Kuall Rice 2.1.0 Technical
Reference Guide

Table of Contents

I €1 To o= PSSP 1
RICE CHENt OVEIVIBIWuiieeiii et ettt e et e e e aaa s 1
EMBDEAGE ... e 1
BUNAIEA ... et 2

THIN JAVA CHIENT ..ot et e e e e e e enaans 3

WED SEIVICES ...t ettt 4
Global Configuration ParaMeELEr'Seieiiiieeiiii ettt e e e e e e e e e era e eeens 4
Rice Service Architecture and Configuration OVEIVIEWovcveeienieiiiiinieieiiineeeiieeeeenen 6
OVEIVIBIV .ttt ettt e et e et e e et et e e et et e e e e nba s 6
IMplementation DELEIISuuiiiii e 6
Accessing Rice Services and Beans UsiNg SPringovvveviieiiiiiiieiiiiieeeeii e 7
ECHPSE AN RICE ... ittt e 10
OVEIVIBIV .ttt ettt ettt e ettt e ettt b e et e et e e e enb e e e enanns 10
DoWNIOoad the TOOISceeeii et 10
Import rice into Eclipse as a project (Source distribution only)c.coooeeviviiieiinnnnnn. 11
Check out the Rice code (Non-source SVN distribution only)ccccoeveiiiinieiinnnnnn. 13

Set UP dat@hase ArIVELS ..ot 13

Set Up EClipse fOr MAVENuuiiei e 14
REDUITA RICE ...ttt e e et e e e e eens 15
INStall the datalaseccoovuiiiii 15
Installing the appropriate configuration fileScovviiiiiiiiiii e 15

Run the sample web appliCationoiiiiiiiiiii e 16
Changing Rice project dependenCiesooevviieiiiii e 17
OFNEN INOLES ...ttt ettt e e e e eae s 18
Creating Rice Enabled APpliCatioNSoooviiiiiiiiii e 20
Creating a Rice Client Application Project SKEletonccoouvieiiiiiiiiiiiiieeciieeeee 20
Reorder Eclipse Classpathcoouuuuiiiiiieie e 21

Rice Configuration SYSIEMccouuuiiiiiii et 21

Data Source and JTA CONfIQUIELIONcouuuueiiiiieieiiie et eneens 24
Version CompatiDilityuiiiiii e 28
Commitment to Compatibility in Kuali RIiCEooiiiiiiiiiiiii e 28
Keeping Your Client Application Compatible ..o 28

FZ2 S = N TSSO USUPPPPRRT 30
KEEN OVEIVIBIW ...ttt ettt ettt e ettt e e e et et e et ettt e e et et e e et enb s e eeenbnaeeeees 30
WHEE 1S KENT ...ttt e e e et eeaeeeanaee 30

KEN Configuration Par@mMELEr'Scouuuiiiiiii et et e e e e e e e e e e eees 31
KEN ChanNElS ...t 33
Channel SUDSCIIPLIONcceetie e e eees 33
KEEN PIOOUCESS ...ttt ettt e et e e et e e e et e e e s 33
AdAiNG ProQUCEN'S ...t e e e 34
KEN CONENE TYPES ..ottt ettt e e eaa e enes 34
OVEIVIBIV .ottt e et e ettt e et e ab e e e e nb e e e enanns 34
Content TYPE ALIITDULESuuniiiii e 34

KEN NOUTICEIHONS ...eevtieeieii ettt ettt e et e et e e e e e e ena s 37
Common Notification AIDULESuuiiiii e 37
MESSAZE CONENT ...ttt e 38
NOLIfiCAION RESPONSE ...ttt 41
Enterprise NOtfiCation PrOMLYcoouuiiiiiiiie e 41
MaNaging PrioritiEscooeuiieiiii e 41

KEN DEIIVEY TYPES ..ttt ettt ettt ettt ettt ettt et e e e eba e e eanens 41
Implementing the Java INLEITaCecoouueiiiii e 41

Kuali Rice 2.1.0 Technical

Reference Guide

KEN: Sending a NOETICAHIONiiuiiiiiei e e e e e e e 43
Send a Notification Using the Web Service APl ..o 43

WED SEIVICE URL ..ooiiiiiiiii e et et e e et e e eet e eeees 43
EXPOSEd WED SENVICES ..o e e 43

= NN T 1141 g o= 1o o PP 45
LT o PSPPSR 45

WED SEIVICES ..ttt et e ettt 45

G T PSPPI 46
What is Kuali Enterprise WOorkfloOW?coouuiiiiiii e 46
What iS WOrKflow, IN general?ooiviiiiii e 46
What is Kuali Enterprise Workflow, in particular?c.occoeeiiiiiiiiiin i, 46
What problems or functions does KEW SOIVE?ccouiiiiiiiiiiiiiiiieeeieecn e 47
What problems does KEW NOT SOIVE?couviiiiiiiiiii i e e e 47
With which applications can KEW integrate?cooevviieiiiiiiiiiiiiiieeeieee e 48

Can | use KEW without building an entire application?cccocoviiviiiiiiiiiecieeennn. 48
Steps to Building a KEW APPICAIONuoiiiiciii e 48
PrEIACE .. e 48
Initial Steps - Determine the ROUtiNg RUIESoovviiiiiie e, 48
Configure the Process DEfiNitioNcccouiiiiiiiiii e e 49
CHENt PIUGIN SEEPS ...iviiiiieei e e e e e e et e e e e aaeees 52
Build POStProcessor and SEIVICESovvvvuuiieiiiiieieiiie et e e e et e e e e e 55
Package PlUGIN ... e 55
Client Web AppliCation SEEPSuuiiiiieiiiceie e e e e e 55

L S 1= o1 PPN 57
KEW CONfIgUIBLIONiiieeiii e et e e e e e e e e e e e e et e e st e e et e e st e eeaneeees 57
KEW INtegration OPLIONSiiiuiieiiieei e e e e e e e e e e e e et e e e e e e e aaneeeens 57
Bundling the KEW APPlICaHIONcovuiiiiiiciie e e e e e e 60
Using the Remote Java CHENtuiiiiiiii e 63
Using the Thin Java Clientoiiiii i e 64
Picture of an Enterprise DEPIOYMENTc.vuiiiiiieii e e 66
KEW COre PalaMELEN'Sieeiiiieiiei ettt e e et e e e e e e e e e e eenes 67
KEW Configuration PrOpertie€sccuuieiiieiii e e e e e 68
Email Configurationccuiiiiiiiiii e e e e e 71
Periodic Email REMINUEISuuiiiiiieiis et e s 72
Workflow Preferences Configurationoveiuiieiiiieiiii e eee e e e e 73
(©10 110 l0) Q@]n {0 111 {10 o [N 73
Implementing KEW at your iNStitUtioNooeiiiiiiiiiciie e e e e 74
KEW AdMINISITEtioN GUITEcoovvieiiiiie e e e e e e e e e e aaa s 75
ConfigUration OVEIVIEWccuuiiiiiciii e e e e e e e e et e e e e e e e eeas 75
APPIICAION CONSEANEScivteiiiee e e e e e et e e e eaa e eees 75
Production ENVIFONMENESiiiiiiieiiiii et e e e e b 75
D 1o == o o N 76
Message Queue AAMINISEIAEiONoevvuiiiiieii e e e e e e e e e ee 78
KEW SYStEM ParamMELerSuiviiiii et e e et e e e e et e e e aa e 81
System Parameters COVEIEAciuiiiiiieiii e ee e e e s e e e e e e et eeaaees 81
Defining Workflow Processes Using DOCUMENt TYPEScvvveivieiiieeiiieeeiieeeieeeaiee e e e 89
Common Fields in Document Type XML Definitioncccoeeviiiiiiiiiiiiiecieeecieeeen, 89

(D L0 o1l 001 o AN I/ o= PP 92
Document TYPE POLICIESuuiiiiii e e e e e aaes 126
INNEITEANCE ..evvn et e e e e et e e et e e e e e e eee 131
Defining Workflow Processes Using PeopleFlow - anew feature in KEWcoeeeenniiis 132
Technical Information about PEOPIEFIOWccoviiiiiiii e, 132
KEW Routing Components and Configuration GUIDEccoevuieiiiieiiiieciineeceeeeeeanan, 132
(000101110 Bz 1o g IS 1= o1 134

Kuali Rice 2.1.0 Technical

Reference Guide
ROULING RUIESeiiii e et e e e e e e e e 140
INItiatOrROIGATLIDULEvtiieii e e eeaees 140
RoutedBYyUSErROIEAIIIDULEuiiiii e r e e 140
[N [T 011N o o L= P 140
ReqQUESLACEIVAIONNOAEiviiiii e e e e 141
NEtWOrKIAROIEAIITDULEeeveieieii e 141
UniversityldROIEALIDULEcoouii e 141
SEVAINOUE ...eteeeeei e e aea 142
Routing Configuration using KIM Responsibilitiescooovviiiiiiiiiiiicieec e, 142
Route Node DEfiNITIONuuiiiiiiii e e e 142
Matching Routing Nodes to Responsibilitiesoevvviiiiiiiciiicn e, 143
Using the Workflow Document APoooiii e e e 143
L@ N T SO 143
WOTKFIOWDOCUMENT ...eeieeiiee et e e e e e et e e et e e e et e e e e eae e 144
WOTKFIOWINTO v e e 144
Creating an eDOoCLite APPHCAIONuiiiiiiiiieci e 144
L@ N T SO 144
L000] /00101 0| ST 145
Lazy importing of EDL StYIESiviiiii e 152
Customizing DOCUMENE SEAICHivvuiiii i e e e e e e eaeeees 157
CUSEOM SEAICH SCIEEM . .iiiiiieeeiii e e et e e e s 157
Hide Search Fields and Result COIUMNSooiviiiiiieiiiiiie e 158
Configure LOOKUP FUNCLIONuiiicii e e e e e 160
Define Keyword SEarChoiiiiiiiiiii e e 161
Custom Search Criteria PrOCESSINGc.uuiiiiiieiiieeiii e e e e e e e e e 162
CusStom SEarch GENEIEHIONuuuieeiiiiieeeiii e ettt e e et e e e e et e e e et e e e e s 166
CUuStom SEArCh RESUILSvvieiiiiii e e e e e e 166
Differences between SearchableAttribute and RuleAttributecccoeveviinieninnnn, 169
DOCUMENE SECUITY .ovuniiiiieeii e e e et e e e e e e e e et e e et e e et e e et e e e eeaens 169
L@ N T S PN 170
SECUNtY DEFINITION ...iivniii e e e e e e e 170
Order Of EVAIUBLIONuiiiiiiieec e e e e e e e eaaens 172
Security - Warning MESSAJEScvvuuiiiiieiiiieiiie e et ee et e e e e e e e e et e e et eaan e eanas 173
S Yl I Y= N 173
Action List Configuration GUITEoiiiiiiiiiici e e e e 173
(©10 11 0/0)Q@f]n 1 To |11 [o [173
Email CUSIOMIZBIION .. .oeeiiieeeiii et ettt e et e e e et e e e eat s e e e eaenaeaaes 174
Configure a CUStOMEMaIl ALLIIDULEuuiiiiiiii e 174
Create a Custom XSLT Styl@ Shetovvncii e 175
DOCUMENE LINK ettt sttt e et e e et s e e e et n e e e et r e e e aaa s e e enaan s 178
Document Link FERIUMNESuiiiieiiiieiiiis et e e e e e eaanns 178
Document Link AP ... 178
Document Link APl EXaMPIE ...uiiiiiii et 179
REPOMING GUITEuuiiiiieii e e e e e e e e e e e e e et e e e eanns 179
REPOIMING FEALUIESuiiii e e e e e e e e eees 179
The ROULING REPOIM SCrEENiiiiiiii e e e 179
The REPOI APIS ..ot e e e e e e e e 180
[00) 1 A O) (= 1 - WP 180
Interpreting REPOI RESUITScouviiiiie e e e e e 181
WOTKFIOW PIUGIN GUITE e e e e e e e 181
OVEIVIBIW .t e ettt e ettt e e e ettt e e e et neeeettaeeeeatnaeeeestnaeeaees 181
PN ool 1Tor= o TN = 1V o 1 o 182
PIUGIN LAYOUL ...t e e e e e e e e e e e et e e et s e e e eaaeees 182
Plugin ConfigUIationuieiiiieiiii e e e e e e e e e e e e ean s 183

Kuali Rice 2.1.0 Technical

Reference Guide

OJB Configuration Within @ PlUGINcooiiiiiii e 185
Overriding Services with a ResourcelLoaderccoevvviiiiiiiiiiiciiiecce e, 186
KEW Usage of the Kuali SErVICE BUScouuiiiiiiiiie e 188
GENETAl USAJE . ooviiii ettt 188
Implications of using “ Synchronous’ KSB messaging with KEWc.c.cceeeenni. 189

O PP 190
1= 0011870 | P 190
PIINCIPAl eeii e e 190
1) 190

L] (018 o I PP 190

[4TSS T o PP 190
RESPONSIDIITY ..ovniiii i 191

ROIE e 191
Reference INfOrMELIoNooiiiiiiii e e 191

S Yot PP 192
USING the SEIVICES ..vuiiii e e e e e e e e 192

Lo 1= 0101 = Y7 o= PP 192
(o180 15= Y/ o/ T 194
PEIMISSIONSEIVICE ..evviei et e e e et e et e e e et 194
RESPONSIDIITYSEIVICE ..ooviiii e e 195
AULNENEICAHTONSEIVICE ...uiiiiii e e e e e 195
ROIESEIVICE ...ttt et e et e e et e e e et e e e eaans 195

[S 0 IS AV ol PN 196
KimTypeService Callbacksiiiiiiiii e 197
Implementing Custom KIM TYPES ...cvvuiiiiiiiiii e e e e e et e eaa e 197
Configuring Custom KIM TYPES ...cuuuiiiiiieiii e e e e e e e ean s 198
Publishing Custom KIM Types to the Kuali Service Bus...........cccoeeviiviiiiiiiiiiecinnnnns 199

LT = o= s I o PSP 199
Tabhle NAME PrefiXES .. i 199
Unmapped LAST _UPDT DT COIUMNSccuuiiiiieiii e e e e e e 199

LT) S T PP 201
KNS Configuration GUIAEuieiiiieiiii i e e e e e e aaa s 201
Database CreEationooeeuuiieeiiii et e e e e 201
KNSConfigurer and RIiCECONIQUIETiiviiciiii e e e 201
Configuring the KNS Web Application COMPONENtScccvvveiiiieiiiieeiiieeeieeeineenn, 202
Module Configuration — Loading Data Dictionary and OJB Files............cccccvveennnenen. 204

KNS Configuration ParameerSccvuuiiiiiieiie e e e 205

KNS Business Object Frameworkcouuieiiiiiiiiiieiee e e e e e een 207
Business Object Database Table DEfinitionccoveiiiiiiiiieii e, 207
Business Object Java DEfiNitionc.oiviiiiiiiii e 211

KNS Data DiCtionary OVEIVIEWciuuieiiiieeiii e e e ee s e e s e e e e e e e e et e e et e eanaeeees 216
Business Object Data DICHONAIYoevvueiiiieiiii e e e e e e e e e e eaens 216
Document Data Dictionary OVEINVIEWcevvuniiiiieiiiieeeie e e ee e e e e e e aanees 225
Maintenance Document Data Dictionary OVEIVIEWcccuvvviiiieiiineeiiieeiiiieeieeeannns 226
Alternate/Additional Display PropertieSc.uvveiiiieiiiieiie e 233
Dynamic read-only, hidden, and required Field StateSccooveviiniiiiniiiiiiceeeeen, 235
Configuring @ KNS Client iN SPringooveoiiiiieiii e e e aae e 237
Spring JTA ConfigUIationcoceuuieiiiieiiiie e e e et e e e e e eaa s 238

KNS Vadidation and Business RUleS Frameworkcoeuuuiieiiiiiieiiiiinieeeiiin e 238
RUIES 8N EVENES .. vttt e e et e e e et 238
Standard KNS EVENESuuiiiiiii et e et e e e e e eae e e e 240
NOEITYING USEIS OF EITOIS ..ovuiiiiiiiii e e e e e e e e e e e eaaas 241
Creating NEW EVENES ...couuiiiiic e e e e e e e e e e e e e anas 241
KNS USEN M BSSaA0ES ..ttt ettt e e e e et et e e e et e et a e e e 242

Vi

Kuali Rice 2.1.0 Technical

Reference Guide

RENEVING USEr MESSAESuuiiiiiiiiieiiee e ee e e e e e e e et e e e e e e et e e e ean s 243
EFTOr IMIBSSA0ES .. euitiii ittt 243
SETULS M BSSA0ES ..ttt 244

KNS QUESEIONS N DIGlOgSevvniiiiieiiie et e e e e e e e e e e e e e e et e e aa e e eanees 244
Prompting Before Validationcooiiiiiiiiiiiiin e 244
HTML MaTKUD .ot e et e e et e e e et 246
DEriVed VaAUES SEEISuiiiiiii ettt e e et e e et eeeaa e e eeanns 247
KNS Notes and AtLACHMENESouuniiiiiiie i eaeans 248
KINS JaVasCript GUIAEuuiiiniiiii et e e e e e e e e e e et e e et e e eanaes 248
Integrating Javascript With KNS tagScovviiiiiiiiiiciee e 249
FaTeolg oo = i1 oo AN A PN 249

KINS DAt MASKING ... eeeettieeeiiii e et e e e et e e et e e e et e e e e et e e e eett e e e eett e eeeetaaeeeereaeaees 250
KINS AULNOTIZELIONeeevieecee et e e e e e e e e e e e eanans 252
Common Document AULNOMZAEIONSvvviiiiieeiii e e 253
Maintenance Document AULNOMZALIONSoviiiiiiiiii e 255
Transactional Document AULhOIZaLIONSovviviiieeiiii e 256
Other AULNOTIZALIONSvuieiiiii e e e e e et e e eare e eeeee 257
Overriding Document AULNOTIZENSccovuiiiiii e 257
KNS Exception Handling and Incident REPOIINGc..oevvviiiiiiiiiiiieci e 258
KINS SYStemM ParaMeELerS ... e e e e e e 259
Getting text from a SyStem ParamMEteroveiiiieiiiiere e 260
Using an iNdiCator ParamELErcoeeuuieiinieiiiie e e e e e e e et e e e e et e e et e e eeanaes 261
Parameter EVAIUBLOTSuuieiiiiiieeiii et 261
Calling missing SysStem ParameterSvviunieiiieiiieee e e e e e e e e e e s 262
Overriding RICE ParaMeEterSu.iiii i e e e e e e aanas 262
Building Screens using the KNS Tag Librariesc.ccoeiiiieiii e 263
IMPLICIE Variables ..o e 263

IR0 TS o] Gl = Y0 11 | P 264
LI S o O] 11 (o] K= R 265
Tags for KNS FUNCHONEIILY ...covveiiiicii e e 267
Useful Pre-Created TahS ..ovvvn i e s 269

LT AN B S SPPPTTSPPI 270
KIRAD OVEIVIBIW ...ttt e et e et s e e et s e e e et e e e e st e e e e et e e e eaann s 270
KEY KRAD FEEIUINES .. .oieitiieeeiii ettt e e et e e et e e et e e eeatnaeeees 270
KRAD CONCEPLUAl VIEW . ouuiiiiiiciii et e e e e e e e e e e et e e e e eanas 273
KRAD REGHONE VIBW ..uiieiiiiiee e e et e et s e e e et e e e eeaaaeeeeae 274
KRAD Data DICHIONAIYevvueiiiieeiii et e e e e e e e e e e e e e e et e e et e e st e e st e e eanaeeaneenen 274
Simple Constraints, MiN / MaXcccuiiiiiiiin e e e e e e 276
Valid CharaCters CONSITAINTSuuieeiiiiieeeiii e e e et e et e e et e e eeaeaeeees 276
Dependency CONSITAINSovvieieiiieeiie e e e e e e e e e e e e et e e e eeanaas 277
LOOKUP CONSITAINTSvuteiiiieiieeii e e e e e e e e e e e e e e e e e et e e st e e et eeaaneeannaees 277
Conditional LOGIC CONSIIAINTScvvuiiiiieiiiee e e e e e e e e e eenas 277
OCUITENCES CONSITAINES ...evvieeeiiii e e e ettt e e et e e e e e e et e e e et e e e eatnaeeaeaenaeaaes 278
COllECtion SIZE& CONSITAINSieeeiiiiee et e et e e e et e e e e e e e e e eaeenas 279
Constraints on the Client SIAEvviiiii e 280
Changing Error MESSAEScvvueiiiieiiii e e et e e e e e e e e e et e et e et e e ann s 281
Constraint Architecture (building a custom constraint)ccoeeevvveviieeiiineeeieeennnn. 281
KRAD BUSINESS ODJECES?uiiiiiii et e et e e 284
R A D O - S I o =~ 7 PP 284
Installing and Configuring KRADoouiiiiiiiii e e e 285
Configure Rice without KRAD (KNS ONlY) ...oovviiiiiiii e 285
Creating the KRAD database tables / connections to data?coccceeeviieiiinnennnnn. 285
KRAD Configurer and RIiCECONfIQUIET?uuiiiiiieiii e e e e e e e e e 285
Configuring Spring and MV C? ...ooun i e 285

Vii

Kuali Rice 2.1.0 Technical

Reference Guide

Module Configuration — Loading Data Dictionary and OJB Files?cccceevneen. 286
Other KRAD Configuration Parameters?oeevuuieiiiiieiiieeeiiieeiieeeieeeeieeeneeeens 286
Building application pages using KRADccouiiiiiiiiii e e 286
RN B = 111 o] = (= 286
Converting KNS pages to0 KRADoiiiiiiii e e e e e e e e 289
(other? E/R diagrams?, hinding paths?, pointer to javadoCs?)ccovvveviiiiiiiiiiiiiicce e, 289
T K R S L e e e e a et a e aaans 290
KIRIMS OVEIVIBIW ...ttt e et e e et e e e e et e e e et e e e e et e e e eaan s 290
What is a Rule Management System, in general?cooovvieiiiiiiiiii e, 290
What is Kuali's Rule Management System (KRMS), in particular?............c.ccceeeennnnns 290
What problems or functions does KRMS SOIVE?cocvviiiiiiiiiiiici e 291
What problems does KRMS not address?oevviiiiiiiiiiiec e 291

With which types of applications can KRMS integrat€?ccoovevvieeiiiieviineeennnennn, 291

Can | use KRMS without building a Rice application?cccocociveiiiiiiiniciieeennn, 291
KIRIMIS CONCEPLS .ttt ettt e e e et e e e e e e et e et e e e aees 292
Namespaces, Contexts, Agendas, Rules and Propositionsc.oooevveeviiieiinceinns 292
KRMS AdMINISIration GUITEcevvunieiiiiieeeei e e e e e e et e e e et e e e eaen e eeees 296
INItIAl SEL UP TASKS 1ovuiiiiieii e e e e e e 296
ST S PP 306
HOW t0 USE the KSB ...eeii e e e e e 306
g1 [0 ot (' o PP 306
BEaN BASEO SEIVICESiiiitiiiiiiii ettt e e et et 306
(DT o = 0 T NN == 306
Details of Supported Service ProtOCOIScevuiiiiieiii e e 307
2 - (o O = o PP 307
F N)V - Y- WO 1= o P 307
NON-JaVa/INON-RICE CHEML ...iiiiiiieeei e 308

KSB REQISLTY @S @ SEIVICE . ivuiiiii i e et e e e e e e e e e e e et e ea e eees 308

.. 308
Configuring the KSB CHent in SPriNgocouuiiiiiiieiee e e e e e e e e e eaaes 308
OVEIVIBIW .ttt ettt e e ettt e e e ettt e e e ettt e e e e ttneeeestnaeeeestnneeaees 308
Spring Property Configurationc..oieiiiiiiiie e e 309
Spring JTA ConfigUIationcoceuuieiiieiiii e e e e e e e e e e ean s 310

Put JTA and the Rice Config object in the CoreConfigurercocovveiiiiiiiineinnnenn, 311
Configuring KSB WithoUt JTAioini e e e e e e 311
WEDXMI CONFIQUIAIONceveiii e e e e e e 312
Configuration PalraMELErSeiiiiiii e e e e e e e e e e e e e e eaneees 312
KSBCONfIQUIEr PrOPEITIES ... cvviiii e e e e e e e e e e e e e e eees 315

[= T o1 To 0 P 315
Configuring QUArtZ for KSBccuuiiiiiiciie e 318
(@0 7= v = o (0] To PP 318
Acquiring and Invoking Services Deployed on KSBcccoiiiiiiiiiiiiciiice e 319
SErVICE INVOCALTON OVEIVIEW ...'iiiieiiieeeiii e e et e e et e et e e et s e et s e e e aaa s e e eaaan s 319
Acquiring and invoking a service direCtlyooovviiiiiiiiii 319
Acquiring and invoking a service USiNg MESSAGINGocevueernieiiiieriiieeeineeeieeeanaeenes 322
Getting responses from service calls made with messagingcccoeeviiiiiiinciine, 324

L= T 0L P 324
SErVICE Call FAIIOVEN ... 324
Fallover With QUEUEScuuiii e e e e e e 324
Fallover With tOPICS ...cvvviiii e e 324

KSB EXCEPLION MESSAGING ...vvtuiiiieeiiieii e et et e et e e e e e et e e e e et e e et e e et e e e aaeeaaeeannns 324
KSB Messaging Paradigmsiiiiiiii e 325
QUEBLIES ... ittt ettt 325
1] o o= P 325

Kuali Rice 2.1.0 Technical

Reference Guide

MESSAGE FEICNENieiiii e 325

[Io7=o [=T 1 =12 Voo To [0S PP 326
L@ o L= ot 2 (= 1270111 0o 326
Publishing SErVICES t0 KSB .. .cuuiiiiii e e eaes 326
LGS =001 1o U = 326
SEIVICE EXPOIEN ..ot 327
CallbackSErVICEEXPOIESvuiiii e e 327
ServiceDEfiNItioN PrOPEITIES ... covu i 329
ServiceNameSpaceURI/MESSAgEENTITYcccvuiiiiiiiiiiciiie e 330
SOAPSENVICEDEFINITION ..vueiiiiii e e et eeer e e eee 330
JaVaSErVICEDEFINITION L...iiiiii e r et e e 330
PUbliShiNg RICE SEIVICESuuiiiiiiii et e e e e e e et 330

The ReSOUrCEL0BAEr SEACK ... iiiiiiiiieiiii e 331
L@ N T SO 331
Accessing and overriding Rice services and beans from Springccooevvvivevinnennn. 332

KSB Security -- STILL NEEDS TO BE REVIEWED!!! ..o 333
L@ N T SO 333
L0110 (= 11 ES 1Y/ 0= 333
Credential SSOUICEuiieiriiee ettt et e et e et e e e eae s 334

KSB connector and eXPOrter COOEueiiiniiiiiieiii et ee e ee e e e e e e e e e e e eaneees 335
SECUNLY AN KEYSIOrESiiiiiciii e e e e e e e e e e e e e e e aanas 335
Queue and TOPIC INVOCAHONccuueiiieiiii e e e e e e e e e e e e e e e e et e et e e eaneeeanaaes 336
(@ 01= 8L T 01V o= o) o [N 336
JIo] o o2 0170 1 o] o IS 336

KSB ParaMetersoieiiiii e 337
COrE Pal@MELEN'See e et e e e e 337

KSB Configurer ProPertiEScvun it e e e e e e eens 340
JAX-RS | RESTTUI SEIVICES ..oevviiiiiiiieee ittt e et e et e e e et e e e eaa e eeee 341
(02 Y2 TP 341

A SIMPIE EXAMPIE .encec e 341
COMPOSITE SENVICES .. iiviiiiiieii et e et e e e e e e e e e e e e et e et e e ean e e ean s 343
Additional Service Definition Propertiesc.couvveviiiiiiiicii e 344
L1075 P 346

List of Figures

1.1. Diagram of a sample embedded implementationoooieviiiiiiiiiiee e 1
1.2. Diagram of a sample bundled implementationcoooiiiiiiiii e 2
1.3. Diagram of a sample Thin Java Client implementationccouivieiiiiiiieiiiinee e 3
1.4, RESOUICE LOBOEN SEACK ...eevuueiiiii ettt ettt ettt ettt e e et e e e s 7
1.5. ROOt DIr€CLOIY SEIOCHIONiiiiiiieeeit ettt ettt et enaans 12
1.6. Root Directory Selection CONtINUEMooveuiiiiiiiiie et 13
1.7. Eclipse Classpath Variablesuuiiiiiiiie e 14
1.8, EClipse Clean BUITAuiiiiiieiiei ettt 15
1.9. Eclipse Jetty LAUNCKH ..ovuiiiiti et 17
1.10. Update EClipse ClasSpathoieeeieiiii et 18
2.1 KEN MESSA0E FIOW ...ovuiiiiiii ettt ettt e et e et e e e et e e eenaaeeees 30
2.2. KEN MESSA0E SOMAE ...vuuerieirieeet ettt ettt ettt e e e et e e et e e e eea s 31
3.1. Embedded Deployment Diagram eXampPleoooieuiieiiiiieeiiie e 60
3.2. Bundled deployment diagramuueiieeuneieii et 63
3.3. Thin client deployment diagramcoouuuiiiiiii e 66
3.4. Typical enterprise deployment of Kuali RICEcoouviiiiiiiiiici e 67
T 116 1= (= PP PP 77
3.6. INQESLION COMPIELE ... ettt ettt e e 78
3.7. MESSa08 QUEUIE SCIEEINeeeniiite ettt ettt ettt e et et ettt e e e et et et et e e e e eena e 79
3.8. Route Queue ENtry Edit SCIreanoiiiiiiiecee e 81
3.9. BlanketApproveSequential Test WOrKFIOWoouuiiiiiiiiiiiii e 95
3.10. BlanketApproveParallel Test WOrkflOWc..uuiiiiiiiiiiii e 99
3.11. NotificationTest WOrKFIOWcoouuiiiiiie e 102
3.12. Blankte Approve Mandatory TESEcccuuuuiieiiiieieeii ettt e e e eeeens 106
3.13. Save ACHON EVENE TESE .ooveieiiii et 108
3.14. Save Action Even Test: NON-INItIEIONcc.uuuiiiiiiieieii e 110
3.15. Take WOrkgroup AULNOTITYoooeiiiieiii e e 112
3.16. MOVE SEQUENTIAL TESE ..vtueiieit ettt ettt et et e et e e e e e e eeaans 115
3.17. MOVE [N PrOCESS TESE ... ceeiiiiiiie ittt ittt ettt e et e e e e e eaeeees 118
3.18. AANOC ROULE TESE ...ttt ettt ettt ettt e e et e e e e e e aa s 120
3.19. PreAPPrOVEl TESE ...eiii ittt ettt 121
320, VaATBDIES TOSE ...ttt ettt et e e e e 125
3.21. Super User ACtION ON REQUESESccuuuiiiiiiiieeeiit ettt et e et e e e e 129
3.22. Parallel and Sequential ACtiValion TYPESccuuuiiiiiiii ettt 136
3.23. Parallel-Priority ACHVAiON TYPE ...coevuieiiiii ettt 137
3.24. EDL Controll@r Chainiiiiiiieeiii ettt e e 145
3.25. Custom Search Screen:Offer Request EXaMPIEoviiiiiiiiiiiiieceei e 157
3.26. Custom Document Search: Department EXamMpPlecoooviiiiiiiiiiiiiiecce e 161
3.27. Standard DOC Search RESUITS SELccvvuieiiiiiie e 167
ST T o ST P PP UPPPPT 222
6. 1. INPUL Feld - GIrOUPEAcoetiiiiiiiii ettt et 272
6.2. KRAD CONCEPLUBI VIBIWuiiiiiiieeeeit et ettt ettt e e e et e eeeab e e 273
6.3. KRAD RE@ONAI VIBW ...ttt e 274
7.1. Term LooKUP SCreen EXampPIEuuiiieii ettt e 304
7.2. Term SpecCification SCreen EXAMPIE iiieii e eeaans 305
8.1. Overview of Supported Service PrOtOCOISuuiiiiiiiiieiiiii e 306
8.2. GlODbaEl RESOUICE LOBOENciieieiieeeiit ettt ettt e e e e eenes 331

List of Tables

1.1. Global Configuration PalraMELENScccuutn ittt ettt e et e e e et e eeneaeeees 4
2.1 KEN COre Par@iMeLErSccuueiiiiiiiieeee ettt et e e e e e e e eaaeees 31
2.2, KREN _CHNL T ittt ettt ettt e ettt e e e e et e e et e bbb e e e e e e e e e eesbbbnaeeaaaaaenes 33
2.3, KREN_PRODGCR T ...tiittiiettitii ettt ettt ettt ettt et e e et e e e e e e ene s 34
2.4. Common Notification AIDULEScoouuiiiiii e 37
2.5, KREN _PRIO T ittt ettt ettt et e e e e e et et bbb e e e e e e e e e abbba e e e e e e e 41
3.1. Advantages/Disadvantages of KEW Integration OptioNScccvuuieeiiiiiieeiiiiineeeeiieeeeeiiee 58
3.2. Required Thin Client Configuration Propertiescc.uuuiiiiiiiiiiiiieeeei e 64
3.3. Optional Thin Client Configuration PrOpertieSc.uuiieiiiiiieiiie e 65
34, KEW COre Para8mMELENSuuiiiiiiiiieii ettt ettt e e e e e eees 67
3.5. KEW Configuration PrOpEITIESuueiieiiieeeeie ettt e e 68
3.6. Optional Properties to Configure Simple SMTP Authenticationccocvvviiiieiiiinneiinnnnnn. 72
3.7. Configuration Parameters for Email REMINGErSooiiiiiiiiiiiiie e 72
3.8. KEW SyStEmM PalaMEtersSc.uuiiiiiiiiiieiiieete ettt ettt e e e e e e eees 81
3.9. Common Fields in Document Type XML Definitioncooceeuiiiiiiiiiiiiiii e 89
3.10. INitiatOrROIEATIITDULEvei ettt ettt e e et e e e ene e eees 140
3.11. RoutedBYUSEIROIEATIIDULE et 140
312, NOOPNOGE ...ttt ettt ettt e ettt e e ettt e e et et e e e enbneeeenba e aeenes 141
3.13. ReqQUESLACEIVALTIONNOGE ...ttt e e 141
3.14. NetWOrkldROIEALIIDULE ... oo 141
3.15. UniversityldROIEATLITDULEieiiei e e 141
3168, SEVAINOUE ... ettt ettt 142
3.17. Key Reference Table: Default field names and reference Keysovvvvviiiieiiiiiiieiiiiineeees 169
3.18. CommONIy OVEITIAAEN SEIVICESuuiiieiiiiee ittt 187
4.1. KIM Configuration ParaMeterSocieeueueieiiiiee et e ettt e e e e ennens 192
5.1. KNS Configuration ParameELerscouuuuiiiiiieiiii ettt e e 205
5.2. Comparison of Maintenance and Transactional DOCUMENEScccuvviuiiiinneeiiieiiieeeieeeen, 225
5.3 KNS BVENES ...ttt e et e e e 240
5.4. KNS Helper Functions for Permission CheCKSoviiiiiiiiiiiiiiiiccci e 251
5.5. Document Presentation Controller Methodsc...iviiiiiiiieiii e 253
5.6. Document AUthOrizer MEtNOOScouuuiiiiiiie e 254
6.1. Available KRAD TeMPIELESuuuieiiiiiieeeii ettt e et eeeab e e eees 286
7.1. Non-common data elements in the proposition tableccooiiiiiiii e, 294
7.2. Non-common data elements in the proposition parameter tableccoovvveiiiiiiiiiiineceennnn. 296
8.1. KSB Configuration ParamMeELErSccuuuiiiiiiiieeeii ettt e e e e e eeeni e eens 313
8.2. Properties of the ServiCeDEfINITIONoeueiiiiii e 320
8.3. ServiceDEfiNItioN ProPertiesccuuuiiiii e 329
8.4. SOAPSENVICEDEFINITIONeieiii ettt ettt ettt e e e e e eae s 330
8.5. JaVaSEIVICEDEFINITION ... iiieiie ettt e 330
8.6. COrE PalaMELEN'Sccveiiieieiii ettt et ettt et e e et e e e e e e e ean e 337

Xi

List of Examples

2.1. Example — This is an example of how to add a Priority into thetable:c.ccoooeiiiiiiinnnnnn. 41

Xii

Chapter 1. Global

Rice Client Overview

Y ou can integrate your application with Rice using several methods, each described below.

Embedded

This method includes embedding some or al of the Rice services into your application. When using this
method, a standalone Rice server for the Rice web application is still required to host the GUI screens and
some of the core services.

To embed the various Rice modules in your application, you configure them in the RiceConfigurer using
Spring. For more details on how to configure the RiceConfigurer for the different modules, please read
the Configuration Section in the Technical Resource Guide for the module you want to embed.

Figure 1.1. Diagram of a sample embedded implementation

& -
Cherd | L | | Fica
sy Applecation wnl:
' [t TR,
g % i
B E Rice E =
E. "'l Em 'I':.:.l--.' T g ;
gE §a
i I ==
Application
\ Data_
Advantages

* Integration of database transactions between client application and embedded Rice (via JTA)
» Performance: Embedded servicestalk directly to the Rice database

» No need for application plug-ins on the server

Global

» Great for Enterprise deployment: It's still a single Rice web application, but scalability is increased
because there are multiple instances of embedded services.

Disadvantages
» Can only be used by Java clients
» Morelibrary dependencies than the Thin Client method

» Requires client access to the Rice database

Bundled

This method includes the entire Rice web application and all services into your application. This method
does not require a standalone Rice server.

Each of the Rice modules provides a set of JSPs and tag libraries that you include in your application.
These are then embedded and hooked up as Struts Modules. For more details on how the web portion of
each module is configured, please read the Configuration Guide for each of the modules.

Figure 1.2. Diagram of a sample bundled implementation

— ‘;I -
Client Rice | Cligrt
e weiah Anplication
e P 1 | Application
i ~_And
g § Rice Data
f £ Ficm
.-;":"E T [t
ol
:L.- Fra L
o=
Advantages

* All the advantages of Embedded Method
» No need to deploy a standalone Rice server

Ideal for development or quick-start applications

» May ease development and distribution

 Can switch to Embedded Method for deployment in an Enterprise environment

Global

Disadvantages
» Not desirable for Enterprise deployment when more than one application isintegrated with Rice

» More library dependencies than the Thin Client method and the Embedded Method (since it requires
additional web libraries).

Thin Java Client

This method utilizes some pre-built classes to provide an interface between your application and web
services on a standalone Rice server.

Many of the Rice services are exposed by the KSB as Java service endpoints. This means they use Java

Serialization over HTTP to communicate. If desired, they can also be secured to provide access to only
those callers with authorized digital signatures.

Figure 1.3. Diagram of a sample Thin Java Client implementation

—
k3
Jaws Vsl o ;
This " SerdoEy 1":2 Rice
[I E nclpcint Lkl
=
=]
O =
= T
B
E
L 4
plag
B o
o
=

Application

Advantages
» Relatively simple and lightweight configuration
» Fewer library dependencies
Disadvantages

» No transactional integration between client and server

* Plug-ins must be deployed to the server if custom Rice components are needed

Global

Web Services

This means directly using web services to access a standal one Rice server. This method utilizes the same
services as the Thin Java Client, but does not take advantage of pre-built binding code to access those
services.

Advantages

» Any language that supports SOAP web services can be used
Disadvantages

» No transactional integration between client and server

» Plug-ins must be deployed to the server if custom Rice components are needed

» Web Services can be slower than other integration options

Global Configuration Parameters

Table 1.1. Global Configuration Parameters

Configuration Parameter Description Samplevalue

app.code Together with environment, forms| kr
the app.context.name which then
forms the application URL.

application.id The unique ID for the application.
A value should be chosen which
will be unique within the scope
of Kuai Rice deployment and
integration. Thereisno default for
thisvalue but it must be definedin
order for portions of Kuali Riceto
function properly.

application.host The name of the application server | local host
the application is being run on.
application.http.scheme The protocol the application runs| http
over.
cas.url The base URL for CAS services| https://test.kuali.org/cas-stg
and pages.
config.obj.file The central OJB configuration
file
config.spring.file Used to specify the

base Spring configuration
file The default value
is "classpath:org/kuali/rice/kew/
config/KEW SpringBeans.xml"

credential sSourceFactory The name of the
org.kuali.rice.core.security.credential s.Credential sSourceFactory
bean to use for credentialsto calls
on the service bus.

Global

Configuration Parameter

Description

Samplevalue

datasource.accessToUnderlying
ConnectionAllowed

the data source's
pool guard access to the
underlying data connection.
See: http://commons.apache.org/
dbcp/apidocs/org/apache/
commons/dbcp/
BasicDataSource.html
#isAccessToUnderlyingConnectiq

Allows

true

nAllowed()

datasource.initial Size

The initial of
database connections in
the data source pool.
See: http://commons.apache.org/
dbcp/apidocs/org/apache/
commons/dbcp/
BasicDataSource.html#initial Size

number

7

datasource.minldle

The number of connectionsin the
pool which can be idle without
new connections being created.
See: http://commons.apache.org/
dbcp/apidocs/org/apache/
commons/dbcp/
BasicDataSource.html#minldle

datasource.ojb.sequenceM anager.
className

The class used to manage
database sequences in databases
which do not support that
feature. Default value s
"org.apache.ojb.broker.platforms.}

ualiMySQL SequenceManagerI mpl”

datasource.pool.maxActive

The maximum number of
connections allowed in
the data source pool.
See: http://commons.apache.org/
dbcp/apidocs/org/apache/
commons/dbcp/

BasicDataSource.html#maxActive

1

50

environment

The name of the environment.
This will be used to determine
if the environment the application
is working within is a production
environment or not. It isalso used
generally to expressthe "name" of
the environment, for instance in
the URL.

dev

http.port

The port that the application
server uses; it will be appended to
all URLswithin the application.

8080

log4j .settings.props

The logd4j properties of the
application, set up in property
form.

Global

Configuration Parameter Description Samplevalue
log4j .settings.xml The log4j properties of the

application, set up in XML form.
rice.additional SpringFiles A comma delimited list of extra

Spring files to load when the
application starts.

additional .config.locations A comma delimited list of
additional configuration file
locations to load after the
main configuration files have
been loaded. Note that this
parameter only appliesto the Rice
standal one server.

rice.custom.ojb.properties The file where OJB properties for | org/kuali/rice/core/ojb/
the Rice application can be found. | RiceOJB.properties
The default is "org/kuali/rice/
core/ojb/RiceOJB.properties’

rice.logging.configure Determines whether the logging|false
lifecycle should be loaded.

rice.url The main URL to the Rice|¥{ application.url}/kr
application.

security.directory The location where security|/usr/local/rice/

properties exist, such as the
user name and password to the
database.

transaction.timeout The length of time a transaction| 300000
has to complete; if it goes over
this value, the transaction will be
rolled back.

version The verson of the Rice 03/19/2007 01:59 PM
application.

Rice Service Architecture and Configuration
Overview

This document describes how the Rice Service Architecture operates.

Overview

The Rice System consists of a stack of Resourcel oader objectsthat contain configuration information and
expose service implementations (potentially from remote sources). Each module supplies its own Spring
context containing it’s services. These Spring contexts are then wrapped by a Resourcel oader which is
used to locate and load those services.

Implementation Details

Rice is composed of a set of modules that provide distinct functionality and expose various services.
Each module loads it’s own Spring context which contains numerous services. These Spring contexts are

Global

wrapped by a Resourceloader class that provides access to those services. A Resourcel oader is similar
to Spring's BeanFactory interface, since you acquire instances of services by name. Rice adds several
additional concepts, including qualification of service names by namespaces. When the RiceConfigurer
isinstantiated, it constructs a Global Resourcel oader which contains an ordered chain of Resourcel oader
instances to load services from:

Figure 1.4. Resource L oader Stack

ClobalResourceloader

SerdgeDainiian
— T [v
Firsai Rt ooaroel acher
N
SerdeDainiian

Spring Resourceloader

Mpoulg L Lontgxr

Hadulié M yanng Cenlest

SendieDaEinnian
— -
_ _"f--_ A T
i M Sendcelelinitian
* # Hus
L S -y
LS '

All application code should use the Global Resourcel. oader to obtain serviceinstances. The getService(...)
method iterates through each registered Resourcel oader to locate a service registered with the specified
name. In it's default configuration, the Global Resourcel.oader contacts the following resource loaders in
the specified order:

1. Spring Resour cel oader —wraps the spring contexts for the various Rice modules

2. Plugin Registry — allows for services and classes from to be loaded from packaged plugins

3. Remote Resourcel oader — integrates with the KSB ServiceRegistry to locate and load remotely
deployed services

As shown above, the last Resourcel oader on the list is the one registered by KSB to expose services
available on the service bus. It's important that this resource loader is consulted last because it gives
priority to using locally deployed services over remote services (if the serviceis available both locally and
remotely). This is meant to help maximize performance.

Accessing Rice Services and Beans Using Spring

Rice Service as a Spring Bean

In addition to programmatically acquiring service references, you can also import Rice services into a
Spring context with the help of the Resourcel oaderServiceFactoryBean:

<I-- import a Rice service fromthe ResourcelLoader stack -->

Global

<bean id="aRi ceService" class="org. kuali.rice.resourcel oader. support. ResourceLoade

This class uses the Global Resourcel.oader to locate a service named the same as the ID and produces a
bean that proxies that service. The bean can thereafter be wired in Spring like any other bean.

Using Annotations

Riceincludes a Spring bean that extends the Spring auto-wire process (unlike the current version of Spring,
the auto-wire process in the version of Spring that’s included with Rice cannot be extended). With this
bean configured into your application, you can use the @RiceService annotation to identify Rice services
to auto-wire.

Add this bean definition to the top of your Spring configuration file to configure the Spring extension:
<bean class="org. kuali.rice.core.util.GRLServicelnjectionPostProcessor"/>

Add the @RiceService annotation to any field or method, following the normal Spring rules for injection
annotations. The annotation requires aname property that specifiesthe name of the serviceto inject. If the
name requires a namespace other than the current context namespace, you must specify the namespace as
aprefix (for example, “{ KEW}actionListService’).

@R ceSer vi ce(nane="wor kf | owDocunent Ser vi ce")
prot ected Wor kfl owDocunent Servi ce wor kf | owDocurent Ser vi ce;

Publishing Spring Services to the Global Resource Loader

In certain cases, it may be desirable to publish al beans in a particular Spring context to
the Resource Loader stack. Fortunately, there is an easy way to accomplish this using the
RiceSpringResourcel oaderConfigurer as shown below:

<I— Publish all services fromthis Spring context to the GRL -->
<bean cl ass="org. kuali.rice.core.resourcel oader. Ri ceSpri ngResour ceLoader Confi gurer

<bean id="myServicel" class="ny.app. package. MyServi cel"/>

<bean id="myService2" class="ny. app. package. MyServi ce2"/>

In the above example, both myServicel and myService2 would be added to a Resource L oader that would
be put at the top of the Resource Loader stack. The names of these services would be “myServicel” and
“myService2” with no namespace. To load these services you would use the following call to the Global
Resource L oader:

MyServi cel myServicel = G obal Resour ceLoader. get Servi ce(“nyServicel”);
Customizing and Overriding Rice Services

Reasons for Overriding Services

The most common reason that one would want to override services in Kuali Rice is to customize the
implementation of a particular service for the purposes of institutional customization.

A good example of thisisthe Kuali Identity Management (KIM) services. KIM is bundled with reference
implementations that read identity (and other) data from the KIM database tables. In many cases an
implementer will already have an existing identity management solution that they would like to integrate
with. By overriding the service reference implementation with a custom one, it s possible to integrate with
other institutional services (such as LDAP or other services).

Global

Installing an Application Root Resource Loader

An alternative to using the RiceSpringResourcel. oaderConfigurer to publish beans from a Spring context
to the Rice Resource Loader framework is to inject aroot Resource Loader into the RiceConfigurer.

Y ou can create an implementation of Resourcel oader that returns a custom bean instead of the Rice bean,
or you can use abuilt-in resource loader like the SpringBeanFactoryResourcel oader which wrapsa Spring
context in a Resourcel oader. Y our configuration needs to inject this bean as the RootResourcel oader of
the RiceConfigurer using the rootResourcel oader property, as shown below:

<I-- a Rice bean we want to override in our application -->
<bean i d="overri ddenRi ceBean" cl ass="ny. app. package. MyRi ceServi cel mpl "/ >

<I-- supplies services fromthis Spring context -->
<bean i d="appResour celLoader"
cl ass="org. kuali.rice.core.resourcel oader. Spri ngBeanFact or yResour ceLoader"/ >

<bean id="rice" class="org.kuali.rice.core.config.R ceConfigurer">
<property nane="r oot Resour ceLoader" ref="appResourcelLoader"/>

</ bean>
Warning

Application Resource Loader and Circular Dependencies

Be careful when mixing registration of an application root resource loader and lookup of Rice
servicesviathe Global Resourcel. oader. If you are using an application resource loader to override
aRicebean, but one of your application beans requiresthat bean to beinjected during startup, you
may create a circular dependency. In this case, you have to make sure you are not unintentionally
exposing application beans (which may not yet have been fully initialized by Spring) in the
application resource loader, or you have to arrange for the GRL lookup to occur lazily, after
Spring initialization has completed (either programmatically, or via some sort of proxy).

Replacing Rice Configuration Files

A Rice-enabled web application (including the Rice Standalone distribution) contains a RiceConfigurer
(typicaly defined in a Spring XML file) that |oads the Rice modules. Y ou can override services from the
various modules by injecting alist of additional spring filesto load asin the following example:

<bean id="rice" class="org.kuali.rice.core.config.R ceConfigurer”">

<property nane="additional SpringFiles" ref="appResourcelLoader">

<list>
<val ue>cl asspat h: ny/ app/ package/ MyCust onSpri ngFi | e. xm </ val ue>
</list>

</ property>
</ bean>
Y ouwill need to ensure that any Spring XML files and necessary classesthey reference arein the classpath
of your application. If you are overriding things in the Rice standlone application itself, then you would

need to place classes in the WEB-INF/classes directory of the war and any jars in the WEB-INF/lib
directory.

Global

It's a standard behavior of Spring context loading that the last beans found in the context with a particular
id will be the versions loaded during context initialization. The additional SpringFiles property will put
any Spring files specified at the end of the list loaded by the RiceConfigurer. So any beans defined in that
file with the same id as beans in the internal Rice Spring XML files will effectively override the out-of-
the-box version of those services.

When working with the packaged Rice standalone server, you won't have access to the Spring XML
file which configures the RiceConfigurer. In this case, you can specify additional spring files using a
configuration parameter in your Rice configuration XML, asin the following example:

<param nane="ri ce. addi ti onal Spri ngFi | es”
val ue="cl asspat h: ny/ app/ package/ MyCust onSpri ngFil e. xm "/ >

Eclipse and Rice

Warning
Recent changein Eclipse setup
Due to its unreiability, we have recently stopped relying on the Maven plugin for Eclipse to

manage the project build path. Instead, we are using the eclipse:eclipse plugin for Maven to
generate a static build path. Please note the changes in the Eclipse project setup.

Overview

This document describes how to set up an Eclipse environment for running Rice from source and/or for
developing onthe Kuali Rice project. To create your own Kuali Riceclient application, seetheinstructions
in Creating a Rice-Enabled Application.

Download the Tools

1. Install Java5 SDK - http://java.sun.com.

2. Install the Eclipse Europa Bundle for Java Developers - http://www.eclipse.org/europal

* You need to alocate at least 768MB of memory for the Eclipse runtime and at least 512MB of
memory for the VM that Eclipse uses when it runs Java programs and commands.

e Goto Eclipse Preferences.
* On Windows: Window --> Preferences--> Java --> Installed JREs.
* On Mac OS X: Eclipse --> Preferences --> Java --> Installed JREs.
+ Select the JRE and click Edit.
* Add-Xmx768m to Default VM Arguments

3. Install Maven2 for command line usage:
» Download Maven2.0.9 from http://maven.apache.org/download.html.

* Install Maven2 into C:\maven on Windows or /opt/maven on Linux. This directory is caled the
Maven Root directory.

10

http://maven.apache.org/guides/mini/guide-ide-eclipse.html
http://java.sun.com
http://www.eclipse.org/europa/

Global

» Register Maven on your computer's PATH so that it can be invoked as an executable without have
to run the mvn command from the <maven_root>/bin directory all of the time.

e SettheM2 HOM E environment variable on your system to thelocation of your Maven2 installation.
4. Update .m2 repository directory (WINDOWS ONLY) By default (on Windows) maven placesthe.m2

repo directory in the user directory inside the Documents and Settings folder. The space characters

can cause issues. To avoid them we need to do the following:

a. Figure out where you want your local maven repository to be stored, i.e. C:\work\m2

b. Make sure you turn off eclipseif it has auto updating maven turned on.

c. Move everything from your old maven directory to your new one. Thiswill save you a considerable
amount of time. If you do not do thisthen maven will re-download all repositoriesto the new location.

d. Update your settings.xml file. This should be located in C:\Documents and Settingsiuser
\.m2\settings.xml. Add thisline to the file somewhere inside the <settings> tag:

<l ocal Reposi t or y>C: \ wor k\ n2</| ocal Reposi tory>

Import rice into Eclipse as a project (Source distribution
only)

Note: You only need to follow these instructions if you downloaded the source distribution of Rice asa
zip file. If you are a contributing developer who will be committing code to CV'S, please skip this step
(Importing rice into Eclipse as a Project) and go to the next one instead.

1. Open Eclipse.

2. Choose File --> Import --> Existing Projects into Workspace.

11

Global

Figure 1.5. Root Directory Selection

LT Comell Kuali Website H
i@ene Import i

Select

- 3 Create mew projects from an archive file or directony. | g - 5 |

s

Salect an import Source:

" type flter text

N
¥ = General
[Z, Archive File
...“'. Breakpoints
1% Existing Projects inte Workspace
LY
T

L, File System
[T, Preferences
[= ot
> = EB
* = JZEE
k= = Plug-in Development
B = SnipEx
k- = Team
* = Web
b 2 Web services
= Cither

3. Browse for and select /java/projectgrice (or where ever you unzipped the source distribution to) as
the root project directory and click Finish.

12

Global

Figure 1.6. Root Directory Selection Continued

5 (&) Impart

| Import Projects

| Select a directory ba search for éx iting Eclipse prajects.,

f=) Select root directory: | /java/ projects/ricd Browse..,

'_ Select archive file:

Check out the Rice code (Non-source SVN distribution
only)

Note: You do not need to perform the stepsin this section if you have downloaded the source distribution
of Riceasazipfile.

1. Werecommend installing Subclipse as a plugin from your Eclipse instance (http://subclipse.tigris.org/
install.html)

2. Set up anew SVN repository in Eclipse: http://svn.kuali.org/repos/rice

3. Check out the Rice code from the appropriate branch of code (i.e. branches/rice-rel ease-1-0-0-br)

Set up database drivers

Oracle

1. If thisis the first time you've set up Eclipse to work with Rice, Maven won't find the Oracle drivers
in the Kuali repository.

2. If you do not aready have an Oracle driver saved in /java/drivers as ojdbcl4.jar, you can download
one from http://www.oracle.com/technol ogy/software/tech/java/sglj_jdbc/index.html. Saveit as/java/
drivers/ojdbcl4.jar

3. Run this command from the command line (this should all be on one line when you enter it):
UNIX

nvn install:install-file -Dgroupld=comoracle -Dartifactld=o0jdbcl4
-Dversion=10.2.0. 3.0 -Dpackagi ng=jar -Dfile=/javal/drivers/ojdbcl4.jar

Windows

nvn install:install-file -Dgroupld=comoracle -Dartifactld=0jdbcl4
-Dversion=10.2.0. 3.0 -Dpackagi ng=jar -Dfile=c:/javal/drivers/ojdbcl4.jar

Or, run the equivalent Ant target:

13

http://subclipse.tigris.org/install.html
http://subclipse.tigris.org/install.html
http://svn.kuali.org/repos/rice
http://www.oracle.com/technology/software/tech/java/sqlj_jdbc/index.html

Global

ant install-oracle-jar

Other databases

Thedriver for MySQL is already referenced by the Kuai Rice project. Rice does not have out-of-the-box
support for other RDBMS at this point in time. However, if you want to use other databases, it is possible
to add database support for that particular database as long as it’s supported by the Apache OJB project

(http://db.apache.org/ojb).

Set up Eclipse for Maven

If this is the first time you are using Eclipse with a project build path generated by the eclipse:eclipse
Maven plugin, you need to define the M 2_REPO Classpath Variable in your Eclipse: Java > Build Path
> Classpath Variable, under the Preferences menu.

Figure 1.7. Eclipse Classpath Variables

B Frelerences

fype flter best

Genersl
mnt
CiC+s
Echpaeihell
Help
Ingtall Update
Intersiet
lava
Apoearance
Build Path
Classpath Yanables
Lizer Librames
Ciosde Coversge
L ode Style
Cempiles
Debiag
Edibai
Irrifalled IRES
JUnit
Properties Foes Edbor
|50]
P-LI;. n
Plisg-im Developmert
Pydey
Rran Debaag
SEraEr
Team
Vahdtsan

Wit and (ML

Ry
Classpaih Variables x '

A clagspath vishabls can ba sdded o & progect's claks path. B can ba wied b defmr thi loceban ol a
IAR ile thit sa't pact of the vworkipade, Mon modiable cladspath visnabled ice 381 inbermally (for
example, JRE_LIE, JEE_SRC, and RRE_SRCROOT depend on the IR sefting],

Defined classpath verables

k= BLLIPSE_HOME [Feon imesddinkde) - Lo dsts) joftwaie) schpds [Hew...

) FINDEUGS_ANNOTATIONS - Chdets'softwereledipse plugins'ednumd.cnf ;

'ﬁ:..F.:- LIE {nea modifable, deprtcibed] « L data soltwang dil peet i gar Edn..

all FEE_SEC {non modifable, deprecated) - Cfdutatsoftware’jdil Shacap Bemove

,,-;":.F.:'_".El: ROQT (e mccklable, Stpetcsied) - (emply]

2 JUNET_HOME (non modifiable, deprecated]) - Chdatasofteanseclipse’ plagi
.\,.-'_":..l.lr'.:'_‘EF(HOME [Fan meddabls, dipeecated) - #=C0p Goiry sgnongs £

L -}-'l.E_F.EPI} - Chdete' developmentumaven-repostonyimaven-2

| DK | . Cangel

The Rice project contains auto-generated build path entries that rely on the presence of this M2_REPO
variable to determine the location of dependency libraries.

14

http://db.apache.org/ojb

Global

Rebuild Rice

1. If dependency libraries have been added or removed from the Rice project, including the first time you
check out Rice, you should run the retrieve-maven-dependencies Ant target to pull down all necessary
libraries.

Note: For the Maven2 Ant tasks to work, Ant has to know where your Maven2 homeis. If you have
set the M2_HOME variable in your system environment, it will be recognized automatically. If not,
or if for some reason you want to use a different location (e.g., if you want to have multiple Maven
installations), then you can set the maven.home.directory property in /root/kuali-build.properties.

. Add the build.xml file in the root of the Rice project to your Ant view, or open a shell to the Rice
project directory and run the retrieve-maven-dependenciestarget. Y ou should see Maven retrieving any
required dependencies. If you are running this Ant task in Eclipse, then you must recognize the PATH
environment variable under Run > External Tools > Open External Tools Dialog > Environment.

. Optionally, if you have trouble running this Ant target, you can just run an mvn compile from the
command line to invoke a Maven compilation. This will download all dependencies into your local
maven repository.

. Execute a clean build of the project in Eclipse:

Figure 1.8. Eclipse Clean Build

rch Run Window Help

~ Build Working 5et [

v Build Automatically

Generate Javadoc...

‘P

5. If your build was previously broken due to the M2_REPO classpath variable being undefined or due

to missing libraries, it should now have been built successfully.

Install the database

To set up the database, please follow the instructions in the Installation Guide under Preparing the
Database.

Installing the appropriate configuration files

Note: Be sure to use an appropriate editor such as vi or Notepad when editing configuration files. For
example, we have found that WordPad can corrupt the configuration file.

15

Global

To install the configuration file for the Kuali Rice sample application, you can do an Ant-based setup or
amanual setup.

Ant-based setup

1. Executetheprepare-dev-environment Ant target inthebuild.xml filelocated in theroot of the project.

2. This creates. <user home>/kuali/main/dev/sample-app-config.xml

Manual setup

1. Copy the config/templates/sample-app-config.templatexml file to <user home>/kuali/main/dev/
sample-app-config.xml.

 For Windows, your user homeis: C:\Documents and Settings\<user name>
e For Unix/Linux, your user homeis: /home/<user name>
e For Mac OS X, your user homeis. /User <user name>
2. Add the appropriate database parameters to <user home>/kuali/main/dev/sample-app-config.xml
* Oracle
<par am nanme="dat asource. url ">j dbc: oracl e: t hi n: @ ocal host: 1521: XE</ par an®

<par am nane="dat asour ce. user nane" >or acl e. user name</ par an
<par am nane="dat asour ce. passwor d" >or acl e. passwor d</ par an»

* MySQL

<par am nanme="dat asource. url ">j dbc: mysql : / /1 ocal host: 3306/ kul ri ce</ par an>
<par am nanme="dat asour ce. user nane" >nysql . user name</ par ane
<par am nanme="dat asour ce. passwor d" >nysql . passwor d</ par ane

Run the sample web application

» Back in Eclipse, locate and run the rice - JettyServer.launch file:

16

Global

Figure 1.9. Eclipse Jetty Launch

¥ |5 scripls
F 5 groowy- L0
¥ o laumch
:PHI-HI"SEF e e mad WEAR 3WGE AR S BE AR ganioloms

y FRCE = T i New k
y PR — TN !I'I nnen F;
_: el) i M Dpen 'H.l'il:h ..
JIEETTNIRE chow In TEW »

B Lo maven-ant-ratks
F 5k upgrades Cﬂml' we
| ETeHlEprOjecLgrn . P L

| dballgroovy 110 g T3 s
Paste wV

| O s G O |
| dbmergegroovy 2% Delete &
| Perrn PV 50
} setenv.bat 1912 : ' ' X 7% Problams [@ Javados | [, Declaration
[senenesh 1912 § ' i] - K
| wmlalgroowy 31 Build Path "
B[S security Refactor LRT *
B shared
B 5 standal e £ Import...
F [targed e Export....
B TERTRAT S
> % tools Refresh F5

¥ budd xenl 3054 1729 Assign Working Sets. ..

L3 LCENSE tut 3064 1/2 valid
T pem.seml 3275 2/15 alidate

f
[} READMEDct 1912 &) AL s #1 1 rice - JettyServer

= Debug As [
I'_.'e rae-0.9.3 [branches /rice] n--ull.g . = JE Y Bain an Seruer SVY B

 Point your browser to the following url: http://localhost:8080/kr-dev

Changing Rice project dependencies

If you change any of the dependenciesin any of the Rice pom.xml files, you must run the update-eclipse-
classpath Ant target to regenerate the top-level Eclipse .classpath file for the project.

17

http://localhost:8080/kr-dev

Global

Figure 1.10. Update Eclipse Classpath

deperadns "

& aren - Fi e Plptipers
w [l Haogate fngion Progedn fen feekies Help
H- G-o-0-#-0-9- @ ™ - (&N %
<] L] ||
o K res Lar e il -

L]
- MW = - =
] SR - lal
u -
oo =
i o 5
L] i
i el b

i

-'\u
" i
W [iv i
®i i 1
81 ppeie guigrie Canpeh
L | "

B T AR,

If you change the dependencies and commit the change, when others update their local source copy they
must run the corresponding retrieve-maven-dependencies target again.

Note

Refresh your Eclipse project if dependencies (and therefore the Eclipse.classpath file) have
changed.

Other Notes

Settings.xml warning

If thisisthe first time that you have installed the Maven plugin into your Eclipse environment, you may
need to add afile called settings.xml in your <user home>/.m2 directory.

The easiest way to tell if you need to do thisis that there will be awarning in the console after building,
stating that the settings.xml fileismissing. All you need to do is create a settings.xml file with this content:

<settings/>

Rebuild, and the warning should no longer appear.

Note
You do NOT ever need to run any of the context menu Maven commands from inside Eclipse.
You do NOT need to run any Maven commands from the command line.

The Eclipse Maven2 plugin is a little bit flaky sometimes. Y ou might need to close Eclipse to
flush its memory.

18

Global

Default workspace JDK not 1.5

If your default workspace JDK is not 1.5, you need to reconfigure the Maven external tools definitions
for Rice thisway:

1. Open Run->External Tools->External Tools Dialog... menu item.
2. Find the m2 build category.

3. Select each preconfigured Rice external tool configuration, select the JRE tab, and ensure the JRE is
setto 1.5.

Using a custom maven repository location

The default Maven2 repository location is in your user directory; however, if you have a pre-existing
repository (or for some other reason don't want it in your user directory), you can alter Maven2'srepository
location. The current version of the Maven2 plugin has a bug that does not allow this to work (see http://
jira.codehaus.org/browse/ MNGECL IPSE-314), but the 0.0.11 development version available from the
update site http://m2eclipse.codehaus.org/update-dev/ allows you to specify a custom local repository.

Note

If you make this change, you may have to delete and re-add the Maven Managed Dependencies
library to your project build path if you have an existing, invalid, Maven-managed dependencies
library.

Setting JDK Compliance version
If your default workspace JDK is not 1.5, then you also need to set the JDK compliance level to the
appropriate version for the project. You can find this by right-clicking on the Project -> Properties ->

Java Compiler -> Compiler compliance level. Be sure the Enable project specific settings checkbox is
checked.

Turn off validation
Be sureto turn off validation at the project level by right-clicking on the Project, then clicking Properties

-> Validation -> Suspend all Validators. This can be adjusted once a successful Rice project is up and
running.

ORA-12519, TNS:no appropriate service handler found
If you start seeing java.sql.SQL Exception: Listener refused the connection with thefollowing error:
ORA-12519, TNS:no appropriate service handler found, there are a couple of things that may remedy
the problem.

1. Increase the Oracle XE connection limit:

alter system set processes=150 scope=spfile;
alter system set sessions=150 scope=spfil e;

2. Lower the pool sizein your rice config.xml:

<par am nane="dat asour ce. pool . mraxSi ze" >10</ par an®

19

http://jira.codehaus.org/browse/MNGECLIPSE-314
http://jira.codehaus.org/browse/MNGECLIPSE-314
http://m2eclipse.codehaus.org/update-dev/

Global

Disconnect any other clients and then restart Oracle-XE.

Creating Rice Enabled Applications

Creating a Rice Client Application Project Skeleton

The Kuali Rice source code comes with a script (written in alanguage called Groovy) which will create a
skeleton client application project that bundles Rice. If you do not have Groovy installed on your machine,
you will need to download and install it from http://groovy.codehaus.org/

Preparation Steps

To get ready to run the script:

1

2.

Open a shell window or command prompt window.

Change your current directory to the scripts directory within the Rice source code tree (for example,
if you unpacked the source code into a directory named /java/projectgrice, you want to navigate to
ljavalpr ojects/rice/scripts).

. If the Groovy interpreter is not on your command path (entering the command groovy results in an

error stating that the command was not found), enter the command: . ./setenv.sh in Unix or setenv.bat
in Windows.

. Verify that you have Groovy installed by typing the command gr oovy at the comment line. This should

print out the groovy usage message.

Command Syntax

Enter groovy createproject.groovy followed by one or more of the following parameters, separated by
spaces:

-name defines the name of the project. It must be followed by a space and the desired project name.
The project name should consist of letters, numbers, dashes, and underscores only. This parameter is
required.

-pdir specifies the directory to hold the new project. It must be followed by a space and the directory.
A directory named the same as the project name will be created in this directory. If not specified, the
directory /java/pr ojects will be used.

-rdir specifiesthedirectory containing the Rice project. It must befollowed by aspace and thedirectory.
If not specified, the directory /javalprojects/rice will be used.

-mdir specifiesthehomedirectory for Maven, whichisrequired to set up the Eclipse project’ sclass path
information. It must be followed by a space and the directory. If not specified, the script will attempt
to find Maven using the following sources:

¢ An environment variable named M2_ HOME
* An environment variable named m2.home
« A property named maven.home.directory in thefile kuali build.propertiesin your home directory

-sampleapp requests the sample application to be included in the new project. This can serve as an
example for building a Rice application. If not specified, the sample application is not included.

20

http://groovy.codehaus.org/

Global

» -standalone requests the client project be set up to be run with a standalone rice server. This sets the
default configuration files to containing the necessary settings to connect to standalone rice. Therice
url and database properties will still need be updated manually.

Sample Script Execution

groovy createproject.groovy -nanme MyFirstProject -sanpleapp

Further instructions on how to open the project and run it will be printed to the console when the script
has finished executing. At this point, you now have a skeleton of a Kuali Rice client application that you
can use to begin building your own application. However, before running the application, you will need to
create a Rice database (if you’ re using the sampleapp, you' ll need to set up the demo database; otherwise,
you'll set up astripped-down bootstrap database).

The configuration of this application uses a bundled model where the Rice server and client pieces are
all being included and loaded by your sample application. Thisis useful for development purposes since
it makes it very easy to get the application running. It is not recommended for an enterprise deployment
where you may want to have more than one application integrating with Kuali Rice. In these cases, you
would want to install and integrate with a Standalone Rice server. For more information on installing and
configuring a standal one server, see the Installation Guide.

Reorder Eclipse Classpath

Once the sample script execution has completed, you will need to import your project into eclipse and
reorder the eclipse classpath to account for a change in how the classpath was generated by maven.
Navigate to your project properties and select the Order and Export tab from the Java Build Path project
property. There will be an entry for JRE System Library at the bottom of the list that should be moved
to the very top.

Rice Configuration System

The Rice Configuration System is an XML-based solution which provides capabilities similar to Java
property files, but aso adds some additional features. The configuration system lets you:

» Configure keys and values

» Aggregate multiple files using a single master file

* Build parameter values from other parameter values
» Usethe parametersin Spring

» Override configuration values

Configuring Keys and Values

Below is an example of aconfiguration XML file. Note that the white space (spaces, tabs, and new lines)
is stripped from the beginning and end of the values.

<confi g>
<param nane="clientl.|ocation">/var/lib/jenkins/workspace/rice-trunk-rel ease-s
<param nane="client2.location">/var/lib/jenkins/workspace/rice-trunk-rel ease-s
<par am nane="ksb. cli ent 1. port " >9913</ par an®
<par am nane="ksb. cl i ent 2. port " >9914</ par an®

21

Global

<par am nane="ksb. t est har ness. port">9915</ par anv

<par am nane="t hr eadPool . si ze" >1</ par an®

<par am nane="t hr eadPool . f et chFr equency” >3000</ par an®

<par am nane="bus. refresh. rat e">3000</ par an»

<par am nane="keystore. al i as">ri ce</ par anp

<par am nane="keyst or e. passwor d" >super - secr et - pw</ par anp

<par am nane="keystore.file">/var/lib/jenkins/workspace/rice-trunk-rel ease-site
</ config>

Here is an example of the Java code required to parse the configuration XML file and convert it into a
Properties object:

Config config = new Si npl eConfi g(configlLocations, properties);
confi g. parseConfig();

In the sample above, configlocations is a List<String> containing file locations using the standard
Spring naming formats (examples: file:/whatever and classpath:/whatever). The variable propertiesisa
Properties object containing the default property values.

Here is an example of retrieving a property value from Java code:

String val = ConfigContext.getCurrent ContextConfig().getProperty(“keystore.alias”)
Aggregating Multiple Files

The Rice Configuration System has a special parameter, config.location, which you use to incorporate
the contents of another file. Typically, you use this to include parameters that are maintained by system
administratorsin secure locations. The parametersin the included file are parsed asiif they had beenin the
original file at that place. Here is an example:

<confi g>
<param nane="config.location">file:/my_secure_dir/my_secure_file.xm </ parane
</ config>

Building Parameter Values from Other Parameters
Once you have defined a parameter, you can use it in the definition of another parameter. For example:

<confi g>

<par am nane="appl e">red del i ci ous</ par anr

<param nane="t ast e" >yumy yunmy</ par anp

<par am nanme="appl e. t ast e">${ appl e} ${tast e} </ paranpr
</ config>

When this example is parsed, the value of the parameter apple.taste will be set to red delicious yummy
yummy.

Using the Parameters in Spring

Because the parameters are converted into a Properties object, you can retrieve the complete list of
parameters using this code:

config.getProperties()

You typically use this in Spring to parse a configuration and put its properties in a
PropertyPlaceHolderConfigurer so that the parameters are available in the Spring configuration file:

22

Global

<bean id="config" class="org.kuali.rice.core.config.spring.ConfigFactoryBean">
<property nane="configlLocations">
<list>
<val ue>cl asspat h: ny-confi g. xm </ val ue>
</list>
</ property>
</ bean>

<bean id="configProperties"”
cl ass="org. spri ngf ranewor k. beans. f act ory. confi g. Met hodl nvoki ngFact or yBean" >
<property nane="target Cbject"” ref="config" />
<property nane="t ar get Met hod" val ue="get Properties” />
</ bean>

<bean cl ass="org. spri ngframework. beans. factory. confi g. PropertyPl acehol der Confi gure
<property nane="properties" ref="configProperties" />
</ bean>

Once this is complete, the configuration parameters can be used like standard Spring tokens in the bean
configurations:

<bean i d="dat aSource" class="org. kuali.rice.core. dat abase. XAPool Dat aSour ce" >
<property nane="transacti onManager"” ref="jotnt />
<property name="driverd assNane" val ue="${datasource.driver.nane}" />
<property name="url" val ue="${datasource.url}" />
<property name="maxSi ze" val ue="${dat asour ce. pool . maxSi ze}" />
<property name="m nSi ze" val ue="${dat asource. pool . m nSi ze}" />
<property name="maxWait" val ue="${dat asource. pool . maxWait}" />
<property name="validationQuery" val ue="${dat asource. pool . validationQuery}" />
<property name="usernane" val ue="${dat asource. usernanme}" />
<property name="password" val ue="${dat asource. password}" />

</ bean>

Initializing the Configuration Context in Rice

The Config object can beinjected into the RiceConfigurer that’s configured in Spring and it will initialize
the configuration context with those configuration parameters.

Thisisdone asfollows:

<bean id="config" class="org.kuali.rice.core.config.spring.ConfigFactoryBean">
</ bean>

<bean id="rice" class="org.kuali.rice.core.config.R ceConfigurer”>

<property nanme="root Config” ref="config”’/>
</ bean>

Overriding Configuration Values

The primary purpose of overriding configuration values is to provide a set of default values in a base
configuration file and then provide a separate file that overrides the values that need to be changed. You
can also update a parameter value multiple times in the same file. Parameter values can be changed any
number of times; the last value encountered while parsing the file will be the value that is retained.

23

Global

For example, when parsing the file:

<confi g>
<param nane="t ast e" >yumy yunmny</ par anp
<par am nane="t ast e" >good st uff </ paranp
</ config>

Thefina value of the parameter taste will be good stuff since that was the last value listed in the file.
As another example, when parsing the file:

<confi g>
<par am nane="t ast e" >yumry yunmy</ paranp
<par am nane="appl e. t ast e" >appl e ${taste}</ paranp
<par am nanme="t ast e" >good st uf f </ par an>

</ config>

The final value of the parameter apple.taste will be apple yummy yummy. This demonstrates that
parameters that appear in the value are replaced by the current value of the parameter at that point in the
configuration file.

Additionally, you can define certain parameters in such that they won't override an existing parameter
valueif it'salready set.

As an example of this, consider the following configuration file:

<confi g>
<param nanme="t aste" override="fal se”>even yummi er </ par an®
<par am nane="br and. new. parani override="fal se”>brand new val ue</ paranv

</ config>

If this file was loaded into a configuration context that had already parsed our previous example, then
it would notice that the taste parameter has aready been set. Since override is set to false, it would
not override that value with even yummier. However, since brand.new.param had not been defined
previoudly, it's value would be set.

Data Source and JTA Configuration

The Kuali Rice software require a Java Transaction APl (JTA) environment in which to execute database
transactions. Thisallowsfor creation and coordination of transactionsthat span multiple datasources. This
feature is something that would typically be found in a J2EE application container. However, Kuali Rice
is designed in such away that it should not require a full J2EE container. Therefore, when not running
the client or web application inside of an application server that provides a JTA implementation, you
must provide one. The default JTA environment that Kuali Rice uses is JOTM. There are other open-
source optionsavailable, such as Atomikos TransactionsEssential s, and there are also commercial and open
source JTA implementationsthat come as part of an application server (i.e. JBoss, WebSphere, GlassFish).
Alternatively, Kuali Rice can be configured to use Bitronix.

If installing Rice using the standalone server option and afull Java application server is not being utilized,
then the libraries required for JTA will need to be moved to the serviet server which is being used.
These libraries have aready been retrieved by Maven during project set up; it is a simple matter of
moving them from the Maven repository to the libraries directory of the servlet server. Assuming, for
instance, that Tomcat is being used, the following files need to be copied from the Maven repository to
$TOMCAT_HOME/common/lib:

24

http://jotm.ow2.org/
http://www.atomikos.com/Main/TransactionsEssentials
http://docs.codehaus.org/display/BTM/Home

Global

» {Maven repository home}/repository/javax/transaction/jta/1.0.1B/jta-1.0.1B.jar

» {Maven repository home}/repository/jotm/jotm/2.0.10/jotm-2.0.10.jar

» {Maven repository home}/repository/jotm/jotm_jrmp_stubs/2.0.10/jotm_jrmp_stubs-1.0.10.jar
» {Maven repository home}/repository/xapool/xapool/1.5.0-patch3/xapool-1.5.0-patch3.jar

» {Maven repository home}/repository/howl/howl-logger/0.1.11/howl-logger-0.1.11.jar

» {Maven repository home}/repository/javax/r esour ce/connector -api/1.5/connector -api-1.5.jar

» {Maven repository home}/r epository/javax/r esour ce/connector/1.0/connector-1.0.jar

» {Maven repository home}/repositor y/or g/obj ectweb/car ol/car ol/2.0.5/car ol-2.0.5.j ar

Additionally, the{Rice pr oject home}config/jotm/car ol.pr oper ties configuration file needs to be moved
to STOMCAT_HOME/common/classes, this time from the built Rice project.

Configuring JOTM

Configurethe JOTM transaction manager and user transaction objectsas Spring beansin your application’s
Spring configuration file. Here is an example:

<bean id="transacti onManager XAPool " cl ass="or g. spri ngfranewor k. transaction.jta.Jot
<property nane="defaul t Ti neout” val ue="3600"/>
</ bean>

<al i as nane="transacti onManager XAPool " al i as="jtaTransacti onManager"/ >
<al i as nane="transacti onManager XAPool " al i as="jtaUser Transacti on"/ >

Y ou can use these beansin the configuration of Spring’sJTA transaction manager and the Rice configurer.
This configuration might look like the following:

<bean i d="spri ngTransacti onManager" cl ass="org.springfranmework.transaction.jta.Jta
<property nane="user Transaction">
<ref |ocal ="userTransaction" />
</ property>
<property nane="transacti onManager" >
<ref |ocal ="jtaTransacti onManager" />
</ property>
</ bean>

<bean id="rice" class="org.kuali.rice.core.config.Ri ceConfigurer">
<property nane="transacti onManager" ref="jtaTransacti onManager" />
<property nane="user Transaction" ref="jtaUser Transaction" />

</ bean>

Configuring JOTM Transactional Data Sources
JTA requires that the datasources that are used implement the XADataSource interface. Some
database vendors, such as Oracle, have pure XA implementations of their datasources. However,

internaly to Rice, we use wrappers on plain datasources using a library called XAPool. When
configuring transactional data sources that will be used within JOTM transactions, you should use the

25

Global

org.kuali.rice.core.database.X APool DataSource class provided with Rice. Hereis an example of a Spring
configuration using this data source implementation:

<bean i d="nyDat aSource" cl ass="org. kuali.rice.core. database. XAPool Dat aSour ce" >
<property nane="transacti onManager" ref="jtaTransacti onManager" />
<property name="driverd assNane" val ue="${dat asource. driver.nane}" />
<property name="url" val ue="${datasource.url}" />
<property name="nmaxSi ze" val ue="${dat asource. pool . maxSi ze}" />
<property name="ni nSi ze" val ue="${dat asource. pool . m nSi ze}" />
<property name="nmaxWai t" val ue="${dat asource. pool . maxWait}" />
<property name="val i dationQuery" val ue="${dat asource. pool . val i dati onQuery}" />
<property nanme="user nane" val ue="${dat asource. user nane}" />
<property nanme="password" val ue="${dat asource. password}" />

</ bean>

Configuring JTOM Non-Transactional Data Sources

When using the built-in instance of the Quartz scheduler that Rice creates, you will need to inject a non-
transactional data source into the RiceConfigurer in addition to the JTA transactional instance. Thisis
to prevent deadlocks in the database and is required by the Quartz software (the Quartz web site has
an FAQ entry with more details on the problem). Here is an example of a non-transactional data source
configuration:

<bean i d="nonTransact i onal Dat aSour ce"

cl ass="org. apache. conmons. dbcp. Basi cDat aSour ce" destroy- net hod="cl ose">
<property name="driverC assNane" val ue="${dat asource. driver.nanme}"/>
<property name="url" val ue="${datasource.url}"/>
<property name="maxActive" val ue="${dat asource. pool . maxActive}"/>
<property nane="mnldl e" val ue="7"/>
<property nane="initial Size" value="7"/>
<property name="val i dationQuery" val ue="${dat asource. pool . val i dati onQuery}"/>
<property name="user nane" val ue="${dat asource. usernane}" />
<property name="password" val ue="${dat asource. password}" />
<property name="accessToUnder| yi ngConnecti onAl | owed"

val ue="${dat asour ce. dbcp. accessToUnder | yi ngConnecti onAl | owed}"/ >

</ bean>

Y ou need to either inject this non-transactional data source into the Quartz SchedulerFactory Spring bean
(if you are explicitly defining it) or into the rice bean in the Spring Beans config file as follows:

<bean id="rice" class="org. kuali.rice.config.R ceConfigurer">
.<b.roperty name="nonTr ansact i onal Dat aSour ce" ref="nonTransacti onal Dat aSource" /
</ bean>
Configuring Bitronix

Configure the Bitronix transaction manager and user transaction objects as Spring beans in your
application’s Spring configuration file. Here is an example:

<bean id="btnConfi g" factory-method="get Confi guration"
class="bitroni x.tm Transacti onManager Servi ces" | azy-init="true"/>

<bean id="transacti onManagerBi troni x" cl ass="bitroni x.tm Transacti onManager Ser vi ce
factory-met hod="get Transacti onManager" depends-on="DbtnConfi g" destroy-nmne

26

http://www.quartz-scheduler.org/docs/faq.html
http://docs.codehaus.org/display/BTM/Home

Global

<al i as nane="transacti onManagerBitroni x" alias="jtaTransacti onManager"/ >
<al i as nane="transacti onManagerBi troni x" alias="jtaUser Transaction"/>

You can use these beans in the configuration of the Rice configurer. This configuration might look like
the following:

<bean id="rice" class="org.kuali.rice.core.config.Ri ceConfigurer">
<property nane="transacti onManager" ref="jtaTransacti onManager" />
<property nane="user Transaction" ref="jtaUser Transaction" />

</ bean>
Configuring Bitronix Transactional Data Sources

An example configuration of Btironix Transactional Data Sources:

<bean id="riceDat aSour ceBitroni xXa" class="bitronix.tmresource.jdbc. Pool i ngbat aSo
destroy- met hod="cl ose" lazy-init="true">
<property name="cl assNane" val ue="oracl e.jdbc. xa. client. O acl eXADat aSour ce" />
<property nane="uni queNane" ref="ds-randomstring" />
<property name="m nPool Si ze" val ue="${dat asour ce. pool . mi nSi ze}" />
<property name="nmaxPool Si ze" val ue="${dat asour ce. pool . maxSi ze}" />
<property nane="useTmJoi n" val ue="true" />
<property name="test Query" val ue="${dat asource. pool . val i dati onQuery}" />
<property nane="al | owLocal Transacti ons" val ue="true" />
<property name="driverProperties">
<pr ops>
<prop key="URL">${dat asource. url}</prop>
<prop key="user">${dat asour ce. user nane} </ pr op>
<prop key="password">${dat asour ce. passwor d} </ pr op>
</ props>
</ property>
</ bean>

<bean id="ds-random string" class="org.springframework. beans. factory. config. Met hod
<property nane="staticMethod" val ue="org. apache. commons. | ang. Randonttri ngUtils
<property nane="argunent s"><l i st ><val ue>20</ val ue></1i st ></ property>

</ bean>

Configuring Bitronix Non-Transactional Data Sources

Notice the addition of the driverClassName prop in the dirverPropertiesin the non-transaction data source
configuration

<bean id="riceDat aSour ceBitroni x" class="bitroni x.tmresource.|dbc. Pool i ngDat aSour
destroy-met hod="cl ose" lazy-init="true">
<property nane="cl assNane" val ue="bitroni x.tmresource.jdbc.|rc.LrcXADat aSourc
<property nane="uni queNane" ref="ds-randomstring" />
<property name="m nPool Si ze" val ue="${dat asour ce. pool . mi nSi ze}" />
<property name="nmaxPool Si ze" val ue="${dat asour ce. pool . maxSi ze}" />
<property nane="useTmJoi n" val ue="true" />
<property name="test Query" val ue="${dat asour ce. pool . val i dati onQuery}" />
<property nane="al | owLocal Transacti ons" val ue="true" />
<property nane="driverProperties">

27

Global

<pr ops>
<prop key="Url">${datasource. url}</prop>
<prop key="driverC assNane" >${dat asour ce. dri ver. name} </ prop>
<prop key="user">${dat asour ce. user nane} </ prop>
<prop key="password">${dat asour ce. passwor d} </ pr op>

</ pr ops>

</ property>
</ bean>

<bean id="ds-random string" class="org.springfranmework. beans. factory. config. Met hod
<property nane="staticMethod" val ue="org. apache. commons. | ang. Randonttri ngUtils
<property name="argunments"><l|i st ><val ue>20</val ue></1i st ></ property>

</ bean>

Version Compatibility

Commitment to Compatibility in Kuali Rice

Fromversion 2.0 of Kuali Riceuptoat least version 3.0, the project iscommitted to providing what it refers
to as "middleware" or "client-server" service compatibility. This essentially means that an application
which isaclient of the Kuali Rice Standalone Server (either it's services or it's database) should be able
to continue to function properly even if the Rice Standal one Server or it's database is upgraded to a newer
version.

More information on the scope of version compatibility in Kuali Rice can be found in the Kuali Rice
Version Compatibility Statement.

Keeping Your Client Application Compatible

There are afew rulesthat a client application using the Kuali Rice apis must following in order to ensure
the client application remains compatible once the Kuali Rice Standalone Server is updated. These rules
only apply in situations where there is a standalone instance of Kuali Rice which is being integrated with.
In the case that an application is running Kuali Rice "bundled”, then compatibility is not a concern since
that application forms a single software bundle with Kuali Rice included.

First, client-server compatibility only pertains to the components of Rice which have client-server
interaction, that includes the following components and their sub-modules:

+ Core Service
* KSB

« KEW

* KIM
 KEN

* KRMS

* Location

There are some components of Rice which are "framework-only" and don't contain any client-server
remoting components. These include:

28

https://wiki.kuali.org/x/OABHC
https://wiki.kuali.org/x/OABHC

Global

Core
KNS

KRAD

Thereare, additionally, some modul es of Ricewhich only run aspart of the standal one server (or in bundled
mode) and those include eDocL ite and the various "web" modules of Rice.

Only the first set of "client-server" Rice components are presently under the constraints of version
compatibility.

A summary of the rules a client application needs to follow in order to ensure they remain version
compatible is as follows:

If integrated with astandlone Kuali Rice server, do not configure any of the Kuali Rice componentswith
arun mode of LOCAL. The LOCAL run modeisonly for afully bundled configuration of Kuali Riceasit
interactsdirectly with all of the Kuali Rice database tablesinstead of using remotely accessible services.

In application code, only use classes in the api or framework modules of the "client-server”
components. This should be evident from the package names for the module as they should
have "api" or "framework" in the package name (i.e. org. kuali.rice. kew. api .* and
org. kuali.rice.kimframework. *).

Do not write custom code which interacts directly with the Kuali Rice database tables which are part of
any of the previously mentioned "client-server" components.

When writing code against the Rice apis or frameworks, be sure to read the javadocs and be sure to
conform to the contracts specified therein.

When implementing "callback" services, ensure that you ae using the
Cal | backSer vi ceExporter properly as specified in the section called
“ CallbackServiceExporter”

29

Chapter 2. KEN

KEN Overview
What is KEN?

Kuali Enterprise Notification is a form of communication between distributed systems that allows
messages to be sent securely and consistently. These messages act as notifications upon receipt and are
processed asynchronously within the service layer. The following architectural diagram represents the
flow of messagesin atypical Rice Environment.

Figure2.1. KEN Message Flow

“’-_ .
o
Library Syslam . .
b

Huali Emerprise Workllow Bursar Sysiem

Slusdant Aoinalneg Travel Raimbursamen| Syalam

R oo b e i Rl

Ened L

From a developer’s perspective the diagram below helps to represent the inner workings of how KEN
stores data from the Data Modeling Layer into the Persistence Layer.

30

KEN

Figure 2.2. KEN Message Storage

ety Brosvsaer
&
T e
HTML = 055
- r F '“"‘w.r 1
Huiah Misrstam. Syslom + JSP + JETL | Lay
- —4 Sperin
Siruls !
LA]
3 i
T
Sereioes
B Creslanal & Kol
Oitjiscts e Spring '-.--.I-:::'-_-:. Bisiingss
N [Bagei Rubig, gl Lo b Ly
[POUOSE, &) Agithorization, e |
[
L [
b]
[" LATE]
A —— 'Eq.ql"l-, L T Do arszads |
Eymie Layer
CUB (ORM) Cusiodm mgls
't v =
.-""j
" - o —
—t_r r
KEH
Mt Sereices [K5E Peraisbinco
AT W 25 2] Layer
Dt Sacsra e

The following sections of documentation aim at describing the inner workings of KEN as well as how
those pieces interact with Rice, specifically KEW. KEN itself is an interface that sits on top of KEW’s
API. Thisallowsfor registration and publishing of notifications, which then flow through KEW toresultin
aKEW action request. See KEW Overview for more information. In addition to the action list, KEW can
be optionally configured to forward these requests to the Kuali Communi cations Broker or KCB for short.
Thismoduleislogically related to KEN and handles dispatching messages based on the user preferences.
Once messages are dispatched, aresponse or acknowledgement can be created.

KEN Configuration Parameters

Table2.1. KEN Core Parameters

Configuration Parameter Description Default value

ken.url The base URL of the KEN|${application.url}/ken
webapp; this should be changed
when deploying for externa
access

31

KEN

Configuration Parameter Description Default value
notification.resolveM essageDel i verTéxlatast atlsst yivi8s) of the job| 5000
that resolves message deliveries
notification.resolveM essageDel i verTéslofiténteatv@ivies) between runs| 10000
of the message delivery resolution
job
notification.processA utoRemoval Jdhstattitet@y&y $in ms) of the job| 60000
that auto-removes messages
notification.processAutoRemoval Jathmtetealll §n ms) between runs| 60000
of the message auto-removal job
notification.quartz.autostartup Whether to automatically start the|true

KEN Quartz jobs

notification.concurrent.jobs

Whether the invocation of a
KEN Quartz job can overlap
another KEN Quartz job running
concurrently

true

ken.system.user

The principal name of the user that
KEN should use when initiating
KEN-originated documents

notsys

kcb.url

The base URL of the KCB
(notification broker) webapp

${ application.url}/kch

kcbh.messaging.synchronous Whether notification messages|false
are processed synchronously
kch.messageprocessing.startDelayMBe start delay (in ms) of the|50000
job that processes notification
messages
kcb.messageprocessing.repeat| nterTdi® $nterval (in ms) between| 30000
runs of the notification message
processing job
kcb.quartz.group Group name of the KCB Quartz| KCB-Delivery
job
kcb.quartz.job.name Name of the KCB Quartz job M essageProcessingJobDetail
kch.maxProcessAttempts Maximum number of times that|3
KCB will attempt to process a
notification message
notification.processUndeliveredJoplingselapdddtime, in milliseconds, | 10000
between runs of the KEN process
undelivered notifications job.
notification.processUndeliveredJoplstardagssdine, in milliseconds, | 10000

between the stat of the
application and the first run of
the KEN process undelivered

notifications job.

