
Kuali Rice 2.1.0-rc1 Installation Guide

iii

Table of Contents
1. Overview ... 1

Suggested Operating Systems ... 1
Software Distributions ... 1
Obtaining the Software .. 1
Installation Steps .. 2

2. Standalone Server Setup ... 3
Suggested Server Hardware .. 3
Installing and Configuring the Database Management System ... 4

Locations for Database Software ... 4
MySQL Database Preparation ... 5
Oracle Database Preparation ... 6
Suggested SQL Client Software .. 8

Install and Configure Required Software .. 9
Overview .. 9
Environment Variables .. 9
Java SDK .. 10
Maven .. 11
Install and Setup Apache Tomcat ... 12
Install Rice software from distribution .. 12

Building the Rice Database .. 12
Load Impex Data with Maven ... 12
Verifying your Database Installation ... 13

Configure Rice ... 14
Deploying the WAR file .. 14
Parameters ... 17

Setup a Keystore .. 19
Generating a Keystore ... 19
Configure KSB to use the keystore .. 19

3. Tuning Kuali Rice 2.1.0-rc1 .. 20
JVM Tuning .. 20

4. Additional Configurations ... 21
Setting Up a Load-Balanced Clustered Production Environment .. 21
Running Multiple Instances of Rice Within a Single Tomcat Instance 22

Running a Staging and a Test Environment ... 22
Running Multiple Production Environments ... 24
Keystore Implementation Variations ... 31

5. Creating a Client Application .. 32
Development Tools ... 32

IDE (Integrated Development Environment) .. 32
Database .. 32
JDK .. 33
Maven .. 34
Servlet Container .. 34

New Project Setup .. 35
Project Structure and Configuration Files .. 36
Configuring Your Rice Application .. 38
Importing into Eclipse ... 38

Appendix A. Example Server Configurations ... 41
Single Server Configuration .. 41
Multi Server Configuration ... 41

Web Servers .. 41

Kuali Rice 2.1.0-
rc1 Installation Guide

iv

Tomcat Servers .. 41
Web Servers – Content/Shared File System ... 42

Glossary .. 43

v

List of Figures
2.1. Oracle XE admin webapp .. 7
2.2. Rice Portal Main Menu ... 16
5.1. Eclipse Import .. 39
5.2. Eclipse Import Project Directory .. 40

vi

List of Tables
1.1. Rice Software Distribution Types .. 1
2.1. Locations for Database Software ... 4
2.2. Core ... 17
2.3. Database ... 17
2.4. KSB ... 18
2.5. KEN ... 18
2.6. KEW .. 18
5.1. Locations for Database Software ... 33
5.2. Generated Files .. 37
5.3. Configuration Parameters ... 38

1

Chapter 1. Overview
Kuali Rice has the potential to run on most platforms that support a Java development environment
(not simply a runtime environment), a servlet container, and an Oracle or MySQL relational database
management system (RDBMS).

Note

Only platforms and configurations that have been tested and are known to work with Rice are
described within this guide. Other platforms and configurations may work, but have not been
tested. Please share any configurations that you have gotten to work with us by joining our
collaboration list.

Suggested Operating Systems
Since Kuali Rice is written in Java, it should in theory be able to run on any operating system that supports
the required version of the Java runtime. However, it has been most actively tested on:

• Windows (XP, Vista, and 7)

• Mac OS X (10.6 and 10.7)

• Linux (Ubuntu)

Note that while Ubuntu Linux is the distribution most frequently used for testing, other Linux distributions
such as Fedora, Red Hat Enterprise Linux, CentOS, Gentoo, and others should also be able to run Kuali
Rice.

Additionally, Kuali Rice will likely work on other Unix operating systems such as Sun Microsystems
Solaris and IBM AIX, although the software has not been tested here.

Software Distributions
The Kuali Rice software is available through three different distributions:

Table 1.1. Rice Software Distribution Types

Distribution Description

Binary This distribution consists of all the necessary binaries, supporting files and database
schemas and data for running Kuali Rice as a web application or within an embedded client
application.

Source The source code and build scripts necessary for compiling and building Rice, a process
described in the appendices.

Server Rice in the form of a web application archive (WAR) along with database schemas and
data.

Obtaining the Software
1. Download: The Rice software can be downloaded from http://kuali.org/rice/download

2. Maven Repository - http://nexus.kuali.org/content/groups/public/

http://kuali.org/kis/projectTeams/team/111
http://kuali.org/rice/download
http://nexus.kuali.org/content/groups/public/

Overview

2

3. Subversion Repository - http://svn.kuali.org/repos/rice/tags/rice-2.1.0-rc1

Installation Steps
All Kuali Rice 2.1.0-rc1 installations follow the same core steps:

1. Install a database and JDBC drivers.

2. Install and configure a JDK, Rice, and other required software.

3. Set up ImpEx process to create the database schema and populate it.

4. Configure Rice software.

5. Test the installation

This Guide will provide installation instructions for the Rice standalone server as well as instructions on
how to set up Eclipse to create a client application with Rice.

http://svn.kuali.org/repos/rice/tags/rice-2.1.0-rc1

3

Chapter 2. Standalone Server Setup
This chapter is designed to provide simple step-by-step instructions on how to set up a Kuali Rice
standalone server intended for enterprise deployment. The same steps can be used to set up a standalone
server locally for development purposes, you would just install the database on the same machine.

The steps to install and setup a standalone server with Kuali Rice are:

1. Determine your expected load and storage needs and consult the Suggested Server Hardware section
for guidance. Install OS.

2. Install & configure the database management system.

3. Install & configure required software

4. Install and configure Tomcat.

5. Install and configure Rice.

6. Launch the sample application.

7. Set up a Keystore.

Note

Rather than install and setup as the root user on systems designed for production, you may want
to create a non-privilieged user named something like 'rice' to use for this purpose.

Suggested Server Hardware
Note that hardware needs may vary depending on the amount of expected load, the operating system being
used, and the number of applications that are integrated with Kuali Rice. Kuali Rice is typically deployed
as a standalone server with the database server separate from the application server.

The recommended minimum requirements are as follows:

• Processor 1.5 GHz or faster (2 GHz preferred)

• 1024 MB (1 GB) of RAM or more

• 100 Mbit/s network card (gigabit preferred)

• 200 MB of hard disk space (for Tomcat server and web application)

Note

Additional space needed if storing attachments.

See Example Server Configurations in the appendix for examples of hardware and software configurations
of Kuali Rice servers.

Standalone Server Setup

4

Installing and Configuring the Database
Management System

Kuali Rice was developed using two relational database management systems: MySQL and Oracle. The
typical production install involves running the Rice server separate from the database server, however both
can be run on the same machine for development purposes.

Rice runs, and has been tested with the following versions:

• Oracle

• Oracle Database 10g

• Oracle Database 11g

• Oracle Express Edition (XE)

Use the Oracle JDBC Driver to connect to these databases.

Ensure that the Oracle database you intend to use encodes character data in a UTF variant by default.
For Oracle XE, this entails downloading the "Universal" flavor of the binary, which uses AL32UTF8.

• MySQL

• MySQL 5.1.+

Use the MySQL Connector/J (5.1.+) to connect to MySQL databases.

You should be able to adapt Rice to other standard relational databases (e.g., Sybase, Microsoft SQL
Server, DB2, etc.). However, this Installation Guide does not provide information for running Rice with
these products.

Locations for Database Software
Below are locations from which Oracle and MySQL could be downloaded at the time of release of Rice
2.1.0-rc1.

Table 2.1. Locations for Database Software

Software Download Location

Oracle Standard
and Enterprise
Editions

http://www.oracle.com/technetwork/database/enterprise-edition/downloads/
index.html

Oracle Express
Edition

http://www.oracle.com/technetwork/database/express-edition/downloads/
index.html

Oracle JDBC DB
Driver

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

MySQL http://www.mysql.com/downloads/

MySQL
Connector/J JDBC
Driver

http://www.mysql.com/products/connector/j/

http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html
http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html
http://www.oracle.com/technetwork/database/express-edition/downloads/index.html
http://www.oracle.com/technetwork/database/express-edition/downloads/index.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.mysql.com/downloads/
http://www.mysql.com/products/connector/j/

Standalone Server Setup

5

MySQL Database Preparation
Kuali Rice supports both MySQL and Oracle databases. However, MySQL is easier to install than Oracle
and uses less machine resources so many developers prefer to use that when getting started with Rice.

Installation

The installation steps for MySQL are going to be different for each platform. Please download the latest
version MySQL Server from the location listed in the Locations for Database Software section of this
document and follow the installation instructions for your platform.

Note

You may be required to create an account on the MySQL site in order to download the software.

Please be sure to follow the instructions for installing MySQL on your platform very carefully.
If downloading for Mac OS X, be careful to download the appropriate version for your platform
(32-bit vs. 64-bit and 10.6 vs 10.7)

Configuration

There are a few MySQL database configuration options that are required in order for Kuali Rice to work
properly. These will need to be set in either your my.cnf or my.ini file. The location and names of these
files will differ depending on which platform you are working on. For details on where these files can be
found, see the following document:

http://dev.mysql.com/doc/refman/5.1/en/option-files.html

Once you have located this file, please add the following options, paying special attention to the line that
needs to be commented out:

[mysqld]
max_allowed_packet=20M
transaction-isolation=READ-COMMITTED
lower_case_table_names=1
max_connections=1000
innodb_locks_unsafe_for_binlog=1
...
Be sure to comment this out if it's in the file!!!
#log-bin=mysql-bin

Note that the [mysqld] section may already be in your my.cnf file. If so, you can just add the options listed
above underneath that section

Caution

It is very important that you comment out log-bin. Otherwise you will end up with some very
bad problems later!

