the other attributes on the template using an implicit ‘and’ logic attributes

 Can be used to define various other aspects to be used by the rule creation GUI
such as rule data defaults (effective dates, ignore previous, available request

types, etc)

334

Glossary

Save

Saved

Searchable Attributes

Secondary Delegation

Service Registry

Simple Node

SOA

Special Condition Routing

Split Node
Spring

State

Status

A workflow action button that allows the Initiator of a document to save their
work and close the document. The document may be retrieved from theinitiator's
Action List for completion and routing at alater time.

A routing statusindicating the document has been started but not yet compl eted or
routed. The Save action alows the initiator of a document to save their work and
close the document. The document may be retrieved from the initiator's action list
for completion and routing at alater time.

Attributesthat can be defined to index certain pieces of dataon adocument so that
it can be searched from the Document Search screen.

Technical considerations for a Searchable Attributes are:
» They areresponsible for extracting and indexing document data for searching

e They alow for custom fields to be added to Document Search for documents
of a particular type

» They are configured as an attribute of a Document Type

» They can be written in Java or defined in XML by using Xpath to facilitate
matching

The Secondary Delegate acts as atemporary backup Delegator who acts with the
same authority as the primary Approver/the Delegator when the Delegator is not
available. Documents appear in the Action Lists of both the Delegator and the
Delegate. When either acts on the document, it disappears from both Action Lists.

Secondary Delegation is often configured for a range of dates and it must be
registered in KEW or KIM to bein effect.

Displaysaread-only view of all of the servicesthat are exposed on the Service Bus
and includesinformation about them (for example, IP Address, or Endpoint URL).

A type of node that can perform any function desired by the implementer. An
example implementation of a simple node is the node that generates Action
Requests from route modules.

An acronym for Service Oriented Architecture.

Thisisageneric term for additional route levelsthat might betriggered by various
attributes of atransaction. They can be based on the type of document, attributes of
the accounts being used, or other attributes of the transaction. They often represent
specia administrative approvals that may be required.

A node in the routing path that can split the route path into multiple branches.

The Spring Framework is an open source application framework for the Java
platform.

Defines U.S. Postal Service codes used to identify states.

On an Action List; also known as Route Status. The current location of the
document in its routing path.

335

http://www.springsource.org/

Glossary

Submit

Superuser

Superuser Approval

Superuser Document Search

T

Thread pool

Title

URL

V

Viewer

W

Web Service Client

Wildcard

Workflow

A workflow action button used by the initiator of a document to begin workflow
routing for that transaction. It moves the document (through workflow) to the next
level of approval. Once adocument is submitted, it remainsin 'ENROUTE' status
until all approvals have taken place.

A user who has been given special permission to perform Superuser Approvas
and other Superuser actions on documents of a certain Document Type.

Authority given Superusers to approve a document of a chosen Route Node. A
Superuser Approval action bypasses approvals that would otherwise be required
in the Routing. It is available in Superuser Document Search. In most cases,
reviewers who are skipped are not sent Acknowledge Action Requests.

A special mode of Document Search that allows Superusers to access documents
in a specia Superuser mode and perform administrative functions on those
documents. Access to these documents is governed by the user's membership in
the Superuser Workgroup as defined on a particular Document Type.

A technique that improves overal system performance by creating a pool of
threadsto execute multiple tasks at the sametime. A task can execute immediately
if athread in the pool is available or else the task waits for a thread to become
available from the pool before executing.

A short summary of the notification message. This field can be filled out as part
of the Simple Message or Event Message form. In addition, this can be set by the
programmatic interfaces when sending notifications from a client system.

Thisfield is equivalent to the "Subject" field in an email.

An acronym for Uniform Resource Locator.

A person who can log in and use the application. This term is synonymous with
“Principal” in KIM. "Whereas Entity Id represents a unique Person, Principal 1d
represents a set of login information for that Person.”

A user(s) who views a document during the routing process. This includes users
who have action reguests generated to them on a document.

A type of client that connects to a standalone KEW server using Web Services.

A character that may be substituted for any of a defined subset of al possible
characters.

Electronic document routing, approval and tracking. Also known as Workflow
Services or Kuali Enterprise Workflow (KEW). The Kuali infrastructure service

336

Glossary

Workflow Engine

Workflow QuickLinks

XML

XML Ingester

XML RuleAttribute

that electronically routes an e-doc to its approvers in a prescribed sequence,
according to established business rules based on the e-doc content. See also Kuali
Enter prise Workflow.

The component of KEW that handles initiating and executing the route path of a
document.

A web interface that provides quick navigation to various functions in KEW.
These include:

* Quick EDoc Watch: Thelast five Actionstaken by thisuser. The user can select
and repeat these actions.

* Quick EDoc Search: Thelast five EDocs searched for by thisuser. The user can
select one and repeat that search.

* Quick Action List: Thelast five document types the user took action with. The
user can select one and repeat that action.

See also XML Ingester.

1. Anacronym for Extensible Markup Language.

2. Used for dataimport/export.

A workflow function that allows you to browse for and upload XML data

Similar in functionality to a RuleAttribute but built using XML only

337