32

KEN

Note

Asof Rice 1.0.1, The parameter kch.smtp.host is no longer used. The smtp server settings that
are required for sending email notifications with KEN are documented in the Kuali Enterprise
Workflow (KEW) Technical Reference Guide under Email Configuration.

KEN Channels

A KEN Channel is correlated to a specific type of notification. An example of a Channel’ s use may be to
send out information about upcoming Library Events or broadcast general announcements on upcoming
concerts. Channelsare subscribed to in the act of receiving notificationsfrom apublisher or producer. They
can a so be unsubscribed to and removed from the data store from within the Ul. The Channel Definitions
are stored in the database table KREN_CHNL _T. The columns are listed as follows:

Table2.2. KREN_CHNL_T

Column Description

CHNL_ID Identifier for the Channel

NM Name of the Channel represented in the Ul

DESC_TXT Description of the Channel

SUBSCRB_IND Determines if the Channel can or cannot be
subscribed to from the Ul. This aso determines if
the channel will be displayed in the Ul

VER_NBR Version Number for the Channel

Channel Subscription

Channels can be subscribed to through the Ul and also through the direct access to the data store. To
add a channel that can be subscribed to simply run the following SQL statement against the data store
customizing value entries to your needs:

| NSERT | NTO KREN_CHNL_T (CHNL_I D, DESC_TXT, NM SUBSCRB_| ND, VER_NBR)

VALUES (2,' This channel is used for sending out infornmation about Library Events
1)

KEN Producers

A KEN Producer submitsnotificationsfor processing through the system. An example of a Producer would
be amailing daemon that represents messages sent from a University Library System.

Characteristics of a Producer:
 Producers create and send notifications to a specific destination through various Channels.
» Each Producer contains alist of Channelsthat it may send notifications to.

» Producer Definitions are stored in the database table KREN_PRODCR_T.

33

KEN

Table2.3. KREN_PRODCR_T

Column Description

CNTCT_INFO The email address identifying the Producer of the
Notification.

DESC_TXT A Description of the Producer.

NM Name of the Producer.

PRODCR _ID The Producer's Channel Identifier. See the

KREN_CHNL_PRODCR T table found in the
database for more information on how Producers
link to Channels.

VER_NBR Version Number for the Producer.

Adding Producers

The Producer can be added through direct access to the data store. To add a Producer run the following
SQL statement against the data store customizing value entries to your needs:

| NSERT | NTO KREN_PRODCR_T (CNTCT_I NFO, DESC_TXT, NM PRODCR_I D, VER_NBR)
VALUES (' kuali-ken-testing@ornell.edu' ,'This producer represents nessages sent

KEN Content Types

Overview

A Content Type is part of the message content of a notification that may be sent using KEN. It can be as
simple as a single message string, or something more complex, such as an event that might have a date
associated with it, start and stop times, and other metadata you may want to associate with the notification.

KEN isdistributed with two Content Types. Simple and Event.
Warning

It is strongly recommended that you leave these two Content Types intact, but you can use them
as templates for creating new Content Types.

Every notification sent through KEN must be associated with aregistered Content Type. Registration of
Content Types requires administrative access to the system and is described in the KEN Content Types

section in the User Guide. The rest of this section describes the Content Type attributes that are required
for registration.

Content Type Attributes

A Content Typeis represented as a NotificationContent business object and consists of several attributes,
described below:

id - Uniqueidentifier that KEN automatically creates when you add a Content Type

name - Thisis a unique string that identifies the content. For example, ItemOverdue might be the name
used for a notification Content Type about an item checked out from the campus library.

34

KEN

description - Thisisamore verbose description of the Content Type. For example, "Library item overdue
notices' might be the description for [temOverdue.

namespace - This is the string used in the XSD schema and XML to provide validation of the content,
for example, natification/ContentTypeltemOverdue. The XSD namespace is typically the name attribute
concatenated to the notification/ContentType string. Note how it is used in the XSD and XSL examples
below.

xsd - The X SD attribute contains the complete W3C XML Schema compliant code.

<?xm version="1. 0" encodi ng="UTF-8"?>
<I-- This schema defines a generic event notification type in order for it to be a
<schema xm ns="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns:c="ns:notification/comon”
xm ns: ce="ns: notification/ContentTypeltenOverdue”
t ar get Namespace="ns: notifi cati on/ Cont ent Typel t enOver due”
attri but eFor nDef aul t ="unqual i fi ed”
el ement For mDef aul t ="qual i fi ed">
<annot at i on>
<document ation xml : | ang="en">ltem Overdue Schena</docunentati on>
</ annot ati on>
<i nport namespace="ns: notification/commobn” schemalLocati on="resource: notifi cat

<l-- The content elenent describes the content of the notification. It conta
<el enment nane="content">
<conpl exType>
<sequence>
<el enent name="nessage" type="c:LongStringType"/>
<el enent ref="ce:event"/>
</ sequence>
</ conpl exType>
</ el enent >

<I-- This is the itenoverdue element. It describes an item overdue notice con
<el ement nane="itenoverdue">
<conpl exType>
<sequence>
<el enent name="sunmmary" type="c: NonEnptyShort StringType" />
<el enent name="descri ption" type="c: NonEnptyShortStri ngType" />
<el enent nanme="I| ocation" type="c: NonEnptyShortStringType" />
<el enent name="dueDat e" type="dateTi me" />
<el enent name="fine" type="decimal" />
</ sequence>
</ conpl exType>
</ el ement >
</ schema>

xdl - The XSD attribute contains the complete XSL code that will be used to transform a notification in
XML to html for rendering in an Action List

<?xm version="1. 0" encodi ng="UTF-8"?>

<l-- style sheet declaration: be very careful editing the follow ng, the
default namespace must be used otherw se elenents will not match -->
<xsl : styl esheet

35

http://www.w3.org/XML/Schema

KEN

version="1.0"

xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or nf

xm ns: n="ns: notification/Content TypeEvent"

xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"

xsi : schemalLocati on="ns: notifi cati on/ Content TypeltenOverdue resource: notificat
exclude-result-prefixes="n xsi">

<l-- output an htm fragnment -->
<xsl :out put nethod="htm " indent="yes" />

<l-- match everything -->
<xsl:tenplate match="/n:content" >
<tabl e class="bord-all">
<xsl :apply-tenpl ates />
</t abl e>
</ xsl : tenpl at e>

<l-- match nessage elenment in the default namespace and render as strong -->
<xsl:tenpl ate match="n: nessage” >
<capti on>

<xsl : val ue- of sel ect=".
</ caption>
</ xsl : tenpl at e>

di sabl e- out put - escapi ng="yes"/></stro

<I-- match on itenoverdue in the default nanespace and display all children --
<xsl:tenplate match="n:itenoverdue">
<tr>

<td cl ass="t hnormal ">Summary: </td>
<td cl ass="t hnormal "><xsl : val ue-of sel ect="n:summary" /></td>
</tr>
<tr>
<td class="thnormal ">ltem Description: </td>
<td cl ass="t hnormal "><xsl : val ue-of sel ect="n:description” /></td>
</tr>
<tr>
<td class="t hnormal ">Li brary: </td>
<td cl ass="t hnormal "><xsl : val ue- of select="n:location” /></td>
</tr>
<tr>
<td cl ass="t hnormal ">Due Date: </td>
<td class="t hnormal "><xsl : val ue-of sel ect="n:startDateTi me" /></td>
</tr>
<tr>
<td cl ass="t hnormal ">Fi ne: </td>
<td class="thnormal ">$<xsl : val ue-of select="n:fine" /></td>
</tr>
</ xsl : tenpl at e>
</ xsl : styl esheet >

36

KEN

KEN Notifications

This document provides information about the attributes of a Natification. These attributes are elements
such as message content, who is sending the natification, who should receive it, etc. Kuali Enterprise
Notification (KEN) supports an arbitrary number of Content Types, such as a simple message or an event
notification. Each Content Type consists of acommon set of attributes and a content attribute.

Common Notification Attributes

Table 2.4. Common Notification Attributes

Name

Type

Required

Description

Example

channel

string

yes

e Name of a
channel

* Must be
registered

Library Events

producer

string

yes

* Name of the
producing
system

e Must be
registered and
given authority
to send messages
on behalf of
the <Library
Events> channel

Library Calendar
System

senders

alist of strings

yes

A list of the names
of people on whose
behalf the message
is being sent

TestUserl,
TestUser2

recipients

alist of strings

yes

A list of the names
of groupsor usersto
whom the message
is being sent

library-staff-group,
TestUserl,
TestUser2

deliveryType

string

yes

fyi or ack

fyi

sendDateTime

datetime

no

When to send the
notification

2006-01-01
00:00:00.0

autoRemoveDateTin

réatetime

no

Whentoremovethe
notification

2006-01-02
00:00:00.0

priority

string

yes

An arbitrary
priority; these must
be registered in
KEN; the system
comes with defaults
of normal, low, and
high

normal

contentType

string

yes

Name for the
content; KEN

simple

37

KEN

Name Type Required Description Example

comes set up with
simple and event;
new contentTypes
must be registered
in KEN

content see below yes The actual content |see below

Message Content

Notifications are differentiated using the contentType attribute and the contents of the content element.
The content element can be as simple as a message string or it may be a complex structure. For example,
a simple natification may only contain a message string, whereas an Event Content Type might contain
a summary, description, location, and start and end dates and times. Examples of the Smple and Event
Content Types:

Sample XML for a Simple Notification

<?xm version="1. 0" encodi ng="UTF-8"?>

<I-- ASinple Notification Message -->

<notification xm ns="ns:notification/NotificationRequest"
xm ns: xsi =http://ww. w3. or g/ 2001/ XM_.Schena- i nst ance
xsi : schemalLocati on="ns: notification/NotificationRequest
resource: notification/NotificationRequest">
<I-- this is the nane of the notification channel -->
<l-- that has been registered in the system-->
<channel >Canpus St at us Announcenent s</ channel >

<l-- this is the name of the producing system-->
<l-- the value nust match a registered producer -->
<pr oducer >Canpus Announcenents Systenx/ producer>

<l-- these are the people that the nessage is sent on -->
<l-- behalf of -->
<sender s>

<sender >John Fer ei r a</ sender >
</ sender s>

<l-- who is the notification going to? -->
<reci pi ent s>

<gr oup>Ever yone</ gr oup>

<user >j af 30</ user >
</reci pi ent s>

<l-- fyi or acknow edge -->
<del i veryType>fyi </ deliveryType>

<l-- optional date and tine that a notification should be sent -->
<l-- use this for scheduling a single future notification to happen -->

38

KEN

<sendDat eTi me>2006- 01- 01T0O0: 00: 00</ sendDat eTi ne>

<l-- optional date and tine that a notification should be renoved -->
<l-- fromall recipients' lists, b/c the nessage no |onger applies -->
<aut oRenoveDat eTi me>3000- 01- 01T00: 00: 00</ aut oRenoveDat eTi nme>

<l-- this is the name of the priority of the nmessage -->
<l-- priorities are registered in the system so your value -->
<l-- here must match one of the registered priorities -->

<priority>Normal </priority>

<titl e>School is Cosed</title>

<l-- this is the name of the content type for the nmessage -->
<l-- content types are registered in the system so your value -->
<l-- here nmust match one of the registered contents -->

<cont ent Type>Si npl e</ cont ent Type>

<l-- actual content of the nessage -->

<content xm ns="ns:notification/ContentTypeSi npl e"
xsi : schemalLocati on="ns: notifi cati on/ Content TypeSi npl e
resource: notification/ Content TypeSi npl e">

<message>Snow Day! School is closed. </ nessage>
</ cont ent >
</notification>

Sample XML for an Event Notification

<?xm version="1. 0" encodi ng="UTF-8"?>

<notification xm ns="ns:notification/NotificationMessage"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schema- i nst ance"
xsi : schemalLocati on="ns: notification/NotificationMessage
resource: notification/NotificationMessage">
<l-- this is the nane of the notification channel -->
<l-- that has been registered in the system-->
<channel >Concerts Conmi ng to Canpus</channel >

<l-- this is the name of the producing system-->
<l-- the value nust match a registered producer -->
<pr oducer >Canpus Events O fi ce</ producer >

<l-- these are the people that the nessage is sent on -->
<!-- behalf of -->
<sender s>

39

KEN

<sender >ag266</ sender >
<sender >j af 30</ sender >
</ sender s>

<l-- who is the notification going to? -->
<reci pi ent s>
<gr oup>G oup X</ group>
<gr oup>G oup Z</ group>
<user >ag266</ user >
<user >j af 30</ user >
<user >ar hl4</ user >
</reci pi ent s>

<l-- fyi or acknow edge -->
<del i veryType>fyi </ deliveryType>

<l-- optional date and tine that a notification should be sent -->
<l-- use this for scheduling a single future notification to happen -->
<sendDat eTi ne>2006- 01- 01 00: 00: 00. O</ sendDat eTi ne>

<l-- optional date and tine that a notification should be renoved -->
<l-- fromall recipients' lists, b/c the nessage no |onger applies -->
<aut oRenoveDat eTi me>2007- 01- 01 00: 00: 00. 0</ aut oRenoveDat eTi ne>

<l-- this is the name of the priority of the nessage -->
<l-- priorities are registered in the system so your value -->
<l-- here must match one of the registered priorities -->

<priority>Normal </priority>

<l-- this is the name of the content type for the nmessage -->
<l-- content types are registered in the system so your value -->
<l-- here nmust match one of the registered contents -->

<cont ent Type>Event </ cont ent Type>

<l-- actual content of the nessage -->
<content >
<nmessage>CCC presents The Strokes at Cornell </ nessage>

<l-- an event that it happening on canpus -->

<event xm ns="ns:notification/ContentEvent"
xsi : schenmalLocati on="ns: notification/ Cont ent Event
resource: notification/ContentEvent">
<summar y>CCC presents The Strokes at Cornell </ summary>
<descri pti on>bl ah bl ah bl ah</descri pti on>
<l ocation>Barton Hall </l ocati on>
<start Dat eTi me>2006- 01-01TO0O: 00: 00</ st art Dat eTi ne>

40

KEN

<st opDat eTi me>2007- 01- 01T0O: 00: 00</ st opDat eTi me>
</ event >
</ cont ent >
</notification>

Notification Response

When KEN sends a notification, it always returns aresponse. Thisisan outlinein XML of that response:

<?xm version="1.0" encodi ng="UTF-8"7?>
<r esponse>

<st at us>success</ st at us>
</ response>

Enterprise Notification Priority

Managing Priorities

KEN

There is no user interface page to manage priorities so you must make changes to the list of prioritiesin
thekren_prio_t table using SQL.

The table has these columns:

Table2.5. KREN_PRIO_T

Name Type Max Size Required Attribute
PRIO_ID Numeric 8 Yes ID

NM Text 40 Yes Name
DESC _TXT Text 500 Yes Description
PRIO_ORD Numeric 4 Yes Order
VER_NBR Numeric 8 Yes Version

Example 2.1. Example— Thisisan example of how to add a Priority into the table:

I NSERT | NTO kren_prio_t (PRIOID, NV DESC TXT, PRIO ORD, VER NBR) VALUES (8,

Delivery Types

This section describes Kuali Enterprise Notification (KEN) Delivery Types, or what are sometimes called
Message Deliverers. A Message Deliverer Plugin is the mechanism used to deliver a notification to end
users. All notifications sent through KEN appear in the Action List for each recipient for which the
notification is intended. This message aso contains an Email Delivery Type that allows you to send end
users a notification summary as an email message. Note that for a Delivery Type other than the default
(KEWActionList), the content of the notification is typically just a summary of the full notification.

Implementing the Java Interface

Creating a new Dedivery Type primarily involves implementing a Java interface called
org.kuali.rice.kew.deliverer .NotificationM essageDeliver er. The source code of the interface:

41

' Bul

KEN

/*
* Copyright 2007 The Kuali Foundati on
*
* Licensed under the Educational Conmunity License, Version 2.0 (the "License");
* you may not use this file except in conpliance with the License.
* You may obtain a copy of the License at
*
* http://ww. opensource. org/licenses/ecl 2. php
*
* Unless required by applicable |aw or agreed to in witing, software
* distributed under the License is distributed on an "AS I S" BASI S,
* W THOUT WARRANTI ES OR CONDI TI ONS OF ANY KIND, either express or inplied
* See the License for the specific | anguage governi ng perm ssions and
* [imtations under the License.
*/

package org. kuali.rice. ken.deliverer

i mport java.util.HashMap;

i mport java.util.LinkedHashMap;

i mport org. kuali.rice.ken.bo.NotificationMessageDelivery;

i mport org. kuali.rice.ken.exception. ErrorlList;

i mport org. kuali.rice.ken.exception.Notificati onAut oRenoveExcepti on

i mport org. kuali.rice.ken.exception.Notificati onMessageDel iveryException
i mport org.kuali.rice.ken.exception.NotificationMessageD sm ssal Exception

/**

* This class represents the different types of Notification Delivery Types that t
* For exanple, an instance of delivery type could be "ActionList" or "Email" or ™"
* adhering to this interface can be plugged into the systemand will be automatic
* @uthor Kuali Rice Team (kuali-rice@oogl egroups. con

*/

public interface Notificati onMessageDeliverer {
/**
* This method is responsible for delivering the passed i n nessageDelivery recor
* @aram nessageDel i very The nessageDelivery to process
* @hrows NotificationMessageDeliveryException
*/

public void deliverMessage(Notificati onMessageDel i very nmessageDel i very) throws N
/**
* This met hod handl es auto renoving a nessage delivery froma person's list o
* @aram nessageDel i very The nmessageDelivery to auto renove
* @hrows NotificationAut oRenmbveExcepti on
*/

42

KEN

public void aut oRenbveMessageDel i very(Noti fi cati onMessageDel i very nessageDel i ver
/**

* This method di snmi sses/renoves the Notificati onMessageDelivery so that it is
via this deliverer. Note, whether this action is neaningful is dependent o
deliverer cannot control the presentation of the nmessage, then this nethod
@ar am nessageDel i very the nmessageDel ivery to dism ss
@aram the user that caused the dismissal; in the case of end-user actions,

whi ch the nmessage was delivered (user recipient in the Notificati onMessag
@ar am cause the reason the nessage was di sm ssed

E I I I

public void di sm ssMessageDel i very(Notificati onMessageDel i very messageDel i very,

KEN: Sending a Notification

The Kuali Enterprise Natification system (KEN) provides for a way to programmaticaly send a
notification. An application may construct a notification using the KEN web service API.

Send a Notification Using the Web Service API

To send a notification using the web service API, the notification must be constructed as an XML
document that validates agai nst aschemafor aspecific Content Type. For more detail, seethe Notifications
documentation.

To validate your notification XML, you must construct the XSD schema filename. To construct this file
name, append the Content Type value to ContentType.

For example, if you create anew Content Typefor alibrary book overdue notification, then the contentType
element value should be OverdueNotice and the schemafile you created for validation of the notification
XML should be Content TypeOver dueNotice.xsd. This XML schema should be declared as a namespace
inthe content element of the notification XML. Out of the box, KEN comeswith Smple and Event Content
Types.

Web Service URL

By default, the Notification Web Service APl may be accessed at: http://yourlocalip:8080/natification/
services/Notification

A WSDL may be obtained using the following URL: http://yourlocalip:8080/notification/services/
Notification?2wsdl

Note

In the URL s above, replace yourlocalip with the hostname where KEN is deployed.

Exposed Web Services

Initially, KEN exposes a web service method to send a notification. The sendNotification method is a
simple String In/String Out method. It accepts one parameter (notificationMessageAsXml) and returns a
notificationResponse as a String. For the format of the response, see the Notification Response document
inthe TRG for KEN.

43

http://yourlocalip:8080/notification/services/Notification
http://yourlocalip:8080/notification/services/Notification
http://yourlocalip:8080/notification/services/Notification?wsdl
http://yourlocalip:8080/notification/services/Notification?wsdl

KEN

Calling the sendNotification Service from JAVA
First, create a String that includes the XML content for the notification, as described in the Naotification
Message document of the TRG for KEN. In the following example code, the XML representation
of the notification is read as a file from the file system in the main method, and the code calls the
MySendNotification method to invoke the Notification web service.

A SOAP style web services binding stub is available in the notification.jar file, as described above in
the Dependencies section.

Y ou may use this code as atemplate for sending a notification using the web service:

package edu.cornell.library.notification;

i mport org.apache. comons.io. |l QUtils;

i mport org. kuali.notification.client.ws.stubs. Notificati onWbServiceSoapBi ndi ngStu

i mport java.io.| OException;

i mport java.io.lnputStream
i mport java. net. URL;

public class MyNotificati onWwbServi ced ient {

private final static String WEB SERVICE URL = "http://I ocal host: 8080/ notificati

public static void MySendNotification(String notificati onMessageAsXm) throws Ex

URL url = new URL(WEB_SERVI CE_URL);

Noti fi cati onWebSer vi ceSoapBi ndi ngSt ub stub = new Notifi cati onWWbServi ceSoapBi n
String responseAsXm = stub.sendNotification(notificationMessageAsXm);

/1 do sonething useful with the response
System out. printl n(responseAsXm);

}

public static void main(String[] args) {

I nput Stream notificationXM. = MyNotificationWebServiceC ient.class. get Resource

String notificati onMessageAsXm = ;

try {
notificati onMessageAsXm = 1OQUtils.toString(notificationXMW);

} catch (1 CException ioe) {

t hrow new Runti meException("Error | oadi ng webservice_notification.xm");

}

try {
MySendNot i fi cation(notificati onMessageAsXm);

} catch (Exception ioe) {
t hrow new Runti meException("Error runni ng webservice");

}
}

KEN

KEN Authentication
Web

KEN can support any Web Sign On technology that results in the population of the HttpServletRequest
remote user variable, exposed via the getRemoteUser accessor.

publicjava.lang.String getRemoteUser ()

Returns the login of the user making this request, if the user has been authenticated, or null if the user
has not been authenticated. Whether the user name is sent with each subsequent request depends on the
browser and type of authentication.

Returns: A String specifying the login of the user making this request, or null

The generic KEN release comes configured with CAS.

Web Services

Web service authentication is part of the development process and is not implemented by the standalone
release of Rice. The notification web service is Axis-based.

45

Chapter 3. KEW
What is Kuali Enterprise Workflow?

What

What

is workflow, in general?

Workflowisavery general term and means different thingsin different contexts. For example, it may mean
the sequence of approvals needed for a Leave Request or it may refer to a complex scientific procedure.

In our context of enterprise applications within a higher education institution, we're usually talking about
business process management when we discuss workflow. Usually, this revolves around business rules,
authorizations, and routing for approval.

A simple example is a leave request system. It needs some workflow to get the necessary people
(supervisor, etc.) to approveit. Thisis one example of the routing and approval side of aworkflow.

Y ou may also have business rules in workflow that dictate that some people get automatic approval for
leave requests. Thisis abusiness rule detail that workflow executes by automatically routing these types
of requests past the approval steps.

is Kuali Enterprise Workflow, in particular?

The Kuali Enterprise Workflow (KEW) product revolves around routing and approval of documents. It is
a stand-alone workflow engine upon which you can integrate other enterprise applications to do routing
and approvals.

In addition, KEW contains an eDocL ite system. This is a mechanism to create simple data-entry forms
directly in KEW. Y ou can also create routing rules around eDocL ite forms. eDocL ite forms are the rough
equivaent of the basic, one- or two-page forms that are commonly used to process business and get
signature approvals.

The benefit of eDocLite in KEW isthat it does not require a separate application. Y ou can use eDocL ite
in KEW simply by setting up the forms that your institution or department needs.

Overall, KEW is based on documents. In KEW, each document has a collection of transactions or things
to be done. Each transaction is approved or denied individually in KEW.

For example, John Doe may use a Leave Request document in KEW to ask for a week off in June. The
KEW Leave Request document contains enough information for his supervisor to make a decision about
John’sleave. (The document may use datakeysto retrieve external information, such as John’ spast Leave
Requests and available hours.) Once John submits his Leave Request, KEW routesit to John's supervisor
for approval. Depending on how John' s department has configured KEW for routing L eave Requests, after
John’s supervisor approves or denies his request, KEW may route it to more people for further action to
be taken.

Once John's Leave Request document is processed, it triggers a PostProcessor, which can peform any
desired additional processing. This is most commonly used to “finalize” the business transaction once
all approvers have signed off on it. In this particular example, it might call another service that would
update recordsin the L eave Request application’ s database, indicating that the individual has successfully
scheduled leave during that time period.

In addition, the KEW PostProcessor contains hooks for all the stages that a document goes through. For
example, an external application may use a KEW workflow for routing and approval of documents, and
that application may take action at each change in state of a routed document.

46

KEW

What

What

problems or functions does KEW solve?

The primary benefit of KEW workflow is the correct routing for approval of documents. It enforces your
business-specific rules about who needs to approve what documents, in which scenarios.

Simple Workflow Example

Leave Request: Each person has one other person (possibly more) who needs to approve his or her leave
requests. Inthiscontext, KEW isthe system that managesboth the approval structure and theleaverequests
themselves (the actual approvals).

More Complex Workflow Example

Purchasing Desktop Computers: Y ou may need several business rulesin KEW for this, such asarule to
enforce:

1. A strategic alliance requires that you buy from one vendor unless there is ajustification to not do so

2. Genera purchasing approval by the Purchasing Department is required when the cost of the purchase
exceeds a certain limit

3. Approva by the account owners who fund the purchase is required
In this example, KEW requires an approval if:

e Thestrategic alliance is not used

» Thecost limit for Purchasing Department approval is exceeded

The workflow also requires an approval by the signer (or delegate) for each spending account that you
use for the purchase.

In KEW, Approval Types are set up such as account approver, supervisor, or organizational/department
hierarchy approver. An Approval Type containsthe applicable routing and approval rules. Onceyou create
an approval type, those routing and approval rules are available for other workflow clients and scenarios.
This creates a tipping point situation, in which the more applications and business processes you set up
through workflow, the easier it gets to do new ones.

In addition, KEW can help you with distributed management of approval structures. Each group at your
institution (each college, unit, division, etc.) can create their own approval and workflow structure for their
group, and you can centrally manage the workflow above those groups. This allows groups to manage
their own internal controls and structures, while still being subject to higher-level institutional controls.

problems does KEW NOT solve?

KEW is not a general-purpose application builder. For complex applications, you need to develop
applications separately and then integrate them with KEW. For simple forms or documents that need
approval, you can useeDocL ite, but thisonly worksin simple cases, analogousto aone- or two-page paper
form that requires signatures. It isimportant to note, however, that Kuali Rice does include a framework
called the Kuali Nervous System (KNS) that can be used to facilitate the development of more complex
applications and includes built-in integration with KEW.

KEW is not a general-purpose business rules engine. For example, it does not know that a continuation
account must be specified when an account is closed. Those types of rules are the responsibility of the
application itself to manage. However, this is not a clear-cut line, as KEW does manage business rules
that directly affect routing and approval.

47

KEW

KEW is not an Organization Hierarchy manager. For example, it will not automatically manage your
organizational hierarchies and internal structures. However, integration with these hierarchies and
structures can be accomplished using KEW, and leveraging such hierarchies for routing and approval is
avery common need for many applications.

With which applications can KEW integrate?

Can |

Nearly anything, in theory. In the current version of KEW, any application can access KEW if it can:
» Do Javamethod calls, or

Do remote method invocation, or

* Do web-servicescalls, or

» Communicate with the Kuali Service Bus (KSB)

(The recommended cross-platform integration method is over web services.)

use KEW without building an entire application?

Yes, absolutely!

KEW isanincredibly powerful platform for routing and approval for enterprise (i.e., large) applications.
However, it also includes eDoclL ite, which makes it easy to develop simple business-process forms and
run them through KEW. In this situation, in its most simple form, you can do all of your work within
KEW, and most of that work isin developing your form configurations. If needed, the eDocL ite process
can also hook into a post-processor to take an action once a document's approvals are compl ete.

Steps to Building a KEW Application

Preface

Initssimplest form, KEW ismerely a set of servicesthat can be used to submit documents to aworkflow
engine and then interact with those documents as the progress through the routing process. Therefore,
there are many different ways to build an application that uses KEW. Kuali Rice itself has afew built-in
solutions (eDocLite and KNS) that make it easier to build applications that use KEW. Alternatively, an
application can be built from scratch or retrofitted to use KEW.

In this section, we will look at some common approaches to designing and building an application which
leverages KEW. However, it is by no means exhaustive and is simply meant to get you started and give
you ideas as you embark upon development of your own applicationsthat use Kuali Enterprise Workflow.

Initial Steps - Determine the Routing Rules

Determine to whom you want to route the document and when it should be routed. For example, in the
Travel Request Sample Workflow Client Application, the steps in the routing process are:

1. Someone submits atravel request for atraveler
2. Traveler receives an Approve Action Item
3. Traveler's supervisor receives Approve Action Item

4. Traveler's dean/director receives Acknowledge Action Item

48

KEW

5. Fiscal Officer for account(s) receives Approve Action Item

Configure the Process Definition

In KEW, process definitions are attached to Document Types. The Document Type alows for
configuration of various pieces of the business process in addition to the process definition.

The Document Type is defined in XML format. KEW can ingest files containing this Document
Type configuration to set up the specified workflows and then executes the workflows based on that
configuration.

Oneexampleof routing configurationisthe Travel Regquest application. The Document Type configuration
is defined in the following four XML files:

TravelRoutingConfiguration.xml - Defines the travelDocument Document Type, including
PostProcessor, docHandler, and routeNodes:

<?xm version="1.0" encodi ng="UTF-8"?>
<data xm ns="ns:workfl ow' xm ns:xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" xs
<document Types xm ns="ns: wor kf | ow Docunent Type" xsi:schemalLocati on="ns:workfl o
<document Type>

<nanme>Tr avel Request </ nane>
<description>Create a New Travel Request</description>
<l abel >Travel Request</| abel >
<post Processor Nanme>or g. kual i . ri ce. kns. wor kf | ow. post pr ocessor . Kual i Post
<super User G oupNane nanespace="TVL" >Super User G oup</ super User G oupNarne
<bl anket Appr oveG oupNane nanmespace="TVL" >Bl anket Appr oveG oup</ bl anket A
<def aul t Excepti onG oupNane nanespace="TVL" >Excepti onG oup</ def aul t Exce

<docHandl er >${ appl i cation. url }/travel Docunent 2. do?met hodToCal | =docHand
<r out ePat hs>
<r out ePat h>
<start nane="lnitiated"” nextNode="DestinationApproval" />
<requests nane="Desti nati onApproval " next Node="Travel er Approva
<requests nane="Travel er Approval " next Node=" Super vi sor Appr oval
<request s nane="Supervi sor Approval " next Node="Account Approval "
<r equest s nane="Account Approval " />
</ r out ePat h>
</ rout ePat hs>
<r out eNodes>
<start name="Initiated">
<activati onType>P</ acti vati onType>
</start>
<request s nane="Desti nati onApproval ">
<rul eTenpl at e>Tr avel Request - Dest i nati onRout i ng</rul eTenpl at e>
</ request s>
<request s nane="Travel er Approval ">
<rul eTenpl at e>Tr avel Request - Tr avel er Rout i ng</r ul eTenpl at e>
</ request s>
<r equest s nane=" Super vi sor Approval ">
<rul eTenpl at e>Tr avel Request - Super vi sor Rout i ng</ r ul eTenpl at e>
</ request s>
<r equest s nane="Account Appr oval ">
<rul eTenpl at e>Tr avel Request - Account Rout i ng</r ul eTenpl at e>
</ request s>

49

KEW

</ rout eNodes>
</ docunent Type>
</ docunent Types>
</ dat a>

TravelRuleAttributes.xml — Defines the attributes used by the Workflow Engine to determine to whom
to route to next:

<?xm version="1.0" encodi ng="UTF-8"?>
<data xm ns="ns:workfl ow' xm ns:xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" xs
<rul eAttributes xm ns="ns:workflow Rul eAttribute" xsi:schemalLocation="ns: wor kf
<rul eAttri bute>
<nanme>Enpl oyeeAt tri but e</ nane>
<cl assName>edu. sanpl eu. t ravel . wor kf | ow. Enpl oyeeAttri but e</ cl assNane>
<l abel >Enpl oyee Routi ng</I abel >
<descri pti on>Enpl oyee Routi ng</descripti on>
<servi ceNamespace>TRAVEL</ servi ceNanespace>
<type>Rul eAttri bute</type>
</rul eAttribute>

<rul eAttri bute>
<nanme>Account At t ri but e</ nane>
<cl assName>edu. sanpl eu. t ravel . wor kf | ow. Account At tri but e</ cl assNane>
<l abel >Account Routi ng</I| abel >
<descri pti on>Account Routi ng</description>
<servi ceNamespace>TRAVEL</ ser vi ceNanespace>
<type>Rul eAttri bute</type>

</rul eAttribute>

</rul eAttributes>
</ dat a>

TravelRuleTemplatesxml - Defines the RuleTemplates that represent each routeNode listed in the
Document Type configuration:

<?xm version="1. 0" encodi ng="UTF-8"?>
<data xm ns="ns:workfl ow' xm ns:xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" xs
<rul eTenpl at es xm ns="ns: wor kf | ow Rul eTenpl at e" xsi: schemalLocati on="ns: workfl o
<rul eTenpl ate all owOverwite="true">
<nanme>Tr avel Request - Dest i nat i onRout i ng</ name>
<descri pti on>Destinati on Routing</description>
<attributes>
<attri bute>
<nane>Desti nati onAttri but e</ nane>
</attribute>
</attributes>
</rul eTenpl at e>
<rul eTenpl ate all owOverwite="true">
<nanme>Tr avel Request - Tr avel er Rout i ng</ name>
<descri pti on>Travel er Routi ng</description>
<attributes>
<attribute>
<nanme>Enpl oyeeAt tri but e</ nane>
</attribute>
</attributes>
</rul eTenpl at e>

50

KEW

<rul eTenpl ate all owOverwite="true">
<nane>Tr avel Request - Super vi sor Rout i ng</ nane>
<descri pti on>Supervi sor Routi ng</description>
<attributes>
<attribute>
<nanme>Enpl oyeeAt tri but e</ nane>
</attribute>
</attributes>
</rul eTenpl at e>
<rul eTenpl ate all owOverwite="true">
<nane>Tr avel Request - Account Rout i ng</ nane>
<descri pti on>Travel Account Routi ng</description>
<attributes>
<attribute>
<nanme>Account At t ri but e</ nane>
</attribute>
</attributes>
</rul eTenpl at e>
</rul eTenpl at es>
</ dat a>

TravelRulesxml - Defines the rules (a rule is a combination of Document Type, Rule Template and
Responsihilities) that the workflow engine uses to determine to whom to route to next:

<?xm version="1.0" encodi ng="UTF-8"?>
<data xm ns="ns:workfl ow' xm ns:xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" xs
<rul es xm ns="ns: wor kf| ow Rul e" xsi:schemaLocati on="ns: workfl ow Rul e resource
<rul e>
<nanme>Tr avel Request - Dest i nat i onLasVegas</ nane>
<documnent Type>Tr avel Request </ docunent Type>
<rul eTenpl at e>Tr avel Request - Dest i nati onRout i ng</rul eTenpl at e>
<descri pti on>Destinati on Rul e</description>
<r ul eExt ensi ons>
<r ul eExt ensi on>
<attribute>DestinationAttribute</attribute>
<rul eTenpl at e>Tr avel Request - Dest i nati onRout i ng</r ul eTenpl at e>
<r ul eExt ensi onVal ues>
<r ul eExt ensi onVal ue>
<key>desti nati on</ key>
<val ue>l as vegas</val ue>
</ rul eExt ensi onVal ue>
</ rul eExt ensi onVal ues>
</ rul eExt ensi on>
</ rul eExt ensi ons>
<responsibilities>
<responsibility>
<pri nci pal Nane>user 4</ pri nci pal Nane>
<act i onRequest ed>A</ acti onRequest ed>
</responsibility>
</responsibilities>
</rul e>
<rul e>
<nanme>Tr avel Request - Enpl oyeeRol e</ nane>
<documnent Type>Tr avel Request </ docunent Type>

51

KEW

<rul eTenpl at e>Tr avel Request - Tr avel er Rout i ng</ r ul eTenpl at e>
<descri pti on>Travel er Routi ng</description>
<responsibilities>
<responsibility>
<r ol e>edu. sanpl eu. travel . wor kf | ow. Enpl oyeeAttri but e! enpl oyee</
<act i onRequest ed>A</ acti onRequest ed>
</responsibility>
</responsibilities>
</rul e>
<rul e>
<nane>Tr avel Request - Super vi sor Rol e</ nane>
<documnent Type>Tr avel Request </ docunent Type>
<rul eTenpl at e>Tr avel Request - Super vi sor Rout i ng</ r ul eTenpl at e>
<descri pti on>Supervi sor Routi ng</description>
<responsibilities>
<responsibility>
<r ol e>edu. sanpl eu. travel . wor kf | ow. Enpl oyeeAttri but e! supervi sr<
<act i onRequest ed>A</ acti onRequest ed>
</responsibility>
</responsibilities>
</rul e>
<rul e>
<nane>Tr avel Request - Di r ect or Rol e</ nane>
<documnent Type>Tr avel Request </ docunent Type>
<rul eTenpl at e>Tr avel Request - Super vi sor Rout i ng</ rul eTenpl at e>
<descri pti on>Dean/ Di rect or Routi ng</descri ption>
<responsibilities>
<responsibility>
<r ol e>edu. sanpl eu. travel . wor kf | ow. Enpl oyeeAttri but el di rect or </
<act i onRequest ed>K</ acti onRequest ed>
</responsibility>
</responsibilities
</rul e>
<rul e>
<nanme>Tr avel Request - Fi scal O fi cer Rol e</ nane>
<documnent Type>Tr avel Request </ docunent Type>
<rul eTenpl at e>Tr avel Request - Account Rout i ng</r ul eTenpl at e>
<descri ption>Fi scal Oficer Routing</description>
<responsibilities>
<responsibility>
<r ol e>edu. sanpl eu. travel . wor kf | ow. Account Attri bute! FO</r ol e>
</responsibility>
</responsibilities>
</rul e>
</rul es>
</ dat a>

Client PlugIn Steps

Your plugin should contain Java classes that correspond to the attributes defined in the XML
configuration file. The Travel Request Sample Client contains two attribute classes: EmployeeAttribute
and AccountAttribute. Each of these classes implements these two interfaces:

org. kuali.rice.kew rule.RoleAttribute

52

KEW

org. kuali.rice.kew rule. WrkflowAttribute

Using the EmployeeAttribute as an example, here are the implementations for the Rol eAttribute interface:

getRoleNames() - Returns a list of role names to display on the routing rule GUI in the KEW web
application:

private static final Map ROLE | NFG,

static {

}

ROLE | NFO = new TreeMap();

ROLE_| NFO. put (EMPLOYEE_ROLE_KEY, "Enpl oyee");
ROLE_| NFO. put (SUPERVI SOR_RCLE_KEY, "Supervisor");
ROLE_| NFO. put (DI RECTOR_ROLE_KEY, "Dean/Director");

public List getRol eNames() {

}

Li st rol eNanes = new ArraylList();

for (lterator iterator = roles.keySet().iterator(); iterator.hasNext();) {
String roleName = (String) iterator.next();
rol eNanes. add(new Rol e(get C ass(), rol eNane, rol eNane));

}

return rol eNanes;

getQualifiedRoleNames() - Returns alist of strings that represents the qualified role name for the given
roleName and XML docContent which is attached to the workflow document:

/**

*/

* Returns a String which represent the qualified role nane of this role for t
* rol eName and docContent.
* @aramrol eNanme the role name (without class prefix)
* @ar am docurent Cont ent t he docunent content

public List<String> getQualifiedRol eNames(String rol eNanme, Documnent Cont ent documnen

}

Li st<String> qualifiedRol eNanmes = new ArrayList<String>();
Map<String, List<String>> qualifiedRoles = (Map<String, List<String>>)roles.qge
if (qualifiedRoles !'= null) {

qual i fi edRol eNanes. addAl | (qual i fi edRol es. keySet ());
} else {

throw new |11 egal Argunent Excepti on("Test Rul eAttri bute does not support the
}

return qualifiedRol eNanes;

resolveQualifiedRole() - Returns alist of workflow users that are members of the given Qualified Role.
(Used to help determine to whom to route the document.):

/**

*

*
*
*

Returns a List of Wbrkflow Users which are nenbers of the given qualified role
@ar am r out eCont ext the Rout eCont ext

@aram rol eNane the rol eNane (without class prefix)

@aram qual i fi edRol e one of the the qualified role names returned fromthe {@

53

KEW

* @eturn ResolvedQualifiedRole containing recipients, role |label (nost likely t
*/

public Resol vedQual ifi edRol e resol veQual i fi edRol e(Rout eCont ext routeContext, Strin
Resol vedQual i fi edRol e resol ved = new Resol vedQual i fi edRol e();
Map<String, List<String>> qualifiedRoles = (Map<String, List<String>>)roles.ge

if (qualifiedRoles !'= null) {
List<String> recipients = (List<String>)qualifiedRol es.get(qualifiedRole);
if (recipients I'= null) {
resol ved. set Qual i fi edRol eLabel (qual ifi edRol e);
resol ved. set Reci pi ent s(convert Princi pal | dLi st (reci pi ents));

} else {
t hrow new ||| egal Argurment Exception(" Test Rul eAttri bute does not support
}
} else {
t hrow new ||| egal Argurment Excepti on(" Test Rul eAttri bute does not support the

}

return resol ved;

}

Using the EmployeeAttribute example, here are the implementations for the Wor kflowAttribute interface:

getRoutingDataRows() — Returns a list of RoutingDataRows that contain the user interface level
presentation of the ruleData fields. KEW uses the ruleData fields to determine where a given document
would be routed according to the associated rule:

public List<Row> get Routi ngDat aRows() {
Li st <Row> rows = new ArrayLi st <Row>();
List<Field> fields = new ArraylLi st<Fi el d>();
fields.add(new Field("Travel er usernane", "", Field. TEXT, false, USERI D FORM F
rows. add(new Row(fiel ds));
return rows;

}

getDocContent() - Returns a string containing this Attribute's routingData values, formatted as a series
of XML tags:

public String getDocContent () {
String docContent = "";

if (!'StringWtils.isBlank(_uuid)) {
String uuidContent = Xm Utils. encapsul at e(UUl D_PARAMETER TAGNAME, _uui d);

docContent = _attributeParser.wapAttributeContent(uui dContent);
}

return docContent;

}

validateRoutingData() - Validates routingData values in the incoming map and returns a list of errors
from the routing data. (The user interface calls validateRoutingData() during rule creation.):

public List validateRoutingData(Mp paramvap) {
List errors = new ArrayList();

54

KEW

String principal Name = StringUtils.trin((String) paramvap. get (PRI NCl PAL_NAME F
if (isRequired() &% StringUtils.isBlank(principal Name)) {
errors. add(new Wor kf | owSer vi ceError | nmpl ("princi pal Name is required”, "acco

}

if (!'StringUils.isBlank(principal Nane)) {
Ki nPrinci pal Info principal = Kl MserviceLocator.getldentityService().getPri
if (principal == null) {
errors. add(new Wor kf | owSer vi ceErrorlnpl ("unable to retrieve user for p
}
}
if (errors.size() == 0) {
_princi pal Name = princi pal Nane;

}

return errors;

}
Build PostProcessor and Services

The PostProcessor class should implement the interface:
org. kual i.rice. kew. post processor. Post Processor Renpt e

Y ou should use this interface for business logic that should execute when the document transitions to a
new status or when actions are taken on the document. The PostProcessor for the Travel Request Client
isthe class:

org. kuali.rice. kns.workfl ow. post processor. Kual i Post Processor

that implements the doRouteStatusChange() method to update the status of the travel document in the
Travel database. The KualiPostProcessor in this case is the standard PostProcessor used on all documents
that are built on the KNS framework.

Package Plugln

Depending on how the application has been developed (i.e. embedded workflow engine vs. using the
engine asaremote service) it may be necessary to package components like the PostProcessor into a plug-
in. See the Workflow Plugln Guide for details on how to do this.

Client Web Application Steps
Build the Web Application

Beginto build aKuali Enterprise Workflow the same as you build any other Java-enabled web application.
Y oubuilditwith all the businesslogic for the application and, for example, communication to theworkflow
engine using web services.

As an example, the Travel Request Client Web Application uses Struts, Spring, and OJB.
Build the Service that Connects to the Workflow Engine

For therest of thissection, thisguiderefersto the Javaapplication communicating with the Kuali Enterprise
Workflow as the Client Application. The Client Application needs a service that will interact with the

55

KEW

workflow system. This service will perform actions such as locating a document in the workflow system
and routing the document.

Below are examples from the Travel Request Sample Client. The methodsin the Travel DocumentService
class find a TravelDocument in the workflow system, save and route a Travel Document, and validate a
Travel Document.

findByDocHeader I d() - Finds a Document in the workflow engine:

public Travel Docurment findByDocHeaderl d(Long docHeaderld, String principalld) {
if (docHeaderld == null) {

throw new |11 egal Argunent Exception("invalid (null) docHeaderld");
}
Travel Docunment result = travel Docunment Dao. fi ndByDocHeader | d(docHeader 1d);
if (result '=null) {
/1 convert DocAccountJoins into Financial Accounts
ArrayLi st accounts = new ArraylList();
for (lterator joins = result.getDocAccountJoins().iterator(); joins.hasNex
Document Account Joi n join = (Document Account Joi n) joi ns. next();
Fi nanci al Account account = financi al Account Servi ce. fi ndByAccount Nurber
account s. add(account);
}
resul t. set Fi nanci al Account s(accounts);
try {
Wor kf | owDocunent docunent = new Wor kf | owDocunent (principalld, result.
} catch (Workfl owException e) {
LCG error("caught Wbrkfl owException: ", e);
t hrow new Runti meException(e);
}
}

return result;

}

The TravelDocumentServicelmpl class populates the attribute values on the workflow document
(Employee, Account) that will be used for future routing. It doesthis by calling its getEmpl oyeeAttribute()
and getAccountAttribute() methods and adding the results to the workflow document by calling the
addAttributeDefinition() method.

private Workfl owAttri buteDefinitionVO get Enpl oyeeAttri bute(Travel Docunent travel Do
Wor kfl owAt tri but eDefiniti onDTO attrDef = new Workfl owAttri buteDefinitionDIQ("e
String principal Name = travel Docunent. get Travel er User name() ;
attrDef.addConst ruct or Par amet er (pri nci pal Nane) ;
return attr Def;

private List getAccountAttributes(Travel Docunent travel Docurment) {
Li st accounts = travel Docunent. get Fi nanci al Account s();
Li st accountAttributes = new ArrayList();
for (lterator accountlterator = accounts.iterator(); accountlterator.hasNext()
Wor kf l owAt t ri but eDefinitionDTO attrDef = new Workfl owAttri buteDefinitionDT
Fi nanci al Account account = (Fi nanci al Account)accountlterator.next();

56

KEW

attrDef.addConst ruct or Par amet er (account . get Account Nurrber ()) ;
account Attri butes. add(attrDef);

}

return account Attri butes;

}
Build the Action Class with Workflow Lifecycle Methods

In the Travel Request Sample Client, the WorkflowDocHandler Action struts action class calls the
workflow lifecycle methods (approve, acknowledge, etc.) on the workflow document.

WorkflowDocHandler Action - Take approve action. (Each workflow action - acknowledge, complete,
etc. - islike this):

public ActionForward approve(Acti onMappi ng mappi ng, ActionFormform HttpServletRe
LOG i nfo("entering approve() method ...");
DocHandl er For m docHandl er Form = (DocHandl er Form form
Wor kf I owDocunent docunent = docHandl er For m get Wor kf | owDocumnent ()

docunent . approve(docHandl er Form get Annotation());

saveDocunent Act i onMessage("general . routi ng. approved", request);
LOG i nfo("forwarding to actionTaken from approve()");
return mappi ng. fi ndForwar d("acti onTaken");

}

Set up the WorkflowDocument in the initializeBaseFor mState() method of the DispatchActionBase
from which the Struts action classes inherit. Obtain the workflow document with this line of code:

String principalld = getUserSession(request).getPrincipalld();
Wor kf | owDocunent docunent = new Wor kf | owDocurnent (pri nci pal 1d, docld);

Package the Web Application

Package the Client Application (client web application) for deployment the way you normally package
web applications. The Travel Request Sample Web Application does this with an Ant build script. The
dist step of the build.xml script builds the SampleWorkflowClient.war file.

Final Steps
Deploy the Plugin

Deploy the plugin to your workflow installation. Copy the plugin directory structure to your application
plugins directory. Please see the Workflow Plugin Guide for more information.

Deploy the Client Web Application

Deploy the Client Web Application to your Application server the way you normally deploy web
applications.

KEW Configuration
KEW Integration Options

The following integration options are available to applications integrating with KEW:

57

KEW

e Embedded - The KEW engine is embedded into a Java application. The Standalone Rice Server is

required.

» Bundled - Same as Embedded mode except that the entire KEW web application is al'so embedded into
the Java application. The Standalone Rice Server is not required.

» Remote Java Client — A Java client is used which relies on the service bus to communicate with a
Standalone Rice Server's KEW services.

* Thin Java Client - A thin Javaclient is used which communicates with a Standal one Rice Server over

remote service cals.

» Web Services - Interacts directly with web services on a Standalone Rice Server.

Table 3.1. Advantages/Disadvantages of KEW Integration Options

I ntegration Option

Advantages

Disadvantages

Embedded ¢ Integration of database|s Canonly beused by Javaclients
transactions between client
application and embedded|* Morelibrary dependenciesthan
KEW (viaJTA) the Thin Client model
« Performance - Embedded client|* Requires client application to
talks directly to database establish connections to Kuali
Rice database
* No need for application plug-
ins on the server
e Great for Enterprise
deployment, there is till a
single shared Standalone Rice
web application but scalability
isincreased because of multiple
Workflow Engines
Bundled « All the advantages of|e Not desirable for Enterprise
Embedded Mode deployment where more than
one application is integrated
« No need to deploy astandalone| with Rice and KEW
Rice server
* Morelibrary dependenciesthan
¢ Idea for development or| the Thin Client model and

"quickstart" applications

Application can be bundled
with Rice for ease of
development/distribution

Can switch to Embedded Mode
for deployment in an Enterprise
environment

Embedded Mode (additiona
web libraries)

Remote Java Client

Relatively simple configuration

Client can access more externa
KEW services from the

Requires client application to
be KSB-enabled, unlike the
Thin Java Client

58

KEW

I ntegration Option

Advantages

Disadvantages

Standalone Rice Server thanthe
Thin Java Client, and yet the
client does not need to have an
embedded KEW engine

Cannot be used by KNS
enabled client applications

Thin Java Client « Relatively smpleconfiguration|e No transactional integration
between client and server
» Fewer Library Dependencies
* Plug-ins must be deployed to
the server if custom routing
components are needed
Web Services « Any language which supports|e No transactional integration

Standalone Server

web services can be used

between client and server

Plug-ins must be deployed to
the server if custom routing
components are needed

Web Services can be dower
than other integration options

To effectively use any of the KEW integration modes besides bundled, a Standal one Rice Server will need

to be deployed.

Embedded Deployment Diagram

Hereisadiagram illustrating what a sample embedded deployment might look look.

59

KEW

Figure 3.1. Embedded Deployment Diagram example

Rice GLE
p
Apphcation Code Kuali Rice
Standalone
Ermibecddled KEW
Engine

Custom dentity,
Graug, 15 Sendces

Bundling the KEW Application

web.xml

Bundled mode is the same as embedded mode except that the client application embeds the entire Kuali
Rice system within it (including the web application). The embedding of the web application portion is
accomplished by utilizing Struts Modules.

Configuration is the same as embedded mode, with the exception of loading the web application portions
in the web.xml:

<filter>
<filter-nanme>UserLoginFilter</filter-nane>
<filter-class>org. kuali.rice.kew web. UserLoginFilter</filter-class>

</filter>

<filter-mappi ng>
<filter-nanme>UserLoginFilter</filter-nane>
<servl et - name>act i on</ servl et - nane>
</filter-mappi ng>

60

KEW

<servl et>
<servl et - name>act i on</ servl et - nane>
<servl et -cl ass>org. apache. struts. acti on. Acti onServl et </servl et-class>
other struts configuration if applicable
<init-paranp
<par am nane>conf i g/ en</ par am nane>
<par am val ue>/ en/ \EB- | NF/ st rut s- confi g. xm </ par am val ue>
</init-paranp
<l oad- on- st art up>0</ | oad- on- st art up>
</servlet>

<servl et>
<servl et - name>r enot i ng</ ser vl et - name>
<servl et-class>org. kuali.rice. ksh. messagi ng. servl et. KSBDi spat cher Servl et </ serv
<l oad- on- st art up>1</ 1| oad- on- st artup>

</servlet>

<servl et>

<servl et - name>export </ servl et - nane>

<servl et-class>org. kuali.rice. kew. export.web. Export Servl et </servl et-cl ass>
</servlet>

<servl et >

<servl et - nanme>at t achnent </ servl et - nane>

<servl et-class>org. kuali.rice. kew. notes. web. Attachnment Servl et </ servl et-cl ass>
</servlet>

<servl et >

<servl et - name>edocl i t e</ ser vl et - name>

<servl et-class>org. kuali.rice. kew. edl . EDLServl et </servl et-cl ass>
</servlet>

<servl et - mappi ng>
<servl et - name>r enot i ng</ ser vl et - name>
<url-pattern>/renoting/*</url-pattern>
</ servl et - mappi ng>

<servl et - mappi ng>
<servl et - name>act i on</ servl et - nane>
<url -pattern>*.do</url-pattern>

</ servl et - mappi ng>

<servl et - mappi ng>

61

KEW

<servl et - name>export </ servl et - nane>
<url -pattern>/export/*</url-pattern>
</ servl et - mappi ng>

<servl et - mappi ng>

<servl et - nanme>at t achnent </ ser vl et - nane>
<url -pattern>/en/attachment/*</url-pattern>
</ servl et - mappi ng>

<servl et - mappi ng>
<servl et - name>edocl i t e</ ser vl et - name>
<url -pattern>/en/ EDocLite</url-pattern>
</ servl et - mappi ng>

org.kuali.rice.kew.web.User L oginFilter — Thisfilter isused to assist the KEW bundled web application
in determining who the authenticated user is. Specificaly, the login filter invokes the KIM identity
management service to determine the identity of the authenticated user.

Typically, a previously executed filter will challenge the user on entry to a Rice web page for their
authentication credentials using CAS or some other form of single sign on (SSO) authentication system.

For development and testing purposes, Rice provides a simple filter implementation that will present a
simple sign on screen. This screen displays only a single login entry field and submit button. The user
can enter their username (no password) and press the submit button, and the system authenticates the user
for entry into the system.

This can be configured as follows in the web.xml:

<filter>
<filter-name>LoginFilter</filter-nane>
<filter-class>org. kuali.rice.kew web. UserLoginFilter</filter-class>

</filter>

<filter-mappi ng>
<filter-name>LoginFilter</filter-nane>
<servl et - nane>acti on</ servl et - nanme>
</filter-nmappi ng>

and in therice-config.xml:

<param nanme="filter.|ogin.class">org. kuali.rice.kew web. DutmmyLogi nFi | t er </ par anp
<param nanme="fil t er mappi ng. | ogi n. 1" >/ *</ par an

org.apache.struts.action.ActionServlet - The Struts servlet which loads the KEW Struts module. The
module name should be 'en’. Struts only allows a single Action Servlet so if you are using Struts in your
application, all of your Struts modules will need to be configured using the init-param elements in this
servlet definition.

62

KEW

org.kuali.rice.ksh.messaging.servlet.K SBDispatcher Servlet - A servlet which dispatches http requests
for the Kuali Service Bus (see KSB documentation for more details). The servlet mapping here should
correspond to the serviceServletUr| configuration parameter for the KSBConfigurer.

org.kuali.rice.kew.export.web.ExportServlet - serves exports of lookup results as XML files

org.kuali.rice kew.notesweb.AttachmentServlet - serves attachments that have been attached to
documents using the KEW Notes and Attachments framework

org.kuali.ricekew.edl.EDL Servlet - The servlet used to interact with eDocL ite documents. SeeeDoclL ite
documentation for more information.

Bundled Deployment Diagram

Figure 3.2. Bundled deployment diagram

""F‘:'EEJT““ g Rice Gl

Bundled Client Application/Rice
Apphcation D abase

Applicaion Code

¥
Kuai Rice (all modules)

Using the Remote Java Client

Along with the previous embedded configurations, KEW aso alows for Remote Java Clients, which
communicate with KEW services that are avail able on the service bus. Configuration of the remote client
issimilar to that of the embedded client, except that no embedded KEW engine gets set up; instead, the
client relies on the service bus for accessing the KEW services of the Standalone Rice Server.

Caution
Limitations of Remote KEW Java Clients:

At present, KNS-enabled Java clients cannot be used as Remote KEW Java Clients.

63

KEW

Using the Thin Java Client

In addition to the embedded configurations discussed previously, KEW also provides a thin java client
which can be used to talk directly to two KEW services exposed on the service bus.

These KEW services are:

» WorkflowDocumentService - provides methods for creating, loading, approving and querying

documents

» WorkflowUtilityService - provides methods for querying for various pieces of information about the

KEW system

Additionally, accessto two KIM servicesisrequired, as Principal and Group information is needed to use
many of the methods in the KEW services above.

These KIM services are:

* kimldentityService - provides methods to query for Principal and Entity information

» kimGroupService - provides methods to query for Group information

Of course, this configuration requires Standal one Rice Server deployment. The workflow engine deployed
within Standalone Rice Server is used for processing documents that integrate using a thin client.

These services are exposed on the KSB as Java services, meaning they use Java Serialization over HTTP
to communicate. Optionally, the KEW services can also be secured to provide access to only those callers
with authorized digital signatures (note that secure access is required for the KIM services). In order to
configure the thin client, the following configuration properties need to be defined.

Required Thin Client Configuration Properties

Table 3.2. Required Thin Client Configuration Properties

Property Description

encryption.key The secret key used by the encryption service; Must
match the setting on the standal one server

keystore.dias Alias of the application's key within the keystore

keystorefile Path to the application's keystore file

keystore.password Password to the keystore and the key with the

configured alias

workflowdocument.javaservice.endpoint

Endpoint URL for the Workflow Document service

workflowutility.javaservice.endpoint

Endpoint URL for the Workflow Utility service

identity.javaservice.endpoint

Endpoint URL for the KIM identity service

group.javaservice.endpoint

Note

Endpoint URL for the KIM group service

It issimplest to use an identical keystore file and configuration in your thin client application to

that on your standalone server.

KEW

Optional Thin Client Configuration Properties

Table 3.3. Optional Thin Client Configuration Properties

Property Description

secure.workflowdocument.javaservice.endpoint |true/false value indicating if endpoint is secured
(defaults to true); Must match the setting on the
standal one server

secure.workflowutility.javaservice.endpoint true/false value indicating if endpoint is secured
(defaults to true); Must match the setting on the
standal one server

Thin Client Spring Configuration
Here is the Spring configuration for athin client in ThinClientSpring.xml:

<I DOCTYPE beans PUBLIC "-//SPRI NG /DTD BEAN /EN' "http://ww. springframework. org/d

<beans>
<l-- point Rice tothe file containing your configuration parans -->
<bean id="config" class="org.kuali.rice.core.config.spring.ConfigFactoryBean">
<property nane="configlLocations">

<list>
<val ue>cl asspat h: your Thi nCl i ent App- confi g. xm </ val ue>
</list>
</ property>
</ bean>
<l-- Pull your configuration parans out as Properties -->

<bean id="configProperties"
cl ass="org. spri ngf ranewor k. beans. f act ory. confi g. Met hodl nvoki ngFact or yBean" >
<property nane="target Object"” ref="config" />
<property nane="t ar get Met hod" val ue="get Properties" />
</ bean>
<!-- expose configuration parans to Spring -->
<bean cl ass=
"org. springframewor k. beans. factory. confi g. PropertyPl acehol der Confi gurer">
<property nane="properties" ref="configProperties" />

</ bean>
<l-- The R ceConfigurer that sets up thin client node -->
<bean id="rice" class="org.kuali.rice.kew config. Thind ient KEWConfigurer">
<l-- inject the "config" bean into our configurer -->
<property nane="root Config" ref="config" />
</ bean>
</ beans>

Endpoint URLs

Since KEW and KIM use the KSB to expose their services, the endpoint URLSs are the same as those
exported by the KSB.

An example configuration for these might be:

<param nane=

65

KEW

"wor kf | omdocumnent . j avaser vi ce. endpoi nt">http://yourl ocal i p/ kr-dev/renoti ng/ Wrkfl o
<par am name=
"wor kflowitility.]avaservice.endpoint">http://yourlocalip/kr-dev/renoting/ Wrkfl ow
<par am name=
"identity.javaservice. endpoint">http://yourl ocalip/kr-dev/renoting/kimdentityServ
<par am name=
"group. javaservice. endpoi nt">http://yourl ocal i p/ kr-dev/renoting/ ki maoupService</p

Thin Client Deployment Diagram

Here is a diagram showing what a thin client deployment might look like.

Figure 3.3. Thin client deployment diagram

Aoplication
Code

KEW Thin Kuali Rice Rice
/ Standalone DR

Javasenallzaion

Customized

aver HTTP Services
Flug=in
Registry
Custom Identity
Group, eic, serdces
Application
Flug-ins

Picture of an Enterprise Deployment

As can be seen from the various integration options described, a KEW Enterprise Deployment (and Kuali
Ricein general) might very well be a distributed environment with multiple systems communicating with
each other.

The diagram below shows what a typical Enterprise deployment of Kuali Rice might look like.

66

KEW

Figure 3.4. Typical enterprise deployment of Kuali Rice

. . HEW
Kuali Rice
Browser
Standalone Cluster "-..,‘_‘\ eDoC Lite
l..n Action List
Document Search
Foute Log
Fulas, et

EEN
Embedded Other Apps

Client A Connecied

KEW

Eiscided KEW Embedded
Client B

KEW Core Parameters

The display below includes those basic set of parameters for rice-config.xml as the minimal parameters
to startup the Rice software. These parameters are a beginning reference to you for modification to your
rice-config.xml.

Note
Please verify that your application.url and database username/password are set correctly.

Table3.4. KEW Core Parameters

Core Description Examples\Values
workflow.url URL to the KEW web module
(i.e., ${ application.url}/en)
plugin.dir Directory from which pluginswill
be loaded
attachment.dir.location Directory where attachments will
be stored

67

KEW

As aminimum, you must enable the dummy login filter by adding these lines to the rice-config.xml file

for default login screen:

<param nane="filter.login.class">org. kuali.rice.kew web. DutmyLogi nFi | t er </ par an>

<param nane="fil t er mappi

ng. | ogi n. 1" >/ *</ par an®

KEW Configuration Properties

Table 3.5. KEW Configuration Properties

Property

Description

Default

actionlist.outbox

Determines if the KEW actionlist
"outbox" (ie, the actions already
completed) will be viewable by
users of the Rice application.

false

actionlist.outbox.default.preferenc

disiermines if the KEW actionlist
"outbox" is the default mode for
viewing the action list.

false

base.url

Base URL under which Action
List and other KEW screens can
be found

Example: if your action list
URL is http://yourlocalip/en/
ActionList.do, set this property to
http://yourlocalip/

client.protocol

Same as clientProtocol property
on KEWConfigurer, this property
can be configured in either place

embedded

data.xml.root.location

The temporary location of files
being processed by the KEW
XmilPollingService

tmp/${ environment} /kew/xml

document.lock.timeout

Used by the Oracle database
platform to determine how long
database locks on the document
header are used

email.reminder.lifecycle.enabled

If true, turns on timed job to
send out regular e-mailsto remind
users of actions still waiting in
their action list

extra.classes.dir

Directory where classes for KEW
plugins are located

extralib.dir Directory where libraries for
KEW plugins are located
kew.mode The mode that KEW will run in;|loca
choices are "local", "embedded",
"remote”, or "thin"
kew.url The base URL of KEW services|¥{ application.url} /kew
and pages
plugin.dir Directory to load plugins from if
the Plugin Registry is enabled
plugin.registry.enabled If set to true, then the Plugin|false

Registry will be enabled and any

68

http://yourlocalip/en/ActionList.do
http://yourlocalip/en/ActionList.do
http://yourlocalip/

KEW

Property

Description

Default

available plugins will be loaded
(see Workflow Plugin Guide)

attachment.dir.location

When using the attachments
system, thisisthe directory where
attachments will be stored

data.xml.loaded.location

Directory path where the XML
Loader will store successfully
loaded XML files

data.xml.pending.location

Directory path where the XML
Loader will look for filesto ingest

data.xml.polllnterval Secs

Interval in seconds that the XML
Loader will poll the pending
directory for new XML files to
load

data.xml.problem.location

Directory path where the XML
L oader will put XML filesit failed
to load

datasource.platform

The fully qualified class name
of an implementation of the
org.kuali.rice.core.database.platfo
interface

m.Platform

default.note.class

The fully qualified class name
of the default implementation of
org.kuali.rice.kew.notes.CustomN
to use for the Notes system

org.kuali.rice.kew.notes.CustomNoteAttributel mpl

oteAttribute

edl.config.loc

Location to load the EDocLite
component configuration from

classpathMETA-INF/
EDL Config.xml

embedded.server

Indicates if an embedded
instance is supposed to behave
like a standalone server. See
additional notes below under
embedded.server

false

| dentity.useRemoteServices

Configuration parameter that
governs whether a number of
common identity services (user
and group service) are exported or
retrieved viathe bus. If thisflagis
Set to true then:

1. user and group service will
NOT be published the bus, and

2. CoreResourcel oader will
short-circuit the resource
loader stack lookup and go
directly to the bus to obtain
these services, circumventing
any beans that may be defined
by local modules.

69

KEW

Property Description Default
initialDelaySecs Delay in seconds after system
startsup to begin the XML Loader
polling

rice.kew.enableK ENNotification |Determines if KCB notifications|true
should be sent for KEW events
when Action Item events occur

rice.kew.struts.config.files The struts-config.xml | /kew/WEB-INF/struts-config.xml
configuration file that the KEW
portion of the Rice application
will use

workflow.documentsearch.base.ur|] The URL for the document search| ${ workflow.url}/
page DocumentSearch.do?
docFormK ey=88888888& amp;returnL ocation=

${ application.url}/
portal.do& amp;hideReturnLink=true

xml.pipeline.lifecycle.enabled If set to true, will poll adirectory |false
for new Rice configuration XML
and ingest any new XML placed
in that directory

The ‘embedded.server’ Parameter

If embedded.server parameter is enabled (set to true), then two additional features will be loaded when
KEW is started:

1. XML Loader
2. Email Reminders

The XML Loader will poll a directory for XML files to ingest into the system (as configured by the
dataxml.* properties).

The Email Reminders will handle sending Daily and Weekly batch emails for users that have their
preferences set accordingly.

The ‘datasource.platform’ Parameter

KEW requires and uses the database platform implementation in order to function. These may be be
implemented differently for each support database management system.

The current functional implementations of this platform are:
* org.kudi.rice.core.database.platform.OraclePlatform

« org.kuali.rice.core.database.platform.Oracle9iPlatform (deprecated and just an aias for the
OraclePlatform)

* org.kuali.rice.core.database.platform.MySQL Platform

Custom Servlet Filters

When running a Standalone Rice Server, you may want to implement your own filters for authentication
purposes. The system comes with a special filter that will read filter definitions and mappings from the
configuration system.

70

KEW

The Bootstrap Filter isagenericfilter that is applied to all web requests, which then delegatesto any filters
and are setup through the default configuration. This mechanism allows registration of institution-specific
filters without the necessity of modifying the web application configuration file (/WEB-INF/web.xml)
within the standal one webapp.

Filter syntax is as follows:

<param nanme="filter.filter name.class">class nane of filter</paranp

filter nameis an arbitrary name for your filter:

<param nane="filter.nyfilter.class">edu.institution.organization. MFilter</paranp
Any number of configuration parameters may be defined for a given filter as follows:

<param nanme="filter.filter name.filter param nane">filter param val ue</parane

For example:

<param nane="filter.nyfilter.col or">red</ paranp

<param nane="filter.nyfilter.shape">square</paranr

For custom filtersto be invoked, they must first be mapped to requests. That is done viathe filter mapping
parameter:

<param nanme="filtermapping.filter name.optional order index">path nmatching express

filter name is the name of your previously defined filter, optional order index is an optional integer used
to specify the position of the filter in the invocation order, and path matching expression is a Servlet-
specification-compatible url pattern.

<param nane="filtermappi ng. nyfilter.1">/ speci al / pat h/ </ par an®

If an order index isnot specified, it isassumed to be 0. Filters with equivalent order are ordered arbitrarily
with relation to each other (not in order of filter or mapping definition). A full example follows:

<param nane="filter.nyfilter.class">edu.institution.organization. MFilter</paranp
<param nane="filter.nyfilter.col or">red</ parany

<param nane="filter.nyfilter.shape">square</paranr
<param nanme="filter.securityfilter.class">edu.institution.organization. SecurityFil

<param nane="filter.securityfilter.secretKey">abracadabra</ parane

<param nane="filter.conpressionfilter.class">edu.institution.organization. Conpress
<param nane="filter.conpressionfilter.conpressLevel ">5</paranp

<param nane="filtermappi ng. securityfilter.1">/secure/</paranpr

<param nanme="filtermappi ng. nyfilter.2">/speci al / pat h/ </ par ane

<param nane="filtermappi ng. conpressi onfilter.3">/*</paranpr

Email Configuration

KEW can send emails to notify users about items in their Action List (depending on user preferences).
Email in KEW uses the JavaMail library. In order to configure email, you will need to configure the

71

KEW

appropriate JavaMail properties. A list of those properties can be found at the end of the page at the
following url: http://java.sun.com/products/javamail/javadocs/javax/mail/package-summary.html

In addition to these standard JavaMail properties, you can also set the following optional properties to
configure simple SMTP authentication.

Table 3.6. Optional Propertiesto Configure Simple SMTP Authentication

Property Description Examples/VValues
mail.transport.protocol The protocol used to sending mail | smtp
mail.smtp.host Thisisthe host name of the SMTP| smtp.secureserver.net
mail.smtp.username The username used for access to

the SMTP server
mail.smtp.password The password used for access to

the SMTP server

Of course, if the authentication required by your mail server is beyond the abilities of the above
configuration, it is possible to override the enEmail Service loaded by the KEW module and implement
acustom email service.

In order for KEW to send out emails, several steps need to be done. In order to have KEW send out
any emails, the “SEND_EMAIL_NOTIFICATION_IND” KNS System Parameter needs to be set to
‘Y’. For emails to real people, the environment code must be set to ‘prd’. If this is not set to ‘prd’,
an email can till be sent out to a test address. This test address is set by the KNS System Parameter,
“EMAIL_NOTIFICATION_TEST_ADDRESS’. Emails sent in a test system will only be sent to the
address specified by the EMAIL_NOTIFICATION_TEST_ADDRESS. The “from” address may also be
set with a System Parameter. To do this, set the “FROM_ADDRESS’ System Parameter to the email
address you want the KEW emails sent from. If the FROM_ADDRESS parameter doesn't exist or isn’t
set, it will default to “admin@localhost”.

Periodic Email Reminders
KEW can send emails on a nightly or weekly basis to remind users about items in their Action List
(depending on user preferences). Thefollowing set of parameters configures whether the processesto send
these reminders will run, and at what time(s) of day they will do so.

Table 3.7. Configuration Parametersfor Email Reminders

Property Description Examples/Values
email.reminder.lifecycle.enabled |Enable periodic KEW reminder |true

emails
dailyEmail.active Enable daily reminder emails true
dailyEmail.cronExpression Configures the schedule on which|0 0 1 * * ?

the daily reminder emails are sent
— see org.quartz.CronExpression,
org.quartz.CronTrigger for
information about the format for
this parameter

weeklyEmail.active Enable weekly reminder emails |true

weeklyEmail.cronExpression Configures the schedule|002?* 2
on which the weekly

72

http://java.sun.com/products/javamail/javadocs/javax/mail/package-summary.html

KEW

Property Description Examples/VValues

reminder emails are sent —
see org.quartz.CronExpression,

org.quartz.CronTrigger for
information about the format for
this parameter

Workflow Preferences Configuration

Workflow users have the ability to update their preferences by going to the “ User Preferences’ page. The
default values for many of these preferences can now be configured.

For example, ingtitutions will commonly override the default action list email preference. By default it's
set to “immediate,” but it can be configured to “no”, “daily”, “weekly”, or “immediate.” The user will still

be able to override the defaults on their User Preferences screen.
Here alist of workflow preferences that can be configured:

<l-- Default Option for Action List User Preferences. -->

<par am nane="user Opti ons. def aul t. col or " >whi t e</ par ane

<!-- email options: no, daily, weekly, imediate -->

<param nane="user Opti ons. default.emai | " >i mmedi at e</ par an®

<par am nanme="user Opti ons. defaul t. notifyPrimry" >yes</paranp

<par am nanme="user Opti ons. defaul t. noti fySecondary" >no</ parane
<par am nane="user Opti ons. def aul t. openNewW ndow' >yes</ paran®

<par am nane="user Opti ons. defaul t. acti onLi st Si ze" >10</ par an®
<param nane="user Opti ons. defaul t.refreshRate" >15</paran

<par am nanme="user Opt i ons. def aul t. showAct i onRequi red" >yes</ paranp

<par am nanme="user Opti ons. def aul t . showDat eCr eat ed" >yes</ par anp

<par am nanme="user Opti ons. def aul t . showDocunent Type" >yes</paranp

<par am nanme="user Opt i ons. def aul t . showDocunent St at us" >yes</ par anp

<par am nanme="user Opti ons. defaul t.show niti ator" >yes</paranp

<par am nanme="user Opti ons. def aul t. showDel egat or" >yes</ par anp

<par am name="user Opti ons. def aul t. showTi t| e" >yes</ paranp

<par am nanme="user Opt i ons. def aul t . showWr kgr oupRequest” >yes</ par anp

<par am nanme="user Opti ons. def aul t . showCl ear FYl " >yes</ par anp

<par am nane="user Opti ons. def aul t . showLast Appr ovedDat e" >no</ par an

<par am nane="user Opt i ons. def aul t . showCur r ent Node" >no</ par ane

<par am nanme="user Opti ons. def aul t . useQut Box" >yes</ paranp

<I-- delegatorFilterOnActionList: "Secondary Del egators on Action List Page" or "S
<param nane="user Opti ons. defaul t. del egatorFilterOnActi onLi st" >Secondary Del egat or
<par am nanme="user Opti ons. defaul t. pri maryDel egatorFi | terOnActi onList" >Primary Del e

Outbox Configuration

The Outbox is a standard feature on the Action List and is visible to the user in the Ul by default. When
the Outbox is turned on, users can access it from the Outbox hyperlink at the top of the Action List.

The Outbox is implemented by heavily leveraging existing Action List code. When
an Action Item is deeted from the Action Item table as the result of a
user action, the item is sored in the KEW_OUT _BOX ITM_T table, using the

73

KEW

org.kuali.rice.kew.actionitem.OutboxltemActionL istExtension object. This object is an extension of
the ActionltemActionListExtension. The separate object exists to provide a bean for OJB mapping.

TheWorkflow Preferencesdetermineif the Outbox isvisible and functioning for each user. The preference
iscaled Use Outbox. In addition, you can configure the Outbox at the KEW level using the parameter tag:

<par am nanme="act i onl i st. out box" >t rue</ par ane

When the Outbox is set to false, the preference for individual users to configure the Outbox is turned off.
By default, the Outbox is set to true at the KEW level. Y ou can turn the Outbox off (to hide it from users)
by setting the property below to false:

<param nane="actionl i st. out box. defaul t. preference. on">f al se</ par anr
This provides backwards compatibility with applications that used earlier versions of KEW.

Notes on the Outbox:

 Actions on saved documents are not displayed in the Outbox.

» The Outbox responds to all saved Filters and Action List Preferences.

« A unique instance of a document only exists in the Outbox. If a user has a document in the Outbox

and that user takes action on the document, then the original instance of that document remains in the
Outbox.

Implementing KEW at your institution

In addition to the previous discussion of KEW configuration, there are a few other aspects relevant to
implementing KEW at your institution.

Bootstrap data

Because the operation of parts of KEW is dependent on a set of Document Types and Attributes being
available within the system, there is some bootstrap XML that you will want to import. The easiest way
to do thisisto import the files in the following locations using the XML Ingester:

* kng/src/main/config/xml/RiceSampl eA ppWorkflowBootstrap.xml

* kew/src/main/config/bootstrap/edlstylexml

« kew/src/main/config/bootstrap/widgets.xml

These filesinclude the following:

» Application constants: cluster-wide configuration settings

» Core document types and rules: afew primordial document types and rules are required for the system
to function

» Default "eDocLite" styles: these are required if you wish to use eDocL ite

» Default admin user and workgroup: these are depended upon (at the moment) by the core document
types and rules, as well asreferred to by the default application constants

74

KEW

Application constants you may want to change:

Config.Application.AdminUserList: this should be set to a space-delimited set of administrative user
names

Workflow.AdminWorkgroup: thisshould be set to aninstitutional adminworkgroup; if thedefault KEW
workgroup serviceis used, this can be left to the default, WorkflowAdmin

Config.Mailer.FromAddress: this should be changed to an address specific to your institution, e.g.
kew@your-university.edu

HelpDeskActionList.nelpDeskActionListName: set to an workgroup at your institution

ApplicationContext: set to the context path of the KEW application, if it differs from the environment
default, e.g. "en-prod" instead of "en-prd"

In the core document types and rules config, you will need to change:

superUserWorkgroupName, blanketA pproveWorkgroupName, and exceptionWorkgroup: should be set
to the administrative group at your institution. If you are using the default workgroup service, this can
be left as WorkgroupAdmin

ensure all docHandler elements, if they specify a URL, specify: "${ base.url}/en-dev/Workgroup.do?
methodToCall=docHandler", and ensure that the base.url config parameter is specified in your
configuration (as mentioned above)

KEW Administration Guide

Thisguide providesinformation on administering aKuali Enterprise Workflow (KEW) installation. Out of
the box, KEW comeswith adefault setup that workswell in development and test environments. However,
when moving to a production environment, this setup requires adjustments. This document discusses basic
administration as well asinstructions for working with some of KEW’ s administration tools.

Configuration Overview

You configure KEW primarily through the workflow.xml file. Please see the KEW Configuration
Parameters guide for more information on initial configuration of a KEW installation.

Application Constants

Application Constants are the configuration elements in KEW. Each constant is modifiable at system
runtime; any changes take effect immediately in KEW. Application Constants are stored in a cluster-safe
cache and propagated across all machines when change occurs. For more information about Application
Constants, please refer to Application Constants.

Production Environments

When rolling KEW out into a production environment, there are application constants which you may
need to change:

ActionList.sendEmailNotification - Thisis usually set to false in test environments so emails aren’t
generated during testing. Usualy, this is set this to true in a production environment to alow email

75

KEW

notifications. Y ou also need to ensure that your email service is configured properly to allow KEW to
send notifications.

» ApplicationContext - In aproduction environment, thisis usually something like en-prd. Y ou must set
this value correctly so that KEW’ s email notifications contain valid links.

» Backdoor.ShowbackDoor L ogin - The backdoor login allows users to masquerade as other users for
testing purposes. It is recommended that you set this value to false in a production environment.

» RouteManager Pool.numW or kers— The appropriate value for this depends on the capabilities of your
production hardware. If it's set too high, KEW may use so much of the CPU that other applications
running on the same machine are adversely impacted.

* RouteManager Queue.waitTime - In test environments, users tend to be more sensitive to immediate
feedback since they may be testing processes over the course of acouple minutesthat, in practice, occur
over a number of days. In test environments, it is recommended that you keep this value low. In a
production environment, you can reasonably increase this value without affecting the speed at which
documents are routed. This reduces thrashing on the route queue.

* RouteQueue.isRoutingByl PNumber - If you are running your production KEW system in a clustered
environment, set this value to false. This allows processing of documents in the queue to be distributed
across the entire cluster, which enhances routing performance and facilitates load balancing.

* RouteQueue.maxRetryAttempts - As with the RouteManager Queue.waitTime constant, in a test
environment it isimportant to find out as quickly as possible if adocument is going to go into exception
routing (usually indicating a problem in that document's routing setup). In a production environment, it
may make senseto allow alonger period before adocument goes into exception routing. This constant,
in combination with the RouteQueue.timel ncrement constant, determines how long it takes a document
to be put into exception routing.

» RouteQueue.timel ncrement - Increasing this value results in a longer time before a document goes
into exception routing.

XML Ingestion

KEW relies on XML for data population and routing configuration. XML Ingester is available from the
Administrator channel in the portal. This allows import of various KEW components from XML, such
as DocumentTypes, RuleAttributes, Rules, Workgroups, and more.

Uploading an eDocLite form

To upload XML, go to Ingester Ul and select the XML file that you want to import:

76

KEW

Figure 3.5. Ingester

Ingester

After upload, notice the red arrow and the statement, Ingested xml doc: <name of file>:

XML File: | Choo
XML File: | Choo
XML File: Choo
XML File: Choo
XML File: | Choo
XML File: | Choo
XML File: | Choo
XML File: Choo
XML File: Choo
XML File: Choo

(u

77

KEW

Figure 3.6. Ingestion Complete

Ingester

s Ingested xml doc: 7-08A_InterviewReguestEdl.xmil

XML File: Choo:

XML File: Choo:

XML File: Choos

XML File: Choos

XML File: Choo:

XML File: Choo:

XML File: Choo:

XML File: Choos

XML File: Choos

XML File: Choos

Message Queue Administration

The Message Queue is the main scheduling mechanism in KEW. Y ou use it to schedule documents for
asynchronous routing and to queue arbitrary units of work. When KEW places adocument into exception
routing, it may become stuck after a series of failed attempts. Y ou can use the Route Queue Ul to resolve
thisissue, aswell asto fix new entries, if needed.

Examining the Message Queue

The main Message Queue screen:

78

KEW

Figure 3.7. M essage Queue Screen

Xworkflow #efesh page

Current Nede Info |
IP Address: 129.79.211.85
Service Namespace: RICE
MESSRgE, porsesionce ! rue
mesaage . delvery . BEync
message. off: false

Message [D:

Servics Name:

Service Namespace:

[P Mumbsr:
Queus Status: | | ROUTING =

App Specific Value 1:

App Specific Value 2:

:'.fllter.".

50 :rb:rr.u‘lc Mesiage FeRche r-\:

Bocuments curmantly in route guawa: 20

20 tems retrieved, dsplaying all iberms,

Sarvicn
Hama

53317554 { TE ActionlnvocabonProcessar
3317553 {TE }Action! nvocationProcessar
53317552 | {TElMActioninvocationProcessor
53317551 {TK hfActionlnvacationProcessar
83317580 | J[TlMActioninvocationProcessor

53317548 | {RICE }DocumentRoutingService

C3I316971 OSCacheMNotificationService

Examining this sample screen, we see there are 20 entries in the message queue, one on each row. The

columns display information about each entry:

¢ Message Queue | d - The primary key of this route queue entry in the data store

¢ Service Name

¢ Service Namespace

Servicy

| Namespace

RICE
RICE
RICE
RICE
RICE
RICE
RICE

IP Numbar

129.79.211.87
129.79.211.87
129,79, 211.87
129.79.211.87
129.79.211.87

| 129.79.211.86

129.79.211.87

ROUTING

ROUTING |

HOUTING

ROUTING |

ROUTING

ROUTING |

ROUTI MG

10
10
10
i0
10

[=
=

15

¢ |PNumber - ThelP addressof the machine on which theentry was created. Inthe environment pictured,
we havethree machinesin our cluster. The | P number showsfrom which machine each entry was queued

up.

» Queue Status— The entry can bein a state of QUEUED, ROUTING, or EXCEPTION:

79

Quiang
[EEL

04:00 PM 01,05

| 04:00 PM 01/05

04100 P 01505

| 04:00 PM 01/05

0:4:00 PM 01704

| 04:00 PM 01705

03:56 PM 01,06

KEW

* A QUEUED entry iswaiting for aworker thread to pick it up.
* A ROUTING entry currently has aworker working onit.

e An EXCEPTION entry has a problem and the route manager cannot access it. An administrator
manually setsan EXCEPTION statusto suspend aroute queue entry until aproblem can be diagnosed.

e Queue Priority - The priority of the entry in the queue, where entries with the lowest number are
processed first

e Queue Date - The date that KEW should process this queue entry. If the queue checker runs and
discovers the queue date for an entry is equal to or earlier than the current time, it processes that entry.

e Expiration Date

e Retry Count - The number of times KEW has attempted to process the entry

» App Specific Value 1 - The parametersto be passed to the Route Queue processor such as document ID
» App Specific Value 2 - The parameters to be passed to the Route Queue processor

 Action - The Edit link in the Action column allows you to edit the route queue entry.

Once a message entry has been successfully processed, it is deleted from the queue.

Diagnosing and Fixing Problems

Sometimes it is necessary to manually edit a route queue entry that is halted inside of the queue. This
situation might happen when:

» KEW encountersan error trying to put the document into exception routing. Thiscould occur if thereisa
database error or the document's PostProcessor throws an exception when it'snotified of astatus change

« KEW isimproperly shut down in the middle of an entry being processed

 The database goes down while an entry is being processed

In al cases, the status of the entry is ROUTING, but there is no longer a worker thread processing the
entry. Currently, KEW doesn't implement any auto-detection of failure cases. To put one of these entries

in a state where it can be picked up by the route manager again, smply click the Edit link and set the
entry’s status back to QUEUED. Here's a screen shot of the Route Queue Entry - Edit screen:

80

KEW

Figure 3.8. Route Queue Entry Edit Screen

¥ workflow route dueue

Houte Queus Entry

Existing Route Queues Values Mew Route Queue Wal
Route Queus 1d: [1357008 1357006 2
Docurnent Id: | 550176 550176
Queus Priority: | 21 [o e (2
Ousue Status: | R ROUTING _:-
Cueue Dabe: | 07122006 O7/LE/Z006
Rabry Count: | 1 @
IP Mumber: | 129.72.210.179 129.79.210.179
Frocessor Class Name:
Frocessor YValue:
QuewE document delene reset clear

Use the Queue Status dropdown list to change the status of the entry. Y ou may also want to set the Retry
Count to zero to allow you to diagnose the problem before the document goes into exception routing.

KEW System Parameters

System Parameters Covered

Table 3.8. KEW System Parameters

Name Value Description

MAX_MEMBERS PER_PAGE |20 The maximum number of role
or group members to display
at once on their documents. If
the number is above this value,
the document will switch into a
paging mode with only this many
rows displayed at atime.

PREFIXES Ms;Mrs;Mr;Dr

SUFFIXES Jr;:Sr;Mr;Md

CHECK_ENCRYPTION_SERVICE OVERRIDE_IND Flag for enabling/disabling (Y/
N) the demonstration encryption
check.

DATE TO _STRING_FORMAT_ KQ®/MNMHEINAME A single date format string

that the DateTimeService will
use to format dates to be
used in a file name when
DateTimeServicel mpl.toDateStringForFilename(Da

81

KEW

Name

Value

Description

is called. For a more technica
description of how characters
in the parameter value will
be interpreted, please consult
the Java Documentation for
javatext.SimpleDateFormat. Any
changes will be applied when the
application is restarted.

DATE_TO_STRING_FORMAT |

IOR/d8BERY| NTERFACE

A single date format string
that the DateTimeService will
use to format a date to be
displayed on a web page. For
a more technical description of
how characters in the parameter
value will be interpreted, please
consult the Java Documentation
for javatext.SimpleDateFormat.
Any changeswill be applied when
the application is restarted.

DEFAULT_COUNTRY

us

Used as the default country code
when relating records that do not
have a country code to records
that do have a country code, e.g.
validating a zip code where the
country is not collected.

ENABLE_DIRECT_INQUIRIES))

MD

Flag for enabling/disabling direct
inquiries on screens that are
drawn by the nervous system
(i.e. lookups and maintenance
documents)

ENABLE_FIELD_LEVEL_HELH

NND

Indicates whether field level help
links are enabled on lookup pages
and documents.

MAX_FILE_SIZE_DEFAULT_UBMDAD

Maximum file upload size for the
application. Must be an integer,
optionally followed by "K", "M",
or "G". Only used if no other
upload limits are in effect.

SENSITIVE_DATA_PATTERNS

[0-9]{ 9}[0-9]{ 3} -[0-9]{ 2} -[0-9]
{4

A semi-colon delimited list of
regular expressions that identify
potentially sensitive data in
strings. These patterns — will
be matched against notes,
document explanations, and
routing annotations.

STRING_TO_DATE_FORMATS

MM/ddlyy;MM-dd-yy;MMMM
dd, yyyy;MMddyy

A semi-colon deimited list
of strings representing date
formats that the DateTimeService
will use to parse dates when

DateTimeServicelmpl.convertToSql Date(String)

82

KEW

Name Value Description

or
DateTimeServicelmpl.convertToDate(String)
iscaled. Notethat patternswill be

applied inthe order listed (and the

first applicable one will be used).

For a more technical description

of how charactersin the parameter

value will be interpreted, please

consult the Java Documentation

for javatext.SimpleDateFormat.

Any changeswill be applied when

the application is restarted.

STRING_TO_TIMESTAMP_FORMIMd8/yyyy hh:mm a A semi-colon delimited list of

strings representing date formats

that the DateTimeService will use

to parse date and times when
DateTimeServicel mpl.convertToDateTime(String)
or

DateTimeServicel mpl.convertToSql Timestamp(Stri
iscaled. Notethat patternswill be

applied in the order listed (and the

first applicable one will be used).

For a more technical description

of how charactersin the parameter

value will be interpreted, please

consult the Java Documentation

for javatext.SimpleDateFormat.

Any changeswill be applied when

the application is restarted.

TIMESTAMP_TO_STRING_FORyIV MR- FH.-Ehriv-AdvVEE A single date format string that
the DateTimeService will use to
format a date and time string to
be used in a file name when
DateTimeServicel mpl.toDateTimeStringForFilenam
is called. For a more technica
description of how characters
in the parameter value will
be interpreted, please consult
the Java Documentation for
javatext.SimpleDateFormat. Any
changes will be applied when the
application is restarted.

TIMESTAMP_TO_STRING_FORMIMTddARRy WBERNIAITERFACEA single date format string that
the DateTimeService will use to
format a date and time to be
displayed on a web page. For
a more technical description of
how characters in the parameter
value will be interpreted, please
consult the Java Documentation
for javatext.SimpleDateFormat.

83

KEW

Name

Value

Description

Any changeswill be applied when
the application is restarted.

ACTIVE_FILE TYPES

collectorInputFileType;
procurementCardInputFileType;
enterpriseFeederFileSetType;
assetBarcodel nventoryl nputFileTy
customerL oadl nputFileType

Batch file types that are active
options for the file upload screen.

pe;

SCHEDULE_ADMIN_GROUP

KR-WKFLW:WorkflowAdmin

The workgroup to which a user
must be assigned to modify batch
jobs.

DEFAULT_CAN_PERFORM_R(

WTE_REPORT_IND

If Y, the Route Report button
will be displayed on the
document actions bar if the
document is using the default

to set the canPerformRouteReport
property of the returned
DocumentA ctionFlags instance.