Verification

Before verifying your mysql installation you will need to ensure that MySQL is running. Some of the
platform-specific packages will set this up automatically (or allow you to install yourself in the case of

http://dev.mysql.com/doc/refman/5.1/en/option-files.html

Standalone Server Setup

6

Mac OS X). If MySQL is not starting automatically you can start it using a command like the following
example from Mac OS X:

sudo /usr/local/mysql/bin/mysqld_safe

This will start the MySQL server.

To verify that you can actually connect to the server, execute the following at the command line:

mysql -u root -p

This should bring you to a command line client interface for the MySQL server. Type "show databases;"
and press return. You should see output similar to the following.

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1
Server version: 5.1.50-log MySQL Community Server (GPL)

Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
This software comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to modify and redistribute it under the GPL v2 license

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> show databases;
+--------------------+
| Database |
+--------------------+
| information_schema |
| mysql |
| test |
+--------------------+
3 rows in set (0.13 sec)

mysql>

Install the JDBC Driver

Kuali Rice uses the MySQL Connector/J product as the native JDBC driver. Please download this driver
from the location specified in the Locations for Database Software section of this Guide.

Once you have downloaded the JDBC driver that corresponds to your version of MySQL, copy it to /java/
drivers. /java/drivers is a hard coded directory that the Rice scripts use as a default directory in which to
search for drivers when the installation scripts are running.

Oracle Database Preparation

Installation

The installation steps for Oracle are going to be different for each platform and version of Oracle. Please
download from the location listed in the Locations for Database Software section of this document and
follow the installation instructions for your platform.

To run the database completely on your local machine, we recommend installing Oracle Express (XE).
Please refer to the Locations for Database Software section of this Installation Guide to find the download
location for this software.

Standalone Server Setup

7

Configuration

By default, OracleXE registers a web user interface on port 8080. This is the same port that the standalone
version of Rice is preconfigured to use. To avoid a port conflict, you must change the port that the OracleXE
web user interface uses with the Oracle XE admin webapp:

Figure 2.1. Oracle XE admin webapp

If you prefer, you can use the Oracle SQL tool described here to change the OracleXE web user interface
port: http://daust.blogspot.com/2006/01/xe-changing-default-http-port.html

Please edit your hosts file with an entry to refer to your Oracle database. When this Installation Guide
refers to the Oracle database host server, it will be referred to in the examples as koracle.

http://daust.blogspot.com/2006/01/xe-changing-default-http-port.html

Standalone Server Setup

8

Now edit the hosts file and add this:

<ip address of mysql server> koracle

Verification

To connect to the supporting Oracle database (i.e., run scripts, view database tables, etc.), we recommend
installing the Squirrel SQL client. Please see the section on Squirrel SQL for more information.

Install the JDBC Driver

Kuali Rice uses the standard Oracle JDBC driver as the native JDBC driver.

1. Please download this driver from the location specified in the Locations for Database Software section
of this Guide.

2. Once you have downloaded the JDBC driver that corresponds to your version of Oracle, copy it to /
java/drivers. /java/drivers is a hard coded directory that the Rice scripts use as a default directory in
which to search for drivers when the installation scripts are running.

3. Use the maven-install-plugin to copy ojdbc14.jar into your local maven repository.

mvn install:install-file -DgroupId=com.oracle -DartifactId=ojdbc14 -Dversion=10.2.0.3.0 -Dpackaging=jar -Dfile=ojdbc14.jar

4. You should see output similar to this if the jar gets installed correctly.

[INFO] Installing ojdbc14.jar to /.m2/repository/com/oracle/ojdbc14/10.2.0.3.0/ojdbc14-10.2.0.3.0.jar

Suggested SQL Client Software
To examine and test your database setup, SQL client software is useful. Any SQL client software that will
connect to a MySQL or Oracle database will work. Two tools used by the development team are the mysql
command-line client and SQuirrel SQL.

mysql client software

The mysql command-line client only works with MySQL and is usually installed with the MySQL Server
software. An example of connection to MySQL as root and then switching to a database named test can
be found below:

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 2
Server version: 5.1.50-log MySQL Community Server (GPL)

Copyright (c) 2000, 2010, Oracle and/or its affiliates. All rights reserved.
This software comes with ABSOLUTELY NO WARRANTY. This is free software,
and you are welcome to modify and redistribute it under the GPL v2 license

Type 'help;' or '\h' for help. Type '\c' to clear the current input statement.

mysql> use test;
Database changed

SQuirrel SQL

Tools like SQuirrel SQL use JDBC to access the database and will work with both MySQL and Oracle
databases. You can download and install it from the following URL:

http://maven.apache.org/plugins/maven-install-plugin

Standalone Server Setup

9

• http://squirrel-sql.sourceforge.net/

With MySQL

Connecting to a MySQL database with the name test would have a JDBC url like the following:
jdbc:mysql://localhost:3306/test.

With Oracle

Connecting to an Oracle database would have a JDBC url like the following:
jdbc:oracle:thin:@localhost:1521:XE.

The Rice SQL files use slash ‘/‘ as the statement delimiter. You may have to configure your SQL client
appropriately so it can run the Rice SQL. In SQuirreL, you do this in Session->Session Properties->SQL-
>Statement Separator.

Install and Configure Required Software

Overview
Kuali Rice requires the following software to be setup and configured:

• Sun Microsystems Java Development Kit (JDK 1.6.x)

Warning

You must use a JDK and not a Java runtime environment (JRE); the JDK you use must be
version 1.6.x. Additionally, Rice has not been tested on JDKs other than Sun. So alternative
implementations like OpenJDK should be used at your own risk.

• Maven 3

Environment Variables
First, some environment variables need to be configured.

Mac OS X

Environment variables in Mac OS X can be set in a number of ways, but here we will show how to modify
or create the .profile files in your user home directory. On OS X your user home directory is typically
located at /Users/<username>,

An example .profile can be found below:

M2_HOME=/usr/local/maven
MAVEN_OPTS="-Xmx1024m -XX:MaxPermSize=768m"
GROOVY_HOME=/usr/local/groovy
JAVA_HOME=/System/Library/Frameworks/JavaVM.framework/Versions/1.6/Home
CATALINA_HOME=/usr/local/tomcat
MYSQL_HOME=/usr/local/mysql

PATH="$ANT_HOME/bin:$M2_HOME/bin:$GROOVY_HOME/bin:$CATALINA_HOME:$MYSQL_HOME/bin:$PATH"
export PATH ANT_HOME ANT_OPTS M2_HOME MAVEN_OPTS GROOVY_HOME JAVA_HOME CATALINA_HOME MYSQL_HOME

http://squirrel-sql.sourceforge.net/

Standalone Server Setup

10

Note

It is important to export your environment variables once they are defined as the file above does.

Windows XP

To get to the screen where you can define environment variables on Windows XP follow these steps:

1. Click on the "Start" button in the bottom left-hand corner.

2. On the resulting screen, right click on "My Computer".

3. In the context menu, click on "Properties".

4. This will open up the "System Properties" dialog window.

5. Click on the "Advanced" tab.

6. Click on the "Environment Variables" button.

7. You will see the screen where you can edit existing environment variables or define new ones.

Windows Vista and Windows 7

To get to the screen where you can define environment variables on Windows Vista or Windows 7 follow
these steps:

1. Click on the "Start" button in the bottom left-hand corner.

2. On the resulting screen, right click on "Computer".

3. In the context menu, click on "Properties".

4. This will open up the Control Panel "System" dialog.

5. Click on the "Advanced system settings".

6. In the resulting window, click on the "Environment Variables..." button.

7. You will see the screen where you can edit existing environment variables or define new ones.

Note

The windows command line console must be closed and reopened in order for environment
variable changes to be effective.

Java SDK

Installation

You should download and install the latest version of JDK 6. If you are on Windows, you can download
it from the following URL: http://www.oracle.com/technetwork/java/javase/downloads/index.html.

If you are on a Mac, then Java 6 should alredy be installed if you are up to date with the latest updates
from Apple.

http://www.oracle.com/technetwork/java/javase/downloads/index.html

Standalone Server Setup

11

Configuration

You will also want to set up your JAVA_HOME environment variable to point to the installation directory
of your JDK. In both Windows and Mac environments, the java executable program should already be
on your path. But if it is not, you will want to include JAVA_HOME/bin in your PATH environment
variable.

If you do not know how to do this, see the Environment Variables section above for your platform.

Verification

In order to verify that your JDK has been installed successfully, open a command prompt and type the
following:

java -version

You should see output similar to the following:

java version "1.6.0_26"
Java(TM) SE Runtime Environment (build 1.6.0_26-b03-383-11A511)
Java HotSpot(TM) 64-Bit Server VM (build 20.1-b02-383, mixed mode)

If you receive an error indicating that the "java" command could not be found, please ensure that the java
command is on your machine's PATH environment variable.

To prevent potential out of memory errors when running Rice, you should set your JAVA_OPTS
environment to a value like the following:

JAVA_OPTS="-Xmx1024m -XX:MaxPermSize=768m"

If you do not know how to do this, see the Environment Variables section above for your platform.

Maven
Maven is the primary build tool used by the Kuali Rice project. Maven is based on a project object model
(POM) that defines various standards and conventions surrounding the organization of a project. This
faciliates a set of standard build goals and lifecycle phases (such as compile, test, package, etc.)

Installation

To download version 3 of Maven, use the following link: http://maven.apache.org/download.html

Once you have downloaded the zip file, unzip it to a location of your choosing.

Configuration

You will want to set your M2_HOME environement variable to point to the location where you unzipped
Maven. You will additionally want to include M2_HOME/bin in your PATH environment variable so
that maven can be executed from the command line without having to specify the full path.