EXCEPTION_GROUP

KR-WKFLW:WorkflowAdmin

The workgroup to which a user
must be assigned to perform
actions on documentsin exception
routing status.

MAX_FILE_SIZE_ ATTACHME|

NoM

Maximum attachment uploads
size for the application. Used by
KualiDocumentFormBase. Must
be an integer, optionally followed
by "K","M", or "G".

PESSIMISTIC_LOCK_ADMIN._t

R KUALI_ROLE_SUPERVIS

DRorkgroup which can perform
admin deletion and lookup
functions for Pessimistic Locks.

SEND_NOTE_WORKFLOW_N(

DKIFICATION_ACTIONS

Some documents provide the
functionality to send notes
to another wuser using a
workflow FYI or acknowledge
functionality. This parameter
specifies the default action that
will be used when sending
notes. This parameter should
be one of the following 2
values. "K" for acknowledge or
"F' for "fyi". Depending on
the notes and workflow service
implementation, other values may
be possible.

SESSION_TIMEOUT_WARNIN

% MESSAGE_TIME

The number of minutes before a
session expires. That user should
be warned when a document uses

pessimistic locking.

DocumentA uthorizerBase.getDocumentA ctionFlags

KEW

Name

Value

Description

SUPERVISOR_GROUP

KR-WKFLW:WorkflowAdmin

Workgroup which can perform
amost any function within Kuali.

MULTIPLE_VALUE_RESULTS

| 8IBIRATION_SECONDS

Lookup results may continue to
be persisted in the DB long after
they are needed. This parameter
represents the maximum amount
of time, in seconds, that the results
will be allowed to persist in the
DB before they are deleted from
the DB.

MULTIPLE_VALUE_RESULTS

| FER PAGE

Maximum number of rows that
will be displayed on a look-up
results screen.

RESULTS DEFAULT_MAX_C(

DFUUMN_LENGTH

If a maxLength attribute has not
been set on alookup result field in
the data dictionary, then the result
column's max length will be the
value of this parameter. Set this
parameter to O for an unlimited
default length or a positive value
(i.e. greater than 0) for afinite max
length.

RESULTS LIMIT 200 Maximum number of results
returned in alook-up query.
MAX_AGE 86400 Pending attachments are

attachments that do not yet have a
permanent link with the associated
Business Object (BO). These
pending attachments are stored in
the attachments.pending.directory
(defined in the configuration
service). If the BO is never
persisted, then this attachment
will become orphaned (i.e. not
associated with any BO), but
will remain in this directory. The
PurgePendingAttachmentsStep
batch step deletes these pending
attachment filesthat are older than
the value of this parameter. The
unit of this value is seconds. Do
not set this value too short, as this
will cause problemsattaching files
to BOs.

NUMBER_OF DAYS SINCE L

AST UPDATE

Determines the age of the session
document records that the step
will operate on, eg. if this
parameter is set to 4, therowswith
alast update timestamp older that

85

KEW

Name Value Description
4 days prior to when the job is
running will be deleted.
CUTOFF_TIME 02:00:00:AM Controls when the daily batch

schedule should terminate. The
scheduler service implementation
compares the start time of the
schedule job from quartz with this
time on day after the schedule job
started running.

CUTOFF_TIME_NEXT_DAY_IN

ND

Controls whether when the
system is comparing the schedule
start day & time with the
scheduleStep CUTOFF_TIME
parameter, it considers the
specified time to apply to the day
after the schedule starts.

STATUS CHECK_INTERVAL

30000

Time in milliseconds that the
scheduleStep should wait between
iterations.

ACTION_LIST_DOCUMENT_PX

OPUP_IND

Flag to specify if clicking on a
Document ID fromtheAction List
will load the Document in a new
window.

ACTION_LIST _ROUTE_LOG_R

OPUP_IND

Flag to specify if clicking on a
Route Log from the Action List
will load the Route Log in a new
window.

EMAIL_NOTIFICATION_TEST|

| ADDRESS

Default email address used for
testing.

HELP_DESK_NAME_GROUP

KR-WKFLW:WorkflowAdmin

The name of the group who has
access to the "Help Desk" feature
on the Action List.

PAGE_SIZE_THROTTLE

Throttles the number of results
returned on al users Action
Lists, regardless of their user
preferences. This is intended to
be used in a situation where
excessively large Action Lists are
causing performance issues.

SEND_EMAIL_NOTIFICATION

|NND

Flag to determine whether or not
to send email notification.

KIM_PRIORITY_ON_DOC_TYF

NPERMS_IND

Flag for enabling/disabling
document type permission checks
touseKIM Permissionsaspriority
over Document Type policies.

MAXIMUM_NODES BEFORE |

RUNAWAY

The maximum number of nodes
the workflow engine will process
before it determines the process

86

KEW

Name

Value

Description

is a runaway process. This is
to prevent infinite "loops" in the
workflow engine.

SHOW_ATTACHMENTS_IND

Y

Flag to specify whether or not
a file upload box is displayed
for KEW notes which alows for
uploading of an attachment with
the note.

SHOW_BACK_DOOR_LOGIN_|

ND

Flag to show the backdoor login.

TARGET_FRAME_NAME

iframe 51148

Defines the target iframe name
that the KEW internal portal uses
for its menu links.

DOCUMENT_SEARCH_POPUP

'YND

Flag to specify if clicking on
a Document ID from Document
Search will load the Document in
anew window.

DOCUMENT_SEARCH_ROUTEN.OG_POPUP_IND

Flag to specify if clicking on a
Route L og from Document Search
will load the Route Log in a new
window.

FETCH_MORE_ITERATION_LI

MIT

Limit of fetch more iteration for
document searches.

RESULT_CAP Maximum number of documents
to return from a search.
DOCUMENT_TYPE_SEARCH_|ESERUGCTNRNE type information| Instructions for searching
below and click search. document types.
DEBUG TRANSFORM_IND |N Defines whether the debug
transform isenabled for eDocL ite.
USE XSLTC IND N Defines whether XSLTC is used

for eDocL ite.

IS LAST_APPROVER_ACTIVA

TE_FIRST_IND

A flag to specify whether the

Workflowlnfo.isLastApproverAtNode(...)

APl method attempts to active
requests first, prior to execution.

REPLACE_INSTRUCTION

Enter the reviewer to replace.

Instructions for
reviewer.

replacing a

FROM_ADDRESS

rice.test@kulai.org

Default from email address for
notifications. If not set, this value
defaults to admin@local host.

NOTE_CREATE_NEW_INSTRU

Cié@dd or
information.

modify note

Instructions for creating a new
note.

RESTRICT_DOCUMENT_TY PH

S

Comma separated list of
Document Types to exclude from
the Rule Quicklinks.

87

KEW

Name

Value

Description

CUSTOM_DOCUMENT_TYPES

Defines custom Document Type
processes to use for certain types
of routing rules.

DELEGATE_LIMIT

20

Specifies that maximum number
of delegation rules that will be
displayed on aRuleinquiry before
the screen shows a count of
delegate rules and provides a link
for the user to show them.

GENERATE_ACTION_REQUES

5YS IND

Flag to determine whether or not
a change to a routing rule should
be applied retroactively to existing
documents.

ROUTE_LOG_POPUP_IND

Flag to specify if clicking on a
Route Log from a Routing Rule
inquiry will load the Route Log in
anew window.

RULE_CACHE_REQUEUE_DEI

13000

Amount of time after arule change
is made before the rule cache
update message is sent.

RULE_CREATE_NEW_INSTRU

Clidaddlselect a rule template and
document type.

Instructions for creating a new
rule.

RULE_LOCKING_ON_IND

Y

Defines whether rule locking it
enabled.

RULE_SEARCH_INSTRUCTIONUse fields below to search for

rules.

Instructions for the rule search.

RULE_TEMPLATE_CREATE_N

EWelNSTRUET@Nplate name
and description. Please select all
necessary rule attributes for this
template.

Instructions for creating new rule
templates.

RULE_TEMPLATE_SEARCH_|

NBERITS ehdw to search for rule
templates.

Instructions for the rule template
search.

NOTIFY_EXCLUDED_USERS |

ND

Defines a group name (in the
format “ namespace:name”) which
contains members who should
never receive notification action
requests from KEW. Notification
requests in KEW are generated
when someone disapproves or
blanket approves are exist to
notify other approvers that these
actions have taken place.

The most common use for this
is in the case of “system”
users who participate in workflow
transactions. In these cases, since
they aren’t actual userswho would

88

KEW

Name Value

Description

be checking their action list, it
doesn’t make sense to send them
requests since they won't ever be
fulfilled.

Defining Workflow Processes Using Document

Types

A Document Type is an object that brings workflow components together into a cohesive unit (routing
configuration). One of its primary responsibilitiesisto define the routing path for adocument. The routing
path isthe process definition for the document. It can consist of varioustypes of nodesthat perform certain
actions, such as sending action requests to responsible parties, transmitting emails, or splitting the route

path into parallel branches.

In addition to the routing path, it contains the Post Processor which receives event callbacks from the
engine, the DocHandler which is the access point into the client application from the Action List and
Access Control for certain actions. It can also define various policies that control how documents of that

type are processed by the workflow engine.

This document has four parts:

1. A detailed explanation of the common fields in the Document Type XML definition

2. An example of each Document Type with a description of each field in it

3. Descriptions of the Document Type policies

4. A description of inheritance as applied to Document Types

There are some common attributesin every Document Type, but each Document Type can be customized

to provide different functions.
* Document Types
» Document Type Policies

* Inheritance

Common Fields in Document Type XML Definition

Table 3.9. Common Fieldsin Document Type XML Definition

Field Description

name The name of the Document Type

parent The parent Document Type of this Document Type.
Each Child Document Typeinheritsthe attributes of
its parent Document Type.

description The description of the Document Type; its primary
responsibilities.

label The label of the Document Type, how it's

recognized

89

KEW

Field Description

postProcessorName The name of the postProcessor that takes charge of
the routing for this Document Type

postprocessor A component that gets called throughout the routing
process and handles a set of standard eventsthat all
eDocs (electronic documents) go through.

superUserGroupName The name of a workgroup whose members are the
super users of this Document Type. Super users
of this Document Type can execute a super user
document search on this Document Type.

blanketApproveGroupName The name of aworkgroup whose members have the
blanketapprove rights over this Document Type.

defaultExceptionGroupName The name of the workgroup whose membersreceive
an exception notice when a document of this
Document Type encounters an exception in its
routing.

docHandler The DocHandler that handles the routing of this
Document Type

active A true or false indicator for the active status of this
document

policies The palicies that apply to this Document Type

policy The policy that applies to this Document Type. Use

thiswhen thereisonly one policy for the Document
Type.

value: A true or fase indicator for whether the
action for the policy will be taken

routingVersion

This field exists only for backward compatibility
with older versions of KEW. Originaly, KEW
only supported sequential routing paths (as opposed
to those with splits and joins). The KEW
getDocRoutel evel() API returns an integer that
represents the numerical step in the routing process.
This number only has meaning for those documents
that define sequential routing.

e A document with a routingVersion of "1" will
keep track of the route level number.

e A document with a routingVersion of "2" (the
default, unlessexplicitly defined in the Document
Type configuration) will NOT keep track of the
route level number and an exception will be
thrown if code attempts to access that value. New
Document Type definitions do NOT need, and
should NOT have, this flag defined.

routePaths

The routing paths for this Document Type

90

KEW

Field Description

routePath The routing path for this Document Type. Use this
field when there is just one routing path for this
Document Type.

routeNode A point or node on the routing path of this Document
Type

routeModule The most basic module; it allows KEW to generate
Action Requests

start The starting node of this Document Type during
routing

reguests The requested next node in the routing of this

Document Type

activationType

Theactivationtype of the next nodethat isrequested
by this Document Type. There are two activation

types:

o P: Parallel: Multiple nodesin the routing process
are activated at the same time

e S: Seria or Sequential: The nodes in the routing
process are activated one at atime

e R: Priority-Parallel: The multiple nodes with the
samepriority are activated at the sametimebefore
moving to the next priority

ruleTemplate

TheruleTemplate that appliesto the routing nodein
this Document Type

split

The routing path splits into branches and can
continue on any of them at a split.

branch

One of the branches in the routing path.

join

The point in the routing path where the split
branches join together.

process

There is a sub-process in the routing path; in other
words, some nodes in the routing path will activate
a sub-process.

simple

A new node in the routing path
 type Thetype of the new routing node
« value: The value of the new routing node

* message: The message associated with the new
routing node

« level: Therouting level of the new routing node

* log: The log name of the new routing node

dynamic

This changes the node to dynamic when it
transitions to the next node in the routing path;

91

KEW

Field ‘chription

‘therefore, the routing path is dynamic rather than
static.

Document Types

Document Type Examples

BlanketApproveTest

<docunent Type>

<nane>Bl anket Appr oveTest </ name>

<descri pti on>Bl anket Appr oveTest </ descri pti on>
<| abel >Bl anket Appr oveTest </ | abel >

<post Processor Nanme>or g. kual i . ri ce. kew. post processor. Def aul t Post Processor </ post
<super User G oupNane nanespace="KR- WKFLW >Test Wr kgr oup</ super User G oupNane>

<bl anket Appr oveG oupNane nanmespace="KR- WKFLW >Test Wr kgr oup</ bl anket Appr oveG o

<def aul t Excepti onG oupNane nanespace="KR- WKFLW > Test Wr kgr oup</ def aul t Except
<docHandl er >_bl ank</ docHandI er >
<active>true</active>
<pol i ci es>
<pol i cy>
<nanme>DEFAULT_APPROVE</ nane>
<val ue>f al se</ val ue>
</ policy>
</ policies>

</ docunent Type>

name: Thisisthe Document Type for Blanket Approve Test.
description: This Document Type is used to test the Blanket Approve function.
label: This Document Type is recognized as the BlanketApproveTest type.

postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor.Defaul tPostProcessor.

super User GroupName: The super users for this Document Type are members of the TestWorkgroup.

blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right on this
type of document.

defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

docHandler: The Doc Handler for this type of document is _blank.
active: This Document Typeis currently Active. In other words, it isin use.

Palicies for this Document Type contains two policies: The DEFAULT_APPROVE policy is set false
by default. In other words, the default approve action on this type of document is NOT to approveit.

BlanketApproveSequential Test

<docunent Type>

92

KEW

<nane>Bl anket Appr oveSequent i al Test </ nane>

<par ent >Bl anket Appr oveTest </ par ent >

<descri pti on>Bl anket Appr oveSequent i al Test </ descri pti on>

<l abel >Bl anket Appr oveSequenti al Test </ | abel >

<post Processor Nanme>or g. kual i . ri ce. kew. post processor. Def aul t Post Processor </ post
<super User G oupNane nanespace="KR- WKFLW >Wor kf | owAdm n</ super User G oupNane>
<bl anket Appr oveG oupNane nanmespace="KR- WKFLW >Test Wr kgr oup</ bl anket Appr oveG o
<def aul t Excepti onG oupNane nanmespace=" KR- WKFLW >Wor kf | owAdmi n</ def aul t Excepti o

<docHandl er >_bl ank</ docHandl er >
<active>true</active>
<r out ePat hs>
<r out ePat h>
<start name="AdHoc" next Node="Wor kf | owDocunent" />
<request s nane="Wor kf | owDocunent " next Node="Wor kf | owDocunent 2" />
<r equest s nane="Wor kf | owDocunent 2" next Node="Acknow edgel" />
<request s nane="Acknow edgel"” next Node="Acknow edge2" />
<request s nane="Acknow edge2" />
</ rout ePat h>
</ rout ePat hs>
<r out eNodes>
<start nanme="AdHoc">
<activati onType>P</ acti vati onType>
</start>
<r equest s nane="Wor kf | owDocunent " >
<activati onType>P</ acti vati onType>
<rul eTenpl at e>Wor kf | owDocunent Tenpl at e</ r ul eTenpl at e>
</ request s>
<r equest s nane="Wr kf | owDocunent 2" >
<activati onType>P</ acti vati onType>
<rul eTenpl at e>Wor kf | owDocumnent 2Tenpl at e</ rul eTenpl at e>
</ request s>
<r equest s nane="Acknow edgel" >
<activati onType>P</ acti vati onType>
<rul eTenpl at e>Ack1Tenpl at e</ rul eTenpl at e>
</ request s>
<r equest s nane="Acknow edge2" >
<activati onType>P</ acti vati onType>
<rul eTenpl at e>Ack2Tenpl at e</ rul eTenpl at e>
</ request s>
</ rout eNodes>
</ docunent Type>

« name: Thisisthe Document Type for Blanket Approve Sequential Test. Thereis a sequence of routing
nodes, and no routing node can be skipped.

 parent: The parent Document Typeis BlanketApproveTest. This Document Type inherits the policies
that BlanketApproveTest has.

 description: This Document Type is used to test the Blanket Approve Sequential function.
« label: This Document Type is recognized as the blanketApproveSequential Test type.

* postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor.Defaul tPostProcessor.

93

KEW

super User GroupName: The super usersfor this Document Type are members of the WorkflowAdmin.

blanketApproveGroupName: The members of the TestWorkgroup have blanketApproveright on this
type of document.

defaultExceptionGroupName: The members of the WorkflowAdmin will receive an exception notice
for documents of this Document Type.

docHandler: The Doc Handler for this type of document is_blank.
active: This Document Typeis currently active. In other words, itisin use.

routePath: The routing path for this Document Type is. AdHoc -> WorkflowDocument ->
WorkflowDocument2 -> Acknowledgel -> Acknowledge2.

routeNode: Based on the routePath, there are five nodes in the routing of this Document Type:

» The starting node for this Document Type is AdHoc. On the initiation of a document of thistype, the
postProcessor in Kuali Enterprise Workflow (KEW) activates the node, AdHaoc.

» The next node in the routing for this Document Type is WorkflowDocument. On request, the nodeis
activated and applies the rules in rule template, WorkflowDocumentTempl ate.

» The next node in the routing for this Document Type is WorkflowDocument2. On request, the node
is activated and applies the rulesin rule template, WorkflowDocument2Templ ate.

« The next node in the routing for this Document Type is Acknowledgel. On request, the node is
activated and applies the rules in rule template, Ack1Template.

« The next node in the routing for this Document Type is Acknowledge2. On request, the node is
activated and applies the rules in rule template, Ack2Template.

94

KEW

Ciriira2 Q Dlanl/ at A nnr miACann |r\nt|aITw Wor kflOW

¥

95

KEW

BlanketApproveParallel Test

<docunent Type>
<nane>Bl anket Appr ovePar al | el Test </ nane>
<par ent >Bl anket Appr oveTest </ par ent >

<descri pti on>Bl anket Appr ovePar al | el Test </ descri pti on>

<l abel >Bl anket Appr ovePar al | el Test </ | abel >

<post Processor Nanme>or g. kual i . ri ce. kew. post processor. Def aul t Post Processor </ post
<super User G oupNane nanespace="KR-WKFLW >Test Wr kgr oup</ super User G oupNane>
<bl anket Appr oveG oupNane nanmespace="KR- WKFLW >Test Wr kgr oup</ bl anket Appr oveG o
<def aul t Excepti onG oupNane nanespace="KR- WKFLW > Test Wr kgr oup</ def aul t Except

<docHandl er >_bl ank</ docHandl er >
<active>true</active>
<r out ePat hs>

<r out ePat h>

<start name="AdHoc" next Node="Wor kf | owDocunent" />
<r equest s nane="Wor kf | owDocunent " next Node="Split" />
<split nanme="Split" next Node="Wbrkfl| owDocument Fi nal ">

<branch nane="B1">
<r equest s nane="Wor kf | owDocunent 2- B1"
<r equest s nane="Wr kf | owDocunent 3- B1"
</ branch>
<branch nane="B2">
<r equest s nane="Wr kf | owDocunent 3- B2"
<r equest s nane="Wr kf | owDocunent 2- B2"
</ branch>
<branch nane="B3">
<r equest s nane="Wr kf | owDocunent 4- B3"
</ branch>
<j oi n name="Join" />
</split>

next Node="Wbr kf | owDocume
next Node="Joi n" />

next Node="Wbr kf | owDocume
next Node="Joi n" />

next Node="Joi n" />

<request s nane="Wor kf | owDocunent Fi nal " next Node="Acknow edgel” />
<request s nane="Acknow edgel” next Node="Acknow edge2" />

<request s nane="Acknow edge2" />
</ r out ePat h>
</ rout ePat hs>
<r out eNodes>
<start nanme="AdHoc">
<activati onType>P</ acti vati onType>
</start>
<r equest s nane="Wor kf | owDocunent " >
<activati onType>P</ acti vati onType>

<rul eTenpl at e>Wor kf | owDocunent Tenpl at e</ r ul eTenpl at e>

</ request s>

<split nane="Split" />

<r equest s nane="Wor kf | owDocunent 2- B1" >
<activati onType>P</ acti vati onType>

<rul eTenpl at e>Wor kf | owDocunent 2Tenpl at e</ rul eTenpl at e>

</ request s>
<r equest s nane="Wor kf | owDocunent 2- B2" >
<activati onType>P</ acti vati onType>

<rul eTenpl at e>Wor kf | owDocumnent 2Tenpl at e</ rul eTenpl at e>

</ request s>
<r equest s nane="Wor kf | owDocunent 3- B1" >

96

KEW

<activati onType>P</ acti vati onType>
<rul eTenpl at e>Wor kf | owDocunent 3Tenpl at e</ rul eTenpl at e>
</ request s>
<r equest s nane="Wor kf | owDocunent 3- B2" >
<activati onType>P</ acti vati onType>
<rul eTenpl at e>Wor kf | owDocunent 3Tenpl at e</ rul eTenpl at e>
</ request s>
<r equest s nane="Wor kf | owDocunent 4- B3" >
<activati onType>P</ acti vati onType>
<rul eTenpl at e>Wor kf | owDocumnent 4Tenpl at e</ rul eTenpl at e>
</ request s>
<j oi n name="Join" />
<r equest s nane="Wor kf | owDocunent Fi nal ">
<activati onType>P</ acti vati onType>
<rul eTenpl at e>Wor kf | owDocunent Fi nal Tenpl at e</ rul eTenpl at e>
</ request s>
<r equest s nane="Acknow edgel" >
<activati onType>P</ acti vati onType>
<rul eTenpl at e>Ack1Tenpl at e</ rul eTenpl at e>
</ request s>
<r equest s nane="Acknow edge2" >
<activati onType>P</ acti vati onType>
<rul eTenpl at e>Ack2Tenpl at e</ rul eTenpl at e>
</ request s>
</ rout eNodes>

</ docunent Type>

name: Thisisthe Document Type for Blanket Approve Parallel Test. At some point in the routing, the
route path may split and a node can be skipped if another parallel node takes action on the document.

Parent: The parent Document Type is BlanketApproveTest. This Document Type inherits the routing
that exists for BlanketApproveTest.

description: This Document Type is used to test the Blanket Approve Parallel function.
label: This Document Type is recognized as the blanketApproveParallel Test type.

postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor.DefaultPostProcessor .

super User GroupName: The super users for this Document Type are members of the TestWorkgroup.

blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right on this
type of document.

defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

docHandler: The Doc Handler for this type of document is_blank.
active: This Document Typeis currently active. In other words, itisin use.

routePath: The routing path for this Document Type is: AdHoc -> WorkflowDocument -> split ->
B1\B2\B3 -> Join -> WorkflowDocumentFinal -> Acknowledgel -> Acknowledge2.

routeNode: Based on the routePath, there are six nodes in the routing of this Document Type:

97

KEW

The starting node for this Document Typeis AdHoc. On theinitiation of adocument of thistype, the
postProcessor in KEW activates the node, AdHoc.

The next node in the routing for this Document Type is Wor kflowDocument. On request, the node
isactivated and applies the rulesin rule template, Wor kflowDocumentTemplate. Then, the routing
path splits into three branches for the next node.

* One branch is B1. On request, the node WorkflowDocument2-B1 is activated and applies the
WorkflowDocument2Template. The next node in this branch is Wor kflowDocument3-B1. On
request, the node is activated and applies the Wor kflowDocument3T emplate.

« One branch is B2. On request, the node WorkflowDocument3-B2 is activated and applies the
WorkflowDocument3Template. The next node in this branch is Wor kflowDocument2-B2. On
request, the node is activated and applies the Wor kflowDocument2T emplate.

» One branch is B3. On request, the node WorkflowDocument4-B3 is activated and applies the
Wor kflowDocument4Template.

Then, the routing path joins and the route merges back together into one route.

The next node in the routing for this Document Type is WorkflowDocumentFinal. On request, the
node is activated and applies the rulesin rule template, Wor kflowDocumentFinal Template.

The next node in the routing for this Document Type is Acknowledgel. On request, the node is
activated and applies therulesin rule template, Ack1Template.

The next node in the routing for this Document Type is Acknowledge2. On request, the node is
activated and applies the rulesin rule template, Ack2Template.

98

KEW

Skt

F ¥ ¥
Wk Doy 2-B1 WarkowDiocumer3-82 Wkl Docrmert4-83
x x !
/ WorkdiowDoosmen 2 Templale // ‘WorkfSowDocumend Templale / WarkliraDocumentd Templais

/

99

KEW

NotificationTest

<docunent Type>
<nanme>Not i fi cati onTest </ nane>
<descri ption>NotificationTest</description>
<| abel >Noti fi cati onTest </ | abel >
<post Processor Nanme>or g. kual i . ri ce. kew. post processor. Def aul t Post Processor </ post
<super User G oupNane nanespace="KR-WKFLW >Test Wr kgr oup</ super User G oupNane>
<bl anket Appr oveG oupNane nanespace="KR- WKFLW >Test Wr kgr oup</ bl anket Appr oveG 0
<def aul t Excepti onG oupNane nanespace="KR- WKFLW > Test Wr kgr oup</ def aul t Except
<docHandl er >_bl ank</ docHandl er >
<active>true</active>
<r out ePat hs>
<r out ePat h>
<start nane="AdHoc" next Node="NotifyFirst" />
<requests nane="NotifyFirst" nextNode="Split" />
<split nane="Split" nextNode="NotifyFi nal ">
<branch nane="LeftBranch">
<requests nane="NotifyLeftBranch" next Node="Join" />
</ branch>
<branch nanme="Ri ght Branch" >
<requests nane="Noti fyRi ght Branch" next Node="Joi n" />
</ branch>
<j oi n name="Joi n" />
</split>
<requests nane="NotifyFinal" />
</ r out ePat h>
</ rout ePat hs>
<r out eNodes>
<start nanme="AdHoc">
<activati onType>P</ acti vati onType>
</start>
<requests nane="NotifyFirst">
<activati onType>P</ acti vati onType>
<rul eTenpl at e>Not i f yFi r st Tenpl at e</ rul eTenpl at e>
</ request s>
<split nane="Split" />
<requests nane="NotifyLeftBranch">
<activati onType>P</ acti vati onType>
<rul eTenpl at e>Not i f yLeft BranchTenpl at e</ rul eTenpl at e>
</ request s>
<requests nane="Noti fyRi ght Branch">
<activati onType>P</ acti vati onType>
<rul eTenpl at e>Not i f yRi ght BranchTenpl at e</rul eTenpl at e>
</ request s>
<j oi n name="Joi n" />
<requests nane="Noti fyFi nal ">
<activati onType>P</ acti vati onType>
<rul eTenpl at e>Not i f yFi nal Tenpl at e</ rul eTenpl at e>
</ request s>
</ rout eNodes>
</ docunent Type>

100

KEW

name: This is the Document Type for Notification Test. At some point in the routing, the route path
may split, and a node can be skipped if another notification node takes action on the document.

description: This Document Type is used to test the notification function.
label: This Document Type is recognized as the NotificationTest type.

postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postpr ocessor .DefaultPostPr ocessor .

super User GroupName: The super users for this Document Type are members of the TestWorkgroup.

blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right onthis
type of document.

defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

docHandler: The Doc Handler for this type of document is_blank.
active: This Document Typeis currently active. In other words, itisin use.

routePath: The routing path for this Document Type is. AdHoc -> NotifyFirst -> split -> LeftBranch
\RightBranch -> Join -> NotifyFinal.

routeNode: Based on the routePath, there are four nodes in the routing of this Document Type:

» 0 The starting node for this Document Type is AdHoc. On the initiation of a document of this type,
the postProcessor in KEW activates the node, AdHoc.

» Thenext nodein the routing for this Document TypeisNotifyFirst. On request, the nodeis activated
and applies the rules in rule template, NotifyFirstTemplate. Then the routing path splits into two
branches for the next node.

e One branch is LeftBranch. On request, the node is activated and applies the
NotifyL eftBranchTemplate.

e« One branch is RightBranch. On request, the node is activated and applies the
NotifyRightBranchTemplate.

» Then the routing path joins together again.

» Thenext nodein therouting for this Document TypeisNotifyFinal. On request, the nodeis activated
and appliestherulesin rule template, NotifyFinal Template

101

KEW

Figure 3.11. NotificationTest Workflow

k4

MotityFirst

h

/ HatifyFirst Templata /

Spdit

: !

el afi Brarh MalifyRigh!Branch
L 4 '-
/ MoityLahBranchTamplale / / MetifyRighiBranchTamplate /
S
¥
MotifyFinal
i i

/ HotifyFiralTemglate /
W

NotificationTestChild

<documnent Type>
<nanme>Noti fi cati onTest Chi | d</ nane>
<parent>Noti fi cati onTest </ par ent >
<description>NotificationTest</description>
<| abel >Noti fi cati onTest </ | abel >
<post Processor Nanme>or g. kual i . ri ce. kew. post processor. Def aul t Post Processor </ post
<super User G oupNane nanespace="KR-WKFLW >Test Wr kgr oup</ super User G oupNane>
<bl anket Appr oveG oupNane nanmespace="KR- WKFLW >Test Wr kgr oup</ bl anket Appr oveG o
<def aul t Excepti onG oupNane namespace="KR- WKFLW > Test Wr kgr oup</ def aul t Excepti

102

KEW

<docHandl er >_bl ank</ docHandl er >
<active>true</active>
<pol i ci es>
<pol i cy>
<nane>SEND_NOTI FI CATI ON_ON_SU_APPROVE</ nane>
<val ue>t rue</ val ue>
</ policy>
</ policies>

</ docunent Type>

name: Thisisthe Document Type for Notification Test Child.

Parent: The parent Document Type is NotificationTest. This Document Type inherits the routing that
NotificationTest has.

description: This Document Type is used to test the Notification function.
label: This Document Type is recognized as the NotificationTest type.

postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postpr ocessor .DefaultPost Pr ocessor .

super User GroupName: The super users for this Document Type are members of the TestWorkgroup.

blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right onthis
type of document.

defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

docHandler: The Doc Handler for this type of document is_blank.

active: This Document Typeis currently active. In other words, itisin use.

Policy: There is only one policy that applies to this Document Type
SEND_NOTIFICATION_ON_SU_APPROVE. This policy currently applies to this Document Type.

In other words, a notification will be sent to the designated two users when a SuperUser approves a
document of thistype.

BlanketApproveM andator yNodeT est

<docunent Type>

<nane>Bl anket Appr oveMandat or yNodeTest </ nane>

<par ent >Bl anket Appr oveTest </ par ent >

<descri pti on>Bl anket Appr oveMandat or yNodeTest </ descri pti on>
<l abel >Bl anket Appr oveMandat or yNodeTest </ | abel >

<post Processor Nanme>or g. kual i . ri ce. kew. post processor. Def aul t Post Processor </ post
<super User G oupNane nanespace="KR-WKFLW >Test Wr kgr oup</ super User G oupNane>

<bl anket Appr oveG oupNane nanmespace="KR- WKFLW >Test Wr kgr oup</ bl anket Appr oveG o

<def aul t Excepti onG oupNanme nanespace="KR- WKFLW > Test Wir kgr oup</ def aul t Except i
<docHandl er >_bl ank</ docHandl er >
<active>true</active>
<r out ePat hs>

<r out ePat h>

103

KEW

<start name="AdHoc" next Node="Wor kf | owDocunent" />
<request s nane="Wor kf | owDocunent " next Node="Wor kf | owDocunent 2" />
<r equest s nanme="Wor kf | owDocunent 2" next Node="Acknow edgel" />
<request s nane="Acknow edgel” next Node="Acknow edge2" />
<r equest s nane="Acknow edge2" />
</ rout ePat h>
</ rout ePat hs>
<r out eNodes>
<start nanme="AdHoc">
<activati onType>P</ acti vati onType>
</start>
<r equest s nane="Wor kf | owDocunent " >
<activati onType>P</ acti vati onType>
<rul eTenpl at e>Wor kf | owDocumnent Tenpl at e</ rul eTenpl at e>
<mandat or yRout e>t r ue</ nandat or yRout e>
</ request s>
<r equest s nane="Wr kf | owDocunent 2" >
<activati onType>P</ acti vati onType>
<rul eTenpl at e>Wor kf | owDocumnent 2Tenpl at e</ rul eTenpl at e>
<mandat or yRout e>t r ue</ nandat or yRout e>
<fi nal Approval >t rue</fi nal Approval >
</ request s>
<r equest s nane="Acknow edgel" >
<activati onType>P</ acti vati onType>
<rul eTenpl at e>Ack1Tenpl at e</ rul eTenpl at e>
</ request s>
<r equest s nane="Acknow edge2" >
<activati onType>P</ acti vati onType>
<rul eTenpl at e>Ack2Tenpl at e</ rul eTenpl at e>
</ request s>
</ rout eNodes>
</ docunent Type>

« name: Thisisthe Document Type for Blanket Approve Mandatory Node Test.

 Parent: The parent Document Type is BlanketApproveTest. This Document Type inherits the policies
that NotificationTest has.

 description: This Document Type is used to test the Blanket Approve Mandatory Node.
« label: This Document Type is recognized as the BlanketApproveM andatoryNodeTest type.

* postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postpr ocessor .DefaultPostPr ocessor .

 superUser GroupName: The super users for this Document Type are members of the TestWorkgroup.

 blanketApproveGroupName: The members of the TestWorkgroup have blanketA pproval right on this
type of document.

« defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

» docHandler: The Doc Handler for this type of document is_blank.

104

KEW

« active: This Document Typeis currently active. In other words, itisin use.

e routePath: The routing path for this Document Type is. AdHoc -> WorkflowDocument ->
WorkflowDocument2 -> Acknowledgel -> Acknowledge2.

 routeNode: Based on the routePath, there are five nodes in the routing of this Document Type:

The starting node for this Document Typeis AdHoc. On theinitiation of adocument of thistype, the
postProcessor in KEW activates the node AdHoc.

The next nodein therouting for this Document Typeis W or kflowDocument. On request, the nodeis
activated, appliesthe rulesin rule template, Wor kflowDocumentTemplate, and sets the mandatory
route astrue. In other words, the document must route through this node.

Thenext nodeintherouting for thisDocument TypeisWor kflowDocument2. Onrequest, thenodeis
activated, appliestherulesin ruletemplate, Wor kflowDocument2T emplate, and setsthe mandatory
route astrue. In other words, the document must route through this node.

The next node in the routing for this Document Type is Acknowledgel. On request, the node is
activated and applies therulesin rule template, Ack1Template.

The next node in the routing for this Document Type is Acknowledge2. On request, the node is
activated and applies therulesin rule template, Ack2Template.

105

KEW

Figure 3.12. Blankte Approve Mandatory Test

Y

‘WorkBow Diotument

[]

‘Wiorkhow Dioturmeni

106

KEW

SaveActionEventT est

<docunent Type>
<nanme>SaveAct i onEvent Test </ nane>
<descri pti on>SaveAct i onEvent Test </ descri pti on>
<l abel >SaveActi onEvent Test </ | abel > <post Processor Nane>or g. kual i . ri ce. kew. post
<super User G oupNane nanespace="KR-WKFLW >Test Wr kgr oup</ super User G oupNane>
<bl anket Appr oveG oupNane nanmespace="KR- WKFLW >Test Wr kgr oup</ bl anket Appr oveG o
<def aul t Excepti onG oupNanme nanespace="KR- WKFLW > Test Wr kgr oup</ def aul t Except
<docHandl er >_bl ank</ docHandl er >
<active>true</active>
<pol i ci es>
<policy>
<nane>DEFAULT_APPROVE</ nane>
<val ue>f al se</val ue>
</ policy>
</ policies>
<r out ePat hs>
<r out ePat h>
<start nane="AdHoc" next Node="Wbr kfl| owDocunent" />
<request s nane="Wrkfl owDocunent"” />
</ r out ePat h>
</ rout ePat hs>
<r out eNodes>
<start nanme="AdHoc">
<activati onType>P</activati onType>
</start>
<request s nane="Wr kf | owDocunent " >
<activati onType>P</activati onType>
<rul eTenpl at e>Wor kf | owDocunent Tenpl at e</ rul eTenpl at e>
</ request s>
</ rout eNodes>
</ docunent Type>

» name: Thisisthe Document Type for Save Action Event Test.
 description: This Document Type is used to test the Blanket Approve Mandatory Node.
* label: This Document Type is recognized as the SaveActionEventTest type.

 postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor .DefaultPost Processor .

» superUser GroupName: The super users for this Document Type are members of the TestWorkgroup.

* blanketApproveGroupName: The membersof the TestWorkgroup have blanketApproval right onthis
type of document.

« defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

» docHandler: The Doc Handler for thistype of document is_blank.
 active: This Document Typeis currently active. In other words, itisin use.

 Palicies for this Document Type: The DEFAULT_APPROVE policy is set false by default. In other
words, the default approve action on this type of document is NOT to approve it.

107

KEW

 routePath: The routing path for this Document Typeis: AdHoc -> WorkflowDocument.
 routeNode: Based on the routePath, there are two nodes in the routing of this Document Type:

« The starting node for this Document Typeis AdHoc. On the initiation of adocument of thistype, the
postProcessor in KEW activates the node AdHoc.

< The next node in the routing for this Document Type is Wor kflowDocument. On request, the node
is activated and applies the rulesin rule template Wor kflowDocumentTemplate.

Figure 3.13. Save Action Event Test

Slart

Adhoc

WOk M CHCiimant

¥

/ WorkfowDooimen Templabe /

Erd

SaveActionEventTestNonl nitiator

<docunent Type>
<nane>SaveAct i onEvent Test Nonl ni ti at or </ nanme>
<descri pti on>SaveActi onEvent Test Wth No Initiator Only Save Required</descrip
<| abel >SaveActi onEvent Test Nonl ni ti at or </ | abel >
<post Processor Nane>or g. kual i . ri ce. kew. post processor. Def aul t Post Processor </ post
<super User G oupNane nanespace="KR- WKFLW >Test Wr kgr oup</ super User G oupNane>
<bl anket Appr oveG oupNane nanespace="KR- WKFLW >Test Wr kgr oup</ bl anket Appr oveG o
<def aul t Excepti onG oupNanme nanmespace="KR- WKFLW > Test Wr kgr oup</ def aul t Except i
<docHandl er >_bl ank</ docHandl er >
<active>true</active>
<pol i ci es>
<policy>
<nane>DEFAULT_APPROVE</ nane>
<val ue>f al se</ val ue>
</ policy>

108

KEW

<pol i cy>
<nane>| NI TI ATOR_MUST_SAVE</ nane>
<val ue>f al se</val ue>
</ policy>
</ policies>
<r out ePat hs>
<r out ePat h>
<start nane="AdHoc" next Node="Wbr kfl| owDocunent" />
<r equest s nane="Wr kf | owDocunent” />
</ r out ePat h>
</ r out ePat hs>
<r out eNodes>
<start nane="AdHoc" >
<activati onType>P</ acti vati onType>
</start>
<r equest s nane="Wor kf | owDocunent " >
<activati onType>P</ acti vati onType>
<rul eTenpl at e>Wor kf | owDocunent Tenpl at e</ r ul eTenpl at e>
</ request s>
</ r out eNodes>

</ docunent Type>

name: Thisisthe Document Type for Save Action Event Test Non Initiator.
description: This Document Type is used to test the saving of an action event by non-initiator.
label: This Document Type is recognized as the SaveActionEventTestNonlnitiator type.

postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor .DefaultPost Pr ocessor .

super User GroupName: The super users for this Document Type are members of the TestWorkgroup.

blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right on this
type of document.

defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

docHandler: The Doc Handler for this type of document is_blank.
active: This Document Typeis currently active. In other words, itisin use.
Palicies for this Document Type:

* The DEFAULT_APPROVE policy is set false by default. In other words, the default approve action
on thistype of document isNOT to approveit.

e TheINITIATOR_MUST_SAVE policy isset false by default. In other words, theinitiator doesNOT
have to save the document for the non-initiator to save the actions on it.

routePath: The routing path for this Document Typeis: AdHoc -> WorkflowDocument.
routeNode: Based on the routePath, there are two nodes in the routing of this Document Type:

e The starting node for this Document Typeis AdHaoc. On the initiation of adocument of thistype, the
postProcessor in KEW activates the node AdHoc.

109

KEW

» The next node in the routing for this Document Type is Wor kflowDocument. On request, the node
is activated and applies the rulesin rule template, Wor kflowDocumentTemplate.

Figure 3.14. Save Action Even Test: Non-Initiator

Slart

AhOG

Wilarkow Docyisnt

¥

/ WiaiSowiDooiment Temalae /

Erd

TakeWorkgroupAuthorityDoc

<docunent Type>
<name>TakeWbr kgr oupAut hori t yDoc</ nane>
<descri pti on>TakeWdr kgr oupAut hority Action Test</description>
<l abel >TakeWr kgr oupAut hori t yDoc</ | abel >
<post Processor Nanme>or g. kual i . ri ce. kew. post processor. Def aul t Post Processor </ post
<super User G oupNane nanespace="KR- WKFLW >Test Wr kgr oup</ super User G oupNane>
<bl anket Appr oveG oupNane nanmespace="KR- WKFLW >Test Wr kgr oup</ bl anket Appr oveG o
<def aul t Excepti onG oupNanme nanmespace="KR- WKFLW > Test Wr kgr oup</ def aul t Except i
<docHandl er >_bl ank</ docHandl er >
<active>true</active>
<pol i ci es>
<policy>
<nane>DEFAULT_APPROVE</ nanme>
<val ue>f al se</val ue>
</ policy>
</ policies>
<r out ePat hs>
<r out ePat h>
<start nane="AdHoc" next Node="Wbr kgr oupByDocunent" />
<request s nane="Wor kgr oupByDocunent" />
</ r out ePat h>

110

KEW

</ rout ePat hs>
<r out eNodes>
<start nanme="AdHoc">
<activati onType>P</ acti vati onType>
</start>
<request s nane="Wor kgr oupByDocumnent " >
<activati onType>P</ acti vati onType>
<rul eTenpl at e>Wor kgr oupByDocument </ r ul eTenpl at e>
</ request s>
</ rout eNodes>

</ docunent Type>

name: Thisisthe Document Type for Take Workgroup Authority Doc.
description: This Document Type is used to decide authorized workgroups by Document Type.
label: This Document Type is recognized as the TakeWorkgroupAuthorityDoc type.

postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postpr ocessor .DefaultPost Pr ocessor .

super User GroupName: The super users for this Document Type are members of the TestWorkgroup.

blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right onthis
type of document.

defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

docHandler: The Doc Handler for this type of document is_blank.
active: This Document Typeis currently active. In other words, itisin use.

Palicies for this Document Type: The DEFAULT_APPROVE policy is set false by default. In other
words, the default approve action on this type of document is NOT to approve it.

routePath: The routing path for this Document Type is: AdHoc -> WorkflowDocument.
routeNode: Based on the routePath, there are two nodes in the routing of this Document Type:

» The starting node for this Document Typeis AdHoc. On the initiation of adocument of thistype, the
postProcessor in KEW activates the node AdHoc.

» The next node in the routing for this Document Type is Wor kflowDocument. On request, the node
is activated and applies the rulesin rule template, Wor kflowDocumentTemplate.

111

KEW

Figure 3.15. Take Workgroup Authority

Start

Adhoc

Wk Mo Dsciimsnt

¥

/ WinnoiowDooument Temglae /

Erd

MoveSequential Test

<document Type>
<nanme>MoveSequent i al Test </ nane>
<par ent >Bl anket Appr oveTest </ par ent >
<descri pti on>Move Sequenti al Test</description>
<l abel >Move Sequential Test</I| abel >

<post Processor Nanme>or g. kual i . ri ce. kew. post processor. Def aul t Post Processor </ post
<super User G oupNane nanespace="KR-WKFLW >Test Wr kgr oup</ super User G oupNane>
<bl anket Appr oveG oupNane nanespace="KR- WKFLW >Test Wr kgr oup</ bl anket Appr oveG 0
<def aul t Excepti onG oupNane namespace="KR- WKFLW > Test Wr kgr oup</ def aul t Excepti
<docHandl er >_bl ank</ docHandl er >
<active>true</active>
<r out ePat hs>
<r out ePat h>
<start name="AdHoc" next Node="Wor kf | owDocunent" />
<request s nanme="Wor kf | owDocunent " next Node="Wor kf | owDocunent 2" />
<r equest s nane="Wor kf | owDocunent 2" next Node="Acknow edgel" />
<request s nane="Acknow edgel"” next Node="Acknow edge2" />
<request s nane="Acknow edge2" />
</ r out ePat h>
</ rout ePat hs>
<r out eNodes>
<start nanme="AdHoc">
<activati onType>P</ acti vati onType>
</start>

112

KEW

<r equest s nane="Wor kf | owDocunent " >
<activati onType>P</ acti vati onType>
<rul eTenpl at e>Wor kf | owDocunent Tenpl at e</ r ul eTenpl at e>
</ request s>
<r equest s nane="Wr kf | owDocunent 2" >
<activati onType>P</ acti vati onType>
<rul eTenpl at e>Wor kf | owDocumnent 2Tenpl at e</ rul eTenpl at e>
</ request s>
<r equest s nane="Acknow edgel" >
<activati onType>P</ acti vati onType>
<rul eTenpl at e>Ack1Tenpl at e</ rul eTenpl at e>
</ request s>
<r equest s nane="Acknow edge2" >
<activati onType>P</ acti vati onType>
<rul eTenpl at e>Ack2Tenpl at e</ rul eTenpl at e>
</ request s>
</ rout eNodes>

</ docunent Type>

name: Thisisthe Document Type for Move Sequentia Test.

Par ent: The parent Document Type is BlanketApproveTest. This Document Type inherits the policies
that BlanketApproveTest has.

description: This Document Typeis used to test Move Seguence.
label: This Document Type is recognized as MoveSequentia Test type.

postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor .DefaultPostPr ocessor .

super User GroupName: The super users for this Document Type are members of the TestWorkgroup.

blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right onthis
type of document.

defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

docHandler: The Doc Handler for this type of document is_blank.
active: This Document Typeis currently active. In other words, itisin use.

routePath: The routing path for this Document Type is. AdHoc -> WorkflowDocument ->
WorkflowDocument2 -> Acknowledgel -> Acknowledge2.

routeNode: Based on the routePath, there are five nodes in the routing of this Document Type:

* Thestarting node for this Document Typeis AdHoc. On theinitiation of adocument of thistype, the
postProcessor in KEW activates the node AdHoc.

« Thenext nodeintherouting for thisDocument TypeisWor kflowDocument. On request, the nodeis
activated, appliesthe rulesin rule template, Wor kflowDocumentTemplate, and sets the mandatory
route astrue. In other words, the document must route through this node.

» Thenext nodeintherouting for thisDocument TypeisW or kflowDocument2. Onrequest, thenodeis
activated, appliestherulesin ruletemplate, Wor kflowDocument2T emplate, and setsthe mandatory
route astrue. In other words, the document must route through this node.

113

KEW

« The next node in the routing for this Document Type is Acknowledgel. On request, the node is
activated and applies therulesin rule template, Ack1Template.

« The next node in the routing for this Document Type is Acknowledge2. On request, the node is
activated and applies therulesin rule template, Ack2Template.

114

KEW

Cirmira2 12 M~nun Caniinntial T Aot

115

KEW

Movel nProcessT est

<documnent Type>
<name>Movel nPr ocessTest </ hane>
<par ent >Bl anket Appr oveTest </ par ent >
<descri pti on>Move In Process Test</description>
<l abel >Move I n Process Test</I| abel >
<post Processor Nane>or g. kual i . ri ce. kew. post processor. Def aul t Post Processor </ post
<super User G oupNane nanespace="KR- WKFLW >Test Wr kgr oup</ super User G oupNane>
<bl anket Appr oveG oupNane nanespace="KR- WKFLW >Test Wr kgr oup</ bl anket Appr oveG 0
<def aul t Excepti onG oupNanme nanmespace="KR- WKFLW > Test Wr kgr oup</ def aul t Except
<docHandl er >_bl ank</ docHandl er >
<active>true</active>
<r out ePat hs>
<r out ePat h>
<start nanme="AdHoc" next Node="Wbr kf | owDocunent" />
<request s nane="Workfl owDocunent" next Node="M/RadSubProcess" />
<process name="MRadSubProcess" next Node="Wor kf | owDocunent Fi nal " />
<request s nane="Wor kf | owDocunent Fi nal " />
</ rout ePat h>
<rout ePat h processNane="M/RadSubProcess" initial Node="Wbrkf | owDocurent 2" >
<request s name="Wor kf| owDocunent 2" next Node="Wor kf | owDocunent 3" />
<request s nane="Wr kf | owDocunent 3" />
</ rout ePat h>
</ rout ePat hs>
<r out eNodes>
<start nanme="AdHoc">
<activati onType>P</activati onType>
</start>
<request s nane="Wor kf | owDocunent " >
<activati onType>P</activati onType>
<rul eTenpl at e>Wor kf | owDocunent Tenpl at e</ rul eTenpl at e>
</ request s>
<process name="MRadSubProcess" />
<request s nane="Wrkf | owDocunent 2" >
<activati onType>P</activati onType>
<rul eTenpl at e>Wor kf | owDocunent 2Tenpl at e</ rul eTenpl at e>
</ request s>
<request s nane="Wr kf | owDocunent 3" >
<activati onType>P</activati onType>
<rul eTenpl at e>Wor kf | owDocunent 3Tenpl at e</ rul eTenpl at e>
</ request s>
<request s nane="Wr kf | owDocunent Fi nal " >
<activati onType>P</activati onType>
<rul eTenpl at e>Wor kf | owDocunent Fi nal Tenpl at e</ rul eTenpl at e>
</ request s>
</ rout eNodes>
</ docunent Type>

e name: Thisisthe Document Type for Move In Process Test.

» Parent: The parent Document Type for this Document Type is BlanketApproveTest. This Document
Type inherits the policies that BlanketApproveTest has.

 description: This Document Type is used to test Move In Process.

116

KEW

label: This Document Typeis recognized as the Movel nProcessT est type.

postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postpr ocessor .DefaultPostPr ocessor .

super User GroupName: The super users for this Document Type are members of the TestWorkgroup.

blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right onthis
type of document.

defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

docHandler: The Doc Handler for this type of document is_blank.

active: This Document Typeis currently active. In other words, itisin use.

routePath: The routing path for this Document Typeis: AdHoc -> WorkflowDocument -> MyRadSub
Process -> WorkflowDocument2 -> WorkflowDocument3 -> WorkflowDocumentFinal. Thereisasub-

process MyRadSubProcess in this path.

routeNode: As can be seen from the routePath, there are five nodes in the routing of this Document
Type:

» The starting node for this Document Typeis AdHoc. On the initiation of adocument of thistype, the
postProcessor in KEW activates the node AdHoc.

» The next node in the routing for this Document Type is Wor kflowDocument. On request, the node
is activated, applies the rules in rule template, WorkflowDocumentTemplate, and initiates a sub
process MyRadSubProcess.

» The next node in MyRadSubProcess for this Document Type is Wor kflowDocument2. On request,
the node is activated and applies the rules in rule template, Wor kflowDocument2T emplate.

» Thenext nodein MyRadSubProcessfor thisDocument TypeisW or kflowDocument3. O therequest,
the node is activated and applies the rules in rule template, Wor kflowDocument3Template.

» The next node in the routing for this Document Type is Wor kflowDocumentFinal. On request, the
node is activated and applies the rules in rule template W or kflowDocumentFinal Template.

117

KEW

Figure 3.17. Move In Process Test

Slart

¥

118

KEW

AdhocRouteT est

<docunent Type>
<name>AdhocRout eTest </ nanme>
<descri pti on>AdhocRout eTest </ descri pti on>
<l abel >AdhocRout eTest </ | abel >

<post Processor Nanme>or g. kual i . ri ce. kew. post processor . Def aul t Post Processor </ post Pro
<super User G oupNane nanespace="KR- WKFLW >Test Wr kgr oup</ super User G oupNane>
<bl anket Appr oveG oupNane nanespace="KR- WKFLW >Test Wr kgr oup</ bl anket Appr oveG oupN
<def aul t Excepti onG oupName nanmespace="KR- WKFLW > Test Wir kgr oup</ def aul t Except i onC
<docHandl er >_bl ank</ docHandl er >
<active>true</active>
<r out ePat hs>
<r out ePat h>
<start nanme="AdHoc" next Node="One" />
<requests name="One" />
</ rout ePat h>
</ rout ePat hs>
<r out eNodes>
<start nanme="AdHoc">
<activati onType>P</ acti vati onType>
</start>
<requests nanme="0One">
<activati onType>S</activati onType>
<rul eTenpl at e>Wor kf | owDocunent Tenpl at e</ r ul eTenpl at e>
</ request s>
</ rout eNodes>
</ docunent Type>

» name: Thisisthe Document Type for Adhoc Route Test.
 description: This Document Type is used to test Ad Hoc Route.
* label: ThisDocument Type is recognized as the AdhocRouteTest type.

* postProcessor Name: the postProcessor for this Document Type is
org.kuali.rice.kew.postpr ocessor .DefaultPost Pr ocessor .

 superUser GroupName: The super users for this Document Type are members of the TestWorkgroup.

* blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right onthis
type of document.

 defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

» docHandler: The Doc Handler for thistype of document is_blank.

« active: This Document Typeis currently active. In other words, itisin use.

* routePath: The routing path for this Document Typeis: AdHoc -> One.

* routeNode: Based on the routePath, there are two nodes in the routing of this Document Type:

e The starting node for this Document Typeis AdHaoc. On the initiation of adocument of thistype, the
postProcessor in KEW activates the node AdHoc.

119

KEW

« The next node in the routing for this Document Type is One. On request, the node is activated by the
type S and appliesthe rulesin rule template, Wor kflowDocumentTemplate.

Figure 3.18. Adhoc Route Test

b 4
Ao I
k4
one |
w
/ WiorkfiowDotument Template /
Erxd

PreApproval Test

<docunent Type>
<namne>Pr eAppr oval Test </ nane>
<descri pti on>Pr eApproval Test </ descri pti on>
<l abel >Pr eAppr oval Test </ | abel >
<post Processor Nanme>or g. kual i . ri ce. kew. post processor. Def aul t Post Processor </ post
<super User G oupNane nanespace="KR- WKFLW >Test Wr kgr oup</ super User G oupNane>
<bl anket Appr oveG oupNane nanmespace="KR- WKFLW >Test Wr kgr oup</ bl anket Appr oveG o
<def aul t Excepti onG oupNanme nanmespace="KR- WKFLW > Test Wr kgr oup</ def aul t Except i
<docHandl er >_bl ank</ docHandl er >
<active>true</active>
<r out ePat hs>
<r out ePat h>
<start nane="AdHoc" next Node="PreApproval Test One" />
<request s nane="PreApproval Test One" />
</ r out ePat h>
</ rout ePat hs>
<r out eNodes>
<start nanme="AdHoc">
<activati onType>P</activati onType>
</start>
<request s nane="PreApproval Test One" >
<activati onType>S</activati onType>
<rul eTenpl at e>Wor kf | owDocunent Tenpl at e</ rul eTenpl at e>
</ request s>
</ rout eNodes>
</ docunent Type>

120

KEW

name: Thisisthe Document Type for PreApproval Test.
description: This Document Typeis used to test Pre-Approval.
label: This Document Typeis recognized as the PreApproval Test type.

postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor .DefaultPostPr ocessor .

super User GroupName: The super users for this Document Type are members of the TestWorkgroup.

blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right onthis
type of document.

defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type. » docHandler: The Doc Handler for this type of document is
_blank.

active: This Document Typeis currently active. In other words, itisin use.
routePath: The routing path for this Document Type is: AdHoc -> PreApproval TestOne.
routeNode: Based on the routePath, there are two nodes in the routing of this Document Type:

» The starting node for this Document Typeis AdHoc. On the initiation of adocument of thistype, the
postProcessor in KEW activates the node AdHoc.

< Thenext node in the routing for this Document Type is PreApproval TestOne. On request, the node
is activated by the type S and applies the rules in rule template, Wor kflowDocumentTemplate.

Figure 3.19. PreApproval Test

PrafpaowvalTas O

L

/ WorkfiowDotument Template /

Erd

VariablesT est

<docunent Type>
<nane>Vari abl esTest </ nane>
<descri ption>Vari abl esTest </ descri pti on>

121

KEW

<| abel >Vari abl esTest </ | abel >

<post Processor Nanme>or g. kual i . ri ce. kew. post processor. Def aul t Post Processor </ post
<super User G oupNane nanespace="KR-WKFLW >Test Wr kgr oup</ super User G oupNane>
<bl anket Appr oveG oupNane nanmespace="KR- WKFLW >Test Wr kgr oup</ bl anket Appr oveG o
<def aul t Excepti onG oupNane nanespace="KR- WKFLW > Test Wr kgr oup</ def aul t Except
<docHandl er >_bl ank</ docHandl er >
<active>true</active>
<r out ePat hs>
<r out ePat h>
<start name="AdHoc" next Node="set StartedVar" />
<si npl e name="set St art edVar" next Node="set Copi edVar"/ >
<si npl e name="set Copi edVar" next Node="Pr eAppr oval Test One"/ >
<request s nane="PreApproval Test One" next Node="set EndedVvar"/>
<si npl e name="set EndedVar" next Node="set Googl evar"/>
<si npl e name="set Googl eVar" next Node="set XPat hvar"/ >
<si npl e nanme="set XPat hVar" next Node="reset St artedvar"/>
<si npl e name="reset Start edvVar" next Node="I| ogNode"/ >
<si npl e name="1 ogNode" next Node="I| ogNode2"/ >
<si npl e name="1 ogNode2"/ >
</ rout ePat h>
</ rout ePat hs>
<r out eNodes>
<start nanme="AdHoc">
<activati onType>P</ acti vati onType>
</start>
<si npl e name="set St art edVar" >
<type>org. kual i . rice. kew. engi ne. node. var. Set Var Node</ t ype>
<nane>st art ed</ nane>
<val ue>st art edVari abl evVal ue</ val ue>
</ si npl e>
<si npl e nane="set Copi edVar " >
<type>org. kual i . rice. kew. engi ne. node. var. Set Var Node</ t ype>
<nane>copi edVar </ nane>
<val ue>var: st art ed</ val ue>
</ si npl e>
<request s nane="PreApproval Test One" >
<activati onType>S</acti vati onType>
<rul eTenpl at e>Wor kf | owDocunent Tenpl at e</ r ul eTenpl at e>
</ request s>
<si npl e nane="set EndedVar" >
<type>org. kual i . rice. kew. engi ne. node. var. Set Var Node</ t ype>
<nane>ended</ nane>
<val ue>endedVari abl eVal ue</ val ue>
</ si npl e>
<si npl e nane="set Googl eVar" >
<type>org. kual i . rice. kew. engi ne. node. var. Set Var Node</ t ype>
<nane>googl e</ nane>
<val ue>url : http://googl e. conx/ val ue>
</ si npl e>
<si npl e nanme="set XPat hVar" >
<type>org. kual i . rice. kew. engi ne. node. var. Set Var Node</ t ype>
<nane>xpat h</ nane>
<val ue>xpat h: concat (| ocal - name(// document Cont ent) , $ended) </ val ue>

122

KEW

</ si npl e>

<si npl e name="reset Start edVvar" >
<type>org. kual i . rice. kew. engi ne. node. var. Set Var Node</ t ype>
<nane>st art ed</ nane>
<val ue>aNewSt art edVari abl eVal ue</ val ue>

</ si npl e>

<si npl e name="1 ogNode" >
<type>org. kual i .rice. kew. engi ne. node. LogNode</t ype>
<message>var : xpat h</ nessage>

</ si npl e>

<si npl e name="1 ogNode2" >
<type>org. kual i . rice. kew. engi ne. node. LogNode</t ype>
<l evel >Er RoR</ | evel >
<l og>Cust om Logger . Nane</ | og>
<nessage>THAT' S ALL FOLKS</ nessage>

</ si npl e>

</ rout eNodes>

</ docunent Type>

name: Thisisthe Document Type for VariablesTest.
description: This Document Typeis used to test Variables.
label: This Document Type is recognized as the VariablesTest type.

postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor .DefaultPost Processor .

super User GroupName: The super users for this Document Type are members of the TestWorkgroup.

blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right onthis
type of document.

defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

docHandler: The Doc Handler for this type of document is_blank.
active: This Document Typeis currently active. In other words, it isin use.

routePath: The routing path for this Document Type is: AdHoc -> setStartedVar -> setCopiedVar ->
preApproval TestOne -> setEndedVar -> setGoogleVar -> setX PathVar -> resetStartedVar -> logNode
-> logNode2.

routeNode: Based on the routePath, there are ten nodes in the routing of this Document Type:

» Thestarting node for this Document Typeis AdHoc. On theinitiation of adocument of thistype, the
postProcessor in KEW activates the node AdHoc.

e The next node in the routing for this Document Typeis setStartedVar.
 Itstypeisorg.kuali.ricekew.engine.node.var.SetVar Node
* Itsnameisstarted.
* ltsvalueisstartedVariableValue.

* The next node in the routing for this Document Typeis setCopiedVar.

123

KEW

« lItstypeisorg.kuali.ricekew.engine.node.var.SetVar Node.
 ItsnameiscopiedVar.
e Thevauethat it iscopyingisvar:started.

The next node in the routing for this Document Typeis preApproval TestOne. On request, the node
is activated by the type S and applies the rules in rule template Wor kflowDocument Template.

The next node in the routing for this Document Typeis setEndedVar

* lItstypeisorg.kuali.ricekew.engine.node.var.SetVar Node.

* Itsnameisended.

* ItsvalueisendedVariableValue.

The next node in the routing for this Document Typeis setGoogleVar.

* lItstypeisorg.kuali.ricekew.engine.node.var.SetVar Node.
 Itsnameisgoogle. It links to http://google.com.

The next node in the routing for this Document Typeis setXpathVar.

* lItstypeisorg.kuali.ricekew.engine.node.var.SetVar Node.
 Itsnameisxpath.

« It adds //documentContent to the current path.

The next node in the routing for this Document TypeisresetStartedVar.
« lItstypeisorg.kuali.ricekew.engine.node.var.SetVar Node.

* Itsnameisstarted.

* |t resetsthe started node at a new node, aNewStartedVariableValue.
The next node in the routing for this Document TypeislogNode.

« lItstypeisorg.kuali.rice.kew.engine.node.L ogNode.

« |t sends a message about the xpath of the variables at var:xpath.

The next node in the routing for this Document Type islogNode2.

« lItstypeisorg.kuali.rice.kew.engine.node.L ogNode.

* [tslevel isErRoR.

It opens the log Custom.L ogger .Name.

e [treturnsamessage THAT'SALL FOLKS.

124

KEW

Fioure3.20. Variahles Test

¥
Hrthor

S prat i

E[-{d

* L’ | T ps e s i
/ Canfiom Logger Name / / THATS ALL FOLES /

125

KEW

SUApproveDocumentNotifications

<documnent Type>

<nane>SUAppr oveDocunent Not i fi cat i ons</ name>

<par ent >SUAppr oveDocunent </ par ent >

<descri pti on>SUAppr oveDocunent Not i fi cati ons</ descri pti on>
<l abel >SUAppr oveDocumnent Not i fi cati ons</I abel >

<post Processor Nane>or g. kual i . ri ce. kew. post processor. Def aul t Post Processor </ post
<super User G oupNane nanespace="KR-WKFLW >Test Wr kgr oup</ super User G oupNane>

<bl anket Appr oveG oupNane nanmespace="KR- WKFLW >Test Wr kgr oup</ bl anket Appr oveG o
<def aul t Excepti onG oupNanme nanespace="KR- WKFLW > Test Wr kgr oup</ def aul t Excepti

<docHandl er >_bl ank</ docHandl er >
<active>true</active>
<pol i ci es>
<policy>
<nane>SEND_NOTI FI CATI ON_ON_SU APPROVE</ nane>
<val ue>t rue</val ue>
</ policy>
</ policies>

</ docunent Type>

name: Thisisthe Document Type for SuperUser Approve Document Notifications.
description: This Document Typeis used to test the SuperUser Approve Document Notifications.
|label: This Document Type is recognized as the SUA pproveDocumentNotifications type.

postProcessor Name: The postProcessor for this Document Type is
org.kuali.rice.kew.postprocessor .DefaultPostProcessor .

super User GroupName: The super users for this Document Type are members of the TestWorkgroup.

blanketApproveGroupName: The members of the TestWorkgroup have blanketApproval right onthis
type of document.

defaultExceptionGroupName: The members of the TestWorkgroup will receive an exception notice
for documents of this Document Type.

docHandler: The Doc Handler for this type of document is_blank.
active: This Document Typeis currently active. In other words, itisin use.

Thereisjust one policy for this Document Type: The SEND_NOTIFICATION_ON_SU_APPROVE
policy is set true by default. In other words, notifications will be automatically sent on SuperUser's
approval.

Document Type Policies

Current Document Type polices:

DISAPPROVE
DEFAULT_APPROVE

INITIATOR_MUST_ROUTE

126

KEW

INITIATOR_MUST_SAVE
INITIATOR_MUST_CANCEL
INITIATOR_MUST_BLANKET_APPROVE
LOOK_FUTURE
SEND_NOTIFICATION_ON_SU_APPROVE
SUPPORTS QUICK_INITIATE
NOTIFY_ON_SAVE

blanketApprovePolicy
ALLOW_SU_POST_PROCESSOR_OVERIDE
NOTIFY_COMPLETED_ON_RETURN
NOTIFY_PENDING_ON_RETURN
RECALL_NOTIFICATION
ALLOW_SU_FINAL_APPROVAL

SEND_NOTIFICATION_ON_SU_DISAPPROVE

Document Type Palicies defined in the Document Type XML have this structure:

<docunent Type>

<nane>. .. </ nane>
<pol i ci es>
<policy>
<name>DEFAULT_APPROVE</ nane>
<val ue>t rue</val ue>
</ policy>
<policy>
<name>LOOK_FUTURE</ name>
<val ue>f al se</val ue>
<policy>
</ policies>

</ docunent Type>

DISAPPROVE

The DI SAPPROVE policy determineswhether adocument will discontinue routing (transactions). When
a document has been disapproved, the document initiator and previous approvers will receive notice of

this disapproval action.

DEFAULT_APPROVE

The DEFAULT_APPROVE policy determines whether a document will continue processing with or
without any approval requests. If a document is set to have no approval requests, its put into exception
routing. Then, the document will continue to route to the exception workgroup associated with the last

route node or to the workgroup defined in the defaultExceptionW or kgr oupname.

127

KEW

INITIATOR_MUST_ROUTE

The INITIATOR_MUST_ROUTE policy sets the rule that the user who initiates the document must
route it.

INITIATOR_MUST_SAVE

ThelINITIATOR_MUST_SAVE policy setsthe rule that the user who initiated the document will be the
only one authorized to save the document.

INITIATOR_MUST_CANCEL

ThelINITIATOR_MUST_CANCEL policy setsthe rulethat the user who initiated the document will be
the only one authorized to cancel the document.

INITIATOR_MUST_BLANKET_APPROVE

The INITIATOR_MUST_BLANKET_APPROVE policy sets the rule that the user who initiated the
document is the only one authorized to blanket approve the document.

LOOK_FUTURE

The LOOK_FUTURE policy determines whether the document can be brought into a simulated route
from the route log. This policy simulates where the document would end up if it completed the route.

SEND_NOTIFICATION_ON_SU_APPROVE

The SEND_NOTIFICATION_ON_SU_APPROVE policy indicates to KEW that it is to send a
notification on SuperUser approval.

SUPPORTS_QUICK_INITIATE

The SUPPORTS QUICK _INITIATE policy indicates whether the Document Typeis displayed on the
Quick Links, so that users can quickly initiate instances of the document.

NOTIFY_ON_SAVE

The NOTIFY_ON_SAVE policy indicates whether a notification should be sent in when a save action
is applied to this Document Type.

blanketApprovePolicy

The blanketApprovePolicy policy indicates who can blanket approve aworkflow document. Its values
are either ANY or NONE.

» ANY means that anybody can blanket approve the document.
» NONE means that no one can blanket approve the document.

Alternatively, the configuration of the document can be set up to specify a
blanketApproveWorkgroupName. blanketA pproveWorkgroupName indicates that members of that

128

KEW

workgroup can blanket approve the document. You can specify either blanketApprovePolicy OR
blanketApproveWorkgroupName in the Document Type.

Since the blanket approve palicy is not a true/false policy (like the others), it is specified as an element
in the Document Type XML:

<documnent Type>
<nane>. .. </ nanme>

<bl anket Appr ovePol i cy>NONE</ bl anket Appr ovePol i cy>
</ docunent Type>

ALLOW_SU_POST_PROCESSOR_OVERIDE

There is currently the ability to override the "Perform Post Processor Logic" on the "Super User Action
on Action Requests' page. This functionality is configurable by document type and as such allows for
inheritance.

By default, the ALLOW_SU POST PROCESSOR_OVERIDE it's set to true. The checkbox appears on
the super user screen as.

Figure 3.21. Super User Action on Requests

Super User Action on Action Requests

APPROYE Requested of employee, employee

Request Date | 04:17 PM 08/02/2010
Reguest Status | ACTIVE
Responsibility | Supervisar Routing
Anncotation | employee
Route Level| Travelerdpproval
Routing Priarity | 1

=

Responsibility Id| 2024
Action Request Id| 2

Perform Post Processor Logic| |V

277
3r7

approve

In order to turn off the post processor check box, you would add this to the documentType definition:

<pol i ci es>
<policy>
<name>ALLOW SU_POSTPROCESSOR_OVERRI DE</ nane>
<val ue>f al se</ val ue>
</ policy>
</ policies>

Recall From Routing
Three Document Type policies affect Recall behavior. These policies are defined in the respective the

DocumentType XML. The following two policies apply to Return-To-Previous actions as well as Recall
actions:

129

KEW

NOTIFY_COMPLETED_ON_RETURN - Default: false toggles whether to notify previous router log
participantswith FY Iswhen adocument isrecalled. Thisdoes not affect notificationsto pending approvers
which are always sent.

Example:

<policy>
<nane>NOTI FY_COVPLETED_ON_RETURN</ nane>
<val ue>t rue</ val ue>

</ policy>

NOTIFY_PENDING_ON_RETURN - Default: true toggles whether to notify pending approvers with
FYlswhen adocument is recalled. This does not affect notificationsto prior approvers.

Example:

<pol i cy>
<nanme>NOTI FY_PENDI NG_ON_RETURN</ nane>
<val ue>t rue</ val ue>

</ policy>

The following policy is Recall-specific:
RECALL_NOTIFICATION - Default: false/none

Example:

<policy>
<nane>RECALL_NOTI FI CATI ON</ nanme>
<val ue>t rue</val ue>
<recipients xm ns:r="ns:workfl ow Rul e" xsi:schenmaLocati on="ns:workflow Rule re
<r:princi pal Nane>qui ckstart</r:princi pal Nane>
<r:user>qui ckstart</r:user>
<rol e nanespace="KR- SYS" nane="Techni cal Adm nistrator"/>
</recipients>
</ policy>

ALLOW_SU_FINAL_APPROVAL

Setting this policy to false disallows Super User approval on final nodes of the document.

<pol i ci es>
<pol i cy>
<nane>ALLOW SU FI NAL_APPROVAL</ nane>
<val ue>f al se</val ue>
</ policy>
</ policies>

130

KEW

SEND_NOTIFICATION_ON_SU_DISAPPROVE

By default, acknowledgedments are not sent on Super User Disapproval like they are for normal
Disapprove actions. This policy can be used to enable sending of acknowledgements upon Super User
Disapproval.
<polici es>

<pol i cy>

<nane>SEND_NOTI FI CATI ON_ON_SU_DI SAPPROVE</ nane>

<val ue>t rue</val ue>

</ policy>

</ policies>

Inheritance

Document Types can specify a parent Document Type. This allows them to be included in a Document
Type hierarchy from which certain behavior can be inherited from their parent Document Type.

Inheritable Fields

These fields are inherited:

 superUser GroupName: Indicates members of the workgroup who can perform SuperUser actions on
the document

» blanketApproveGroupName: Indicates members of the workgroup that can blanket approve the
document.

* notificationFromAddr ess: Sendsanoticeto the sender when thetransfer of the document iscompl eted.
» messageEntity: A head and body of the message.

 policies: Indicates a set of rule(s) applied in the document. For each policy, True means policy DOES
apply, False means policy does NOT apply.

* searchableattributes: Constraint(s) assigned as the searchable criteria for a document.

 route paths/route nodes: Designated traveling points before the document reaches its destination in
arouting process.

Specia notes about inheritance:

1. Policiess In the Policies section, there are multiple Document Type policies
(INITAITOR_MUST_ROUTE, DEFAULT_APPROVE, etc). Each policy can be overridden on an
individual basis. In contrast to the route path, there is no need to override the entire policies section for
aDocument Type. For more detailed information about Document Type policies, please see Document
Type Policies (above) in this document.

2. Route pathg/ route nodes. To override the route path and route node definitions of a parent Document
Type, you must override ALL route node and route path definitions. Y ou cannot inherit and use just
part of aroute path; it'sall or nothing.

Document Type hierarchy and the Rules Engine

The Rules Engine follows these rules to determine its rule evaluation set for a Document Type at a
particular node:

131

KEW

1. The Rules Engine looks at the Rule Template name of the current node and selects all rules with that
template and that document's Document Type. It adds those rules to the rule evaluation set.

2. If the Document Type has aparent Document Type, it selectsall ruleswith that template and that parent
Document Type and adds those to the rule evaluation set.

3. Itsrepeats step two until it reaches the root of the Document Type hierarchy.

4. Thefina rule evaluation set includes all of theserules.

Defining Workflow Processes Using
PeopleFlow - a new feature in KEW

PeopleFlow is our Kuali Rice instantiation of the "maps" concept included in the original Coeus. For all
intents and purposes it's a prioritized list of people to send requests to. PeopleFlow gives you a new type
of request activation strategy called "priority-parallel” to activate requests generated from a PeopleF ow
in the appropriate order. Essentially, it's like a mini people-based workflow that doesn't require you to
specify a KEW node in the document type for each individual who might need to approve or be notified.
Y ou can define "Stops' in a PeopleFlow, where everything in the same stop proceeds in parallel, but all
must be done within the stop before proceeding to the next stop.

You can call/execute a PeopleFlow from within a KEW workflow node directly, or you can invoke
the Kuali Rules Managment System (KRMS) engine from an application and any PeopleFlows that get
selected during rule execution, defined in a KRMS agenda, will be called. In thisway, you can integrate
business rules across applications and workflows.

The same PeopleFlow that defines arouting order among a set of persons, groups or roles can be called by
KRM S rules, with the KRM Srul es defining which type of request to pass to the PeopleFlow (for example,
an "approva" routing action or a"notification").

KRMSisalso anew featurein Rice 2.0. Seethe KRM S Technica Guide for more information on KRMS.

Y ou can define a PeopleFlow (simple workflow) viaamaintenance document. See the KEW Users Guide
for additional details on defining a PeopleFlow.

Technical Information about PeopleFlow

(decide what needs to go here -- architecture, data model, api, troubleshooting, etc.?)

KEW Routing Components and Configuration
Guide

KEW has several components that you can use to configure routing. Typically a single application will
write a set of these components for reuse across multiple Document Types. These components are wired
together using an XML configuration file that you need to import into KEW. See Importing XML Files
to KEW for more information.

This document looks at defining the routing components available in KEW and how to use these
components to make a cohesive routing setup.

132

KEW

* RouteModule - The most basic module; it allows KEW to generate Action Requests

* RuleAttribute - A component that fits into KEW's rule system. These rules are used to build routing
paths for documents. They function for users across the organization and for multiple applications.

* XML RuleAttribute— Similar in functionality to a RuleAttribute but built using XML only

» RoleAttribute - A component that fits into KEW's rule system, but which is a pointer to outside data.
See Built-in Roles and Nodes for more information on implementing a RoleAttribute.

» PostProcessor - A component that gets called throughout the routing process and handles a set of
standard events that all eDocs (el ectronic documents) go through.

These components are contained in a Document Type that is defined in XML. A Document Type is the
prototype for eDocs. Below is the Document Type configuration that explains how KEW uses the eDoc
rule:

<?XML version="1. 0" encodi ng="UTF-8"?>

<data XM_ns="ns:wor kfl ow' XM.ns:xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" xs
<document Types XM.ns="ns: wor kf | ow Docunent Type" xsi:schemalLocati on="ns:workfl o

<document Type>
<nanme>YOURSERVI CE- DCCS. Rul eDocunent </ nane>
<par ent >YOURSERVI CE- DOCS</ par ent >
<descri pti on>Add/ Modi fy Workfl ow rul es</description>
<l abel >Add/ Modi fy Workfl ow rul es</| abel >

<post Processor Nane>your . package. r out et enpl at e. Rul ePost Processor </ post P

<super User G oupNane>Wbr kf | owAdm n</ super User G oupNane>

<bl anket Appr oveG oupNane>l U- WORKFLOW RULE- BLANKET- APPROVERS</ bl anket Ap
<def aul t Excepti onG oupNanme>YOUR_EXCEPTI ON_TEAMK/ def aul t Excepti onG oupN
<docHandl er >htt ps: //your | ocal | P/ en- prd/ Rul e. do?met hodToCal | =docHandl er
<noti ficati onFromAddr ess>. .. @our Emai | Server | P. edu</notifi cati onFr onAd

<active>true</active>
<r out i ngVer si on>1</r out i ngVer si on>
<r out ePat hs>

<r out ePat h>

<start nane="Adhoc Routing"” next Node="Rul e routing Route Level

<requests nane="Rul e routing Route Level" />
</ r out ePat h>
</ rout ePat hs>
<r out eNodes>
<start nane="Adhoc Routing">
<activati onType>S</acti vati onType>
<mandat or yRout e>f al se</ mandat or yRout e>
<fi nal Approval >f al se</fi nal Approval >
</start>
<requests nane="Rul e routing Route Level ">
<activati onType>S</acti vati onType>
<rul eTenpl at e>Rul eRout i ngTenpl at e</ rul eTenpl at e>
<mandat or yRout e>t r ue</ nandat or yRout e>
<fi nal Approval >f al se</fi nal Approval >
</ request s>
</ rout eNodes>
</ docunent Type>
</ docunent Types>
</ dat a>

133

KEW

Configuration Steps

Let's go through the configuration step-by-step and explain what all the pieces mean:

DocumentTypeName Definition

<namnme>YQOURSERVI CE- DOCS. Rul eDocunent </ name>

<par ent >YOURSERVI CE- DOCS</ par ent >

<descri pti on>Add/ Modi fy Workfl ow rul es</description>

<l abel >Add/ Modi fy Workfl ow rul es</| abel >

The section above defines the Document Type's name, its parent, description, and label. The name is
used by the client application’s APl to communicate with KEW. Here is a sample of code from the client
application’s APl communicating with KEW:

Wor kf | owDocunent docunent = new Wor kf | owDocunent (new Net wor kl dVQ(" user nanme"), "Doc
docunent . rout eDocunent ("user inputted annotation");

The above code will route adocument in KEW.
* The string DocumentTypeName existsin KEW and you define it using the <name> element.

» The parent element gives the Document Type a parent Document Type. Use this for inheritance of
routing configuration and policies.

» Description is defined as shown. The document’s Description is displayed on the Document Type
report.

» Label istypicaly the forward-facing name for the Document Type. The label is displayed to the user
when an eDoc isin their Action List and they use it when they search for an eDoc using DocSearch.

PostProcessor Class

<post Processor Nane>your . package. r out et enpl at e. Rul ePost Pr ocessor </ post Pr ocessor Nane

The element above determines which classto use for the PostProcessor for this particular Document Type.
This component receives event notifications as eDocs travel through routing.

Managed Workgroups

<super User Wor kgr oupNanme>Wor kf | owAdmni n</ super User Wbr kgr oupNane>
<bl anket Appr oveWor kgr oupNanme>Wor kgr oupBl anket Appr over s</ bl anket Appr oveWr kgr oupNan

<def aul t Excepti onWbr kgr oupNanme>Wor kf | owAdni n</ def aul t Except i onWor kgr oupNane>
This section sets KEW managed workgroups in several roles in the Document Type.

» SuperUserWorkgroupName defines the workgroup that determines whether a person is allowed to
take Super User Actions on a document through the Super User interface.

» The content of element blanketApproveWor kgroupName determines which people have access to
blanket approve a document.

134

KEW

« defaultExceptionWorkgroup determines to which workgroup to send an eDoc of this type if it goes

into exception routing. This is an optional element. Y ou can also define Exception Workgroups with
aroute node.

docHandler

<docHandl er >htt ps://yourl ocal | P/ en- prd/ Rul e. do?net hodToCal | =docHandl er </ docHandl er

The docHandler tells KEW where to forward users when they click an eDoc link. See Document Search
for more information.

notificationFromAddress

<noti ficati onFromAddress>. .. @our Enmi | Server | P</ notificati onFromAddr ess>

When KEW sends an email notification to a user regarding a document of this type, the From address on
the message is the address specified here. Thisis helpful because users will often reply to the messages
they receive from KEW, and this allows their responses to go to an appropriate address for the Document
Type. Thisis an optional element. If it is not defined here, KEW uses the default From address. See the
Installation Guide for more detail.

active
<active>true</active>

Use active to define the activeness of a Document Type. KEW does not allow anyone to create eDaocs of
an inactive Document Type.

routePaths

<r out ePat hs>
<r out ePat h>
<start nane="Adhoc Routing" nextNode="Rule routing Route Level" />
<requests nane="Rul e routing Route Level" />
</ rout ePat h>
</ rout ePat hs>

The above defines the path an eDoc will travel as it progresses through its life. Start and Requests are
some of the standard node types used. There is only one stop each eDoc must make as it travels through
workflow. The eDaoc starts at the step Adhoc Routing and then progressesto the request node named Rule
routing Route L evel.

This section only defines the path the eDocs will travel. The nodes themselves are defined below.

Node Definition XML

<r out eNodes>
<start nanme="Adhoc Routing">
<activati onType>S</acti vati onType>
<mandat or yRout e>f al se</ mandat or yRout e>
<fi nal Approval >f al se</fi nal Approval >
</start>

135

KEW

<requests name="Rul e routing Route Level ">
<activati onType>S</activati onType>
<rul eTenpl at e>Rul eRout i ngTenpl at e</ rul eTenpl at e>
<mandat or yRout e>t r ue</ nandat or yRout e>
<fi nal Approval >f al se</fi nal Approval >
</ request s>
</ r out eNodes>

Thisisthe node definition XML. This determines certain behaviors each node can have.

Activation Type determines if Approve requests are activated al at once or one a atime. Any given
requests node can generate multiple rules that can then generate multiple requests. The ActivationType
value specifies if all action requests generated for all fired rules are activated immediately (P = parallel
activation), or if the set of action requests generated by each rule are activated one after the other, according
toruleorder (S=sequential activation). However, to activate requests starting with those with the smallest
priority and to active all those requestsin paralel the activation type of (R = priority-parallel activation).
Once al requests are approved, then the next priority will be activated. Thisis essentialy a hyprid of the
traditional sequential and parallel activation types. Activation type is only relevant when multiple rules
are generated.

Figure 3.22. Parallel and Sequential Activation Types

request .-_.'lnl-'.-.'.ulu:-'l nrq_l..l: 15-:'\
‘ nede \ \-_\ e = i
| Nﬁ [
i tjp ® actoralion regisest :l_
rules rule #2 e
fired

—_— s

mlE #3 1'|I'.|-'.l-."||lt:-::lrl.'-i".l.=l!'b-'. .:'_
Parallel Activation Type Sequential Activation Type
All action requests are Jetivated Each Bction reguéast it pctivated in sadqueence. Subsequent SCtion
at the samae fme: requests sets must wait for the previous set to be satisfied:
Step 21 Step 57

.mufnr._qnutr.u*._:tl__l
actvalion request
3

activalion roguasl
A

136

KEW

Figure 3.23. Parallel-Priority Activation Type

request clivat 5t
il rule #1 ey rule #4 -

multiple - "

1R
;{uleds rule #2 a2 priority 1 rule #5 -
ire
AcEvation rxquest
rule #3 #3 prioity 2

Parallel-Priority Activation Type

Each action request of the same pricrity s executed at the same time starting with the
smallest prigrity and warking up.

Step #1 Step &2

lra e Ut
#1 pricaty 1

T e r-equegt
#2 prictity 1

acivabon redguast
#5 peiarity 3

The mandatoryRoute key determines if it's mandatory to generate approval requests. If aroute nodeis
mandatory and it doesn't generate an approve request, the document is put in exception routing.

acinvalion request

activabion requesi

acivabon reguast
£5 prionity 3

The finalapproval key determines if this node should be the last node that has an approve request. If
approvals are generated after this step, the document is thrown into exception routing.

Finally, there is arequest node named Rule routing Route Level with akey called ruleTemplate. Thisis
our hook into the rule system for KEW:

<rul eTenpl at e>Rul eRout i ngTenpl at e</ rul eTenpl at e>
And thisis our hook into aroute module;
<r out eMbdul e>package. your . ARout eMbdul e</ r out eModul e>

KEW contacts the route module when the document enters that route node and the route module returns
Action Requests for KEW to deliver.

137

KEW

Rule Attributes

If the application integrating with KEW is using Rulesto contain the routing data and RuleAttributesfor
document evaluation, then the routing configuration requires more XML. Below is an XML snippet that
defines RuleAttribute; thisiswritten in Java.

<?xm version="1.0" encodi ng="UTF-8"7?>
<data xm ns="ns:workfl ow' xm ns:xsi="http://ww.w3. org/ 2001/ XM_Schena- i nst ance" xs
<rul eAttributes XM.ns="ns: workfl ow Rul eAttribute" xsi:schemalLocation="ns: wor kf
<rul eAttri but e>
<nanme>Rul eRout i ngAttri but e</ nane>
<cl assNane>org. kual i . ri ce. kew. rul e. Rul eRouti ngAttri bute</cl assNane>
<l abel >Rul eRouti ngAttri but e</| abel >
<descri pti on>Rul eRouti ngAttri but e</ descri pti on>
<type>Rul eAttri bute</type>
</rul eAttribute>
</rul eAttributes>
</ dat a>

The above defines a RuleAttribute called RuleRoutingAttribute. RuleRoutingAttribute maps to the Java
class org.kuali.rice.kew.rule.RuleRoutingAttribute. The type of this attribute is a RuleAttribute;
essentially this means the RuleAttribute's behavior is determined in a Java class. There are aso
RuleAttributes made entirely from XML, but programming attributes is outside the scope of this Guide.

Rule Templates

Finally, we need to tie the RuleAttribute to the Document Type. This is done using the RuleTemplate
and it is defined using XML. The RuleT emplate schema below provides further explanation:

<?xm version="1.0" encodi ng="UTF-8""?>

<data xm ns="ns:workfl ow' xm ns:xsi="http://ww.w3. org/ 2001/ XM_Schena- i nstance" xs
<rul eTenpl ates XM.ns="ns: wor kf | ow Rul eTenpl at e" xsi:schenmalLocati on="ns:workfl o
<rul eTenpl at e>
<nanme>Rul eRout i ngTenpl at e</ nane>
<descri pti on>Rul eRout i ngTenpl at e</ descri pti on>
<attributes>
<attribute>
<nanme>Rul eRouti ngAttri but e</ nane>
<requi red>t rue</requi red>
</attribute>
</attributes>
</rul eTenpl at e>
</rul eTenpl at es>
</ dat a>

Note

Notice that the name of this RuleTemplate, RuleRoutingTemplate, matches the name given in
the ruleTemplate element in the Document Type route node declaration. Also, notice that the
RuleAttribute made above is referenced in the RuleT emplate above in the attributes section.

<attri butes>

138

KEW

<attribute>
<nanme>Rul eRout i ngAt tri but e</ nane>
<requi red>t rue</ requi r ed>
</attribute>
</attributes>

The RuleTemplate is the join between RuleAttributes and Document Types. In this way, we can reuse
the same attribute declaration (and therefore Java logic) across Document Types.

Once the XML, condensed into asinglefile, is uploaded into KEW, eDocs of thistype can be created and
routed from a client application.

All the content in the code examples above is aggregated into asingle file bel ow with a single surrounding
datatag:

<?xm version="1. 0" encodi ng="UTF-8""?>
<data xm ns="ns:workfl ow' xm ns:xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" xs
<rul eAttributes xm ns="ns:workflow Rul eAttribute" xsi:schemalLocation="ns: wor kf
<rul eAttri bute>
<nanme>Rul eRout i ngAt tri but e</ nane>
<cl assName>or g. kual i . ri ce. kew. rul e. Rul eRouti ngAttri but e</cl assNane>
<l abel >f oo</ | abel >
<descri pti on>f oo</ descri pti on>
<type>Rul eAttri bute</type>
</rul eAttribute>
</rul eAttributes>
<rul eTenpl at es xm ns="ns: wor kf | ow Rul eTenpl at e" xsi:schemalLocati on="ns: workfl o
<rul eTenpl at e>
<nanme>Rul eRout i ngTenpl at e</ name>
<descri pti on>Rul eRout i ngTenpl at e</ descri pti on>
<attributes>
<attri bute>
<nanme>Rul eRout i ngAt tri but e</ nane>
<requi red>t rue</ requi r ed>
</attribute>
</attributes>
</rul eTenpl at e>
</rul eTenpl at es>
<document Types xm ns="ns: wor kf | ow Docunent Type" xsi:schemalLocati on="ns:workfl o
<document Type>
<nanme>EDENSERVI CE- DOCS. Rul eDocunent </ nane>
<par ent >EDENSERVI CE- DOCS</ par ent >
<descri pti on>Add/ Modi fy Workfl ow rul es</description>
<l abel >Add/ Modi fy Workfl ow rul es</| abel >
<post Processor Nane>or g. kual i . ri ce. kew. post processor . Rul ePost Processor <
<super User G oupNane nanespace=KR- WVKFLW >Wor kf | owAdmi n</ super User G- oupN
<bl anket Appr oveG oupNane nanespace=KR- WKFLW >Wor kf | owAdm n</ bl anket App
<def aul t Excepti onG oupNane></ def aul t Except i onG oupNane>
<docHandl er >ht t ps: // ui sapp2.i u. edu/ en- prd/ Rul e. do?nmet hodToCal | =docHand
<active>true</active>
<r out i ngVer si on>1</r out i ngVer si on>
<r out ePat hs>
<r out ePat h>
<start nane="Adhoc Routing"” next Node="Rul e routing Route Level
<requests nane="Rul e routing Route Level" />

139

KEW

</ rout ePat h>
</ rout ePat hs>
<r out eNodes>
<start nane="Adhoc Routing">
<activati onType>S</acti vati onType>
<mandat or yRout e>f al se</ mandat or yRout e>
</start>
<request s nane="Workfl ow Docunment Routing">
<activati onType>S</acti vati onType>
<rul eTenpl at e>Rul eRout i ngTenpl at e</ rul eTenpl at e>
<mandat or yRout e>t r ue</ nandat or yRout e>
</ request s>
</ rout eNodes>
</ docunent Type>
</ docunent Types>
</ dat a>

Routing Rules

There is a separate User Guide on how to use the Rule Ul. This will show you how to create a Rule as
well as modify and delete.

InitiatorRoleAttribute

Initiator RoleAttribute is a RoleAttribute that exposes an INITIATOR abstract role that resolves to the
initiator of the document.

Table 3.10. Initiator RoleAttribute

Name Address

Class InitiatorRol eAttribute

Package org.kuali.rice.kew.rule

Full org.kuali.rice.kew.rule.InitiatorRoleAttribute

RoutedByUserRoleAttribute

RoutedByUser RoleAttribute is a RoleAttribute that exposes the user who routed the document.

Table 3.11. RoutedByUser RoleAttribute

Name Address

Class RoutedByUserRol eAttribute

Package org.kuali.rice.kew.rule

Full org.kuali.rice.kew.rule.RoutedByUserRol eAttribute
NoOpNode

NoOpNode is a SimpleNode implementation that is a code structure example, but has no functionality.

140

KEW

Table 3.12. NoOpNode

Name Address

Class NoOpNode

Package org.kuali.rice.kew.engine.node
Full

RequestActivationNode

org.kuali.rice.kew.engine.node.NoOpNode

RequestActivationNode is a SimpleNode that activates any requests on it. It returns true when there are

no more requests that require activation.

In RequestActivationNode, the activateRequests method activates the Action Requests that are pending
at this route level of the document. The requests are processed by Priority and then by Request ID. The
requests are activated implicitly according to the route level.

Acknowledgement Requests do not cause processing to stop. Only Action Requests for Approval or
Completion cause processing to stop at the current document's route level. Inactive requests at a lower

level cause arouting exception.

Table 3.13. RequestActivationNode

Name Address

Class RequestActivationNode
Package org.kuali.rice.kew.engine.node
Full

NetworkldRoleAttribute

org.kuali.rice.kew.engine.node.RequestActivationNode

Networkl dRol eAttributeisaRol eAttributethat routesthe request to aNetworkl D specified in the document

content.

Table 3.14. Networ kldRoleAttribute

Name Address

Class NetworkldRoleAttribute
Package org.kuali.rice.kew.engine.node
Full

UniversityldRoleAttribute

org.kuali.rice.kew.engine.node.NetworkldRol eAttribute

UniversityldRol eAttribute is a RoleAttribute that routes requests to an Empl 1D specified in the document

content.

Table 3.15. UniversityldRoleAttribute

Name

Address

Class

UniversityldRol eAttribute

141

KEW

Name Address
Package org.kuali.rice.kew.engine.node
Full org.kuali.rice.kew.engine.node.UniversityldRol eAttribute

SetVarNode

SetVarNode is a SimpleNode that alows you to set document variables.

The definition of SetVarnode takes these configuration parameter elements:

* Name: The name of the variable to set

* Value The value to which to set the variable. This value is parsed according to Property/

PropertyScheme syntax. The default PropertyScheme is LiteralScheme, which evaluates the value
simply as aliteral; it won't do anything but return the value.

Table 3.16. SetVVar Node

Name Address

Class SetVarNode

Package org.kuali.rice.kew.engine.node.var

Full org.kuali.rice.kew.engine.node.var.SetVarNode

Routing Configuration using KIM
Responsibilities

In addition to routing workflow based on users and workgroups using routing rules, you can also
route workflow based on KIM responsihilities. This alows you to utilize group membership and role
assignments to manage who is permitted to perform approvals.

Route Node Definition

In review, you define a rule-based routing node with XML similar to:

<requests name="Rul e routing Route Level">
<activati onType>S</activati onType>
<rul eTenpl at e>Rul eRout i ngTenpl at e</ rul eTenpl at e>
<mandat or yRout e>t r ue</ nandat or yRout e>
<fi nal Approval >f al se</fi nal Approval >
</ request s>

A routing node that uses KIM responsibilities can replace a rule-based routing node. Y ou define it with
XML similar to:

<rol e name="Purchasi ng">

<qual i fi er Resol ver C ass>
org. kuali.rice.kns.workflow attribute.DatabDi ctionaryQualifierResolver
</ qualifierResol verd ass>

142

KEW

<activati onType>P</ acti vati onType>
</rol e>

Node Name

Y ou name the routing node with the name attribute, just like for a rule-based routing node.

Qualifier Resolver

The qualifier resolver finds any qualifiersthat need to be used while matching the responsibility. Y ou can
specify it in either of two ways:

» <qualifier Resolver >name</qualifier Resolver > names arul e attribute which identifies the class to use

 <qualifier Resolver Class>class.name</qualifier Resolver Class> providesthe fully-qualified name of
the Javaclassto use

Other Options

Y ou can specify <responsibilityTemplateName>name</responsibility TemplateName> to identify the
responsibility template to use. Thisoptionisnot usually used since all of the responsibilities provided with
KIM use atemplate named Review.

Y ou can specify <namespace>name</namespace> to identify the name space for the responsibility. This
option is usually not used since all of the responsibilities provided with KIM use a name space of KR-
WKFLW.

Matching Routing Nodes to Responsibilities

The KIM responsibility template Review defines two details:
» The name of the document type
e The name of the routing node

When you define a responsibility in KIM using this template, you specify a value for each of these
details. When adocument is routed using responsibility-based routing nodes, KIM receivesthe type of the
document being routed and the name of the node; it then locates any responsibilities which have the same
routing node name and either the same document type name or the name of a parent document type (all
theway up to thetop of the hierarchy). Thelist of people who gets the request consists of anyone who has
been assigned arole with any of the matching responsibilities.

Using the Workflow Document API

Overview

This document explains features of the workflow document API. There are two interfaces in KEW that
allow you to create a document for delivery through workflow. The WorkflowDocument interface is
designed to create a new document in the workflow system once an action has been taken, such as sending
ad hoc requests. The Workflowlnfo interface is actually a convenience class for client applications that
query workflow. Both classes assist with implementing connections to KEW.

143

KEW

WorkflowDocument

The process for this section of the API involves creating the initial WorkflowDocument using a
constructor to create a new routable document in KEW. Once the object is defined, it initializes by
loading an existing routeHeaderd or by constructing an empty document of a specified documentType. A
number of methods can be invoked onceinitialization is complete and details of how those methods would
be invoked are outlined primarily in the Java Documentation at https://test.kuali.org/rice/rice-api-1.0-

javadocy/.

Document content methods modify the properties of a document's content. A specific case is
addAttributeDefinition(), where a Wor kflowAttribute is used to generate attribute document content that
will be appended to the existing document content. Another caseis adding a searchabl e attribute definition
with the addSear chableDefinition() method. More information on the various constructors, methods, and
objects relating to the WorkflowDocument class is available in the Java documentation found at https://
test.kuali.org/rice/rice-api-1.0-javadocs/org/kuali/rice/kew/service/\WorkflowDocument.html.

WorkflowlInfo

This class is the second client interface to KEW. The first time this object is initialized, the client
configuration is accessed to determine how to connect to KEW. Methods invoked from this class can
grab the routing header information based on the principleld, or return a set of Action Requests for a
document that’ sin route based on the routeHeader 1 d, the nodeName and the principal ld. Moreinformation
on the various constructors, methods, and objects relating to the WorkflowInfo class is available in the
Java documentation found at https.//test.kuali.org/rice/rice-api-1.0-javadocs/org/kuali/rice/kew/service/
Workflowlnfo.html.

Creating an eDocLite Application

Overview

eDocLiteisasimple, form-based system that is built into Kuali Enterprise Workflow (KEW). It facilitates
rapid development and implementation of simple documents and validation rules using XML. Use it for
simple documents with simple route paths. Y ou can integrate it with larger applications using a database
layer post-processor component.

eDocLite uses an XSLT style sheet for custom presentation and XML to define form fields. The actua
form display is called an EDL. This diagram shows how these objects are related:

Key ldeas:

* Rapid implementation and devel opment solution for simpler documents
» Easily re-configured

* Easily manageable

» Entirely web-based from design/devel opment and user perspectives

* No java code required for developments; only XML with optional javascript for client side editing
(workflow handles execution)

» Somevalidation javascript is automatically generated like regular expression editing and 'required field
checking'.

144

https://test.kuali.org/rice/rice-api-1.0-javadocs/
https://test.kuali.org/rice/rice-api-1.0-javadocs/
https://test.kuali.org/rice/rice-api-1.0-javadocs/org/kuali/rice/kew/service/WorkflowDocument.html
https://test.kuali.org/rice/rice-api-1.0-javadocs/org/kuali/rice/kew/service/WorkflowDocument.html
https://test.kuali.org/rice/rice-api-1.0-javadocs/org/kuali/rice/kew/service/WorkflowInfo.html
https://test.kuali.org/rice/rice-api-1.0-javadocs/org/kuali/rice/kew/service/WorkflowInfo.html

KEW

Figure 3.24. EDL Controller Chain

EDL Controller
Chain

Empny
HTML
EOL | ™ =L b Document
Serdel Dacumeant
Euali Rice
standalon e Fre
Fracessors ®SLT
S esheat
Transi armation
AR Config
Frocessors
Fost Papulated
Processors 5 XML
T)
e
Components

Field Definitions
Y ou need to define eDoclL ite fields to capture data that is passed to the server for storage.
Key Information about eDocL ite fields:
» SaveeDoclite datafields as key value pairsin two columns of a single database table.
» Usethe xml element name as the key.
* You do not need to make any database-related changes when building eDocL ite web applications.

* Store documents by document number.

Make al field names unique within a document type.

145

KEW

The code example below focuses on the EDL section of the eDocL ite form definition. Thefile Edoclite.xsd
found in source under the impl/src/main/resources/schemal directory describes the xml rules for this
section.

Note that the first few lines proceeding <edl name="eDoc.Examplel.Form" relate to namespace
definitions. These are common across al eDocL ites, so this guide does not discuss them.

In this example, any XML markup that has no value shown or that is not explained offers options that
are not important at thistime.

<?xm version="1.0" encodi ng="UTF-8"?>
<data xm ns="ns:wor kfl ow' xm ns:xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" xs
<edoclite xm ns="ns:workfl ow eDocLite " xsi:schemalLocati on="ns: workfl ow eDocL

<edl nane="eDoc. Exanpl el. Fornmt title="Exanple 1">
<security />
<createlnstructions>** Questions with an asterisk are required.</createlns
<instructions>** Questions with an asterisk are required.</instructions>
<val i dations />
<attributes />
<fi el dDef name="user Nane" title="Full Name">
<di spl ay>
<type>t ext </type>
<met a>
<nane>si ze</ nane>
<val ue>40</val ue>
</ net a>
</ di spl ay>
<val i dati on required="true">
<nessage>Pl ease enter your full name</nessage>
</validation>

</fiel dDef >
<fi el dDef nane="rqstDate" title="Requested Date of Inplenentation:">
<di spl ay>
<type>t ext</type>
</ di spl ay>

<val i dati on required="true">
<regex>"[0-1]?[0-9](/|-)[0-3]?[0-9]1(/|-)[1-2][0-9][0-9][0-9] $</reg
<nessage>Enter a valid date in the format mmi dd/yyyy. </ message>
</validation>

</fiel dDef >
<fi el dDef nane="request Type" titl e="Request Type:">
<di spl ay>

<type>radi o</type>

<val ues titl e="New' >New</ val ues>

<val ues title="Modification">Mdification</val ues>
</ di spl ay>
<val i dati on required="true">

<nessage>Pl ease sel ect a request type.</nmessage>
</validation>

</fiel dDef >
<fi el dDef attri buteName="EDL. Canpus. Exanpl e" name="canpus" titl e="Campus:"
<di spl ay>

<type>sel ect </ type>
<val ues title="1UB">l UB</val ues>

146

KEW

<val ues title="1UPU ">l UPUl </ val ues>
</ di spl ay>
<val i dation required="true">

<nessage>Pl ease sel ect a canpus. </ nessage>
</validation>

</fiel dDef >
<fi el dDef nane="description” title="Description of Request:">
<di spl ay>
<t ype>t ext area</type>
<met a>

<name>r ows</ nane>
<val ue>5</ val ue>

</ net a>

<net a>
<name>col s</ nane>
<val ue>60</ val ue>

</ net a>

<net a>
<nanme>w ap</ nane
<val ue>har d</ val ue>

</ net a>
</ di spl ay>
<val idation required="fal se" />
</fiel dDef >
<fi el dDef nane="fundedBy" title="My research/sponsored programwork is fun
<di spl ay>

<t ype>checkbox</type>
<values title="My research/sponsored programwork is funded by N F

</ di spl ay>

</fiel dDef >

<fi el dDef nane="researchHumans"” title="M/ research/sponsored program work
<di spl ay>

<t ype>checkbox</type>
<values title="My research/sponsored programwork involves human s
</ di spl ay>
</fiel dDef >
</ edl >
</ eDoclLi te>
</ dat a>

Inthe EDL XML file, field definition is embodied in the edl element. This element has a name attribute
that is used to identify this file as a definition of an EDL form. It often has atitle for display purposes.

Examination of this code shows that
* Individual fields have names, titles, and types. The types closely match html types.

* You can easily use simple validation attributes and sub-attributes to ensure that a field is entered if
required and that an appropriate error message is presented if no value is provided by the web user.

* Regular expressions enhance the edit criteriawithout using custom JavaScript. (There are several ways
that you can invoke custom JavaScript for afield, but they are not shown in this example.)

« Animportant field named campus has syntax that definesthe value used to drive the routing destination.
(In more complex documents, several fields are involved in making the routing decision.)

147

KEW

XSLT Style Sheet

The next section of the EDL XML fileisthe XSLT style sheet. It renders the EDL that the browser will
present and contains logic to determine how data is rendered to the user.

A major workhorse of the XSLT code is contained in a style sheet library caled widgets.xml. In the
example below, it'sincluded in the style sheet using an xdl:include directive.

Workflow Java classes have API’ sthat offer methods that supply valuable information to the XSLT style
sheet logic. XML allows you to interrogate the current value of EDL-defined fields, and it provides a
variety of built-in functions.

Together, these helpers allow the eDoclL.ite style sheet programmer to focus on rendering fields and
titles using library (widget) calls and to perform necessary logic using the constructs built into the XML
language(if, choose...when, etc.).

Thisisthe area of eDocL ite development that takes the longest and is the most tedious. Much of what the
eDocL ite style sheet programmer writes focuses on which fields and titles appear, in what order, to which
users, and whether the fields are readOnly, editable, or hidden.

Below isthe style sheet section of the EDL XML form for our example. It contains embedded comments.

<I-- widgets is sinmply nore xslt that contains conmmon functionality that greatly s
It is sonewhat conplicated but does not require changes or full understanding unle
<xsl :include href="w dgets" />

<xsl :out put indent="yes" nethod="htm " omt-xm-declarati on="yes" version="4.01" /

<l-- variables in the current version of xslt cannot be changed once set. Below th
val ues contained in workflow xml . Not all of these are used in this formbut are s
The ones prefixed with my-class are nmethods that are exposed by workflow to eDoclLi
<xsl :variabl e name="acti onabl e" sel ect ="/ docunent Cont ent/ docunent St at e/ acti onabl e"
<xsl :vari abl e name="docHeader | d" sel ect ="/docunent Cont ent/docunent St at e/ docl d" />

<xsl:variabl e name="edit abl e" sel ect="/docunent Cont ent/docunent St at e/ edi tabl e" />

<xsl :vari abl e nanme="gl obal ReadOnl y" sel ect ="/ docunent Cont ent / docunent St at e/ edi t abl
<xsl :variabl e name="docSt at us" sel ect ="//docunent St at e/ wor kf | owDocunent St at e/ st at u
<xsl :vari abl e name="i sAt Nodel niti ated" sel ect="ny-cl ass:i sAt Node($docHeaderld, 'In
<xsl:variabl e name="isPastlnitiated" sel ect="ny-class:isNodel nPrevi ousNodeList('In
<xsl:variabl e name="isUserlnitiator" select="ny-class:isUserlnitiator($docHeaderld
<I-- <xsl:variable name="wor kfl owlser" sel ect ="my-cl ass: get Wr kf| owlser (). aut hent i
<xsl : param name="overri deMai n" select=""true' " />

<I'-- mai nForm begi ns here. Execution of stylesheet begins here. It calls other ten
Position of tenplates beyond this point do not matter. -->
<xsl :tenpl ate name="mai nFor nt' >
<htm xm ns="">
<head>
<script |anguage="javascript" />
<xsl:call-tenpl ate name="htm Head" />
</ head>
<body onl oad="onPageLoad() ">
<xsl:call-tenpl ate name="errors" />
<l-- the header is useful because it tells the user whether they are
<xsl:call-tenpl ate nanme="header" />
<xsl:call-tenpl ate name="instructions" />

148

KEW

<xsl :variabl e name="fornirarget" sel ect="'eDocLite '" />

<I-- validateOnSubmt is a javascript function (file: edoclitel.js) wh

but does not
requi re nodification unless enhancenents are required. -->

<formaction="{$fornTarget}" enctype="nultipart/formdata" id="edoclit

<xsl:call-tenpl ate nanme="hi dden- parans" />
<xsl:cal |l -tenpl ate name="nmai nBody" />
<xsl:call-tenpl ate name="notes" />

<xsl:call-tenpl ate nanme="buttons" />

</formp
<xsl:call-tenpl ate nane="footer" />
</ body>
</htm >
</ xsl : tenpl at e>
<l-- mmi nBody tenpl ate begins here. It calls other tenplates which can call other
<xsl :tenpl at e name="nmai nBody" >
<l-- to debug, or see values of previously created variables, one can use the
for exanple, uncomment the following line to see value of $docStatus. It
<!-- $docSt at us=<xsl : val ue- of sel ect="$docStatus" /> -->
<l-- rest of this all is within the formtable -->
<table xm ns="" align="center" border="0" cell paddi ng="0" cell spaci ng="0" cl as
<tr>
<td align="left" border="3" class="thnormal" col span="1">

<h3>
My Page

EDL EDoclite Example
</ h3>

</td>
<td align="center" border="3" class="thnormal" col span="2">

<h2>eDoclite Exanple 1 Fornk/ h2></td>
</tr>
<tr>

<td cl ass="headercel | 5" col span="100% >
User | nformation
</td>
</tr>
<tr>
<td class="t hnormal ">
<xsl:call-tenpl ate name="w dget _render">
<xsl:w t h-param name="fi el dNane" sel ect=""user Nane'"
<xsl:w t h- param name="r ender Crd" select=""title " />
</ xsl :call-tenpl at e>
*
</td>
<td cl ass="datacel | ">
<xsl:call-tenpl ate name="w dget _render">
<xsl:w t h-param name="fi el dNanme" sel ect=""user Nane'"

149

/>

/>

KEW

<xsl:w t h- param name="r ender Cd" select=""input'" />
<xsl : wi t h- param nanme="readOnl y" sel ect="$i sPastInitiated" />
</ xsl :call-templ at e>
</td>
</tr>
<tr>
<td cl ass="headercel | 5" col span="100% >
Qt her | nformation
</td>
</tr>
<tr>
<td class="t hnormal ">
<xsl:call-tenpl ate name="w dget _render">
<xsl:w th-param name="fi el dName" select="'rqstDate' " />
<xsl:w t h- param name="r ender Crd" select=""title " />
</ xsl :call-tenpl at e>
*
</td>
<td cl ass="datacel | ">
<xsl:call-tenpl ate name="w dget _render">
<xsl:w t h-param name="fi el dName" select="'rqstDate' " />
<xsl:w t h- param name="r ender Cmd" sel ect=""input'" />
<xsl : wi t h- param nanme="r eadOnl y" sel ect="$i sPastInitiated" />
</ xsl :call-templ at e>
</td>
</tr>
<tr>
<td class="t hnormal ">
<xsl:call-tenpl ate name="w dget _render">
<xsl:w t h-param name="fi el dNanme" sel ect=""'canpus'" />
<xsl:w t h- param name="r ender Crd" select=""title " />
</ xsl :call-tenpl at e>
*
</td>
<td cl ass="datacel | ">
<xsl:call-tenpl ate name="w dget _render">
<xsl:w t h-param name="fi el dNanme" sel ect=""'canpus'" />
<xsl:w t h- param name="r ender Cmd" sel ect=""input'" />
<xsl : wi t h- param nanme="readOnl y" sel ect="$i sPastInitiated" />
</ xsl :call-tenpl at e>
</td>
</tr>
<tr>
<td class="t hnormal ">
<xsl:call-tenpl ate name="w dget _render">
<xsl:w t h-param name="fi el dNane" sel ect=""description' " />
<xsl:w t h- param name="r ender Crd" select=""title " />
</ xsl :call-tenpl at e>
</td>
<td cl ass="datacel | ">
<xsl:call-tenpl ate name="w dget _render">
<xsl:w t h-param name="fi el dNane" sel ect=""description' " />
<xsl:w t h- param name="r ender Crd" sel ect=""input'" />
<xsl : wi t h- param nanme="readOnl y" sel ect="$i sPastInitiated" />

150

KEW

</ xsl :call-templ at e>
</td>
</tr>
<tr>
<td class="thnormal " col span="2">
(Check all that apply)

</td>
</tr>
<tr>
<td cl ass="datacell" col span="2">
<xsl:call-tenpl ate name="w dget render">
<xsl:w t h-param name="fi el dName" sel ect=""'fundedBy'" />
<xsl:w t h- param name="r ender Crd" select=""input'" />
<xsl : wi t h- param nanme="readOnl y" sel ect="$i sPastInitiated" />
</ xsl :call-tenpl at e>

<xsl:call-tenpl ate name="w dget _render">
<xsl:w t h-param name="fi el dName" sel ect=""'researchHumans'" />
<xsl:w t h- param name="r ender Cd" sel ect=""input'" />
<xsl : wi t h- param nanme="readOnl y" sel ect="$i sPastInitiated" />
</ xsl :call-tenpl at e>

</td>
</tr>
<tr>

<td cl ass="headercel | 1" col span="100% >
Supporting Mterial s</td>

</tr>
<tr>
<td class="thnormal " col span="100% >Use the Create Note box below to a
</tr>
</t abl e>
<br xmns="" />

</ xsl : tenpl at e>
<xsl:tenpl ate name="nbsp">
<xsl : text di sabl e-out put - escapi ng="yes" >&anp; nbsp; </ xsl : t ext >
</ xsl : tenpl at e>
</ xsl : styl esheet >
</style>

The beginning portion of this style sheet defines some XSL variables that are often useful to drive logic
choices. For simplicity, this example uses very little logic.

TheisPastInitiated variable drives whether a user-defined EDL field renders readOnly or not.

The mainform often serves to call some common widget templates that add canned functionality. The
mainform then calls the mainBody template, which creates the html to render the EDL-defined fields. The
mainform then (optional) calls the notes, buttons, and footer templates.

The majority of your programming effort goes into the mainBody, where calls to widget_render generate
much of the field-specific title and value information. Various options can be passed into widgets render
to allow client events to be executed. The mainBody is usually one or more html tables and sometimes
makes calls to programmer-defined sub-templates. The XSLT stylesheet generates the HTML rendered
by the browser.

151

KEW

Themain and repeating theme of the exampleinvolves calling widget_render with thetitle of an EDL field,
followed by calling widget_render again with theinput field. Widgets are awrapper for XSLT stylesheets
that offer the ability to create HTML. Paramters offer different ways to render HTML when making calls
to widgets. Note that the variable value $isPastlnitiated is passed as a parameter to widgets_render so that
the html readOnly attribute is generated when the form is past the initiator’ s node.

Lazy importing of EDL Styles

Y ou can configure Riceto lazily import an eDocL ite style into the database on demand by setting a custom
configuration parameter.

» Create a custom stylesheet file, eg. myricestylexml containing a style with a unique name, e.g.
"xyzAppStyle' and storeit in alocation that islocally accessible to your application server.

e Set a configuration parameter named edl.style<style-name> with the value being a path to
the file containing your style. Following the example above, you would name your parameter
"edl.stylexyzAppStyle".

The stylesheet file could referenced could contain afull EDL, or be astandalone EDL style. Onfirst use of
that named style by an EDL, thefile will be parsed and the named style will be imported into the database.
The following example contains just an eDocLite XSL styleshest:

<data xm ns="ns:workfl ow' xm ns:xsi="http://ww.w3. org/ 2001/ XM_Schema- i nst ance" xs
<edoclite xm ns="ns: workfl ow EDocLite" xsi:schemaLocati on="ns: workf| ow EDocLi t
<styl e name="xyzAppStyl e">
<xsl : styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr
<l-- your custom styl esheet -->
</ xsl : styl esheet >
</style>
</ edoclite>

</ dat a>

Note that in a default Rice installation (starting in version 1.0.2), the "widgets" style is lazily imported
using thismechanism. In common-config-defaults.xml (whichislocated intherice-impl jar), thefollowing
parameter is defined:

<param nane="edl| . styl e. w dget s" override="fal se">cl asspath: org/ kuali/ricel/ kew edl/

If you wanted to override that file, you could define your own parameter in your Rice XML configuration
file using the above example as atemplate, but removing the override="false" attribute.

Document Type

A document type defines the workflow process for an eDocL.ite. Y ou can create hierarchies where Child
document types inherit attributes of their Parents. At some level, a document type specifies routing
information. The document type definition for our first example follows. It contains routing information
that describes the route paths possible for a document.

<?xm version="1.0" encodi ng="UTF-8"?>
<data xm ns="ns:workfl ow' xm ns:xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" xs
<document Types xm ns="ns: wor kf | ow Docunent Type" xsi:schemalLocati on="ns:workfl o
<document Type>
<nanme>eDoc. Exanpl elDoct ype</ nane>

152

KEW

<par ent >eDoc. Exanpl el. Par ent Doct ype</ par ent >
<descri pti on>eDoc. Exanpl el Request Document Type</descri ption>
<l abel >eDoc. Exanpl el Request Docunent Type</| abel >
<post Processor Nane>or g. kual i . ri ce. kew. edl . EDocLi t ePost Processor </ post P
<super User G oupNane nanespace="KUALI ">eDoc. Exanpl el. Super User s</ super U
<bl anket Appr ovePol i cy>NONE</ bl anket Appr ovePol i cy>
<def aul t Excepti onGr oupNanme nanespace="KUALI ">eDoc. Exanpl el. def aul t Exce
<docHandl er >${wor kf | ow. ur |}/ EDocLi t e</ docHandl| er >
<active>true</active>
<r out i ngVer si on>2</r out i ngVer si on>
<r out ePat hs>
<r out ePat h>
<start nane="lnitiated"” nextNode="eDoc. Exanpl el. Nodel" />
<request s nane="eDoc. Exanpl el. Nodel" />
</ r out ePat h>
</ rout ePat hs>
<r out eNodes>
<start name="Initiated">
<activati onType>P</ acti vati onType>
<mandat or yRout e>f al se</ mandat or yRout e>
<fi nal Approval >f al se</fi nal Approval >
</start>
<request s nane="eDoc. Exanpl el. Nodel" >
<activati onType>P</ acti vati onType>
<rul eTenpl at e>eDoc. Exanpl el. Nodel</rul eTenpl at e>
<mandat or yRout e>f al se</ mandat or yRout e>
<fi nal Approval >f al se</fi nal Approval >
</ request s>
</ rout eNodes>
</ docunent Type>
</ docunent Types>
</ dat a>

The Parent element refers to a hierarchical order of the document types. Usually, you create one Root
document type with limited but common information. Then, under that, you create more specific document
types. In our example, there are only two levels.

The Root document type definition for our first example:

<?xm version="1.0" encodi ng="UTF-8"?>
<data xm ns="ns:workfl ow' xm ns:xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" xs
<document Types xm ns="ns: wor kf | ow Docunent Type" xsi:schemalLocati on="ns:workfl o
<document Type>
<nanme>eDoc. Exanpl el. Par ent Doct ype</ nanme>
<descri pti on>eDoc. Exanpl el Parent Doctype</description>
<l abel >eDoc. Exanpl el Par ent Docunent </ | abel >
<post Processor Nane>or g. kual i . ri ce. kew. edl . EDocLi t ePost Processor </ post P
<super User G oupNane nanespace="KUALI ">eDoc. Exanpl el. Super User s</ super U
<bl anket Appr ovePol i cy>NONE</ bl anket Appr ovePol i cy>
<docHandl er >${ wor kf | ow. ur |}/ EDocLi t e</ docHandl| er >
<active>true</active>
<r out i ngVer si on>2</r out i ngVer si on>
<routePaths />
</ docunent Type>

153

KEW

</ docunent Types>
</ dat a>

A Child document type can inherit most element values, although you must define certain element values,
like postProcessor, for each Child document type.

A brief explanation of elementsthat are not intuitiveisbelow. Y ou can find additional element explanations
by reading the Document Type Guide.

Parent DocType

postProcessor Name - Use the default, as shown above, unless special processing is needed.

blanketApprovePolicy — When specified as NONE, this means that a user cannot click a single button
that satisfies multiple levels of approval.

dochandler - Use the default, as shown above, so URLs are automatically unique in each environment,
based on settings in the Application Constants (i.e., unique in each Test environment and unique again
in Production).

active - Set this element to false to disable this feature.

routingVersion - Use the default, as shown above.

Child DocType

name - The name value must exactly match the value in the EDL Association document type element.
parent - The parent value must exactly match the name value of the parent document type.

superUser GroupName - A group of people who have specia privileges that can be defined using the
management service that’s part of the KIM module.

defaultExceptionGroupName - A group of people who address a document of this type when it goes
into Exception routing

routePathsand r outePath - Theinitial elementsthat summarizetherouting path the document will follow.
In our example, an initiator fills out an eDocLite form. When the initiator submits that form, where it is
routed depends on the value in the Campus field. There is only one destination node in our first example.
The submitted form goes to either the IUB person or the IUPUI person, depending on the selection in the
Campus field.

In most cases, aworkgroup of peopleisthe destination for an EDL form, not a single person. Workgroups
are used as destinations because anyone in the workgroup can open the document, edit it, and click an
Action button that routes the document to the next node. This prevents delays when someoneis out of the
office and a document awaits their action.

When the initiator submits the document, KEW adds that document to the Action List of the destination
person or workgroup. The destination person or workgroup can then open the document, edit it (if any
fields are available for editing), and click an Action button such as Appr ove, which routes the document
onward. In our case, thereis no further destination, so when the destination person or workgroup approves
the document, the document becomes Final (it is finished). Some real-life examples have ten or more
nodes for approvals or other actions. A document may bypass some of those nodes, depending on data
placed into the form by previous participants.

154

KEW

routeNodes- Redefines the route path.
activationType

» P standsfor parallel and isamost aways used. This value makes more sense when considered from a
target node perspective. From that perspective, it means that if aworkgroup of people all received the
document in their Action List, any one, in any order, can approve it. Once it is approved by anyonein
the workgroup, it is routed to the next node, and KEW removes the document from the Action List of
al the people in the workgroup. activationType

» Sstandsfor sequential and is reserved for special cases where rules can specify that two or more people
inaworkgroup must take Action on adocument, in aspecific order, before KEW will route the document
to the next node.

mandatoryRoute - Use false unless there is a specia condition to solve. When this parameter is set to
true, the document goes into exception routing if an approve request isn't generated by the ruleTemplate.
This means that you are only expecting an approve, and nothing else.

finalApproval - Use false unless there is a specia condition to solve. When this parm is set to true, the
document goesinto exception routing if approves are generated after thisroute node. This means this must
be the last Action, or it will go into exception routing. (Be careful, because if this parameter is set to true
and a user clicks a Return to Previous button, then the next action button clicked sends the document into
exception handling.)

requests name="..." - Defines the name of the node

ruleTemplate - A named entity type that helps define which routing rule fires. In our example, the
ruleTemplate name is the same as the request name. These field values do NOT need to be the same. They
are simply identifiers.

Rule Attributes

The RuleAttribute is a mechanism that can relate directly to an edl field. Most rule attributes are of the
xml rule attribute type. This type uses an xpath statement which is used by the workflow engine to match
to arule that fires or does not fire.

In the below example, it can be seen that the edl defined field named 'campus' and its permissible values
are defined. Then in the xpathexpression element says, when the value in the edl field named ‘campus
matches the rule that contains 'lUB' the rule will fire. Or when the value in the edl field named ‘campus
matches the rule that contains 'TUPUI'" that rule will fire instead. Rules firing route adocument to a person
or aworkgroup of people.

Tomakeanother rule attributefor adifferent field, clonethisone, change all referencesto thefield ‘campus
to your different edl field name. Then cut and paste in the values section. Then in the edl definition, the
new field must carry the extra syntax 'attributeName=". For example the eld definition for campus looks
likethis:

<fi el dDef name="canpus" title="Canpus" worKkfl owType="ALL">
Rule Routing
<?xm version="1. 0" encodi ng="UTF-8"?>

<data xm ns="ns:workfl ow' xm ns:xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" xs
<rul eAttributes xm ns="ns:workfl ow Rul eAttri bute" xsi:schenmaLocati on="ns: wor kf

155

KEW

<rul eAttri bute>
<nanme>EDL. Canpus. Exanpl e</ nane>
<cl assName>or g. kual i . ri ce. kew. rul e. xm rout i ng. St andar dGener i cXM_Rul eAt
<l abel >EDL Campus Routi ng</| abel >
<descri pti on>EDL School Routi ng</description>
<type>Rul eXm Attri but e</type>
<rout i ngConfi g>
<fi el dDef nane="campus” title="Canpus" workfl owType="ALL" >
<di spl ay>
<type>sel ect </ type>
<val ues title="1UB">l UB</val ues>
<val ues title="1UPU ">l UPUl </ val ues>
</ di spl ay>
<val idation required="fal se" />
<fi el dEval uati on>
<xpat hexpressi on>// canmpus = wf:rul edata(' canpus’') </ xpat hex
</fiel dEval uati on>
</fiel dDef >
<xm Docunent Cont ent >
<canpus>%anpus%/ canpus>
</ xm Docunent Cont ent >
</ routingConfig>
</rul eAttribute>
</rul eAttributes>

</ dat a>

Rule attributes can have a different types such a searchable, but this type does not have to do with routing.
Instead it relates to additional columns that are displayed in doc search for a particular doc type.

Ingestion Order

Many components can go in at any time, but it is advisable to follow a pattern to minimize the conflicts
that can occur. A few pieces are co-dependent.

1

2.

8.

9.

Basic Components:

Widgets.xml (If changed or not previously in the environment)

. Kim Group(s)
. Rule Attributes
. Rule Template(s)

. Parent Doctype (often no routing so data is more generic, but do put routing here if children will use

common routing.)

. Children Doctype(s) (routing defined here or on Parent)

EDL Form

Rule routing rule (Used if rules are created; explained later- 1 per parent doctype)

10.Rules (Create or Ingest)

156

KEW

11.Anything else - Like optional custom Email Stylesheet

Customizing Document Search

Each document carries an XML payload that describes metadata. Y ou can specify pieces of that metadata
to be indexed and searched on. This area focuses on the interface for searching through that data. For
each Document Search page, you must setup the XML configuration files to define the search criteria
and result fields.

Custom Search Screen

As an example of customizing a Document Search screen, we'll use a customized Offer Request screen:
Figure 3.25. Custom Sear ch Screen:Offer Request Example

Document Search detailed search SUPEFUSEr S

Document Type: |foerRequest

Initiator: |

Document Id: |

Group Viewer: | %

Date Created From: | H
Date Created To: | H

OAA#: ||

Department: |

Campus: I:

School: I:

Mame this search (optional): |

search clear cancel

What are custom document search attributes?

Custom document search attributes are associated with a document type. They specify which pieces of
document data will be made searchable for documents of that type. When you take action on a document
in the workflow engine, a background process extracts the custom search attributes from the document
and adds them to a database table where they can be queried as part of a custom document search. These

157

KEW

custom search attributes are defined and associated along with document types in WorflowData XML
files, and are added to Rice via the XML ingester. They are defined within (using XPath notation) /
data/ruleAttributes/ruleAttribute tags, and are associated with specific document types within /data/
document Types/documentType/attributes/attribute tags.

A custom search attribute's logic is defined in a Java class that implements the SearchAttribute interface.
A SearchableAttribute implementation defines:

» What parts of the document content will be made searchable

Which fields will be present in the document search interface

Which columns will be shown in the search results
» What is considered valid user input for the custom search fields

Thereisabuilt in SearchAttribute implementation, SearchableX MLAttribute, that is highly configurable
viaXML and will meet most requirements. If thereisneed for more complex or specific behavior, acustom
SearchAttribute implementation can be written and utilized as well.

DocumentSear chAttributes is much like XM L RuleAttributes, except that DocumentSearchAttributes
isresponsible for drawing input fields on the Document Search form and collecting data for the query, as
opposed to analyzing data for routing evaluation (done by XML RuleAttributes).

Hide Search Fields and Result Columns

In asearch configuration, the <visibility> tag lets you configure search criteriato be included or excluded
from the entry of search criteria or from the search results. Y ou can use the <visibility> tag on all field(s)
and column(s) inthe Document Search results except for Document 1d and Route L og, which must aways
bevisible.

Hide a result column

<visibility>
<col um vi si bl e="fal se"/>

</visibility>

Hide a search field

<visibility>
<field visible="fal se"/>
</visibility>

Field and column visibility based on workgroup membership

Use code like thisin the XML file to display column(s) and field(s) based on the user's workgroup:

<visibility>

<field>
<i sMenber OF Wor kgr oup>Wor kf | owAdm n</i sMenber OFf Wor kgr oup>
</field>

158

KEW

<col um>

<i sMenber O Wor kgr oup>Wor kf | owAdm n</i sMenber OF Wor kgr oup>
</ col um>
</visibility>

The example above indicates that the field and column only display for users who are a member of the
workgroup, WorkflowAdmin.

Configure visibility for both field and column

A shortcut to configure the visibility for both fields and columns is the <fieldAndColumn> tag. A
<fieldAndColumn> example;:

<visibility>
<fi el dAndCol urm>
<i sMenber O Wor kgr oup>Wor kf | owAdm n</i sMenber Of Wor kgr oup>
</ fi el dAndCol um>
</visibility>

No field visibility

Declaring <type> as hidden is equivalent to setting visibility to false. An example of <type> and
<vighility>, equivalent to a hidden field:

<sear chi ngConfi g>
<fi el dDef nane="departnment” title="Departnent">

<di spl ay>
<type>t ext</type>
</ di spl ay>

<visibility>
<field visible="fal se"/>
</visibility>
<fi el dEval uati on>
<xpat hexpr essi on>nor nal i ze- space(substri ng- before(//departnment,
</fiel dEval uati on>
</fiel dDef >

</ sear chi ngConfi g>

<l-- The above is equivalent to the foll owi ng searching configuration -->

<sear chi ngConfi g>
<fi el dDef nane="departnment” title="Departnent">

<di spl ay>
<t ype>hi dden</type>
</ di spl ay>

<fi el dEval uati on>
<xpat hexpr essi on>nor mal i ze- space(substri ng- before(//departnment,

</ fiel dEval uati on>
</fiel dDef >

</ sear chi ngConfi g>

159

1)) <

1)) <

KEW

Configure Lookup Function

To make a lookupable available on the Document Search screen, you can use the <quickfinder> tag in
the attribute definition. Y ou can use the terms quickfinder, lookup, and lookupable interchangesbly.

For example, you could set up an organizational hierarchic concept such asChartsand Or gstoimplement
a search. You could set up the code to perform this search using the ChartOrgL ookupablel mpl
institutional plugin. Thisis an example of a standard lookupable component.

In the ingtitutional plug-in, ChartOrgL ookupablel mpl isidentified in the LookupableServiceExtension
by the name of ChartOrgL ookupablelmplservice. ChartOrgL ookupablel mpl exposes two return
parameters, which are:

» Fin_coa_cd: Represents the chart code
» Org_cd: Represents the organization code

An XML example of setting up a lookupable on the Document Search screen:
ChartOrgSear chAttributexml

<rul eAttri bute>
<name>Chart Or gSear chAt tri but e</ nane>
<cl assNanme>org. kual i . ri ce. kew. docsear ch. xnl . St andar dGeneri cXM_Sear chabl eAttrib
<l abel >Test Qui ckfi nder SearchAttri bute</| abel >
<descri pti on>Test Qui ckfi nder Sear chAttri but e</ descri pti on>
<t ype>Sear chabl eXm Attri but e</type>
<sear chi ngConfi g>
<fi el dDef name="chart" title="Chart">

<di spl ay>
<type>t ext </type>
</ di spl ay>

<qui ckfi nder service="Chart OrgLookupabl el npl Servi ce" appliesTo="fin_co
<fi el dEval uati on>

<xpat hexpr essi on>// chart </ xpat hexpr essi on>
</fiel dEval uati on>

</fiel dDef >
<fi el dDef name="org" title="Organization">
<di spl ay>
<type>t ext </type>
</ di spl ay>

<qui ckfi nder service="Chart OrgLookupabl el npl Servi ce" appliesTo="org_cd
<fi el dEval uati on>
<xpat hexpr essi on>// or g</ xpat hexpr essi on>
</ fiel dEval uati on>
</fiel dDef >
<xnl Sear chCont ent >
<chart Org>
<chart >%hart %</ chart >
<or g>%or g%/ or g>
</chartOrg>
</ xm Sear chCont ent >
</ sear chi ngConfi g>
</rul eAttribute>

160

KEW

In the XML example above, there are two <quickfinder> tags representing the Chart (fin_coa cd) and
Org (org_cd) search. Notice the draw attribute for the Org (org_cd) search is set true. This means that
asearch icon will be displayed on the Document Search screen. Based on the XML code above, the final
Document Search screen looks like this:

Figure 3.26. Custom Document Search: Department Example
J(wnrkﬂnw Detailed Search Superuser Sesrch Clear Saved Searches

Searches

-

Search for a Documant:

Addfimodify EDEMN workgro
Document Type: sl

@
Initiator Network 1d: | | w2
Document Id:
from IE

Date Created: = T

Mame this search (optional):

search Clear

hothing found to display

Define Keyword Search

XML SearchableAttributeStdFloatRang is an XML searchable attribute that enhances the keyword search
function. It provides multiple searchable elementsfor auser to sel ect under the <searchingConfig> section.
This example is the XML Searchabl eAttributeStdF oatRang attribute in the default setting:

<rul eAttri bute>
<nanme>XM_Sear chabl eAtt ri but eSt dFl oat Range</ nane>
<cl assName>or g. kual i . ri ce. kew. docsear ch. xnml . St andar dGeneri cXM_Sear chabl eAttrib
<| abel >XML Searchabl e attri bute</| abel >
<descri pti on>XM. Searchabl e attri bute</description>
<type>Sear chabl eXml Attri but e</type>
<sear chi ngConfi g>
<fi el dDef nane="testFl oatKey" title="Float in the Water">

<di spl ay>
<type>t ext</type>
</ di spl ay>

<searchDefinition dataType="fl oat">
<rangeDefinition inclusive="fal se">
<l ower | abel ="starting"/>
<upper | abel ="endi ng"/>
</ rangeDefinition>
</ searchDefinition>
<fi el dEval uati on>

161

KEW

<xpat hexpr essi on>// put What ever Wir dsl want | nsi deThi sTag/ t est Fl oat Key
</fiel dEval uati on>
</fiel dDef >
<xm Sear chCont ent >
<put What ever Wr dsl want | nsi deThi sTag>
<t est Fl oat Key>
<val ue>Y% est Fl oat Key%/ val ue>
</t est Fl oat Key>
</ put What ever Wor dsl want | nsi deThi sTag>
</ xm Sear chCont ent >
</ sear chi ngConfi g>
</rul eAttribute>

Caution

Cautions about the <searchingConfig> section:
1. <searchDefinition> identifies the search data type and search ranges.

2. <rangeDefinition> contains both the <lower> and <upper> elements that set up the
parameters for the range search.

3. If you set the <display><type> tag to be date, then KEW automaticaly sets
<sear chDefinition dataType="datetime" >.

4. If the datatypethat you enter isnot adatetime, then KEW setsall datePicker attributesto false.
5. Based onthedataTypeyou enter, datePicker changesthe default setting to either true or false.

6. To use arange search, you can either set <sear chDefinition rangeSearch="true" > or put
the tag <rangeDefinition> under the <sear chDefinition> tag. Either way, KEW will force
arange search.

Custom Search Criteria Processing
URL Parameter Options

Y ou can modify the search criteriaand the display of the search screen by passing in URL parameters. Only
use this method when the configuration desired is preferable and not required. If aparticular piece of the
search criteriaisrequired, please see the section below titled, Using a Custom Search Criteria Processor.

Force the link to display the Detailed Search screen
Use the parameter isAdvancedSear ch and set the valueto YES.

Show or Hide All Criteria and/or the Workflow Header Bar
Thedefault value of each of these parameters must be set to true to show both the criteriaand the header bar.
 To hide the header bar, use the URL parameter header Bar Enabled and set the value to false.

» To hidethe search criteria (including the buttons), use the URL parameter sear chCriteriaEnabled and
set the value to false.

Passing in Common Search Criteria Values

Common search criteria fields can be populated by supplying their values in the URL query parameters.
For example, the following URL specifies a search on KualiNotification documents with initiator user 1:

162

KEW

http://yourl ocal i p: 8080/ Docunent Sear ch. do?docurnent TypeNanme=Kual i Noti fi cati on& ni ti
Common search criteriafieldsinclude:

» documentTypeName - the document type name

» documentld - the document id

* initiator PrincipalName - the initiator principal name

+» dateCreated - the document creation date

 approverPrincipalName - the approver principal name (use with advanced search)
 viewerPrincipalName - the viewer principal name (use with advanced search)
 applicationDocumentld - the application-supplied document id (use with advanced search)
» dateApproved - the approval date (use with advanced search)

» datel astM odified - the last modified date (use with advanced search)

 dateFinalized - the finalization date (use with advanced search)

* title - the document title(use with advanced search)

For a comprehensive list of search criteriafields, consult the

org. kuali.rice.kew inpl.docunent.search. Docunent SearchCriteriaBo

class.

The CURRENT_USER variable

In addition to literal field values, the 'CURRENT_USER' special token is dynamically replaced with an
identifier for the currently authenticated user when the search is executed. This value can be supplied in
any field (typically afield that takes a principal name or id). Several variants allow embedding different
types of user ids:

+ CURRENT_USER, CURRENT_USER.principalName, CURRENT_USER.authenticationld,
CURRENT _USER.a - the current user principal name

* CURRENT_USER.principalld, CURRENT_USER.workflowld, CURRENT_USER.w - the
current user principal id

* CURRENT_USER.emplld, CURRENT_USER.e - the current user employeeid

Example:

http://yourl ocal i p: 8080/ Docunent Sear ch. do?docurnent TypeNane=Kual i Noti fi cati on& niti
Passing in Searchable Attribute Values

Searchabl e attributes can be specified viaURL parameters by prefixing the searchabl e attribute field name
with documentAttribute..

Here is an example using two <fieldDef> objects with names firsthame and lastname:

http://yourl ocal i p: 8080/ Docunent Sear ch. do?docunent Attri bute. firstnane=John&documnen

163

KEW

Using a Custom Search Criteria Processor

The best way to do custom criteria processing is to implement a custom class that extends the
class org.kuali.rice.kew.docsear ch.DocumentSear chCriteriaProcessor. This file is ingested as a
Workflow Attribute in KEW, using the <type> of DocumentSear chCriteriaProcessor Attribute. Once
the Workflow Attribute is ingested, you can set the name value of the ingested attribute on one or more
document type xml definitions in the Attributes section. A document type can only have one Criteria
Processor Attribute.

Creating a child class of the DocumentSear chCriteriaProcessor class, a client can override various
methods to modify the behavior of the search. The DocumentSear chCriteriaProcessor class can access
the WorkflowUser object of the user performing the search. By having access to these objects, a custom
processor class could implement dynamic hiding and showing of specific criteriafields based on ordinary
user’s data or search field data.

Show or Hide All Criteria and/or the Workflow Header Bar

Here are some hel pful methods that you may override from the DocumentSear chCriteriaProcessor class
file to hide or display full criteria (including buttons) and/or the header bar:

* isHeaderBarDisplayed() — If this function returns false, KEW hides the header bar on both the
advanced and basic search screens (default return value istrue).

* isBasicSearchCriteriaDisplayed() — If this function returns false, KEW hides criteria on the basic
search screen (default return valueistrue).

 isAdvancedSearchCriteriaDisplayed() — If this function returns false, KEW hides the criteria on the
advanced search screen (default return value is true).

Hiding Specific Fields or Criteria Using Field Key Values

The DocumentSearchCriteriaProcessor classhas methodsthat allow classesto extend fromit for basic field
display. Thisis based on static string key values and makesit easier for clientsto allow basic field display
or to hide particular fields, whether they are searchable attributes or standard Document Search fields.

Y ou may override these methods from the DocumentSear chCriteriaProcessor class to do specific field
hiding by returning alist of string keys:

» getGlobalHiddenFieldK eys() — This function returns a list of keys (strings) for fields to be hidden on
both the basic and advanced search screen.

» getBasicSear chHiddenFieldK eys() — Thisfunction returnsalist of keys(strings) for fieldsto be hidden
on the basic search screen.

e getAdvancedSear chHiddenFieldK eys() — This function returns alist of keys (strings) for fieldsto be
hidden on the advanced search screen.

You can find the standard Document Search field key names in the class file
org.kuali.rice.kew.docsear ch.DocumentSear chCriteriaProcessor. They are constants prefixed by
the text CRITERIA_KEY . For example, the static criteria key for the Document Id field is
DocumentSear chCriteriaProcessor CRITERIA_KEY_DOCUMENT_ID.

A client can aso use searchable attribute <fieldDef> name values to hide fields in the same way that
you use constants. If a particular searchable attribute <fieldDef> name exists in alist returned by one of
the above hidden field key methods, the criteria processor class overrides the default behavior of that
<fieldDef> searchable attribute for visibility.

164

KEW

Here is a genera example of a custom criteria processor class that extends
StandardDocumentSear chCriteriaProcessor :

public class CustonDocunent SearchCriteriaProcessor extends Document SearchCriteriaP

/**
* Always hide the header bar on all search screens
*/

@verride
publ i c bool ean i sHeader Bar Di spl ayed() {

return Bool ean. FALSE;

/**

* Always hide all criteria and buttons on the advanced search screen
*/

@verride
publ i c Bool ean i sAdvancedSearchCriteri abDi splayed() {

return Bool ean. FALSE;
}

/**
* Hde the Initiator Criteria field on both Basic and Advanced Search screens
*/
@verride
public List<String> getd obal H ddenFi el dKeys() ({
Li st <Stri ng> hi ddenKeys = super. get d obal H ddenFi el dKeys();
hi ddenKeys. add(Document Sear chCriteri aProcessor. CRI TERI A KEY_I NI TI ATOR) ;
return hi ddenKeys;

/**
* Hide the Docunent Title criteria field on the basic search screen
* Hide the searchable attribute field with name 'givennanme' on the basic search
*/
@verride
public List<String> getBasi cSearchH ddenFi el dKeys() ({
Li st<Stri ng> hi ddenKeys = super. get AdvancedSear chH ddenFi el dKeys();
hi ddenKeys. add(Document Sear chCriteri aProcessor. CRI TERI A_KEY_DOCUMENT_TI TLE
hi ddenKeys. add(" gi vennane") ;
return hi ddenKeys;

165

KEW

/**
* Hide the Docunent Title criteria field on the advanced search screen
* Hide the searchable attribute field with name 'givennanme' on the basic search
*/

@verride
public List<String> get AdvancedSear chH ddenFi el dKeys() {
Li st<Stri ng> hi ddenKeys = super. get AdvancedSear chH ddenFi el dKeys();
hi ddenKeys. add(Docunent Sear chCriteri aProcessor. CRI TERI A_KEY_DOCUMENT_TI TLE
hi ddenKeys. add(" gi vennane");
return hi ddenKeys;

}
Custom Search Generation

The best way to do custom search generation or processing is to implement a custom class that extends
the class org.kuali.rice.kew.impl.document.lookup.DocumentSear chGenerator. This file is ingested
as a Workflow Attribute in KEW using the <type> value of DocumentSearchGeneratorAttribute. Once
the Workflow Attribute is ingested, the name value of the ingested attribute can be set on one or more
document type xml definitions in the Attributes section. A Document Type can only have one Search
Generator Attribute.

Using an extension of the DocumentSear chGenerator class, a client has access to override various

methods to modify the behavior of the search. Also, the DocumentSear chGenerator class has helper
methods that may be used to get the WorkflowUser object of the user performing the search.

Implementing a Custom Result Set Limit

To implement a custom result set limit, simply override the method
getDocument Sear chResultSetL imit() from the Standar dDocument Sear chGener ator class.

Custom Search Results

You can create a Custom Search Result table using an XML rule attribute of the type
DocumentSear chRsultXM L ResultProcessor Attribute.

The standard Search Result table:

166

KEW

Figure 3.27. Standard Doc Sear ch Results Set

20 itermns retrieved, displaying all itemns.

Document Document Type
Id
3091 Waiver Reguest
3085 Permission
3084 KRMS Term Maintenance Docurment
3083 KRMS Term Specification Maintenance

Document

The Standard Search Result fields:

Document Id
Document Type
Title

Status

Initiator

Date Created

Route log

Mew GenericPermissiar

Mew TermBo - Mew Ter

MNew TermSpecification
Document

Thefields of Document Id and Route L og are always shown in the farthest |eft and right columns of the
Search Result table. These fields cannot be hidden. Y ou can add both columns a second time in the XML
search result attributes if needed.

Custom XML Document Search Result Processor Attribute

An example of a custom XML result processor:

<rul eAttri bute>
<nane>Kual i Cont r act sAndG ant sDocSear chResul t Processor </ nane>

<cl assName>or g. kual i . ri ce. kew. docsear ch. xnm . Docunment Sear chXM_LResul t Processor | n

<l abel >Contracts &anp; G ants Docunent Search Result

Processor </ | abel >

<description>Attribute to allow for custom search results for Contracts &anp;

<t ype>Docunent Sear chXM_Resul t Processor Attri but e</type>

<sear chResul t Confi g overri deSear chabl eAttri butes="fal se" showSt andar dSear chFi e

<col um name="docTypelLabel " />
<col umm nane="docRout eSt at usCodeDesc" />
<colum nanme="initiator" />
<col umm nane="dat eCreat ed" />
</ sear chResul t Confi g>

167

KEW

</rul eAttribute>

The result of the code displayed above is a Search Result table with these columns:
» Document Id

* Document Type

» Status

* Initiator

» Date Created

* RouteLog

The key for the search result customization is focused on the elements and column tag(s) under the
<searchResultConfig>.

Attributes that are included in the <searchResultConfig> tag:

 overrideSearchableAttributes: Theindicator of whether to display the column name attributes defined
by the searchAttribute fieldDef 'name's configured by setting the true or false

« true: Display the <column> name attributes based on searchAttribute fieldDef names.
« false: Display the name based on the <column> attribute.

» showStandardSear chFields: Theindicator of whether to display the standard search fields by setting
the value true or false.

« true: Display the search result with the standard result fields; the name attribute of the <column> tag
should match the values in the java file DocumentSear chResult.java.

« false: Display the search result based on the custom result fields.
Attributes that can be added in a <column> tag:

* Name: The key for connecting the value of a particular attribute. For example, routeHeader|d equals
Document Id. For moreinformation about the attribute key, pleaserefer to the Key referencetable bel ow.

» Title: Thetitle of thefield
» Sortable: Theindicator of whether to sort the search result by setting the value true or false

« true: Sort option for this column is enabled to sort either alphabetically or numerically depending
on attribute type.

« false: Sort option for this column is disabled.

For <column> with sortable = true, the field title becomes a link and when a user clicks the link, KEW
sorts the results by that column.

An example of a custom ruleAttribute:

<rul eAttribute>
<name>Kual i Cont ract sAndG ant sDocSear chResul t Processor </ nane>

168

KEW

<cl assNanme>or g. kual i . ri ce. kew. docsear ch. xnm . Docunent Sear chXM_Resul t Processor | n
<l abel >Contracts &anp; G ants Document Search Result Processor</I|abel >
<description>Attribute to allow for custom search results for Contracts &anp;

<t ype>Docunent Sear chXM_Resul t Processor Attri but e</type>

<sear chResul t Confi g overri deSear chabl eAttri butes="true" showStandardSear chFi el

<col um name="docTypelLabel " />
<col utm nane="docRout eSt at usCodeDesc" />
<colum nane="initiator" />
<col um nane="dat eCreated" />
<col um nane="proposal _nunber"” />
<col um nane="chart" />
<col um name="or gani zati on" />
<col um name="proposal _award_status" />
<col um name="agency_report_nane" />
</ sear chResul t Confi g>
</rul eAttribute>

Table 3.17. Key Reference Table: Default field names and reference keys

Field Key

Document Id routeHeaderld

Document Type docTypel abel

Title documentTitle

Status docRouteStatusCodeDesc
Initiator initiator

Date Created dateCreated

Route Log routelog

Custom Document Search Result Processor Class File

You may aso use a custom Document Search Result Processor by extending the class
org.kuali.rice.kew.docsear ch.Standar dDocument Sear chResultProcessor and overriding individual
methods.

Differences between SearchableAttribute and
RuleAttribute

* SearchableAttribute does NOT have aworkflowType attribute in the field tag.

» For SearchableAttribute, xpathexpression indicates the value's location in the document; it does not
use wf:ruledata(''). For RuleAttribute, xpathexpression is a Boolean expression.

» Searchabl eAttribute uses xml SearchContent instead of xml DocumentContent; xmlDocumentContent is
for RuleAttribute.

Document Security

Kuali Enterprise Workflow provides a declarative mechanism to facilitate Document-level security for
these three screens:

» Document Search

169

KEW

* RoutelLog

» Doc Handler Redirection

Overview

1. You can create a security definition on a Document Type, which allows you to apply varying levels
and types of security.

2. Thisdefinition isinheritable through the Document Type hierarchy.

3. If security isdefined on aDocument Type, rowsfor that Document Typethat are returned from asearch
apply the security constraints and filter the row if the constraints fail.

4. Security constraints are evaluated against a document when its Route L og is accessed. If the security
constraints fail, the user receives a Not Authorized message.

5. Security constraints are evaluated against a document when a Doc Handler link is clicked from either
the Action List or Document Sear ch. If the security constraintsfail, the user receivesaNot Authorized

message.
Security Definition

Y ou can define the security constraints in the Document Type XML. Here's asample of the XML format:

<docunent Type>
<security>

<securityAttribute class="org. kuali.security.SecurityFilterAttribute"/>
<securityAttribute name="Test SecurityAttribute"/>
<initiator>true</initiator>
<r out eLogAut hent i cat ed>t r ue</ r out eLogAut hent i cat ed>
<searchabl eAttri bute i dType="enplid" name="enplid"/>
<gr oup>MyWor kgr oup</ gr oup>
<role all owed="true">FACULTY</rol e>

<rol e all owed="true">STAFF</rol e>
</security>

</ docunent Type>

There is an implicit OR in the evaluation of these constraints. Thus, the definition above states that the
authenticated user has access to the document if:

» Theattribute or g.kuali.security.SecurityFilter Attribute defines the user as having access OR

 Theattribute defined in the system by the name T est Secur ityAttributedefinesthe user as having access
OR

» Theuser istheinitiator of the document OR
» Theuser ison the Route Log of the document OR
» Theuser'sEMPL ID isequal to the searchable attribute on the document with the key of emplid OR

e Theuser isamember of the MyWorkgroup workgroup OR

170

KEW

* Theuser hasthe FACULTY role OR

* Theuser hasthe STAFF role
<initiator>
Validates that the authenticated user is or isn't the initiator of the document.

<routeLogAuthenticated>
Validates that the authenticated user is or isn't Route Log Authenticated.
Route Log Authenticated means that one of these istrue:
1. Theuser istheinitiator of the document.
2. The user has taken action on the document.
3. The user has received arequest for the document (either directly or as the member of aworkgroup).

Route Log Authenticated checks for security but does not simulate or check future requests.

<securityAttribute>

Vadlidates based on a custom-defined class. Class must have implemented the SecurityAttribute interface
class. There are two methods of defining a security attribute:

* Class Name: Define the fully qualified class name using the XML attribute class

<docunent Type>

<security>
<securityAttribute class="org. kuali.security.SecurityFilterAttribute"/>
</security>

</ docunent Type>

» KEW Attribute Name: Specify an already-defined attribute (via KEW XML ingestion) using the XML
attribute name

<docunent Type>
<security>
<securityAttribute nanme="Test SecurityAttribute"/>

</security>

</ docunent Type>

<searchableAttribute>

Validate that the authenticated User ID of the given idType is equivalent to the searchable attribute field
with the given name.

171

KEW

Thefollowing id types are valid:
* emplid
* authenticationid
* uuid
» workflowid
<group>
Validate that the authenticated user is a member of the workgroup with the given name.

<role>

Vadidate that the authenticated user has the given role. The existence and names of these
roles are determined by your setup in KEW. (You can create these roles when you implement
WebAuthenticationService.) Typically, the roles mirror your organization structure.

For example, you may choose to expose these roles:
» STAFF

* FACULTY

* ALUMNI

 STUDENT

* FORMER-STUDENT

* APPLICANT

« ENROLLED

« ADMITTED

* PROSPECT

* GRADUATE

« UNDERGRADUATE

If theroleis marked as allowed=true, than anyone with that role passes the security constraint. If therole

is marked as allowed=false, then if the individual has the given disallowed role but none of the allowed
roles, he or she fails the security check.

Order of Evaluation

The security constraints are evaluated in the following order. If any single constraint passes, it bypasses
evaluating the remaining constraints.

1. Security attribute

2. Initiator

172

KEW

3. Role
4. Workgroup
5. Searchable attribute

6. Route log authenticated

Security - Warning Messages

These security scenarios generate security warning messages:

Document Search

« If norows arefiltered because of security, the user sees the search result without any warning message
on the Document Sear ch page.

« If rows are filtered because of security, a red warning message on top of the Document Search page
shows how many rows were filtered. For example, "19 rows were filtered for security purposes.”

« If the initial result set returns more than the search result threshold (500 rows), and rows in the set
subsequently get filtered because of security, then a red warning message shows how many rows were
returned and filtered. For example, "Too many results returned, displaying only the first 450. 50 rows
were filtered for security purpose. Please refine your search.”

Route Log and Doc Handler

« If the defined security constraints stop a user from viewing a document, a red warning message shows
at the top of the page if they attempt to access the Route Log. For example, "Y ou are not authorized
to access this portion of the application.”

Service Layer

In an out-of -the-box installation of KEW, Document Security is
handled by org.kuali.rice.kew.doctype.DocumentSecurityServicelmpl, which implements the
org.kuali.rice.kew.doctype.DocumentSecurityService service interface.

Action List Configuration Guide

Outbox Configuration

The Outbox is a standard feature on the Action List and is visible to the user in the Ul by default. When
the Outbox is turned on, users can access it from the Outbox hyperlink at the top of the Action List.

The Outbox is implemented by heavily leveraging existing Action List code. When
an Action Item is deleted from the Action Item table as the result of a
user action, the item is sored in the KEW_OUT BOX ITM_T table, using the
org.kuali.rice.kew.actionitem.OutboxltemActionL istExtension object. This object is an extension of
the ActionltemActionListExtension. The separate object exists to provide a bean for OJB mapping.

TheWorkflow Preferencesdetermineif the Outbox isvisible and functioning for each user. The preference
iscalled Use Outbox. In addition, you can configure the Outbox at the KEW level using the parameter tag:

173

KEW

<par am nane="actionl i st. out box">true</ paranp

When the Outbox is set to false, the preference for individual users to configure the Outbox is turned off.
By default, the Outbox is set to true at the KEW level. Y ou can turn the Outbox off (to hideit from users)
by setting the property below to false:

<par am nane="actionl i st. out box. def aul t. preference. on">f al se</ paranp

This provides backwards compatibility with applications that used earlier versions of KEW.

Note

Notes on the Outbox:

« Actions on saved documents are not displayed in the Outbox.

» The Outbox respondsto all saved Filters and Action List Preferences.

« A unigque instance of a document only exists in the Outbox. If a user has a document in the

Outbox and that user takes action on the document, then the original instance of that document
remains in the Outbox.

Email Customization

KEW provides default email template for Action List notification messages that are sent. However, it is
also possible to customize this either globally or on a Document Type by Document Type basis.

There are two ways to customize Action List emails:
1. Configure a CustomEmail Attribute
2. Creating a custom XSLT Stylesheet

To accomplish this, you must write a CustomEmailAttribute and configure it on the appropriate
DocumentType.

Configure a CustomEmailAttribute

The CustomEmail Attribute interface provides two methods for adding custom content to both the subject
and the body.

public String get CustonEnail Subject ();

public String get CustonEnail Body();

Note that each of these values is appended to the end of either the subject or the body of the email. The
rest of the email still uses the standard email content.

Also, when implementing one of these components, the document is made available to you as
a RouteHeaderDTO and the action request related to the notification is made available as an
ActionRequestDTO.

Once you have implemented the CustomEmail Attribute, you need to make it avail able to the KEW engine
(either deployed in a plugin or available on the classpath when running embedded KEW).

174

KEW

Document Type Configuration

Onceyou makethe email attribute component availableto KEW, you need to configureit on the Document
Type.

First, define the attribute:

<data xm ns="ns:workfl ow' xm ns:xsi="http://ww.w3. org/ 2001/ XM_Schena- i nst ance" xs
<ruleAttributes xm ns="ns:workfl ow Rul eAttribute" xsi:schemalLocation="ns: wor kf
<rul eAttri but e>
<name>MyCust onEmai | At tri but e</ nane>
<cl assNane>ny. package. MyCust onEnmi | At tri but e</ cl assNane>
<l abel >MyCust onEnmi | Attri but e</| abel >
<descri ption>My Custom Emai | Attri bute</description>
<type>Enmi | Attribute</type>
</rul eAttribute>
</rul eAttributes>
</ dat a>

Next, update the Document Type definition to include the attribute:

<data xm ns="ns:workfl ow' xm ns:xsi="http://ww.w3. org/ 2001/ XM_Schena- i nst ance" xs
<docunent Types xm ns="ns: wor kf | ow Docunent Type" xsi:schemalLocati on="ns:workflo
<documnent Type>
<name>MyDocType</ nane>
<l abel >My Docunent Type</| abel >
<post Processor Name>. . . </ post Processor Nane>
<attributes>
<attri bute>
<name>MyCust onEmai | At tri but e</ nane>
</attribute>
</attributes>
<r out ePat hs>

</ r out ePat hs>
<r out eNodes>

</ rout eNodes>
</ docunent Type>
</ docunent Types>
</ dat a>

These should be ingested using the XML Ingester. See Importing Files to KEW for more information on
using the XML Ingester.

Create a Custom XSLT Style Sheet

Global Email Customization

A more convenient way to customize email content declaratively isto replace the global email XSLT style
sheet in Rice. Do this by ingesting an XSLT style sheet with the name kew.email.style. This style sheet
should take input of thisformat for reminder emails:

<l-- root element sent depends on email content requested by the system-->
<i mredi at eRem nder | dai | yRem nder | weekl yRem nder actionListUl ="url to ActionList”

175

KEW

appl i cati onEmai | Addr ess="confi gured KEW enmai |l address" env="KEW environment string

<user> <!-- the principal who received the request -->
<nane>. .. </ nanme>
<princi pal Nane>. .. </ pri nci pal Nane>
<principal ld> ..</principalld>
<firstName>...</firstNane>
<l ast Nane>. .. </ | ast Nanme>
<emai | Addr ess>. .. </ emni | Addr ess>

</ user >

<actionltenp
<l-- one top-level actionltemel enent sent for each Actionltem for immedi
<l-- custom subject content produced by the CustonEnmail Attribute associate

<cust onubj ect >. . . </ cust onSubj ect >

<l-- custom body content produced by the CustonEnmail Attribute associated w
<cust onmBody>. . . </ cust onBody>

<actionltem> <!-- the actual Actionltem-->
<principalld> ..</principalld>
<groupl d>...</groupld>
<r out eHeader | d>. .. </ rout eHeader | d>
<acti onRequest|d>...</actionRequest|d>
<docTitle>...</docTitle>
<actionltem d>...</actionltem d>
<r ol eNane>. .. </r ol eNanme>
<dat eAssi gned>. . . </ dat eAssi gned>
<acti onRequest Cd>. . . </ acti onRequest Cd>
<docHandl er URL>. . . </ docHandI| er URL>
<reci pi ent TypeCode>. . . </ reci pi ent TypeCode>
<acti onRequest Label >. .. </ acti onRequest Label >
<del egati onType>. .. </ del egati onType>
<docNane>. . . </ docNane>
<doclLabel >. .. </ docLabel >
</ actionltenp
<actionltenPerson> <! -- see

user" elenment at the top, simiar content -->

</ actionl t enPer son>
<actionltenPrincipalld> ..</actionltenPrincipalld>
<actionltenPrinci pal Nanme>. .. </actionltenPrinci pal Nane>

<doc> <!-- the RouteHeader associated with this Actionltem-->
<r out eHeader | d>. .. </ rout eHeader | d>
<docTitle>...</docTitle>
<docCont ent >. . . </ docCont ent >
<initiatorWorkflow d>...</initiatorWrkflow d>
<documnent Typel d>. . . </ docunent Typel d>
<docRout eSt at usLabel >. . . </ docRout eSt at usLabel >
<docRout eSt at us>. .. </ docRout eSt at us>
<createDate>. .. </creat eDat e>

</ doc>

176

KEW

<doclniti ator>
<princi pal Nane>. .. </ pri nci pal Nane>
<principal ld> ..</principalld>
<entityld>...</entityld>

</doclnitiator>

<document Type> <!-- Docunent Type -->
<nane>. .. </ nanme>
<l abel >...</I| abel >
<description>...</description>
<servi ceNanmespace>. . . </ servi ceNanespace>
<noti ficati onFromAddress>...</notificati onFromAddr ess>
<docHandl er Ur| >. .. </ docHandl er Ur | >
<document Typel d>. . . </ docunent Typel d>

</ actionltenp
</i medi at eRem nder | dai | yRem nder | weekl yRemi nder >
Thisformat is used for feedback emails:

<l-- feedback form-->

<f eedback actionListUrl="url to ActionList" preferencesUr|l="url to Preferences" ap
<networ kl d>. . . </ net wor kI d>
<l ast Nane>. . . </ | ast Nane>
<r out eHeader | d>. . . </ rout eHeader | d>
<docunent Type>. .. </ docunent Type>
<userEmail >. .. </userEmil >
<phone>. .. </ phone>
<tinmeDate>...</tineDate>
<edenCat egory>. .. </ edenCat egory>
<comrent s>

</ coment s>

<pageUr |l >...</pageUrl >

<firstName>...</firstNanme>

<exception>...</exception>

<user Nane>. .. </ user Nane>
</ f eedback>

In both cases, the output generated by the style sheet must be like this:

<emui | >
<subj ect>... subject here ...</subject>
<body>... body here ...</body>

</ email >

Y ou must then upload the custom style sheet into the style service using the standard KEW XML ingestion
mechanism:

<?xm version="1.0" encodi ng="UTF-8""?>
<data xm ns="ns:workfl ow' xm ns:xsi="http://ww. w3. org/ 2001/ XM_Schena- i nst ance" xs
<styles xm ns="ns:workfl ow Styl e" xsi:schemalLocati on="ns:workfl ow Styl e resource: S
<styl e nane="kew. emmil.style">
<I-- A custom gl obal email rem nder stylesheet -->
<xsl :styl esheet version="1.0" xm ns:xsl="http://ww.w3. org/ 1999/ XSL/ Tr ansf

177

KEW

<xsl :strip-space el ements="*"/>
<xsl :tenpl ate match="i medi at eReni nder " >

</ xsl : tenpl at e>
<xsl:tenpl ate match="dai | yRem nder" >

</ xsl : tenpl at e>
<xsl:tenpl ate mat ch="weekl yRem nder" >

</ xsl : tenpl at e>
<xsl:tenpl ate match="feedback">

</ xsl : tenpl at e>
</ xsl : styl esheet >
</style>
</styl es>

The global style sheet should handle all email content requests. Y ou can use the standard include syntax
to import an existing style sheet that may implement defaults.

DocumentType-Specific Email Customization

Y ou can a so customize immediate reminder email content on aper-DocumentType basis. To do so, define
acustom email style sheet name on the DocumentType definition:

<docunent Type>
<nane>SoneDoc</ nanme>
<descri pti on>a docunent with custom zed remi nder enmil </description>
<enmi | Styl esheet >sonedoc. cust om enmi | . styl e</ enai | Styl esheet >

</ docunent Type>

Then, upload a corresponding style sheet with a matching name, as above.

Document Link

Document Link Features

KEW provides an option for linking documents and BOs that are functionally related. The link between
related documents is created and removed in a double link double delete fashion, which means: when a
link is added/deleted from 1 document to another document, alink in the reverse direction is also added/
deleted, thisfeature will garuantee that searching for linked documents can be done from either side of the
link. Using this option, client applications can link documents by using document link API.

Document Link API

Document link API is exposed to the client through WorkflowDocument interface, below isthe summary
of the api:

1. get dl linksto orgn doc

178

KEW

public List<DocumentLinkDTO> getLinkedDocumentsByDacld(Long id) throws
WorkflowException

2. get the link from orgn doc to a specifc doc

public DocumentLinkDTO getLinkedDocument(DocumentLinkDTO docLinkVO) throws
WorkflowException

3. add alink by id

public void addLinkedDocument(DocumentLinkDTO docLinkV O) throws WorkflowException
4. remove al linksto this doc as orgn doc

public void removel inkedDocuments(Long docld) throws WorkflowException
5. remove the link to the specific doc

public void removeL inkedDocument(DocumentLinkDTO docLinkV O) throws WorkflowException

Document Link APl Example
It is pretty straightforward to use this api, below are some examples:
1. Toadd alink
Wor kf I owDocunent doc = new Wor kf | owDocunent (..);

Docunent Li nkDTO t est DocLi nkVO = new Docunent Li nkDTQ()
t est DocLi nkVO. set Or gnDocl d(Long. val ueO (5000)) ;

t est DocLi nkVO. set Dest Docl d(Long. val ueO (6000)) ;
doc. addLi nkedDocunent (t est DocLi nkVO) ;

2. Toretrieve all links to a document
Li st <Documrent Li nkDTO> |i nks2 = doc. get Li nkedDocunent sByDocl d(Long. val ueO (5000))
3. Toremove alink

doc. removeli nkedDocunent (t est DocLi nkVO) ;
Reporting Guide

Reporting Features

KEW provides various options for reporting on and simulation of routing scenarios. There is a GUI for
performing these reporting functions as well as an API that you can use to run routing reports against the
system.

The Routing Report Screen

From the Rice main menu there is a link to the Routing Report screen. From this set of screens you
can enter various criteria for running reports against the routing engine. The output of this reporting is a
simulated view of the Route L og, displaying the result of the report.

179

KEW

The Report APIs

The KEW client API also provides facilities for running reports against the routing engine. At the core
of KEW is a Simulation Engine that is responsible for running these types of reports. The method for
executing these reportsis on the Workflow Info object that is part of the client API. The method is defined:

publ i ¢ Docunent Det ai | VO routi ngReport (ReportCriteriaVOreportCriteria) throws Wrk

This method takes the report criteria and returns the results of the routing report.

Report Criteria

The routing report operates under two basic modes:
1. Reportsthat run against existing Documents
2. Reportsthat simulate a Document from a Document Type

In each these cases there are certain properties that you need to set on the ReportCriteriaV O to obtain the
desired results.

In the first case, the report runs against a document that has already been created in the system. This
document aready has a Document Id and may be en route. Using this style of reporting, you can run
simulationsto determinewhere the document will goinfutureroute nodes. For example, torunasimulation
against an existing document to determine to whom it will route in the future, execute this code:

Routing Report against a Document

Workfl ow nfo info = new Workfl owl nfo();

Routi ngReportCriteriaVO criteria = new ReportCriteri aVQ(new Long(1234));
Docurment Detai | VO results = info.routingReport(criteria);

/1 exam ne results...

This runs a report against the document with ID 1234, starting at the active nodes of the document
and continuing to the terminal nodes of the document. The DocumentDetail VO will contain the Action
Requests generated during the report simulation.

Y ou can also stop the report at a particular node or once Rice generates arequest for a particular user. For
example, to stop the report simulation at a node or when Rice generates a certain user's request, configure
the report criterialike this:

Terminate Report at Node or User
Wor kfl owm nfo info = new Workfl owl nfo();

Routi ngReportCriteriaVO criteria = new ReportCriteriavVQ new Long(1234), "M/NodeNan
criteria.setTargetUsers(new Userldv(] { new NetworkldvVQ("ewestfal") });

Docurment Detai | VO results = info.routingReport(criteria);

This executes the report until it reaches a node named MyNodeName or a request is generated for user
ewestfal.

In the second style of reporting, the report is run against an arbitrary Document Type and the simulation
engine creates a temporary document against which to run the report. When setting up the report criteria

180

KEW

for these scenarios, you usually populate the XML content of the document on the criteria (provided that
the routing of that document evaluates the XML). Also, the criteria need to be configured with the valid
node names (or rule templates) against which the report should be run. For example, to run a Document
Type report, you can invoke the routing report this way:

Report against a Document Type

Workfl owm nfo info = new Workfl ow nfo();
Rout eReportCriteriaVO criteria = new ReportCriteriaVvVQ " MyDocurent Type");

criteria.setXm Cont ent (" <account Nunmber >1234</ account Nunber >") ;

criteria.set NodeNanmes(new String[] { "M/NodeNane" });
Docurent Detai | VO results = info.routingReport(criteria);

The code above simulates the generation of requests for MyDocumentType at the MyNodeName node
with the XML given. This sort of reporting is especially useful if you simply need to determine what rules
in the rule system will fire and generate action requests under a particular scenario.

As an dternative to specifying the node names, you can also specify rule template names. Thisis simply
another way to target a specific node in the document. It searches the Document Type definition for nodes
with the specified rule templates and then runs the report against those nodes. Currently, the rule template
must exist on anodein the Document Type definition or an error will bethrown. In the case of our previous
example, you could simply change the line that sets the node names on the criteria to:

criteria.setRul eTenpl ateNanmes(new String[] { "M/Rul eTenpl ate" });

Asabove, thisisprimarily useful for determining who will have requests generated to them from the KEW
rule system.

Interpreting Report Results

Aswe've seen, the object returned by the Routing Report isan instance of DocumentDetailVO. This object
extends RouteHeaderVV O and provides three more pieces of data along with it:

1. Anarray of ActionRequestV O objects representing the action requests on the document

2. An array of ActionTakenVO objects representing the actions that have been performed against the
document

3. An array of RouteNodel nstanceV O objects that represent nodes in the document path

For reporting, the most important piece of data here is typically the ActionRegquestVO objects. After
running areport, thisarray containsthe Action Regueststhat were generated asthe result of the simulation.
So, for example, in the exampl e above where we run adocument type report against the MyRuleTemplate
rule template, this array contains all of the Action Requests that were generated to users or workgroups
during the report simulation.

Workflow Plugin Guide

Overview

Kuali Enterprise Workflow (KEW) has a plugin framework that allows you to load code into the core
system without requiring changes to the KEW source code or configuration. This framework provides:

181

KEW

A custom class loading space

Hot deploy and reload capabilities

Participation in Workflow's JTA transactions

» An application plugin for installation of routing components
Application Plugin

Usean application plugin to deploy an application area's routing componentsinto Workflow. Theserouting
components might include:

* Ruleattributes
 Searchable attributes
 Post processors
* Route modules

If these components require access to a data source, then the application plugin also configures the data
source and alows it to participate in Workflow's JTA transactions.

In addition to routing components, the application plugin can also configure a plugin listener and a
Resource Loader. The Resource Loader is responsible for loading resources (both Java classes and service
implementations) from the plugin and providing them to the core system.

Application plugins are hot-deployable, so arestart of the server is not required when they are added or
modified. The core system searches for plugins in a directory configured in the application configuration
(see KEW Module Configuration).

Plugin Layout

You build the plugin as a set of files and directories. You then zip this structure and place it in the
appropriate Workflow plugin space. For application plugins, this directory location is defined in the core
system configuration.

The name of the zip file (minus the .zip extension) is used as the name of the plugin. The Plugin Loader
only looks for files that end in .zip when determining whether to load and hot-deploy a plugin.

In general, application plugins can be named as desired. However, there is one reserved plugin name:
shared - A special pluginthat providesashared classl oading spaceto all plugins(see Plugin Shared Space).

The directory structure of aplugin is similar to that of aweb application. It should have this structure:

cl asses/
i b/
META- | NF/

wor kf I ow. xm
» classes- All java.classfilesthat are used by the plugin should reside in this directory

 lib - All jar library files that are used by the plugin should reside in this directory

182

KEW

* META-INF - The workflow.xml configuration file must reside in this directory

Plugin Configuration

Plugin

Plugin

Application plugins usually provide asubset of the functionality that an institutional plugin provides, since
the ingtitutional plugin can provide core service overrides.

The plugin framework provides two configuration points:
1. Plugin XML Configuration (described below)

2. Transaction and DataSource Configuration

XML Configuration

The XML configurationisdefinedin afile called workflow.xml. Theformat of thisfileisrelatively simple.
An example workflow.xml file:

<pl ug-i n>
<par am nanme="nny. par am 1" >abc</ par anp
<par am nanme="nny. par am 2" >123</ par anp
<listener>
<listener-class>org. kuali.rice.core.ApplicationlnitializelListener</Ilistene
</listener>
<resour celLoader cl ass="nmny. ResourcelLoader"/>
</ plug-in>

WEe'll explain each of these elementsin more detail below:

Parameters

The parameter configuration uses XML as the syntax. These parameters are placed into a configuration
context for the plugin. The configuration inherits (and can override) valuesfrom the parent configurations.
The configuration hierarchy is core -> institutional plugin -> application plugins.

A plugin can access its configuration using this code:

org. kuali.rice.Config config = org. kuali.rice.Core.getCurrent Context Config();

Plugin Listeners

You can define one or more listeners that implement the interface
org.kuali.ricekew.plugin.PluginListener. These can be used to receive plugin lifecycle notifications
from KEW.

The interface defines two methods to implement:
* Invoked when a plugin starts up

public void pluginlnitialized(Plugin plugin);
* Invoked when a plugin shuts down

public void plugi nDestroyed(Pl ugin plugin);

It islegal to define more than one plugin listener. Plugin listeners are started in the order in which they
appear in the configuration file (and stopped in reverse order).

183

KEW

Resource Loader

A plugin can define an instance of or g.kuali.rice.resour celoader .Resour cel oader to handle the loading
of classes and services. When KEW attemptsto load classes or locate services, it searches the institutional
plugin, then the core, then any application plugins. It does this by invoking the getObject(..) and
getService(...) methods on the plugin's Resourcel oader.

If no ResourceLoader is defined in the plugin configuration, then the default implementation
org.kuali.rice.resour celoader .BaseResour cel. oader isused. The BaseResourcel oader letsyou examine
the plugin's classloader for objects when requested (such as post processors, attributes, etc.). This is
sufficient for most application plugins.

For more information on configuring service overrides in a plugin, see the Overriding Services with a
Resourcel oader section below.

Configuring an Extra Classpath

Sometimesit isdesirableto be ableto point in apluginto classes or library directories outside of the plugin
space. This can be particularly useful in development environments, where the plugin uses many of the
same classes as the main application that isintegrating with Workflow. In these scenarios, configuring an
extra Classpath may mean you don’'t need to jar or copy many common class files.

To do this, specify these propertiesin your plugin's wor kflow.xml file:

1. extra.classes.dir - Path to an additional directory of .classfiles or resources to include in the plugin's
classloader

2. extra.lib.dir - Path to an additional directory of .jar filesto include in the plugin's classloader

The classloader then includes these classes and/or lib directories into its classloading space, in the same
manner that it includes the standard classes and lib directories. The classloader always|ooksin the default
locations first, and then defers to the extra classpath if it cannot locate the class or resource.

Transaction and DataSource Configuration

The easiest method to configure Datasources and Transactions is through the Spring Framework. Hereis
a snippet of Spring XML that shows how to wire up a Spring Transaction Manager inside of a plugin:

<bean id="user Transacti on" class="org. kuali.rice.jta.UserTransacti onFactoryBean" /
<bean id="jtaTransacti onManager" class="org. kuali.rice.jta.Transacti onManager Facto

<bean id="transacti onManager" cl ass="org. springframework.transaction.jta.JtaTransa
<property nane="user Transacti on" ref="user Transaction" />
<property nane="transacti onManager" ref="jtaTransacti onManager" />
<property name="defaul t Ti meout" val ue="${transaction.tineout}"/>

</ bean>

The factory beans in the above XML will locate the javax.trasaction.User Transaction and
java.transaction.TransactionM anager, which are configured in the core system. These can then be
referenced and injected into other beans (such as the Spring JaTransactionManager).

Once you configure the transaction manager, you also need to configure any DataSources you require.
Here's an example of configuring a DataSource that participatesin Atomikos JTA transactions (the default
Transaction Manager distributed with Rice Standal one).

184

KEW

<bean i d="myDat aSource" cl ass="com at om kos. j dbc. nonxa. NonXADat aSour ceBean" >
<property nane="uni queResour ceNanme" val ue="nyDat aSource"/ >

<property nane="driverd assNane" val ue="..."/>
<property nane="url" value="..."/>
</ bean>

So, the application can access it's datasource by either injecting it into Spring services or by fetching it
directly from the Spring context.

Y ou can find more information on configuring Rice DataSources and TransactionM anagersin Datasource
and JTA Configuration.

OJB Configuration within a Plugin

If your plugin needs to use OJB, there are a few other configuration steps that you need to take. First, in
your Spring file, add the following line to allow Spring to locate OJB and the JTA Transaction Manager:

<bean i d="o0j bConfigurer" class="org. kuali.rice.ojb.Jtag bConfigurer">
<property nane="transacti onManager" ref="jtaTransacti onManager" />

</ bean>

Next, for OJB to plug into Workflow's JTA transactions, you need to modify some settingsin the plugin's
OJB.propertiesfile (or the equivalent):

Per si st enceBr oker Fact or yCl ass=or g. apache. oj b. br oker. core. Persi st enceBr oker Fact oryS
| mpl enent ati onCl ass=or g. apache. oj b. odng. | npl enent ati onJTAI npl

QIBTxManager Cl ass=or g. apache. oj b. odng. JTATxManager

Connecti onFact oryd ass=org. kual i . ri ce. oj b. Ri ceDat aSour ceConnecti onFactory

JTATr ansact i onManager Cl ass=or g. kual i . ri ce. oj b. Transact i onManager Fact ory

Thefirst three properties listed are part of the standard setup for using JTA with OJB. However, there are
custom Rice implementations:

 org.kuali.rice.ojb.RiceDataSour ceConnectionFactory
 org.kuali.rice.ojb.TransactionM anager Factory
» org.kuali.rice.ojb.RiceDataSour ceConnectionFactory

This OJB ConnectionFactory searches your Spring Context for a bean with the same name as your jcd-
alias. Hereiswhat an OJB connection descriptor might look like inside of a Workflow plugin:

<j dbc- connecti on-descri pt or
j cd-al i as="nyDat aSour ce"
def aul t - connecti on="true"
pl atform="Cracl e9i "
j dbc-1 evel =" 3. 0"
eager-rel ease="fal se”
bat ch- nrode="f al se"
useAut oComm t =" 0"
i gnor eAut oCommi t Excepti ons="fal se">

<sequence- manager cl assName="org. apache. oj b. broker. util. sequence. SequenceManag

185

KEW

<obj ect - cache cl ass="org. apache. oj b. br oker. cache. Obj ect CachePer Br oker | mpl "/ >
</j dbc-connecti on-descri pt or>

Noticethat the j cd-alias attribute matches the name of the DataSource Spring bean defined in the example
above.

Another important thing to notice in this configuration is that useAutoCommit is set to 0. Thistells OJB
not to change the auto commit status of the connection because it is being managed by JTA.

Finally, when your plugin needs to use OJB, you need to use this:
org. kuali.rice.ojb. Transacti onManager Fact ory

This provides OJB with the javax.transaction.TransactionManager that was injected into your
JaOjbConfigurer, asin the example above.

Overriding Services with a ResourcelLoader

For a service override, you need to define a custom Resourcel oader implementation and configure it in
your workflow.xml plugin configuration file. The org.kuali.rice.resourcel oader.Resourcel.oader interface
defines this relative method:

public Object getService(javax.xmn .nanmespace. QNanme gnane) ;

When KEW is searching for services, it invokes this method on its plugins Resourcel oader
implementations. The service name is a qudified name (as indicated by the use of
javax.xml.namespace.QName), but for services being located from the core, service names typicaly
contain only alocal part and no namespace.

The easiest way to implement a custom ResourceLoader is to create a class that extends from
org.kuali.rice.resour celoader .BaseResour cel. oader and just override the get Ser vice(QName) method.
The BaseResourcel oader provides standard functionality for loading objects from ClassL oaders, among
other things.

For example, if you want to override the User Service, you might implement this Resourceloader:

public class MyResourcelLoader extends BaseResourcelLoader {
public MyResourcelLoader () {
super (new QNarme(" MyResour ceLoader"));

}

@verride
public Object getService(QNane servi ceNanme) {
if ("enUserOptionsService". equal s(servi ceNane. get Local Part()) {
/1 return your custominplenmentation of org.kuali.rice.kew useroptions
} elseif (...) {

}oelse if (...) {

}

return super. get Servi ce(servi ceNane) ;

}

In the next section, we'll look at some of the services commonly overridden in an institutional plugin

186

KEW

Commonly Overridden Services

In theory, you can override any service defined in the org/kuali/workflow/resources/
KewSpringBeans.xml file in the Ingtitutional Plugin. What follows is a list of the most commonly
overridden services:

Table 3.18. Commonly Overridden Services

Service Name Interface Description

enUserOptionsService org.kuali.rice.kew.useroptions.UsefDptiolesSertdser lookup and
searching services

| dentityHel perService org.kuali.rice.kew.identity.service| ldbatibpee pariBervicéM identity
management services

enEmail Service org.kuali.rice.kew.mail.service.impPiDefdetEmaikBeriice sending
capabilities

enNotificationService org.kuali.rice.ken.service.Notificatiertbedase callbacks for

notifications within the system

enEncryptionService org.kuali.rice.core.service.Encryptiah8svei¢er pluggable encryption
implementations

User Service

The Workflow core uses the UserService to resolve and search for users. The UserService could be as
simpleasastatic set of usersor ascomplex and integrated asauniversity-wideuser system. Y our institution
may choose how to implement this, aslong as you provide capabilities for the ID types that you intend to
use. At the very least, implementations are required for the WorkflowUser | d and AuthenticationUser Id
types (and their corresponding VO beans). All of the Userld types must be unique across the entire set
of users.

The WorkflowUserld is typically associated with a unique numerica sequence value and the
AuthenticationUser1d istypically the username or network ID of the user.

The default UserService implementation provides a persistent user store that allows you to create and edit
users through the GUI. It also caches users for improved performance and implements an XML import
for mass user import. Ingtitutions usually override the default user service with an implementation that
integrates with their own user repository.

IdentityHelper Service

The IdentityHelper service helps to interact with the KIM identity management services in the system.
|dentityHelpers are identified in one of two ways:

1. Principalld - A numerical identifier for aKIM principal

2. Group — An object associated with a group of principal users numerical identifier assigned to a
Workgroup

Both of these object variables are implemented in KEW in the IdentityHel perServicelmpl file.

Email Service

The Email serviceis used to send emails from KEW. Y ou can configure the default implementation when
you configure KEW (see KEW Configuration). However, if more custom configuration is needed, then
you can override the service in the plugin.

187

KEW

For example, you could override this service if you need to make a secure and authorized SSL connection
with an SMTP server because of security policies.

Notification Service

The Notification service is responsible for notifying users when they receive Action Itemsin their Action
List.

The default implementation simply sends an email (using the Email Service) to the user according to the
individual user’'s preferences. A custom implementation might also notify other (external) systems in
addition to sending the email.

Encryption Service

Plugin

The Encryption service is responsible for encrypting document content.

The default implementation uses DES to encrypt the document content. If the encryption.key
configuration parameter is set as a Base64 encoded value, then the document content is encrypted using
that key. If it is not set, then document content will not be encrypted and will be stored in the database
in plain text.