Finally, to prevent potential out of memory errors when compiling Rice with Maven, you should set your
MAVEN_OPTS environment to a value like the following:

MAVEN_OPTS="-Xmx1024m -XX:MaxPermSize=768m"

If you do not know how to do this, see the Environment Variables section above for your platform.

http://maven.apache.org/download.html

Standalone Server Setup

12

Verification

In order to verify that Maven has been installed successfully and is available on the path, open a command
prompt and type the following:

mvn -version

You should see output like the following:

Apache Maven 3.0.3 (r1075438; 2011-02-28 10:31:09-0700)
Maven home: /usr/local/maven
Java version: 1.6.0_26, vendor: Apple Inc.
Java home: /System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home
Default locale: en_US, platform encoding: MacRoman
OS name: "mac os x", version: "10.7.2", arch: "x86_64", family: "mac"

If you receive an error indicating hat the "mvn" command could not be found, please ensure that the
directory that includes the mvn executable (M2_HOME/bin) is on your machine's PATH environment
variable.

Install and Setup Apache Tomcat
Kuali Rice 2.1.0-rc1 supports the following Tomcat versions:

• Tomcat 6 (Servlet API 2.5, JSP 2.1)

• Tomcat 7 (Servlet API 3.0, JSP 2.2)

Please visit the Apache Tomcat site for information on how to install and configure Tomcat.

Other servlet containers can be used with Kuali Rice, but this guide will focus on Tomcat.

Install Rice software from distribution
The quickest way to get Rice installed on a standalone server is to download the Standalone Server
distribution from the kuali.org download site. Once downloaded, decompress the software.

Building the Rice Database
Load Impex Data with Maven

1. Change to the directory db/demo located where you decompressed the software.

2. Verify that Maven can connect to your database instance.

Running Locally:

• MySQL

mvn validate -Pdb,mysql -Dimpex.dba.password=[dbapassword]

Note

If the 'root' user does not have a password (which is the default on a new MySQL install),
drop the '-Dimpex.dba.password' parameter from all MySQL commands or use 'NONE' for
the password:

http://tomcat.apache.org/
http://kuali.org/rice/download

Standalone Server Setup

13

mvn validate -Pdb,mysql

or

mvn validate -Pdb,mysql -Dimpex.dba.password=NONE

• Oracle

mvn validate -Pdb,oracle -Dimpex.dba.password=[dbapassword]

Connecting to a remote database:

• MySQL

mvn validate -Pdb,mysql -Dimpex.dba.url=jdbc:mysql://[your-mysql-instance]/ -Dimpex.dba.password=[dbapassword]

• Oracle

mvn validate -Pdb,oracle -Dimpex.url=jdbc:oracle:thin:@[your-oracle-server]:1521:XE -Dimpex.dba.password=[dbapassword]

3. Load the data set.

Running Locally:

• MySQL

mvn clean install -Pdb,mysql -Dimpex.dba.password=[dbapassword]

• Oracle

mvn clean install -Pdb,oracle -Dimpex.dba.password=[dbapassword]

Connecting to a remote database:

• MySQL

mvn clean install -Pdb,mysql -Dimpex.dba.url=jdbc:mysql://[your-mysql-instance]/ -Dimpex.dba.password=[dbapassword]

• Oracle

mvn clean install -Pdb,oracle -Dimpex.url=jdbc:oracle:thin:@[your-oracle-server]:1521:XE -Dimpex.dba.password=[dbapassword]

4. Wait for the maven process to build your database (it may take a little while, especially if this is the
first time you've done it and maven has to download impex and other plugins).

5. You should get the following message at the end of the process.

[INFO] --
[INFO] BUILD SUCCESS
[INFO] --

Verifying your Database Installation

At this point, your Kuali Rice database should be successfully installed. To verify this, log into your
database and verify the number of tables that are present. There should be at least 200 (the number will
be different for mysql and oracle).

Standalone Server Setup

14

Configure Rice

Deploying the WAR file

1. Copy the kr-dev.war file from the base directory of the server distribution to the directory that contains
web applications in your servlet container. For Tomcat, this is [Tomcat-root-directory]/webapps.

2. Copy the database-specific JDBC driver to the [Tomcat-root-directory]/lib. Examples:

• MySQL

cp -p /java/drivers/mysql-connector-java-5.1.5-bin.jar /usr/local/tomcat/lib

• Oracle

cp -p /java/drivers/ojdbc14.jar /usr/local/tomcat/lib

3. Configure the rice-config.xml File. By default when it starts, Rice attempts to read the rice-config.xml
configuration file from the paths in this order:

a. /usr/local/rice/rice-config.xml

b. ${rice.base}../../../conf/rice-config.xml

c. ${rice.base}../../conf/rice-config.xml

d. ${additional.config.locations}

The value for rice.base is calculated using different locations until a valid location is found. Kuali
calculates it using these locations in this sequence:

a. ServletContext.getRealPath("/")

b. catalina.base system property

c. The current working directory

On Windows it also checks the following location:

a. %USERPROFILE%\kuali\main\dev

An example rice-config.xml file is included in the server distribution under config/web/src/main/
config/example-config.

For MySQL, just modify the following database parameters in the rice-config.xml file. The values
should conform to the values you will use with the ImpEx tool via the impex-build.properties file.
ImpEx is set up in the Installing and Configuring the Database Management System section of this
guide.

datasource.url=jdbc:mysql://localhost:3306/rice
datasource.username=rice
datasource.password=kualirice
datasource.url=jdbc:mysql://remoteMySQLServerComputerName:3306/rice
datasource.username=rice
datasource.password=kualirice

Standalone Server Setup

15

If you are using Oracle, the JDBC URL will have this general form:

datasource.url=jdbc:oracle:thin:@remoteMySQLServerComputerName:1521:ORACLE_SID

Note

Additional configuration parameters are described in the Parameters section of this guide.

4. At this point, you are ready to try to bring up the Tomcat server with the Rice web application:

cd /usr/local/tomcat/bin
./startup.sh

5. Check if Tomcat and Rice started successfully:

cd /usr/local/tomcat/logs
tail -n 500 -f catalina.out

6. If your Rice server started up successfully, browse to the site http://yourlocalip:8080/kr-dev. You
should see the Rice portal screen which will look something like this:

Standalone Server Setup

16

Figure 2.2. Rice Portal Main Menu

Standalone Server Setup

17

Parameters
The tables below have the basic set of parameters for rice-config.xml that you need to get an instance of
Rice running. Please use these tables as a beginning reference to modify your rice-config.xml file.

Warning

Make sure the application.url and database user name and password are set correctly.

Table 2.2. Core

Parameter Description Examples or Values

application.url The external URL used to access the
Rice web interface; edit only the fully-
qualified domain name and port of the
server

http://yourlocalip:8080/kuali-rice-
url

app.context.name Context name of the web application

• Essentially, the name of the WAR file

• Used to build the path for images and
help URLs

kuali-rice-url (This value should not
be changed)

log4j.settings.path Path to log4j.properties file. If the file
does not exist, you must create it.

/usr/local/rice/log4j.properties

log4j.settings.reloadIntervalinterval (in minutes) to check for
changes to the log4j.properties file

5

mail.smtp.host SMTP host name or IP (This param is not
in the default config.)

localhost

config.location Location of configuration file to
load environment-specific configuration
parameters (This param is not in the
default config.)

/usr/local/rice/rice-config-
${environment}.xml

sample.enabled Enable the sample application boolean

Table 2.3. Database

Parameter Description Examples or Values

datasource.ojb.platformName of OJB platform to use for
the database

Oracle9i or MySQL

datasource.platform Rice platform implementation
for the database

• org.kuali.rice.core.database.platform.DerbyPlatform

• org.kuali.rice.core.database.platform.OraclePlatform

• org.kuali.rice.core.database.platform.MySQLPlatform

datasource.driver.nameJDBC driver for the database • org.apache.derby.jdbc.EmbeddedDriver,

• oracle.jdbc.driver.OracleDriver

• com.mysql.jdbc.Driver

datasource.username User name for connecting to the
server database

rice

Standalone Server Setup

18

Parameter Description Examples or Values

datasource.password Password for connecting to the
server database

datasource.url JDBC URL of database to
connect to

• jdbc:oracle:thin:@localhost:1521:XE

• jdbc:mysql://localhost:3306/kuldemo

datasource.pool.minSizeMinimum number of
connections to hold in the pool

an integer value suitable for your environment

datasource.pool.maxSizeMaximum number of
connections to allocate in the
pool

an integer value suitable for your environment

datasource.pool.maxWaitMaximum amount of time (in
ms) to wait for a connection
from the pool

10000

datasource.pool.validationQueryQuery to validate connections
from the database

select 1 from dual

Table 2.4. KSB

Parameter Description Examples or Values

serviceServletUrl URL that maps to the
KSBDispatcherServlet (include
a trailing slash); This param is
not in the default config.

keystore.file Path to the keystore file to use
for security

/usr/local/rice/rice.keystore

keystore.alias Alias of the standalone server's
key

see section entitled Generating the Keystore

keystore.password Password to access the keystore
and the server's key

see section entitled Generating the Keystore

Table 2.5. KEN

Parameter Description Examples or Values

notification.basewebappurlBase URL of the KEN web
application (This param is not in
the default config.)

Table 2.6. KEW

Parameter Description Examples or Values

workflow.url URL to the KEW web module ${application.url}/kew

plugin.dir Directory from which plugins
will be loaded

/usr/local/rice/plugins

attachment.dir.locationDirectory where attachments
will be stored (This param is not
in the default config.)

Standalone Server Setup

19

Setup a Keystore
For client applications to consume secured services hosted from a Rice server, you must generate a
keystore. As an initial setup, you can use the keystore provided by Rice. Once a keystore is generated, you
must configure the KSB to use the keystore.

Generating a Keystore
There are three ways to get this keystore:

1. If you are doing a source code build of Rice, it is in the directory <source root>/security and it has
a file name of rice.keystore

2. The keystore is also located in the server distribution under the security directory.

3. You can generate the keystore yourself. Please refer to the Security and Keystores section in the KSB
chapter of the Technical Reference Guide for the steps to accomplish this.