Shared Space

All plugins aso load certain classes from a shared space. The shared space contains certain classes that
link with certain libraries that might exist in each application or institutional plugin's classloader (such
as OJB and Spring). Current classes that Workflow publishes in the shared space are those in the shared
modul e of the Rice project (rice-shar ed-version.jar). Thisisimportant because some of these classeslink
with libraries like Spring or OJB and since the plugin needs its own copy of these libraries, it needs to
ensure that it doesn't retrieve these classes from any classloader but it's own.

KEW Usage of the Kuali Service Bus

General Usage

The Kuali Enterprise Workflow engine makes use of both synchronous service endpoints and
asynchronous messaging features from the Kuali Service Bus.

Most asynchronous processing that KEW does is implemented using asynchronous messaging on the
service bus. Thisincludes:

1. Workflow engine processing

2. Blanket approval orchestration

3. Action processing for actions taken directly from the Action List

4. Re-resolving actions requests resulting from aresponsibility change
5. Sending email reminders

6. Distributed cache flush notifications

In each of these cases, there exists a service that processes asynchronous messages and performs the
appropriate actions for each of these functions.

188

KEW

In terms of synchronous services, Kuali Enterprise Workflow publishes two different types of services.
Oneis used for performing workflow document actions (such as creating, approving, disapproving, etc.).
The other is used to perform various query or read-only operations against the workflow system.

Implications of using “Synchronous” KSB messaging
with KEW

For general information on synchronous messaging and its implications in the KSB, please read
“Implications of synchronous vs. asynchronous Message Deliver” in the KSB technical reference guide.

In terms of Kuali Enterprise Workflow, the usage of synchronous messing means that operations like
workflow engine processing will happen immediately and synchronously at the timeit’s invoked.

Themainimplication here besideswhat islisted in the KSB documentation isthat, since message exception
handling isn’t implemented, exception routing does not work when using synchronous KSB messaging.

This means that if this messaging model is being used in a batch job, or similar type of program, routing
exceptions will need to be manually caught. If it’s desired to place a document into exception status from
here, there are methods on the KEW APIs to do this manually.

189

Chapter 4. KIM

Terminology

Principal

A principal represents an entity that can authenticate. In essence, you can think of a principal as an
"account” or as an entity's authentication credentials. A principal has an ID that is used to uniquely
identify it. It al'so has aname that represents the principal's username and is typically what is entered when
authenticating. All principals are associated with one and only one entity.

Entity

An entity represents a person or system. Additionally, other "types' of entities can be defined in KIM.
Information like name, phone number, etc. is associated with an entity. While an entity will typically have
asingle principal associated withit, it is possible for an entity to have more than one principal or even no
principals at al (in the case where the entity does not actually authenticate).

Entities have numerous attributes associated with them, including:
* Names

* Addresses

» Phone Numbers

» Email Addresses

» Entity Type

* Affiliations

» Employment Information

» Externa Identifiers

* Privacy Preferences

Group

A group is a collection of principals. Y ou can create a group using both direct principal assignment and
nested group membership. All groupsare uniquely identified by anamespace code plusaname. A principal
or group is a "member" of a group if it is either directly assigned to the group or indirectly assigned
(through a nested group membership). A principa or group isa"direct" member of another group only if
it isdirectly assigned as a member of the group, and not through a nested group assignment.

Permission

A permission is the ability to perform an action. All permissions have a permission template. Both
permissions and permission templates are uniquely identified by a namespace code plus a name. The
permission template definesthe coarse-grai ned permission and specifieswhat additional permission details

190

KIM

need to be collected on permissions that use that template. For example, a permission template might have
aname of "Initiate Document,” which requires a permission detail specifying the document type that can
be initiated. A permission created from the "Initiate Document” template would define the name of the
specific Document Type that can be initiated as a permission detail.

TheisAuthorized and isAuthorizedByTemplateName operations on the Per missionSer vice are used to
execute authorization checksfor aprincipal against apermission. Permissions are always assigned to roles
(never directly to aprincipal or group). A particular principal will be authorized for a given permission if
the principal is assigned to arole that has been granted the permission.

Responsibility

Role

A responsibility representsan action that aprincipal isrequested to take. Thisisused for defining workflow
actions (such as approve, acknowledge, FY 1) for which the principal is responsible. Responsibilities form
the basis of the workflow engine routing process.

A responsibility is very similar to a permission in a couple of ways. First, responsibilities are always
granted to arole, never assigned directly to aprincipal or group. Furthermore, similar to permissions, arole
has a responsibility template. The responsibility template specifies what additional responsibility details
need to be defined when the responsibility is created.

You grant permissions and responsibilities to roles. Roles have a membership consisting of principals,
groups, and/or other roles. As a member of a role, the associated principal has all permissions and
responsibilities that have been granted to that role.

You can specify a qualification to any membership assignment on the role, which is extra information
about that particular member of the role. For example, a person may have the role of "Dean" but that
can be further qualified by the school they are the dean of, such as "Computer Science." Y ou can pass
qualifications as part of authorization checks to restrict the subset of roles to check.

Reference Information

There are several collections of reference information managed within KIM:
» Addresstype

» Affiliation type

» Citizenship status

» Email type

» Employment status

» Employment type

 Entity name type

* Entity type

» External identifier type

» Phone number type

191

KIM

Configuration Parameters

Table4.1. KIM Configuration Parameters

Configuration Parameter Description Default value
kim.mode The mode that KIM will|[LOCAL
run in; choices are "LOCAL",
"EMBEDDED", or "REMOTE".
kim.soapExposedService jaxws.sedDdtgrmines if KIM services|true

published on the service bus will
be secured

kim.url

Services

The base URL of KIM services
and pages.

${ application.url}/kim

KIM provides several service APIswith which client applications should interact. These are:

 org.kuali.rice.kim.api.role.RoleService

» org.kuali.rice.kim.api.group.GroupService

 org.kuali.ricekim.api.identity.ldentityService

 org.kuali.ricekim.permission.PermissionService

 org.kuali.rice.kim.responsibility.ResponsibilityService

 org.kuali.rice.kim.service.PersonService

These services act as client-side facades to the underlying KIM data and provide important features such

as caching.

In the next few sections we will look in-depth at these services. However, for more details, please see the

javadocs for these services and the services they delegate to.

Using the Services

All KIM clients should

service. An example of retrieving the | dentityService serviceis:

I dentityService idnBvc

retrieve service instances using the KIM service locator
KimApiServicel ocator. This class contains static methods to retrieve the appropriate Spring bean for the

Ki mApi Servi ceLocator. getldentityService();

Y ou would use a similar mechanism for retrieving references to the other KIM services.

ldentityService

The I dentityServiceis one of the services the client applications will interact with most frequently.

The I dentitySer vice contains service methods that allow for the retrieval, creation, and upating of entity

information.

192

KIM

Additionally, it also provides caching for theretrieval methodsto help increase the performance of service
callsfor the client application.

Retrieving Principal Information
To retrieve the principal 1D for auser, use the getPrincipal ByPrincipalName method:
Principal info = identityService.getPrincipal ByPrincipal Name(pri nci pal Nane) ;

Note that KIM, by default, stores principa names in lower case; the PRNCPL_NM column of
KRIM_PRNCPL_T must store valuesin lower case. If your ingtitution’s existing identity systems do not
handle lowercase principal hames, then there are three points to override that setting:

1. org.kuali.ricekim.impl.identity.ldentityServicelmpl method getPrincipalByPrincipalName
lowercases the principal name sent in; depending on how principals were integrated
into the system it may not need to. Note that IdentityServicelmpl method
getPrincipal ByPrincipalNameAndPassword does not lowercase the principal name automatically.

2. org.kuali.rice.kim.lookup.PersonL ookableHelper Servicelmpl method getSearchResults aso
automatically lowercases any principal name sent in; that behavior may also need to be changed

3. Finally, the file {Rice home}/impl/src/main/resources/org/kuali/rice/kim/bo/datadictionary/
KimBaseBeans.xml hold the datadictionary attribute templatesfor principal name asKimBaseBeans-
principalName. The forceUppercase attribute is set to false by default, but perhaps should be
overridden to true, to force uppercase principal names.

Once these three points have been overridden, you'll be able to use uppercase principal names.

Retrieving Entity Default Information
To retrieve the default information for an entity, use one of the getEntityDefaultinfo methods:

EntityDefault infoByEntityld = identityService.getEntityDefault(entityld);
EntityDefault infoByPrincipalld = identityService.getEntityDefaultByPrincipalld(pr

Retrieving Reference Information
To retrieve information about a type or status code, use the getter for that type.
Typesin KIM are:
e Addresstype
 Affiliation type
* Citizenship status
» Email type
* Employment status
» Employment type
 Entity name type

* Entity type

193

KIM

» External identifier type
» Phonetype
For instance, to retrieve information on an address type code:

CodedAttri bute addressType = identityService. get AddressType(code);
GroupService

Retrieving Group Membership Information

To retrieve a list of al groups in which a particular user is a member, use the getGroupsFor Principal
method:

Li st <G oup> groups = groupService. get G oupsByPrinci pal I d(princi pal I d);
To determineif auser isamember of a particular group, use the isM ember OfGr oup method:

i f (groupService.isMenberOf Goup(principalld, groupld)) {
/1 Do sonething special
}

To get alist of all members of agroup, use the getM ember Principall ds method:

Li st<String> nmenbers = groupServi ce. get Menber Pri nci pal | ds(groupl d);
Retrieving Group Information

To retrieve information about a group, use the getGroup or getGroupByNamespaceCodeAndName
methods, depending on whether you know the group’s ID or name:

Group info
Group info

groupSer vi ce. get G oup(groupld);
groupSer vi ce. get &G oupByNanespaceCodeAndNane(nanespaceCode, groupNane)

PermissionService

Checking Permission

To determine if a user has been granted a permission, without considering role qualifications, use the
hasPer mission method:

i f (perm ssionService. hasPerm ssion(principalld, namespaceCode, perm ssionNane)) ({
/1 Do the action

}

To determineif auser has been granted a permission, use the isAuthorized method:

i f (perm ssionService.isAuthorized(principalld, nanmespaceCode, perni ssionNane, qua
/1 Do the action
}
Retrieving Permission Information

To retrieve a list of principas granted a permission (including any delegates), use the
getPer missionAssignees method:

194

KIM

Li st <Assi gnee> peopl e = perm ssi onServi ce. get Perm ssi onAssi gnees(nanespaceCode,
perm ssi onName, qualification);

Toretrieve alist of permissions granted to a principal, use the getAuthorizedPer missions method:

Li st <Perm ssi on> perns = perm ssi onServi ce. get Aut hori zedPer m ssi ons(pri nci pal | d,
namespaceCode, perm ssionNane, qualification);

ResponsibilityService

Checking Responsibility
To determine if a user has aresponsibility, use the hasResponsibility method:

if (responsibilityService. hasResponsibility(principalld, namespaceCode, responsi bi
/1 Do the action

}
Retrieving Responsibility Information
Toretrieve alist of roles associated with a responsibility, use the getRolel dsFor Responsibility method:

List<String> rolelds = responsi bilityService. getRol el dsFor Responsi bility(responsib

AuthenticationService

Checking Authentication

The AuthenticationService is somewhat different than the other services. The AuthenticationServiceis
not typically deployed remotely (unlike the I dentityService, GroupService, etc.).

Instead, the role of this service is simply to extract the authenticated user’s principal name from the
HttpServlietRequest and inform the client-side development framework (typically, the KNS) about
this information. KIM itself does not implement full authentication services, but rather relies on other
implementations (such as CAS or Shibboleth) to provide this functionality.

The client application can then establish a local session to store the information about the principal
that authenticated. This will typically be used in subsequent calls to the KIM services, such as making
authorization checks for the principal .

The reference implementation of the AuthenticationService simply extracts the REMOTE_USER
parameter from the request and presents that as the principal name. This is often sufficient for many
authentication providers that are available. However, if necessary this reference implementation can be
overridden.

Thereis only a single method on the | dentityM anagement Ser vice related to authentication.

String principal Name = aut henticati onService. getPrinci pal Nane(request);

RoleService

In KIM, Roles are used as a way to associate principals, groups and other roles with permissions and
responsibilities. It is therefore not a common or recommended practice to query for whether or not a

195

KIM

principal isamember of a Role for the purposes of logic in aclient application. It is recommended to use
permissions and the isAuthorized check to perform this sort of logic.

However, in some cases, querying for thisinformation may be desirable. Or, in even more common cases,
one may want to use an APl to add or remove members from a Role. These kinds of operations are the
responsibility of the RoleM anagementService. Like the | dentityM anagementService, this serviceisa
facade which provides caching and delegates to underlying services. Specifically, it delegates to:

* RoleService
Checking Role Assignment

To determineif aroleisassigned to a principal, use the principalHasRole method:

if (roleService.principal HasRol e(principalld, rolelds, qualifications)) {
/1 Do sonet hing
}

Retrieving Role Information

To retrieve information on arole, use the getRole or getRoleByName method:

Rol e info
Rol e info

= rol eService. getRol e(rol el d);
= rol eServi ce. get Rol eByNanespaceCodeAndNane(nanespaceCode, rol eNane);

Toretrieve thelist of principal IDs assigned to arole, use the getRoleM ember Principal | ds method:

Col l ection<String> principals = rol eService. get Rol eMenber Pri nci pal | ds(nanespaceCod

Updating Role Membership
To assign aprincipal to arole, use the assignPrincipal T oRole method:
rol eServi ce. assi gnPri nci pal ToRol e(princi pal I d, nanespaceCode, rol eNane, qualificat
To remove aprincipal from arole, use the removePrincipal FromRole method:

rol eServi ce. renmovePri nci pal FronRol e(pri nci pal 1 d, namespaceCode, rol eNane, qualific

Person Service

The PersonServiceis used to aggregate Entity and Principal datainto adatastructure called aPerson. A
person is essentially aflattened collection of the various attributes on an entity (name, address, principal
id, principa name, etc). Thisisintended to allow client applications to more easily interact with the data
in the underlying KIM data model for entities and principals.

Retrieving Personal Information
To retrieve information on a person by principal |D, use the getPer son method:
Person person = per Svc. get Person(princi pal ld);
To retrieve information on a person by principal name, use the getPer sonByPrincipalName method:

Per son person = per Svc. get PersonByPri nci pal Narme(pri nci pal Nane) ;

196

KIM

In order to search for people by agiven set of criteriayou can use the findPeople method:
Li st <Per son> peopl e = per Svc. findPeopl e(criteria);

In this case, criteriais ajava.util.Map<String, String> which contains key-value pairs. The key is the
name of the Person property to search on, while the value is the value to search for.

KimTypeService Callbacks
Implementing Custom KIM Types

KIM uses the concept of "types" to define additional attributes for it's various objects (such as groups,
roles, permissions, etc.) and to affect their behavior.

All custom type services must implement a sub-interface of
org. kuali.rice. kimfranework.type. Ki mlypeSer vi ce based onthekind of custom type
being created and the KIM objects it will be related to. The current type services supported by KIM are
asfollows:

e GroupTypeService

* Rol eTypeServi ce

e Perm ssi onTypeService

e Responsi bilityTypeService
e Del egati onTypeService

In addition to the interfaces provided above, KIM provides a standard set of implementations of each of
these which can be extended by your application in order to inherit standard default behavior (including
integration with the KNS Data Dictionary for reading and defining custom attributes). More detailed
information about these base classes can be found in the KIM javadocs. Y our custom type service class
should extend the appropriate subclass and only override the methods necessary to implement your custom
behavior. Use the methods in these classes as the basis for your custom code.

For example, you might define a custom Perm ssionTypeService by extending
org. kuali.rice. kns. ki mperm ssi on. Perm ssi onTypeSer vi ceBase asfollows:

i mport org. kuali.rice.kns.kimperm ssion. Pernm ssionTypeServi ceBase,;
public class MyPerm ssi onTypeServi ce extends Perm ssionTypeServi ceBase ({

@verride
prot ect ed bool ean performvat ch(Map<String, String> inputMap, Map<String, Strin
if (some_condition_is_true) {
/1 perform custom matching | ogic

} else {
return super. performvat ch(i nput Map, storedMap); // execute the default
}

197

KIM

Detailed documentation on the specific methods which can be implemented on Ki nifypeSer vi ce and
it's various sub-interfaces can be found in the KIM javadocs.

Configuring Custom KIM Types

Groups, Roles, Permissions, Responsibilities, and Delegations can al have custom typesin KIM. These
custom types can be mapped back to the KIM type services that you create. In order to do this, there are
afew things you must do:

* Register the KIM Type which points to your custom type service
» Update any of the "typed" KIM objects that you want to point to your new KIM type

 Publish your KIM type service so that it is available on the Kuali Service Bus and the Rice resource
loader framework

Currently, there is no way to register a new KIM Type without updating the KIM database using
SQL. Fortunately, this is a fairly simple thing to do. The database table storing KIM Types is hamed
KRl M_TYP_T. An example of how to insert anew KIM Type into thistablein Oracleis below:

| NSERT | NTO KRIM TYP_T (
KI M TYP_I D,
NVSPC_CD,
NM
SRVC _NM
oBJ_ID)

VALUES (
KRI M TYP_I D_S. NEXTVAL,
' MyNanespace',
" MyPer m ssi onType',
"{http://nyapp. myu. edu} myPer nm ssi onTypeServi ce',
SYS AUl X))

One of the most important things to note about this is the service name (SRVC_NM) column. As we
can see in the example above, for this KIM type we are linking it to a service named { http://

nyapp. myu. edu} myPer mi ssi onTypeSer vi ce. Thisis how KIM will look up your custom type
service whenever it needs to load and invokeit.! It does this through the Rice resource | oading framework
which includes locally available services defined in Spring as well as services published on the Kuali
Service Bus. For KIM type services, it's generally required to deploy them onto the KSB because the user
interface components of KIM will use these when determining which custom attributes may need to be
displayed and collected on it's various screens.

More information on how to publish these services can be found in the next section.

Once the KIM type has been registered, it will be assigned an 1D, thisis the value of the KI M_TYP_I D
column after the record has been inserted. This ID can then be used to associate the type with the
appropriate and desired data elementsin KIM.

For exampl e, to associate the custom Per ni ssi onTypeSer vi ce you created earlier with one of your
permission templates, you can execute the following SQL (assuming the ID of your new KIM type is
10000):

Ywhile the service name here is a single string value, it will be parsed into a j avax. xnl . namespace. QNane object using that classes
val uef (...) method. This means that, for our example of { htt p: // myapp. myu. edu} myPer m ssi onTypeSer vi ce, it will get
parsed into a QName which isequivalent tonew QName(" http:// myapp. myu. edu”, "nyPerm ssi onTypeService").

198

KIM

UPDATE KRIM_PERM TMPL_T SET KIM TYP_ID = ' 10000
VWHERE NVSPC CD = ' MyNanmespace' AND NM = ' MyPer mi ssi onTenpl at e’

Oncethisis complete, any existing or new permissions you create with thistemplate will use your custom
KIM type and it's associated type service.

Publishing Custom KIM Types to the Kuali Service Bus

As mentioned previously, KIM type services should be published onto the Kuali Service Bus
in order to allow the KIM user interface functionality (which is typically deployed on the Rice
Standalone Server) to access the services remotely. Since KIM type services are considered
"callback" services because of the fact that the standalone server makes callbacks to them, the
org. kuali.rice. ksb. api . bus. support. Cal | backSer vi ceExport er should be used.

Information on how to export and publish a callback service can be found in the section called
“CallbackServiceExporter”.

Assuming you have aready wired up your custom PermissionTypeService implementation in your Spring
file under abean id of "myPermissionTypeService", an example Spring configuration which will publish
the service would look like the following:

<bean i d="myPern ssi onTypeServi ce. exporter"
cl ass="org. kual i.rice. ksbh. api . bus. support. Cal | backServi ceExporter™
p: cal | backServi ce-ref ="nyPerm ssi onTypeSer vi ce"
p: servi ceNameSpaceURI ="ht t p: // myapp. nyu. edu”
p: | ocal Servi ceName="nyPer m ssi onTypeSer vi ce"
p: servicelnterface="org. kuali.rice.kimframework. pern ssi on. Perm ssi onTypeSe

KIM Database Tables

Table Name Prefixes

The KIM tables in the Rice database are prefixed by KRIM, which stands for Kuali Rice Identity
M anagement.

Unmapped LAST _UPDT_DT Columns

Many of the KIM tables have an additional column called LAST_UPDTD_DT (of type DATE in Oracle,
DATETIME in MySQL) that isn't mapped at the ORM layer. Using this column is entirely optional, and
it is unmapped by design. Its purpose is to aid implementers with tracking changes, and with doing data
synchronization or extracts against KIM tables. The following sample PL/SQL script (Oracle only) adds
to al the tablesthat contain LAST_UPDATED_DT an insert and update trigger to populate it:

DECLARE
CURSOR tables IS
SELECT t abl e_nane
FROM user _tab_col ums
WHERE col umm_nane = ' LAST_UPDATE_DT'
AND dat a_type LI KE ' DATE%
ORDER BY 1;
BEG N
FOR rec IN tables LOOP
EXECUTE | MVEDI ATE ' CREATE OR REPLACE TRI GGER ' || LONER(SUBSTR(rec.table_n

199

KIM

| | LONER(rec.table nane)||' FOR EACH RONBEGQ N : new. | ast_update_ts :=
END LOCP;

END;
/

200

Chapter 5. KNS
KNS Configuration Guide

The Kuali Nervous System (KNS) is, primarily, an application devel opment framework. Each Rice client
application can use the KNSto construct various screens and build pieces of the application with the built-
in components and services that the KNS provides.

Tothisend, configuration of the KNS in aclient application can be accomplished by following these steps:
1. Creation of database tablesin the client application’s database that the KNS requires to function.

2. Loading of the KNSConfigurer inside of the RiceConfigurer Spring bean. Thisincludes configuring
connections to the databases.

3. Loading of the KNS struts module for the various Ul components that the KNS provides in addition to
any filters or servlets that need to be defined in the client application’s web.xml.

4. Creation of a ModuleConfiguration for the application which instructs the KNS about which Data
Dictionary files and OJB repository mapping files to load.

5. Customization of the various configuration parameters that the KNS supports.

Database Creation

In order for the KNS services to work, many of them require the ability to access special tables within
the client application’s database. These tables are used to store various pieces of data; from notes and
attachments on documents to maintenance document data and much more.

These tables are included as part of either the demo-client-dataset or the bootstrap-client-dataset. These
datasets are provided with the Kuali Rice binary distributions and instructions on how to install them can
be found in the Installation Guide.

Note

It simportant to note that these tables should be installed in the client application’ s database, and
not the Rice standalone server database.

KNSConfigurer and RiceConfigurer

As with the other modules, a KNSConfigurer needs to be injected into the RiceConfigurer in
order to instruct Rice to initialize the KNS module. The main purpose of this is to alow for the
applicationDataSour ce and the server DataSour ce to be specified.

The applicationDataSour ce should point to the client application’s database. That database should
contain the tables from one of the client datasets.

Theserver DataSour ce should point to the database of the Rice standalone server. Thisisused for allowing
access to the various KNS central services that use data in the Rice server database. This includes such
data as System Parameters, Namespaces, Campuses, States and Countries.

Here is an example of Spring configuration for aKNS client:

<bean id="rice" class="org.kuali.rice.core.config.R ceConfigurer">

201

http://db.apache.org/ojb/

KNS

<property nane="knsConfi gurer">
<bean cl ass="org. kual i.rice. kns. confi g. KNSConfi gurer™

>
<property nane="applicati onDat aSource” ref="applicationDataSource”/>
<property nane="server Dat aSource” ref="riceServerDat aSource”/>
</ bean>
</ property>
</ bean>

Alternatively, you can just set the dataSour ce and ser ver DataSour ce on the RiceConfigurer itself and
that will be used for the KNS applicationDataSour ce and ser ver DataSour ce respectively. Thisis useful
when using the same database for all the different modules of Rice.

The KNSConfigurer supports some other properties as well. See the javadocs of KNSConfigurer for
more information.

Configuring the KNS Web Application Components
Loading the KNS Struts Modules

The web application framework of the KNS is built on top of the Apache Struts framework. As aresult of
this, the web application components of the KNS are loaded into the client application as a struts module.
The struts modul e and various pieces of the Rice web content can be found in the binary distribution. They
should be copied into the root directory of your web application.

A special implementation of the Struts ActionServlet is provided to help with the loading of the struts
modules. It can be configured in the application’s web.xml asin the following example:

<servl et >
<servl et - nane>acti on</ servl et - name>
<servl et-class>org. kuali.rice.kns.web. struts.action. Kuali Acti onServl et</servle
<init-paranp
<par am nanme>confi g</ par am nanme>
<par am val ue>/ WEB- | NF/ st r ut s- confi g. xm </ par am val ue>
</init-paranpr
<l oad- on- st art up>0</ | oad- on- st art up>
</servlet>

Notice the init-param above points to a Struts configuration file. This file is intended to be the struts
configuration file for the client application. It's used by the KNS for doing redirects back to the main
application and is also used for adding KNS-based screens within the client application. Specifically, this
is where action mappings go if using the transactional document framework of the KNS.

Thereisan examplefilein the distributions under config/examples/str uts-config.example.xml. Thiswill
need to be renamed to struts-config.xml and copied to your web application’sWEB-I NF directory. It can
then be loaded using the KualiActionServlet as seen in the example above.

In this example file you will see a reference to a message resource properties file. As is the case
with a standard Struts-based application, the resource properties file is used to load text strings for
internationalization purposes. The KNS framework requires that at least the app.title property to be set,
asin the following example:

app.title=Reci pe Sanple Application

202

http://struts.apache.org/1.x/

KNS

Configuring KNS Servlet Context Listeners

The KNS framework requires a couple of ServietContextListener classes to be configured in the
application’ s web.xml. These include:

» org.kuali.riceknsweb.listener.JstIConstantsl nitListener
» org.kuali.riceknsweb.listener .KualiHttpSessionL istener

These should be included in the web.xml after any listeners or servlets that might be used to actually
initialize the Spring context that loads Rice.

Here is an example of what this configuration might look like in web.xml:

<listener>
<l i stener-cl ass>my. app. package. Li stener That Start sRi ce</| i st ener-cl ass>

</listener>
<listener>
<listener-class>org. kuali.rice.kns.web.listener.Jstl ConstantslnitListener</lis

</listener>

<listener>
<listener-class>org. kuali.rice.kns.web.|istener.KualiHttpSessionListener</list
</listener>

Configuring KNS Message Resources

Asof Riceversion 1.0.1.1, messages areloaded through the new Kuali PropertyM essageResourcesFactory.
This class is a factory of KualiPropertyMessageResources, which takes in a comma delimited list
of .propertiesfiles.

Thisis set up in the struts-config.xml files near the end of thefile:
<nmessage-resources factory="org. kuali.rice.kns.web. struts.action. Kuali PropertyMess

When the parameter above is set to an empty string, Rice uses the default value of properties files. The
default value is set by the rice.struts.message.resources property the common-config-defaults.xml file.
Thisisthe default setting:

<param nane="ri ce. struts. nessage. resour ces” >KR- Appl i cat i onResources, org. kuali.rice

This can be overridden in rice-config.xml. This value should be in a comma delimited format. The
list of files is loaded from left to right, with any duplicated properties being overridden in that order.
Therefore, in the list default list if a property key in KR-ApplicationResources was duplicated in KIM-
ApplicationResources, the value used would be the one set in KIM-ApplicationResources.

Configuring AJAX Support

The KNS uses DWR to provide AJAX support. In order to enable this, the
org.kuali.ricekns.web.servlet.K ualiDWRServlet must be configured in the application’s web.xml as
follows:

203

http://directwebremoting.org/dwr/index.html

KNS

<servl et>
<servl et - name>dwr - i nvoker </ ser vl et - name>
<servl et-class>org. kuali.rice. kns.web. servl et. Kual i DARSer vl et </ servl et - cl ass>
<init-paranp
<par am nane>debug</ par am nane>
<par am val ue>f al se</ param val ue>
</init-paranp
<init-paranp
<par am nane>spri ngpat h</ par am nane>
<par am val ue>t r ue</ param val ue>
</init-paranp
<l oad- on- st art up>1</1| oad- on- st artup>
</servlet>

<servl et - mappi ng>
<servl et - name>dwr - i nvoker </ ser vl et - nanme>
<url-pattern>/dw/*</url-pattern>

</ servl et - mappi ng>

Module Configuration — Loading Data Dictionary and
OJB Files

One of the most important pieces of the KNS framework isthe Data Dictionary. It’ s used to define various
pieces of metadata about business objects, maintenance documents, lookups, inquiries and more. These
Data Dictionary files are authored in XML and are loaded using a M oduleConfiguration. Additionally,
business objectsin the KNS are mapped to the database using an object relational mapping library called
Apache OJB. The M oduleConfiguration is also used to load those mapping files.

A ModuleConfiguration is a bean wired in Spring XML that instructs the KNS to |oad various pieces
of configuration for a particular module. A client application could create a single module or multiple
modul es, depending on how it isorganized. Thisconfiguration allowsfor the specification of thefollowing:

» Themodul€' s namespace

» The DataDictionary filesto load

» The OJB repository filesto load

» The package prefix of business objects in this module

* Externalizable business object definitions

Here is an example of what this configuration might look like:

<bean i d="sanpl eAppModul eConfi gurati on”
cl ass="org. kual i .rice. kns. bo. Modul eConfi guration">
<property nane="nanmespaceCode" val ue="tv"/>
<property nane="initializeDataDi ctionary" val ue="true"/>
<property nane="dat aDi cti onaryPackages" >

<list>
<val ue>cl asspat h: edu/ sanpl eu/ travel / dat adi cti onary</ val ue>
</list>

</ property>

204

http://db.apache.org/ojb/

KNS

<property nane="dat abaseRepositoryFi | ePat hs">

<list>
<val ue>QJB-reposi t ory- sanmpl eapp. xnl </ val ue>
</list>

</ property>
<property nane="packagePrefi xes">
<list>
<val ue>edu. sanpl eu. travel </ val ue>
</list>
</ property>
</ bean>

When the module is initialized by the KNS, it will load all of the Data Dictionary files into the Data
Dictionary service. Additionally, all OJB files will be loaded and merged into the main OJB repository.
The packagePr efixes are used to identify which business objects this module is responsible for.

There are more configuration options on the M oduleConfiguration. See the javadocs on this class for
more information.

KNS Configuration Parameters

The KNS supports numerous configuration parametersthat can be set in the Rice configuration file. Below

isalist of these with descriptions and defaults.

Table5.1. KNS Configuration Parameters

Property Description Default
application.url Base URL of the application.|${appserver.url}/
Example: http://localhost/kr-dev | ${ app.context.name}

attachments.directory Directory in which to store|/tmp/${environment}/
attachments attachments
attachments.pending.directory Directory in which to store|/tmp/${environment}/

attachments on a document or
object which have not yet been
persisted

attachments/pending

classpath.resource.prefix

The location, in the classpath, of
methods that may be called by
DWR.

/WEB-INF/classes

externalizable.help.url

Base URL at which web-based
help content will be located

/${ app.context.name} /kr/static/
help/

externalizable.images.url

Base URL at which images are
located

/${ app.context.name} /kr/static/
images/

kr.externalizable.images.url

Base URL at which images that
are part of the standard Kuali Rice
image set are stored

/${ app.context.name} /kr/static/
images/

kr.url

Base URL of the KNS struts
module. Includes the various
built-in GUI components such as
lookups, inquiries, etc.

${ application.url} /kr

production.environment.code

The environment code that will be
used to identify this application as

PRD

205

KNS

Property

Description

Default

a “production” instance. Certain
features are turned off in non-
production instances (email, for
example)

mail.relay.server

Name of the SMTP server to use
for sending emails from the KNS

kr.incident.mailing.list

The email address where
exception and incident reports
should be sent

javascript.files

A commaseparated list of
javascript files to load on every
KNS-based web page

See impl/src/main/resources/
resourcesyMETA-INF/common-
config-defaults.xml in the source
distribution

cssfiles

A comma-separated list of css
files to load on every KNS-based
web page

See impl/src/main/resources/
resourcesyMETA-INF/common-
config-defaults.xml in the source
distribution

enable.nonproduction.data.unmask

ifg the current application is
running in an non-production
environment, this determinesif all
fields should be unmasked in the
Nervous System, even if the field
would otherwise be masked.

false

kns.cache.parameter.max.size

The maximum number of
parameters that can be stored in
the kns parameter cache

200

kns.cache.parameter.max.age.secq

e maxiumum age (in seconds)
of entries in the parameter cache

3600

kns.cache.nonDatabaseComponen

L Phexrsize mum size of the cache
that is used to store parameter
components that don’t come from
the database (i.e. are loaded from
the Data Dictionary and other
|ocations)

50

kns.cache.nonDatabaseComponen

[hhex iageisecondago (in seconds)
of entries in the parameter non-
database component cache

3600

session.document.cache.size

The max size of the cache used to
store document sessions

100

portal .javascript.files

A list of Javascript files to
be included int the "portal”, ie
the frame around the application

pages.

portal.css.files

A list of CSSfilestobeusedinthe
"portal”, ie the frame around the

application pages.

rice-portal/css/portal .css

206

KNS

Property Description Default

ricekns.struts.config.files The struts-config.xml | /kr/WEB-INF/struts-config.xml
configuration file that the KNS
portion of the Rice application
will use.

rice.kns.illegal BusinessObjectsForBavecomma-separated list of
business objects that the KNS
should not be allowed to save

rice.kns.illegal BusinessObj ectsFor Sagetaopli@héot check for illegal |true
business objects to save will be
performed, if false, it will not

encryption.key The DESkey to usefor encrypting
data elements that are configured
for encryption in the KNS

rice.struts.message.resources The key used to load message| KR-

property files. The value should|ApplicationResources,org.kuali.rice.kew.Applicatiol
be a comma delimited list or|ApplicationResources

propertiesfiles.

KNS Business Object Framework

Business Object Database Table Definition

Business object instances are typically java object representations of rows of a database table.
The addition of following columns to each database table is strongly suggested:

e Object ID

* Version number

The Object ID isused asaglobally uniqueidentifier (or GUID) of each row acrossall databasetables. That
is, every row in every table should have adifferent Object ID value. It istypically defined asaVARCHAR
field of 36 characters, and should be named "OBJ_ID" in the database. A unique constraint should be
applied to the object ID column, but must NOT be part of the primary key. The KNS system will assume
that each row has a unique value.

The object ID value is automatically stored by the framework and/or the database layer.

KFS/Rice uses optimistic locking to provide concurrency control. Optimistic locking requires the use of
a version number field, named "VER_NBR". On Oracle, the field is defined as a NUMBER(8,0). On
MySQL, thefield is defined asa DECIMAL(8). This column should NOT be part of the primary key.

About optimistic locking
Optimistic locking helps to prevent updates to stale data and consists of two steps:

1. Retrieval of arow from adatabase, including the value of the version number column

2. Updating/deleting a row from the database with the same primary key and version number criteria. If
updating the table, the version number will be incremented by one.

The following series of steps demonstrates how optimistic locking works:

207

KNS

User A retrieves the row for chart code "BL". The row has version number of 3.

User A performs an update of the "BL" record. The SQL query that updates the record would
read something like "UPDATE CA_CHART_T SET <some updates>, VER_NBR = 4 WHERE
FIN_COA_CD ="BL" and VER_NBR = 3. (The"4" refersto the incremented version number.)

User B retrieves the row for chart code "BL". The version number is now 4.

User B performs an update of the "BL" record. The SQL query that updates the record would
read something like "UPDATE CA_CHART_T SET <some updates>, VER_NBR = 5 WHERE
FIN_COA_CD ="BL" and VER_NBR = 4. (The"5" refersto the incremented version number.)

The following series of steps demonstrates how optimistic locking prevents concurrency problems.

1
2.
3.

User A retrieves the row for chart code "BL". The row has version number of 3.
User B retrieves the row for chart code "BL". Like user A, the version number is 3.

User A performs a update of the "BL" record. The SQL query that updates the record would
read something like "UPDATE CA_CHART_T SET <some updates>, VER_NBR = 4 WHERE
FIN_COA_CD ="BL" and VER_NBR = 3. (The "4" refersto the incremented version number.)

. User B performs a update of the "BL" record. The SQL query that updates the record would read

something like what User A executed above (notice the version numbers). However, the previous step
already updated the version number to 4 from 3, so this update does nothing (i.e. update row count =
0) because it was trying to update the BL chart with a version number of 3. The system detects the 0
update row count, and throws an OptimisticL ockingException. This exception indicates that the system
tried to update stale data.

Business Object Database Mapping

The default mapping library used by the KNS for thisrelease is OJB from Apache. More information can
be found on the OJB website: http://db.apache.org/ojb/.

Purpose of OJB mappings

OJB repository files map the following information:

1
2.

3.

The BusinessObject (BO) mapped to a given database table
The getter/setter method in the BO mapped to a given database column

The fields(s) comprising foreign keys between a business object and its reference(s)

OJB documentation

Currently, OJB isused asthe underlying persistence layer. It converts database rowsinto javaobjects upon
retrieval, and vice versa upon updates/deletes. This section assumes that the reader is familiar with the
basi c mapping constructs/principles described on these pages:

http://db.apache.org/ojb/docu/guides/repository.html#cl ass-descriptor-N104E3
http://db.apache.org/ojb/docu/gui des/repository.html#fiel d-descriptor-N105C6
http://db.apache.org/ojb/docu/gui des/repository.html#fiel d-descriptor-N105C6
http://db.apache.org/ojb/docu/guides/repository.html#coll ection-descriptor-N10770
http://db.apache.org/ojb/docu/guides/repository .html#foreignkey

208

http://db.apache.org/ojb/

KNS

« http://db.apache.org/ojb/docu/guides/repository.html#inverse-foreignkey
« http://db.apache.org/ojb/docu/guides/basi c-technique.html

0OJB field-level conversions

OJB provides a way to convert data before they are persissed to and retrieved
from the database. This is accomplished by specifying a class that implements
org.apache.ojb.broker.access ayer.conversions.FieldConversion in the <field-descriptor> element.

The following are the more often used convertersin KFS/Rice:

« org.kuali.core.util.OjbCharBooleanConversion: since boolean flags are typically stored as "Y" or
"N" (i.e. strings) in the database but represented as booleans within business objects, this converter
automatically allows converts between the string and the boolean representation

« org.kuali.core.util.OjbKualiEncryptDecryptFieldConversion: provides seamless encryption of values
when persisting, and decryption when retrieving from the database. Beware that the business object
itself holds an unencrypted value, and as such, care should be taken to ensure that unencrypted sensitive
data are not exposed to unauthorized parties.

Both OJB and the KNS offer a number of FieldConversion implementations beyond these two for usein
client applications.

Example converter declaration for a sample Business Object

<fi el d-descri ptor nane="bankAccount Nbr" col um="BNK_ACCT_NBR" j dbc-type="VARCHAR"

When to use OJB vs. data dictionary relationships

OJB relationships should be used to define rel ationshi ps between tables that are guaranteed to exist within
the same database.

For example, assume a sample Business Object class “Bank”. The Bank class contains a BankType
reference object. Typically a BankType class table would exist in the same database as the Bank class
table. In this example the relationship between Bank and BankType can be defined by OJB. However, a
“User” business object table typically will exist in an external system since it will likely be referenced by
more than one Rice client application. If a BO had a relationship with a“User” BO, the mapping would
require that the relationship be set up viathe data dictionary files (which will be discussed in detail later in
thisdocument). Any business obj ect implementing the org.kuali.rice.kns.bo.Externalizabl eBusi nessObject
interface needs to be related to via the data dictionary.

Example OJB Mapping
Here is an example directly from Rice in the file OJB-repository-kns.xml:

<cl ass-descriptor class="org.kuali.rice.kns.bo. Statelnpl" table="KR STATE T">
<fi el d-descri pt or nane="post al Count ryCode" col um="POSTAL_CNTRY_CD' j dbc-type=
<fi el d-descri pt or nane="postal St at eCode" col utm="POSTAL_STATE CD"' jdbc-type="V
<fi el d-descri pt or nane="postal St at eNane" col utm="POSTAL_STATE NM' j dbc-type="V
<fi el d-descriptor nane="objectld" colum="0BJ_ID" jdbc-type="VARCHAR" index="t
<fi el d-descri ptor nane="versi onNunber"” col um="VER NBR' jdbc-type="BI A NT" |oc
<fiel d-descriptor nane="active" colum="ACTV_I ND" jdbc-type="VARCHAR' conver sSi

<ref erence-descriptor name="country" class-ref="org. kuali.rice.kns.bo.Countryl
<f orei gnkey fi el d-ref="postal Count ryCode" />
</reference-descriptor>
</ cl ass-descriptor>

209

KNS

In this OJB mapping, we can determine the following information:
1. The KR_STATE_T table is mapped to the org.kuali.rice.kns.bo.Statel mpl business object

2. The POSTAL_CNTRY_CD column is mapped to the "postal CountryCode" property of the BO (i.e.
accessed using the getPostal CountryCode and setPostal CountryCode methods), is a VARCHAR, is
indexed, and is one of the fields in the primary key

3. The POSTAL_STATE_CD column is mapped to the "postal StateCode" property of the BO, is a
VARCHAR, isindexed, and is one of the fieldsin the primary key

4. The OBJ _ID column is mapped to the "objectld" property, isindexed, and isaVARCHAR
5. TheVER_NBR columnismapped to the"verionNumber" property, isaBIGINT, and isused for locking

6. The ACTV_IND column is mapped to the “active” property, isaVARCHAR, and uses the conversion
class org.kuali.ricekns.util.OjbChar BooleanConver sion

We can determine the following information about the "country" reference object:
1. Itisof typeorg.kuali.ricekns.bo.Countrylmpl

2. the auto-retrieve attribute is true: When the Statelmpl is retrieved from OJB, the Countrylmpl object
will behavelikeit wasretrieved aswell (the proxy attribute of the ' field-descriptor’ tag can be set to true
or false to determine whether the Countrylmpl isreally retrieved when the account is retrieved or not)

3. the auto-update attribute is none: When the Statelmpl is updated using OJB, the Countrylmpl object
will not be updated even if changes have been made to it

4. the auto-delete attribute is none: When the Statelmpl is deleted using OJB, the Countrylmpl object will
not be deleted

5. The <foreignkey> tag specifies the fields in the Statelmpl BO that are in a foreign key relationship
and their order with the primary key fields in the Countrylmpl BO. The Countrylmpl BO has one

primary key field, and the value from Statelmpl's “postal CountryCode” property is used as the value
for Countrylmpl’s primary key value.

Example OJB Mapping for Collection Descriptor
A mapping may al so define a collection-descriptor tag as follows:

<cl ass-descriptor class="org.kuali.rice.kns.test.docunent.bo. Account Manager" tabl e
<fiel d-descriptor name="id" colum="acct_fo_id" jdbc-type="BlI G NT" prinmarykey=
<fi el d-descri ptor nane="user Nane" col um="acct_fo_user_nane" jdbc-type="VARCHA

<col | ecti on-descriptor nanme="accounts" coll ection-class="org. apache. oj b. br oker
<or der by name="account Number" sort="ASC' />
<i nverse-foreignkey field-ref="amd" />
</ coll ecti on-descri ptor>
</ cl ass-descri pt or>

We can determine the following information about the "accounts" collection reference:

1. The collection itself is of type org.apache.ojb.broker.util.collections.ManageableArrayList, which
keeps track of which elements have been removed from the array, to help when deleting elements.

2. Each element of the collection is of type org.kuali.rice.kns.test.document.bo.Account.

3. The auto-retrieve attribute is true: when the AccountManager is retrieved from the database, the
collection will be populated or behave asif it were populated upon accessing the collection. (the proxy

210

KNS

setting determines whether the database is queried when the AccountManager is retrieved from the DB
or whether it will retrieve from the DB only when the collection is accessed (i.e. lazy loading)).

4. The auto-update attribute is object: when the AccountManager is inserted or updated, the accounts
collection isinserted or updated accordingly.

5. The auto-delete attribute is object: when the AccountManager is deleted, the corresponding accounts
will be deleted as well.

6. The<orderby> tag specifiesthe sort order of elementsinthecollection. Inthiscase, the account numbers
will bein ascending order in the collection.

7. The <inverse-foreignkey> specifies the fields of the element BO (i.e. Account) that will match the
primary key fields of the AccountManager BO. The“amld” attributein the Account tablewill be used to
find objects that match the primary key of the AccountManager object, or in this casethe“id” attribute.

Business Object Java Definition

Business Objects are java classes that implement the org.kuali.core.bo.BusinessObject interface.
However, a majority of business objects extend org.kuali.core.bo.Per sistableBusinessObjectBase,
which implements org.kuali.core.bo.Per sistableBusinessObj ect and
org.kuali.corebo.BusinessObject. Business Objects which extend from the class
Per sistableBusinessObj ectBase a so have an advantage in that they will inherit getter and setter methods
for the attributes ‘ version number’ and ‘object id’.

In each application, all simple class names (i.e. ignoring the package) should be unique. If multiple
packages contain the same class name, the data dictionary may not load the duplicated classes

properly.

Business objects need to implement getter and setter methods for each field that is mapped between
java business objects and the database table (the mapping is described later). Therefore, if, in java, the
ACCOUNT_NM database column is named "accountName", then the getter method should be called
getAccountName and the setter should be setAccountName (i.e. the conventions follow the standard Java
bean getters and setters practices).

Objects that extend org.kuali.core.bo.BusinessObjectBase must also implement the toStringMapper
method, which returns a map of the BO's fields to be used in toString.

The org.kuali.core.bo.PersistableBusinessObjectBase class has several more methods that can be
overridden that customize the behavior of the business object. Just a few examples are customizations
that can be made upon persistence and retrieval of the business object, and how reference objects of the
business object are refreshed, as well as other methods.

Reference Objects

A reference object is a member variable of a business object that also implements the BusinessObject
interface. It refersto the database row referenced by the valuesin aforeign key relationship. For example,
the Campuslmpl BO/table has a column for a campus type code (CAMPUS TYP_CD). Therefore, the
Campusimpl BO may have areferenced CampusTypelmpl object, which represents the campus type row
referred to by the campus’ campus type code. Here is the Campusimpl OJB mapping:

<cl ass-descriptor class="org.kuali.rice.kns.bo.Canpusl npl" tabl e="KRNS CAMPUS T">
<fi el d-descri ptor nane="canmpusCode" col um="CAMPUS _CD" jdbc-type="VARCHAR' pri
<fi el d-descri ptor nane="canmpusNanme" col um="CAMPUS NM' jdbc-type="VARCHAR' />
<fi el d-descri pt or nane="canpusShort Nane" col utm="CAMPUS_SHRT_NM' j dbc-type="VA
<fi el d-descri pt or nane="canmpusTypeCode" col um="CAMPUS TYP_CD" jdbc-type="VARC
<fi el d-descri ptor nane="objectld" colum="0BJ_ID" jdbc-type="VARCHAR" index="t

211

KNS

<fi el d-descri ptor nane="versi onNunber"” col um="VER NBR' jdbc-type="BI A NT" |oc
<fiel d-descriptor nane="active" colum="ACTV_I ND"' jdbc-type="VARCHAR' conver sSi
<ref erence-descri ptor nanme="canpusType" class-ref="org. kuali.rice.kns.bo. Canpu
<f orei gnkey field-ref="canpusTypeCode" />
</reference-descri ptor>
</ cl ass-descriptor>

Here are bits of the Campusimpl classfile:

public class Canpusl npl extends Persistabl eBusi nessCbj ect Base i npl enents Canpus, |
private String canpusCode;
private String canpusNaneg;
private String canmpusShort Nane;
private String campusTypeCode;
protected bool ean active;

private CanpusType canpusType;

A collection reference isa member variable of abusiness object that implementsjava.util.Collection, with
each element in the collection being a BusinessObject. A collection reference would be appropriate to
model something like the list of Kuali Financial sub accounts of the Kuali Financial account business
object.

A reference object or collection is defined in two steps:
1. A field in abusiness object is created for either the reference object or collection reference
2. A relationship is mapped within either OJB (See above) or the data dictionary (See below)

To refresh (or retrieve) areference object is to reload the referenced row from the database, in case the
foreign key field values or referenced data have changed.

For references mapped within the data dictionary, the framework does not have the logic to enable
refreshing of a reference. The code must both implement the logic to refresh a data dictionary defined
reference and the logic to invoke refreshing. A specific explanation can be found below.

Refreshing reference objects mapped in OJB

For references mapped within OJB, the framework automatically takes care of the logic to enable
refreshing of areference. Under certain circumstances, it's able to automatically refresh references upon
retrieval of the main BO from the database, and refreshing can also be invoked manually.

Note that this means that if the value of a foreign key field is changed, the corresponding reference
object is not refreshed automatically. Taking the Campusimpl BO example above, if the code alters the
Campusimpl’s campusTypeCode field, the framework will not automatically retrieve the new associated
CampusTypelmpl BO reference object. To refresh the Campusimpl’s CampusTypel mpl reference object
with the new campus type code, refresh/retrieve must be manually called (see below).

Refreshing reference objects not mapped in OJB

For references with relationshipsthat are not mapped in OJB, code will need to be written to accommodate
refreshing. A common exampl e of thisis Person object references, because institutions may decide to use
another source for Identity Management (e.g. LDAP).

Although there are alternative strategies for accommodating refreshing, typically getter methods of these
non-OJB mapped reference obj ectsinclude the code that retrieves the reference object from the underlying
datasource.

212

KNS

In contrast to OJB-mapped references, note that this strategy alows for the automatic refreshing of
reference objects when aforeign key field value has been changed. If, in our example using Campusimpl
above, the reference object for CampusTypelmpl was not defined in OJB, the string campusTypeCode
may be changed and that would be enough to alter the getter method for CampusTypelmpl to properly
retrieve the correct row from the database.

Initializing collection references

Business objects fall into two broad, and for the most part mutually exclusive, categories: those that are
edited by maintenance documents and those that are not. This section refers only to business objects that
are edited by maintenance documents that have updatable collections.

When constructing this type of BusinessObject, initialize each of the updatable collection referencesto an
instance of org.kuali.rice.kns.util. TypedArrayList. TypedArrayList is a subclass of ArrayList that takes
in ajava.lang.Class object in its constructor. All elements of this list must be of that type, and when the
get(int) method is called, if necessary, this list will automatically construct items of the type to avoid an
IndexOutOf BoundsException. Take the example below, the SummaryAccount BO contains an updatable
reference to alist of PurApSummaryltem objects.

public class SummaryAccount {
private List<PurApSumaryltenr itens;

public SummaryAccount () {
super () ;
itenms = new TypedArraylLi st (Pur ApSunmaryltem cl ass);

}

When a collection is non-updatable (i.e. read only from the database), it is not necessary to initialize the
collection. OJB will take care of list construction and population.

Inactivateable Business Objects
Business objects that have active/inactive states should implement the I nactivateabl e interface:

public interface |Inactivateable {
publ i ¢ bool ean isActive();

/* Indicates whether the record is active or inactive.
*/
public void setActive(bool ean active);
/* Sets the record to active or inactive.
*/
}

By implementing this interface, functionality such as default active checks and inactivation blocking in
the maintenance framework can be taken advantage of.

InactivateableFromTo Business Objects

Business objects that have active from and to dates (effective dating) should implement the
InactivateableFromTo interface:

public interface |Inactivateabl eFronifo extends Inactivateable {

213

KNS

/* Sets the date for which record will be active
*

@aram from

* - Date value to set

*/
public void setActiveFronDate(Date from;

/* Gets the date for which the record becone active
*
@eturn Date
*/
public Date getActiveFronmDate();

/* Sets the date for which record will be active to
* @aram from

* - Date value to set
*/

public void setActiveToDate(Date to);

/* Gets the date for which the record beconme inactive
*

@eturn Date
*/

public Date getActiveToDate();

/* Gets the date for which the record is being conpared to in determning active/i
*

@eturn Date
*/

public Date getActiveAsO Date();

/* Sets the date for which the record should be conpared to in determ ning act

* not set then the current date will be used
*

@ar am acti veAsOX Dat e
* - Date value to set

*/

public void setActiveAsOf Date(Date activeAsOf Dat e) ;

214

KNS

}

Explanation of InactivateableFromTo fields
activeFromDate - The date for which the record becomes active (inclusive when checking active status).
activeToDate - The date to which the record is active (exclusive when checking active status).

active - The activefield is calculated from the active from and to dates. If the active from date isless than
or equal to current date (or from date is null) and the current date is less than the active to date (or to date
isnull) the active getter will return true, otherwise it will return false.

current - The current field is set to true for records with the greatest active from date less than or equal
to the current date.

For example say we have two employee records:
» rec 1, empl A, active from 01/01/2010, active to 01/01/2011
» rec 2, empl A, active from 03/01/2010, active to 01/01/2011

With 03/01/2010 <= current date < 01/01/2011 both of these records will be active, however only rec 2
would be current since it has alater active begin date.

To determine the maximum active begin date, records are grouped by the fields declared in the data
dictionary for the business object.

activeAsOfDate - By default when checking the active or current status the current date is used, however
thisfield can be set to check the status as of another date.

For example say we have a record with active from date 01/01/2010 and active to date 06/01/2010, with
the current date equal to 08/01/2010. With the active as of date empty, the current date will be used and
thisrecord will be determined inactive. However if we set the active as of date equal to 05/01/2010 (which
falls between the active date range) and query, this record will be determined active.

Framework Support

Business objects that implement InactivateableFromTo can participate in default existence checks and
inactivation blocking functionality. In addition, the lookup framework contains special logic for searching
on I nactivateableFromTo instances. Thisincludes:

1. Trandating criteriaontheactivefield (activetrue or false) to criteriaon the activeto and from datefields

2. Trandating criteriaon the current field (current true of false) to criteria selecting the active record with
the greatest active from date less than or equa to the active date

3. Handles the active as of date when doing active or current queries
InactivateableFromToService

For finding active and current InactivateableFromTo records | nactivateableFromToService can be used.
This service provides many methods for dealing with InactivateableFromTo objects in code.

Group by Attributes

In order to determine whether or not an | nactivateableFromTo record is current, the framework must know
what fields of the business object to group by (see ‘current’ in ‘Explanation of InactivateableFromTo
fields'). This is configured by setting the groupByAttributesForEffectiveDating property on the data
dictionary BusinessObjectEntry.

215

KNS

Example:

<bean i d="Travel Account UseRat e- par ent Bean" abstract="true" parent="Busi nessObj ectE
<property nane="busi nessCbhj ect O ass" val ue="edu. sanpl eu. travel . bo. Travel Accoun
<property nane="inquiryDefinition">
<ref bean="Travel Account UseRat e-i nqui ryDefinition"/>
</ property>
<property nane="| ookupDefinition">
<ref bean="Travel Account UseRat e-| ookupDefinition"/>
</ property>
<property nane="titleAttribute” value="Travel Account Use Rate"/>
<property nane="obj ect Label " val ue="Travel Account Use Rate"/>
<property nane="attri butes">
<list>
<ref bean="Travel Account UseRate-id"/>
<ref bean="Travel Account UseRat e- nunber"/ >
<ref bean="Travel Account UseRate-rate"/>
<ref bean="Travel Account UseRat e- acti veFronDat e"/ >
<ref bean="Travel Account UseRat e-acti veToDate"/>
<ref bean="Travel Account UseRat e-acti veAsCf Dat e"/ >
<ref bean="Travel Account UseRat e-active"/>
<ref bean="Travel Account UseRate-current"/>
</list>
</ property>
<property nane="groupByAttri butesForEffectiveDating">
<list>
<val ue>nunber </ val ue>
</list>
</ property>
</ bean>

KNS Data Dictionary Overview

The datadictionary isthe main repository for metadata storage and provides the glue to combining classes
related to a single piece of functionality. The data dictionary is specified in XML and alows for quick
changesto be madeto functionality. The DataDictionary files use the Spring Framework for configuration
so the notation and parsing operation will match that of the files that define the module configurers.

The contents of the data dictionary are defined by two sets of vocabularies; the ‘business object’ and the
‘document’ data.

Business Object Data Dictionary

Business Object Data Dictionary entries provide the KNS framework extra metadata about a business
object which is not provided by the persistence mapping or the class itself.

The business object data dictionary contains information about:

 Descriptive labels for each attribute in the business object (data dictionary terminology uses the term
“attribute” to refer to fields with getter/setter methods).

» Metadata about each attribute

» How input fields on HTML pages should be rendered for an attribute (e.g. textbox, drop down, etc.)

216

KNS

» The data elements from the business object that are shown to users on the KNS Inquiry page

» The data elements of the business object that can be used as criteria or shown as result datain the KNS
L ookup for the business object

The business object data dictionary does not contain information about:
» Which BO does atable correspond to (responsibility of persistence layer, e.g. OJB)
» How fieldsin the BO correspond to database columns (responsibility of persistence layer, e.g. OJB)

» The orientation of various fields on user interface screens

Note About Following Documentation

Onething to noteisthe use of ‘abstract’ parent beanswithin the Ricefiles. These are used to facilitate easy
overriding of beans from Rice in a client application or a customized Rice standalone server installation.
Take the following example where the “ Real Bean” may be defined within Rice:

<bean i d="Real Bean” parent="Real Bean-parent” />

<bean i d="Real Bean-parent” abstract="true” />

Client applications overriding this bean definition should alwaysretain theid “ RealBean”. Thisalowsfor
any devel oper working with overriding datadictionary filesto easily define an override using the following
parent bean structure:

<bean i d="Real Bean” parent="Real Bean-client-parent” />

<bean i d="Real Bean-client-parent” abstract="true” parent="Real Bean-parent” >

<I— any client overrides go here -->
</ bean>

The setup above will take any configuration from the Rice defined “ Real Bean-parent” and allow the client
developer to override individual properties inside the bean. Then when anything inside Rice or the client
application references the data dictionary bean “RealBean” they will get the Rice defined values unless
they were overridden by client application devel opers. See the Spring Framework documentation for more
examples of this.

For the sake of this documentation, the abstract parent bean structure will be mostly ignored but its
operation is consistent throughout all data dictionary files.

Data Dictionary File Layout

A sample Data Dictionary file to show typical organization of various beans that may be defined:

<?xm version="1.0" encodi ng="UTF-8""?>
<beans>
<bean id="Account" parent="Account - parent Bean"/>
<bean i d="Account - par ent Bean" abstract="true" parent="Busi nessQbj ectEntry">
<property nane="busi nessChj ect C ass" val ue="org. kual i . kf s. coa. busi nessobj e
<property nane="inquiryDefinition" ref="Account-inquiryDefinition"/>
<property nane="| ookupDefinition" ref="Account-| ookupDefinition"/>
<property nane="titleAttribute" val ue="account Number"/>
<property nane="obj ect Label " val ue="Account"/ >

217

KNS

<l-- Attribute definition -->
<property nane="attri butes">
<list>
<l-- list goes here -->
</list>
</ property>
<l-- Collections -->
<property nane="col | ecti ons">
<list>
<l-- list goes here -->
</list>
</ property>
<l-- Relationships -->
<property nane="rel ati onshi ps">
<list>
<l-- list goes here -->
</list>
</ property>
<I-- lnactivation bl ocking definitions -->
<property nane="inactivati onBl ocki ngDefi nitions">
<list>
<l-- list goes here -->
</list>
</ property>
</ bean>
<bean id="Account-inquiryDefinition" parent="Account-inquiryDefinition-parentB
<l-- Definition of *Account-inquiryDefinition-parentBean’ bean goes here -->

<bean i d="Account - | ookupDefiniti on" parent="Account-| ookupDefi niti on-parent Bea
<I-Pefinition of ‘Account-I| ookupDefinition-parentBean bean goes here -->

</ beans>

A more specific Rice example might be the Campusimpl object (whose business object data dictionary
fileis Campus.xml). Here is the main bean definition from that file:

<bean i d="Canpus- parent Bean" abstract="true" parent="Busi nessCbjectEntry">
<property nane="busi nessChj ect C ass" val ue="org. kual i.rice. kns. bo. CampuslI npl "/
<property nane="inquiryDefinition">
<ref bean="Canmpus-inquiryDefinition"/>
</ property>
<property nane="| ookupDefinition">
<ref bean="Canmpus-| ookupDefinition"/>
</ property>
<property nane="titleAttribute” val ue="canpusCode"/>
<property nane="obj ect Label " val ue="Canpus"/>
<property nane="attri butes">
<list>
<ref bean="Canmpus-canpusCode"/>
<ref bean="Canmpus-canpusNanme"/>
<ref bean="Canpus-canpusShort Name"/>
<ref bean="Canpus-canpusTypeCode"/ >
<ref bean="Canpus-versi onNurmber"/>
</list>
</ property>

218

KNS

</ bean>

One of the main properties required is the businessObjectClass which defines the java implementation
class that this business object data dictionary file will be used for.

TheinquiryDefinition and thelookupDefinition will be covered later in thisdocument but for now simply
note that the property is using a <ref> tag to point to a bean id that exists elsewhere in thisfile.

The titleAttribute property defines the attribute of the business object that is the primary key. Thisis
typically used to define which attribute can be used to display the inquiry page.

The objectL abel property isthelabel that will be used for all general business object referencesincluding
where the system has collections of the business object.

Attribute Definition

Attribute definitions are used to provide metadata about the attributes (i.e. fields) of abusiness object. The
following is a sampling of attribute definitions from the Campuslmpl business object data dictionary file:

<bean i d="Canpus- canmpusCode- par ent Bean" abstract="true" parent="AttributeDefinitio
<property nane="forceUppercase" val ue="true"/>
<property nane="short Label " val ue="Canmpus Code"/>
<property nane="maxLengt h" val ue="2"/>
<property nane="validati onPattern">
<bean parent ="Al phaNumericVal i dati onPattern"/>
</ property>
<property nane="required" value="true"/>
<property nane="control ">
<bean parent="Text Control Definition" p:size="2"/>
</ property>
<property nane="summary" val ue="Canmpus Code"/>
<property nane="nanme" val ue="canmpusCode"/ >
<property nane="|abel " val ue="Canmpus Code"/>
<property nane="description" val ue="The code uniquely identifying a particular
</ bean>

<bean i d="Canpus- canmpusTypeCode- par ent Bean" abstract="true" parent="Attri buteDefin
<property nane="forceUppercase" val ue="true"/>
<property nane="short Label " val ue="Type"/>
<property nane="maxLengt h" val ue="2"/>
<property nane="validati onPattern">
<bean parent ="Al phaNumericVal i dati onPattern"/>
</ property>
<property nane="required" value="true"/>
<property nane="control ">
<bean parent="Sel ect Control Definition" p:val ueski nderC ass="org. kuali.rice
</ property>
<property nane="sumrary" val ue="Canmpus Type Code"/>
<property nane="name" val ue="canmpusTypeCode"/ >
<property nane="|abel" val ue="Canpus Type Code"/>
<property nane="description" val ue="The code identifying type of canpus."/>
</ bean>

In client applications, it is common that several business objects share a field representing the same type
of data. For example, a country’s postal code may occur in many different tables. In these circumstances,

219

KNS

the use of a parent bean reference (parent="Country-postal CountryCode”) definition allows the reuse of
parts of a standard definition from the "master" business object. For instance, the Statelmpl business
object (business object data dictionary file State.xml) references the postal CountryCode property of the
Countrylmpl (business object data dictionary file Country.xml). Because the postalCountryCode fields
in Statelmpl and Countrylmpl are identical, a simple attribute definition bean in the Business Object data
dictionary file (State.xml) can be used:

<bean i d="St at e- post al Count ryCode" parent="Country- post al CountryCode- par ent Bean"/ >

The definition of the Country-postal CountryCode-par entBean bean is seen inside the Country.xml file
(for the Countrylmpl business object):

<bean i d="Country-postal Count ryCode- par ent Bean" abstract="true" parent="Attri buteD
<property nane="nanme" val ue="postal CountryCode"/ >
<property nane="forceUppercase" val ue="true"/>
<property nane="|abel" val ue="Country Code"/>
<property nane="short Label " val ue="Country Code"/>
<property nane="maxLength" val ue="2"/>
<property nane="validationPattern">
<bean parent ="Al phaNunericVal i dati onPattern"/>
</ property>
<property nane="required" value="true"/>
<property nane="control ">
<bean parent ="Text Control Definition" p:size="2"/>
</ property>
<property nane="summary" val ue="Postal Country Code"/>
<property name="description" value="The code uniquely identify a country."/>
</ bean>

This type of definition (defining the attribute definition once and reusing the bean as a parent bean) can
be used inside common files as well. Rice has an AttributeReferenceDummy.xml business object data
dictionary file as well as ajava object AttributeReferenceDummy.javafile. Thisfile's sole purposeisto
place commonly defined attributes such asver sonNumber (which iscommon across all business objects)
in a central location so that other business object attribute definitions can use them as parent beans. Here
is how the Campus business object uses the version number attribute:

<bean i d="Canpus-versi onNunber - par ent Bean" abstract="true" parent="Attri buteRefere

All business object data dictionary files need to have the version number field bean defined. This will
verify that the Ul will have the version number as a hidden field.

Business Object Data Dictionary Lookup Definition

Lookup Fields

A lookup definition contains a property called lookupFieldswhich is made up of alist of FieldDefinitions.
These specify the fields that will be displayed on a lookup form for that business object. A typical
lookupField (shown here with the parent property for context) in the Spring configuration for a Business
Object will ook like this:

<property nane="| ookupFi el ds" >
<list>

<bean parent="Fi el dDefinition" p:attributeNanme="canmpusCode"/>

</list>

220

KNS

</ property>
Lookup default values
You can set aglobal default for that lookup field using the defaultValue property:
<bean parent="Fi el dDefinition" p:attributeNanme="canmpusCode" p: defaultVal ue="BL"/>

The effect of thisisthat every time the lookup for this Business Object is rendered, the campusCode text
input will have "BL" in it.

Quickfinders

A quickfinder is abutton that is rendered next to alookup field which takes you to alookup for arelated
Business Object which that field references, which in the case of this example would be to a Campus
Business Object.

Quickfinder parameters

If alookup field will have aquickfinder button on it due to a BO relationship, you may wish to set default
valuesfor certain fields on that related Business Object's lookup form, but only when the quickfinder from
this Business Object is used.

<bean parent="Fi el dDefinition" p:attributeName="canmpusCode" p: qui ckfi nder Par anet er

Theeffect of thisisdifferent than the defaultV aluein that the defaults apply not to thelookup form Business
Object that we are currently defining lookupFields for, rather for specific fields in the related Business
Object that this lookupField (campusCode) references — but only when accessed through this quickfinder
on our parent BO's lookup form.

Example LookupDefinition with defaultValue and quickfinderParameterString

Thisis perhaps better explained through a simple example with two BOsthat have arelationship, Building
and Campus. Here is the LookupDefinition for Building:

<bean i d="Bui |l di ng-1 ookupDefi nition-parent Bean" abstract="true" parent="LookupDefi

<property nane="| ookupFi el ds" >
<list>

<bean parent="Fi el dDefinition" p:attributeName="canpusCode" p: quickfin

</list>
</ property>
</ bean>
The defaultValue is aglobal default, so every time you view the Building BO's lookup it will have "BL"
in the campusCode input.

The quickfinderParameterString is much more localized, so if you go directly to the Campus BO's lookup
it will have no effect. However, if you go to the Building BO'slookup and click the quickfinder button next
to its campusCode input, the Campus BO's lookup it will have a default of "P" in the campusTypeCode
input, and a default of "Y" in the active input.

There is a related property for FieldDefinition that also applies to lookups, the
quickfinderParameterStringBuilderClass. This lets you specify a class (which must implement
the org.kuali.rice.kns.lookup.valueFinder.ValueFinder interface) which will dynamically construct a

221

KNS

Totals

quickfinderParameterString each time a lookup is rendered. This might be useful if e.g. you wanted to
populate afield in the related BO's lookup with the current date and time when it is accessed through the
quickfinder.

It is not wvaid to have both the quickfinderParameterString and the
quickfinderParameter StringBuilder Class defined on asingle FieldDefinition, and you will get an exception
during Data Dictionary validation if you do so.

Support exists in the lookup framework for totaling the lookup results. If the ‘total’ property is set to true
on one or more FieldDefinition within the resultFields, the total line will be rendered and totals displayed
for each field indicated.

Example:

<property name="resul tFi el ds" >
<list>
<bean parent="Fi el dDefinition" p:attributeName="kenmi d" />
<bean parent="Fi el dDefinition"
p: attribut eName="kenm dCbj.shortTitle" />
<bean parent="Fi el dDefinition"
p: attribut eNanme="kem dCbj . pur poseCode" />
<bean parent="Fi el dDefinition"
p: attri but eName="avai | abl el nconeCash" p:total ="true" />
<bean parent="Fi el dDefinition"
p: attri but eNanme="avai | abl ePri nci pal Cash" p:total ="true" />
<bean parent="Fi el dDefinition"
p: attri but eName="avai | abl eTot al Cash" p:total ="true" />
<bean parent="Fi el dDefinition"
p: attribut eNane="kem dCbj . cl ose" />
</list>
</ property>

An additional row will be added to the lookup result table with the totals for each of these columns
indicated. The label for the total row will display in the first lookup column. By default thislabel is set to
"TOTALS and can be changed in KR-ApplicationResources.properties.

Figure5.1. Totals

TTIMS ELL LS FLEILE

222

KNS

Thetotal line will not be displayed for the column if the column values are masked.

One limitation of the totaling functionality isit will not work with a column that has inquiry URLSs. This
is because of the need to have a numeric value to sum on and for fields with an inquiry the URL is put
into the tag value along with the actual cell value.

Disabling Search Buttons

In certain cases the search and clear buttons for a lookup are not needed. Therefore these buttons can be
disabled in one of two ways.

The first way is to disable the buttons through the data dictionary. This is done by setting the property
disableSearchButtons to true in the data dictionary lookup definition:

<bean i d="CustonerProfil e-|1 ookupDefinition" parent="CustomerProfile-|ookupDefiniti
<bean i d="Cust oner Profil e-1 ookupDefinition-parentBean" abstract="true" parent="Loo
<property nane="title" val ue="Custoner Profile Lookup"/>

<property nane="di sabl eSear chButtons" val ue="true"/>

The second way is to disable the buttons for a particular instance of a lookup by passing
disableSearchButtons=true as arequest URL parameter:

http://1 ocal host: 8080/ kr - dev/| ookup. do?di sabl eSear chButt ons=t rue&ore parns ...

Notein this scenario other callsto thelookup without this parameter will have the search buttons rendered.

Merging Custom Attributes into Lookup Definitions

There are instances when an institution would choose to add custom attributes to existing data dictionary
definitions in a client application (such as KFS or KC). The lookup and result fields representing these
custom attributes can be arranged as desired using the DataDictionaryBeanOverride. In the example
below, we wish to add a custom attribute named Campus Code to KFS's existing Account bean.

<beans>

<bean i d="Account” parent="Account - parent Bean">
<property nane="attri butes">
<list merge="true">
<l-- list goes here -->
<bean i d="Account. canpusCode” parent="Account - CanpusCode” p: nane="Acco

</list>
</ property>
</ bean>

</ beans>
Once the custom attribute is defined, we create a bean that takes KFS' s Account-lookupDefinition bean
and modifies it such that Campus Code is displayed right after the Sub-Fund Group Code attribute in

the Account lookup screen and search results.

<beans>

<bean i d="Account - | ookupDefiniti on-override” parent="DataDi ctionaryBeanCOverrid
<property nane="beanNane" val ue="Account -| ookupDefinition” />

223

KNS

<property nane="fiel dOverri des” >
<list>
<I— Pl ace Campus Code after Account Sub-Fund G oup Code in the |lo
<bean parent="Fi el dOverri deForLi st El ement | nsert”>
<property nane="propertyNanme” val ue="1 ookupFi el ds” />
<property nane="propertyNameFor El ement Conpare” val ue="attri but
<property nane="el emrent” >
<bean parent="Fi el dDefinition” p:attributeName="subFundG o
</ property>
<property nane="insertAfter”>
<list>
<bean parent="Fi el dDefinition” p:attributeName="Accoun
</list>
</ property>
</ bean>
<I— Pl ace Campus Code after Account Sub-Fund G oup Code in the se
<bean parent="Fi el dOverri deForLi st El ement | nsert”>
<property nane="propertyName” value="resultFields” />
<property nane="propertyNameFor El ement Conpare” val ue="attri but
<property nane="el emrent” >
<bean parent="Fi el dDefinition” p:attributeName="subFundG o
</ property>
<property nane="insertAfter”>

<list>
<bean parent="Fi el dDefinition” p:attributeName="Accoun
</list>
</ property>
</ bean>
</list>
</ property>
</ bean>
</ beans>

Merging Custom Attributes into Inquiry Definitions

There are instances when an institution would choose to add custom attributes to existing data dictionary
definitions in a client application (such as KFS or KC). The fields representing these custom attributes
can be arranged on the inquiry screen as desired using the DataDictionar yBeanOverride. In the example
below, we wish to add a custom attribute named Campus Code to KFS's existing Account bean.

<beans>

<bean id="Account” parent="Account - parent Bean">
<property nane="attri butes">
<list merge="true”>
<l-- list goes here -->
<bean i d="Account. canpusCode” parent="Account - CanmpusCode” p: nane="

</list>
</ property>
</ bean>

</ beans>

224

KNS

Once the custom attribute is defined, we create a bean that takes KFS's Account-inquiryDefinition bean
and modifies it such that Campus Code is displayed right after the Sub-Fund Group Code attribute in
the Account inquiry screen.

<beans>

<bean id="Account-inqui ryDefinition-override” parent="DatabDi cti onaryBeanOverri
<property nanme="beanNane" val ue=" Account-inquiryDefinition” />
<property name="fiel dOverri des” >
<list>
<I— Pl ace Campus Code after Account Sub-Fund G oup Code in the Ac
<bean parent ="Fi el dOverri deForLi st El enent | nsert” >
<property nanme="propertyNane” val ue="inquirySections[O].inquir
<property nanme="propertyNaneFor El enent Conpare” val ue="attri but
<property name="el enent” >
<bean parent ="Fi el dDefinition” p:attributeName="subFundG o
</ property>
<property nanme="insertAfter”>

<list>
<bean parent="Fi el dDefinition” p:attributeName="Accoun
</list>
</ property>
</ bean>
</list>
</ property>
</ bean>
</ beans>

Document Data Dictionary Overview

There are two different document typesin KNS:
1. Maintenance Documents

Maintenance Documentscreate, update, copy, or inactivate either asingle businessobject or acollection
of business objects. They are used to perform standard maintenance on data.

2. Transactional Documents

Transactional Documents represent an action that will occur in the system. They are treated as one-shot
documents and need not be edited and modified several times because of their approach in performing
an action.

Comparison of Maintenance and Transactional Documents

Table 5.2. Comparison of Maintenance and Transactional Documents

Transactional Documents M aintenance Documents
SQL Table(s) yes yes
0OJB Mapping(s) - repository.xml |yes yes
Business Object(s) yes yes
Data Dictionary File(s)(XML) Transactional Document DD File | Maintenance Document DD File

225

KNS

‘Transactional Documents ‘M aintenance Documents
Business Object DD File
(discussed earlier)

Each type of dictionary defines properties such as authorizations, rules and workflow document types.

Thefollowing examples all follow the same structure with respect to the use of ‘abstract’ parent beans for
DataDictionary beans. A detailed description of their use and why Kuali uses thistype of implementation
can be found in the beginning of the ‘ Business Object Data Dictionary’ section.

Maintenance Document Data Dictionary Overview

In general, documents have metadata associated with them, and the metadata for maintenance documents
exists in the document's data dictionary configuration. The data dictionary can do practically everything
for amaintenance document: it declaresthe user interface for the form, tiesrules and document authorizers
to the document as well as the document's workflow document type.

Below is an example of a Maintenance Document Data Dictionary file from the KNS module itself. It
is for the Parameter object used within the KNS. The path (or package) or g/kuali/ricelkns/document/
datadictionary/ iswherethe Par ameter M aintenanceDocument can befoundin Riceif below isdifficult
to view.

<bean i d="Par anet er Mai nt enanceDocunent " par ent =" Par anmet er Mai nt enanceDocunent - par en

<bean i d="Par anet er Mai nt enanceDocunent - par ent Bean" abstract="true" parent="Minten
<property nane="busi nessCbj ect O ass" val ue="org. kual i .rice. kns. bo. Paraneter"/>
<property nane="rmai nt ai nabl eCl ass" val ue="org. kuali.rice. kns. docunent . Par anet e
<property nane="nai nt ai nabl eSecti ons" >

<list>
<ref bean="Par anet er Mai nt enanceDocunent - Edi t Par aneter "/ >
</list>

</ property>
<property nane="def aul t Exi st enceChecks" >
<list>
<bean parent="ReferenceDefinition" p:attributeNane="paraneter Nanespace
<bean parent="ReferenceDefinition" p:attributeNane="paraneterType" p:a
</list>
</ property>
<property nane="| ocki ngKeys" >
<list>
<val ue>par anet er NamespaceCode</ val ue>
<val ue>par anet er Det ai | TypeCode</ val ue>
<val ue>par anet er Appl i cat i onNamespaceCode</ val ue>
<val ue>par anet er Nane</ val ue>
</list>
</ property>

<property nane="docunent TypeNane" val ue="Par amet er Mai nt enanceDocunent "/ >
<property nane="busi nessRul esCl ass" val ue="org. kuali.rice.kns.rul es. Paranet erR
<property nane="docunent Aut hori zer Gl ass" val ue="org. kuali.rice. kns. docunent. au
<property nane="wor kf| owProperties">
<ref bean="Par anet er Mai nt enanceDocunent - wor kf | owPr operti es"/>
</ property>
</ bean>

226

KNS

<!-- Maintenance Section Definitions -->
<bean i d="Par anet er Mai nt enanceDocunent - Edi t Par anmet er " par ent =" Par anet er Mai nt enance

<bean i d="Par anet er Mai nt enanceDocunent - Edi t Par anet er - par ent Bean" abstract="true" p
<property nane="rmai nt ai nabl eltenms" >
<list>
<bean parent =" Mi nt ai nabl eFi el dDefinition
<bean parent =" Mi nt ai nabl eFi el dDefinition
<bean parent =" Mi nt ai nabl eFi el dDefinition
<bean parent =" Mi nt ai nabl eFi el dDefinition
<bean parent =" Mi nt ai nabl eFi el dDefinition
<bean parent =" Mi nt ai nabl eFi el dDefinition
<bean parent =" Mi nt ai nabl eFi el dDefinition
<bean parent =" Mi nt ai nabl eFi el dDefinition
</list>
</ property>
<property nane="id" value="Edit Paranmeter"/>
<property nane="title" value="Edit Parameter"/>
</ bean>

:required="true" p:nane="p
:required="true" p:nane="p
:required="true" p:nane="p
:required="true" p:nane="p
:required="fal se" p:name="
:required="true" p:nane="p
:required="true" p:nane="p
:required="true" p:nane="p

T T T T T T TDT

<l-- Exported Wirkflow Properties -->
<bean i d="Par anet er Mai nt enanceDocumnent - wor kf | owPr operti es" parent="Par anet er Mai nt e

<bean i d="Par anet er Mai nt enanceDocunent - wor kf | owPr operti es- parent Bean" abstract="tr
<property nane="wor kf | owPr opertyG& oups” >
<list>
<bean parent ="Wr kf| owPr opert yG oup” >
<property nane="wor kf| owProperties">
<list>
<bean parent ="Wr kfl owPr operty” p: pat h="ol dMvai nt ai nabl eQpj
<bean parent ="Wr kfl owPr operty” p: pat h="newlMai nt ai nabl ej

</list>
</ property>
</ bean>
</list>
</ property>
</ bean>
Basic Setup

The first bean defined for the ParameterMaintenanceDocument data dictionary file is the main
definition bean “ParameterMaintenanceDocument-parentBean”. This bean uses the parent bean
“MaintenanceDocumentEntry”. This is how this particular business object is defined specifically as a
Maintenance Document. Inside the “ ParameterM ai ntenanceDocument-parentBean” bean we see severa
properties being set:

<property nane="busi nessChj ect C ass" val ue="org. kuali.rice. kns. bo. Paranmeter"/>
<property nane="nmai nt ai nabl eCl ass" val ue="org. kual i.rice. kns. docunent . Par anet er Ma

227

KNS

First and foremost the Maintenance Document Data Dictionary file should define the business object that
will be maintained by this particular document using the businessObj ectClass property. In this example
the fully qualified business object classis kuali.rice.kns.bo.Parameter.

The Maintenance Documents al so need amaintainable class. Thisis defined using the maintainableClass
property and in our Parameter business object example the custom class being used is
org.kuali.ricekns.document.Parameter M aintainable. If there are no customizations needed for the
business object then the default class org.kuali.rice.kns.maintenance.K ualiM aintainablel mpl should
be used. More will be discussed about custom maintainable classes later in this document.

Existence Checking

The next maintenance document specific tag is defaultExistenceChecks. Certain document validations
are so omnipresent that they can simply be declared - typically validationsthat certain fields of adocument
arerequired. Here are the default existence checks for the Parameter M aintenanceDocument:

<property name="def aul t Exi st enceChecks">

<list>
<bean parent ="ReferenceDefinition" p:attributeNanme="paraneter Nanespace" p:
</list>

</ property>

Herewe havejust one default existence check. Default existence checks verify that the associated business
object for the document actually exist. For instance, in the Parameter maintenance document, if a user
enters a parameter namespace value that does not exist, the default existence check will display an error
message hext to the parameter NamespaceCode attribute field after the user attempts to save or submit.

The defaultExistenceCheck tag has afew different ways it can operate. All involve setting alist of beans
that use the “ReferenceDefinition” parent bean. This bean is defined in Rice and can be used by any
Maintenance Document Data Dictionary file. The propertiesthat may be set for the “ ReferenceDefinition”
beans vary but the example shows the most common. The attributeName property is set to the KNS
attribute name of the business object which must exist for the check to pass. In this case the Namespace
object in KNS has a namespaceCode attribute. Likewise the attributeT oHighlightOnFail refersto the
attribute in the Parameter business object that is used to link to the reference business object. Thisisthe
field which will be highlighted on the user interface for the error to display. Of course, for this to work
correctly, the foreign keys to the fields must be specified as required. That will comeinto play in section
below about specifying the Ul.

Locking keys

Since maintenance documents edit one or more business objects, there isthe potential for race conditions.
For example, if two business objects were created with the same primary key field and they were both
sent into routing at the same time, the first document that is approved to ‘Final’ statusin Workflow could
potentially be overwritten in the database by the second document when it goesto ‘Final’ status. The KNS
attempts to prevent these situations from arising by creating a pessimistic lock on each business object
going through workflow as part of a maintenance document. In most cases, it uses the lockingK eystag of
the data dictionary for the maintenance document to create that locking representation. Here's the locking
representation configuration for the Par ameter M aintenanceDocument:

<property nane="| ocki ngKeys" >
<list>
<val ue>par anet er NamespaceCode</ val ue>
<val ue>par anet er Det ai | TypeCode</ val ue>
<val ue>par anet er Appl i cat i onNamespaceCode</ val ue>
<val ue>par anet er Nane</ val ue>

228

KNS

</list>
</ property>

Not surprisingly, the attributes listed in the example are al so the primary keys for the Parameter business
object. The locking keys above simply mean that once a certain Parameter is put into Workflow routing
with a certain set of the fields above, another document with the same exact values for all the attributes
above will be prevented from being put into Workflow. The fields used in alocking key can be anything,
as long as it marks the business object uniquely. It makes sense, then, that most |ocking keys are simply
the primary keys for the business object.

Defining the Ul

Finally, the largest part of the maintenance document data dictionary: the definition of the Ul through
the maintenanceSections property. The Ul of a maintenance document is made up of one or more
mai ntai nabl e sections. Each section isnamed, and each section createsanew tab asitsvisual representation
on the web form. Here is the section list property being set on the “ParameterM aintenanceDocument-
parentBean” bean (only one section in this document):

<property nane="nmai nt ai nabl eSecti ons" >

<list>
<ref bean="Par anet er Mai nt enanceDocunent - Edi t Par aneter "/ >
</list>

</ property>

The list of beans is defined in the main Maintenance Document Entry bean while each ‘Section
Definition’ bean is defined below in the file. Here is the Parameter M aintenanceDocument exampl e of
the “ ParameterMai ntenanceDocument-EditParameter” bean definition:

<bean i d="Par anet er Mai nt enanceDocunent - Edi t Par anet er - par ent Bean" abstract="true" p
<property nane="rmai nt ai nabl eltens" >
<list>

<bean parent =" Mi nt ai nabl eFi el dDefinition :required="true" p:nane="p
<bean parent =" Mi nt ai nabl eFi el dDefi niti on" p:required="true" p:name="p
<bean parent =" Mi nt ai nabl eFi el dDefi niti on" p:required="true" p:name="p
<bean parent =" Mi nt ai nabl eFi el dDefi nition" p:required="true" p:name="p

:required="fal se" p:nanme="
:required="true" p:nane="p
:required="true" p:nane="p
:required="true" p:nane="p

<bean parent =" Mi nt ai nabl eFi el dDefinition
<bean parent =" Mi nt ai nabl eFi el dDefinition
<bean parent =" Mi nt ai nabl eFi el dDefinition
<bean parent =" Mi nt ai nabl eFi el dDefinition
</list>

</ property>

<property nane="id" value="Edit Paranmeter"/>

<property nane="title" value="Edit Parameter"/>

</ bean>

T T T T T T TTT

Each maintainable section is defined by using the parent bean “MaintainableSectionDefinition”. These
beans, in turn, are made up of several different propertiesincluding an id, title, and maintainablel tems.
The maintainableltems property is alist of maintainable fields. Each maintainable field bean uses the
“MaintainableFieldDefinition” bean as its parent bean and lists the attribute that should be shown. That
attribute itself has typically been defined in the data dictionary configuration for the business object (see
Business Object Data Dictionary Definition below). There is also arequired property which can be set
to force extra validation, though all validations described in the attributes of the business object will also
be checked.

While attributes default to using the definition set up in the data dictionary for a given field, there are a
couple of behavior modifications that can be made. One of which appears abovein therequired property.

229

KNS

This can override the default required behavior as defined for the business object on the Business Object
Data Dictionary file. Below are demonstrations of how some of the various changes that can be made
could potentially be done for the Par ameter M aintenanceDocument data dictionary file. For instance,
default values for any field can be set by using the defaultValue property, like so:

<bean parent =" Mai nt ai nabl eFi el dDefi nition">
<property nane="nanme” val ue="par anet er Appl i cati onNanespaceCode"/ >
<property nane="required” value="true"/>
<property nane="def aul t Val ue” val ue="KUALI"/>

</ bean>

The example above example sets the default value of the parameter ApplicationNamespaceCode
attribute to “KUALI".

Another property that can be used to set a field with a default value in the maintenance document data
dictionary maintainableField beans is the defaultValueFinder Class property. This property should be
set to a class that implements the interface class org.kuali.rice.kns.lookup.valueFinder .ValueFinder.
The interface has one method only: getValue(), which returns a String which will be set into the
form in the User Interface. Here is an example (not from the Parameter M aintenanceDocument
but from the IdentityM anagementGenericPer missionM aintenanceDocument) on how to use the
defaultValueFinder Class property:

<bean parent =" Mi nt ai nabl eFi el dDefi nition">

<property nane="nane” val ue="perm ssionld"/>

<property nane="unconditional |l yReadOnly” val ue="true"/>

<property nane="required” value="true"/>

<property nane="def aul t Val ueFi nder Gl ass” val ue="org. kuali.rice. ki m!| ookup.valu
</ bean>

The above example pulls the next available id from a class for one of the Kuali Identity
Management documents. This is a very custom behavior for KIM but does highlight just one way the
defaultValueFinder Class can be used.

One other large customization that can be made is to modify the way the lookup on a particular field
operates. Lookups will be described in detail later in this documentation. Below is a simulated example
that does not exist in the Rice code:

<bean parent =" Mi nt ai nabl eFi el dDefi nition">
<property nane="nane” val ue="reconcil er G oup. gr oupNane"/ >
<property nane="required” value="true"/>
<property nane="overri deFi el dConver si ons” val ue="groupl d: car dG oupl d, gr oupNarne
<property name="overrideLookupC ass” val ue="org. kuali.rice.kimbo.inpl.G oupln
</ bean>

The overridel ookupClass property will set the business object class of the lookup that should be used.
This meansin our example above that the lookup for the field “reconcilerGroup.groupName” will use the
org.kuali.rice.kim.bo.impl.Grouplmpl class lookup. The overrideFieldConversions property is used
to trandlate data attributes from the overrideL ookupClassto fiel ds that match the current Business Object
class for which the maintenance document data dictionary file is for. These are separated with the colon
character and a comma is used to delineate each field trandlation if more than one is to be listed. In the
example above the ‘groupld’ field (which exists on the org.kuali.rice.kim.bo.impl.Grouplmpl class)
will be set into the ‘cardGroupld’ field (which should exist on the business object class of the current
maintainable data dictionary file). In someinstancesthe overrideFieldConver sions may not be necessary
if the field names are the same on the lookup’ s business object class and the data dictionary’s business
object class.

230

KNS

Additional MaintainableFieldDefinition Properties

For each Maintai nabl eFieldDefinition bean defined in a maintenance document, there are afew fields that
can help adjust the User Interface for a KNS client. Here is a sample example:

<property nane="rmai nt ai nabl eltenms" >

1

2 <list>

3 <bean parent =" Mi nt ai nabl eFi el dDefi ni ti on" p: name="Code" p:required="
4 <bean parent =" Mi nt ai nabl eFi el dDefi niti on" p:name="1D" p:unconditi ona
5 <bean parent =" Mi nt ai nabl eFi el dDefi ni ti on" p: name="Name" p:readOnl yAf
6 <bean parent =" Mi nt ai nabl eFi el dDef i niti on" p: name="Type" p:|ookupRead
7 <bean parent =" Mi nt ai nabl eFi el dDefi ni ti on" p:name="I|i nkedJob" p: noLoo

In the example above on line 4 the field with name value “ID” has a property named
unconditionallyReadOnly that is set to “true’. This means the field will be read only and uneditable in
the User Interface at al times regardless of document state. This could be helpful when setting a default
value that the user entering the document is not allowed to change.

The property readOnlyAfter Add set to “true” on line 5 for the “Name” field means that once the
maintenance document for this business object has been successfully saved and routed through all
appropriate approvals, the“Name” field will beread only. Thisisuseful in certain instanceswhen creating
anew business object.

The property lookupReadOnly in line 6 is used to change the Ul so that alookup link will be presented
for the field but the value that is displayed when returning an object from the lookup is read only. In the
example abovethe“Type” variable will have alookup (as defined by the Business Object Data Dictionary
file... seethe Business Object Data Dictionary section for moreinformation) but the displayed valueinthe
Ul for “Type’ will be uneditable by user entry. It may till be changed by going to the lookup link again.

The noLookup property shown in line 7 for the “linkedJob” field is a way to override the default
functionality coming from the Business Object Data Dictionary file. If that DD file has a Lookup control
element but the lookup need to be hidden on the Maintenance Document then this attribute allows for that
functionality.

Collections

Some maintenance documents include collections of business objects. Below is an example from the
RoutingRuleM ai ntenanceDocument data dictionary file from Rice:

<bean i d="Routi ngRul eMai nt enanceDocunent - Per sonResponsi biliti es-parent Bean" abstra
<property nane="id" val ue="PersonsMai nt enance"/ >
<property nane="title" val ue="Persons"/>
<property nane="rmai nt ai nabl eltenms" >
<list>
<bean parent =" Mai nt ai nabl eCol | ecti onDefinition">
<property nane="name" val ue="personResponsibilities"/>
<property nane="busi nessChj ect C ass" val ue="org. kuali.rice. kew. rul
<property nane="summaryTitle" val ue="Person"/>
<property nane="summaryFi el ds">
<list>
<bean parent =" Mi nt ai nabl eFi el dDef i niti on" p: name="princip
<bean parent =" Mi nt ai nabl eFi el dDef i niti on" p: name="acti onR
</list>

231

KNS

</ property>
<property nane="rmai nt ai nabl eFi el ds">
<list>

<bean parent =" Mi nt ai nabl eFi el dDef i niti on" p:na
<bean parent =" Mi nt ai nabl eFi el dDef i niti on" p:na
<bean parent =" Mi nt ai nabl eFi el dDef i niti on" p:na
</list>
</ property>
<property nane="duplicateldentificationFields">
<list>
<bean parent =" Mi nt ai nabl eFi el dDef i niti on" p:na
<bean parent =" Mi nt ai nabl eFi el dDef i niti on" p:na
</list>
</ property>
</ bean>
</list>
</ property>

</ bean>

To put a collection into a mantenance section, simply put an instance of a
MaintainableCollectionDefinition bean in thelist that is set into the maintainablel tems property of the
mai ntenance section.

The MaintainableCollectionDefinition bean must have a name property. The name property should
match the attribute name of the collection being maintained on the origina business object. The
businessObj ectClass property value specifies the class of the itemsin the collection.

The maintainableFields property inside the MaintainableCollectionDefinition bean works
exactly like the previously described structure of the maintainableFields property inside the
MaintainableSectionDefinition bean. The only difference is that the name property of each
MaintainableFieldDefinition refers to an attribute of the businessObjectClass that is set on the
M aintainableCollectionDefinition bean.

The summaryTitle and summaryFields properties are used for display purposes once a list element is
added to the list on the Ul screen. The specified data elements will show when the full detail of the
collection item is hidden using the ‘ hide/show’ button functionality of the KNS. Usually these fields are
specific to what uniquely defines the business objects contained within the collection.

The duplicatel dentificationFields property is used to identify specifically the set of fields inside the
collection element business object that cannot be duplicated in thelist. In thisway they act as mini-locks.
They will prevent more than one list element with the same set of fields. For instance, in the example
above, if alist element already exists with the actionRequestedCd ‘A’ and the principalName ‘john’
then another list element with those same values cannot be added.

There are also a few more advanced type attributes that can be used. Take the above example and the
abbreviated alteration below.

<property nane="rmai nt ai nabl eltenms" >
<list>
<bean parent =" Mi nt ai nabl eCol | ecti onDefi nition" >
<property nane="name" val ue="personResponsibilities"/>
<property nane="incl udeAddLi ne" val ue="fal se"/>
<property nane="busi nessChj ect C ass" val ue="org. kual i .
<property nane="rmai nt ai nabl eFi el ds">
<list>

O~NO O WNPRE

232

me="princip
me="acti onR
me="priorit

me="princip
me="acti onR

rice. kew.ru

KNS

9 <bean parent =" Mai nt ai nabl eFi el dDef i niti on" p: name="newCol

The property includeAddLine on line 5 above is used to remove the Ul element that allows the usersto
add their own elementsto thelist. Thisishelpful in caseswherethelist of itemsmay be statically generated
by code internal to the business object containing the collection.

On line 9 in the example above, the addition of the MaintainableFieldDefinition with the name
property value of “newCollectionRecord” is used to tell the maintenance framework that any records
currently existing in the collection are permanent - that is, there should not be delete buttons
associated with them. However, if the property includeAddLine is set to “false” (or omitted) in the
MaintainableCollectionDefinition bean above, new lines could be added to the collection and each of
the new lines could be deleted (though lines that had been previously saved and routed appropriately into
the collection could not be deleted).

Alternate/Additional Display Properties

Within the business object frameworks (lookup, inquiry, and maintenance document) an aternate or
additional property can be specified to display when afield is read-only. These properties are configured
through the data dictionary as follows:

alternateDisplayAttributeName

This property specifies an attribute on the business object that should be displayed instead of the field
attribute when the view is read-only. The property is available on the FieldDefinition for lookup result
fields and inquiries, and on the MaintainbleFieldDefinition for maintenance documents. In the case of
lookup result fields and inquiries this attribute will aways be displayed since the view is always read-
only. For maintenance documents, the field attribute will display when the document is editable, and the
alternate attribute will display when the document is read-only.

<bean i d="Cust oner Profil e-1 ookupDefinition" parent="CustonerProfile-|ookupDefiniti
<bean i d="Cust oner Profil e-1 ookupDefinition-parentBean" abstract="true" parent="Loo
<property nane="title" val ue="Custoner Profile Lookup"/>

<property nane="defaul t Sort">
<bean parent="SortDefinition">
<property nane="attri but eNanmes">
<list>
<val ue>i d</ val ue>
</list>
</ property>
</ bean>
</ property>
<property nane="| ookupFi el ds" >
<list>
<bean parent="Fi el dDefinition"
<bean parent="Fi el dDefinition"
<bean parent="Fi el dDefinition"
<bean parent="Fi el dDefinition"
<bean parent="Fi el dDefinition"
</list>
</ property>
<property nane="resultFi el ds">
<list>

cattributeNane="id"/>
;attributeNane="chart Code"/ >
;attributeNane="unit Code"/ >
;attributeNane="subUnit Code"/ >
cattributeNane="active"/>

T T T T O

233

KNS

<bean parent="Fi el dDefinition" p:attributeName="id" p:alternateD splay
<bean parent="Fi el dDefinition" p:attributeNane="customnmer Short Name"/>
<bean parent="Fi el dDefinition" p:attributeName="customerDescription"/>
<bean parent="Fi el dDefinition" p:attributeName="contact Ful | Name"/>
<bean parent="Fi el dDefinition" p:attributeNa ="processi ngEmai | Addr"/ >
<bean parent="Fi el dDefinition" p:attributeNanme="defaul t Physi cal CanpusP
<bean parent="Fi el dDefinition" p:attributeName="active"/>
<bean parent="Fi el dDefinition" p:attributeNane="defaul t Chart Code"/ >
</list>
</ property>
</ bean>

In the example above, for the result field 'id' we have specified an alternateDisplayAttibuteName equal to
"customerName". When the results are rendered the value of customerName property will be displayed
and not the value of the id property. This behavior is the same within an InquiryDefinition.

If specified on a MaintainableFieldDefinition, again the value for the alternateDisplayAttibuteName
attribute will be displayed; however any quickfinder or lookup URL will be built using the field property
asusual. If the field is editable or hidden, the value of the field property will be used.

additionalDisplayAttributeName

This property behaves much like the alternateDisplayAttibuteName, the only difference being the value
of the additional DisplayAttributeName attribute will be appended to the value of the field attribute, using
-' asadelimiter.

Neither the aternateDisplayAttibuteName nor additionalDisplayAttributeName need to have an
AttributeDefinition defined, however they must have an accessible getter in the business object.

Automatic Translation of KualiCode fields

If enabled, fieldsthat have referencesto aKualiCode classwill be found and the corresponding KualiCode
name field will be set as the additional DisplayAttributeName. The object property holding the reference
must also prefix the field name. For example, afield name of 'defaultChartCode’ and reference name of
‘defaultChart’ would match, again assuming the type of 'defaultChart’ implements KualiCode.

Thisautomatic translation of code fieldsisturned on by default in the Inquiry framework, but turned off by
default in lookups and maintenance documents. It can be configured for each MaintenanceDocumentEntry,
L ookupDefinition, or InquiryDefinition with the property 'translateCodes'.

For example, in the MaintenanceDocumentEntry:

<bean i d="Cust oner Profi | eMai nt enanceDocunent - par ent Bean" abstract="true" parent="N
<property nane="busi nessChj ect C ass" val ue="org. kual i . kf s. pdp. busi nessobj ect. C
<property nane="nmai nt ai nabl eCl ass" val ue="org. kual i . kf s. pdp. docunent . dat adi ct i
<property nane="rmai nt ai nabl eSecti ons" >
<list>
<ref bean="Customer Profil eMai nt enanceDocunent - Edi t Cust ormer Profi | eSect i
<ref bean="Customer Profil eMai nt enanceDocunent - Edi t Cust ormer Profi | eSect i
<ref bean="Customner Profil eMai nt enanceDocunent - Edi t Cust omer Profi | eSect i
<ref bean="Custoner Profil eMai nt enanceDocunent - Edi t Cust ormer Bank"/ >
</list>
</ property>
<property nane="def aul t Exi st enceChecks" >
<list>
<bean parent="ReferenceDefinition" p:attributeName="defaultChart" p:at

234

KNS

<bean parent ="Ref erenceDefinition
<bean parent ="Ref erenceDefinition
<bean parent ="Ref erenceDefinition
<bean parent ="Ref erenceDefinition
<bean parent ="Ref erenceDefinition
<bean parent ="Ref erenceDefinition
<bean parent ="Ref erenceDefinition
<bean parent ="Ref erenceDefinition
<bean parent ="Ref erenceDefinition
</list>
</ property>
<property nane="| ocki ngKeys" >
<list>
<val ue>chart Code</ val ue>
<val ue>uni t Code</ val ue>
<val ue>subUni t Code</ val ue>
</list>
</ property>
<property nane="transl| at eCodes"” val ue="true"/>

cattri but eName="def aul t Account” p:
cattri buteNanme="def aul t Cbj ect” p:a
cattri but eNanme="def aul t Processi ngC
cattri buteName="state" p:attribute
cattri but eNanme="post al Code" p:attr
cattri buteName="country" p:attribu
cattri buteNanme="transacti onType" p
:col |l ection="cust oner Banks" p:attr
:col |l ection="cust oner Banks" p:attr

T T T T T T T TDO

If alternateDisplayAttributeName is specified for a field then it will override the code trandation (if
applicable).

Note the Summarizable interface and SummarizableFormatter class were removed as part of this work.
If an application class implemented Summarizable it should be changed to implement the KualiCode
interface.

Dynamic read-only, hidden, and required Field states

Within the KNS lookup and maintenance frameworks there is support for dynamically altering the read-
only, hidden, or required states of afield. This functionality is configured through the data dictionary and
javacode asfollows:

Conditional Logic

Any conditional logic that is necessary to determine whether a field should be read-only, hidden, or
required (and editable) is implemented with java code. For maintenance documents this code is placed in
the presentation controller. The following methods are available for this purpose:

public Set<String> get Conditionall yReadOnl yPropertyNames(Mi nt enanceDocunment docun

public Set<String> get ConditionallyRequiredPropertyNames(Mi ntenanceDocunment docun

public Set<String>
get Condi ti onal | yHi ddenPr opert yNames(Busi nessObj ect busi nessObj ect)

Each of these methods returns a Set of field names (prefixing for the maintainable is not necessary). These
fields will then take on the state determined by the method. The first two methods take as a parameter the
MaintenanceDocument instance which can be used to get the current values for one or more fields. The
third method is more general (because it is used for inquires as well) and takes a BusinessObject instance
as a parameter. Within the maintenance context this will again be the MaintenanceDocument and can be
cast after doing an instanceof check.

Example:

235

KNS

@verride
public Set<String> get ConditionallyRequiredPropertyNames(Mi ntenanceDocunment docun
Set <String> required = new HashSet <String>();
SubAccount subAccount = (SubAccount) docunent. get NewMai nt ai nabl eCbj ect (). get Bu
if (StringUtils.isNotBl ank(subAccount. getFi nanci al Report Chart Code()) && subAcc
requi red. add("a21SubAccount . cost Shar eChar t O Account Code") ;
requi red. add("a21SubAccount . cost Shar eSour ceAccount Nunber ") ;

}

return required;

Only fields that have conditional states need to be considered here. For fields that are always read-only,
hidden, or required the corresponding properties on the MaintainableFieldDefinition can be set to true
through the data dictionary.

Sectionsof the maintenance document can al so be conditionally set to read-only or hidden by implementing
the following methods within the presentation controller:

public Set<String> get ConditionallyReadOnl ySecti onl ds(
Mai nt enanceDocunent docunent);
public Set<String> get ConditionallyH ddenSecti onl ds(Busi nessObj ect busi nessCbj ect)

Any authorization restrictions will be applied after thislogic by the document authorizer class.

For lookups conditional logic isimplemented in the L ookupableHel perService. Similar methods exist for
determining the read-only, hidden, or required states:

public Set<String> get Conditionall yReadOnl yPropertyNames();
public Set<String> get ConditionallyRequiredPropertyNanmes();

public Set<String> get ConditionallyH ddenPropertyNames();

Each of these methods returns a Set of field names. Code implemented within these methods has
access to the lookupable helper properties. In particular the request parameters can be retrieved using
getParameters(), and the current rows using getRows(). The following convenience method is aso
available for getting a property value from the field:

protected String getCurrent SearchFi el dval ue(String propertyNane)

It is recommended to use this method to get a value for a property as opposed to the request parameters,
since the values could be different. Thisis because the conditional logic isapplied at the end of the lookup
lifecycle and field values could have been cleared or set to other values by processing code. Therefore
basing conditional logic off these valueswill correctly reflect the values being returned to the search fields.

Example:

@verride
public Set<String> getConditionallyH ddenPropertyNanmes() {
Set <String> hi ddenPropertyNanes = new HashSet <Stri ng>();

String enpl oyeeld = get Current Sear chFi el dval ue(KI MPr opertyConst ant s. Per son. EMP
if (StringUtils.isNotBlank(enpl oyeeld)) {

hi ddenPr oper t yNames. add(KFSPr oper t yConst ant s. VENDOR_NUVBER) ;

hi ddenPr oper t yNanmes. add(KFSPr oper t yConst ant s. VENDOR_NAME) ;
}

return hi ddenPropertyNanes;

236

KNS

}
Trigger Fields

The second part to implementing conditional logic isindicating which fields should trigger arefresh (page
post) when its value changes. The page post will call each of the conditional methods so when the page
renderstheread-only, required, and hidden attributes are set according to the new field value (Note all field
valuesare availableto the conditional methods regardless of which onetriggered therefresh). Toindicatea
field should trigger arefresh, set the triggerOnChange attribute to true on the Maintai nabl eFi el dDefinition:

<bean par ent =" Mai nt ai nabl eFi el dDefi ni ti on" p: nane="fi nanci al Report Chart Code" p:tri

For lookups, set the triggerOnChange attribute to true on the lookup FieldDefinition within the
lookupFields property:

<property nane="| ookupFi

<list>
<bean
<bean
<bean
<bean
<bean
<bean
<bean
<bean
<bean

</list>

</ property>

par ent =" Fi
par ent =" Fi
par ent =" Fi
par ent =" Fi
par ent =" Fi
par ent =" Fi
par ent =" Fi
par ent =" Fi
par ent =" Fi

el ds" >

el dDefiniti
el dDefiniti
el dDefiniti
el dDefiniti
el dDefiniti
el dDefiniti
el dDefiniti
el dDefiniti
el dDefiniti

on
on
on
on
on
on
on
on
on

T T T T T T TTDO

cattri but eNanme="payeeTypeCode"/ >

cattri but eName="t axNunber" />
cattributeName="firstName" />

cattribut eNanme="I ast Nanme" />

cattribut eName="vendor Nunber" p:trigger OnC
cattri but eName="vendor Nane" />

cattribut eName="enpl oyeel d" p:trigger OnCha
cattributeName="entityld" p:triggerOnChang
cattri buteName="active"/>

Thereis no limit to the number of trigger fields specified for a maintenance document or lookup.

Note

JavaScript was implemented to set the focus back to the next field in the tab order (from the
field that triggered the refresh) when the page refreshes. Thiswill not work correctly if fields are
inserted between the field that triggered a refresh and the next tab field (for instance if afield
between these two was hidden or read-only, and becomes editable on refresh).

Configuring a KNS Client in Spring

The Kuali Nervous System (KNYS) is installed as a Rice Module using Spring. The primary source
for configuring Spring in KNS is the KnsTestSpringBeans.xml file located in the /kng/src/test/
resour ced directory. Thisfile uses the PropertyPlaceholder Configur er bean to load tokens for runtime
configuration using the source file kns-test-config.xml located in the /kns/sr c/test/r esour cesM ET A-INF

directory.

The kns-test-config.xml file contains this code snippet:

<par am name="
<par am name="
<par am name="
<par am name="
<par am name="
<par am name="
<par am name="

nodul e. nane" >sanpl e- app</ par an>

servi ce. nanespace" >Rl CE</ par an®
filter.login.class">org. kuali.rice.kew web. DumryLogi nFi |t er </ paran®
filtermapping.login.1">/*</paranp
config.location">cl asspat h: META-| NF/ t est - confi g- def aul t s. xm </ par an®
serviceServlet Ul ">http://1 ocal host: 9916/ ${app. cont ext. nane}/renoti ng
transaction. ti neout " >3600</ par anp

237

KNS

<par am nane="confi g. | ocati on">cl asspat h: META- | NF/ conmon- confi g-test-1 ocati ons. xm <

<par am nanme="config.l ocation">${alt.config.location}</paranp
<par am nanme="kns. test. port">9916</ par anp

This is a combination of key value pairs. When used in conjunction with Spring tokenization and the
PropertyPlaceholder Configurer bean, the parameter name must be equal to the key value in the Spring
file so that the properties propagate successfully.

Spring JTA Configuration

When doing persistent messaging, it is best to use JTA as your transaction manager. This ensure the
messages you are sending are synchronized with the current executed transaction in your application and
also allows message persistence to be put in a different database than the application’s logic, if needed.
Currently, KNSTestSpringBeans.xml uses JOTM to configure JTA without an application server. Below
is the bean definition for JOTM that can be found in Spring.

<bean i d="transacti onManager XAPool " cl ass="org. spri ngfranework.transaction.jta.Jot
<property name="defaul t Ti reout" val ue="${transaction.tineout}"/>

</ bean>

<bean i d="dat aSource" class="org. kuali.rice.database. XAPool Dat aSour ce" >
<property nane="transacti onManager" ref="transacti onManager XAPool " />
<property name="driverd assNane" val ue="${dat asource. driver.nane}" />
<property name="url" val ue="${datasource.url}" />
<property name="nmaxSi ze" val ue="${dat asour ce. pool . maxSi ze}" />
<property name="nmi nSi ze" val ue="${dat asource. pool . m nSi ze}" />
<property name="maxWai t" val ue="${dat asource. pool . maxWait}" />
<property name="val i dationQuery" val ue="${dat asource. pool . val i dati onQuery}" />
<property name="user nane" val ue="${dat asource. user nane}" />
<property name="password" val ue="${dat asource. password}" />

</ bean>

Configure the TransactionManager, UserTransaction and a DataSource. Use the Rice
XAPoolDataSource class as your data source because it addresses some bugs in the
Standar dX APool DataSour ce, which extends from this class.

KNS Validation and Business Rules Framework

When actions are performed on documents, there is typically some validation to accomplish on the
document; indeed, agreat deal of the businesslogic for client application is stored in document validations.
The KNS supports a standard framework for validations as well as away to display errors to application
end users.

Rules and Events

KNS validations are performed by rules classes, which respond to a specific application event.
An event is an object which encapsulates contextual information about something which has
been requested of a document. For instance, when a user on a maintenance document clicks a
“Route” button to route the document into workflow, the web-layer controller creates an instance of
org.kuali.ricekns.rule.event.RouteDocumentEvent which holds the document which has just been
routed. It then passes this event instance to or g.kuali.rice.kns.service.K ualiRuleSer vice.

238

KNS

The KualiRuleService interrogates the data dictionary entry for the document to find a rules class.
The event then invokes the rules class against itself. This is accomplished through a rule interface.
Every event has an associated rule interface; the class of this interface is returned by the Event's
getRulelnterfaceClass() method. The event will cast the business rule from the data dictionary to the
interface which it expects, and then call a standard method against that interface.

An example will clarify this. RouteDocumentEvent expects rules implementing the rule interface
org.kuali.rice kns.rule.RouteDocumentRule, which extends the BusinessRule interface given above.
RouteDocumentRul e has a single method to implement:

publ i c bool ean processRout eDocunent (Document docunent);

When the KualiRuleService gets the event, it finds the data dictionary entry for the given document and
generates an instance of the business rules class associated with the document. It then hands that to the
event, which attempts to perform the cast to RouteDocumentRule and call the processRouteDocument
method:

publ i c bool ean i nvokeRul eMet hod(Busi nessRul e rule) {
return ((RouteDocunent Rul e) rule).processRout eDocunent (docunent);
}

It then returns whatever was returned by therule.

This brings up the question of what the processRouteDocument method should actually do. Rule methods
need to accomplish two things:

1. Runthe businesslogic associated with that event against the document. If the businesslogic decidesthe
document isvalid, then atrue should be returned. If the businesslogic, contrarily, decides the document
isnot valid, afalseistypically returned. The result of the method invocation then typically determines
whether the given event will be completed. For instance, if processRouteDocument returns a false,
then the document — which has only had a workflow route requested of it — will fail to route. It will
instead return to the document screen.

2. Some kind of user message should be recorded in the GlobalVariables.getM essages() thread-local
singleton. This singleton has three maps, accessible through the getError M ap(), getWar ningM ap(),
and getl nfoM ap() methods. These maps associate an attribute on the page which caused afailurewith a
user message explaining the problem. If afalseisreturned from the method, thenitisgenerally expected
that the failure will be recorded in the Error map.

An excellent example of this can be found in the sample “Recipe application” which ships with Rice, in
edu.sampl eu.reci pe.document.rule.RecipeRul es:

@verride
prot ect ed bool ean processCust onmSaveDocunent Busi nessRul es(Mai nt enanceDocunent docun
bool ean valid = super. processCust onSaveDocunent Busi nessRul es(docunent) ;
if (valid) {
valid &= validatel ngredi ent s(docunent);

}

return valid;

}

private bool ean validat el ngredi ent s(Mai nt enanceDocunent reci peDocunent) {
Reci pe reci pe = (Reci pe) reci peDocunent . get Docunent Busi nessCbj ect () ;
String ingredients = recipe.getlngredients();
Reci peCat egory category = recipe. get Category();
if (category != null) {

239

KNS

String categoryNane

retur

}
}

return true;

}

n fal se;

reci pe. get Cat egory() . get Nane();
if(StringUtils.containslgnoreCase(ingredients,
put Fi el dError (" categoryld",

"beef") && !'StringUtils.equ

"error.docunment . mai nt enance. r eci pe. i ngr edi

In this example, the processCustomSaveDocumentBusinessRules is called when the document is saved.
In turn, the validatel ngredients method is called. It checksthat if the category is not null, then if “beef” is
among the ingredients, then the categoryName of the recipe must include the word “beef” init. If that is
the case, we see that the putFieldError —aconvenience method — adds the user messageto the “ categoryld”

attribute (meaning the error message will be displayed close to that attribute) and that false is returned,
meaning that the save is not carried out.

Standard KNS Events

There are eight common KNS events which apply to every document — maintenance and transactional —
built within client applications. For each, the KNS does an amount of standard validation, while leaving
customization points so client applications can add more validation business logic. They are:

Table5.3. KNS Events

Event

Calling circumstances

Rule interface
method called

and

Validation performed
in DocumentRuleBase

org.kuali.rice.kns.rule.eveiidRedtelhec adothoesit

is routed to workflow.

org.kuali.rice.kns.rule.RoRed ooonsestidaribroatasRouteDocument

dictionary validation

org.kuali.rice.kns.rule.eve

is saved.

3 BackiybenraatbEmerEnt

org.kuali.rice.kns.rul e. SayEBrdoumensRul et odesaSaveDocument

dictionary validation

org.kuali.rice.kns.rule.eve

document.

@ aN poroved cewoekitEve|
action is taken against a

norg.kuali.rice.kns.rule.ApproveDocumentRul e#processA pproveDocul

org.kuali.rice.kns.rule.evexitdi khkehépiar deelmeninentHuesit . rice.kns.rule. A pproveDocumentRul e#processA pproveDocur

is blanket approved
through workflow.

org.kuali.rice.kns.rule.eve@aaédNotaffvent note is

added to a document.

org.kuali.rice.kns.rule.Addhaideetetheasstd daiote

the data dictionary)

org.kuali.rice.kns.rule.eve

Person to route to is
added to a document.

yial eéd AdktcRoutePEso

nargektiali.ri ce.kns.rul e A ddAaliiderRdbaRbsadRhdetprocessA dHOCR(

route Person is valid —
that the Person’s record
exists and that the Person
has the permission to
approve the document

org.kuali.rice.kns.rule.evex@aN ddAthdocRod eHok

workgroup to route to is
added to a document.

gyoyiREskenice.kns.rule Ad

dAalitdatRoutesV artgrbapRoutetprocessAde
route workgroup — that
the workgroup exists and
that the workgroup has
permission to receive
an ad hoc request and

approve the document.

240

KNS

Event Calling circumstances |Rule interface and|Validation performed
method called in DocumentRuleBase

org.kuali.rice.kns.rule.evesitebeni AdHatR e ent
user requests that ad hoc
events be sent.

Since the standard events have to perform standard validation, they have custom
methods to override. For instance, org.kuali.ricekns.rules.DocumentRuleBase has a method
“processCustomRouteDocumentBusinessRules’ and it is expected that client applications will override
this method rather than processRouteDocumentBusinessRules directly.

Maintenance documents add another event to this. org.kuali.rice.kns.rule.event.KualiAddLineEvent.
This is invoked when a new item is added to a collection on a maintenance document. The
org.kuali.rice.kns.maintenance.rules.MaintenanceDocumentRuleBase also contains a number of useful
utility methods which makes writing business rules for maintenance documents easier.

Notifying Users of Errors

When a validation results in some kind of text being displayed to the user,
GlobalVariables.getM essageM ap() isused to storethat text and isinquired during rendering to make sure
messages are correctly displayed. As mentioned previously, the MessageMap is made up of three different
maps: onefor errors, one for warnings, and one for information messages. Each map hasa* put” command
—for instance, putError; each hasa“has’ predicate, such as*haskErrors’; and each havethe ability to get the
propertieswith form the keys of the map aswell as any messages associated with that property. Adding, an
error message to the map is easy, as seen in this example from the |dentityM anagementGroupDocument:

d obal Vari abl es. get MessageMap() . put Error ("docunent . nenber . menber | d", Ri ceKeyConsta

The method takes the property that the error is most associated with, which determines where the text will
be displayed (ie, at the top of the section which contains the given property); a key to the User Message
containing the error; and an array of Stringswhich will be interpolated into the message using the standard
Javajava.text.M essageFor mat.

Further details about the use of User Messages can be found in the KNS User M essages section.

Creating New Events

While the vast mgjority of maintenance documentsin client applications will not have custom actions, it
iscommon in transactional documentsto have new events beyond the standard ones provided by the KNS
framework. Basically, any button created on a transactional document — one which resultsin acall to a
method in the transactional document’s action class — may well have an event associated with it. In that
case, there are three piecesto create for the rule: the new event, the rule instance which is called from that
event, and the default implementation for that rule.

An example from Kuali Financial Systems 3.0 will illustrate how these are used. The Cash Control
transactional document in the Accounts Receivable module has a collection of details, added viaan “add”
button. To validate that action, an event was created (this code has sightly been altered for the sake of
illustration):

package org. kual i . kfs. nodul e. ar. docunent . val i dati on. event;

public final class AddCashControl Detail Event extends Kual i Docunent Event Base {
private final CashControl Detail cashControl Detail;

241

KNS

publ i c AddCashControl Detail Event (String errorPat hPrefix, Document docunent, Ca
super ("Addi ng cash control detail to document " + getDocumnent| d(docunent),
t hi s. cashControl Detail = cashControl Detail;

}

public O ass getRulelnterfaceC ass() {
return AddCashControl Det ai | Rul e. cl ass;

}

publ i c bool ean i nvokeRul eMet hod(Busi nessRul e rule) {
return ((AddCashControl Detail Rul €) rule). processAddCashCont rol Det ai | Busi ne

}

}

The AddCashControl Detail Event extends the KualiDocumentEventBase class, defined in the KNS. Note
that it encapsul ates the state to check —both the document at hand and the cash control detail whichisbeing
validated. Finally, it implements the two methods which make the rule work: the getRulel nter faceClass()
and the invokeRuleM ethod(). Thisworks precisely asit doesin the KNS RouteDocumentEvent.

The AddCashControl Detail Rule looks like this:

public interface AddCashControl Det ai |l Rul e<F extends Transacti onal Document > {
publ i c bool ean processAddCashContr ol Det ai | Busi nessRul es(F transacti onal Docunen
}

This is very straightforward. There is a rules class, in turn, which implements this interface.
Finally, the rules have to be caled; that occurs when an event is created and sent to the
KualiRuleService, which istypically donein the web layer’s controller. In our example, this occursin the
CashControl DocumentAction:

/1 apply rules for the new cash control detail
rul ePassed &= rul eService. appl yRul es(new AddCashCont r ol Det ai | Event (Ar Const ant s. NEV

Now the new action will be validated properly.

KNS User Messages

Functional users need a simple way to change wording of messages used throughout a KNS client
application. Those messages may even bein alanguageforeignto that of the Foundation shipped messages
(which are shipped in English). To facilitate ease of message changing, the KNS builds functionality on
top of the standard Java message properties mechanism.

Once the Rice application has been generated, in src/main/resources, there will be a file named
configurationServiceDataxml. That file lists a number of properties files which will be loaded:

<confi guration>
<properties fileName="KR- Appli cati onResources. properties" />
<properties fileName="KI M Applicati onResources. properties" />
</ configuration>

Each of these files are listed relative to the src/main/resources directly. A property file simply relates
messages to keys, like so (from the src/main/resources/K R-ApplicationResources.properties file):

docunent . questi on. cancel . text =Are you sure you want to cancel ?

242

KNS

docunent . questi on. del ete.text =Are you sure you want to del ete?

docunent . questi on. del et eCont ext.text=Are you sure you want to delete [b]{0}[/b]?
docunent . questi on. di sapprove.text=Are you sure you want to [Db]disapprove[/b] this

docunent . questi on. saveBef oreCl ose.text=Wul d you like to save this docunment before

Thisis the standard Java property file format, with keys (for instance, “document.question.cancel .text”)
related to messages.

A message may also have escaped HTML tags and templated positions in the text for other Strings to
be interpolated in. An example of this is found in the “document.question.del eteContext.text” message.
The[b] and [/b] will be trandated automatically to bold markup. The {0} will be replaced, if possible, by
another String. An example of thiswill be covered below.

Rice Best Practices suggest that each module in the client application have a KeyConstants class which
relates the names of user message keysto the String constants. or g.kuali.rice.kns.util.RiceK eyConstants
isthe key constants class for the KNS.

Developers of client applications can also override pre-existing messages. Messages are loaded in the
order listed in the configurationServiceData.xml file above, so client application specific files should be
listed later in the file. Then, if the client application user message file redefines a user message using the
same key, as so:

docunent . questi on. cancel . text=Canceling will lead to permanent disuse of this docu

users will be treated to the longer, more worried user message.

Retrieving User Messages

Error

Retrieving the text for user messages can be done in a number of ways, based on the context the
user message occurs in. The easiest use case is to get the text of the message directly through
the default implementation of org.kuali.rice.kns.service.KualiConfigurationService. It has a method,
getPropertyString, which, when handed the key to the message, returns the message text.

final String message = KNSServi celLocat or. get Kual i Confi gurati onService().getPropert

This will return the String “{0} is not a valid date/time.” Note that in this case, the String will not be
interpolated; java.text.M essageFor mat should be used to switch the {0} with an actual, useful String.

KualiConfigurationService also has a method, getPropertyAsBoolean, which translates the messages

(regardless of case) of “true”, “yes’, “on”, or “1" as aboolean true and everything else asafase.

Messages

The vast mgjority of user messages are warnings when an error occurs. Thankfully, as was seen in the
section on validations, the KNS handles error messages through the user messages system. For instance,
in this code:

d obal Vari abl es. get Error Map() . put Error ("soneProperty"”, dientApplicationConstants.

The error message displayed will be the one with the key
held by ClientApplicationConstants. ERROR_MESSAGE, and the value of
businessObj ect.get SomePr operty().toString() will be interpolated into the message.

243

KNS

The message must be in the user messages file loaded by KualiConfigurationService.

Struts Messages

User messages are also avail able to the web layer of transactional documents and user screens through the
standard Struts bean: message tag.

Messages to be loaded to struts are configured viathe client application’s project configuration file, in the
rice.struts.message.r esour ces property, like so:

<param nane="ri ce. struts. nessage. resour ces" >KR- Appl i cati onResources, org. kuali.rice

Again, the files are listed relative to the src/main/resources directory. There is nothing to prevent
programmers from using one user message file for both the KualiConfigurationService messages and the
Struts messages.

Once Struts has these messages |oaded, it is easy to access them in a JSP page or jsp TAG file. Indeed, a
great many of the delivered Rice tags make use of these message resourcesin order to display information,
as seen from this sample from the standard kul: page tag:

<titl e><bean: nessage key="app.title" /> :: ${headerTitle}</title>

In this case, the user message — set in KR-ApplicationResources.properties — with the property key of
“app.title” will be displayed (which, by default as“Kuali”).

Developers curious about further information about the bean:message tag would be advised to read Struts
documentation of the feature: http://struts.apache.org/1.2.x/userGuide/struts-bean.html.

KNS Questions and Dialogs

Severa use cases exist where extra document processing needs to occur between the submitting of a
document for routing or approval and the validation on that document. For instance, a document may be
created to purchase an airplane ticket. The initial submitter is not required to enter the airline that will
be traveled on. However, if the initial submitter attempts to route the document without an airline being
entered, a prompt can come up to ask if the submitter really meant to not enter the airline. If the answer
is yes, the document will go on to validation; if the answer is no, then the document will return to allow
the user to edit.

Prompting Before Validation

This kind of prompt is easily accomplished by giving the document an
org.kuali.rice.kns.rule.PromptBeforeValidation implementation. Thisis done viathe data dictionary:

<bean i d="Budget Adj ust nent Docunent" parent =" Accounti ngDocunment Ent ry" >
<property nane="docunent TypeNane" val ue="BA"/ >
<property nane="docunent Cl ass" val ue="org. kual i . kfs. fp. docunent. Budget Adj ust e
<property nane="pronpt Bef oreVal i dati onCl ass" val ue="org. kual i . kfs. fp. docunent.

</ bean>

The PromptBeforeValidation interface only has one method, processPrompts. It is responsible for
holding the current form at a current point, rendering a question, getting the answer to that question, and
applying that answer to the next forward. It provides alot of flexibility.

If, however, all of the questionsto ask the user can be formulated as yes/no questions, it is more advisable
to simply extend org.kuali.rice.kns.rules.PromptBeforeValidationBase and override the doPrompts

244

http://struts.apache.org/1.2.x/userGuide/struts-bean.html

KNS

method. PromptBeforeValidationBase provides all the functionality necessarily to easily ask a yes/no
guestion or even a series of yes/no questions.

Anaysis of an example from KFS should help clarify how this works.
org.kuali.kfs.module.ar .document.validation.impl.Customer PreRules will be examined. Here is how
it overrides the doPrompts method:

@verride

publ i c bool ean doPronpts(Docunent document) {
bool ean preRul esOK = true;
preRul esOK &= conditional | yAskQuesti on(docunent);
return preRul esCK;

}

doPrompts takes the document to act upon as a parameter and it returns a boolean variable. If true is
returned, the document will plow forward into validation. If falseis returned, then the view should return
to another forward. Which forward used will be soon revealed.

Given this information, it's obvious that the real work is occurring in conditionallyAskQuestion. And
indeed itis:

prot ected bool ean conditional | yAskQuesti on(Docunent docurent) {
Mai nt enanceDocunent mai nt enanceDocunent = (Mai nt enanceDocunent) docunent;
Cust omer newCost oner = (Custoner) mai ntenanceDocunent. get NewMai nt ai nabl eObj ect
bool ean shoul dAskQuesti on = nmai nt enanceDocunent . i sNew() && checkl f O her Cust one

i f (shoul dAskQuestion) {
String questionText = SpringContext.getBean(Kuali ConfigurationService.clas
bool ean confirm = super.askOr Anal yzeYesNoQuesti on(Ar KeyConst ant s. Cust omer C
if ('confirm {
super . abort Rul esCheck();
}

}

return true,

}

The document in this exampl e is a maintenance document, but the method works precisely the same given
atransactional document.

Logic determines, in this case, if the customer is new and if it shares the name of an existing customer. If
that is the case, then it asks a yes/no question about if the user meant to enter a second customer with the
same name. Note that question text is specified viaa User Message; thisis a best practice.

The question is asked and the yes/no answer returned through the super.askOr AnalyzeY esNoQuestion.
That needsto behanded an 1D which uniquely representsevery asking of thisquestion—that, in conjunction
with information from the document itself, is used to identify the user response, which ends up in the
session. The other method argument is the question text itself.

It returns true or false. Note though, that if the response was false, that false is not returned, but instead
amethod super.abortRulesCheck(); is called.

abortRulesCheck() is simply a convenience method that sets the forward to return to as the
BASIC_MAPPING:

public void abortRul esCheck() {
event . set Acti onFor war dNanme(Ri ceConst ant s. MAPPI NG_BASI C) ;

245

KNS

i SAborting = true;

}

If application requirements determine that a“no” answer should navigate the user to a different mapping
than “basic”, then abortRulesCheck should not be used, but instead, a false should be returned from
the method, and the correct action forward name should be set on the event property inherited from
PromptBeforeValidationBase.

There is no limit to the number of times super.askOr AnalyzeY esNoQuestion can be called in asingle
pre-rules check; several questions can be chained together.

HTML Markup

In the question framework some markup support is present for formatting the question text. This markup
follows a custom syntax as opposed to HTML. Standard HTML characters will be escaped in the question
text. This is to prevent cross-site scripting attacks. The custom syntax for the supported tags is then
translated to the corresponding HTML when rendering the question page.

The custom syntax uses brackets to indicate tags as opposed to the standard HTML left and right angle
guote characters. Like HTML, an opening and closing tag must be present: e.g. [tag] ... [/tag]. The custom
syntax does not support empty body tags: e.g. [tag/].

Thefollowing isalist of the tags supported along with the corresponding HTML translation.

* All 1 character HTM. tags

Exampl es:
[p] -.. [/p] translates to <p> </p>
[b] ... [/b] translates to

* All 2 character HTM tags

Exampl es:

[br] ... [/Dbr] translates to
 </br>
[tr] [/tr] translates to <tr> </tr>
[td] ... [/td] translates to <td> </td>

* The font tag with color specified as hex or by nane

Exampl es:
[font #000000] ... [/font] translates to
[font red] ... [/font] translates to

* The table tag
Exampl e:
[table] ... [/table] translates to <table> </table>

* The table tag with style class
Exampl e:

[table questionTable] ... [/table] translates to <table class="questionTable"> ...

* The td tag with style class

246

KNS

Exampl e:
[td leftTd] ... [/td] translates to <td class="leftTd"> </td>

Note since the style tag is not allowed any CSS classes used must be declared in the Kuali style sheet (by
default kuali.css). In addition be aware that the one and two character tags are not verified asvalid HTML
tags. In essence, the brackets are simply replaced by the angle quotes and outputted for these tags.

When forming the question text, consideration should be given to the text length. The question text is
sent as one of the request parameters on the URL which is limited by the browser supported max length.
Keeping the text under 1000 characters will be safe across all supported browsers.

Derived Values Setters

What about those instances when aclient application has adocument that needsto set val ues based on user
input but which do not require any further user prompts before the document is validated? This is where
org.kuali.rice kns.web.derviedvaluesetter .DerivedValuesSetter stepsin.

DerivedValuesSetter has one method:
public void setDerivedVal ues(Kuali Form form HtpServletRequest request);

Nothing is returned, and the arguments are basically the web form and the servlet request itself. Values
can be gathered from either of those sources, and then values can be set anywhere on the form —though it
would typically be expected that the document in the K ualiForm would be where everything is set.

Actual examples of DerivedValuesSetter implementationsisfairly rare. There is one example from KFS
3.0 which will be used as an exampl e, associated with the Organi zation Maintenance Document. First, the
DerivedValuesSetter is set in the data dictionary for the document:

<bean i d="Organi zati onMai nt enanceDocurent " par ent =" Mai nt enanceDocunent Ent ry" >
<property nane="hbusi nessCbj ect O ass" val ue="org. kual i . kf s. coa. busi nessobj ect. C
<property nane="docunent TypeNane" val ue="ORGN'/ >
<property nane="pronpt Bef oreVal i dati onC ass" val ue="org. kual i . kf s. coa. docunent
<property nane="derivedVal uesSetterd ass" val ue="org. kual i . kf s. coa. docunent . we

</ bean>

The actual DerivedValuesSetter itself attempts to use the Postal CodeSer vice to set the city and state of
the organization. Here'sasimplified version:

public class O gDerivedVal uesSetter inplenents DerivedVal uesSetter {
public void setDerivedVal ues(Kuali Form form HtpServletRequest request) ({
final Organization newdrg = (Organi zati on) ((MintenanceDocunent Base) ((Kua
final String organizationZi pCode = newOrg. get Or gani zati onZi pCode() ;
final String organizationCountryCode = newOr g. get Organi zati onCount r yCode()
if (StringUtils.isNotBlank(organizationZi pCode) && StringUtils.isNotBl ank(
final Postal Code postal Zi pCode = Spri ngCont ext. get Bean(Post al CodeSer vi
if (ObjectUtils.isNotNull(postalzi pCode)) ({
newOr g. set Or gani zat i onCi t yNane(post al Zi pCode. get Post al G t yName()) ;
newOr g. set Or gani zat i onSt at eCode(post al Zi pCode. get Post al St at eCode()

247

KNS

}

Here, the new Organization business object is pulled from the maintenance document, and from that, the
zip code and country code are pulled. The code attempts to use the country and zip codes to find a postal
code, and if oneisfound, it setsthe city and state of the document.

Both PromptBeforeValidation and DerivedValuesSetter classes offer KNS client application
developers the flexibility to prompt the user or set values on a document before that document goes into
validation.

KNS Notes and Attachments

On most documents written for Rice client applications, there exists atab at the bottom of the page, the
Notes tab. This allows document editors to attach files to the page or write explanatory notes.

How are these notes supported?

org.kuali.ricekns.bo.PersistableBusinessObject requires methods to add and programmatically
mani pulate notes on the abject. Therefore, all persisting business objectsin client applications support the
addition of notes to them. This allows for a great amount of flexibility. A note, represented by objects of
class org.kuali.ricekns.bo.Note, hold both text and links to attachments—as well as the note’s creator
and the time it was created. Therefore, such text and attachments can be associated with any persisting
business object.

However, most Rice applications use Notes mostly on documents. In this case, the Note is associated
with org.kuali.rice.kns.bo.DocumentHeader objects — the header of the document. The kul:notes tag
and org.kuali.ricekns.web.struts.action.K ualiDocumentActionBasejointly provide support for adding
these kinds of notes.

The use of these notes are also authorized by a number of KIM permissions. Before notes are added, the
user is checked for having the KR-NS Add Note / Attachment permission. These permissions should
always have a permission attribute associated with document name; optionally, a permission attribute for
attachmentTypeCode can be used.

There is also the KR-NS Delete Note / Attachment permission. Two permission attributes are required
for this: both the document name, and a record for the createdBySelfOnly attribute (a boolean attribute
that may prevent end users from del eting notes created by other end users).

Finally, there isthe KR-NS View Note / Attachment permission. Just as with Add Note/ Attachment
permissions, it requires a document type name and can have an optional attachmentTypeCode.

Note's attachments are handled by org.kuali.ricekns.service AttachmentService. By default, they
attempt to move attachments into a directory specified by the attachments.directory configuration
property; under that, each object gets its own subdirectory, with the name of the subdirectory based on
the objectld of the business object.

KNS Javascript Guide

The KNS provides anumber of waysto integrate Javascript into maintenance and transactional documents.
A configuration parameter allows a core set of Javascript files to be imported on al pages. Externa
Javascript files specific to a limited set of documents can easily be imported into pages using the data
dictionary. Several KNS tags also support response to Javascript events.

Setting the configuration parameter is easiest of all. Inthe {project name}-config.xml file for most client
applications, there already exists a generated line which looks like this:

248

KNS

<param nane="j avascript.files">kr/scripts/core.js,kr/scripts/dhtm .js,kr/scripts/d

These scriptswill be pulled in on every page which usesthe kul: pagetag. Note that thefile path isrelative
to the root path of the project. It bears mentioning, too, that the css.files property works the same way
for CSSfiles:

<par am nanme="css. fil es">kr/css/ kual i.css</paranp

It's not always the best idea to include Javascript pages, which the browser must parse, onto every single
page. If only certain documents or even a single document needs a given Javascript file, it is easiest
to simply tell the data dictionary entry to import the file. Here is an example from KFS's Account
Maintenance Document (AccountM aintenanceDocument.xml):

<bean i d="Account Mai nt enanceDocurnent " par ent =" Account Mai nt enanceDocunent - par ent Bea

<bean i d="Account Mai nt enanceDocunent - par ent Bean" abstract="true" parent="Mai nt enan

<property nane="webScriptFiles">
<list>
<val ue>../dw/interface/ SubFundG oupServi ce. j s</val ue>
<val ue>../scri pts/coal/ account Docunent. j s</val ue>
</list>
</ property>

</ bean>
Vaues are expected to be relative to the base application URL of the document. In this case of a
maintenance document, the URL is /application-name/kr/maintenance.do and the javascript files are

located under /application-name/scripts, hencethe “..” in the directories.

Integrating Javascript with KNS tags

As will be covered in the KNS tags section, most controls in KFS documents are rendered using the
kul:htmlControlAttribute tag. That tag has three attributes which will be passed on to the rendered
HTML control: onblur, onclick, and onchange, which will be passed on to the rendered control. (Though
there is an exception to keep in mind: radio buttons will render what was passed in the onchange attribute
as onclick, to enhance support for a highly popular legacy browser.)

Extra buttons also support Javascript, specifically the “onclick” event handler. By setting the
extraButtonOnclick property of an org.kuali.rice.kns.web.ui.ExtraButton object to the text that should
appear in the button’s onclick call, the devel oper gains the ability to react, with Javascript, to the button’s
click.

Incorporating AJAX

Finally, we want to make our maintenance documents as interactive as possible to facilitate efficient user
experience. In this example, KFS's AccountM aintenanceDocument wants to instantly give an error to
usersif the sub fund group assigned to the account is restricted, based on other values of the account.

To accomplish this, in the data dictionary file for the AccountM aintenanceDocument, extra JavaScript
files are imported.

<property nanme="webScriptFiles">
<list>

249

KNS

<val ue>../dw/interface/ SubFundG oupServi ce. j s</val ue>
<val ue>../scri pts/coal/ account Docunent.j s</val ue>
</list>

</ property>

The ../scripts/chart/accountDocument.js is a JavaScript file that defines the functions
onblur_subFundGroup and checkRestrictedStatusCode Callback. onblur_subFundGroup usesthe
SubFundGroupService, and to that successfully, DWR needs to create a JavaScript/Java bridge for that
access. That's the purpose of theinclusion of the ../dwr/interface/SubFundGroupServicejsfile: it's not
area JavaScript file at al, but instead a bridge created on the fly by DWR.

Maintainable fields can then trip off the AJAX call when certain events happen:
<bean parent =" Mai nt ai nabl eFi el dDefi ni ti on" p: nanme="subFundG oupCode" p:required="t

In the above example, when the user leaves the Ul field for the sub-fund group code, the
onblur_subFundGroup JavaScript function will be called, and that should popul ate the name of the sub-
fund group in the page under the Ul field.

KNS Data Masking

Itisvery common for business objectsto havefieldswhich are not viewableto all users. The KNS provides
very easy ways to mask fields throughout client applications.

Naturally, since certain end users can see the field unmasked, certain other users can seethefield partially
masked, and afinal group of usersviews afully masked field, KNS data masking it integrated with KIM
permissions. Specificaly, there aretwo KIM permissionswhich are consulted by KNS datamasking: KR-
NS Full Unmask Field and KR-NS Partial Unmask Field. Both of these permissions have two related
permission attribute records: onefor the field name, and one for the business object component name. That
masking will automatically be applied to every use of the business abject’s field: on inquiries, lookups,
maintenance documents, transactional documents, and screens.

<bean id="IdentityManagement Per sonDocunent -t ax| d- par ent Bean" parent="Attri but eDef
<property nane="control ">
<bean parent="Text Control Definition" p:size="20"/>
</ property>
<property nane="attributeSecurity">
<bean parent="AttributeSecurity">
<property nane="mask" val ue="true"/>
<property nane="maskFormatter">
<bean parent="MaskFornmatterLiteral" p:literal ="****x*xx*xu/>
</ property>
</ bean>
</ property>
</ bean>

Having a KIM permission set up is not enough, however. Client application developers also
have to associate masking with the field of the business object in the business object’'s data
dictionary. That is accomplished by specifying the an attribute security object with the attribute.
I dentityM anagementPer sonDocument’s taxld attribute has an example of an attribute security
declaration:

Thetaxld field has a TextControl Definition for the control, and that is followed by the attribute security
declaration.

250

KNS

The attribute security declaration has a parent of the “ AttributeSecurity” bean. There are several boolean
properties available within the AttributeSecurity bean, but the mask and partialMask properties are the
most interesting. This declaration quite ssmply turns masking on — if the AttributeSecurity isleft null or
if masking or partialMask are false, then no masking will be applied to the attribute.

Also specified in the example is the maskFormatter. There is also a partialMaskFormatter which can
be set. A bean of any class which implements or g.kuali.rice.kns.datadictionary.mask.M ask For matter
can be used for this declaration. The KNS aso provides two default implementations:
org.kuali.ricekns.datadictionary.mask.MaskFormatterLiteral, which smply replaces a value
which should be masked by a literal String (in the example above, “*******x*") " gnd
org.kuali.rice.kns.datadictionary.mask.MaskFor matter SubString, which replaces all but a substring
of the masked value as a String (this would be useful in partial mask situations).

The final piece of the puzzle is to get the KNS to consult the KIM permission and the business object’s
data dictionary when deciding whether or not to mask the field. Of course, the KNS renders maintenance
documents, inquiry pages, and lookups automatically — it is expected that masking will be consulted in
those situations.

This leaves only the issue of transactional documents and screens, where a client application developer
has to build JSP manually. The KNS provides a number of helper functions to do permission checks.

Table5.4. KNS Helper Functionsfor Permission Checks

JSP Function

Call Example

Description

canFullyUnmaskField

${kfunc:canFullyUnmaskField
(businessObjectClassName,
fieldName, kualiFor m)}

Checks KIM permissions to
determine if the field can be fully
unmasked by the current end user.

canPartiallyUnmaskField
$kfunc:canPartiallyUnmaskFie

Checks KIM permissions to
determine if the field can be

(businessObjectClassName,
fieldName, kualiFor m)}

getFullyMaskedValue
${kfunc:getFullyM askedValue
(className, fieldName,
kualiForm, propertyName)}

getPartiallyMaskedValue

partially unmasked by the current
end user.

Uses the AttributeSecurity
declaration to determine the fully
masked value.

${kfunc:getPartiallyM askedVal
(className, fieldName,
kualiForm, propertyName)}

Udses the AttributeSecurity
declaration to determine the
partially masked value.

Of course, calling these functions — especialy those which do KIM permission checks — can be
computationally expensive. It isalways better to check if masking has been turned on by checking the data
dictionary attribute for the field first, like so:

<c:if test="%{!enpty attributeEntry.attributeSecurityMask && attributeEntry.attrib
<c:set var="di spl ayMask" val ue="${kfunc: canFul | yUnmaskFi el d(cl assNane, fi el dNa
</fc:if>

Alternatively, application developers can simply use the kul:htmlControlAttribute tag — as is the
recommended practice under any circumstance — to draw the field. kul:htmlControlAttribute already
utilizes the functions described above to make sure the field is properly masked, and as such represents
the easiest way to apply masking to fieldsin transactional documents and screens.

Further information about KIM permissions will be covered in KNS Authorizations. The
kul:htmlControl Attribute tag will be covered in the section on Tag Libraries.

251

KNS

KNS Authorization

In most client applications, there' s going to be aneed to guard certain end usersfrom certain functionality.
Certain documents may be locked down and only accessible to a small group of users. A tab on acertain
document may only be visible based on if a System Parameter is turned on. KNS provides a standard way
to turn on and off functionality based on conditions like these.

There are two sides to this functionality. One side is that these authorizations are integrated with KIM.
KNS provides a number of contexts where KIM permissions are called and checked, to see if the current
user is permitted to perform the action. Examples of such actions are looking up business objects, initiating
documents, adding notes to a document, using a screen, or viewing afield on an inquiry or a maintenance
document.

The other side is business logic associated with such authorizations. For instance, KIM permissions may
be set up to allow any user of the client application to initiate a given document. However, there may be a
business requirement that the document can only beinitiated in the month of June. Since KIM permissions
cannot capture that kind of logic, KNS provides point where programmers can create such logic.

When building KNS documents, there are two classes associated with the document which make these
authorizations: the Document Presentation Controller and the Document Authorizer.

The Document Presentation Controller is where business logic authorizations are handled. These classes
must implement the org.kuali.rice.kns.document.authorization.DocumentPresentationController.
There are also interfaces for M ai ntenanceDocumentPresentationControl | er and
Transactional DocumentPresentationController, each tailored to their respective document families.

The Document Authorizer is the class that does the KIM permission checks. Once again, there is
an interface, org.kuali.ricekns.document.authorization.DocumentAuthorizer, which all document
authorizers must implement, and it also has two sub-interfaces, MaintenanceDocumentAuthorizer and
Transactional DocumentAuthorizer.

In cases where an authorization is checked by both presentation controller and authorizer, the
presentation controller is called first, and then it’s result is somehow sent to the authorizer. For instance,
DocumentPresentationController has a method, getActions(), which returns a Set of Strings, each
representing a standard document action (for instance, the Route document action). That Set is then sent
as an argument to the DocumentAuthorizer; the DocumentAuthorizer only performs KIM checks for the
actions that have been handed to it.

The classes for both the document authorizer and presentation controller are set in the document in the
data dictionary. Here' s an example, from the sample travel application:

<bean i d="Travel Request" parent="Travel Request - par ent Bean"/ >

<bean i d="Travel Request - par ent Bean" abstract="true" parent="Transacti onal Docunent E
<property name="docunent TypeNane" val ue="Travel Request"/>
<property name="docunent C ass" val ue="edu. sanpl eu. travel . docunent . Tr avel Docune
<property name="docunent Aut hori zer Cl ass" val ue="edu. sanpl eu. travel . docunent. au
<property name="documnent Presentati onControllerd ass" val ue="edu. sanpl eu. travel

</ bean>

The classes for the authorizer is given to the documentAuthorizerClass property of the main document
bean, and the presentation controller class is specified in the documentPresentationControllerClass
property. Thisisthe same for maintenance documents as well. Once these are specified, the proper classes
will be constructed at authorization invocation contexts automatically.

252

KNS

Common Document Authorizations

There aretwo authori zations which are common to all documents. I n both cases, the document presentation
controller is called and then the authorizer if needed.

The first common authorization is the document initialization authorization.
DocumentPresentationController has this method to be overridden for business logic about when a
document can beinitialized:

public bool ean canlnitiate(String docunent TypeNane) ;

The DocumentAuthorizer also has a

public bool ean canlnitiate(String docurment TypeName, Person user);

The DocumentAuthorizer checks the KR-SY S I nitiate Document permission.

The second common authorization is handled by DocumentPresentationController#fgetDocumentActions:

public Set<String> get Docunent Acti ons(Docunent docunent, Person user, Set<String>
It passesits result to DocumentA uthorizer#getDocumentActions:

Thisauthorization actually handles many common authorizations which need to be passed to the document
presentation layer. The Set returned by the DocumentAuthorizer is converted into a Map, where each
element in the Set becomes a key of the Map. That Map can then be accessed in any web page or tag
through the K ualiFor m.documentActions variable.

org.kuali.rice kns.document.authorization.DocumentPresentationController Base defines a number
of protected methods which are inquired when the Set returned by getDocumentActions is built.
Builders of client applications are far more likely to override one of those helper methods than override
getDocumentActions from scratch.

Table5.5. Document Presentation Controller Methods

DocumentPr esentationContr ol | efBaggose Related Authorizer Permission
method
protected boolean | Determines if the document can| KR-NS Edit Document

canEdit(Document document) |be edited; if falseisreturned, then
al fieldsarein aread only state

protected boolean | Determinesif any ad hoc requests
canAnnotate(Document can be added to the document.
document)
protected boolean | Determines if the document can
canReload(Document be reloaded from the database.
document)
protected boolean | Determines if the document can
canClose(Document document) |be closed, returning the end user
to the portal.
protected boolean | Determines if the document can| KR-WKFLW Save Document

canSave(Document document) |be saved.

protected boolean | Determines if the document can| KR-WKFLW Route Document
canRoute(Document document) | be routed to workflow.

253

KNS

DocumentPresentationControlle
method

R agmose

Related Authorizer Permission

protected boolean | Determines if the document can| KR-WKFLW Cancel Document
canCancel (Document be canceled.

document)

protected boolean | Determines if the document can| KR-NS Copy Document

canCopy(Document document)

be used as the template for a new
document.

protected boolean | Determines if the future requests
canPerformRouteReport(Documerdrkflow report can be viewed.

document)

protected boolean | Determines if the document can| KR-NS Send Ad Hoc Request

canAddAdhocRequests(Docume
document)

ffiave ad hoc routing requests
added to it.

protected boolean
canBlanketApprove(Document
document)

Determines if the document can
be blanket approved.

KR-WKFLW Blanket Approve
Document

protected boolean | Determines if the document can| KR-NS Take Requested Action
canApprove(Document be approved.

document)

protected boolean | Determines if the document can| KR-NS Take Requested Action

canDisapprove(Document
document)

be disapproved.

protected boolean | Determineswhether the document| KR-NS Send Ad Hoc Request
canSendAdhocRequests(Documeniill be allowed to send itself to

document) KEW to fulfill ad hoc requests.

protected boolean|Sends an FYI to previous|KR-NS Send Ad Hoc Request

canSendNoteFyi(Document
document)

approversif anoteis added.

protected boolean | Determines if the fields in the| KR-NS Edit Document
canEditDocumentOver view(Doquiomment overview (title, etc) can

document) be edited.

protected boolean | Determines if the document can| KR-NS Take Requested Action
canFyi(Document document) |beFYI'd.

protected boolean | Determines if the document can| KR-NS Take Requested Action

canAcknowledge(Document

be acknowledged.

document)

DocumentAuthorizer also contains a number of methods which are not subject to document presentation

controller input. These are:

Table5.6. Document Authorizer Methods

Document Authorizer method

Description

KIM Permission Checked

public boolean
canOpen(Document document,
Person user);

Determinesif the current user can
open the document

KR-NS Open Document

public boolean
canReceiveAdHoc(Document

Determines if the person, for
whom thereisaproposal to add an

KR-WKFLW Ad Hoc Review
Document

254

KNS

Document Authorizer method

Description

KIM Permission Checked

document, Person user, String
actionRequestCode);

ad hoc routing request, canreceive
that ad hoc routing request

public boolean | Determinesiif the current user can| KR-NS Add Note / Attachment
canAddNoteAttachment(Documestd a note to the document.

document, String

attachmentTypeCode, Person

user);

public boolean | Determinesiif the current user can| KR-NS Delete Note / Attachment
canDeleteNoteAttachment(Docurdeete a note on a document.

document, String

attachmentTypeCode, String

createdBySelfOnly, Person

user);

public boolean | Determinesiif the current user can| KR-NS View Note/ Attachment
canViewNoteAttachment(Documerew a note on the document.

document, String

attachmentTypeCode, Person

user);

Maintenance Document Authorizations

A couple of authorizations are specific to maintenance documents. The document presentation controller
and document authorizer diverge somewhat on which methods they support to control authorizations in
documents, so each will be treated separately, save for the one method they do share.

That one method is canCr eate. Here is MaintenanceDocumentPresentationController’ s declaration of the
method:

publ i c bool ean canCreate(d ass bod ass);

It takes the class of the business object, of which the end user is attempting to create a new record of
through a maintenance document. Business logic can be written to determine if new records of the given
class can be created through a maintenance document.

MaintenanceDocumentAuthorizerBase checks the KR-NS Create / Maintain Record(s) to see if a new
business object of the type can be created for its corresponding check.

MaintenanceDocumentPresentationController has two methods which do not have paralés in the
MaintenanceDocumentAuthorizer. They are:

public Set<String> get Conditionall yReadOnl yPropertyNanes(Mai nt enanceDocunent docurm

public Set<String> get Conditionall yReadOnl ySecti onl ds(Mai nt enanceDocunent docunent

To understand this, recall that if there is afield on a maintenance document which is unconditionally read
only, that is set within the data dictionary file for that maintenance document. Of course, it brings up the
question of what to do if afield or a section is read only some times based on certain business logic and
editable at others.

The answer to this has been provided by the MaintenanceDocumentPresentationController. A Set of
the property names of the fields or names of the sections which are, given the current condition of the
MaintenanceDocument argument, currently read only is returned from the method.

255

KNS

MaintenanceDocumentAuthorizer’ s separate methods are similar to canCreate. ThefirstiscanMaintain,
which determines if the current user can edit an aready existing business object. There is also
canCreateOrMaintain, which combines the KIM permission checks when the document is routed to
make sure the routing is valid.

Finally, MaintenanceDocumentA uthorizer has a method:
public Set<String> get SecurePotential |l yReadOnl ySecti onl ds();

Unlike most methods in MaintenanceDocumentAuthorizer, this method was actually specified to be
overridden. It returns a Set of the names of sections on a maintenance document which may be read only
based on the user.

Maintenance Document/Inquiry Authorizations

Because maintenance documents and inquiries are rendered using the same code, authorizations which
control that rendering are shared between the two. There are two such permissions; KR-NS View Inquiry
or Maintenance Document Field and KR-NS View Inquiry or Maintenance Document Section. Since
maintenance documents allow editing in addition to viewing, there are two other permissions which
control the ability of end usersto edit: KR-NS Modify Maintenance Document Field and KR-NS Modify
Maintenance Document Section.

These are used only as KIM permissions, and they are invoked directly within the rendering framework.
Their purposeis asfollows:

* KR-NSView Inquiry or Maintenance Document Section will only render a whole tab section to those
with the permission.

KR-NS Modify Maintenance Document Section will only allow edits for a whole tab section to those
with the permission; otherwise, the fields within the section will be rendered as read only.

* KR-NS View Inquiry or Maintenance Document Field will only render a field to entities granted this
permission.

* KR-NS Modify Maintenance Document Field will only alow edits of a field to entities granted this
permission; the field will otherwise be rendered as read only.

If no KIM permission is specified for agiven section or field, it is assumed that it is viewable on both the
Inquiry and Maintenance Document and the field will be editable on the Maintenance Document.

There are no document presentation controller methods to overrideif the ability to view or edit parts of an
inquiry or maintenance document based on business logic. If a client application has such a requirement,
adventurous technical personnel areinvited to look at M aintainabletgetRows and | nquir able#getRows.
The subject is otherwise outside the scope of this document.

Transactional Document Authorizations

There is only one major authorization which is added to
Transactional DocumentPresentationController and Transactional DocumentAuthorizer: getEditM odes.
Much like DocumentPresentationContr oller #getDocumentActions(),

Transactional DocumentPr esentationController #getEditM odes() takes as an argument the document
the authorization is being asked of and returns a Set of Strings.

Unlike DocumentPresentationContr oller #getDocumentActions(), though,
Transactional DocumentPresentationController #getEditM odes() does not have a set of standard

256

KNS

actions it returns. Instead, it is designed specifically to allow any kind of action through the web
presentation layer. There, the edit modes can be checked and acted upon in document specific ways.

How isthis helpful ? In maintenance documents, since the KNS handles the rendering in a standard way, it
is easy to turn sections on and off; KIM permissions or work through the maintainable can accomplish. In
transactional documents in the other hand, rendering is more manual. However, getEditM odes provides
away for the business logic layer to communicate information to the presentation layer.

To get the presentation layer to not display a section, then, a presentation controller might be written as so:

publ i c Exanpl eDocunent Present ati onControl |l er extends Transacti onal Docunent Present a
public Set<String> getEditMdes(Docunent document) {
fi nal Exanpl eDocunent exanpl eDocunent = (Exanpl eDocunent)docunent;
Set<String> editMddes = new HashSet <String>();
i f (exanpl eDocunent. dont ShowExtraSection()) {
edi t Modes. add(" NO_EXTRA _SECTI ON') ;
}

return editMdes;

}
}

Then, in Example.jsp, we may have code that looks like this:

<c:if test="9${!Kuali Form editi ngMode[' NO EXTRA_SECTION]}">
<kul :tab tabTitle="Extra Section" defaultQpen="true" tabErrorKey="${Constants.

</ kul : t ab>
</c:iif>

Edit Modes aso go through the document authorizer, meaning that there is a permission associated with
them: KR-NS Use Transactional Document. Expected permission details are the document type and the
name of edit mode (in this example, “NO_EXTRA_SECTION").

Other Authorizations

Finally, there are two permissions which do not affect documents but only business objects. They are:

* KR-NS Look Up Records, which determines if records of the given type can be
looked up by the current user. Client applications seeking to change this based
on business logic would likely override the business object's implementation of
org.kuali.rice.kns.lookup.L ookupableHelper Ser vicetigetRows().

« KR-NS Inquire Into Records, which determines if the current user can inquire into
records of the given business object. Client applications seeking to change this
based on business logic would likely override the business object’'s implementation
of org.kuali.ricekns.lookup.LookupableHelper Service#getinquiryUrl() or its implementation
of org.kuali.ricekns.inquiry.Inquirable#getI nquiryUrl(BusinessObject businessObject, String
attributeName, boolean forcel nquiry), depending on the use case.

Overriding Document Authorizers

Document authorizers handle their callsto Kuali Identity Management in standard ways already. Because
this side of authorizations mostly relies on KIM configuration, there is very little reason to override

257

KNS

Document Authorizers. In fact, such overrides only occur to accommodate one of the two following
situations.

The first situation is when a client application-specific KIM permission which affects documents is
invoked. In this case, it is a best practice to give developers the ability to change this logic through the
document presentation controller, and then do the actual KIM permission call in the document authorizer.
Document authorizers were designed to be standard permission invocation contexts, and using them as
such makes devel opment much easier.

The second situation isto add extraattributesto permission detail attribute sets, role qualifier attribute sets,
or to both. These extra attributes are sent on every KIM permission call performed by the authorizer. The
reason for doing this is to make sure that permissions and roles can qualify properly when the document
authorizer performsits call.

For example, imagine a role where the users are qualified by a client application specific field. The
document authorizer does not know where or how to gather the data for that field, and yet it must be sent
to KIM for the role members to be resolved correctly. Therefore, the

protected void addRol eQualification(Busi nessObj ect busi nessCbject, Map<String, Str

method should be overridden, and the attributes argument should be filled with values from the
businessObject (which may well be a document) to make sure the role is resolved correctly.

The same can be done for permission details:
protected voi d addPer m ssi onDet ai | s(Busi nessOhj ect busi nessCbj ect, Map<String, Str

Finally, if acertain attribute is used both in finding the permission viathe permission details and resolving
the role, then the following method should be overridden; it will add the attribute to both:

protected voi d addSt andar dAttri but es(Docunent document, Map<String, String> attrib

KNS Exception Handling and Incident
Reporting

Any complex Java system are subject to the occurrences of exceptions. From missed assignments which
cause NullPointerExceptions to network issues which cause SQL Exceptions be thrown, the unexpected
happens—even in Rice applications.

Because of this, Rice builds on top of Struts’ exception mechanism to provide an easy way for exceptions
to be handled and for incidents to be reported to the proper maintenance group.

When a devel oper creates a Rice application, there should be several struts-config.xml files created. The
developer’ s own struts-config.xml, of course, existsin{ project_root}/src/mainfwebapp/WEB-INF. It will
automatically be created with the following entry:

<gl obal - excepti ons>
<exception type="java. | ang. Thr owabl e"
handl er="org. kual i . rice. kns. web. struts. pojo. StrutsExceptionlnci dent Handl er"
key="neani ngl ess" />
</ gl obal - excepti ons>

This tells Struts that if any exceptions—or even Errors for that matter!—
reech the Struts request processor, then it is to redirect the application to the

258

KNS

org.kuali.rice.kns.web.struts.pojo.StrutsExceptionl ncidentHandler. Thishandler, in turn, redirectsto
the following forward:

<action path="/kual i Excepti onl nci dent Report"
type="org. kuali.rice.kns.web. struts.action. Kual i Excepti onHandl er Acti on">
<forward name="basi c" path="/kr/kual i Excepti onl nci dent Report. do" />
</ action>

This forward does a number of things. First, it sends the
exception to org.kuali.rice.kns.service.KualiExceptionl ncidentSer vicetfget Exceptionl ncident
to wrap the exception, and then reports the wrapped exception to
org.kuali.rice.kns.service.K ualiExceptionl ncident Ser vicetr eport.

In the default implementation, org.kuali.rice.kns.service.K ualiExceptionlncidentSer vicetr eport
emails the mailing list specified in the KualiExceptionl ncidentServicelmpl.REPORT_MAIL_LIST
configuration parameter. The rest of the mail can be configured by overriding the service bean’s message
template:

<bean i d="knsExceptionl nci dent Servi ce" class="org. kuali.rice.kns.service.inpl.Kua
<property name="mail Servi ce"><ref bean="mail Servi ce"/></property>
<property nane="nessageTenpl ate" >
<bean cl ass="org. kuali.rice.kns. mail.Mil Message">
<l-- The property place hol der bel ow nmust be specified in common-conf
<property nane="fromAddress" >
<val ue>${kr.incident.nmiling.list}</value>
</ property>
</ bean>
</ property>
</ bean>

Then the action redirectsthe user to the error page. In production environments, this page simply notesthat
an error occurred and that it had been reported to the system’s administrators. Helpfully, it also provides
atext box so the user can describe the steps leading up to the incident. In development environments, this
page also displays the top stack trace of the exception which occurred.

With this reporting mechanism, incidents are properly reported and can be responded to and fixed.

KNS System Parameters

Often times, there are changes in functionality in a client application which functional users want to have
control over without an undue technical burden. For instance, a certain set of documents may be associated
with abank; information about abank is shown on the screen of each of the documents. If more documents
are among those to show bank information, functional users would love it if they could just create one
maintenance document and that change took effect. By coding with system parameters, such functionality
is achievable within the KNS.

A System Parameter is simply a business object which holds text. That text will be used in one of three
standard ways: simply astext itself, asan indicator of whether certain logic should be performed or not; or
to seeif avalue from logic falls within a certain set of values. The advantage of using System Parameters
isthat they are easily changed since a maintenance document already exists as part of the KNS for them.

Parameters are used either for configuration, as described above, or for validation —for instance, if afield
on adocument can only have one of a certain number of values, and those values need to be changed by
afunctional user, then a System Parameter would be helpful.

259

KNS

It should be noted that the maintenance of System Parametersis only authorized to those granted the KR-
NS Maintain System Parameter KIM permission.

Getting text from a system parameter

The data from a system parameter can be retrieved through the Par ameter Ser vicetget Par ameter Value
method, using the parameter’s name to identify the parameter. The parameter's name has three
components: a namespace, a parameter detail type code, and a name field.

The namespace matches a KNS modul€’ s namespace code, typically the namespace code of the module
whichinvokesthe parameter. For instance, parameters called within the KNSitself use the base namespace
code of “KR-NS’

The name of the parameter should be unique within certain constraints: it must be unique with the
namespace, the parameter detail type code, and, aswill be covered below, the application namespace. This
means that, for instance, if a client application is written with two modules, both modules could create a
system parameter with the same name because they would have different namespace codes. Indeed, system
parameters within the same module can be named the same thing if they have differing parameter detail
type codes.

The parameter detail type codeisthe most difficult to understand. To understand why, the method signature
of Parameter Ser vicetgetPar ameter Value must be investigated.

public String getParaneterVal ue(d ass<? extends Object> conponentC ass, String par

Instead of a String namespaceCode and a String parameterDetail TypeCode, a Classis sent in. That class
typically represents the class which will make use of this specific system parameter. From that classis
determined both the namespace code and the parameter detail type code.

Finding the namespace code is typically done by looking a the package prefixes in the
module configuration. If a class needs to be in a different namespace, it can have the
@org.kuali.rice.kns.service.Parameter ConstantsNAM ESPACE annotation can be used to specify
something different.

There is also an @org.kuali.ricekns.service.Parameter Constants.COMPONENT annotation which
can be used to specify a specific parameter detail type code. If that is missing, though, then an algorithm
inspects the class to see what parameter detail type code is most appropriate:

» If the class represents a transactional class, then the parameter detail type code will the
sample name of the class with the trailing expected “Document” removed. For instance,
org.kuali kfs.fp.document.Disbur sementVoucher Document has a parameter detail type code of
“DisbursementV oucher”

* If the class represents a business object, then the parameter detail type code will be the simple class
name. Business object class “ org.kuali.kfs.fp.businessobject.PayeeDetail” will have a parameter detail
type code of “PayeeDetail”

» Any other classwill use the simple class hame. This particular behavior will eventually be deprecated.

Based on these standards, it should be easy to tell what the parameter detail type codefor agiven parameter
should be.

The parameter’s value is then a simple lookup using the class making the call to ParameterService and
the name of the parameter:

final String paraneterVal ue = KNSLocat or . get Par anet er Servi ce() . get Par anet er Val ue(t

260

KNS

The parameterValue can then be used for whatever purpose the business logic requires.

Using an indicator parameter

An indicator parameter’'s text is either “Y” or “N”; invoking that parameter as an indicator
parameter simply means that the text will be trandated to its corresponding boolean
value. It is accessed through Parameter Servicetgetndicator Parameter, which works much as
Parameter Ser vicetget Par ameter Value does:

i f (KNSLocat or. get Par anet er Servi ce() . get Paraneter|ndicator(this.getd ass(), "EXECU
/1 do sonething...

}
Parameter Evaluators

Using parameter text is fine if there is only one value in the text. However, very often a parameter may
need to be associated with several pieces of text.

For instance, the first example of the System Parameters section talked about having bank information
applied to acollection of documents. It seemsinefficient to create abunch of indicator parametersfor this.
It would be better to create one parameter with a number of document types in the txt.

Thisis easily done. The standard way isto list the document types in the text, separated by semi-colons
as so: FirstDocumentType; SecondDocumentType; ThirdDocumentType

While that could be retrieved via the ParameterServicettgetParameterV a ue method and then split, there's
amuch better way to examine the value: through the use of a parameter evaluator.

ParameterEval uators are simply objects which take values from the environment and see if they made the
constraints of the parameter. It will do the parsing of the parameter itself and then attempt to match that
against an input value:

KNSSer vi ceLocat or . get Par amet er Ser vi ce() . get Par anet er Eval uat or (Par anmet er Const ant s. N

This looks at the KR-NS / Document / BANK_DOCUMENT_TY PES parameter, splits its semi-colon
valued, and then matches document.getDocumentType() against each of the values returned from the

split.

The constraint code of the system parameter, mentioned earlier, is invoked at this point.
evaluationSucceeds() will return true if document.getDocumentType() is within the values in the
parameter and the parameter constraint codeis“A” (“alow”). If, on the other hand, the constraint codeis
“D” (“deny”) and the document type is matched in the parameter’ s values, a false will be returned — the
document type sent in is denied by the parameter.

(Parameter accessed through getPar ameter Value() and getl ndicator Par ameter () should simply set their
constraint codeto “A”).

System parameters used for validation can add errorsif the evaluation fails through the parameter value:
KNSSer vi ceLocat or. get Par anet er Ser vi ce() . get Par anet er Eval uat or (Par anet er Const ant s. N

Inthisexample, if the value of document.getDocumentType() doesnot match the valuesin the parameter,
an error will automatically be added to error PropertyName on the document, and the user message with
the key of error.invalid.document.type.message will be shown. Once againgt, the system parameter’s
constraint code is used to determine if the value succeeds or not.

261

KNS

The parameter evaluator can handle more complex situations aswell. Take an example where avalidation
needsto check that, if abusiness object has acertain “ dispersementCode”, then a child business object has
a specific “reimbursementCode”. In this case, the system parameter’ s value might look like this: A=Z

This means that if the dispursementCode of the parent is A, then the reimbursementCode of the parent
must be Z. This parameter can be used with the semi-colon to form alist: A=Z;B=X;C=K

The ParameterEvaluator call is again straightforward:

i f (KNSServi celLocat or. get Paramnet er Servi ce(). get Par anet er Eval uat or (t hi s. get d ass(),
/1 do sonething...
}

Here, getParameterEvalutor is given the parameter class, the name of the parameter, the code of the parent
and then the code of the child, but works as ParameterEvaluator worked before.

What if the parent’ sdisbursementCode allowed two different reimbursementCode’ s? Then the parameter’s
text would look like this: A=Z,Y;B=X,Y;C=K,J,L

Commeas separate the child’s distinct values. The invocation of the parameter evaluator is precisely the
same as the call above:

Par ameter Ser vicetiget Par ameter Values() can return aparsed version of amultiple value parameter, and
there is a version of Parameter ServicetgetParameter Value() which takes in a constrained value for
parametersin the form of “A=B"; if given thevalue“A”, it will simply return “B”.

Calling missing System Parameters

All of the methods which use a parameter’'s value — Parameter ServicetfgetParameterValue,
Par ameter Ser vicetget| ndicator Parameter, and Parameter ServicetgetPar ameter Evaluator — will
throw an exception if the system parameter with the specified name cannot be found. If there is an
expectation in the code that a parameter may not be found in the database, then it is advisable to call
Par ameter Ser vicettpar ameter Exists method first. If the method returnstrue, then it is safe to use any of
the methods above to utilize the parameter’ s value.

This is often useful in cases where there is a parameter that is different from document to document, but
for which there exists a default fallback case. It would work like this:

final ParaneterService paraneterService = KNSLocat or. get Par anet er Servi ce();
i f (paranmeterService. paranet er Exi st s(docunent. get d ass(), "EXAMPLE VALUE")) {
return paraneter Servi ce. get Par anet er Val ue(docunent . get d ass(), "EXAMPLE VALUE"
} else {
return paraneter Servi ce. get Par anet er Val ue(Par anet er Const ant s. NERVOUS_SYSTEM DC
}

In this example, Parameter Servicetparameter Exists is caled to see if there's a parameter named
“EXAMPLE_VALUE" with the namespace and parameter detail code of “document”. If that exists, then
it returns the value of that parameter. If it does not exigt, it uses the more general KR-NS / Document /
EXAMPLE_VALUE parameter.

Overriding Rice Parameters

Rice comes with a number of system parameters which affect KIM, the KNS, and KEW. They have
namespace codes“KR-IDM”, “KR-NS’, and “ KR-WKFLW?” respectively. These provide defaultsfor Rice
behavior which occurs in sample applications.

262

KNS

Thisposesaproblem. If aclient applicationisbuilt to be used with astandal one Rice server, then each client
application would have to share the defaults set in these system parameters. To allow client applications
to have the ability to set these Rice system parameters separately from other client applicationsin ashared
Rice server, the application namespace code field was added.

For instance, Rice applications come with a system parameter KR-NS/ All / DEFAULT_COUNTRY
which lists the default country code used in the application. If, for some reason, a client application
needed a separate DEFAULT_COUNTRY, anew system parameter would need to be created through the
maintenance document. The existing system parameter and the new system parameter would differ only
in their values and in their application namespace codes.

All Rice system parameters come with the default Rice application namespace code of “KUALI". If the
client application’s version of the KR-NS/ All / DEFAULT_COUNTRY had an application namespace
code matching that of the app.namespace configuration property of the client application, then that would
be used before the KR-NS / All / DEFAULT_COUNTRY parameter with the “KUALI” application
namespace.

Building Screens using the KNS Tag Libraries

The Kuai Nervous System handles the rendering of several pieces of standard functionality: maintenance
documents, inquiry pages, and lookups. However, that leaves two pieces of functionality where writing
JSP is required: on transactional documents and on non-document screens. However, even though JSP
coding is required in these cases, the KNS still provides a wealth of rendering functionality through the
use of tag libraries.

This section examines several categories of the most used tags that are provided by the KNS.

Implicit Variables

The KNS provides a number of implicit variables which can be used in the context of JSP pages. These
variables exist to give the web layer the ability to read variables from the other KNS layers.

For instance, the variable Constants is used to give web layer developers access to
org.kuali.ricekns.util. KNSConstants, as so:

<c:if test="${Kuali Form docurment Acti ons[Const ants. KUALI _ACTI ON_CAN _EDI T] }" >
Howdy, end user! You can edit this page!
</fc:if>

Client applications often overload this variable to hold not only KNS constants but application
specific constants as well. There is also a RiceConstants variable which holds the constants in
org.kuali.rice.core.api.util.RiceConstants, a KewApiConstants which holds all of the constants
in org.kuali.ricekew.util.KewApiConstants, and a PropertyConstants which holds the values in
org.kuali.rice.kns.util. KNSPropertyConstants.

All configuration properties are loaded into a variable ConfigProperties

<p>

application nanespace is <c:out val ue="${ConfigProperties['config.namespace']}" />
</ p>

The entirety of the data dictionary as also exposed in the map constant DataDictionary. The keysfor this
map are either the simple class name of a business object:

<c:set var="countryBCODat aDi cti onaryEntry" val ue="${DataDi cti onary[' Countrylnpl']}"

263

KNS

Or, for documents, the KEW document type name:
<c:set var="identityManagenent Per sonDocunent Entry" val ue="${DataDi cti onary['|denti
Data dictionary values can then be accessed via JSPEL.

Thefina implicit variable to mention is KualiForm. Thisisthe Struts form for the current page. For JSP
pages supporting transactional documents, values from the document can be read through KualiForm. As
such, thisimplicit variable is practically the most used.

These implicit variables work together to support the various tags the KNS provides.

Tags for Layout

KNS applications have a standard look, and client application devel opers will want to preserve that 1ook.
KNS layout tags provide an easy way to use the KNS Iook and feel.

First of all, JSP pages using tag libraries need to have @taglib directives added to the page:
The KNStag library istypically imported with the kul: prefix:

Thankfully, acollection of common JSTL, Struts, and Rice tags are readily imported using asingle import
at the top of any custom devel oped JSP page:

Having done that, the developer can use the kul: page tag to draw the main outline of the page, such asin
this example, from KFS's Format Disbursements page (for matselection.jsp):

The kul:page simply draws the frame around the page. It has two required attributes: the docTitle, which
isthetitleit will usefor the pageinthe gray bar which runs along the top, and the tr ansactional Document
attribute, which should only be true if the JSP page is supporting a transactional document.

This example usesanumber of other attributesaswell. The header Titleiswhat will show inthe browser’s
title bar. showDocumentinfo will treat the page as a document page and will attempt to, for instance,
show a link for document type. The errorKey isthe key for errors which should be associated with the
top level of the page (in this case, it likely should have been neglected). Finally, the htmIFormAction is
the url to the action that the form within the page — every page is assumed to have HTML form data, so
an HTML form variable is constructed for it — should post to.

There's aso a convenience tag that encapsulates the kul:page with al of the attributes needed for
documents turned on: the aptly named kul:documentPage, exemplified here from the sample travel app:

The only required attribute here is documentTypeName; the docTitlewill display the label from the data
dictionary entry associated with this document, and the value for the transactionalDocument attribute
will also be determined from the data dictionary entry. All other attributes will simply be passed along
to the kul: page tag.

The kul:documentPage tag makes sure that not only isthe document title splashed across at the top of the
pagewith alight gray, scrubbed |ooking background graphic, but al so shows common read-only document
information: document number, KEW workflow status, initiator, and when the document was created.

The next most distinctive visual feature of KNS pages are the tabs which visually organize related
information (through headers, it organizes the information for sight disabled end users aswell). The KNS
provides a main tag to draw these: not surprisingly, it’s the kul:tab tag.

Here is an example of the tag, again from travelDocument2.jsp, which is part of the sample travel
application:

264

KNS

There is only one required attribute for the tab: defaultOpen, which declares whether the tab should be
initially rendered as open or closed (all tabs can be opened or closed oncerendered). However, thisexample
gives us anumber of other useful attributes as well. tabTitle isthe name that will appear in the tab; while
not required, best practice suggests that developers provide one so the tab have alabel even when closed.
tabErrorKey lists the keys that will be associated with this tab; when those errors are rendered, their
messages will be associated with the given tab.

Another thing to notice in the example was the inclusion of adiv with class“tab-container”. In practice,
practically all KNS tabs have such atab included. This leadsto the natural question of why the tab is not
part of the tag itself.

Thediv with aclass of “h2-container” draws aheader stripe at the top of the tab, with ablack background
and white text. This distinctive visual element should be used to mark off sub-sections of the tab.

Thereisaso akul:subtab. Thisvisually providesanin-set tab, typically set off with astripethat hasagray
background and bolded black text. KIM’ s Identity Management Person Document, has such an example.
It includes the tag per sonContact.tag, which builds a tab:

This splits the various sub-sections into distinctive visual elements.

Theonly required attribute for the tag iswidth, which specifiesthe width of the sub-element (kul:subtab’s
are sometimes shorter than their surrounding tab —while they are always rendered with some padding, the
amount of padding and thus the amount of visual separation can be increased as width is decreased).

Sub tabs often have titles, specified through the subTabTitle attribute. Whereas all tabs have hide/show
buttons, they can be turned off from sub tabs through the use of the noShowHideButton attribute.

Finally, sub tabs are often associated with lookups, they have two attributes, lookedUpBODisplayName
and lookedUpCollectionName, which allow results of lookups to be displayed in the sub tab itself.

Astute readers will have noticed an important visual point about tabs: the tab is rendered with the tab title
in an offset visual element (like the tab in a file folder) and behind it is the gray background of the tab
above. However, the top tab does not have atab above it. Therefore, for that special top tab, there is a
kul:tabTop whichisidentical to the kul:tab tag, savethat it visually looks like the top tab. Also, to round
off the bottom tab, there is a tag, kul:panelFooter, which takes no attributes, which will round off the
bottom corners of the set of tabs.

It should be noted that for documents, general practiceisthat the top tab provides the standard set of fields
that all KNS documents have: the document description, which is a required field, as well as atext area
for the document explanation and an internal Org Doc #. Since this is standard, the KNS provides a tag,
kul:documentOver view, which displays these fields and which is commonly the top tab of the document
(thus obviating the need for the developer to use the kul:tabTop tag).

Practically all documentswill sharethisline of code asthe top tab. The editingM ode éttribute is required,
but will practically always be the value of KualiForm.editingM ode.

Armed with these visual layout tags, client application developers are ready to start filling in pages with
form controls.

Tags for Controls

Certainly, controls can behard codedin JSPfilesasHTML. However, the KNS provides several tagswhich
provide standard functionality to controls— thus preserving the flexibility of declaring control information
inthe datadictionary aswell as supporting masking, accessibility, and anumber of other concerns without
the application developer needing to concern with those details.

265

KNS

The basic tag for showing afield is kul:htmlControl Attribute. Dozens of examples can be found in even
the simplest Rice client application. Hereis the tag being used in travel Document2.jsp in the Rice sample
travel application:;

<tabl e wi dt h="100% border="0" cel |l paddi ng="0" cel |l spaci ng="0" cl ass="dat at abl e">
<tr>
<kul : htm Attri but eHeader Cel | | abel For="docunent.traveler" attributeEntry="
<td><kul : ht m Control Attri bute property="docunent.traveler" attributeEntry=
</tr>
<tr>
<kul : ht M Attri but eHeader Cel | | abel For ="docunent.origin" attributeEntry="%{
<td><kul : ht Ml Control Attri bute property="docunent.origin" attributeEntry="%
</tr>

</tabl e>
This example has two controls which will appear on the form: one for document.traveler and one for
document.origin. This is set via the property attribute; that attribute is required. Also required is the

attributeEntry attribute, which takes in the DataDictionary attribute entry for the attribute that is being
displayed:

<c:set var="travel Attributes" val ue="${DatabDi ctionary. Travel Request.attributes}" /

There are also many optional attributes. Oneis seen in both examples above: readOnly, which determines
if thefield will simply have aread only version of its value displayed, or a control will be displayed. This
attribute allowsalot of flexibility about when afieldwill bereadOnly or not. Typically, though, readOnly
is determined based on the whether there’ s an action “can edit” in the form’s documentActions map:

<c:set var="readOnly" val ue="${! Kual i For m docunent Acti ons[Const ants. KUALI _ACTI ON_C

As covered earlier, masking is handled automatically if the field is read only. If the value of the property
should not be displayed at all, the attribute readOnlyBody can be set to true and the value of the tag’s
body is displayed if the control attribute is rendered read only.

Among the other optional attributes are html attributes which are applied directly to the drawn control,
such asonblur, onclick, and onchange. ThereisastyleClass, which iswhere a CSS class can be specified
to render the value or control in.

Note that the type of control is not specified here. The data dictionary entry will be referred to, and that
control definition will used to determine which control will be rendered. Select controls will use avalues
finder to find the values to display in the drop down. This means that controls can be changed without
altering the JSP, which isamajor strength.

The only exception to be aware of isthat if atext control document contains a date, there is an attribute,
datePicker, should be set to true.

Also in the example, the tag kul:htmlAttributeHeader Cell is used. It displays the label for the
field in a <td> cell. There aren’t officially any required attributes, though one of the following three
would have a value set: attributeEntry, attributeEntryName, and literalLabel. literalLabel will
force the header cell to smply display the given String. attributeEntry, on the other hand, will use
a data dictionary attribute to find an appropriate label; it needs to be handed the proper label much
as the kul:htmlControlAttribute uses. attributeEntryName takes the full name of a data dictionary
attribute (such as“DataDictionary.TravelRequest.attributes.origin”). Thelabel will comefrom thedata
dictionary, though the tag will do al of the lookup itself.

There are anumber of other attributes exist which control how the html of the <td> tag will render. width,
rowspan, colspan, align, and labelFor, aswell as several others exist to customize the look of the tag.

266

KNS

What if a label is being rendered outside a table? For that, there is a kul:htmlAttributel abel
tag. It alows attributeEntry and attributeEntryName attributes which work just as they do in
kul:htmlAttributeHeader Cell. literalL abel isnot supported (sinceit isassumed that aliteral label would
simply be written into the JSP).

This too has a number of other attributes. Developers should consider three of these attributes.
useShortL abel usesthe short label in the data dictionary attribute instead of the regular label. noColon is
aboolean. If it isset to true, then there will not be a colon rendered after the label. Finally, for ceRequired
means that a symbol will let end users know that the field is required.

Thereisa so aconvenience tag which belongs on every JSP page supporting atransactional tag, right after
the kul:documentPage tag: kul:hiddenDocumentFields. Here isits use in travel Document2.jsp:

<kul : docunent Page showDocument | nfo="true" htmn For mActi on="travel Docunent 2"
docunent TypeNanme="Tr avel Request" renderMul ti part="true" showTabButtons="true" aud
<kul : hi ddenDocunent Fi el ds />

This will make sure that the docld and document.documetNumber will be preserved to repopulate the
form after an action occurs on the document by creating HTML hidden controlsto carry the valuesthrough
the POST.

There are two optiona attributes, used to ask for the saving of more variables.
If includeDocumentHeaderFields has a vaue of true, it will make sure that
document.documentHeader .documentNumber is saved. Setting includeEditM ode will preserve the
edit modes determined for the document.

Finally, kul:errors should be mentioned. As previously seen, errors are typically associated with pages
and tabs via errorKeys. If an error should show up not associated with a page or a tab but rather with
some other visual element, then the kul:errorstab can display those.

There are no required attributes. If only the errors with a certain set of keys should be displayed, then
the keyMatch attribute should be set. Otherwise, all remaining messages will be rendered. Forcing the
rendering of al remaining messages can be forced by setting the displayRemaining attribute to true. An
error Title, warningTitle, and infoTitle can also be set to separate the message sections. Defaults are
provided if these attributes are not set.

Tags for KNS Functionality

Developers of transactional documents or screens will often want to hook into KNS functionality, such as
inquiries and lookups. A set of tags makes this easily accomplished.

For instance, in Rice client applications, many controls have a question mark icon next to them, which
allows the user to do a lookup and return the value into the control. To get one of those to display, the
kul:lookup tag must be utilized, precisely asit is on travelRequest2.j sp:

<kul : ht M Control Attri bute property="travel Account. nunber" attributeEntry="${accoun
<kul : | ookup boC assNanme="edu. sanpl eu. travel . bo. Travel Account™ fi el dConversi ons="nu
<kul : di rectl nquiry boC assNane="edu. sanpl eu.travel . bo. Travel Account™ i nquiryParane

Right after the travel Account.number control is rendered, the kul:lookup tag will render the question
mark [ookup icon.