Configure KSB to use the keystore
You must have these params in the xml config to allow KSB to use the keystore:

<param name="keystore.file">/usr/local/rice/rice.keystore</param>
<param name="keystore.alias">rice</param>
<param name="keystore.password">r1c3pw</param>

• keystore.file - The location of the keystore

• keystore.alias - The alias used in creating the keystore above

• keystore.password - This is the password of the alias AND the keystore. This assumes that the keystore
is set up so that these are the same.

TRG.html#security_and_keystores
TRG.html#TRG_KSB
TRG.html#TRG_KSB
TRG.html

20

Chapter 3. Tuning Kuali Rice 2.1.0-rc1
Performance tuning is an art form in and of itself, and tuning Kuali Rice is no exception. Here are some
items we've found that may help with your tuning issues. Additionally, we are collecting performance
tuning information in the Kuali Rice wiki at https://wiki.kuali.org/x/2hOeEg.

JVM Tuning
To avoid OutOfMemoryError errors, tune the JVM by increasing the allocated memory.

Add these lines to the catalina.sh file in the tomcat/bin directory:

JAVA_OPTS=”-Xmx=512m –XX:MaxPermSize=256m”

https://wiki.kuali.org/x/2hOeEg

21

Chapter 4. Additional Configurations
There is a number of additional configurations that Rice supports. We've collected a few of them here and
provided setup instructions below.

See Example Server Configurations in the appendix for examples of hardware and software configurations
of Kuali Rice servers.

Setting Up a Load-Balanced Clustered
Production Environment

This describes how to set up Rice instances for a load-balanced production environment across multiple
servers.

1. The configuration parameter ${environment} must be set to the text: prd

2. When the configuration parameter ${environment} is set to prd, the code triggers:

a. Sending email to specified individuals

b. Turning off some of the Rice “back doors”

The high-level process for creating multiple Rice instances:

1. Ensure that these are set up properly so no additional configuration is needed during installation:

a. Quartz is configured properly for clustering (there are various settings that make this possible).

b. The initial software setup has the proper configuration to support a clustered production
environment.

c. Rice’s initial settings are in the file, common-config-defaults.xml.

Here are some of the parameters in the common-config-defaults.xml that setup Quartz for clustering:

<param name="useQuartzDatabase" override="false">true</param>
<param name="ksb.org.quartz.scheduler.instanceId” override="false">AUTO</param>
<param name="ksb.org.quartz.scheduler.instanceName" override="false">KSBScheduler</param>
<param name="ksb.org.quartz.jobStore.isClustered" override="false">true</param>
<param name="ksb.org.quartz.jobStore.tablePrefix" override="false">KRSB_QRTZ_</param>

If it becomes necessary to pass additional parameters to Quartz during rice startup, just add parameters
in the rice-config.xml file prefixed with ksb.org.quartz.*

The parameter useQuartzDatabase MUST be set to true for Quartz clustering to work. (This is
required because it uses the database to accomplish coordination between the different scheduler
instances in the cluster.)

2. Ensure that all service bus endpoint URLs are unique on each machine: Make sure that each Rice server
in the cluster has a unique serviceServletUrl parameter in the rice-config.xml configuration file.

One way to accomplish this is to pass a system parameter into the JVM that runs the Tomcat server that
identifies the IP and port number of that particular Tomcat Server. For example:

Additional Configurations

22

-Dhttp.url=129.79.216.156:8806

You can then configure your serviceServletUrl in the rice-config.xml to use that IP and port number.

<param name="serviceServletUrl">http://${http.url}/${app.context.name}/remoting/</param>

You could have different values for serviceServletUrl in the rice-config.xml on each machine in the
cluster.

3. If you are using notes and attachments in workflow, then the attachment.dir.location parameter must
point to a shared file system mount (one that is mounted by all machines in the cluster).

4. The specifics of setting up and configuring a shared file system location are part of how you set up your
infrastructure environment. Those are beyond the scope of this Guide.

5. In general, to accomplish a load-balanced clustered environment, you must implement some type of
load balancing technology with session affinity (i.e., it keeps the browser client associated with the
specific machine in the cluster that it authenticated with). An example of a load balancing appliance-
software is the open source product, Zeus.

Running Multiple Instances of Rice Within a
Single Tomcat Instance

There are two different structural methods to run multiple instances of Rice within a single Tomcat
instance. You can use either method:

1. Run a staging and a test environment. This requires a rebuild of the source code.

2. Run multiple instances of a production environment. This requires modification of the Tomcat WEB-
INF/web.xml.

Running a Staging and a Test Environment
To show you how to set up a staging and a test environment within one Tomcat instance, this section
presents the configuration recipe as though it were a Quick Start Best Practices section. This means that this
section will be laid out using the Quick Start Best Practices section format and system directory structure.
It presents a basic process, method, and guide to what you need to do to get a staging and test environment
up within a single Tomcat instance. You could accomplish this functionality many different ways; these
sections present one of those ways.

This describes how to set up the Rice instances of kualirice-stg and kualirice-tst instances pointing to
the same database. However, you could set up two different databases, one for staging and one for testing.
How you configure Rice for the scenario of a database for the “stg” instance and a separate database for
the “tst” instance depends on how you want to set up Rice. That scenario is not documented here.

• We are assuming that you performed all the installation steps above to compile the software from source
and deploy the example kualirice.war file. This example begins with rebuilding the source to create
a test and staging instance compilation.

• You must compile the source code with a different environment variable. To add the environment
variable, environment, to the WAR file’s WEB-INF/web.xml file, recompile the source code with this
parameter:

ant -Drice.environment=some-environment-variable dist-war

Additional Configurations

23

• To begin: Log in as the rice user.

• Shut down your Tomcat server.

cd /usr/local/tomcat/bin
./shutdown.sh
Using CATALINA_BASE: /usr/local/tomcat
Using CATALINA_HOME: /usr/local/tomcat
Using CATALINA_TMPDIR: /usr/local/tomcat/temp
Using JRE_HOME: /usr/java/jdk1.6.0_16

• Recompile your WAR files with the specific environment variables:

cd /opt/software/kuali/src/rice-release-1-0-2-br
ant -Drice.environment=stg dist-war
cd target/
cp -p kr-stg.war /usr/local/tomcat/webapps/kualirice-stg.war

cd /opt/software/kuali/src/rice-release-1-0-2-br
ant -Drice.environment=tst dist-war
cp -p rice-tst.war /usr/local/tomcat/webapps/kualirice-tst.war

• Adding an environment variable to the application config variable will setup Rice to point to the two
different instances. To allow each instance to point to the same database, edit the rice-config.xml and
modify the application.url to correctly point your Rice to load the correct setup:

<param name="application.url">http://yourlocalip:8080/kualirice-${environment}</param>

• Now start up your Tomcat server:

cd /usr/local/tomcat/bin
./startup.sh
Using CATALINA_BASE: /usr/local/tomcat
Using CATALINA_HOME: /usr/local/tomcat
Using CATALINA_TMPDIR: /usr/local/tomcat/temp
Using JRE_HOME: /usr/java/jdk1.6.0_16

If your Rice instances started up successfully, browse to the sites http://yourlocalip:8080/kualirice-stg
and http://yourlocalip:8080/kualirice-tst. You should see the Rice sample application for each site.

• Next, shut down your Tomcat server:

cd /usr/local/tomcat/bin
./shutdown.sh
Using CATALINA_BASE: /usr/local/tomcat
Using CATALINA_HOME: /usr/local/tomcat
Using CATALINA_TMPDIR: /usr/local/tomcat/temp
Using JRE_HOME: /usr/java/jdk1.6.0_16

• To create specific configuration parameters for the specific instances of Rice, add this to the rice-
config.xml.

<param name="config.location">/usr/local/rice/rice-config-${environment}.xml</param>

• Next, copy the rice-config.xml to both staging and test to enter instance-specific configuration into each
of the resulting xml files:

Additional Configurations

24

cd /usr/local/rice
cp -p rice-config.xml rice-config-stg.xml
cp -p rice-config.xml rice-config-tst.xml

• Remove anything from rice-config.xml that is specific to the stg or tst implementation. Put those specific
stg or tst parameters in the rice-config-stg.xml or rice-config-tst.xml file, respectively.

• Now start up your Tomcat server:

cd /usr/local/tomcat/bin
./startup.sh
Using CATALINA_BASE: /usr/local/tomcat
Using CATALINA_HOME: /usr/local/tomcat
Using CATALINA_TMPDIR: /usr/local/tomcat/temp
Using JRE_HOME: /usr/java/jdk1.6.0_16

If your Rice instances started up successfully, browse to the sites http://yourlocalip:8080/kualirice-stg
and http://yourlocalip:8080/kualirice-tst. You should see the Rice sample application for each site.

• As a best practice:

• Put all common properties and settings across all Rice instances in the rice-config.xml.

• Put instance-specific settings in rice-config-stg.xml and rice-config-tst.xml.

Running Multiple Production Environments
This describes how to set up two production Rice instances running side by side.

Items specific to running a Production Platform:

1. The configuration parameter ${environment} must be set to the text: prd

2. When the configuration parameter ${environment} is set to prd, the code:

a. Sends email to specified individuals

b. Turns off some of the Rice “back doors”

This assumes that you performed all the installation steps above to compile the software from source and
deploy the example kualirice.war file. This example starts from rebuilding the source to accomplish a
test and staging instance compilation.

The high-level process for creating multiple Rice instances:

1. Create a riceprd1 and riceprd2 database for the first production and second production instance,
respectively.

2. Build the WAR file from the source code.

3. Unzip the WAR file in a temporary work directory.

4. Add an environment variable, prd1, to the WEB-INF/web.xml in the unzipped-war-file-directory.

5. Re-zip the WAR file into kualirice-prd1.war.

Additional Configurations

25

6. Copy kualirice-prd1.war to /usr/local/tomcat/webapps.

7. Change the environment variable from prd1 to prd2 in the WEB-INF/web.xml in the unzipped-war-
file-directory.

8. Re-zip the WAR file into kualirice-prd2.war.

9. Copy kualirice-prd2.war to /usr/local/tomcat/webapps.

10.In /usr/local/rice, copy rice-config.xml to rice-config-prd1.xml.