It takesthe class of the business object it will perform alookup against through the required boClassName
attribute. ThefieldConver sionsattributeis not strictly required but often used: itisalist of attributesfrom
the result business object matched by a colon with the field that it should populate in the document upon

267

KNS

return. kul:lookup also has support for a lookupPar ameter s tag, which will populate the lookup with
values from the document. There are anumber of other optional attributes as well.

Alsointhisexampleisthekul:directinquiry tag. If thetravel Account.number field isfilled in, then clicking
the directlnquiry tag will open up an inquiry page for the value given.

It, too, needsthe class of the business object it isinquiring on through the required boClassName attribute.
The non-required inquiryPar ameter attribute tells the tag which values to take from the document to use
as keysfor theinquiry page.

What if the valueisread only and an inquiry should be displayed? In that case, the kul:inquiry tag should
be used. Here is an example from the KFS procurementCar dTransactions.tag:

<kul : i nquiry boC assNane="org. kual i . kf s. f p. busi nessobj ect. Procur enent Car dTr ansact i
<bean: wite nanme="Kual i Form' property="docunent.transacti onEntries[${ctr}].tra

</ kul : i nquiry>

The kul:inquiry works much like the <a> tag it renders. Any text within the body of the tag is rendered
asthetext for the link. It, too, requires the boClassName attribute which specifies which business object
will be rendered on.

It also requires two other attributes, keyValues and render. render isan odd attribute. It decides whether
the inquiry link will be rendered or not. This allows some display level logic to check whether the field
should actually be rendered on. If render is false, then only the text of the tag’ s body will be rendered.

keyValues hands in the query string to pass to the inquiry page, theoretically with the keys the inquiry
page will need to find the record to display.

kul:inquiry has no optional attributes.

A variation of the kul:lookup tag also exists, which supports multiple value lookups,
kul:multipleValuel ookup. Here is an example from KC's awardK eywords.tag:

<kul : mul ti pl eVal ueLookup boC assName="or g. kual i . kra. bo. Sci enceKeywor d" | ookedUpCol

Once again, boClassName of the business object classto belooked up isarequired attribute. Also required
is the lookedUpCollectionName attribute. Once the multiple values are returned from the lookup, the
KNS will attempt to populate the named collection on the document with the values.

Inthisexample, anchor isan optional attribute. It givesthelink to return to an anchor to navigate to when
it returns to the page. Thisis helpful on long pages. Thereis also an attribute lookedUpBODisplayName
which will control the label for the business object being looked up.

Last, but by no means least, among these tags is the reliable kul:documentControls tag. Every JSP
supporting a transactional document will include this tag, as it draws the row of controls on the very
bottom of the page, thereby allowing end users to route, save, approve, cancel, and otherwise work with
the document. travel Request2.jsp usesit:

<kul : panel Footer />
<kul : docunent Control s transacti onal Document ="f al se" />

Properly utilized this control appears just beneath the kul:panel Footer. The only required attribute is the
transactionalDocument attribute, though, ironically, that attributeisnever used withinthetag. It therefore
does not matter if false or true is entered as the value.

The other main attributes to be aware of support adding extra buttons. There are two mechanisms. In
the first, by specifying the extraButtonSour ce, extraButtonProperty, and extraButtonAlt attributes,

268

KNS

a single extra button will be rendered. For the image source, it will use extraButtonSour ce, with the
alternate text specified by extraButtonAlt. The extraButtonProperty specifies the property of action to
call (for instance, the property of the route button is“methodT oCall.route”).

That's fine for one extra button, but what if multiple extra buttons need to be added? The KNS supports
this as well. org.kuali.rice knsweb.struts.form.KualiForm has a List property named extraButtons.
The List is made up of org.kuali.riceknsweb.ui.ExtraButton objects. Each ExtraButton object,
in turn, has an extraButtonProperty, extraButtonSource, and extraButtonAltText properties which
can be set. Those properties have the same effect as the extraButtonSour ce, extraButtonProperty,
and extraButtonAlt attributes covered above. ExtraButton objects have two extra properties as well:
extraButtonParams and extraButtonOnclick which provide the ability to hand extra parameters to the
action and the ability for javascript to react to the button click respectively.

Theform can have its extraButtonslist populated before reaching the presentation layer. Most often, this
is accomplished by simply overriding the form’s getExtraButtons() method. Then the extra buttons are
simply sent from the form into the kul:documentControls tag, as so:

<kul : docunment Control s transacti onal Docunent ="f al se" extraButtons="${Kuali Form extr

The kul:documentControls tag will then render all of the extra buttons. Given its extra flexibility, this
isthe preferred method of adding extra buttons.

Useful Pre-Created Tabs

Finally, the KNS provides a number of tabs that happen to exist on most documents.

For instance, practically every document has the ability to add notes. If that functionality is to be turned
off, it's much easier to do in the data dictionary — so frankly, every document should have a place to
enter notes. Documents should also have the route log of the document, and a place where ad hoc KEW
recipients can be added. The KNS makes adding all of these tabs easy:

<kul : notes />
<kul : adHocReci pi ents />
<kul : routeLog />

The names of the tags are self-explanatory; and as easy as that, these three standard tabs have been added
to the document.

269

Chapter 6. KRAD
KRAD Overview

New for Rice 2.0, the Kuali Rapid Application Devel opment (KRAD) framework easesthe development of
enterprise web applications by providing reusable solutions and tooling that enable developersto build in
arapid and agile fashion. KRAD is acomplete framework for web developers that providesinfrastructure
in all the major areas of an application (client, business, and data), and integrates with other modules of
the Rice middleware project.

KRAD expands the Kuali development platform and will eventually replace the Kuali Nervous System
(KNS). KRAD supports the KNS document types - Lookups, Inquiries, and Maintenance pages - while
it also provides more flexibility in user interface layouts, for example, beyond the "vertical" tab section
and collection layouts typical of KNS-based applications. In addition, KRAD eliminates the need for a
transaction document type, as maintenance documents can now handle full transactional interactions.
KRAD differsfrom KNS in some key ways:

» The KNS look-and-feel was targetted at administrative users, KRAD enables rich web applications
targetted at awide range of user types.

* KNS haslittle built-in rich user interface support whereas KRAD includes this.
* KNSis Struts 1.x based whereas KRAD is Spring-MV C based.
KRAD usesthefollowing:
* Spring Beans and Expression Language
» Apache Tiles as the templating engine
 Fluid Skinning System for CSS
* jQuery asthejavascript library, including jQuery Ul widgets

» And other plugins providing functionality, such as AJAX

Key KRAD Features

Built upon a rich JQuery library of standards and Fluid Skinning System's (FSS) set of cascading style
sheets, KRAD provides a set of rich user Interface components, such as the following. Note that jQuery
themes are widget-oriented, while the FSS provides support for whole pages and applications, so they are
compatible with each other.

Thekey KRAD User Interface Framework (UIF) componentsinclude, but are not limited to, the following:
» Navigation objects: Left menu and Horizontal tabs navigation

» Layout managers: Grid, Box, Table and Stacked

» Widgets: Light-box, Disclosure, Breadcrumb, Date picker, Growl, Direct inquiry, Inquiry, QuickFinder,
RichTable, Suggest, Tabs, Tree

270

KRAD

 Controls: Checkbox, Checkbox group, File, KIM Group, Hidden, Select, TextArea, Text, User
 Containers: Group, Link group, Navigation group, Tab group, Tree group

» Fields: Input field, Field Group, Action, Ajax Action, Blank, Data, Errors, Generic, Header, iFrame,
Image, Labdl, Link, Lookup Input, Message

» View Types: Lookup, Inquiry, Maintenance, Transactional

e Genera Features. Constraints (simple, valid characters, case, must occurs, dependency, custom),
Watermarks, Help summary & description, Messages (constraint, instructional, required, error,
informational, warning), Validation (client-side, dirty fields validation, exception handling - incident
page), Remote fields, Progressive Disclosure, Audo Code-name translation (auto-completion), Dialogs
(questions and prompts), Focus and anchoring handling, Tabbing order, Field queries, Information
properties, Hidden properties, Default Values, Disabled, Alternate and Additional Display Properties,
Read-Only fields request override, Attribute security and masking, Add/Delete line handling, Form
Edit Modes, Property editors, Property replacers, Component refresh, Component Modifiers, Collection
filters, Show/Hide inactive, EL Language for XML Config, Support for al JS events, Integration with
KIM and KEW.

For example, see the information below on KRAD's Input field, and how this field can be grouped with
others of the constructs listed above to make for aricher Ul experience than what was possiblein KNS.

An Input field enables user input. Thismeansthat this"grouped” field control will display an entry field for
user input, and can optionally include instructions, awatermark, constraint text, alookup widget, inquiry
widget, and/or help widget, and includes a place for error messages associated with the field to appear.
This could be considered the most complex of al fields, and additional information on this field can be
found in the Developers Guide.

271

KRAD

Figure6.1. Input Field - Grouped

mut Field

Widget
Onallfields ———— * Field Label
Instructions — (s, Lookup
Only for Text controis Watermark... Widgef
Constraint text 1 naui
[: . 1] Ingui
ErtorField © Field Label - Required &
On all fislds
A keyad message
“=" Sugges
q« Dn.l].?fga.r]'-

The information below provides additional conceptual and relational information on the KRAD
architecture, classes and user interface patterns that are supported "out-of-the-box.

272

KRAD

KRAD Conceptual view

Figure 6.2. KRAD Conceptual View

KRAD Classes

org.kuali.rice krad.uif

Containers Controls Fields

- CollectionGroup - CheckboxConiral - AckonFiald

- Docwment\View - CheckboxGroupConbnod - AttribudeField

- Formiiew - FileCantrol - AttributeQuery

- Group - GroupContral - BlankField

- Inquirydiew - HiddenCaontrol - ErmorsField

- LinkGroup - RadioGroupCantral - GeneratedFiald

- LoosupWiew - Salactzontral - GenericFisld

- Maintenanceiew - TextAreaCaontrol - GroupFeeld

- MavigalionGroup - TextCantrol - HeaderFiald

- ModePrototyps - UsarConiral - HrameFiald

- Pagelroup - ImageField

- TabiGroup - LabalFisld

- TreeGrowp - LinkField

- Wiew - LookupaAitributeField
- MessageFiald

Layouts Modifiers Core

- BoxlayoutManager - Comparablelnfo _ - Bindinglnfo

- GridLayouthManager - CompareFieldCraateModifier - MaintenancefctivaCollech
- StackedLayoutManager - ComponentConverifoddiar - MethodlnvokerConfig

- TablaLayouthdanager - LabelFieldSeparaiaModsdiar - PropertyRepiacar

org.kuali.rice krad.keyvalues : .
AdHocActionRequest

org.kualirice.- api.util

= ConcreteBey\Value

For additional high-level views of information on the layout managers and fields, see the KRAD Users
Guide.

273

KRAD

KRAD Relational View

Figure 6.3. KRAD Relational View

Fields Containers

hind to
popuiate

Data

Keyed Messages

Default Definitions

Controls

HITML Elements

KRAD Data Dictionary

(Need direction on what of the KNS information should be copied here and what other new information
should be included.)

KRAD enhancements to the Data Dictionary include, but are not limited to, the following:
¢ Simple Constraints, Min/Max

* Valid Characters Constraints

274

KRAD

» Dependency Constraints

 Lookup Constraints

 Conditional Logic Constraints

» Occurrences Constraints - Collection size constraints
» Congtraints on the client side

» Changing Error Messages

» Custom Constraints

In the earliest versions of the Kuali Nervous System, it was recognized that forcing developers to write
Java-based rules to check if arequired field wasfilled in or if it matched a date pattern was a hefty load
of work that easily could be transferred to the data dictionary.

Every AttributeDefinition defined for a property of a data object had the ability to be paired with
a validation. For instance, let's take a generic date field from KFS's org/kuali/kfs/sys/businessobject/
datadictionary/GenericAttributes.xml file.

Code snippet example follows:

<bean id="Generi cAttributes-genericDate" parent="GCGenericAttributes-genericbDate
<bean id="Generi cAttributes-genericDate-parentBean" abstract="true" parent="At
<property nane="nanme" val ue="genericDate"/>
<property nane="forceUppercase" val ue="fal se"/>
<property nane="|abel" value="Ceneric Date Style Attribute"/>
<property nane="short Label " val ue="Genericbhate"/>
<property nane="nmaxLength" val ue="22"/>
<property nane="validationPattern" ref="DateValidation"/>
. <property nane="control" ref="DateControl" />
10. <property name="formatterd ass" val ue="org. kuali.rice.kns.web. format. Dat eFor
11. </ bean>

CONOTEWNE

It's a simple enough example, but lines 7 and 8 pack quite a bit of power. Together, they limit the length
of the field to a size which can fit in the database (evidently twenty-two characters) and they add the
DateValidation, which requires that any user input fits a certain pattern defined as a regular expression.
Two lines of configuration, and the developer gets afair amount of error checking.

That's wonderful, of course, but it has limits. For example, there's no way to only run constraints based
on the values present in other attributes. There wasn't a general way to enforce a datatype for auser input
value. There wasn't away to say, for instance, that one or another field was required - either afield was
required or it wasn't.

Such logic, not that much more complex, all required a Java-based rules solution. Much more complex
logic is available than ever before. Not only that, but it can be enabled to work on the client side via
JavaScript aswell.

Finally, for even more flexibility, the processors which act on the constraints have been pulled out into
injectabl e classes - meaning that applications can override thelogic for aconstraint if needed. Furthermore,
constraints need not act only on AttributeDefinitions; new interfaces have been developed which allow
any configuration classto participatein being validated. Obvioudly, there'salot of functionality to cover -

275

KRAD

from the classic constraints which continue on in the framework to the powerful constraints that the Kuali
Student team contributed to KRAD.

The information below includes an overview of the specific "built-in" KRAD constraints available to
developers. Welll aso cover the architecture of the constraint framework, with a special emphasis on how
constraint logic may be overridden, how new constraints would be constructed, and how non-attributes
could have Constraint logic built for them.

Information on each of the KRAD-packaged constraints is below, followed by a look at the constraint
architecture itself.

Simple Constraints, Min / Max

As is covered in more detail in the Constraint Architecture section that follows this this
documentation of the constraints packaged with KRAD, every constraint in KRAD implements the
org.kuali.rice.kns.datadictionary.validation.constraint.Constraint interface. This interface is a simple
marker interface. Children of that interface tend to define the datathey would need from the configuration
to figure out if the value put into the attribute is valid or not.

For instance, in the GenericAttributes-genericDate example in the introduction section above, the
maxL ength property is set to 22. One would expect alength-based constraint to require agetMaxL ength()
method which could then be fed to the Constraint to find the maximum length.

org.kuali.rice.kns.datadictionary.validation.constraint. SimpleConstraint defines what we might call a
"nervous system classic" constraint. It is built from normal fields on AttributeDefinition - required;
maxL ength and minLength (the latter has been added as part of KRAD); exclusiveMin and exclusiveMax;
and finally, minOccurs and maxOccurs, which will be covered in more detail below.

Therequired constraint, of course, meansthat some value must be set for the attribute. The maxLength and
minLength attributes typically apply to String data, which must be a certain size. Likewise, exclusiveMin
and exclusiveMax apply to numeric data which must fit within some set range.

Valid Characters Constraints

Another hold over from the Kuali Nervous System constraints, VValidCharactersConstraint exists to make
sure that a String value matches against a regular expression. For instance, let's say that a KRAD
application requiresthat all phone numbers must beintheform of (##) ##-###H (Evidently, the attribute
does not yet accept international numbers...but as devel opers, we must rest assured that's coming, and is
the requirement.)

In the data dictionary for that attribute, the following could be set.

Code snippet example follows:

1. <bean id="Datalbj ect-phoneNunber" parent="Attri buteDefinition">

2. <property nane="nane" val ue="phoneNunber" />

3. <property name="val i dChar act ersConstraint">

4, <bean cl ass="org. kuali.rice. kns. datadi ctionary.validation.constraint.Valid
5. <property nane="val ue" value="\(\d{3}\) \d{3}-\d{4}" />

6. </ bean>

7. </ property>

8. </bean>

In lines 3 through 7, we set the validCharactersConstraint property on the AttributeDefinition, handing
the bean we just created a regex which should match the phone number pattern which the requirements
say all phone numbers should match.

276

KRAD

This regex is passed in as the value property to the ValidCharactersConstraint bean.
A number of ValidCharacterConstraints are defined in org/kuali/rice/lkns/bo/datadictionary/
DataDictionaryBaseTypes.xml. Among those are "UrlPatternConstraint”, "DatePatternConstraint”,
"CreditcardPatternConstraint”, "NonWhitespacePatternConstraint", "IntegerPatternConstraint”,
"PhoneUSPatternConstraint”, and "TimePatternConstraint”, as a mere sampling. As of the time of this
writing, the constraints only worked for javascript side validation. However, work was being doneto build
server side equivalencies of all of these patterns.

Finaly, note that the ValidCharactersConstraint has a second property, "jsValue". In most cases, Javas
regular expression engine (VaidCharactersConstraint uses the built-in regular expression engine) will
accept the same expressions as the JavaScript engine. That's good, because the same regular expression
can be passed to the client and handled client side, as will be covered in more detail soon.

The best idea is to keep validation regular expressions to the use of broadly supported features (outside
of POSIX, which Java supports but which most JavaScript engines do not), and keep on eye on engine
comparison pages such as http://en.wikipedia.org/wiki/Comparison_of _regular_expression_engines. The
KRAD team is attempting to avoid differences, though, and create a single pattern for both JavaScript
and Java

Dependency Constraints

Dependency constraints are used to define a set of PrerequisiteConstraint dependencies on an attribute. A
PreRequisiteConstraint is simply used to denote that some other attribute be required. If the attribute is
non-empty and has dependency constraints, each pre-requisite constraint attribute must al so be non-empty.
Note the prerequisite constraint is also used in the MustOccurConstraint. Unlike the MustOccurConstraint
which requires that aminimum or maximum number of prerequisite constraints be satisfied, adependency
constraint requires that all pre-requisite constraints be satisfied.

A code snippet example follows:

1. <bean id="Dat albj ect - phoneNunber" parent="Attri buteDefinition">

2. <property nane="nanme" val ue="phoneNunber"/ >

3. <property nane="dependencyConstrai nts">

4. <list>

5. <bean class="org. kuali.rice.kns.datadictionary.validation.constraint.Pre
6. </list>

7. </ property>

8. </bean>

Lookup Constraints

These are constraints on values returned from lookups into an attribute. As of the time of this writing,
they're still in process of implementation.

Conditional Logic Constraints

All of the constraints so far covered are static, in afashion. Once declared, they will apply to their attributes
no matter what. However, let's say that a constraint should only be tested when the attribute has a certain
value. How could the constraint be turned off if that valueisn't present and only be applied if the attribute
has the given value?

The final constraint to look at is org.kuali.rice.kns.datadictionary.validation.constraint. CaseConstraint,
which will turn on and off child constraintsif attributes match certain values. The classic example of using
thisisin an international address form. If the country codeis the United States, then the state code should

277

KRAD

befilled in aswell. If the country codeisfor Canada or Turkey, a province should befilled in. That would
be done via a configuration like this.

A code snippet example follows:

1. <bean id="DataCbject-countryCode" parent="AttributeDefinition">

2 <property name="nane" val ue="countryCode"/>

3 <property nane="caseConstraint">

4. <bean class="org. kuali.rice.kns. datadi ctionary.validation.constraint.CaseC
5 <property nane="whenConstraint">

6 <list>

7 <bean cl ass="org. kuali.rice.kns.datadictionary.validation.constraint
8. <property nane="val ues">

9. <list>

10. <val ue>US</ val ue>

11. </list>

12. </ property>

13. <property nane="constraint">

14. <bean cl ass="org. kuali.rice.kns. datadictionary.validation.constr
15. </ property>

16. </ bean>

17. <bean class="org. kuali.rice.kns.datadictionary.validation.constraint
18. <property nane="val ues">

19. <list>
20. <val ue>CA</ val ue>
21. <val ue>TR</ val ue>
22. </list>
23. </ property>
24. <property nane="constraint">
25. <bean cl ass="org. kuali.rice.kns. datadictionary.validation.constr
26. </ property>
27. </ bean>
28. </list>
29. </ property>
30. </ bean>

31. </ property>
32. </ bean>

Obviously, for such a powerful constraint, configuration becomes a bit more complex. A CaseConstraint
has aList of WhenConstraints. WhenConstraints match values to constraints that should be run when the
attribute's value matches the WhenConstraint's values. Here, values are hard coded (lines 8 through 12
and lines 18 through 23) but they need not be. If the values are in other attributes, a List of valuePaths
can be specified.

A WhenConstraint also has one child constraint to match. In both of the WhenConstraints above, a
PrerequisiteConstraint is used to make sure that another attribute - either state or province - is non-empty
(lines 14 and 25). Any Constraint could be used as the child of the WhenConstraint - a SimpleConstraint,
another CaseConstraint, and so on. The ability to turn on and off constraints such can lead to very powerful
validations being built directly in the DataDictionary.

Ocurrences Constraints

An occurrence constraint states that for a given attribute to be valid, a certain number of prerequisite
conditions must be matched. A prerequisite condition simply means that another attribute with a specified
attribute path is non-empty (so Strings must have some text in them; Collections must have at least one

278

KRAD

member; or the attribute must otherwise not be null). These constraints thus handle situations where one
or more of anumber of fields are required.

An occurrence constraint is specified viathe MustOccurConstraint constraint. Let's say that an application
requires either a phone number, an e-mail address, or a time for showing up be specified as contact
information. The following example sets up that validation in the data dictionary, adding the error to the
phone number attribute (though the same constraint could be copied to the other attributesjust as easily).

A code snippet example follows:

1. <bean i d="Dat aCbj ect - phoneNunber" parent =" Dat aCbj ect Entry" >

2. <property nane="obj ect d ass" val ue="edu. sanpl eu. cont act. Cont act | nf or mati on"
3. <property nane="rmnust Cccur Constrai nts">

4. <list>

5. <bean class="org. kuali.rice.kns.datadictionary.validation.constraint.M
6. <property name="mn" value="1" />

7. <property name="max" value="3"/>

8. <property nane="prerequisiteConstraints">

9. <list>

10. <bean cl ass="org. kuali.rice.kns.datadictionary.validation.constra
11. <bean cl ass="org. kuali.rice.kns.datadictionary.validation.constra
12. <bean cl ass="org. kuali.rice.kns.datadictionary.validation.constra
13. </list>

14. </ property>

15. </ bean>

16. </list>

17. </ property>

18. </ bean>

Lines 1 and 2 surprising show that this constraint has been set at the DataObjectEntry level, not that
of the AttributeDefinition. While MustOccurConstraints can be set in pretty much the same way on
AttributeDefinitions, since several attributes are involved, it makes more sense to have the validation at
a higher level. At the time of this writing, MustOccurConstraint is the only validation which can be set
at the DataObjectLevel.

The min and max properties of lines 6 and 7 tell the constraint how many of the following properties must
be present and the maximum number of filled in properties we expect. Here, the minis 1 - so at least one
of the properties must be filled in - and the max is 3, so if all three arefilled in, the validation will still
work fine. If there was a desire to only have one attribute filled in, the max could have been set to 1.

The MustOccurConstraint hasalist of prerequisiteConstraints - lines 8 through 14 - which describe which
attributes are grouped by this constraint.

A MustOccurConstraint can also have alist of child MustOccurConstraints. Why would such a thing be
desirable? Because it provides a way to set up nested validations. Let's say that, instead of specifying
a show up time, we had an address which needed to be filled in. If that was the case, we'd need every
field of the address - street, city, state, and zip filled in - for the constraint to pass. In that case, we would
have left min and max at 1 and 3 respectively; but instead of line 12, we would have specified a value
for the property mustOccurConstraints at line 15, and added a list of constraints asking for all the address
attributes to befilled in.

Collection Size Constraints

Another common rule situation is when a collection is the child of a data object or document, and for that
data object or document to be valid, a certain number of elements must be available in the collection. For

279

KRAD

instance, on an Add Course Document, one would expect the "courses' collection to have at least one
course in it and to be less than the total number of courses a student is allowed to take in a semester or
quarter. Therefore in the data dictionary entry for the data object, one adds a constraint as follows,

A code snippet example follows:

<bean nane="AddCour seDocunent"” parent ="Busi nessbj ectEntry">

1.

2 -

3 <property nane="col |l ecti ons">

4. <list>

5 <bean parent="Col | ecti onDefinition" p:nanme="courses" p:|abel ="Courses">
6 <property nane="mi nCccurs" val ue="1" />

7 <property nane="nmaxCccurs" val ue="74" />

8

</ bean>
9. </list>
10. </ property>
11.

12. </ bean>

Evidently, some students can take up to seventy four classes. Busy student. CollectionSizeConstraint is
handled as a specia type of SimpleConstraint (though only for use with CollectionDefinitions). Simply
set the minOccurs and maxOccurs for the attribute and there will be an error if the collection size falls
outside those limits. Naturally, either the minOccurs or maxOccurs can be left out for collections which
should be unbounded in either lower or upper size limit.

Constraints on the client side

One of the tasks that org.kuali.rice.kns.uif .field.AttributeField does in its Finalization stage is to convert
constraints to JavaScript. For all of the following constraints, AttributeField automatically will push the
Constraint to the client side:

* Exclusive Minimum and Inclusive Maximum constraints

VaidCharactersConstraint
» CaseConstraint

 DependencyConstraint

MustOccursConstraint
» PreRequisiteConstraint

When the user attempts to take action on the page, this level of Constraints will kick in - meaning that
feedback comes much more quickly. These constraints will always be called when buttons such as save,
submit, or approve - buttons where business logic would typically be evaluated - are clicked. They will
also occur on onBlur's for most fields.

There are, however, certain constraints which apply to multiple fields. CaseConstraints and
PreRequisiteConstraints, to name two instances. Which onBlur issues the error among al of those fields?
Generally, KRAD attemptsto not give an error until the user has gone past a point where she or he could
have prevented said error. For instance, if oneField has a DependencyConstraint on two other fields, but
those two other fields render later and lower on the page, then KRAD will associate the validation with
the last, bottom-most field of those the constraint appliesto. In an interesting corollary, KRAD will issue
an error on the onFocus event for afield which has already been visited if an error occurs with that field.

280

KRAD

Of course, the constraints are still run just the same on the server side once the page has been submitted;
that way, if the user has scripting turned off, the constraints are still run and user input data gets validated.

Changing Error Messages

All of the covered constraints are associated with standard error messages. For instance, if a "required"
constraint has been violated, the user will get the following message:

Phone Nunmber is a required field.

Thishastaken thelabel from the attribute which viol ated the constraint and formatted that into the standard
error.required message in the KR-ApplicationResources.properties file.

With most of the constraints, the message can be overridden on the constraint, by specifying the"labelKey"
property. For instance, a configuration like this:

Code snippet example follows:

1 <bean class="org. kuali.rice.kns.datadictionary.validation.constraint.MstQccur
2. <property nane="mn" val ue="1" />

3 <property nane="nmax" val ue="3" />

4, <property nane="| abel Key" val ue="error. nust. be. abl e.to.track. down" />

Instead of using the standard message, the error message that is shown will be the message associated with
the "error.must.be.able.to.track.down" key. This alows for a great deal more flexibility in what message
gets displayed - though, the classic messages will still show up as they aways did if nothing else is
specified.

Constraint Architecture (building a custom constraint)

The constraintsthat come standard with KRAD provide alot of power through configuration. For example,
validating user input will be easier than ever. And the constraint sub-system of KRAD was built with the
realization that even more constraints will be added in the future. Because of that, there needs to be an
easy way for Kuali application devel opers or even future versions of Rice to add new constraints into the
system. And so, thereis.

A constraint is amarker interface which is implemented by any Constraint bean (Java). These Constraint
beans are purely configuration - they only hold what regex should be parsed against, if a field
is required or not: basic information. The Constraint, in turn, is passed to an implementation of
org.kuali.rice.kns.datadictionary.validation.processor.ConstraintProcessor.

Note that implementations of ConstraintProcessors can be genericized with both the type of value that the
processor expects and the type of Constraint that the processor will work on. Most ConstraintProcessor
implementations only genericize the Constraint, accepting any Object as avalueto validate.

ConstraintProcessors have four methods:
* Firgt, the getName() method returns the name that the constraint processor holds.

» The getConstraintType() method returns the implementation of Constraint that this processor has the
business logic for.

e TheisOptional() method returns a boolean: true if the processor can be turned off in certain situations
by another piece of code, false otherwise.

281

KRAD

The only constraint which is currently optional is the ExistenceConstraint; it is turned off by passing a
false in the doOptional Processing parameter of DictionaryV alidationService#processConstraints.

» The fina method is the one that contains the ConstraintProcessor's business logic: process. Process
takes in DictionaryValidationResult, a value of some type, the Constraint information to apply to
the value, and an AttributeValueReader if the value needs yet to be read; it returns an instance of
org.kuali.rice.kns.datadictionary.validation.result.ProcessorResult.

ProcessorResults typicaly wrap instances of
org.kuali.rice.kns.datadictionary.validation.result.ConstraintV alidationResult. A

ConstraintValidationResult encapsulates a number of possible outcomes for the validation, all generated
by org.kuali.rice.kns.datadictionary.validation.result.DictionaryV alidationResult.

DictionaryValidationResult's addError method, for example, returns a ConstraintV alidationResult which
contains an error about a constraint being broken. Likewise, DictionaryValidationResult's addSuccess
method indicates that the result of the constraint test was positive - the value passed the constraint.

The other outcomes that DictionaryValidationResult can generate is addWarning - which gives an
informative message that something is wrong with the attribute's value but which will not "fail";
addSkipped, which says that the value could not be tested and therefore the validation was not run; and
finally addNoConstraint, which means that the constraint was configured in such way as to not run for
the given value or at all.

DictionaryV alidationResults wrap ConstraintV alidationResults in a way which provides easy access to
theseresultsin the data dictionary. These ConstraintV alidationResults are passed back to KRAD wrapped
within the ProcessorResults; the ProcessorResults then ensures that proper logic - whether that be the
display of a message, the stopping of logic, or - if everything passed - carrying on with the transaction
- OCCUrs.

That covers ConstraintProcessors. Now on to how they are called from within an application. An
implementation of org.kuali.rice.kns.service.DictionaryValidationService is responsible for checking all
of the attributeswhich are passed in as part of arequest into aK RAD form. The configuration of the default
implementation of DictionaryValidationService has all of the ConstraintProcessorsfor KRAD passed into
it. See the following code snippets. For example, if we assume the following 5 lines of code,

3 <property nane="col |l ecti onConstrai nt Processors">

4 <list>

5. <bean class="org. kuali.rice.kns.datadictionary.validation.processor. Col | ect
6 </list>

7 </ property>

Lines 3 through 7 above are the collectionConstraintProcessors - constraints which apply to collections.
Here is where CollectionSizeConstraint - the constraint that handles the maxOccurs and minOccurs
constraint attributes - goes.

In line 5, the CollectionSizeConstraintProcessor is injected in. DictionaryValidationServicelmpl then
matches the active Constraints on an attribute with the ConstraintProcessors passed in, and runs the logic
against the constrained attribute. If the ConstraintProcessor acts only on asingle attribute, it is passed into
the elementConstraintProcessor property.

ConstraintProcessors are supplied to engines which validate against constraints -
DictionaryV alidationServicelmpl, for instance - via ConstraintProviders. Different implementations of the
org.kuali.rice.kns.datadictionary.validation.constraint.provider.ConstraintProvider interface can exist;
their job is to map an implementation of Constrainable (a simple interface all Constraints implement) to
constraint processors, as can be seen in lines 29-79 below.

282

KRAD

The usefulness of ConstraintProviders can be seen in the example. Lines 31-64 shows the mapping
for the AttributeDefinitionConstraintProvider - constraints which can be run against an attribute
definition. Lines 65-77 shows that only one constraint - the MustOccurConstraint - can be run
for ObjectDictionaryEntryConstraintProviders, meaning this is the sole constraint supported by data
dictionary entries for entire data objects.

Code snippet example follows:

1. <bean id="dictionaryValidationService" class="org.kuali.rice.kns.service.inpl.

contents tri mred

2 <I-- Collection constraint processors are classes that determne if a featur
3 <property nane="col | ecti onConstrai nt Processors">
4 <list>
5. <bean cl ass="org. kuali.rice. kns. datadictionary.validation. processor. Col | ect
6. </list>
7 </ property>
8 <l-- Element constraint processors are classes that determne if a passed va
9. <property nane="el ement Constr ai nt Processors">
10. <list>
11. <bean cl ass="org. kuali.rice. kns. datadictionary.validation. processor. CaseCon
12. par ent =" mandat or yEl ement Const r ai nt Processor"/ >
13. <bean cl ass="org. kuali.rice.kns. datadictionary.validation. processor.Exi sten
14. <bean cl ass="org. kuali.rice. kns. datadi ctionary.validation. processor. DataTyp
15. par ent =" mandat or yEl ement Const r ai nt Processor"/ >
16. <bean cl ass="org. kuali.rice. kns. datadictionary.validation. processor. RangeCo
17. par ent =" mandat or yEl enment Const r ai nt Processor"/ >
18. <bean cl ass="org. kuali.rice.kns. datadictionary.validation.processor.LengthC
19. par ent =" mandat or yEl enment Const r ai nt Processor"/ >
20. <bean cl ass="org. kuali.rice.kns. datadictionary.validation.processor. ValidCh
21. par ent =" mandat or yEl enment Const r ai nt Processor "/ >
22. <bean cl ass="org. kuali.rice.kns. datadictionary.validation.processor.Prerequ
23. par ent =" mandat or yEl enment Const r ai nt Processor "/ >
24. <bean cl ass="org. kuali.rice.kns. datadictionary.validation.processor. MistCcc
25. par ent =" mandat or yEl enment Const r ai nt Processor "/ >
26. </list>
27. </ property>
28. <l-- Constraint providers are classes that nmap specific constraint types to
29. <property nane="constrai nt Provi ders">
30. <list>
31. <bean cl ass="org. kuali.rice.kns.datadictionary.validation.constraint.pro
32. <I--
33. i ndi vi dual constraint resolvers can be injected as a map keyed by con
34. resol vers can be instantiated into the map by adding 'init-nethod=
35. -->
36. <property nane="resol ver Map" >
37. <map>
38. <entry key="org. kuali.rice.kns.datadictionary.validation.constraint.Case
39. <ref bean="dictionaryValidati onCaseConstrai nt Resol ver"/>
40. </entry>
41. <entry key="org. kuali.rice.kns.datadictionary.validation.constraint.Existen
42. <ref bean="dictionaryValidationDefinitionConstraintResolver"/>
43. </entry>

283

KRAD

44,
45,
46.
47.
48.
49,
50.
51.
52.
53.
54.
55.
56.
57.
58.
59.
60.
61.
62.
63.
64.
65.
66.
67.
68.
69.
70.
71.
72.
73.
74.
75.
76.
77.
78.
79.

<entry key="org. kuali.rice.kns.datadictionary.validation.constraint.DataTyp
<ref bean="dictionaryValidationDefinitionConstraintResolver"/>
</entry>
<entry key="org. kuali.rice.kns.datadictionary.validation.constraint.LengthC
<ref bean="dictionaryValidationDefinitionConstraintResolver"/>
</entry>
<entry key="org. kuali.rice.kns.datadictionary.validation.constraint.ValidCh
<ref bean="dictionaryValidationValidCharactersConstraintResol ver"/>
</entry>
<entry key="org. kuali.rice.kns. datadictionary.validation.constraint.Prerequ
<ref bean="dictionaryValidationPrerequisiteConstraintsResol ver"/>
</entry>
<entry key="org. kuali.rice.kns. datadictionary.validation.constraint.MstCcc
<ref bean="dictionaryValidati onMust Cccur Constrai nt sResol ver"/>
</entry>
<entry key="org.kuali.rice.kns.datadictionary.validation.constraint. Collect
<ref bean="dictionaryValidationDefinitionConstraintResolver"/>
</entry>
</ map>
</ property>
</ bean>
<bean cl ass="org. kuali.rice.kns.datadictionary.validation.constraint.pro
<I--
i ndi vi dual constraint resolvers can be injected as a map keyed by constr
resol vers can be instantiated into the map by adding "init-method="init"
-->
<property nane="resol ver Map" >
<map>
<entry key="org. kuali.rice.kns. datadictionary.validation.constraint.Mist
<ref bean="dictionaryValidati onMust Cccur Constrai nt sResol ver"/>
</entry>
</ map>
</ property>
</ bean>
</list>
</ property>

80. </bean>

Other CondtraintProviders packed into Rice a the time of this writing
are CollectionDefinitionConstraintProvider - constraints which work for collection
definitions; and ComplexAttributeDefinitionConstraintProvider, which supports constraints for
"ComplexAttributeDefinitions' - data dictionary entries for attributes on one DataObject which are
represented by another data object.

KRAD Business Objects?

(Need direction on what of the KNS information should be copied here and what new information should
beincluded or if this section is not needed.)

KRAD Class Libraries?

(Need direction on what new information should be included here or if this section is not needed.)

284

KRAD

Installing and Configuring KRAD

Before developing with KRAD and after installing and configuring Rice, here are the additional steps
you'll need to follow to configure KRAD before starting to develop an application.

Thisinformation below assumes you aready have Riceinstalled and configured for your database. Below
are the additional tasks required to configure KRAD. For more information, see the KRAD Installation
Guide and KRAD javadocs.

(TBD - Revise the section heads below as needed and then populate with info. Include instructions for
setting up a Rice project, include assumptions for what is already done and not covered in the instructions,
such as setting up all else needed for devel opment environment - what are pre-regs, what are co-regs, etc..)

Configure Rice without KRAD (KNS Only)

In some cases it may be desirable to only use the KNS without KRAD. For example if you're timelines
push a conversion to KRAD out into the future, you may see some benefits with startup performance and
with memory usage.

Y ou can override the kradA pplicationM odul eConfiguration bean to not include any of thefilesin the UIF
folder. That is, you only need to include these files:

<property name="dat aDi cti onaryPackages" >

<list>

<val ue>cl asspat h: or g/ kual i / ri ce/ kr ad/ bo/ dat adi cti onary/ AdHocRout ePer son. xm </ val ue
<val ue>cl asspat h: org/ kual i / ri ce/ kr ad/ bo/ dat adi ct i onary/ AdHocRout eWor kgr oup. xm </ va
<val ue>cl asspat h: org/ kual i / ri ce/ krad/ bo/ dat adi cti onary/ Attachnent. xnl </ val ue>

<val ue>cl asspat h: org/ kual i /ri ce/ krad/ bo/ dat adi cti onary/ Attri but eRef er enceDunmy. xm
<val ue>cl asspat h: org/ kual i / ri ce/ krad/ bo/ dat adi cti onary/ Attri but eRef erenceEl enment s.
<val ue>cl asspat h: org/ kual i /ri ce/ krad/ bo/ dat adi ct i onary/ Busi nessQbj ect Attri but eEntr
<val ue>cl asspat h: org/ kual i /ri ce/ krad/ bo/ dat adi ct i onary/ Dat aDi cti onar yBaseTypes. xm
<val ue>cl asspat h: or g/ kual i / ri ce/ krad/ bo/ dat adi cti onary/ Docunent Header . xm </ val ue>

<val ue>cl asspat h: or g/ kual i / ri ce/ kr ad/ bo/ dat adi cti onary/ Not e. xm </ val ue>

<val ue>cl asspat h: or g/ kual i / ri ce/ krad/ bo/ dat adi cti onary/ Not eType. xnl </ val ue>

<val ue>cl asspat h: or g/ kual i / ri ce/ kr ad/ bo/ dat adi cti onary/ Pessi m sti cLock. xm </ val ue>
</list>

</ property>

Likewise, this can be done for the * baselinePackages property on the dataDictionaryService bean.

Creating the KRAD database tables / connections to
data?

KRAD Configurer and RiceConfigurer?

Configuring Spring and MVC?

285

KRAD

Module Configuration — Loading Data Dictionary and

OJB Files?

Other KRAD Configuration Parameters?

Building application pages using KRAD

This information assumes you've aready installed Rice. Once Rice is installed and set up, you can use
KRAD to build applications. You can use the code snippet templates covered below, and you can look
through the codebase itself or the sample application to see the code snippets for each of the KRAD
features, and then copy/paste them to use in your devel oping application.

KRAD Templates

Live templates contain predefined code fragments. Y ou can use them to insert frequently-used or custom

code constructs into your source code file quickly, efficiently, and accurately.

Loading the KRAD Templates

The following have been tested in the IntelliJ IDE.

Download the KRAD Templates File and place into the following location: (ACTION/TO-DO -- Need to
specify the link where we will maintain this long-term!)

» Windows:. <your home directory>\.<product name><version number>\config\templates

 Linux: ~\.<product name><version number>\config\templates

e MacOS: ~/Library/Preferences/<product name><version number>/templates

Using Templates

Whilein an XML file, type the template abbreviation and then the space key. The completion key (setup
as space) can be changed if desired by going to settings-live templates. Y our cursor will then be inserted

into the location specified by the template (marked with the END variable).

Available KRAD Templates
Table6.1. Available KRAD Templates

Abbreviation |Description Code

@ Inserts the| @{ $END}
expression
placeholders

action Generates an|<bean parent="ActionField" p:actionLabel="$ENDS$"
action field p:methodToCall=""/>

alink Generates an|<bean parent="ActionLinkField" p:actionLabel="$ENDS$"
action link field | p:methodToCall=""/>

be Generates a| <bean parent="END"/>

bean tag

286

KRAD

Abbreviation |Description Code
cc Generates a| <bean parent="CheckboxControl"/>
checkbox
control
cgc Generate a| <property name="control"> <bean
checkbox group| parent="CheckboxGroupControl"/> </property> <property
control name="optionsFinder"> <bean class="$ENDS$"/> </property>
dc Generates adate| <bean parent="DateControl" p:size="$ENDS$"/>
control
fc Generates a file| <bean parent="FileControl" p:size="END"/>
control
fg Generates aj<bean parent="FieldGroup" p:label="END'> <property
field group name="items"> <list> </list> </property> </bean>
fi Generates a| <property name="fieldlnquiry.dataObjectClassName" value="$END
field inquiry $ SCLASS$'/> <property name="fieldlnquiry.inquiryParameters’
value=""/>
fl Generates a| <property name="fiel dL ookup.dataObjectClassName"
field lookup value="END $CLASSE'/> <property
name="fieldL ookup.fieldConversions" value=""/> <property
name="fieldL ookup.lookupParameters" value=""/>
fs Generates a|<property name="fieldSuggest.render* value="true'/> <property
field suggest name="fieldSuggest.suggestQuery.dataObjectClassName"
value="END $CLASSS'/> <property
name="fieldSuggest.sourcePropertyName" value=""/>
group Generates a|<bean id="$ENDS$" parent="Group" p:title=""
group p:instructional Text=""> <property name="items"> <list> </list> </
property> </bean>
hfg Generates a| <bean parent="Horizontal Fiel dGroup" p:label="END"> <property
field group|name="items"'> <list> </list> </property> </bean>
with horizontal
layout
image Generates an|<bean parent="ImageField" p:label="END" p:altText=""
image field p:source=" @#ConfigPropertieq 'krad.externalizable.images.url']"/>
input Generates an|<bean parent="InputField" p:propertyName="END" p:label="">
input field <property name="control"> </property> </bean>
link Generates a link | <bean parent="LinkField" p:linkLabel="END" p:hrefText=""/>
field
mess Generates a| <bean parent="MessageField" p:messageText="END"/>
message field
page Generates aj<bean id="END" parent="Page" p:title=""> <property
page name="items"'> <list> </list> </property> </bean>
prop Inserts a|<property name="END" value=""/>
property tag
rc Generates a|<property name="control"> <bean parent="RadioGroupControl"/>
radio group | </property> <property name="optionsFinder"> <bean class="$END

control

$"/> </property>

287

KRAD

Abbreviation |Description Code
sc Generates a|<property name="control"> <bean parent="SelectControl"/> </
select control | property> <property name="optionsFinder"> <bean class="END"/
> </property>
section Generates a|<bean id="END" parent="GroupSection" p:title=""
section group | p:instructional Text=""> <property name="items'> <list> </list> </
property> </bean>
sstack Generates a|<bean id="END" parent="CollectionGroupSection"
collection group| p:layoutManager.numberOf Columns="" p:title=""
section with|piinstructional Text=""> <property name="collectionObjectClass’
stacked layout |value="$CLASS$"/> <property name="propertyName" value=""/
> <property name="layoutManager.summaryTitle" value="" /[
> <property name="layoutManager.summaryFields' value="" />
<property name="items"> <list> </list> </property> </bean>
stable Generates a|<bean id="$ENDS$" parent="CollectionGroupSectionTablel ayout"
collection group| p:layoutManager.number Of Columns="" p:title=""
section with|piinstructional Text=""> <property name="collectionObjectClass’
table layout value="$CLASS$"/> <property name="propertyName" value=""/>
<property name="layoutM anager.sequencePropertyName" value=""/
> <property name="items"> <list> </list> </property> </bean>
stack Generates a|<bean id="$ENDS" parent="CollectionGroup"
collection group| p:layoutManager.number Of Columns="" p:title=""
with stacked|p:instructional Text=""> <property name="collectionObjectClass’
layout value="$CLASS$"/> <property name="propertyName" value=""/
> <property name="layoutManager.summaryTitle" value="" /
> <property name="layoutManager.summaryFields' value="" />
<property name="items'> <list> </list> </property> </bean>
table Generates al<bean id="END" parent="CollectionGroupTabl el ayout"
collection group| p:layoutManager.numberOf Columns="" p:title=""
with table| p:instructional Text=""> <property name="collectionObjectClass"
layout value="$CLASS$"/> <property name="propertyName" value=""/>
<property name="layoutM anager.sequencePropertyName" value=""/
> <property name="items"> <list> </list> </property> </bean>
tac Generates a text| <bean parent="TextAreaControl" p:rows="END" p:cols=""/>
area control
tc Generates a text| <bean parent="TextControl" p:size="END"/>
control
view Generates a|<bean id="$ENDS$" parent="FormView"> <property name="title"

view

value=""/> <property name="navigation"> <ref bean=""/
> </property> <property = name="items'> <list> </
list> </property> <property name="additional CssFiles"
ref=""/> <property name="additional JsFiles" ref=""/>
<property name="viewHelperServiceClassName® value=""/>
<property name="defaultBindingObjectPath" vaue=""/> <property
name="formClass" value=""/> </bean>

Creating your own Templates

See http://www.jetbrains.com/idea/webhel p/live-templates.html

288

http://www.jetbrains.com/idea/webhelp/live-templates.html

KRAD

Please post back and share!

Converting KNS pages to KRAD

(other? E/R diagrams?, binding paths?, pointer
to javadocs?)

289

Chapter 7. KRMS
KRMS Overview

What is a Rule Management System, in general?

Wikipedia defines a business rule management system, in general, as follows: "a software system used
to define, deploy, execute, monitor and maintain the variety and complexity of decision logic that is used
by operational systems within an organization or enterprise. Thislogic, also referred to as business rules,
includes policies, requirements, and conditional statements that are used to determine the tactical actions
that take place in applications and systems."

A key aspect of arules management system isthat it enables rules to be defined and maintained separately
from application code. This modularity has the potential to reduce application maintenance costs, enable
increased automation and application flexibility, and to enable business analysts and business process
experts who are not devel opers and who reside outside of the I T organizationsin the business departments
themselves, to be more directly involved in creating and managing their rules.

A rules management system in general includes a repository of decision logic and arules engine that can
be executed by applications in a run-time environment. Again from wikipedia: "... provides the ability
to: register, define, classify, and manage all the rules, verify consistency of rules definitions (" Gold-level
customersareeligiblefor free shipping when order quantity > 10" and “ maximum order quantity for Silver-
level customers = 15"), define the relationships between different rules, and relate some of these rulesto
IT applications that are affected or need to enforce one or more of the rules.”

What is Kuali's Rule Management System (KRMS), in
particular?

Kuali's Rule Management System (KRMS) supports the creation, maintenance, storage and retrieval of
business rules and agendas (ordered sets of business rules) within business contexts (e.g., for a particular
department or for a particular university-wide process).

KRMS enables you to define a set of rules within a particular business unit or for a particular set of
applications. These business rulestest for certain conditions and define the set of actions that result when
conditions are met. KRM S enables you to call and use this logic from any application, without having to
re-write and manage all the rules' logic within the application.

Integration with organizational hierarchies and structures can be accomplished today using KEW for
routing and approval, and KEW also has alegacy rule system of its own that can be used to make routing
decisions. But before KRMS, managing general customizable business logic such as "if the transaction
dateisin thefuture OR the transaction date is |lessthan the account activation date then flag the transaction
for review" was the responsibility of the applications themselves. KRM S now offers away to managethis
type of logic externally in a repository that allows for business analysts to change it without having to
modify application code.

Because KRMS is a general-purpose business rules management system, you can use it for many things,
for example, you can define arule to specify that when an account is closed, a continuation account must
be specified. You can also define rules to manage your organizational hierarchies and internal structures.
Y ou can define compound propositional logic, for example, "Must meet":

e P1- 12 credits of FirstYearScience (CLU set)

290

http://en.wikipedia.org/wiki/Computer_software
http://en.wikipedia.org/wiki/Business_rule

KRMS

What

What

AND
* P2 - Completed CALC101 with grade >= B+
AND

* p3- Average of B+ on last 12 credits

problems or functions does KRMS solve?

KRMS gives business applications a powerful tool to externalize logic in places where customization will
often be needed. Thislowers the costs of adopting and administering the application by reducing the need
for changesto the software itself, and alows the application to more fluidly reflect the institution's desired
business processes.

There are awide variety of actionsthat KRMS rules can be used to govern:

» Workflow Action rules - e.g. route an approval request

* Notification rules - e.g. send a notification to these people

 Validation rules - e.g. display this validation error message

* Questionnaire rules - e.g. administer this questionaire

» Custom-devel oped actions

For example, calling a KRMS set of rules (an agenda) from your application can result in routing a
document to a PeopleFlow*, which isanew feature in KEW in Rice 2.0, or to any other action you define

inKRMS.

* Essentialy, it's like amini people-based workflow that doesn't require you to specify a KEW node in
the document type for each role, group or individual who might need to approve or be notified.

problems does KRMS not address?

Some rule engines are built upon specia agorithms that alow for forward or backward chaining (one
example is Rete) that make them suitable for efficiently evaluating highly complex systems of what are
known as production rules. The default engine implementation for KRMS is not designed upon such an
agorithm, and it does not support either forward or backward chaining.

With which types of applications can KRMS integrate?

Can |

Any Rice-based application can use KRMS.

use KRMS without building a Rice application?

The project has aspirations to increase Rice's modularity, and some strides have been made, but at thetime
of thiswriting the answer is no.

291

http://en.wikipedia.org/wiki/Forward_chaining
http://en.wikipedia.org/wiki/Backward_chaining
http://en.wikipedia.org/wiki/Rete_algorithm

KRMS

KRMS Concepts

Namespaces, Contexts, Agendas, Rules and
Propositions

Namespaces are the top level container in KRMS. They contain Contexts, KRMS Types, and &l things
related to Terms. There isn't a namespace entity in the KRMS schema, they are specified via namespace
code fields on the applicable child entities.

Rules in KRMS are placed into ordered sets called Agendas. The order of the Rules in an Agenda
determines the sequencing: which rule gets evaluated first, second and so on. The Agenda also enables
you to include conditiona branching logic between Rules.

Inturn, Agendas are are created in Contexts, which may represent any categories of rulesthat are relevant
within your institution. For example, they will frequently correspond to document types, but they could
be more finely grained to encompass only a certain kind of rule that you might run, e.g. you might
have a context called "Proposal Validations'. In some university environments, the following might be
relevant contexts: Awards, Proposals, IRB reviews, Course co-requisites, Course pre-requisites, Student
plan evaluations, and so on.

Each Context containsits own agendas, and each Agendacontainsits own rules. Rules aren't shared across
agendas (though you can copy/paste, they become unique Rule instances), and Agendas aren't shared
across Contexts. Thereisno Context hierarchy, that is, Agendasand Rules can't beinherited across contexts
within any sort of hierarchy.

292

KRMS

The following diagram outlines the hierarchy of entitiesin KRMS (note that some entities are omitted)
MNamespace

1.* Context

Y ou'll also notethat many of the entitiesin the above diagram are KRM S Types. In most cases (the notable
exception is Context) what that means is that you can develop and integrate custom implementations of
the engine objects associated with those entities. These include:

« Agendas with custom selection and execution code
¢ Actions with custom execution code

¢ Ruleswith custom evaluation and Action triggering code

293

KRMS

 Propositions with custom evaluation code

» Term Resolvers with custom value resolution code
Propositions

Rules consist of propositions, and KRM S supports the following three main types of propositions:

1. Simple Propositions - a proposition of the form lhs op rhs where |hs=left-hand side, rhs=right-hand
side, and op=operator

2. Compound Propositions - a proposition consisting of more than one simple proposition and a boolean
algebra operator (AND, OR) between each of the simple propositions

3. Custom Propositions - a proposition which can optionally be parameterized by some set of values.
Evaluation logic isimplemented "by hand" and returns true or false.

The data model is designed in such away to support each of these.
Next we'll look at each of the proposition tables in detail.
Proposition - krms_prop_t
Every proposition in the repository will have an entry in this table. Propositions are reference by arule or
another proposition (in the case of compound propositions). Propositions are never re-used across multiple

rules.

Hereisasummary of the non-common data elements in this proposition table:

Table 7.1. Non-common data elementsin the proposition table

Column Description

prop_id A generated primary key identifier for the proposition

desc_txt A plain-text description of the proposition

typ_id Defines the PropositionType for the proposition. Defined in the

krms_typ ttable.

dscrm_typ cd | Discriminator type code which definesif the proposition is compound
or simple. Valid valuesare Cand S.

Proposition Parameters - krms_prop_parm_t

Each proposition can have zero or more parameters. The proposition parameter isthe primary dataelement
used to define the proposition. These parameters will be one of the following three types:

1. Constant Vaues
* numbers
* strings
o dates
e efc.

2. Terms

294

KRMS

« dataavailable in the execution environment and/or resolved by aterm resolver
3. Functions

* resolveto avalue

* could themselves take parameters of their own

* typically defined externally to KRMS and then plugged in via a custom term resolver
4. Operators

» oneof aset of built-in "functions’

e Thefull set of (currently) supported operators are as follows:

o <=

To that end, the proposition parameter list should be modeled as alist in Reverse Polish Notation (RPN).
This allows for arbitrary nesting of parameters, which may have parameters of their own. However, this
requiresthat each function explicitly define the number of argumentsthat it expects. Thiswill be specified
when the function is defined, so the proposition system can assumethisisavailable. Thisrequirement does
prohibit the use of functions that have a variable arity since the model currently does not have anyway to
group parameters. So thiswill currently be unsupported.

Examples of proposition parameter lists defined using RPN are as follows:
» [campusCode, "BL", =] equivalent to campusCode="BL"
* [totalDollarAmount, availableAmount, >] equivalent to totalDollarAmount > availableAmount

» [award, getTotalDollarAmountForAward, award, getAvailableAmountForAward, >] equivalent to
getTotal DollarAmount(award) > getAvailableAmountForAward(award)

In the cases above the following are constants:
e "BL"

Thefollowing are terms:

» campusCode

* totalDollarAmount

* availableAmount

» award

295

http://en.wikipedia.org/wiki/Reverse_Polish_notation

KRMS

The following are functions:
 getTotalDollarAmountForAward
 getAvailableAmountForAward
And the following are operators:

« >

Here isa summary of the non-common data elements in this proposition parameter table:

Table 7.2. Non-common data elementsin the proposition parameter table

Column Description

prop_parm_id |A generated primary key identifier for the proposition parameter

prop_id The proposition which this parameter appliesto

parm_val the value of the parameter

pam_typ_cd |Indicates whether the parameter val ue represents a constant, term, or
function. ValidvaluesareC, T, F, O

seq_no Defines the order of the parameter within the larger parameter list.

KRMS Administration Guide

(work in progress - content tdb. The below preface is patterned after the KEW TRG - what will admins
need to administer for KRMS? I've put in some placeholder content-topics for a TOC skeleton.)

Thisguide providesinformation on administering aKuali Rules Management System (KRMS) installation.
Out of the box, KRMS comes with a default setup that works well in development and test environments.
However, when moving to a production environment, this setup requires adjustments. This document
discusses basic administration as well as instructions for working with some of KRMS' administration
toals.

Initial Set up tasks

In this section we cover the types of tasks you'll need to do as a one-time setup at your institute in order
for you and othersto be able to define KRM S agendas for use by applications.

What do | have to install so that people can use KRMS?

What do | have to create or customize so that people can work with
business contexts, agendas, and rules?

Below are the constructs you will need to point to or create for your institute;
* Use existing Namespaces or set up Namespaces for KRMS

» Usean existing Agenda Type service or set up an Agenda Type service for KRMS

296

KRMS

Point to

Point to

Point to

Point to

e Useexisting Typesor set up Typesfor KRMS
» Use existing Contexts or configure new Contexts for KRMS

e Specify Terms

Create Term Resolvers
» Create Parameterized Terms

Below are the instructions for doing these tasks.

or Set up Namespaces

Y ou can use existing Namespaces or set up Namespaces specifically for KRMS (include information on
how to do both of these).

or Set up an Agenda Type service for KRMS

You can use an existing Agenda Type service or set up an Agenda Type service specifically for KRMS
(include information on how to do both of these).

For example, below is a code snippet for setting up the Agenda Type service:
<bean i d="canpusAgendaTypeServi ce"
cl ass="edu. sanpl eu. krms. i npl . CanpusAgendaTypeSer vi ce" >

<property name="configurationService" ref="configurationService"/>
</ bean>

or Set up the Types for KRMS

Y ou can use existing Types or set up Types for KRMS (include information on how to do both of these).

Below isexample SQL Server codeto insert the Typeinto the Agenda Type service -- be sureto replacethe
content of the 2nd parenthetical expressionsin each of the following examples with your defined values:

* First, add the Type(s) itself:

insert into krms_typ_t (typ_id, nm, nmspc_cd, srvc_nm, actv, ver_nbr) values ('T6', 'Campus Agenda’,
'KRMS _TEST', ‘campusAgendaTypeService, 'Y, 1);

» Next, add the campus attribute(s) to the Campus Agenda Type:
insert into krms_attr_defn_t (ATTR_DEFN_ID, NM, NMSPC_CD, LBL, CMPNT_NM, DESC_TXT)
values ('Q9901', 'Campus, 'KRMS TEST", ‘campus labdl’, null, 'the campus which this agenda is valid

for");

insert into krms_typ_attr_t (TYP_ATTR_ID, SEQ_NO, TYP_ID, ATTR_DEFN_ID) values (‘T6A', 1,
'T6', 'Q9901);

or Set up Contexts for KRMS
You can use existing Contexts or configure new Contexts for KRMS. There is graphical user interface

support for configuring a new Context, through a maintenance page. For example, in the Rice demo /
sample application, on the Main menu page, under KRM S Rules, select the Context L ookup.

297

KRMS

KRMS Rules

Maintenance Docs

= Create New Agenda
Lookups

Agenda Lookup
Conbext Lookup
Atkribute Dwefinition Lookup

Term Lookup
Term Specification Lookup

Caktegory Lookup

You can search for existing Contexts or create a new one. To create a new one, select "Create New" at
the top right on the context lookup page:

298

KRMS

| Zuali

rices

Administration KRAD Pmple App :: 2.0.0-b4-5N

|] action list || f) doc search | Logged in U:

Home = Context Lookup

Context Lookup

Context Id: L
Context Name:

Context Namespace: | ==

Context Type: | =

Active?: = Yes Mo Both

[search | clearvalues | cancel |

. A b, A .

Copyright 2005-2009 The Kuali Foundation. All Aghts ra
Partions of Kuali are copyrighted by other parties as described in the Ack

The resulting Context Maintenance screen enables you to define a new Context. The Context ID must
be unique:

299

KRMS

Administration = KRAD Rice Sample App :: 2.

[] action list ||¥] doc search |

Home » Context Maintenanca

Context Maintenance Document Nur
Initiator Metwor

* Documant Ovarview

* Description: | |

Organization Document Number: |:|

Explar

* Id: |

* Name: |

* Mamespacea: .

ik

Type:

* Description:

Active: [/

F Notes and Attachments [0)

300

KRMS

After creating your Context(s), you must 1) set "CampusAgendaType' as valid*, 2) set "Route to
PeopleFlow" action as valid* for them, and 3) make the Type(s) you created valid for your Context(s).
See the following examples, and replace the content of each of the 2nd parenthetical expressions with
your defined values:

* insert into krms_cntxt_vid_agenda t (cntxt_vid _agenda id, cntxt_id, agenda typ_id, ver_nbr) values
(‘agendaid', 'contextid', 'agendatypeid', version#);

e insert into krms cntxt vid actn t (cntxt_vld_actn_id, cntxt id, actn typ id, ver nbr) values
(‘agendaid', 'contextid’, 'agendatypeid', version#);

* insert into krms_cntxt_vid_agenda t (cntxt_vid_agenda id, cntxt_id, agenda typ_id, ver_nbr) values
("agendaid, 'contextid’, 'agendatypeid’, version#);

Specify the Terms for KRMS

Y ou can point to existing terms or specify new terms for KRMS (include information on how to do both
of these).

To specify newTerms, you will probably want to first create term categories. See the following examples,
and replace the content of each of the 2nd parenthetical expressions with your defined values:

» Example - Generic Workflow Properties

* < insert into krms_ctgry_t (ctgry_id, nm, nmspc_cd, ver_nbr) values ('CATO02', "Workflow Document
Properties, 'KR-SAP', '1");

» Example - Travel Account Properties

e o insert into krms ctgry t (ctgry_id, nm, nmspc_cd, ver_nbr) values ('CATO3', 'Travel Account
Properties, 'KR-SAP', '1Y);

And next, you can use existing Termsor configure new Termsfor KRMS. Thereisgraphical user interface
support for configuring a new Term, through a maintenance page. For example, in the Rice demo / sample
application, on the Main menu page, under KRM S Rules, select the Term Specification Lookup and, after
completing that, select the Term Lookup.

KRMS Rules

Maintenance Docs

& Create New Agenda

Lookups

Agenda Lookup
Context Lookup
Attribute Definiticn Loockup

Term Lookup
Term Specification Loeokup

Category Lookup

& B B & & 8

Y ou can search for existing Term Specifications and Terms or create new ones. To create anew one, select
"Create New" at the top right on the term specification lookup page or copy and then modify an existing
one. See example Term Specification Lookup screen below:

301

KRMS

Home »= Tearm Specification Lookup

Term Specification Lookup

1D: [N |

Mamespace:

Mame:
Data Type:

Active?: | ¥Yes /! Mo /= Both

| search || clearvalues || cancel

T, A A

.

|
#

Actions (] . Namespace ¢ MName ;
edit copy TERMOO1 Kuali Rules Test campusCode

edit copy TERMSPEC 001 Kuali Rules Test campusCodeTermSpec
edit copy TERMSPFEC_002 Kuali Rules Test bogusFundTermSpec
edit copy TERMSPEC_003 Kuali Rules Test PO Value

edit copy TERMSPEC_004 Kuali Rules Test PO Item Type

edit copy TERMSPEC_005 Kuali Rules Test Account

edit copy TERMSPEC 006 Kuali Rules Test Occasion

edit copy TERMSPEC 999 Kuali Rules Test campusSize

Showing 1 to & of 8 entries

If you copy an existing term specification, be sure to give it a new and unique name before you change
and save or submit it. Below is a view of the term specification screen showing the types of attributes
you can associate with it.

302

Descrip!

null
null
null
Purchase

value

Furchase
Type
Charged
Account
Special E

Size in #
students
campus

KRMS

* Term Specification

I1D:

MNamespace: | Kuali Rules Test

Name: |campusCodeTermSpec

Data Type: |jE|'.l'a_lE|rg Sfring

nuli

Description:

Active?: [V

Contexts

Look Up/Add Multiple Account Linas: (8
* Context Id 4 = Context Namespace

| | -
@
| CONTEXT1 | || Kuali Rules Test
Ly

il

= Context Mame

Contextl

1k

Showing 1 to 2 of 2 entries

Categories
Look UEI-:A.dd HuniEIa Account Lines: "‘\. .

= ID 4 = Namespace ¢ Mame

| & | =

Showing 1 to 1 of 1 entries

y

o = ™y o Ty o
. submit | | sawe | | blanket approwve

303

KRMS

After creating your term specifications (your categories of terms), you can use the Term Lookup screen to
add or create new terms. See the example Term Lookup screen below:

Figure 7.1. Term Lookup screen example

Home = Tarm Lookup

Term Lookup

ID: L
Mamespace: Kuali Fules Test E
MName:
Data Type:
[search .:I [clear values -I:I " cancel MI:I

Actions ip ¢ ID ¢ MNamespace . Name
edit copy TERM 001 TERMSPEC_0401 Kuali Rules Test campusiCode
edit copy TERM 002 TERMSPEC 002 Kuali Rules Test bogusFundTe
edit copy TERM_003 TERMSPEC_003 Kuali Rules Test B Value
edit copy TERM_004 TERMSPEC_CD4 Kuali Rules Test PO Item Typ
edit copy TERM_005 TERMSPEC_0O5 Kuali Rules Test Account
edit copy TERM 006 TERMSPEC_00& Kuali Rules Test Occasion
edit copy TERM 995 TERMSPEC 999 Kuali Rules Test campusSize

Showing 1 to ¥ of 7 entries

If you copy an existing term, be sureto change the nameto anew and uniqueterm before you save or submit
it. Below isaview of theterm specification screen showing the types of attributesyou can associate with it.

304

KRMS

Figure 7.2. Term specification screen example

* Term Specification

I1D:

MNamespace: | Kuali Rules Test

Name: |campusCodeTermSpec

Data Type: |jE|'.l'a_lE|rg Sfring

nuli

Description:

Active?: [V

Contexts

Look Up/Add Multiple Account Lines: | %
* Context Id 4 = Context Namespace

| | : |
@
| CONTEXT1 | || Kuali Rules Test
Ly

= Context Mame

il

Contextl

1k

Showing 1 to 2 of 2 entries

Categories
Look l.lm'ﬂ.dd HuniEIa Account Lines: 'S .

= ID 4 = Namespace ¢ Mame

| & | =

Showing 1 to 1 of 1 entries

y

o = ™y o Ty o
. submit | | sawe | | blanket approwve

305

Chapter 8. KSB
How to Use the KSB

Introduction

Bean

TheKuali Service Bus (KSB) isalightweight service bus designed to allow devel opersto quickly develop
and deploy services for remote and local consumption. Y ou can deploy services to the bus using Spring
or programmatically. Services must be named when they are deployed to the bus. Services are acquired
from the bus using their name.

At the heart of the KSB is a service registry. This registry is a listing of all services available for
consumption on the bus. The registry provides the bus with the information necessary to achieve load
balancing, failover and more.

Based Services

Typically, KSB programming is centered on exposing Spring-configured beansto other calling code using
anumber of different protocols. Using this paradigm the client devel oper and the organization can rapidly
build and consume services, often a daunting challenge using other buses.

Figure 8.1. Overview of Supported Service Protocols

SOAPWS _

- I
o ry Enl
- Ser
sei
s ColdFusion
SOAP WS Rice Client
(non-Rice i 'en something in registn (non-Rice in == s o
7
v

.
'SOAP WS SOAP WS
P2 p2p

! T~/ Vi

‘ KSB

SOAP WS
oe SOAP WS
p2p

1
'
'

‘ ’

\]

|

. ______soaPws

p2p

Diagram Notes

This drawing is conceptual and not representative of a true deployment architecture. Essentially, the
KSB is aregistry with service calling behavior on the client end (Java client). All policies and behaviors
(Asynchronous as opposed to Synchronous) are coordinated on the client. The client offers some very
attractive messaging features:

» Synchronization of message sending with currently running transaction (meaning all messages sent
during atransaction are ONLY sent if the transaction is successfully committed)

» Failover - If acall to aservice comes back with a 404 (or various other network-related errors), it will
try to call other services of the same name on the bus. Thisis for both sync and async calls.

» Load balancing - Clients will round-robin call services of the same name on the bus. Proxy instances,
however, are bound to single machines if you want to keep a line of communication open to asingle
machine for long periods of time.

306

KSB

e Topicsand Queues

» Persistent messages - When using message persistence a message cannot be lost. It will be persisted
until it is sent.

Details of Supported Service Protocols

Java Rice Client

As Consumer

If configured for the KSB, a Java Rice Client can invoke any service in the KSB Registry using these
protocols:;

1. Synchronously
» SOAP WS p2p using KSB Spring configuration
» Javacall if it iswithin the same VM
* Spring HTTP Remoting

2. Asynchronously

» Messaging Queues — As a Consumer, a Java Rice Client can invoke a one-shot deal for calling a
K SB-registered service asynchronously

» Java, SOAP, Spring HTTP Remoting

» Messaging Topics- AsaConsumer listening to atopic, the Java Rice Client will receive a broadcast
message

As Producer

You can register Spring-defined services in the KSB Registry through the KSB Configurer. Consumers
can call these services as described in other sections.

Any Java Client

As Consumer

A Java Client, regardless of whether or not it's a Rice Client configured for the KSB, can invoke any
web service:

1. AsaSOAP WS p2p using a straight-up WS call through CXF, Axis, etc. If the external web serviceis
not registered on the KSB, the Java client must discover the service on its own.

2. Through Javaif they are within the same JVM

3. Through Spring HTTP Remoting; you must know the endpoint URL of the service.

As Producer

1. Currently, you can't leverage the KSB and its registry for exposing any of its services. It is possible to
bring up the registry and register services without the rest of the KSB.

307

KSB

2. A JavaClient can expose its web services directly using XFire (CXF), Axis, €etc.

3. You can bring up only the registry for discovery. However, the registry can't be a'service;' it can only
be a piece of code talking to a database.

Non-Java/Non-Rice Client

As Consumer

A non-Java/non-Rice Client that knows nothing about the KSB or its registry can only invoke web
services synchronously using:

» SOAP WS p2p using straight-up WS call through native language-specific WS libs

 Discovery cannot be handled by leveraging the KSB Registry at thistime.

As Producer
1. Currently cannot register services on KSB in registry

2. Can till produce services, but they can't be called leveraging the KSB; clients need to discover and
invoke the services directly (on their own).

KSB Registry as a Service

As of the 2.0 version of Rice, the ServiceRegistry is now itself a service. In order to bring the registry
online for the client application, the application needs to configure a URL similar to the following:

<param nanme="rice. ksb.regi stry.serviceU | ">http://|ocal host: 8080/ kr-dev/renoting/s

Currently, this connector is only configured to understand a SOAP interface to the service registry which
is secured by digital signatures. Thisisthe only type of interface to the registry that the standal one server
currently publishes. Additionally, only asingle URL to the registry can be configured at the current time.
If someone wants to do load balancing amongst potential registry endpoints, then a hardware or software
load balancer could be configured to do this.

Configuring the KSB Client in Spring

Overview

TheKuali Service Bus (KSB) isinstalled asaKuali Rice (Rice) Module using Spring. Hereis an example
XML snippet showing how to configure Rice and KSB using Spring:

<beans>

<bean id="coreConfigurer" class="org.kuali.rice.core.inpl.config.nodul e. CoreConf
<property name="dat aSource" ref="riceDataSource${connection.pool.inmpl}" />
<property nane="nonTransacti onal Dat aSour ce" ref="ri ceNonTransacti onal Dat aSour c
<property name="transacti onManager" ref="transacti onManager ${ connecti on. pool .
<property nane="user Transaction" ref="jtaUser Transaction" />

</ bean>

308

KSB

<bean id="ksbConfigurer" class="org. kuali.rice.ksb.nessagi ng. confi g. KSBConfi gure
</ beans>

Spring Property Configuration

The KSBTestHarnessSpring.xml located in the project folder under /ksb/src/test/resources/ is a good
starting place to explore KSB configuration in depth. The first thing the file does is use a
PropertyPlaceholderConfigurer to bring tokensinto the Spring filefor runtime configuration. The source of
the tokens is the xml file: ksb-test-config.xml located in the /ksb/src/test/resourcess META-INF directory.

<bean id="config" class="org.kuali.rice.core.config.spring.ConfigFactoryBean">
<property nane="configlLocations">
<list>
<val ue>cl asspat h: META- | NF/ ksb-t est - confi g. xm </ val ue>
</list>
</ property>
</ bean>

<bean cl ass="org. spri ngfranewor k. beans. fact ory. confi g. Met hodl nvoki ngFact or yBean" >
<property nane="staticMethod" value="org. kuali.rice.core.inpl.config.property.
<property nanme="argunents">
<list>
<ref bean="config"/>
</list>
</ property>
</ bean>

<bean cl ass="org. spri ngfranewor k. beans. factory. confi g. PropertyPl acehol der Confi gure
<property nane="properties" value="#{config.getProperties()}" />
</ bean>

Note

 Properties are passed into the Rice configurer directly. These could be props loaded from
Spring and injected into the bean directly.

* You could use the Rice configuration subsystem for configuration.

e A JTA TransactionManager and UserTransaction are also being injected into the
CoreConfigurer.

As mentioned above, this allows tokens to be used in the Spring file. If you are not familiar with tokens,
they look like thisin the Spring file: ${ datasource.pool.maxSize}

Let'stake alook at the ksh-test-config.xml file:

<confi g>
<par am nane="confi g. | ocati on">cl asspat h: META- | NF/ conmon- der by- connect i on- conf
<par am nane="confi g. | ocati on">cl asspat h: META- | NF/ conmon- confi g-test-1 ocati ons.
<param nane="clientl.|ocation">/var/lib/jenkins/workspace/rice-trunk-rel ease-s
<param nane="client 2.l ocation">/var/lib/jenkins/workspace/rice-trunk-rel ease-s
<par am nane="ksb. cl i ent 1. port ">9913</ par an»
<par am nane="ksb. cl i ent 2. port " >9914</ par an®

309

KSB

<par am
<par am
<par am
<par am
<par am
<par am
<par am
<par am
<par am

name="ksb. t est har ness. port " >9915</ par anp

name="t hr eadPool . si ze" >1</ par anp

nane="t hr eadPool . f et chFr equency” >3000</ par an®
nane="bus. refresh. rat e">3000</ par an>

nane="bam enabl ed" >t r ue</ par an»

name="transacti on. ti neout " >3600</ par an
nane="keystore. al i as">ri ce<par ane

nanme="keyst or e. passwor d" >keyst or epass</ par anp
nane="keystore.file">/var/lib/jenkins/workspace/rice-trunk-rel ease-site

<par am nane="keystore.| ocation">/var/lib/jenkins/workspace/rice-trunk-rel ease-
<par am nane="use. cl ear Dat abaselLi f ecycl e" >t rue</ par ane

<par am nane="use. sql Dat aLoader Li f ecycl e" >t rue</ par ane

<l-- bus nessaging props -->

<par am nane="nmessage. del i very" >synchr onous</ par an»

<par am nanme="nessage. per si st ence" >t r ue</ par an»

<par am nane="useQuart zDat abase" >f al se</ par an®

<param nanme="confi g. | ocati on">${addi ti onal . confi g. | ocati ons} </ par anr

<par am nanme="config.l ocation">${alt.config.|ocation}</paranp

</ config>

Thisisan XML file for configuring key value pairs. When used in conjunction with Spring tokenization
and the PropertyPlaceHolderConfigurer bean, the parameter name must be equal to the key value in the
Spring file so that the properties propagate successfully.

Spring JTA Configuration

When doing persistent messaging it is best practice to use JTA as your transaction manager. This
ensures that the messages you are sending are synchronized with the current executed transaction in your
application. It also allows message persistence to be put in adifferent database than the application’ slogic
if needed. Currently, KSBTestHarnessSpring.xml uses JOTM to configure JTA without an application
server. Bitronix is another JTA product that could be used in Rice and you could consider using it instead
of JOTM. Below is the bean definition for JOTM that you can find in Spring:

<bean id="jotnm class="org.springfranmework.transaction.jta.JotnfFactoryBean">
<property name="defaul t Ti reout" val ue="${transaction.tineout}"/>

</ bean>

<bean i d="dat aSource" class="org. kuali.rice.database. XAPool Dat aSour ce" >
<property nane="transacti onManager" ref="jotnt />
<property name="driverd assNane" val ue="${dat asource. driver.nane}" />
<property name="url" val ue="${datasource.url}" />
<property name="nmaxSi ze" val ue="${dat asour ce. pool . maxSi ze}" />
<property name="m nSi ze" val ue="${dat asour ce. pool . mi nSi ze}" />
<property name="nmaxWai t" val ue="${dat asource. pool . maxWait}" />
<property name="val i dationQuery" val ue="${dat asource. pool . val i dati onQuery}" />
<property name="user nane" val ue="${dat asource. user nane}" />
<property name="password" val ue="${dat asource. password}" />

</ bean>

Bittronix's configuration is similar. Datasources for both ae set up in
org.kuali.rice.core.RiceDataSourceSpringBeans.xml. If using JOTM, use the Rice XAPoolDataSource
class as your data source because it addresses some bugs in the StandardX APoolDataSource, which
extends from this class.

310

KSB

Put JTA and the Rice Config object in the
CoreConfigurer

Next, you must inject the JOTM into the RiceConfigurer:

<bean id="rice" class="org.kuali.rice.core.inpl.config.nodule.CoreConfigurer">
<property nane="dat aSour ce" ref="dataSource" />
<property nane="transacti onManager" ref="jotnt />
<property nane="user Transaction" ref="jotnl" />

<...nore.../>

Configuring JTA from an appserver is no different, except the TransactionManager and UserTransaction
are going to be fetched using a INDI FactoryBean from Spring.

Note

You set the serviceNamespace property in the example above by injecting the name into the
RiceConfigurer. You can do thisinstead of setting the property in the configuration system.

Configuring KSB without JTA

Y ou can configure KSB by injecting a PlatformTransactionManager into the KSBConfigurer.

» Thiseliminates the need for JTA. Behind the scenes, KSB uses Apache's OJB as its Object Relational
Mapping.

» Before you can use PlatformTransactionManager, you must have a client application set up the OJB
so that KSB can useit.

Thisis agood option if you are an OJB shop and you want to continue using your current setup without
introducing JTA into your stack. Normally, when a JTA transaction is found, the message is not sent until
the transaction commits. In this case, the message is sent immediately.

Let's take alook at the KSBTestHarnessNoJtaSporing.xml file. Instead of JTA, the following transaction
and DataSource configuration is declared:

<bean i d="o0j bConfi gurer" class="org. springnodul es. orm oj b. support. Local § bConfi gur

<bean id="transacti onManager" cl ass="org. springnodul es. orm oj b. Persi st enceBr oker Tr
<property nane="j cdAl i as" val ue="dat aSource" />
</ bean>

<bean i d="dat aSource" class="org. springfranmework.jdbc. datasource. DriverManager Dat a
<property nane="driverC assNanme" >
<val ue>${dat asource. dri ver. nane} </ val ue>
</ property>
<property nane="url">
<val ue>${dat asource. url } </ val ue>
</ property>
<property nanme="user nane">
<val ue>${ dat asour ce. user nane} </ val ue>
</ property>

311

KSB

<property nane="password">
<val ue>${ dat asour ce. passwor d} </ val ue>
</ property>
</ bean>

The RiceNoJtaOJB.properties file needs to include the Rice connection factory property value:
Connecti onFact oryd ass=org. kual i . ri ce. core. franewor k. persi stence. oj b. Ri ceDat aSour c

Often, the DataSource is pulled from JNDI using a Spring FactoryBean. Next, we inject the DataSource
and transactionManager (now a Spring PlatformTransactionManager).

<bean id="rice" class="org.kuali.rice.core.inpl.config.nodul e.CoreConfigurer">
<property nane="dat aSour ce" ref="dataSource" />
<property nane="nonTransacti onal Dat aSour ce" ref="dat aSource" />

</ bean

<bean i d="ksbConfigurer" class="org.kuali.rice.ksh. nessagi ng. confi g. KSBConfi gurer"
<property nane="pl at f or nifr ansacti onManager" ref="transacti onManager" />
<... nore .../>

</ bean>

Notice that the transactionManager isinjected into the KSBConfigurer directly. Thisisbecause only KSB,
and not Rice, supportsthistypeof configuration. The DataSourceisinjected normally. When doing this, the
OJB setupisentirely inthe hands of the client application. That doesn't mean anything morethan providing
an OJB.properties object at theroot of the classpath so OJB can load itself. KSB will automatically register
its mappings with OJB, so they don't need to be included in the repository.xml file.

web.xml Configuration

To alow external bus clients to invoke services on the bus-connected node, you must configure the
K SBDispatcherServlet in the web applications web.xml file. For example:

<servl et >
<servl et - nane>r enot i ng</ servl et - nane>
<servl et-cl ass>org. kual i.rice. ksbh. nessagi ng. servl et. KSBDi spat cher Servl et </ serv
<l oad- on- st art up>1</1 oad- on- st artup>

</servlet>

<servl et - mappi ng>
<servl et - nane>r enot i ng</ servl et - nane>
<url-pattern>/renoting/*</url-pattern>
</ servl et - mappi ng>

Thisallowsbus-exposed servicesto be accessed at aURL likehttp://your localip: 8080/myapp/r emoting/
[K SB:service name]. Notice how this URL corresponds to the configured serviceServletUr| property on
the KSBConfigurer.

Configuration Parameters

The service bus leverages the Rice configuration system for its configuration. Here isacomprehensive set
of configuration parameters that you can use to configure the Kuali Service Bus:

312

KSB

Table 8.1. KSB Configuration Parameters

Parameter Required Default Value
bam.enabled Whether Business Action|false
Messaging is enabled
bus.refresh.rate How often the service bus will |60
update the servicesit hasdeployed
in minutes.
dev.mode no fase
message.persistence no true
message.delivery no asynch
message.of f no fase
ksb.mode The mode that KSB will run in;|LOCAL
choices are "loca", "embedded”,
or "remote".
ksb.url The base URL of KSB services|${ application.url}/ksb
and pages.
RouteQueue.maxRetryAttempts |no 5
RouteQueue.timelncrement no 5000
Routing.lmmediateExceptionRouting fase
RouteQueue.maxRetryAttemptsOveaide None
rice.ksb.batch.mode A service bus mode suitable for|false

running batch jobs; it, like the
KSB dev mode, runs only local
services.

rice.ksh.struts.config.files The struts-config.xml | /ksb/WEB-INF/struts-config.xml
configuration file that the KSB
portion of the Rice application

will use.
rice.ksb.web.forceEnable no fase
threadPool .size The size of the KSB thread pool. |5
useQuartzDatabase no true
ksb.org.quartz.* no None
rice.ksh.config.allowSelfSignedSSho fase

dev.mode

Indicates whether this node should export and consume services from the entire service bus. If set to true,
then the machine will not register its services in the global service registry. Instead, it can only consume
services that it has available locally. In addition to this, other nodes on the service bus will not be able to
"see" this node and will therefore not forward any messagesto it.

message.persistence

If true, then messages will be persisted to the datastore. Otherwise, they will only be stored in memory.
If message persistenceis not turned on and the server is shutdown while there are still messages that need

313

KSB

to be sent, those messages will be lost. For a production environment, it is recommended that you set
message.persistence to true.

message.delivery
Can be set to either synchronous or asynchronous. If this is set to synchronous, then messages that are
sent in an asynchronous fashion using the KSB API will instead be sent synchronously. Thisis useful in

certain development and unit testing scenarios. For a production environment, it is recommended that you
set message delivery to asynchronous.

Note

It is strongly recommended that you set message.delivery to asynchronous for al cases except
for when implementing automated tests or short-lived programs that interact with the service bus.

message.off
If set to true, then asynchronous messages will not be sent. In the case that message persistence is turned
on, they will be persisted in the message store and can even be picked up later using the Message Fetcher.

However, if message persistence is turned off, these messages will be lost. This can be useful in certain
debugging or testing scenarios.

RouteQueue.maxRetryAttempts

Setsthe default number of retriesthat will be executed if amessage failsto be sent. Y ou can also customize
thisretry count for a specific service (see Exposing Services on the Bus).

RouteQueue.timelncrement

Sets the default time increment between retry attempts. As with RouteQueue.maxRetryAttempts, you can
also configure this at the service level.

Routing.ImmediateExceptionRouting

If set to true, then messagesthat fail to be sent will not beretried. Instead, their M essageExceptionHandl er
will beinvoked immediately.

RouteQueue.maxRetryAttemptsOverride

If set with anumber, it will temporarily set theretry attemptsfor ALL servicesgoing into exception routing.
You can set the number arbitrarily high to prevent all messages in a node from making it to exception
routing if they are having trouble. The message.off param produces the same result.

useQuartzDatabase

When using the embedded Quartz scheduler started by the KSB, indicates whether that Quartz scheduler
should storeits entries in the database. If thisistrue, then the appropriate Quartz properties should be set
aswell. (See ksh.org.quartz.* below).

ksb.org.quartz.*

Can be used to pass Quartz properties to the embedded Quartz scheduler. See the configuration
documentation on the Quartz site. Essentially, any property prefixed with ksb.org.quartz. will have the
"ksh." portion stripped and will be sent as configuration parameters to the embedded Quartz scheduler.

314

http://www.quartz-scheduler.org/

KSB

rice.ksb.config.allowSelfSignedSSL

If true, then the buswill allow communication using the https protocol between machineswith self-signed
certificates. By default, thisis not permitted and if attempted you will receive an error message like this:

Note

It is best practice to only set thisto 'true' in non-production environments!

rice.ksb.web.forceEnable

publish the KSB user interface components (such as the Message Queue, Thread Pool, Service Registry
screens) even when the ksb.mode is not set to local.

KSBConfigurer Properties

In addition to the configuration parameters that you can specify using the Rice configuration system, the
KSBConfigurer bean itself has some properties that can be injected in order to configure it:

exceptionMessagingScheduler

By default, KSB uses an embedded Quartz scheduler for scheduling the retry of messages that fail to be
sent. If desired, a Quartz scheduler can instead be injected into the KSBConfigurer and it will use that
scheduler instead. See Quartz Scheduling for more detail.

messageDataSource

Specifies the javax.sgl.DataSource to use for storing the asynchronous message queue. If not specified,
this defaults to the DataSource injected into the RiceConfigurer.

If this DataSource is injected, then the registryDataSource must also be injected and vice-versa.
nonTransactionalMessageDataSource

Specifies the javax.sgl.DataSource to use that matches the messageDataSource property. This datasource
instance must not be transactional. If not specified, this defaults to the nonTransactional DataSource
injected into the RiceConfigurer.

registryDataSource

Specifies the javax.sgl.DataSource to use for reading and writing from the Service Registry. If not
specified, this defaults to the DataSource injected into the RiceConfigurer.

If this DataSource is injected, then the messageDataSource must also be injected and vice-versa.
services

Specifies alist of Java service definitions relating to SOAP to use as part of messaging.

KSB Configurer

The application needs to do one more thing to begin publishing services to the bus. Configure the
K SBConfigurer object. This can be done using Spring or programmatically. We'll use Spring because it's
the easiest way to get things configured:

<bean id="jotnm class="org.springframework.transaction.jta.JotnfFactoryBean">

315

KSB

<property name="defaul t Ti meout" val ue="${transaction.tineout}"/>
</ bean>

<bean i d="dat aSource" class=" org.kuali.rice.core.database. XAPool Dat aSource ">
<property nane="transacti onManager" ref="jotnl/>
<property nane="driverC assNanme" val ue="oracle.jdbc.driver.O acleDriver"/>
<property nane="maxSi ze" val ue="25"/>
<property nane="m nSi ze" val ue="2"/>
<property nanme="maxWait" val ue="5000"/>
<property nane="validati onQuery" value="select 1 from dual"/>
<property nane="url" val ue="j dbc: oracl e: thi n: @QOCALHOST: 1521: XE"/ >
<property nane="usernanme" val ue="nyapp"/>
<property nane="password" val ue="password"/>

</ bean>

<bean i d="nonTransacti onal Dat aSour ce" cl ass="org. apache. cormons. dbcp. Basi cDat aSour
<property nane="driverC assNane" val ue="oracle.jdbc.driver.O acleDriver"/>
<property nane="url" val ue="j dbc: oracl e: thi n: @QOCALHOST: 1521: XE"/ >
<property nane="maxActive" val ue="50"/>
<property nane="mnldl e" val ue="7"/>
<property nane="initial Size" value="7"/>
<property nane="validati onQuery" value="select 1 from dual"/>
<property nane="usernane" val ue="nyapp"/>
<property nane="password" val ue="password"/>
<property nane="accessToUnder!|yi ngConnecti onAl | owed" val ue="true"/>

</ bean>

<bean id="coreConfigurer" class="org.kuali.rice.core.inpl.config.ndul e. CoreConfig
<property nane="dat aSour ce" ref="datasource" />
<property nane="nonTransacti onal Dat aSour ce" ref="nonTransacti onal Dat aSource" /
<property nane="transacti onManager"” ref="jotnt />
<property nane="user Transaction" ref="jotni" />

</ bean>

<bean id="ksbConfigurer" class="org. kuali.rice.ksb. nessagi ng. confi g. KSBConfi gurer"

The application is now ready to deploy servicesto the bus. Let's take aquick look at the Spring file above
and what's going on there: The following configures JOTM, which is currently required to run KSB.

<bean id="jotnm class="org.springframework.transaction.jta.JotnFactoryBean" />

Next, we configure the XAPoolDataSource and the non transactional BasicDataSource. This is pretty
much standard data source configuration stuff. The X APoolDataSource is configured through Spring and
not JNDI so it can take advantage of JTOM. Servlet containers, which don't support JTA, require this
configuration step so the datasource will use JTA.

<bean i d="dat aSource" class=" org.kuali.rice.core.database. XAPool Dat aSource ">
<property nane="transacti onManager" ref="jotnl/>
<property nane="driverC assNanme" val ue="oracle.jdbc.driver.O acleDriver"/>
<property nanme="url" val ue="j dbc: oracl e: thi n: @QOCALHOST: 1521: XE"/ >
<property nane="maxSi ze" val ue="25"/>
<property nane="m nSi ze" val ue="2"/>

316

KSB

<property nanme="maxWait" val ue="5000"/>
<property nane="validati onQuery" value="select 1 from dual"/>
<property nane="usernane" val ue="nyapp"/>
<property nane="password" val ue="password"/>
</ bean>

<bean i d="nonTransact i onal Dat aSour ce" cl ass="org. apache. cormmons. dbcp. Basi cDat aSour
<property nane="driverC assNanme" val ue="oracle.jdbc.driver.O acleDriver"/>
<property nane="url" val ue="j dbc: oracl e: t hi n: @QOCALHOST: 1521: XE"/ >
<property nane="maxActive" val ue="50"/>
<property nane="m nldle" val ue="7"/>
<property nane="initial Size" value="7"/>
<property nane="validati onQuery" value="select 1 from dual"/>
<property nane="usernanme" val ue="nyapp"/>
<property nane="password" val ue="password"/>
<property nane="accessToUnder|yi ngConnecti onAl | owed” val ue="true"/>

</ bean>

Next, we configure the bus:

<bean id="rice" class="org.kuali.rice.core.config.CoreConfigurer">
<property nane="dat aSour ce" ref="dataSource" />
<property name="nonTransacti onal Dat aSour ce" ref="nonTransacti onal Dat aSource" /
<property nane="transacti onManager" ref="jotnt />
<property nane="user Transaction" ref="jotnl" />
</ bean>

<bean id="ksbConfigurer" class="org.kuali.rice.ksh.nessagi ng. confi g. KSBConfi gurer"
<property nane="regi stryDat aSource" ref="dataSource" />
<property nane="banDat aSour ce" ref="dataSource" />
<property nane="nessageDat aSource" ref="dataSource" />
<property name="nonTransacti onal MessageDat aSource" ref="nonTransacti onal Dat aSo
</ bean>

We are injecting JOTM, and the datasources. The injection of the KSBConfigurer class into the
ksbConfigurer property tells this instance of Rice to start the Service Bus. The final necessary step is
making sure the configuration parameter ‘application.id' is set properly to some value that will identify all
services deployed from this node as a member of this node.