11.In /usr/local/rice, copy rice-config.xml to rice-config-prd2.xml.

12.In rice-config.xml, remove any instance-specific parameters.

13.Modify rice-config-prd1.xml for instance-specific parameters.

14.Modify rice-config-prd2.xml for instance-specific parameters.

15.Start up Tomcat.

Here are the details:

• Start by logging in as the rice user.

• Shut down your Tomcat server.

cd /usr/local/tomcat/bin
./shutdown.sh
Using CATALINA_BASE: /usr/local/tomcat
Using CATALINA_HOME: /usr/local/tomcat
Using CATALINA_TMPDIR: /usr/local/tomcat/temp
Using JRE_HOME: /usr/java/jdk1.6.0_16

• Set Up the ImpEx Process to Build the Database for the process to create the riceprd1 and riceprd2
databases.

• Set your directory to the rice home directory:

cd ~
vi impex-build.properties

• For the rice-prd1 database, modify this in the ImpEx file:

#
Uncomment these for a local MySQL database
#
import.torque.database = mysql
import.torque.database.driver = com.mysql.jdbc.Driver
import.torque.database.url = jdbc:mysql://kmysql:3306/riceprd1
import.torque.database.user=riceprd1
import.torque.database.schema=riceprd1
import.torque.database.password=kualirice

• Save the file, change directory to the folder where the ImpEx build.xml is, and create the database:

cd /opt/software/kuali/db/trunk/impex
ant create-schema

Additional Configurations

26

ant satellite-update

• You may receive this error because the ANT and SVN processes cannot write to a directory on the
hard drive:

Buildfile: build.xml
Warning: Reference torque-classpath has not been set at runtime, but was found during
build file parsing, attempting to resolve. Future versions of Ant may support
 referencing ids defined in non-executed targets.

satellite-update:
Warning: Reference torque-classpath has not been set at runtime, but was found during
build file parsing, attempting to resolve. Future versions of Ant may support
 referencing ids defined in non-executed targets.

satellite-init:
 [echo] Running SVN update in /opt/software/kuali/devdb/rice-cfg-dbs
 [svn] <Update> started ...
 [svn] svn: '/opt/software/kuali/devdb/rice-cfg-dbs' is not a working copy
 [svn] svn: Cannot read from '/opt/software/kuali/devdb/rice-cfg-dbs/.svn/format': /opt/software/kuali/devdb/rice-cfg-dbs/.svn/format (No such file or directory)
 [svn] <Update> failed !

BUILD FAILED
/opt/software/kuali/db/trunk/impex/build.xml:825: Cannot update dir /opt/software/kuali/devdb/rice-cfg-dbs

Total time: 3 seconds

• If you received the error above, go to the window where the root user is logged in and execute this
command:

rm -rf /opt/software/kuali/devdb/rice-cfg-dbs

• Then return to where you have the rice user logged in and re-execute the command:

ant satellite-update

• The creation of the Rice riceprd1 database should begin at this time.

• For the rice-prd2 database, modify this in the ImpEx file:

#
Uncomment these for a local MySQL database
#
import.torque.database = mysql
import.torque.database.driver = com.mysql.jdbc.Driver
import.torque.database.url = jdbc:mysql://kmysql:3306/riceprd2
import.torque.database.user=riceprd2
import.torque.database.schema=riceprd2
import.torque.database.password=kualirice

• Save the file, change directory to the folder where the ImpEx build.xml is, and create the database:

cd /opt/software/kuali/db/trunk/impex
ant create-schema
ant satellite-update

• You may get this error because the ANT and SVN processes cannot write to a directory on the hard drive:

Additional Configurations

27

Buildfile: build.xml
Warning: Reference torque-classpath has not been set at runtime, but was found during
build file parsing, attempting to resolve. Future versions of Ant may support
 referencing ids defined in non-executed targets.

satellite-update:
Warning: Reference torque-classpath has not been set at runtime, but was found during
build file parsing, attempting to resolve. Future versions of Ant may support
 referencing ids defined in non-executed targets.

satellite-init:
 [echo] Running SVN update in /opt/software/kuali/devdb/rice-cfg-dbs
 [svn] <Update> started ...
 [svn] svn: '/opt/software/kuali/devdb/rice-cfg-dbs' is not a working copy
 [svn] svn: Cannot read from '/opt/software/kuali/devdb/rice-cfg-dbs/.svn/format': /opt/software/kuali/devdb/rice-cfg-dbs/.svn/format (No such file or directory)
 [svn] <Update> failed !

BUILD FAILED
/opt/software/kuali/db/trunk/impex/build.xml:825: Cannot update dir /opt/software/kuali/devdb/rice-cfg-dbs
Total time: 3 seconds

• If you received the error above, go to the window where the root user is logged in and execute this
command:

rm -rf /opt/software/kuali/devdb/rice-cfg-dbs

• Then return to where you have the rice user logged in and re-execute the command:

ant satellite-update

• The creation of the Rice riceprd2 database should begin at this time.

• Create a temporary work directory where you can unzip the WAR file, once it has finished building.
Recompile your WAR files with the specific environment variable:

1. Execute this as root:

cd /opt/software/kuali
mkdir work
chmod –R 777 /opt/software/kuali/work

2. Execute this as the rice user to create the kualirice-prd1.war file:

cd /opt/software/kuali/src/rice-release-1-0-2-br
ant -Drice.environment=prd dist-war
cd target/
cp -p kr-prd.war /opt/software/kuali/work
cd /opt/software/kuali/work
mkdir files
unzip kr-prd.war -d files
cd files/WEB-INF/

3. Edit the web.xml with VI and change the top parameters to these:

<context-param>

Additional Configurations

28

 <param-name>environment</param-name>
 <param-value>prd</param-value>
</context-param>

<context-param>
 <param-name>rice-prd-instance-name</param-name>
 <param-value>prd1</param-value>
</context-param>

4. Zip the kualirice-prd1.war file and deploy it:

cd ..
zip -9 -r kualirice-prd1.war *
mv kualirice-prd1.war /usr/local/tomcat/webapps/

5. Execute this as the rice user to create the kualirice-prd2.war file:

cd WEB-INF

6. Edit the web.xml with VI and change the top parameters to these:

<context-param>
 <param-name>environment</param-name>
 <param-value>prd</param-value>
</context-param>

<context-param>
 <param-name>rice-prd-instance-name</param-name>
 <param-value>prd2</param-value>
</context-param>

7. Zip the kualirice-prd2.war file and deploy it:

cd ..
zip -9 -r kualirice-prd2.war *
mv kualirice-prd2.war /usr/local/tomcat/webapps

8. Remove the work directory:

cd ../..
rm -rf work

Create a Rice-specific set of configuration files:

cd /usr/local/rice
cp -p rice-config.xml rice-config-prd1.xml
cp -p rice-config.xml rice-config-prd2.xml

• Set the following in the rice-config.xml

• Set the config.location for each Rice instance-specific setting

• Set the settings for all instances in the rice-config.xml

• A minimal rice-config.xml might look like this:

<config>

Additional Configurations

29

 <param name="config.location">/usr/local/rice/rice-config-${rice-prd-instance-name}.xml</param>

 <!-- Please fill in a value for this parameter! -->
 <param name="application.url">http://10.93.94.206:8080/kualirice-${rice-prd-instance-name}</param>

 <param name="notification.basewebappurl">${application.url}/ken</param>
 <param name="workflow.url">${application.url}/en</param>

 <param name="plugin.dir">/usr/local/rice/plugins</param>

 <param name="attachment.dir.location">/usr/local/rice/kew_attachments</param>

 <!-- log4j settings -->
 <param name="log4j.settings.path">/usr/local/rice/log4j.properties</param>
 <param name="log4j.settings.reloadInterval">5</param>

 <!-- Keystore Configuration -->
 <param name="keystore.file">/usr/local/rice/rice.keystore</param>
 <param name="keystore.alias">rice</param>

 <param name="keystore.password">kualirice</param>

 <!-- Dummy Login Filter - use if you don't want to go through CAS -->
 <param name="filter.login.class">org.kuali.rice.kew.web.DummyLoginFilter</param>
 <param name="filtermapping.login.1">/*</param>

</config>

• A minimal rice-config-prd1.xml might look this:

<config>

 <!-- set some datasource defaults -->

 <!-- MySQL example -->

 <param name="datasource.ojb.platform">MySQL</param>

 <param name="datasource.platform">org.kuali.rice.core.database.platform.MySQLDatabasePlatform</param>
 <param name="datasource.url">jdbc:mysql://mysql:3306/riceprd1</param>
 <param name="datasource.username">riceprd1</param>
 <param name="datasource.password">kualirice</param>

 <param name="datasource.driver.name">com.mysql.jdbc.Driver</param>

Additional Configurations

30

 <param name="datasource.pool.maxWait">10000</param>
 <param name="datasource.pool.validationQuery">select 1</param>

<!-- Oracle example

 <param name="datasource.ojb.platform">Oracle9i</param>
 <param name="datasource.platform">org.kuali.rice.core.database.platform.OracleDatabasePlatform</param>
 <param name="datasource.url">jdbc:oracle:thin:@localhost:1521:XE</param>
 <param name="datasource.username">rice</param>

 <param name="datasource.password">*** password ***</param>

 <param name="datasource.driver.name">oracle.jdbc.driver.OracleDriver</param>
 <param name="datasource.pool.maxWait">10000</param>
 <param name="datasource.pool.validationQuery">select 1 from dual</param>
 -->
</config>

• A minimal rice-config-prd2.xml might look like this:

<config>
 <!-- set some datasource defaults -->

 <!-- MySQL example -->
 <param name="datasource.ojb.platform">MySQL</param>
 <param name="datasource.platform">org.kuali.rice.core.database.platform.MySQLDatabasePlatform</param>
 <param name="datasource.url">jdbc:mysql://mysql:3306/riceprd2</param>
 <param name="datasource.username">riceprd1</param>
 <param name="datasource.password">kualirice</param>
 <param name="datasource.driver.name">com.mysql.jdbc.Driver</param>
 <param name="datasource.pool.maxWait">10000</param>
 <param name="datasource.pool.validationQuery">select 1</param>

 <!-- Oracle example
 <param name="datasource.ojb.platform">Oracle9i</param>
 <param name="datasource.platform">org.kuali.rice.core.database.platform.OracleDatabasePlatform</param>
 <param name="datasource.url">jdbc:oracle:thin:@localhost:1521:XE</param>
 <param name="datasource.username">rice</param>
 <param name="datasource.password">*** password ***</param>
 <param name="datasource.driver.name">oracle.jdbc.driver.OracleDriver</param>
 <param name="datasource.pool.maxWait">10000</param>
 <param name="datasource.pool.validationQuery">select 1 from dual</param>
 -->
</config>

• Now start up your Tomcat server:

cd /usr/local/tomcat/bin
./startup.sh
Using CATALINA_BASE: /usr/local/tomcat
Using CATALINA_HOME: /usr/local/tomcat
Using CATALINA_TMPDIR: /usr/local/tomcat/temp

Additional Configurations

31

Using JRE_HOME: /usr/java/jdk1.6.0_16

If your Rice instances started up successfully, browse to the sites http://yourlocalip:8080/kualirice-prd1
and http://yourlocalip:8080/kualirice-prd2. You should see the Rice sample application for each site.

Keystore Implementation Variations
If multiple instances of Rice are running under the same Tomcat instance, they can use the same keystore.
You can set up multiple keystores for multiple instances, but you must insert a parameter for each instance
in the WEB-INF/web.xml to point to the different keystores. Beyond this, the set up depends on how you
want your Tomcat instance configured and your implementation-specific parameter settings.

32

Chapter 5. Creating a Client
Application

Developing a Rice application is essentially no different than other J2EE applications. Any tool that can
be used for creating J2EE apps can be used for a Rice app. Essentially Rice is a set of libraries that are
used with your project (like many other libraries a J2EE app includes) and configured for your needs.

The essential tools for developing a project are documented in the next section.

Development Tools

IDE (Integrated Development Environment)
This is the tool you will use to developer the source code and resources for your project. It can be a
simple text editor if you want, however it is recommended to use one of the Java IDE tools available. Of
these Eclipse, Intellij, and NetBeans are the most popular in today’s market. Any of these will be fine for
developing a Rice project. However, as we will learn about next, Rice provides its own tooling to help
getting started with Eclipse. Eclipse is chosen due to its high use and that it is a free open source tool. The
latest release is ‘Indigo’ and can be downloaded here:

http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/indigosr1

Database
Rice applications can use a MySql or Oracle database for persisting application data. Rice itself will use
the database for supporting the various Rice modules (workflow, identity management, and so on). With
each Rice distribution datasets are provided that can be used to create the initial database schema. You can
choose to load the ‘bootstrap’ dataset, which provides the baseline data needed to run Rice, or the ‘demo’
dataset which adds additional demo data (such as example KIM data and workflow doc types). Although
it is possible to provide a shared database for development, it is recommended for productivity reasons
for each developer to have a local database installed. Both MySql and Oracle provide freely available
databases for development. Currently Rice has been tested with the following versions:

• Oracle

• Oracle Database 10g

• Oracle Database 11g

• Oracle Express Edition (XE)

Use the Oracle JDBC Driver to connect to these databases.

Ensure that the Oracle database you intend to use encodes character data in a UTF variant by default.
For Oracle XE, this entails downloading the "Universal" flavor of the binary, which uses AL32UTF8.

• MySQL

• MySQL 5.1.+

Use the MySQL Connector/J (5.1.+) to connect to MySQL databases.

http://www.eclipse.org/downloads/packages/eclipse-ide-java-ee-developers/indigosr1

Creating a Client Application

33

Note for our chosen database we must also download the corresponding database driver. This is a jar file
we will need to make available to our web container for connecting to the database.

These supported databases can be downloaded with the following URLs.

Table 5.1. Locations for Database Software

Software Download Location

Oracle Standard
and Enterprise
Editions

http://www.oracle.com/technetwork/database/enterprise-edition/downloads/
index.html

Oracle Express
Edition

http://www.oracle.com/technetwork/database/express-edition/downloads/
index.html

Oracle JDBC DB
Driver

http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html

MySQL http://www.mysql.com/downloads/

MySQL
Connector/J JDBC
Driver

http://www.mysql.com/products/connector/j/

Note for working with a MySql database the MySql Workbench (available for free download) is very
useful and can save time for those new to MySql.

Once the database provider is installed, we can then load one of the provided datasets using the Kuali
ImpEx tool. The ImpEx tool is a Kuali-developed application which is based on Apache Torque. It reads
in database structure and data from XML files in a platform independent way and then creates the resulting
database in either Oracle or MySQL. To use this tool we simply provide configuration about the location
of the source dataset, along with connectivity information for our target database. This is done by creating
a properties file named ‘impex-build.properties’ in the user home directory. Once the configuration is
complete, we can invoke the tool using ant or maven and our database will be created.

JDK
In order to support compilation of the application source code a JDK must be installed (Note this must be
the JDK and not a Java Runtime Environment – JRE). Rice requires a JDK version of 1.6.x. Additionally,
Rice has only been tested with the Sun JDK implementation. Therefore use of other implementations such
as OpenJDK may have problems.

For machines running Windows, JDK 6 can be downloaded at the following URL:

http://www.oracle.com/technetwork/java/javase/downloads/index.html

If you are on a Mac, then Java 6 should already be installed if you are up to date with the latest updates
from Apple.

You will also want to set up your JAVA_HOME environment variable to point to the installation directory
of your JDK. In both Windows and Mac environments, the java executable program should already be on
your path. But if it is not, you will want to include JAVA_HOME/bin in your PATH environment variable.

In order to verify that your JDK has been installed successfully, open a command prompt and type the
following:

java -version

http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html
http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.html
http://www.oracle.com/technetwork/database/express-edition/downloads/index.html
http://www.oracle.com/technetwork/database/express-edition/downloads/index.html
http://www.oracle.com/technetwork/database/features/jdbc/index-091264.html
http://www.mysql.com/downloads/
http://www.mysql.com/products/connector/j/
http://www.oracle.com/technetwork/java/javase/downloads/index.html

Creating a Client Application

34

You should see output similar to the following:

java version "1.6.0_26"
Java(TM) SE Runtime Environment (build 1.6.0_26-b03-383-11A511)
Java HotSpot(TM) 64-Bit Server VM (build 20.1-b02-383, mixed mode)

If you receive an error indicating that the "java" command could not be found, please ensure that the java
command is on your machine's PATH environment variable.

Maven
Maven is the primary build tool used by the Kuali Rice project. Maven is based on a project object model
(POM) that defines various standards and conventions surrounding the organization of a project. This
facilitates a set of standard build goals and lifecycle phases (such as compile, test, package, etc.). Maven is
particularly helpful in terms of dependency management. When building a Rice application using Maven,
all of the dependent libraries will be pulled in automatically.

It is not a required for Rice enabled applications to be Maven projects. Again, Rice is essentially a set
of jars that can be used with an application. However using Maven simplifies the setup process greatly.
For example applications not using Rice must pull in and manage all of the third party libraries that are
needed by Rice. That has an impact not only on initial project setup, but also each time that application
is upgraded to a new Rice version.

To download version 3 of Maven, use the following link:

http://maven.apache.org/download.html

You will want to set your M2_HOME environment variable to point to the location where you unzipped
Maven. You will additionally want to include M2_HOME/bin in your PATH environment variable so that
maven can be executed from the command line without having to specify the full path.

In order to verify that Maven has been installed successfully and is available on the path, open a command
prompt and type the following:

mvn -version

You should see output like the following:

Apache Maven 3.0.3 (r1075438; 2011-02-28 10:31:09-0700)
Maven home: /usr/local/maven
Java version: 1.6.0_26, vendor: Apple Inc.
Java home: /System/Library/Java/JavaVirtualMachines/1.6.0.jdk/Contents/Home
Default locale: en_US, platform encoding: MacRoman
OS name: "mac os x", version: "10.7.2", arch: "x86_64", family: "mac"

If you receive an error indicating hat the "mvn" command could not be found, please ensure that the
directory that includes the mvn executable (M2_HOME/bin) is on your machine's PATH environment
variable.

Servlet Container
In order to run our Rice application we need have a servlet container. The servlet container serves the
web requests for a J2EE application. There are many containers available for use, but Tomcat is most
commonly used. Kuali Rice 2.0 supports the following Tomcat version:

• Tomcat 6 (Servlet API 2.5, JSP 2.1)

http://maven.apache.org/download.html

Creating a Client Application

35

• Tomcat 7 (Servlet API 3.0, JSP 2.2)

For downloading and install instructions visit the Apache Tomcat site:

http://tomcat.apache.org/

For development purposes you can also choose to use an embedded application container such as Jetty.
The Rice project provides a sample Jetty Server that can be used for your project. The next section will
cover this in more detail.

New Project Setup
Now let’s look at creating a new Rice enabled project. To do this, we will use a tool from the Rice project
that performs most of the initial bootstrapping. The tool is included within the Rice project therefore we
need to start by downloading the Rice 2.0 release. The Rice distribution can be downloaded at:

http://kuali.org/download

Or the project may be checked out through Subversion with the following repository location:

https://svn.kuali.org/repos/rice

Note the full project must be checked out, not just the tool. The tool creates the initial artifacts by copying
from the Rice working copy.