At this point, the application is configured to use the bus, both for publishing services and to send
messages to services. Usually, applications will publish services on the bus using the KSBConfigurer or
the SoapServiceExporter classes. See Acquiring and invoking services for more detail.

Implications of “synchronous” vs. “asynchronous” Message
Delivery

Asnoted in Configuration Parameters, it ispossibleto configure message delivery to run asynchronously or
synchronoudly. It isimported to understand that asynchronous messing should be used in almost all cases.

Asynchronous messing will result in messages being sent in a separate thread after the original transaction
that requested the message to be sent is committed. Thisisthe appropriate behavior in a“fire-and-forget”
messaging model. The option to configure message deliver as synchronous was added for two reasons:

1. To allow for the implementation of automated unit tests which could perform various tests without
having to right “polling” code to wait for asynchronous messing to complete.

317

KSB

2. For short-lived programs (such as batch programs) which need to send messages. This allows for a
guarantee that all messages will be sent prior to the application being terminated.

The second case isthe only case where synchronous messaging should be used in aproduction setting, and
even then it should be used with care. Synchronous message processing in Rice currently hasthefollowing
major differences from asynchronous messaging that need to be understood:

1. Order of Execution

2. Exception Handling

Order of Execution

In asynchronous messaging, messages are queued up until the end of the transaction, and then sent after
the transaction is committed (technically, they are sent when the transaction is committed).

In synchronous messaging, messages are processed immediately when they are “sent”. Thisresultsin a
different ordering of execution when using these two different messaging models.

Exception Handling

In asynchronous messaging, whenever there is a failure processing a message, an exception handler is
invoked. Recovery from such failures can include resending the message multiple times, or recording and
handling the error in some other way. Since al of this is happening after the origina transaction was
committed, it does not affect the original processing which invoked the sending of the message.

With synchronous messaging, since the message processing is invoked immediately and the calling code
blocks until the processing is complete, any errors raised during messaging will be thrown back up to
the calling code. This means that if you are writing something like a batch program which relies on
synchronous messaging, you must be aware of this and add code to handle any errorsif you want to deal
with them gracefully.

Another implication of this is that message exception handlers will not be invoked in this case.
Additionally, because an exception is being thrown, thiswill typically trigger arollback in any transaction
that the calling code is running. So transactional issues must be dealt with as well. For example, if the
failure of a single message shouldn’t cause the sending of all messages in a batch job to fail, then each
message will need to be sent in it’s own transaction, and errors handled appropriately.

Configuring Quartz for KSB
Quartz Scheduling

The Kuali Service Bus (K SB) uses Quartz to schedule delayed tasks, including retry attempts for messages
that cannot be sent thefirst time. By default, KSB usesan embedded quartz schedul er that can be configured
by passing parameters starting with “ksh.org.quartz.” into the Rice configuration.

If the application is already running a quartz scheduler, you can inject a custom quartz scheduler using
code like this:

<bean cl ass="org. kuali.rice. ksb. messagi ng. confi g. KSBConfi gurer" >

<property nane="excepti onMessagi ngSchedul er" >
<bean cl ass="org. spri ngframework. schedul i ng. quartz. Schedul er Fact or yBean" >
</ bean>

</ property>

318

KSB

</ bean>

When you do this, KSB will not create an embedded scheduler but will instead use the one provided.

Acquiring and Invoking Services Deployed on
KSB

Service invocation overview

1. Acquired and called directly
» Automatic Failover
* No Persistence
* Direct cal - Request/Response
2. Acquired and called through the MessageHel per
* Automatic Failover
» Message Persistence
» KSB Exception Messaging
* Callback Mechanisms

In the examples below, notice that the client codeisunawar e of the protocol with which theunderlying
serviceisdeployed. Given aconnector for agiven protocol and acompatible service definition, you could
move a service to different protocols as access needs change without affecting dependent client code.

Acquiring and invoking a service directly

The easiest way to call a service isto grab it and invoke it directly. This uses a direct request/response
pattern and what you see is what you get. You will wait for the processing the call takes on the other
side plus the cost of the remote connection time. Any exceptions thrown will come across the wirein a
protocol-acceptable way.

This code acquires a SOAP-based service and callsiit:

Nane servi ceNane = new QNane("t est NameSpace", "soap-repeat Topic");

SOAPSer vi ce soapService = (SOAPServi ce) d obal ResourcelLoader. get Servi ce(servi ceNan

soapServi ce. doTheThi ng("hel | 0");

The SOAPService interface needs to be in the client classpath and bindable to the WSDL. The easiest
way to achieve thisin Javais to create a bean that is exported as a SOAP service. Thisisthe server-side
service declaration in a Spring file:

<bean i d="ksbConfigurer" class="org. kuali.rice.ksb. nessagi ng. confi g. KSBConfi gurer"

<property nane="services">
<list>

<bean cl ass="org. kuali.rice.ksb. api . bus. support. SoapServi ceDefinition">

<property nane="service">

319

KSB

<ref bean="soapService" />
</ property>
<property nane="|ocal Servi ceNane" val ue="soap-repeat Topi c" />
<property nane="servi ceNaneSpaceURl " val ue="t est NameSpace" />
<property nanme="priority" value="3" />
<property nane="queue" val ue="fal se" />
<property nane="retryAttenpts" value="1" />

</ bean>
</list>
</ property>

</ bean>

This declaration exposes the bean soapService on the bus as a SOAP available service. The Web Service
Definition Language is available at the serviceServletUrl + serviceNameSpaceURI + loca ServiceName
+ 2wsdl.

This next code snippet acquires and calls a Java base service:

EchoServi ce echoServi ce = (EchoServi ce)d obal Resour ceLoader . get Servi ce(new QNane("
String echoVal ue = "echoVal ue";
String result = echoService. echo(echoVal ue);

Again, theinterface is al that is required to make the call. Thisis the server-side service declaration that
deploys a bean using Spring’ s Httplnvoker as the underlying transport:

<bean id="ksbConfigurer" class="org.kuali.rice.ksh. nessagi ng. confi g. KSBConfi gurer"

<property nane="services">
<list>
<bean cl ass="org. kuali.rice. ksb. api . bus. support. SoapServi ceDefinition">
<property nane="service" ref="echoService" />
<property nane="servicelnterface" val ue="org. kuali.rice.ksb. messagi ng.
<property nane="|ocal Servi ceNane" val ue="soap-echoService" />
<property nane="busSecurity" val ue="fal se"></property>

</ bean>
</list>
</ property>

</ bean>

Below is a description of each property on the ServiceDefinition (JavaServiceDefinition and
SOAPServiceDefinition):

Table 8.2. Properties of the ServiceDefinition

property required default description

busSecurity no yes For Javarbased services,
(JavaServiceDefinition), |message is digitally
no signed before calling

(SOAPServiceDefinition) the service and verified
a the node hosting
the service. For SOAP
services, WSSAJ s
used to digitaly sign
the SOAP request/

320

KSB

property

required

default

description

response in accordance
with the WS Security
specification. More info
on Bus Security here.

local ServiceName

yes

none

The local name of the
QNamethat makesup the
complete service name.

messageExceptionHandl

mo

DefaultM essageExceptio

nNamaier of the
M essageExceptionHandl er
that is called when
a service cal fails
This is called after
the retryAttempts or
millisToLive policy of
the service or Node has
been met.

millisToLive

no

none

Used instead of
retryAttempts. Only
considered in case of
error when invoking
service. Defines how
long the message
should continue to be
tried before being put
into KSB Exception

Messaging.

priority

no

Only applies when
asynchronous messaging
is enabled. The lower
the priority is, the sooner
the message will be
executed. For example,
if 100 priority 10
messages are waiting for
invocation and a priority
5 message is sent, the
priority 5 message will
be executed first.

queue

no

true

If true, the service will
behave like a queue in
that there is only one
real service cal when a
message is sent.

If false, the service will
behave like a topic.
All beans bound to the
service name will be

sent a message when a

321

KSB

property

required

default

description

message is sent to the
service.

Use queues for
operations you only want
to happen once (for
example, to route a
document). Use topics
for notifications across a
cluster (for example, to
invalidate cache entry).

retryAttempts

no

Determines the number
of times a service can
be invoked before being
put into KSB Exception
Messaging (the error
state)

service

yes

none

The bean to be exposed
for invocation on the bus

serviceEndPoint

no

serviceServletUrl +
serviceName

This can be explicitly
st to create an
aternate service end
point, different from the
onethe bus automatically
creates.

serviceName

yes

serviceNameSpaceURI
+ local ServiceName

If local ServiceName and
serviceNameSpaceURI
are omitted, the QName
of the service. This can
be used instead of the
localServiceName and
serviceNameSpaceURI
convenience methods.

serviceNameSpaceURI

no

messageEntity property
or message.entity config
param is used

The namespaceURI of
the QName that makes
up the complete service
name. If set to " (blank
string) the property
is NOT included in
the construction of the
QName representing the
service and the service
name will just be the
local ServiceName with
No namespace.

Acquiring and invoking a service using messaging

To make acall to a service through messaging, acquire the service by its name using the M essageHel per:

QNane servi ceNane

= new QNane("test AppsShar edQueue”,

"shar edQueue");

322

KSB

KEWsanpl eJavaSer vi ce t estJavaAsyncServi ce = (KEWsanpl eJavaServi ce) KsbApi Servi celLo
At this point, the testJavaA syncService can be called like a normal JavaBean:
t est JavaAsyncServi ce. i nvoke(new O i ent AppSer vi ceShar edPayl oadObj (" nessage content"

Because this is a queue, a single message is sent to one of the beans bound to the service name
new QName("testAppsSharedQueue”, "sharedQueue”). That 'message’ is the call 'invoke' and it takes a
ClientAppServiceSharedPayloadObj. Typically, messaging is done asynchronously. Messages are sent
when the currently running JTA transaction is committed - that is, the messaging layer automatically
synchronizeswith the current transaction. So, using JTA, even though the aboveis coded in linewith code,
invocation is normally delayed until the transaction surrounding the logic at runtime is committed.

When not using JTA, the message is sent asynchronously (by a different thread of execution), but it's sent
ASAP.

To review, the requirements to use a service that is exposed to the bus on a different machine are:
1. The service name
2. Theinterface to which to cast the returned service proxy object

3. The ExceptionM essageHandler required by the service in case invocation fails

Note

Typically, service providers give clients a JAR with this content or organizations maintain aJAR
with this content.

To complete the example: Below is the Spring configuration used to expose this service to the bus. This
is taken from the file TestClient1SpringBeans.xml:

<l-- bean declaration -->
<bean id="sharedQueue" cl ass=

org. kuali.rice.ksb.testclientl.dientApplSharedQueu
<bean id="ksbConfigurer" class="org.kuali.rice.ksh. nessagi ng. confi g. KSBConfi gurer"

<property nane="services">
<list>
<bean cl ass=" org. kuali.rice.ksb. messagi ng. JavaServi ceDefinition">
<property nane="service" ref="sharedQueue" />
<property nane="|ocal Servi ceNane" val ue="sharedQueue" />
<property nane="servi ceNaneSpaceURl " val ue="t est AppsShar edQueue" />

</ bean>
<... nore .../>
</list>
</ property>

</ bean>

Thisis located in the Spring file of the application exposing the service (in other words, the location in
which the actual invocation will occur). The client does not need a Spring configuration to invoke the
service.

There are two messaging call paradigms, called Topics and Queues. When any number of services is
declared a Topic, then those services are invoked at least once or multiple times. If any number of services
is declared a Queue, then one and only one service name will be invoked.

323

KSB

Getting responses from service calls made with
messaging

You can use Callback objects to get responses from service calls made using messaging. Acquiring a
service for use with a Callback:

Nane serviceNane = new QNanme("Testd 1", "testXm AsyncService");
Si npl eCal | back cal | back = new Si npl eCal | back();
KSBXM.Ser vi ce test Xm AsyncServi ce = (KSBXM.Servi ce) KsbApi Servi celLocat or. get Messag

t est Xm AsyncServi ce. i nvoke(" nmessage content");

When the service is invoked asynchronously, the AsynchronousCallback object's (the SimpleCallback
class above) callback method is called.

When message persistence is turned on, this object is serialized with any method call made through the
messaging API. Take into consideration that this object (and the result of a method call) may survive
machine restart and therefore it’s recommended that you NOT depend on certain transient in-memory
resources.

Failover

Service call failover

Failover works the same whether making direct service calls or using messaging.

Services exported to the bus have automatic failover from the client’ s perspective. For example, if service
A isdeployed on machines 1 and 2 and a client happensto get a proxy that pointsto machine 1 but machine
1 crashes, the KSB will automatically detect that the exception isaresult of some network issue and direct
the call to machine 2. KSB then removes machine 1 from the registry so new clients to the bus don't try to
acquire the service. When machine 1 returns to the network it will register itself with the service registry
and therefore the bus.

When a message calls a service, the failover rules determine which service KSB assigns (topic or queue)
to the message.

Failover with queues
Because queues require only one call between all beans bound to the queue, if asingle call to aqueuefails,
failover to the next bean occurs. If successful, the call is done. If it is not successful, it continues until a

suitable bean is found. If none is found, the message is marked for retry later. Eventually, the message
either goes to KSB exception messaging or successfully completes.

Failover with topics

If amachinein atopic isunavailable, afailed cal to that machine will continue to be retried until that call
is successful or that call goesinto KSB exception messaging.

KSB Exception Messaging

Exception Messaging is the set of services and configuration options that handle messages that cannot
be delivered successfully. Exception Messaging is primarily used by configuring your service using

324

KSB

KSB

the properties outlined in KSB Module Configuration. When services are configured to use message
persistence and there is a problem invoking a service, the persisted message or service call is relied upon
to make another call to that service until the cal is either:

1. Successful
2. Certain configuration policies have been met and the message goes into the Exception state

The Exception state means that KSB can't doing anything more with this message. The message will not
invoke properly. That generally means that some sort of technical intervention is required by both the
consumer and the provider of the service to determine what the problemis.

All Exception behavior is configurable at the service level by setting the name of the class to be used as
M essageExceptionHandler. This class determines what to do when a client of a service cannot invoke a
message. The DefaultM essageExceptionHandler is enough to meet most regquirements.

When a message is put into the Exception state, KSB puts it back into the message store and marks it
with a status of 'E'. At that point, it is up to the person responsible for monitoring this node on the bus to
determine what to do with the message.

Because the node exposing the service configures the MessageExceptionHandler, any clients depending
on the service need that M essageExceptionHandler and any dependent code and configuration.

Messaging Paradigms

KSB supports two types of messaging paradigms; Queues and Topics, and the differences are explained
below. These are very similar to JMS messaging concepts. An open source solution was not used for
K SB messaging because an open source JM S provider wasn't found that provided JTA synchronization,
discovery, failover, and load balancing. Many claim such features, but when put to the test in real world
scenarios (i.e., machines going down and coming back up, databases failing, network connectivity issues);
none managed to reliably deliver messages.

The advantage here is that we can apply these messaging concepts to any support protocol with which
we can communicate.

Queues

When any number of services is bound to a queue and a method is invoked, one and only one service
gets the invocation.

Topics

When any number of services is bound to a topic and a method is invoked, all services are invoked AT
LEAST once or multiple times.

Message Fetcher

org.kuali.rice.ksh.messaging.MessageFetcher is a Runnable that needs to be configured by the client
application to retrieve stored messages from the database that weren’ t processed when the node went down.
This can happen for many reasons. The machine can be under load and just crash.

When message persistence is enabled, a service that fails or throws an Exception stores preprocessed
messages in the database until they can be resent. This makes certain that a crash or emergency restart of
your machine will not result in message |oss.

325

KSB

TheK SB doesnot automatically fetch all these messagesand attempt to invokethem when it starts, because
often the KSB is started when the services the messages are bound for are not yet started. For now, you
need to decide when to call the run method on the M essageFetcher. Becauseit'sa Runnable, you could also
put the MessageFetcher in the KSBThreadPool that is available on the KSBServicel ocator. You could
wrapitinaTimerTask, etc. All that isrequired isthis:

new MessageFet cher ((Integer) null).run()

Unfortunately, the cast to Integer is required. The MessageFetcher also has a constructor that takes along
variable as a parameter. This can be used to pull any message in the message store and put it in memory
for invocation. Integer is afetch size; null meansal.

Load Balancing

Load balancing between service callsis automatic. If there are multiple nodes that expose services of the
same name, clients will randomly acquire proxies to each endpoint bound to that name.

Object Remoting

Asof Rice 2.0, Object remoting support has been removed.

Publishing Services to KSB

You can publish Services on the service bus either by configuring them directly in the application's
K SBConfigurer moduledefinition, or by using the PropertyConditional ServiceBusExporter bean. In either
case, a ServiceDefinition is provided that specifies various bus settings and the target Spring bean.

KSBConfigurer

A service can be exposed by explicitly registering it with the KSBConfigurer module, services property:

<bean cl ass="org. kual i.rice. ksb. messagi ng. confi g. KSBConfi gurer">
<property name="serviceServletUl" val ue="${base url}/ MYAPP/renoting/" />

<property nane="services">
<list>
<bean cl ass="org. kual i.rice.ksb. api . bus. support. SoapServi ceDefinition">
<property nane="service">
<ref bean="nySoapService" />
</ property>
<property nane="servicel nterface"><val ue>org. nyapp. servi ces. MySOAPSe
<property nane="|ocal Servi ceNane" val ue="nyExposedSoapServi ce" />
</ bean>
<bean cl ass="org. kuali.rice.ksb. api . bus. support. JavaServi ceDefinition">
<property nane="service">
<ref bean="nyJavaService" />
</ property>
<property nane="servicelnterface">
<val ue>or g. myapp. servi ces. MyJavaSer vi ce</ val ue></ property>
<property nane="|ocal Servi ceNane" val ue="nyExposedJavaService" />
</ bean>

326

KSB

Service Exporter

You can aso publish Services in any context using the ServiceBusExporter (or
PropertyConditional ServiceBusExporter) bean. Note that KSBConfigurer must also be defined in your
RiceConfigurer.

<bean i d="nyapp. servi ceBus"
class="org. kuali.rice. krad. confi g. d obal Resour ceLoader Ser vi ceFact or yBean" >
<property nane="servi ceNane" val ue="rice. ksb. servi ceBus"/>
</ bean>

<bean i d="myAppServi ceExporter"
class="org. kuali.rice. ksb. api . bus. support. Servi ceBusExporter"
abstract="true">
<property nane="serviceBus" ref="nyapp. serviceBus"/>
</ bean>

<bean i d="nyJavaServi ce. exporter" parent="nmyAppServi ceExporter">
<property nane="serviceDefinition">
<bean cl ass="org. kuali.rice. ksb. api . bus. support.JavaServi ceDefinition">
<property name="service">
<ref bean="nyJavaService" />
</ property>
<property name="servicelnterface">
<val ue>or g. nyapp. servi ces. MyJavaSer vi ce</ val ue>
</ property>
<property nane="|ocal Servi ceNane" val ue="nyExposedJavaService" />
</ bean>
</ property>
</ bean>

<bean i d="nySoapServi ce. exporter" parent="nmyAppServi ceExporter">
<property nane="serviceDefinition">
<bean cl ass="org. kuali.rice. ksb. api . bus. support. SoapServi ceDefinition">
<property name="service">
<ref bean="nmySoapService" />
</ property>
<property name="servicelnterface">
<val ue>or g. nyapp. servi ces. MySOAPSer vi ce</ val ue>
</ property>
<property nane="|ocal Servi ceNane" val ue="nyExposedSoapServi ce" />
</ bean>
</ property>

</ bean>

CallbackServiceExporter

The term "Callback Service" refers to services that client applications write and configure and which are
used by various modules of Rice including KIM, KEW, and KRMS. Because of the naming convention
on these, they are often referred to as "Type Services'. These include:

* KIM

327

KSB

RoleTypeService

* PermissionTypeService

GroupTypeService
e etc.

« KRMS
e ActionTypeService
« PropositionTypeService
e AgendaTypeService
s etc.

« KEW
 PeopleFlowTypeService

These are typically called back into from the Rice Standalone Server when needing information for
rendering of various components in the server-side user interface. Additionally, in some cases they can
also be used to provide custom processing hooks for different components of the various Kuali Rice
frameworks.

Version Compatibility for Callback Services

Callback services (like all servicesin Rice) can be evolved over time and across versions. This means that
new functionality might be added to them. Since the Rice Standalone Server interacts with these services
remotely, it really needs to know what version of a particular callback service that the client application
is running. They also must be published as the appropriate type of service endpoint that the standalone
server knows how to talk to (i.e. SOAP instead of Java Serialization). Thankfully, the KSB serviceregistry
can store metadata about a service which includes the service version. However, in order to for this to
work properly the client application must be sure they publish the service with a version that matches the
version of Rice they are using.

In order to make this easier on client applications, a helper has been implemented which can be used for
this purposein Rice.

Callback Service Exporter Helper

There is a helper «class which can be wused by client applications to
export these callback services onto the Kuai Service Bus. The «class s
org. kual i .rice. ksh. api . bus. support. Cal | backServi ceExporter. This is a class
which can be wired up inside of a Spring context in order to publish a callback service to the KSB with
the appropriate Rice version. The version of Rice is packaged up into the Rice jarsinside of afile called
common-config-defaults.xml and it uses the version that matches the version of Rice in the POM when
the jar was packaged.

Typical configuration might look like the following:

<bean i d="sanpl eAppPeopl eFl owTypeSer vi ce. exporter"

328

KSB

cl ass="org. kual i.rice. ksbh. api . bus. support. Cal | backServi ceExporter™
p: servi ceBus-ref="rice. ksh. servi ceBus"
p: cal | backServi ce-ref =" sanpl eAppPeopl eFl owTypeSer vi ce"

p: servi ceNameSpaceURI ="http://rice. kuali.org/sanpl e-app"

p: | ocal Servi ceName="sanpl eAppPeopl eFl owTypeSer vi ce"

p: servicel nterface="org. kuali.rice. kew. framework. peopl ef | ow. Peopl eFl owTypeSe

The javadocs for Cal | backSer vi ceExpor t er provide more detail on the options for publishing of

callback services.

ServiceDefinition properties

ServiceDefinitions define how the service is published to the KSB. Currently KSB supports three types of
services: Java RPC (via serialization over HTTP), SOAP, and IMS.

Basic parameters

All service definitions support these properties:

Table 8.3. ServiceDefinition Properties

Property Description Required
Service The reference to the target service|yes
bean
local ServiceName The "local" part of the service|yes
name; together with a namespace
this forms a qualified name, or
QName
serviceNameSpaceURI The "namespace" part of the/Not required; if omitted, the

service name; together with a
local name forms a qualified
name, or QName

Core.currentContextConfig().getM essageEntity()
is used when exporting the service

serviceEndpoint

URL at which the service can be
invoked by aremote call

Not required; defaults to
the serviceServletUrl parameter
defined in the Rice config

retryAttempts

Number of attempts to retry the
service invocation on failure; for
services with side-effects you are
advised to omit this property

Not required; defaultsto O

millisToLive

Number of milliseconds the call
should persist before resulting in
failure

Not required; defaults to no limit
(-1

Priority

Priority

Not required; defaultsto 5

M essageExceptionHandler

Reference to a
MessageExceptionHandler that
should be invoked in case of
exception

Not required; default
implementation handles retries
and timeouts

busSecurity

Whether to enable bus security for
the service

Not required; defaultsto ON

329

KSB

ServiceNameSpaceURI/MessageEntity

ServiceNameSpaceURI is the same as the Message Entity that composes the qualified name under which
the service is exposed. When omitted, this namespace defaults to the message entity configured for Rice
(e.g., inthe RiceConfigurer), thereby qualifying the local name. Note: Although thisimplicit qualification
occurs during export, you must always specify an explicit message entity when acquiring a resource, for
example:

d obal Resour ceLoader . get Servi ce(new QNanme(" MYAPP", "myExposedSoapServi ce"))

SOAPServiceDefinition

Table 8.4. SOAPServiceDefinition

Property ‘ Description Required
servicelnterface The interface to expose and from|Not required; if omitted the first
which to generate the WSDL interfaceimplemented by theclass
isused

JavaServiceDefinition

Table 8.5. JavaServiceDefinition

Property Description Required

servicelnterface Theinterface to expose Not required; if omitted,
all application-layer interfaces
implemented by the class are
exposed

servicel nterfaces A list of interfaces to expose Not required; if omitted,
all application-layer interfaces
implemented by the class are
exposed

Publishing Rice services

We show how you can "import" Rice services into the client Spring application context in Configuring
KSB Client in Spring. Using this technique, you can also publish Rice services on the KSB:

<I-- import a Rice service fromthe ResourcelLoader stack -->

<bean i d="nyapp. aRi ceService" class="org. kuali.rice.krad.config.d obal Resour celLoad
<property nane="servi ceNane" val ue="aRi ceService"/>

</ bean

<I-- if Rice does not publish this service on the bus, one can explicitly publish
<bean i d="myAppServi ceExporter”
cl ass="org. kual i.rice. ksbh. api . bus. support. Servi ceBusExporter"
abstract="true">
<property nane="servi ceBus" ref="nyapp. servi ceBus"/>
</ bean>

330

KSB

<bean id="nyJavaServi ce. exporter" parent="nyAppServi ceExporter">
<property name="servi ceDefinition">
<bean cl ass="org. kuali.rice. ksb. api . bus. support.JavaServi ceDefinition">
<property name="service">
<ref bean="aRi ceService" />
</ property>
<property name="servi celnterface" value="org.kuali.rice...Sonmelnterfac
<property name="1|ocal Servi ceNane" val ue="aPubl i shedRi ceService" />
</ bean>
</ property>
</ bean>

Warning

Not all Rice services areintended for public use. Do not arbitrarily expose them on the bus

The ResourceLoader Stack

Overview

Riceis composed of a set of modules that provide distinct functionality and expose various services.

» Services in Rice are accessible by the Resourcel ocader, which can be thought of as analogous to
Spring's BeanFactory interface. (In fact, Rice modules themselves back Resourcel oaders with Spring
bean factories.)

 Services can be acquired by name. (Rice adds several additional concepts, including qualification of
service names by namespaces.)

» When the RiceConfigurer is instantiated, it constructs a GlobalResourcel oader that is composed of
an initial RootResourcel.oader (which may be provided by the application via the RiceConfigurer), as
well as resource loaders supplied by each module:

Figure 8.2. Global Resource L oader

GlabiRetgurteloader

— T | g

331

KSB

The GlobalResour cel. oader isthe top-level entry point through which all application code should go to
obtain services. The getService call will iterate through each registered Resourcel. oader, looking for the
service of the specified name. If the service is found, it is returned, but if it is not found, ultimately the
call will reach the RemoteResour cel. oader. The Root Resourcel oader is registered by the KSB module
that exposes services that have been registered on the bus.

Accessing and overriding Rice services and beans from
Spring

ResourceLoaderFactoryBean

In addition to programmatically acquiring service references, you can also import Rice services into a
Spring context with the help of the GlobalResour cel oader Ser viceFactoryBean:

This bean is bean-name-aware and will produce a bean of the same name obtained from Rice's resource
loader stack. The bean can then be wired in Spring like any other bean.

Installing an application root resource loader

Applications can install their own root Resourcel oader to override beans defined by Rice. To do so,
inject a bean that implements the Resourcel oader interface into the RiceConfigurer rootResourcel oader
property. For example:

<!-- a Rice bean we want to override in our application -->
<bean i d="overriddenRi ceBean" cl ass="ny. app. package. M\/Ri ceServi cel mpl "/ >

<!-- supplies services fromthis Spring context -->
<bean i d="appResourcelLoader" cl ass="org.kuali.rice.core.inpl.resourcel oader. Spring
<bean id="coreConfigurer" class="org.kuali.rice.core.inpl.config.nodule.CoreConfig
<property nane="dat aSour ce" ref="standal oneDat aSource" />
<property nane="transacti onManager" ref="atom kosTransacti onManager" />
<property nane="user Transaction" ref="atoni kosUser Transaction" />
<property nane="r oot ResourceLoader" ref="appResourcelLoader"/>
</ bean>

Warning
Application Resour cel oader and Circular Dependencies

Be careful when mixing registration of an application root resourceloader and lookup of Rice
services through the Global Resourcel oader. If you are using an application resourcel oader to
override a Rice bean, but one of your application beans requires that bean to be injected during
startup, you may create acircular dependency. In this case, you will either have to make sure you
are not unintentionally exposing application beans (which may not yet have been fully initialized
by Spring) in the application resourceloader, or you will have to arrange for the GRL lookup
to occur lazily, after Spring initialization has completed (either programmatically or through a

proxy).
Overriding Rice services: Alternate method

A Rice-enabled webapp (including the Rice Standalone distribution) contains a multiple module
configurers, typicaly defined in an xml Spring context file. These load the Rice modules. Each module

332

KSB

hasits own Resourceloader, which istypically backed by an XML Spring context file. Overriding and/or
setting global beans and/or services (such as data sources and transaction managers) is done as described
above. However, because in each module services can be injected into each other, overriding module
services involves overriding the respective modul€' s Spring context file.

The cleanest way to do thisisto set the rice.* .addtional SpringFiles to an accessible spring beans file that
overrides one or more spring beansin the existing modul€'s context. Each rice modul e has a corresponding
configuration parameter that can be pointed to afile that will override any existing services.

<param nane="ri ce. kew. addi ti onal Spri ngFi | es">cl asspat h: myapp/ confi g/ MyAppKewOverr i
<param nane="ri ce. ksb. addi ti onal Spri ngFi | es">cl asspat h: myapp/ confi g/ My/AppKsbOQverri
<param nane="ri ce. krns. addi ti onal Spri ngFi | es" >cl asspat h: nyapp/ confi g/ MyAppKr msQver

<param nane="ri ce. ki m addi ti onal Spri ngFi | es">cl asspat h: myapp/ confi g/ MyAppKi nDverri

<?xm version="1.0" encodi ng="UTF-8"?>

<I DOCTYPE beans PUBLIC "-//SPRI NG /DTD BEAN /EN' "http://ww. springframework. org/d
<l-- override of KNS encryption service -->

<beans>

<l-- override encryption services -->

<bean id="encryptionService" class="edu. ny.school . myapp. service.inpl.MEncrypt
<property name="ci pher Al gorithn val ue="${encryption. ci pherA g}"/>
<property name="keyAl gorithni val ue="${encryption. keyAl g}"/>
<property name="key" val ue="${encryption. key}"/>
<property nane="enabl ed" val ue="${encryption. busEncryption}"/>

</ bean>

</ beans>

KSB Security -- STILL NEEDS TO BE
REVIEWED!!!!

Overview

Acegi handles the security layer for KSB. Acegi uses remote method invocation to hold the application’s
security context and to propagate this object through to the service layer.

Credentials types

There are several security types you can use to propagate the security context object:
« CAS

« USERNAME_PASSWORD

« JAAS

» X509

333

KSB

CredentialsSource

The CredentialsSource is an interface that helps obtain security credentials. It encapsulates the actual
source of credentials. The two ways to obtain the source are:

» X509CredentialsSource - X509 Certificate
» UsernamePasswordCredentialsSource - Username and Password
KSB security: Server side configuration

Here is a code snippet that shows the changes needed to configure KSB security on the server side:

<bean i d="ksbConfigurer" class="org. kuali.rice.ksb.nessagi ng. confi g. KSBConfi gurer"

<l-- Other properties renoved -->
<property nane="services">
<list>

<bean cl ass="org. kuali.rice. ksb. api . bus. support. SoapServi ceDefinition"

<property nane="service">
<ref bean="soapService" />

</ property>
<property nane="| ocal Servi ceNane" val ue="soapLocal Nane"/ >
<property nane="servi ceNaneSpaceURl " val ue="soapNaneSpace"/ >
<property nane="servicelnterface" val ue="org. kual i . ksh. exanpl es. SC
<property nane="priority" value="3"/>
<property nane="retryAttenpts" value="1" />
<property nane="busSecurity" val ue="fal se"></property>

<l-- Valid Values: CAS, KERBERCS -->
<property nane="credential sType" val ue="CAS"/ >

</ bean>

<bean cl ass="org. kuali.rice.ksb. api . bus. support. JavaServi ceDefinition"
<property nane="service" ref="echoService"></property>
<property nane="| ocal Servi ceNane" val ue="j avalLocal Nane" />
<property nane="servi ceNaneSpaceURI " val ue="j avaNaneSpace"/ >
<property nane="servicelnterface" val ue="org. kual i . ksb. exanpl es. Ec
<property nane="priority" value="5" />
<property nane="retryAttenpts" value="1" />
<property nane="busSecurity" val ue="true" />

<l-- Valid Values: CAS, KERBERCS -->
<property nane="credential sType" val ue="CAS"/ >

</ bean>
<l-- Oher services renoved -->
</list>
</ property>

</ bean>

KSB security: Client side configuration
<bean i d="cust onCredenti al sSourceFactory" class="edu. nyinstituition. mapp.security
<bean id="coreConfigurer" class="org.kuali.rice.core.inpl.config.ndul e.CoreConfig

<l-- Other properties renoved -->
<property nane="credenti al sSourceFactory" ref="custonCredenti al sSourceFactory"

334

KSB

</ bean>

KSB connector and exporter code

Connectors

Connectors are used by a client to connect to a service that is usually exposed through the KSB registry.
The Service Connector factory provides abean that holds a proxy to aremote service with some contextual
information. Thefactory determinesthetype of proxy to invokebased on the service definition. The service
definition used by the server is serialized to the database and de-serialized by the client. There are different
types of connectors supported by KSB, most notable are SOAP and Javaover HTTP.

Exporters

Services, when exported, can be secured using standard Acegi methods. A security manager and an
interceptor help organize the set of Business Objects that are exported.

Security and Keystores

Generating the Keystore

For client applications to be able to consume secured services hosted from a Rice server, the implementer
must generate a keystore. As an initial setup, KSB security relies on the creation of a keystore using the
JVM keytool asfollows:

Step 1: Create the Keystore

The first step is to create the keystore and generate a public-private key combination for the client
application. When using secured services on the KSB, we require the client applications transfer their
messages digitally signed so that Rice can verify the messages authenticity. Thisis why we must generate
these keys.

Generate your initial Rice keystore as follows:

keyt ool -genkey -validity 9999 -alias rice -keyalg RSA -keystore rice. keystore -dn

Caution

keypass and storepass should be the same.

ric3pw isthe password used for the provided example.

Step 2: Sign the Key

This generates the keystore in afile called "rice_keystore" in the current directory and generates an RSA
key with the dlias of "rice". Since there is no certificate signing authority to sign our key, we must sign it
ourselves. To do this, execute the following command:

keytool -selfcert -validity 9999 -alias rice -keystore rice.keystore -keypass rlc

Step 3: Generate the Certificate

After the application's certificate has been signed, we must export it so that it can be imported into the
Rice keystore. To export a certificate, execute the following command:

keyt ool -export -alias rice -file rice.cert -keystore rice.keystore -storepass rl

335

KSB

Step 4: Import Application Certificates
The client application's certificate can be imported using the following command:
keytool -inport -alias rice -file client.application.cert.file -keystore rice.key

The keystorefilewill end up deployed wherever your keystores are stored so hang on to both of these files
and don't lose them! Also, notice that we specified avalidity of 9999 days for the keystore and cert. This
is so you do not have to continually update these keystores. This will be determined by your computing
standards on how you handle key management.

Configure KSB to use the keystore

The following params are needed in the xml config to allow the ksb to use the keystore:

<param nane="keystore.file">/usr/local/rice/rice.keystore</paranp
<par am nanme="keystore. al i as">ri ce</ paranp
<par am nane="keyst or e. passwor d"> password </ paranp

» keystorefile - isthe location of the keystore
» keystore.alias - isthe alias used in creating the keystore above

» keystore.password - thisis the password of the alias AND the keystore. This assumes that the keystore
isup in such away that these are the same.

Queue and Topic invocation

When you deploy a service, you can configure it for queue or for topic invocation using the setQueue
property on the ServiceDefinition. The default is to register it as a queue-style service. The distinction
between queue and topic invocation occurs when there is more than one service registered under the same
QName.

Queue invocation

Remote service proxies obtained through the resource loader stack using getService(QName) (ultimately
through the ServiceBus) are inherently synchronous. In the presence of multiple service registrations, the
ServiceBus will choose one at random.

When invoking services asynchronously through the M essageH el per, an asynchronous service call proxy
will be constructed with all available service definitions. The M essageSer vicel nvoker is called to invoke
each service. If the service is defined as a queue service, then the ServiceBus will be consulted in
a similar fashion to determine a single service to call. After the first queue service invocation the
M essageSer vicel nvoker will return.

Topic invocation

The simplest way to invoke a topic service is using the M essageHelper functions to invoke the service
asynchronously. As described above for an asynchronous queue invocation, an asynchronous service call
proxy will be constructed with the list of al of the services registered as a topic under the given name.
Each of these services will be independently obtained and invoked by the M essageSer vicel nvoker .

Invoking a topic synchronously, however, requires use of a synchronous service call proxy to aggregate
all of the topic's services. This functionality is not directly available viathe ServiceBus APl because the
ServiceBus acts as a facade for direct service invocation.

336

KSB

To invoke a topic synchronously, you can construct a SynchronousServiceCallProxy using
SynchronousServiceCallProxy.createlnstance, passing the list of Endpoint obtained using
ServiceBus.getEndpoints(QName). This is done, for example, by MessageHelper mpl when the bus
has been forced into synchronous mode via the message.delivery config param.

The synchronous service call proxy isthe same as the asynchronous service call proxy, except that it does
not queue up theinvocation, it will invokeit blockingly. The same queue/topic distinctions described above
apply when you invoke atopic synchronously. Under the normal queue situation, use of the synchronous
service call proxy is not necessary because, as mentioned above, remote services obtained through the
ServiceBus are naturally synchronous. Y ou can see this in the example below:

Li st <Endpoi nt > servi cesToProxy = KsbApi Servi ceLocat or. get Servi ceBus(). get Endpoi nts

Synchr onousServi ceCal | Proxy sscp = return SynchronousServi ceCal | Proxy. creat el nstan

KSB Parameters

Here is a comprehensive set of configuration parameters used to configure the Kuali Service Bus.

Core Parameters

Table 8.6. Core Parameters

Core Description Default

serviceServletUrl URL that maps to the KSB|${application.url}/remoting/
Servlet. It handles incoming
reguests from the service bus.

rice.ksh.config.alowSelfSignedSSindicatesif self-signed certificates| false
are permitted for https
communication on the service bus

application.id Application identifier for client
application
keystorefile Path to the keystore file to use for
security
keystore.dias Alias of the standalone server's
key
keystore.password Password to access the keystore
and the server's key
ksb.mode Mode in which to load the KSB|local
module
ksb.url The URL of the KSB web|${application.url}/ksb
application
rice.ksb.struts.config.files The file that defines the struts|/ksb/WEB-INF/struts-config.xml
context for the KRice KSB struts
module
dev.mode If true, application will not|false

publish or consume services from
the central service registry, but
will maintain a local copy of the
registry. This is intended only

337

KSB

Core Description Default
for client application development
purposes.

bam.enabled If true, will monitor and log the|false

service cals made and genera
business activity performed to the
database.

Recommendation: Enable this
only for testing purposes, as
there is a significant performance
impact when enabled.

message.persistence If true, messages are stored in the|true
database until sent. If false, they
are stored in memory.

message.delivery Specifies whether messages|async
are sent synchronously are
asynchronously. Valid values are
synchronous or async

message.off If set to true, then messages will |false
not be sent but will instead pile
up in the message queue. Intended
for development and debugging
purposes only.

Routing.ImmediateExceptionRoutiffy true, messages will go|false
immediately to exception routing
if they fail, rather than being
retried

RouteQueue.maxRetryAttempts | Default number of times to retry|5
messages that fail to be delivered
successfully.

RouteQueue.maxRetryAttemptsOvHrisele will override the max retry
setting for ALL services, even if
they have their own custom retry
setting.

ksb.org.quartz.* Can define any property
beginning with ksb.org.quartz
and it will be passed to the
internal KSB quartz configuration
as a property beginning with
org.quartz (more details below)

useQuartzDatabase If true, then Quartz scheduler in|true
Rice will use a database-backed
job store; if false, then jobswill be
stored in memory

serviceServletUrl

The URL that resolvesto the K SB servlet that handlesincoming requests from the service bus. All services
exported onto the service bus use this value to construct their endpoint URLs when they are published to

338

KSB

the service registry. See section below on configuring the KSBDispatcher Servlet. This parameter should
point to the absolute URL of where that servlet is mapped. It should include atrailing slash.

application.id
Anidentifier that indicates the name of the logical node on the service bus. If the applicationisrunning in
acluster, this should be the same for each machine in the cluster. Thisisused for namespacing of services,

among other things. All services exported from the client application onto the service bus use this value
as their default namespace unless otherwise specified.

keystore.file, keystore.alias, keystore.password

See the documentation below on keystore management.

ksb.mode

Mode in which to load the KSB module. Valid values are local and embedded. There is currently no
difference in how the KSB module loads based on these settings. It will alwaystry to load the KSB struts
module if a KualiActionServiet is configured.

ksb.url

The URL of the KSB web application screens

rice.ksb.struts.config.files

The file that defines the struts context for the KRice KSB struts module. The struts module is loaded
automatically if aKualiActionServiet is configured in the web.xml.

dev.mode

I ndicates whether this node should export and consume services from the entire service bus. If set to false,
then the machine will not register its services in the global service registry. Instead, it can only consume
servicesthat it has available locally. In addition to this, other nodes on the service bus will not be able to
"see" this node and will therefore not forward any messagesto it.

message.persistence

If true, then messages will be persisted to the datastore. Otherwise, they will only be stored in memory.
If message persistenceis not turned on and the server is shutdown while there are still messages that need
to be sent, those messages will be lost. For a production environment, it is recommended that message
persistence be set to true.

message.delivery

Can be set to either synchronous or async. If thisis set to synchronous, then messages that are sent in
an asynchronous fashion using the KSB API will instead be sent synchronously. Thisis useful in certain
development and unit testing scenarios. For a production environment, it is recommended that message
delivery be set to async.

message.off

If set to true then asynchronous messages will not be sent. In the case that message persistence is turned
on, they will be persisted in the message store and can even be picked up later using the Message Fetcher.

339

KSB

However, if message persistence is turned off, these messages will be lost. This can be useful in certain
debugging or testing scenarios.

RouteQueue.maxRetryAttempts

Sets the default number of retries that will be executed if a message fails to be sent. This retry count can
also be customized for a specific service. (See Exposing Services on the Bus)

RouteQueue.timelncrement

Sets the default time increment between retry attempts. As with RouteQueue.maxRetryAttempts this can
also be configured at the service level.

RouteQueue.maxRetryAttemptsOverride
If set withanumber, it will temporarily set theretry attemptsfor ALL servicesgoing into exception routing.

A good way to prevent all messages in a node that is having trouble from making it to exception routing
is by setting the number arbitrarily high. The message.off param does the same thing.

Routing.ImmediateExceptionRouting

If set to true, then messagesthat fail to be sent will not bere-tried. Instead their MessageExceptionHandler
will beinvoked immediately.

useQuartzDatabase
When using the embedded Quartz scheduler started by the KSB, indicates whether that Quartz scheduler

should storeits entries in the database. If thisis true, then the appropriate Quartz properties should be set
aswell (see ksh.org.quartz.* below).

ksb.org.quartz.*
Can be used to pass Quartz properties to the embedded Quartz scheduler. See the configuration

documentation on the Quartz site. Essentially, any property prefixed with ksb.org.quartz. will have the
"ksh." portion stripped and will be sent as configuration parameters to the embedded Quartz scheduler.

KSB Configurer Properties

In addition to the configuration parameters available in the KRice configuration system, the
KSBConfigurer bean has some properties that can be injected to configure it:

exceptionMessagingScheduler
By default, the KSB uses an embedded Quartz scheduler for scheduling the retry of messages that fail to

be sent. If desired, a Quartz scheduler can instead be injected into the KSBConfigurer and it will use that
scheduler instead. See Quartz Scheduling for more detail.

messageDataSource

Specifies the javax.sgl.DataSour ce to use for storing the asynchronous message queue. If not specified,
this defaults to the DataSource injected into the RiceConfigurer.

340

KSB

If this DataSource is injected, then the registryDataSource must also be injected, and vice-versa.

registryDataSource

Specifies the javax.sgl.DataSour ce to use for reading and writing from the Service Registry. If not
specified, this defaults to the DataSource injected into the RiceConfigurer.

If this DataSource is injected, then the messageDataSour ce must also be injected, and vice-versa.
overrideServices

See Acquiring and invoking services
Services

See Acquiring and invoking services

JAX-RS / RESTful services

Rice now alows alows RESTful (JAX-RS) services to be exported and consumed on the
Kuali Service Bus (KSB). For some background on REST, see http://en.wikipedia.org/wiki/
Representational_State Transfer.

For details on JAX-RS, see JSR-311.

Caveats

» The KSB does not currently support "busSecure" (digital signing of requests & responses) REST
services. Attempting to set a REST service's "busSecure" property to "true” will result in a
RiceRuntimeException being thrown. Rice can be customized to expose REST servicesin asecure way,
e.g. using SSL and an authentication mechanism such as client certificates, but that is beyond the scope
of this documentation.

* If the JAX-RS annotations on your resource class don't cover all of its public methods, then accessing
the non-annotated methods over the bus will result in an Exception being thrown.

A Simple Example

To expose a simple JAX-RS annotated service on the bus, you can follow this recipe for your spring
configuration (which comes from the Rice unit tests):

<l-- The service inplenentation you want to expose -->

<bean i d="basebal | CardCol | ecti onServi ce" class="org. kuali.rice.ksb.testclientl.Bas

<l-- The service definition which tells the KSB to expose our RESTful service -->
<bean cl ass="org. kual i.rice. ksb. messagi ng. RESTServi ceDefiniti on">
<property nane="servi ceNaneSpaceURlI " val ue="test" />

<l-- as noted earlier, the servicePath property of RESTServiceDefinition can't

341

http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://jcp.org/en/jsr/detail?id=311

KSB

<l-- The service to expose. Refers to the bean above -->
<property nane="service" ref="basebal |l CardCol | ecti onService" />

<l-- The "Resource class", the class with the JAX-RS annotations on it. Could
<l-- service inplementation, or could be different, e.g. an interface or super

<property nane="resourceC ass"
val ue="org. kual i . ri ce. ksb. nessagi ng. renot edser vi ces. Basebal | CardCol | ecti onSer vi ce"

<l-- the nanme of the service, which will be part of the RESTful URLs used to a
<property nane="|ocal Servi ceNane" val ue="basebal | CardCol | ecti onService" />
</ bean>

The following javainterface uses JAX-RS annotations to specify its RESTful interface:
/1 ...eliding package and inports

@ath("/")

public interface Basebal | CardCol | ecti onService {
@ET
public List<Baseball Card> getAll ();

/**
* gets a card by it's (arbitrary) identifier
*/
@ET
@at h("/ Basebal | Card/id/{id}")
publ i c Basebal | Card get (@?at hParan("id") Integer id);
/**
* gets all the cards in the collection with the given player nane
*/
@ET
@at h("/ Basebal | Car d/ pl ayer Name/ { pl ayer Nane} ")
publ i c Li st <Basebal | Card> get (@at hPar an{ " pl ayer Name") String pl ayer Nane);

/**
* Add a card to the collection. This is a non-idenpotent nethod
* (because you can add nore than one of the same card), so we'll use @OST
* @eturn the (arbitrary) numerical identifier assigned to this card by the
*/

@QosT

@at h("/ Basebal | Card")
public Integer add(Baseball Card card);

/**
* update the card for the given identifier. This will replace the card that
* associated with that identifier
*/

342

KSB

@ur

@at h("/Basebal | Card/id/{id}")

@onsumes("application/ xm ™)

public void update(@athParan{"id") Integer id, Baseball Card card);

/**
* delete the card with the given identifier.
*/

@ELETE

@at h("/ Basebal | Card/id/{id}")

public void del ete(@athParan("id") Integer id);

/**
* This method | acks JAX-RS annot ati ons
*/
public void unannot at edMet hod() ;
}
Acquisition and use of this service over the KSB looks just like that of any other KSB service. In the
synchronous case:

Basebal | CardCol | ecti onServi ce basebal | CardCol | ecti on = (Basebal | CardCol | ecti onServ
)

Li st <Basebal | Card> al | MM ckeyMant| es = basebal | CardCol | ecti on. get ("M ckey Mantl e"
/'l basebal | CardCol | ecti on. <ot her service nethod>(...)
/1 etc

Composite Services

It isalso possible to aggregate multiple Rice service implementations into asingle RESTful service where
requeststo different sub-paths off of the base service URL can be handled by different underlying services.
This may be desirable to expose a RESTful service that is more complex than could be cleanly factored
into a single java service interface.

The configuration for a composite RESTfull service looks alittle bit different, and as might be expected
given the one-to-many mapping from RESTful service to java services, there are some caveats to using
that service over the KSB. Hereis asimple example of a composite service definition (which also comes
from the Rice unit tests):

<bean cl ass="org. kual i.rice. ksb. messagi ng. RESTSer vi ceDefiniti on">
<property nane="servi ceNaneSpaceURlI " val ue="test" />
<property nane="|ocal Servi ceNane" val ue="kns" />
<property name="resources">
<list>
<ref bean="i nboxResource"/>
<ref bean="nmessageResource"/>
</list>
</ property>
<property nane="servicePath" val ue="/" />
</ bean>

KSB

<l-- the beans referenced above are just JAX-RS annotated Java services -->

<bean i d="i nboxResource" class="org. kuali.rice.ksb.testclientl.l|nboxResourcel npl">
<l-- ... eliding bean properties ... -->

</ bean>

<bean i d="nmessageResource" class="org. kuali.rice.ksb.testclientl. MessageResourceln
<l-- ... eliding bean properties ... -->

</ bean>

As you can see in the bean definition above, the service name is kms, so the base service
url would by default (in a dev environment) be http://localhost:8080/kr-dev/remoting/kms/
. Acquiring a composite service such as this one on the KSB will actually return you
a org.kuali.rice.ksb.messaging.serviceconnector s.Resour ceFacade, which alows you to get the
individual java servicesin acouple of ways, as shown in the following simple example:

Resour ceFacade knsService =
(Resour ceFacade) d obal Resour celLoader. get Servi ce(
new QNane(NAMESPACE, KMsS_SERVI CE));

/1 Get service by resource nane (url path)
I nboxResour ce i nboxResource = knmsServi ce. get Resource("i nbox");
/1l Get service by resource class

MessageResour ce nmessageResource = kmsServi ce. get Resour ce(MessageResour ce. cl ass);

Additional Service Definition Properties

There are some properties on the RESTServiceDefinition object that let you do more advanced
configuration:

Providers
JAX-RS Providers allow you to define:
* ExceptionMappers which will handle specific Exception types with specific Responses.

» MessageBodyReaders and MessageBodyWriters that will convert custom Java types to and from
streams.

» ContextResolver providers alow you to create special JAXBContexts for specific types, which will
gives you fine control over marshalling, unmarshalling, and validation.

The JAX-RS specification calls for classes annotated with @Provider to be automatically used in the
underlying implementation, but the CXF project which Rice uses under the hood does not (at the time of
this writing) support this configuration mechanism, so this configuration property is currently necessary.

Extension Mappings

Ordinarily you need to set your ACCEPT header to ask for a specific representation of a resource.
ExtensionMappings let you map certain file extensions to specific media types for your RESTful service,
so your URLSs can then optionally specify a media type directly. For example you could map the .xml
extension to the media type text/xml, and then tag .xml on to the end of your resource URL to specify
that representation.

KSB

Language Mappings

language mappings allow you away to control the the Content-Language header, which lets you specify
which languages your service can accept and provide.

Additional Information

For more information on what these properties provide, it may be helpful to consult the JAX-RS
specification, or the CXF documentation.

Glossary
A

Action List

Action List Type

Action Request

Action Request Hierarchy

Action Requested

Action Taken

A list of the user's notification and workflow items. Also called the user's
Notification List. Clicking an item in the Action List displays details about that
notification, if the item is a natification, or displays that document, if it is a
workflow item. The user will usually load the document from their Action Listin
order to take the requested action against it, such as approving or acknowledging
the document.

Thistellsyou if the Action List item is a notification or a more specific workflow
request item. When the Action List item is a notification, the Action List Typeis
"Notification."

A request to a user or Workgroup to take action on a document. It designates the
type of action that is requested, which includes:

» Approve: requests an approve or disapprove action.

» Complete: requests a completion of the contents of a document. This action
request is displayed in the Action List after the user saves an incomplete
document.

» Acknowledge: requests an acknowledgment by the user that the document has
been opened - the doc will not leave the Action List until acknowledgment has
occurred; however, the document routing will not be held up and the document
will be permitted to transaction into the processed state if neccessary.

» FYI: anctification to the user regarding the document. Documents requesting
FY| can be cleared directly from the Action List. Even if a document has FY|
reguests remaining, it will still be permitted to transition into the FINAL state.

Action requests are hierarchical in nature and can have one parent and multiple
children.

Theaction one needsto take on adocument; also thetype of action that isrequested
by an Action Request. Actions that may be requested of a user are:

» Acknowledge: requests that the users states he or she has reviewed the
document.

» Approve: requests that the user either Approve or Disapprove a document.

» Complete: requests the user to enter additional information in a document so
that the content of the document is complete.

* FYI: intended to simply makes a user aware of the document.

An action taken on a document by a Reviewer in response to an Action Request.
The Action Taken may be:

» Acknowledged: Reviewer has viewed and acknowledged document.

» Approved: Reviewer has approved the action requested on document.

346

Glossary

Blanket Approved: Reviewer has requested a blanket approval up to aspecified
point in the route path on the document.

Canceled: Reviewer has canceled the document. The document will not be
routed to any more reviewers.

Cleared FY|: Reviewer has viewed the document and cleared all of his or her
pending FYI(s) on this document.

Completed: Reviewer has completed and supplied all data requested on
document.

Created Document: User has created a document

Disapproved: Reviewer has disapproved the document. The document will not
being routed to any subsequent reviewers for approval. Acknowledge Requests
are sent to previous approvers to inform them of the disapproval.

Logged Document: Reviewer has added a message to the Route Log of the
document.

Moved Document: Reviewer has moved the document either backward or
forward in its routing path.

Returned to Previous Node: Reviewer has returned the document to a previous
routing node. When a Reviewer does this, all the actions taken between the
current node and the return node are removed and all the pending requests on
the document are deactivated.

Routed Document: Reviewer has submitted the document to the workflow
engine for routing.

Saved: Reviewer has saved the document for later completion and routing.

Superuser Approved Document: Superuser has approved the entire document,
any remaining routing is cancelled.

Superuser Approved Node: Superuser has approved the document through all
nodes up to (but not including) a specific node. When the document getsto that
node, the normal Action Requests will be created.

Superuser Approved Request: Superuser has approved a single pending
Approve or Complete Action Request. The document then goes to the next
routing node.

Superuser Cancelled: Superuser has canceled the document. A Superuser can
cancel a document without a pending Action Request to him/her on the
document.

Superuser Disapproved: Superuser has disapproved the document. A Superuser
can disapprove a document without a pending Action Request to him/her on
the document.

347

Glossary

Activated
Activation

Activation Type

Active Indicator

Ad Hoc Routing

Annotation

Approve

Approver

Attachment

Attribute Type

Authentication

Authorization

Author Universal 1D

 Superuser Returned to Previous Node: Superuser has returned the document
to a previous routing node. A Superuser can do this without a pending Action
Request to him/her on the document.

The state of an action request when it is has been sent to auser’s Action List.
The process by which requests appear in auser's Action List

Defines how a route node handles activation of Action Requests. There are two
standard activation types:

e Sequential: Action Requests are activated one at a time based on routing
priority. The next Action Request isn't activated until the previous request is
satisfied.

» Pardle: All Action Requests at the route node are activated immediately,
regardless of priority

An indicator specifying whether an object in the system is active or not. Used as
an aternative to complete removal of an object.

A type of routing used to route a document to users or groups that are not in the
Routing path for that Document Type. When the Ad Hoc Routing is complete, the
routing returns to its normal path.

Optional comments added by a Reviewer when taking action. Intended to explain
or clarify the action taken or to advise subsequent Reviewers.

A type of workflow action button. Signifies that the document represents avalid
business transaction in accordance with institutional needs and policies in the
user's judgment. A single document may require approval from several users, at
multiple route levels, before it movesto final status.

The user who approves the document. As a document moves through Workflow,
it movesoneroute level at atime. An Approver operates at a particular route level
of the document.

The pathname of a related file to attach to a Note. Use the "Browse..." button to
open thefile dialog, select the file and automaticaly fill in the pathname.

Used to strongly type or categorize the values that can be stored for the various
attributes in the system (e.g., the value of the arbitrary key/value pairs that can be
defined and associated with a given parent object in the system).

The act of logging into the system. The Out of the box (OOTB) authenticaton
implementation in Rice does not require a password as it is intended for testing
puposesonly. Thisissomething that must be enabled aspart of animplementation.
Various authentication solutions exist, such as CAS or Shibboleth, that an
implementer may want to use depending on their needs.

Authorization is the permissions that an authenticated user has for performing
actionsin the system.

A free-form text field for the full name of the Author of the Note, expressed as
"Lastname, Firstname Initial"

Glossary

B

Base Rule Attribute

Blanket Approval

Blanket Approve Workgroup

Branch

Business Rule

C

Campus
Campus Type

Cancel

The standard fields that are defined and collected for every Routing Rule These
include:

» Active: A trueffase flag to indicate if the Routing Ruleis active. If false, then
the rule will not be evaluated during routing.

» Document Type: The Document Type to which the Routing Rule applies.

* From Date: The inclusive start date from which the Routing Rule will be
considered for a match.

» Force Action: atrue/false flag to indicate if the review should be forced to take
action again for the requests generated by thisrule, even if they had taken action
on the document previously.

» Name: the name of therule, this serves asaunique identifier for therule. If one
is not specified when the ruleis created, then it will be generated.

* Rule Template: The Rule Template used to create the Routing Rule.

» To Date: Theinclusive end date to which the Routing Rule will be considered
for amatch.

Authority that is given to designated Reviewerswho can approve a document to a
chosen route point. A Blanket Approval bypasses approvals that would otherwise
be required in the Routing For an authorized Reviewer, the Doc Handler typically
displaysthe Blanket Approval button along with the other options. When aBlanket
Approval is used, the Reviewers who are skipped are sent Acknowledge requests
to notify them that they were bypassed.

A workgroup that has the authority to Blanket Approve a document.

A path containing one or more Route Nodes that a document traverses during
routing. When a document enters a Split Node multiple branches can be created.
A Join Node joins multiple branches together.

1. Describes the operations, definitions and constraints that apply to an
organization in achieving its goals.

2. A restriction to a function for a business reason (such as making a specific
object code unavailable for a particular type of disbursement). Customizable
business rules are controlled by Parameters.

Identifies the different fiscal and physical operating entities of an institution.
Designates a campus as physical only, fiscal only or both.

A workflow action available to document initiators on documents that have not
yet been routed for approval. Denotes that the document is void and should be
disregarded. Canceled documents cannot be modified in any way and do not route
for approval.

349

Glossary

Canceled

CAS - Central Authentication
Service

Client

Client/Server

Close

Comma-separated value
Complete

Completed

Country Restricted Indicator

Creation Date

csv

D

Date Approved

Date Finaized

Deactivation

Delegate

Delegate Action List

A routing status. The document is denoted as void and should be disregarded.

http://www.jasig.org/cas - An open source authentication framework. Kuali Rice
provides support for integrating with CAS as an authentication provider (among
other authentication solutions) and also provides an implementation of a CAS
server that integrates with Kuali Identity Management.

A Java Application Program Interface (API) for interfacing with the Kuali
Enterprise Workflow Engine.

The use of one computer to request the services of another computer over a
network. The workstation in an organization will be used to initiate a business
transaction (e.g., abudget transfer). This workstation needs to gather information
from a remote database to process the transaction, and will eventually be used to
post new or changed information back onto that remote database. The workstation
isthus a Client and the remote computer that houses the database is the Server.

A workflow action available on documents in most statuses. Signifies that the
user wishes to exit the document. No changes to Action Requests, Route Logs or
document status occur as aresult of a Close action. If you initiate adocument and
close it without saving, it is the same as canceling that document.

A file format using commas as delimiters utilized in import and export
functionality.

A pending action request to a user to submit a saved document.
The action taken by a user or group in response to a reguest in order to finish
populating a document with information, as evidenced in the Document Route

Log.

Field used to indicate if a country is restricted from use in procurement. If there
is no value then thereis no restriction.

The date on which a document is created.

See comma-separ ated value

The date on which a document was most recently approved.

The date on which adocument entersthe FINAL state. At thispoint, all approvals
and acknowledgments are complete for the document.

The process by which requests are removed from a user's Action List
A user who has been registered to act on behalf of another user. The Delegate

acts with the full authority of the Delegator. Delegation may be either Primary
Delegation or Secondary Delegation.

A separate Action List for Delegate actions. When a Delegate selects a Delegator
for whomto act, an Action List of all documents sent to the Delegator is displayed.

350

http://www.jasig.org/cas

Glossary

Disapprove

Disapproved

Doc Handler

Doc Handler URL
Doc Nbr

Document

Document Id
Document Number

Document Operation

Document Search

Document Status

Document Title

Document Type

For both Primary and Secondary Delegation the Delegate may act on any of the
entries with the full authority of the Delegator.

A workflow action that allowsauser to indicate that adocument does not represent
a valid business transaction in that user's judgment. The initiator and previous
approvers will receive Acknowledgment requests indicating the document was
disapproved.

A status that indicates the document has been disapproved by an approver as a
valid transaction and it will not generate the originally intended transaction.

The Doc Handler is aweb interface that a Client uses for the appropriate display
of adocument. When a user opens a document from the Action List or Document
Search, the Doc Handler manages access permissions, content format, and user
options according to the requirements of the Client.

The URL for the Doc Handler.

See Document Number.

Also see E-Doc.

An electronic document containing information for a business transaction that is
routed for Actionsin KEW. It includes information such as Document ID, Type,
Title, Route Status, Initiator, Date Created, etc. In KEW, adocument typically has
XML content attached to it that is used to make routing decisions.

See Document Number.

A unique, sequential, system-assigned number for a document

A workflow screen that provides an interface for authorized users to manipulate
the XML and other data that defines a document in workflow. It alows you
to access and open a document by Document ID for the purpose of performing
operations on the document.

A web interface in which users can search for documents. Users may search by
a combination of document properties such as Document Type or Document 1D,
or by more specialized properties using the Detailed Search. Search results are
displayedin alist similar to an Action List.

See also Route Satus.

Thetitle given to the document when it was created. Depending on the Document
Type, thistitle may have been assigned by the Initiator or built automatically based
on the contents of the document. The Document Title is displayed in both the
Action List and Document Search.

The Document Type defines the routing definition and other properties for a set
of documents. Each document is an instance of a Document Type and conducts
the same type of business transaction as other instances of that Document Type.

Document Types have the following characteristics:

e They are specifications for a document that can be created in KEW

351

Glossary

Document Type Hierarchy

Document Type Label
Document Type Name

Document Type Policy

Drilldown

Dynamic Node

E

ECL

E-Doc
eDocLite

Embedded Client

Employee Status

Employee Type

e They contain identifying information as well as policies and other attributes

» They defines the Route Path executed for a document of that type (Process
Definition)

» They are hierarchical in nature may be part of a hierarchy of Document Types,
each of which inherits certain properties of its Parent Document Type.

» They are typically defined in XML, but certain properties can be maintained
from a graphical interface

A hierarchy of Document Type definitions. Document Types inherit certain
attributes from their parent Document Types. This hierarchy is also leveraged by
various pieces of the system, including the Rules engine when eval uating rule sets
and KIM when evaluating certain Document Type-based permissions.

The human-readabl e label assigned to a Document Type.
The assigned name of the document type. It must be unique.

These advise various checks and authorizations for instances of a Document Type
during the routing process.

A link that allows a user to access more detailed information about the current
data. These links typically take the user through a series of inquiries on different
business objects.

An advanced type of Route Node that can be used to generate complex routing
paths on the fly. Typically used whenever the route path of a document cannot be
statically defined and must be completely derived from document data.

1. Anacronym for Educational Community License.

2. All Kuali software and materia is available under the Educational Community
License and may be adopted by colleges and universities without licensing
fees. The open licensing approach a so provides opportunities for support and
implementation assistance from commercia affiliates.

An abbreviation for electronic documents, aso a shorthand reference to
documents created with eDoclL.ite.

A framework for quickly building workflow-enabled documents. Allows you to
define document screensin XML and render them using XSL style sheets.

A type of client that runs an embedded workflow engine.

Found on the Person Document; defines the employee's current employment
classification (for example, "A" for Active).

Found on the Person Document; defines the employee's position classification (for
example, "P" for Professional).

352

Glossary

Entity

Entity Attribute

Entity Type

Exception

Exception Messaging

Exception Routing

Extended Attributes

Extension Rule Attribute

F

Field Lookup

Final

Flexible Route Management

FlexRM (Flexible
Module)

An Entity record houses identity information for agiven Person, Process, System,
etc. Each Entity is categorized by its association with an Entity Type.

Entitieshave directory-likeinformation called Entity Attributesthat are associated
with them

Entity Attributes make up the identity information for an Entity record.

Provides categorization to Entities. For example, a“ System” could be considered
an Entity Type because something like a batch process may need to interfact with
the application.

A workflow routing status indicating that the document routed to an exception
gueue because workflow has encountered a system error when trying to process
the document.

The set of services and configuration options that are responsible for handling
messages when they cannot be successfully delivered. Exception Messaging is
set up when you configure KSB using the properties outlined in KSB Module
Configuration.

A type of routing used to handle error conditions that occur during the routing
of a document. A document goes into Exception Routing when the workflow
engine encounters an error or a situation where it cannot proceed, such as a
violation of a Document Type Policy or an error contacting external services.
When this occurs, the document is routed to the parties responsible for handling
these exception cases. This can be a group configured on the document or a
responsibility configured in KIM. Once one of these responsible parties has
reviewed the situation and approved the document, it will be resubmitted to the
workflow engine to attempt the processing again.

Custom, table-driven business object attributes that can be established by
implementing institutions.

One of the rule attributes added in the definition of a rule template that extends
beyond the base rule attributes to differentiate the routing rule. A Required
Extension Attribute has its "Required” field set to True in the rule template.
Otherwise, it isan Optional Extension Attribute. Extension attributes are typically
used to add additional fields that can be collected on arule. They also define the
logic for how those fields will be processed during rule evaluation.

The round magnifying glass icon found next to fields throughout the GUI that
allow the user to look up reference table information and display (and select from)
alist of valid values for that field.

A workflow routing status indicating that the document has been routed and has
no pending approval or acknowledgement requests.

A standard KEW routing scheme based on rules rather than dedicated table-based
routing.

The Route Module that performs the Routing for any Routing Rule is defined
through FlexRM. FlexRM generates Action Requests when a Rule matches the

353

Glossary

Force Action

Group

Group Attribute

H

Hierarchical Tree Structure

Initialized

Initiated

datavalue contained in adocument. An abbreviation of "Flexible Route Module."
A standard KEW routing schemethat isbased on rules rather than dedicated table-
based routing.

A trueffalse flag that indicates if previous Routing for approva will be ignored
when an Action Request is generated. The flag is used in multiple contexts where
requests are generated (e.g., rules, ad hoc routing). If Force Action is False, then
prior Actions taken by a user can satisfy newly generated requests. If it is True,
then the user needs to take another Action to satisfy the request.

A workflow action request that can be cleared from a user's Action List with
or without opening and viewing the document. A document with no pending
approval reguests but with pending Acknowledge requestsisin Processed status.
A document with no pending approval requests but with pending FY| requestsis
in Final status. See also Ad Hoc Routing and Action Request.

A Group has members that can be either Principals or other Groups (nested).
Groups essentially become away to organize Entities (via Principal relationships)
and other Groups within logical categories.

Groups can be given authorization to perform actions within applications by
assigning them as members of Roles.

Groupscan also havearbitrary identity information (i.e., Group Attributes hanging
from them. Group Attributes might be values for "Office Address,” "Group
Leader," etc.

Groups can be maintained at runtime through a user interface that is capable of
workflow.

Groups have directory-like information called Group Attributes hanging from
them. "Group Phone Number" and "Team Leader" are examples of Group
Attributes.

Group Attributes make up the identity information for a Group record.

Group Attributes can be maintained at runtime through a user interface that is
capable of workflow.

A hierarchical representation of datain agraphical form.

The state of an Action Request when it is first created but has not yet been
Activated (sent to auser’s Action List).

A workflow routing status indicating a document has been created but has not
yet been saved or routed. A Document Number is automatically assigned by the
system.

354

Glossary

Initiator

Inquiry

J

Join Node

K

KC - Kuali Coeus

KCA -
Affiliates

Kuali Commercid

KCB — Kuali Communications
Broker

KEN - Kuai Enterprise
Notification
KEW - Kuadi Enterprise
Workflow

KFS—Kuali Financial System

KIM -
Management

Kuali Identity

A user role for a person who creates (initiates or authors) a new document for
routing. Depending on the permissions associated with the Document Type, only
certain users may be able to initiate documents of that type.

A screen that allows a user to view information about a business object.

The point in the routing path where multiple branches are joined together. A Join
Node typically has a corresponding Split Node for which it joins the branches.

TODO

A designation provided to commercia affiliates who become part of the Kuali
Partners Program to provide for-fee guidance, support, implementation, and
integration services related to the Kuali software. Affiliates hold no ownership of
Kuali intellectual property, but are full KPP participants. Affiliates may provide
packaged versions of Kuali that provide value for installation or integration
beyond the basic Kuali software. Affiliates may also offer other types of training,
documentation, or hosting services.

KCB islogically related to KEN. It handles dispatching messages based on user
preferences (email, SMS, etc.).

A key component of the Enterprise Integration layer of the architecture
framework. Its features include:

» Automatic Message Generation and Logging
» Message integrity and delivery standards
 Délivery of notificationsto auser’s Action List

Kuali Enterprise Workflow is a general-purpose el ectronic routing infrastructure,
or workflow engine. It manages the creation, routing, and processing of electronic
documents (eDocs) necessary to complete a transaction. Other applications can
also use Kuali Enterprise Workflow to automate and regul ate the approval process
for the transactions or documents they create.

Deliversacomprehensive suite of functionality to servethefinancial system needs
of all Carnegie-Classinstitutions. An enhancement of the proven functionality of
Indiana University's Financial Information System (FIS), KFS meets GASB and
FASB standards while providing a strong control environment to keep pace with
advancesin both technol ogy and business. Modulesincludefinancial transactions,
genera ledger, chart of accounts, contracts and grants, purchasing/accounts
payable, labor distribution, budget, accounts receivable and capital assets.

A Kuali Rice module, Kuali Identity Management provides a standard API for
persons, groups, roles and permissions that can be implemented by an institution.
It also provdies an out of the box reference implementation that alows for a
university to use Kuali astheir Identity Management solution.

355

Glossary

KNS —Kuali Nervous System

KPP - Kuali Partners Program

KRAD - Kudi Rapid
Application Development
KRMS - Kuadi Rules
Management System

KS- Kuali Student

KSB —Kuali Service Bus

Kudli

Kuali Foundation

A core technical module composed of reusable code components that provide
the common, underlying infrastructure code and functionality that any module
may employ to perform its functions (for example, creating custom attributes,
attaching electronic images, uploading data from desktop applications, lookup/
search routines, and database interaction).

The Kuali Partners Program (KPP) is the means for organizations to get involved
in the Kuali software community and influence its future through voting rights to
determine software devel opment priorities. Membership dues pay staff to perform
Quality Assurance (QA) work, release engineering, packaging, documentation,
and other work to coordinate the timely enhancement and release of quality
software and other services valuableto the members. Partners are al so encouraged
to tender functional, technical, support or administrative staff members to the
Kuali Foundation for specific periods of time.

TODO

TODO

Deliversameansto support students and other users with astudent-centric system
that provides real-time, cost-effective, scalable support to help them identify
and achieve their goals while smplifying or eliminating administrative tasks.
The high-level entities of person (evolving roles-student, instructor, etc.), time
(nested units of time - semesters, terms, classes), learning unit (assigned to any
learning activity), learning result (grades, assessments, evaluations), learning
plan (intentions, activities, magjor, degree), and learning resources (instructors,
classrooms, equipment). The concierge function is a self-service information
sharing system that aligns information with needs and tasks to accomplish goals.
The support for integration of locally-devel oped processes provides flexibility for
any institution's needs.

Provides an out-of-the-box service architecture and runtime environment for Kuali
Applications. It is the cornerstone of the Service Oriented Architecture layer of
the architectural reference framework. The Kuali Service Bus consists of:

A servicesregistry and repository for identifying and instantiating services

Run time monitoring of messages

Support for synchronous and asynchronous service and message paradigms

1. Pronounced "ku-wah-le€". A partnership organization that produces a suite of
community-source, modular administrative software for Carnegie-class higher
education ingtitutions. See also Kuali Foundation

2. (n.) A humble kitchen wok that plays an important role in asuccessful kitchen.

Employs staff to coordinate partner efforts and to manage and protect the
Foundation's intellectual property. The Kuali Foundation manages a growing
portfolio of enterprise software applications for colleges and universities. A
lightweight Foundation staff coordinates the activities of Foundation members
for critical software development and coordination activities such as source code
control, release engineering, packaging, documentation, project management,

356

Glossary

Kudi Rice

L

Last Modified Date

M

Maintenance Document

Message

Message Queue

Namespace

Note Text

Notification Content

software testing and quality assurance, conference planning, and educating and
assisting members of the Kuali Partners program.

Provides an enterprise-class middleware suite of integrated products that allow
both Kuali and non-Kuali applications to be built in an agile fashion, such
that developers are able to react to end-user business requirements in an
efficient manner to produce high-quality business applications. Built with Service
Oriented Architecture (SOA) concepts in mind, KR enables developers to build
robust systems with common enterprise workflow functionality, customizable
and configurable user interfaces with a clean and universal look and fedl, and
genera notification features to allow for a consolidated list of work "action
items." All of this adds up to providing a re-usable development framework that
encourages a simplified approach to developing true business functionality as
modular applications.

The date on which the document was last modified (e.g., the date of the last action
taken, the last action request generated, the last status changed, etc.).

An e-doc used to establish and maintain atable record.

The full description of a notification message. Thisis a specific field that can be
filled out as part of the Simple Message or Event Message form. This can aso
be set by the programmatic interfaces when sending notifications from a client
system.

Allows administrators to monitor messages that are flowing through the Service
Bus. Messages can be edited, deleted or forwarded to other machines for
processing from this screen.

A Namespace is a way to scope both Permissions and Entity Attributes Each
Namespace instance is one level of scoping and is one record in the system.
For example, "KRA" or "KC" or "KFS" could be a Namespace. Or you could
further break those up into finer-grained Namespaces such that they would roughly
correlate to functional moduleswithin each application. Examples could be "KRA
Rolodex", "KC Grants', "KFS Chart of Accounts'.

Out of the box, the system is bootstrapped with numerous Rice namespaces
which correspond to the different modules. There is also a default namespace of
“KUALI".

Namespaces can be maintained at runtime through a maintenance document.

A free-form text field for the text of a Note

This section of a natification message which displays the actual full message for
the notification along with any other content-type-specific fields.

357

Glossary

Notification Message

O

OO0TB

Optimistic Locking

Optiona Rule Extension
Attribute

Org Doc #

Organization

Organization Code

P

Parameter Component Code
Parameter Description

Parameter Name
Parameter Type Code

Parameter Value

Parent Document Type

Parent Rule

Permission

The overall Notification item or Notification Message that a user sees when she
views the details of a natification in her Action List. A Notification Message
contains not only common elements such as Sender, Channel, and Title, but also
content-type-specific fields.

Stands for "out of the box" and refers to the base deliverable of a given feature
in the system.

A type of “locking” that is placed on a database row by a process to prevent
other processes from updating that row before the first process is complete. A
characteristic of this locking technique is that another user who wants to make
modifications at the same time as another user is permitted to, but the first one
who submits their changes will have them applied. Any subsequent changes will
result in the user being notified of the optimistic lock and their changes will not
be applied. This technique assumes that another update is unlikely.

An Extension Attribute that is not required in a Rule Template. It may or may
not be present in a Routing Rule created from the Template. It can be used as
a conditional element to aid in deciding if a Rule matches. These Attributes are
simply additional criteriafor the Rule matching process.

The originating document number.

Refers to a unit within the institution such as department, responsibility center,
campus, etc.

Represents aunique identifier assigned to units at many different levelswithin the
institution (for example, department, responsibility center, and campus).

Code identifying the parameter Component.
Thisfield houses the purpose of this parameter.

This will be used as the identifier for the parameter. Parameter values will be
accessed using this field and the namespace as the key.

Code identifying the parameter type. Parameter Type Code isthe primary key for
its' table.

Thisfield houses the actual value associated with the parameter.

A Document Type from which another Document Type derives. The child type can
inherit certain properties of the parent type, any of which it may override. A Parent
Document Type may have a parent as part of a hierarchy of document types.

A Routing Rulein KEW from which another Routing Rulederives. Thechild Rule
can inherit certain properties of the parent Rule, any of which it may override. A
Parent Rule may have a parent as part of a hierarchy of Rules.

Permissions represent fine grained actions that can be mapped to functionality
within a given system. Permissions are scoped to Namespace which roughly
correlate to modules or sections of functionality within a given system.

358

Glossary

Person Identifier

Person Role

Pessimistic Locking

Plugins

Post Processor

A developer would code authorization checks in their application against these
permissions.

Some examples would be; "canSave", "canView", "canEdit", etc.

Permissions are aggregated by Roles.

Permissions can be maintained at runtime through a user interface that is capable
of workflow; however, developers still need to code authorization checks against
them in their code, once they are set up in the system.

Attributes

1. Id - a system generated unique identifier that is the primary key for any
Permission record in the system

2. Name - the name of the permission; also a human understandable unique
identifier

3. Description - afull description of the purpose of the Permission record
4. Namespace - the reference to the associated Namespace
Relationships

1. Permission to Role - many to many; this relationship ties a Permission record
to aRole that is authorized for the Permission

2. Permission to Namespace - many to one; this relationship allows for scoping
of a Permission to a Namespace that contains functionality which keys its
authorization checking off of said

The username of an individual user who receives the document ad hoc for the
Action Requested

Creates or maintains the list used in selection of personnel when preparing the
Routing Form document.

A type of lock placed on a database row by a process to prevent other processes
from reading or updating that row until thefirst processisfinished. Thistechnique
assumes that another update is likely.

A plugin is a packaged set of code providing essential services that can be
deployed into the Rice standalone server. Plugins usually contains only classes
used in routing such as custom rules or searchable attributes, but can contain
client application specific services. They are usually used only by clients being
implemented by the * Thin Client’ method

A routing component that is notified by the workflow engine about various events
pertaining to the routing of a specific document (e.g., node transition, status
change, action taken). Theimplementation of aPost Processor istypically specific
to aparticular set of Document Types. When all required approvals are compl eted,
the engine notifiesthe Post Processor accordingly. At this point, the Post Processor
is responsible for completing the business transaction in the manner appropriate
to its Document Type.

359

Glossary

Posted Date/Time Stamp

Postal Code

Preferences

Primary Delegation

Principal

Processed

R

Recipient Type
Required Rule
Attribute
Responsibility
Responsibility Id
Responsible Party
Reviewer

Rice

Role

Extension

A free-formtext field that identifies the time and date at which the Notesis posted.
Defines zip code to city and state cross-references.

User optionsinan Action List for displaying thelist of documents. Userscan click
the Preferences button in the top margin of the Action List to display the Action
List Preferences screen. On the Preferences screen, users may change the columns
displayed, the background colors by Route Status, and the number of documents

displayed per page.

The Delegator turns over full authority to the Delegate. The Action Requests
for the Delegator only appear in the Action List of the Primary Delegate. The
Delegation must be registered in KEW or KIM to be in effect.

A Principal represents an Entity that can authenticate into the system. One can
roughly correlate aPrincipal to alogin username. Entitiescan existin KIM without
having permissions or authorization to do anything; therefore, a Principal must
exist and must be associated with an Entity in order for it to have access privileges.
All authorization that is not specific to Groupsistied to aPrincipal.

In other words, an Entity isfor identity whileaPrincipal isfor access management.

Also note that an Entity is allowed to have multiple Principals associated with
it. The use case typically given here is that a person may apply to a school and
receive one log in for the application system; however, once accepted, they may
receive their official login, but use the same identity information set up for their
Entity record.

A routing status indicating that the document has no pending approval requests
but still has one or more pending acknowledgement reguests.

Thetype of entity that is receiving an Action Reguest. Can be a user, workgroup,
or role.

An Extension Attribute that is required in a Rule Template. It will be present in
every Routing Rule created from the Template.

See Responsible Party.

A unique identifier representing a particular responsibility on a rule (or from a
route module Thisidentifier staysthe samefor aparticular responsibility no matter
how many times arule is modified.

The Reviewer defined on a routing rule that receives requests when the rule
is successfully executed. Each routing rule has one or more responsible parties
defined.

A user acting on adocument in his/her Action List and who hasreceived an Action
Request for the document.

An abbreviation for Kuali Rice.

Roles aggregate Permissions When Roles are given to Entities (via their
relationship with Principals) or Groups an authorization for all associated
Permissionsis granted.

360

Glossary

Route Header 1d

Route Log

Route Module

Route Node

Route Path

Route Status

Another name for the Document 1d.

Displays information about the routing of a document. The Route Log is usually
accessed from either the Action List or a Document Search. It displays general
document information about the document and a detailed list of Actions Taken
and pending Action Requests for the document. The Route Log can be considered
an audit trail for a document.

A routing component that the engine usesto generate action requests at aparticul ar
Route Node. FIexRM (Flexible Route Module) is a general Route Module that
is rule-based. Clients can define their own Route Modules that can conduct
specialized Routing based on routing tables or any other desired implementation.

Represents a step in the routing process of a document type. Route node
"instances" are created dynamically asadocument goesthroughitsrouting process
and can be defined to perform any function. The most common functions are to
generate Action Requests or to split or join the route path.

e Simple: do some arbitrary work

» Requests: generate action requests using a Route Module or the Rules engine

Split: split the route path into one or more paralléel branches

« Join: join one or more branches back together

 Sub Process: execute another route path inline

« Dynamic: generate a dynamic route path

The path a document follows during the routing process. Consists of a set of
route nodes and branches. The route path is defined as part of the document type
definition.

The status of a document in the course of its routing:

» Approved: These documents have been approved by all required reviewers and
are waiting additional postprocessing.

 Cancelled: These documents have been stopped. The document’ s initiator can
‘Cancel’ it before routing begins or a reviewer of the document can cancel it
after routing begins. When a document is cancelled, routing stops; it is not sent
to another Action List.

« Disapproved: These documents have been disapproved by at |east onereviewer.
Routing has stopped for these documents.

» Enroute: Routing is in progress on these documents and an action request is
waiting for someone to take action.

» Exception: A routing exception has occurred on this document. Someone from
the Exception Workgroup for this Document Type must take action on this
document, and it has been sent to the Action List of this workgroup.

 Final: All required approvals and all acknowledgements have been received on
these documents. No changes are allowed to a document that isin Final status.

361

Glossary

Routed By User

Routing

Routing Priority

Routing Rule

« Initiated: A user or aprocess has created this document, but it has not yet been
routed to anyone’ s Action List.

» Processed: These documents have been approved by all required users, and is
completed on them. They may be waiting for Acknowledgements. No further
action is needed on these documents.

» Saved: These documents have been saved for later work. An author (initiator)
can save a document before routing begins or areviewer can save a document
before he or she takes action on it. When someone saves a document, the
document goes on that person’s Action List.

The user who submits the document into routing. This is often the same as the
Initiator. However, for some types of documents they may be different.

The process of moving a document through its route path as defined in its
Document Type. Routing is executed and administered by the workflow engine.
This process will typicaly include generating Action Requests and processing
actionsfrom the userswho receive those requests. |n addition, the Routing process
includes callbacksto the Post Processor when there are changesin document state.

A number that indicatesthe routing priority; asmaller number has ahigher routing
priority. Routing priority is used to determine the order that requests are activated
on aroute node with sequential activation type.

A record that containsthe datafor the Rule Attributes specified in aRule Template
It is an instance of a Rule Template populated to determine the appropriate
Routing. The Rule includes the Base Attributes, Required Extension Attributes,
Responsible Party Attributes, and any Optional Extension Attributes that are
declared in the Rule Template. Rules are evaluated at certain pointsin the routing
process and, when they fire, can generate Action Requests to the responsible
parties that are defined on them.

Technical considerations for a Routing Rules are:
» Configured viaa GUI (or imported from XML)
 Created against a Rule Template and a Document Type

» The Rule Template and it’s list of Rule Attributes define what fields will be
collected in the Rule GUI

* Rules define the users, groups and/or roles who should receive action requests
» Available Action Request Types that Rules can route

e Complete

e Approve

» Acknowledge

* FYI

* During routing, Rule Evaluation Sets are “ selected” at each node. Default isto
select by Document Type and Rule Template defined on the Route Node

362

Glossary

Rule Attribute

Rule QuickLinks

Rule Template

* Rules match (or ‘fire’) based on the evaluation of data on the document and
data contained on theindividual rule

» Examples
« |f dollar amount isgreater than $10,000 then send an Approval request to Joe.

e If depatment is “HR” request an Acknowledgment from the
HR.Acknowledgers workgroup.

Rule attributes are acore KEW data el ement contained in adocument that controls
its Routing. It participatesin routing as part of a Rule Template and is responsible
for defining custom fields that can be rendered on a routing rule. It also defines
the logic for how rules that contain the attribute data are evaluated.

Technical considerations for a Rule Attribute are:

e They might be backed by a Java class to provide lookups and validations of
appropriate values.

 Define how a Routing Rule evaluates document data to determine whether or
not the rule data matches the document data.

» Definewhat datais collected on arule.

» Anattribute typically correspondsto one piece of dataon adocument (i.edollar
amount, department, organization, account, etc.).

e Can be written in Java or defined using XML (with matching done by XPath).
» Can have multiple GUI fields defined in asingle attribute.

A list of document groups with their document hierarchies and actions that can be
selected. For specific document types, you can create the rule delegate.

A Rule Template serves as a pattern or design for the routing rules. All of the
Rule Attributes that include both Required and _Optional_ are contained in the
Rule Template; it defines the structure of the routing rule of FlexRM. The Rule
Template is also used to associate certain Route Nodes on a document type to
routing rules.

Technical considerations for a Rule Templates are:
e They are acomposition of Rule Attributes

e Adding a‘Rol€’ attribute to a template allows for the use of the Role on any
rules created against the template

» When rule attributes are used for matching on rules, each attribute is associated
with the other attributes on the template using an implicit ‘and’ logic attributes

 Can be used to define various other aspects to be used by the rule creation GUI
such as rule data defaults (effective dates, ignore previous, available request

types, etc)

363

Glossary

Save

Saved

Searchable Attributes

Secondary Delegation

Service Registry

Simple Node

SOA

Special Condition Routing

Split Node
Spring

State

Status

A workflow action button that allows the Initiator of a document to save their
work and close the document. The document may be retrieved from theinitiator's
Action List for completion and routing at alater time.

A routing statusindicating the document has been started but not yet compl eted or
routed. The Save action alows the initiator of a document to save their work and
close the document. The document may be retrieved from the initiator's action list
for completion and routing at alater time.

Attributesthat can be defined to index certain pieces of dataon adocument so that
it can be searched from the Document Search screen.

Technical considerations for a Searchable Attributes are:
» They areresponsible for extracting and indexing document data for searching

e They alow for custom fields to be added to Document Search for documents
of a particular type

» They are configured as an attribute of a Document Type

» They can be written in Java or defined in XML by using Xpath to facilitate
matching

The Secondary Delegate acts as atemporary backup Delegator who acts with the
same authority as the primary Approver/the Delegator when the Delegator is not
available. Documents appear in the Action Lists of both the Delegator and the
Delegate. When either acts on the document, it disappears from both Action Lists.

Secondary Delegation is often configured for a range of dates and it must be
registered in KEW or KIM to bein effect.

Displaysaread-only view of all of the servicesthat are exposed on the Service Bus
and includesinformation about them (for example, IP Address, or Endpoint URL).

A type of node that can perform any function desired by the implementer. An
example implementation of a simple node is the node that generates Action
Requests from route modules.

An acronym for Service Oriented Architecture.

Thisisageneric term for additional route levelsthat might betriggered by various
attributes of atransaction. They can be based on the type of document, attributes of
the accounts being used, or other attributes of the transaction. They often represent
specia administrative approvals that may be required.

A node in the routing path that can split the route path into multiple branches.

The Spring Framework is an open source application framework for the Java
platform.

Defines U.S. Postal Service codes used to identify states.

On an Action List; also known as Route Status. The current location of the
document in its routing path.

364

http://www.springsource.org/

Glossary

Submit

Superuser

Superuser Approval

Superuser Document Search

T

Thread pool

Title

URL

V

Viewer

W

Web Service Client

Wildcard

Workflow

A workflow action button used by the initiator of a document to begin workflow
routing for that transaction. It moves the document (through workflow) to the next
level of approval. Once adocument is submitted, it remainsin 'ENROUTE' status
until all approvals have taken place.

A user who has been given special permission to perform Superuser Approvas
and other Superuser actions on documents of a certain Document Type.

Authority given Superusers to approve a document of a chosen Route Node. A
Superuser Approval action bypasses approvals that would otherwise be required
in the Routing. It is available in Superuser Document Search. In most cases,
reviewers who are skipped are not sent Acknowledge Action Requests.

A special mode of Document Search that allows Superusers to access documents
in a specia Superuser mode and perform administrative functions on those
documents. Access to these documents is governed by the user's membership in
the Superuser Workgroup as defined on a particular Document Type.

A technique that improves overal system performance by creating a pool of
threadsto execute multiple tasks at the sametime. A task can execute immediately
if athread in the pool is available or else the task waits for a thread to become
available from the pool before executing.

A short summary of the notification message. This field can be filled out as part
of the Simple Message or Event Message form. In addition, this can be set by the
programmatic interfaces when sending notifications from a client system.

Thisfield is equivalent to the "Subject" field in an email.

An acronym for Uniform Resource Locator.

A person who can log in and use the application. This term is synonymous with
“Principal” in KIM. "Whereas Entity Id represents a unique Person, Principal 1d
represents a set of login information for that Person.”

A user(s) who views a document during the routing process. This includes users
who have action reguests generated to them on a document.

A type of client that connects to a standalone KEW server using Web Services.

A character that may be substituted for any of a defined subset of al possible
characters.

Electronic document routing, approval and tracking. Also known as Workflow
Services or Kuali Enterprise Workflow (KEW). The Kuali infrastructure service

365

Glossary

Workflow Engine

Workflow QuickLinks

XML

XML Ingester

XML RuleAttribute

that electronically routes an e-doc to its approvers in a prescribed sequence,
according to established business rules based on the e-doc content. See also Kuali
Enter prise Workflow.

The component of KEW that handles initiating and executing the route path of a
document.

A web interface that provides quick navigation to various functions in KEW.
These include:

* Quick EDoc Watch: Thelast five Actionstaken by thisuser. The user can select
and repeat these actions.

* Quick EDoc Search: Thelast five EDocs searched for by thisuser. The user can
select one and repeat that search.

* Quick Action List: Thelast five document types the user took action with. The
user can select one and repeat that action.

See also XML Ingester.

1. Anacronym for Extensible Markup Language.

2. Used for dataimport/export.

A workflow function that allows you to browse for and upload XML data

Similar in functionality to a RuleAttribute but built using XML only

366