The Rice project contents should be placed into a folder in the local file system. A standard practice is to
create a top level directory named ‘java’, followed by a ‘projects’ directory, and then a directory named
‘rice’ that contains the actual project (‘/java/projects/rice’).

The particular tool we will be using was written in Groovy, therefore we need to download the Groovy
runtime. This can be downloaded at the following URL:

http://groovy.codehaus.org/Download

Install instructions are also available on the above site. For users of Windows, a Windows-Installer can
be downloaded which will install Groovy and perform any necessary configuration (including add groovy
to your path).

Once groovy is installed we are ready to run the create project script. Start up a console (on Windows
can use the PowerShell) and change into the directory that contains the Rice project (eg ‘/java/projects/
rice’). From the root project folder, change into the scripts folder. This folder should contain a file named
‘createproject.groovy’.

There are a few options supported by the create project script, but let’s start with the most basic way of
running. The command we will give is:

groovy createproject.groovy -name PROJECT_NAME

First we are invoking the groovy executable (this assumes groovy is on your path, if not the full path to
the groovy executable needs to be specified). Groovy then expects the name of the script we want to run,
which is ‘creatproject.groovy’. Next we specify the one required argument for the create project script
which is the name for the project we want to create. Assuming we want to create a new project named
‘MyRiceApp’, the command would be the following:

groovy createproject.groovy -name MyRiceApp

http://tomcat.apache.org/
http://kuali.org/download
https://svn.kuali.org/repos/rice
http://groovy.codehaus.org/Download

Creating a Client Application

36

After typing the command hit enter to start the script. You should then see a prompt as follows:\

 ==
 WARNING
 ==
 This program will delete the following directory and replace it
 with a new project:
 /java/projects/MyRiceApp
 It will also create or replace the
 following files in USER_HOME:
 1) C:\Users\jkneal.ADS/kuali/main/dev/MyRiceApp-config.xml
 2) C:\Users\jkneal.ADS/kuali/main/dev/rice.keystore
 If this is not what you want, please supply more information:
 usage: groovy createproject -name PROJECT_NAME [-pdir PROJECT_DIR] [-rdir
 RICE_DIR] [-mdir MAVEN_HOME]
 Do you want to continue (yes/no)?

Type ‘yes’ and then enter to resume the program. You will then see logging output from the script about
various files being created, the maven build, and finally should see printed instructions and how to complete
the project setup.

Notice we did not tell the script where to put our new project nor where to find the Rice project. This is
because the script defaults to the project location of ‘/java/projects’. If we want our project to be generated
in a different location, we can do so by passing the directory path with the ‘-pdir’ argument:

groovy createproject.groovy -name MyRiceApp –pdir /home/myapps

The project directory given will be the parent for the project folder. The script will create another folder
within this with the same name as the given project name.

Similarly if our source Rice project is in another directory, we can specify that using the ‘-rdir’ argument:

groovy createproject.groovy -name MyRiceApp –rdir /home/myapps/rice

Unlike this project directory argument, this does specify the full path to the project (nothing will be
appended).

Finally the create project script gives us a couple more options for the project generation. We can include
the Rice sampleapp in our project by passing the –sampleapp flag:

groovy createproject.groovy -name MyRiceApp –sampleapp

Having the various examples of the sampleapp can be very useful in particular if doing development with
the KRAD framework.

Lastly, we can have a project generated that is setup to go against a standalone Rice instance. To do this
we pass the –standalone flag:

groovy createproject.groovy -name MyRiceApp –standalone

Project Structure and Configuration Files
The result of running the create project script is a new maven based Rice client project. This includes the
directory structures for building out your application, along with the necessary configuration files. Let’s
start by looking the directories that were created.

Creating a Client Application

37

• Project Root (eg ‘/java/projects/myapp’) – This is the root folder that was created to hold all the project
contents. Within this folder you will find three sub-folders, a ‘.classpath’, ‘.project’, ‘instructions.txt’,
and ‘pom.xml’ file.

• .settings – This folder contains settings configuration for the Eclipse IDE

• src – This folder is for the application source files and resources. Within this folder is the standard
maven directory breakdown:

• src/main/java – Contains Java source code

• src/main/resources – Contains resource files (XML and other resources)

• src/main/webapp – Contains the application web content (JSP, tags, images, CSS, Script)

• target – This folder holds the build output such as generated classes and wars.

Along with the directories several files are created. These are as follows:

Table 5.2. Generated Files

File Description

.classpath Eclipse file for managing the application
classpath

.project Eclipse project file

pom.xml Maven Project File

{project}-
RiceDataSourceSpringBeans.xml*

Spring XML file containing Rice datasource
configurations

{project}-
RiceJTASpringBeans.xml*

Spring XML file containing JTA transaction
configuration

{project}-
RiceSpringBeans.xml*

Spring XML file containing the Rice module
Configurers

SpringBeans.xml* Spring XML file for Application beans

{project}-
SampleAppModuleBeans.xml*

Spring XML file for Sample App beans (only
created if –sampleapp option was given)

OJB-repository-
sampleapp.xml*

OJB configuration file for the Sample App
(only created if –sampleapp option was
given)

META-INF/{project}-
config.xml*

Default Rice configuration properties

src/main/webapp/WEB-
INF/web.xml

Standard web deployment descriptor for
J2EE applications

Note

All of these files are located within the src/main/resources directory

In addition to the files created within the project, two files are created in the ‘{user home}/kuali/main/
dev’ folder. These include:

• {project}-config.xml – Configuration file for application. This is where the settings for the database
and other configurations are given.

Creating a Client Application

38

• rice.keystore – Provides a secure key for consuming secured services running on a Rice server

Configuring Your Rice Application
Next we need to provide some configuration for our application that is custom to our environment (for
example database connectivity). We can do this by modifying the properties available in {project}-
config.xml (located in the /kuali/main/dev folder in user home).

Although there are many configuration properties available for customization, the following are required
for getting started:

Table 5.3. Configuration Parameters

Parameter Description Example

datasource.url JDBC URL of database to connect to jdbc:oracle:thin:@localhost:1521:XE
jdbc:mysql://
localhost:3306/kuldemo

datasource.username User name for connecting to the server
database

rice

datasource.password Password for connecting to the server
database

datasource.ojb.platform Name of OJB platform to use for the database Oracle9i or MySQL

datasource.platform Rice platform implementation for the
database

org.kuali.rice.core.database.platform.OraclePlatform
org.kuali.rice.core.database.platform.MySQLPlatform

datasource.driver.name JDBC driver for the database oracle.jdbc.driver.OracleDriver
com.mysql.jdbc.Driver

Importing into Eclipse
Now we have our project setup and are ready to begin development. Note at this point the application is
completely runnable. We could do a maven deploy, copy the generated war to our tomcat server, and start
up the application. However we are going to first import our project to Eclipse so that we will be ready
to develop further application code.

Navigate to the Eclipse installation directory. There you should find an executable named ‘eclipse.exe’.
Once this file is found double click to start the IDE. When Eclipse starts up for the first time it will ask
you to choose a workspace. This is a directory that Eclipse place newly created projects and will also
read current projects from. A standard within the community is to use ‘/java/projects’ for your working
space. Note you can select the checkbox to use the directory as your default and Eclipse will not prompt
on the next startup.

Eclipse Memory: It is generally needed and recommended to allocate additional JVM memory for the
Eclipse runtime. This can be done by opening up the file named ‘eclipse.ini’ that exists in the root
installation directory. At the end of the file you specify VM arguments as follows:

-vmargs
-Xms128m
-Xmx1024m
-XX:MaxPermSize=512m

The amount of memory allocated depends on the host machine. The above settings are for a machine with
4g of memory.

Creating a Client Application

39

When working with Eclipse for the first time, there are additional plugins you will likely want to get. None
of these are required by Rice and depend on your institutional development environment and how you plan
to create your project. However, most projects today use SVN or GIT for source code control. Therefore
an additional Eclipse plugin is needed for communicating with the repository. Also if you have chosen to
use Maven (or used the create project script) the Eclipse Maven plugin will be very useful as well.

To bring a new project into eclipse, select the File-Import menu option. This should bring up a dialog as
show in next figure.

Figure 5.1. Eclipse Import

For the import source select ‘Existing Projects info Workspace’. This should bring up a dialog that looks
like the following figure.

Creating a Client Application

40

Figure 5.2. Eclipse Import Project Directory

Here click the ‘Browse’ button to locate the directory for the project. After selecting the project location
click the ‘Finish’ button. Eclipse will then import the project contents and you are ready to begin coding!

41

Appendix A. Example Server
Configurations

Single Server Configuration
An example setup of a single Tomcat server running MySQL server:

• CentOS v5.3 x64

• 4 GB Ram

• Intel Q6600 Quad Core Processor or better

• 1 TB RAID 1 configuration – SATA II 3.0 Gbps

• Apache

• Tomcat

• MySQL 5.1.x

Multi Server Configuration
An example of a multiple server configuration:

Web Servers
• CentOS v5.3 x64

• Intel (64 bit architecture)

• 1 GB Ram

• 80 GB RAID 1 configuration - SATA II 3.0 Gbps

• Apache

• Tomcat connector

Tomcat Servers
• CentOS v5.3 x64

• Intel Q6600 Quad Core Processor or better

• 4 GB Ram

• 80 GB RAID 1 configuration – SATA II 3.0 Gbps

• Tomcat

Example Server Configurations

42

Web Servers – Content/Shared File System
• CentOS v5.3 x64

• Intel (64 bit architecture)

• 1 GB Ram

• 1 TB RAID 1 configuration

• SATA II 3.0 Gbps

• Apache

• Tomcat connector

43

Glossary
A
Action List A list of the user's notification and workflow items. Also called the user's

Notification List. Clicking an item in the Action List displays details about that
notification, if the item is a notification, or displays that document, if it is a
workflow item. The user will usually load the document from their Action List in
order to take the requested action against it, such as approving or acknowledging
the document.

Action List Type This tells you if the Action List item is a notification or a more specific workflow
request item. When the Action List item is a notification, the Action List Type is
"Notification."

Action Request A request to a user or Workgroup to take action on a document. It designates the
type of action that is requested, which includes:

• Approve: requests an approve or disapprove action.

• Complete: requests a completion of the contents of a document. This action
request is displayed in the Action List after the user saves an incomplete
document.

• Acknowledge: requests an acknowledgment by the user that the document has
been opened - the doc will not leave the Action List until acknowledgment has
occurred; however, the document routing will not be held up and the document
will be permitted to transaction into the processed state if neccessary.

• FYI: a notification to the user regarding the document. Documents requesting
FYI can be cleared directly from the Action List. Even if a document has FYI
requests remaining, it will still be permitted to transition into the FINAL state.

Action Request Hierarchy Action requests are hierarchical in nature and can have one parent and multiple
children.

Action Requested The action one needs to take on a document; also the type of action that is requested
by an Action Request. Actions that may be requested of a user are:

• Acknowledge: requests that the users states he or she has reviewed the
document.

• Approve: requests that the user either Approve or Disapprove a document.

• Complete: requests the user to enter additional information in a document so
that the content of the document is complete.

• FYI: intended to simply makes a user aware of the document.

Action Taken An action taken on a document by a Reviewer in response to an Action Request.
The Action Taken may be:

• Acknowledged: Reviewer has viewed and acknowledged document.

• Approved: Reviewer has approved the action requested on document.

Glossary

44

• Blanket Approved: Reviewer has requested a blanket approval up to a specified
point in the route path on the document.

• Canceled: Reviewer has canceled the document. The document will not be
routed to any more reviewers.

• Cleared FYI: Reviewer has viewed the document and cleared all of his or her
pending FYI(s) on this document.

• Completed: Reviewer has completed and supplied all data requested on
document.

• Created Document: User has created a document

• Disapproved: Reviewer has disapproved the document. The document will not
being routed to any subsequent reviewers for approval. Acknowledge Requests
are sent to previous approvers to inform them of the disapproval.

• Logged Document: Reviewer has added a message to the Route Log of the
document.

• Moved Document: Reviewer has moved the document either backward or
forward in its routing path.

• Returned to Previous Node: Reviewer has returned the document to a previous
routing node. When a Reviewer does this, all the actions taken between the
current node and the return node are removed and all the pending requests on
the document are deactivated.

• Routed Document: Reviewer has submitted the document to the workflow
engine for routing.

• Saved: Reviewer has saved the document for later completion and routing.

• Superuser Approved Document: Superuser has approved the entire document,
any remaining routing is cancelled.

• Superuser Approved Node: Superuser has approved the document through all
nodes up to (but not including) a specific node. When the document gets to that
node, the normal Action Requests will be created.

• Superuser Approved Request: Superuser has approved a single pending
Approve or Complete Action Request. The document then goes to the next
routing node.

• Superuser Cancelled: Superuser has canceled the document. A Superuser can
cancel a document without a pending Action Request to him/her on the
document.

• Superuser Disapproved: Superuser has disapproved the document. A Superuser
can disapprove a document without a pending Action Request to him/her on
the document.

Glossary

45

• Superuser Returned to Previous Node: Superuser has returned the document
to a previous routing node. A Superuser can do this without a pending Action
Request to him/her on the document.

Activated The state of an action request when it is has been sent to a user’s Action List.

Activation The process by which requests appear in a user's Action List

Activation Type Defines how a route node handles activation of Action Requests. There are two
standard activation types:

• Sequential: Action Requests are activated one at a time based on routing
priority. The next Action Request isn't activated until the previous request is
satisfied.

• Parallel: All Action Requests at the route node are activated immediately,
regardless of priority

Active Indicator An indicator specifying whether an object in the system is active or not. Used as
an alternative to complete removal of an object.

Ad Hoc Routing A type of routing used to route a document to users or groups that are not in the
Routing path for that Document Type. When the Ad Hoc Routing is complete, the
routing returns to its normal path.

Annotation Optional comments added by a Reviewer when taking action. Intended to explain
or clarify the action taken or to advise subsequent Reviewers.

Approve A type of workflow action button. Signifies that the document represents a valid
business transaction in accordance with institutional needs and policies in the
user's judgment. A single document may require approval from several users, at
multiple route levels, before it moves to final status.

Approver The user who approves the document. As a document moves through Workflow,
it moves one route level at a time. An Approver operates at a particular route level
of the document.

Attachment The pathname of a related file to attach to a Note. Use the "Browse..." button to
open the file dialog, select the file and automatically fill in the pathname.

Attribute Type Used to strongly type or categorize the values that can be stored for the various
attributes in the system (e.g., the value of the arbitrary key/value pairs that can be
defined and associated with a given parent object in the system).

Authentication The act of logging into the system. The Out of the box (OOTB) authenticaton
implementation in Rice does not require a password as it is intended for testing
puposes only. This is something that must be enabled as part of an implementation.
Various authentication solutions exist, such as CAS or Shibboleth, that an
implementer may want to use depending on their needs.

Authorization Authorization is the permissions that an authenticated user has for performing
actions in the system.

Author Universal ID A free-form text field for the full name of the Author of the Note, expressed as
"Lastname, Firstname Initial"

Glossary

46

B
Base Rule Attribute The standard fields that are defined and collected for every Routing Rule These

include:

• Active: A true/false flag to indicate if the Routing Rule is active. If false, then
the rule will not be evaluated during routing.

• Document Type: The Document Type to which the Routing Rule applies.

• From Date: The inclusive start date from which the Routing Rule will be
considered for a match.

• Force Action: a true/false flag to indicate if the review should be forced to take
action again for the requests generated by this rule, even if they had taken action
on the document previously.

• Name: the name of the rule, this serves as a unique identifier for the rule. If one
is not specified when the rule is created, then it will be generated.

• Rule Template: The Rule Template used to create the Routing Rule.

• To Date: The inclusive end date to which the Routing Rule will be considered
for a match.

Blanket Approval Authority that is given to designated Reviewers who can approve a document to a
chosen route point. A Blanket Approval bypasses approvals that would otherwise
be required in the Routing For an authorized Reviewer, the Doc Handler typically
displays the Blanket Approval button along with the other options. When a Blanket
Approval is used, the Reviewers who are skipped are sent Acknowledge requests
to notify them that they were bypassed.

Blanket Approve Workgroup A workgroup that has the authority to Blanket Approve a document.

Branch A path containing one or more Route Nodes that a document traverses during
routing. When a document enters a Split Node multiple branches can be created.
A Join Node joins multiple branches together.

Business Rule 1. Describes the operations, definitions and constraints that apply to an
organization in achieving its goals.

2. A restriction to a function for a business reason (such as making a specific
object code unavailable for a particular type of disbursement). Customizable
business rules are controlled by Parameters.

C
Campus Identifies the different fiscal and physical operating entities of an institution.

Campus Type Designates a campus as physical only, fiscal only or both.

Cancel A workflow action available to document initiators on documents that have not
yet been routed for approval. Denotes that the document is void and should be
disregarded. Canceled documents cannot be modified in any way and do not route
for approval.

Glossary

47

Canceled A routing status. The document is denoted as void and should be disregarded.

CAS - Central Authentication
Service

http://www.jasig.org/cas - An open source authentication framework. Kuali Rice
provides support for integrating with CAS as an authentication provider (among
other authentication solutions) and also provides an implementation of a CAS
server that integrates with Kuali Identity Management.

Client A Java Application Program Interface (API) for interfacing with the Kuali
Enterprise Workflow Engine.

Client/Server The use of one computer to request the services of another computer over a
network. The workstation in an organization will be used to initiate a business
transaction (e.g., a budget transfer). This workstation needs to gather information
from a remote database to process the transaction, and will eventually be used to
post new or changed information back onto that remote database. The workstation
is thus a Client and the remote computer that houses the database is the Server.

Close A workflow action available on documents in most statuses. Signifies that the
user wishes to exit the document. No changes to Action Requests, Route Logs or
document status occur as a result of a Close action. If you initiate a document and
close it without saving, it is the same as canceling that document.

Comma-separated value A file format using commas as delimiters utilized in import and export
functionality.

Complete A pending action request to a user to submit a saved document.

Completed The action taken by a user or group in response to a request in order to finish
populating a document with information, as evidenced in the Document Route
Log.

Country Restricted Indicator Field used to indicate if a country is restricted from use in procurement. If there
is no value then there is no restriction.

Creation Date The date on which a document is created.

CSV See comma-separated value

D
Date Approved The date on which a document was most recently approved.

Date Finalized The date on which a document enters the FINAL state. At this point, all approvals
and acknowledgments are complete for the document.

Deactivation The process by which requests are removed from a user's Action List

Delegate A user who has been registered to act on behalf of another user. The Delegate
acts with the full authority of the Delegator. Delegation may be either Primary
Delegation or Secondary Delegation.

Delegate Action List A separate Action List for Delegate actions. When a Delegate selects a Delegator
for whom to act, an Action List of all documents sent to the Delegator is displayed.

http://www.jasig.org/cas

Glossary

48

For both Primary and Secondary Delegation the Delegate may act on any of the
entries with the full authority of the Delegator.

Disapprove A workflow action that allows a user to indicate that a document does not represent
a valid business transaction in that user's judgment. The initiator and previous
approvers will receive Acknowledgment requests indicating the document was
disapproved.

Disapproved A status that indicates the document has been disapproved by an approver as a
valid transaction and it will not generate the originally intended transaction.

Doc Handler The Doc Handler is a web interface that a Client uses for the appropriate display
of a document. When a user opens a document from the Action List or Document
Search, the Doc Handler manages access permissions, content format, and user
options according to the requirements of the Client.

Doc Handler URL The URL for the Doc Handler.

Doc Nbr See Document Number.

Document Also see E-Doc.

An electronic document containing information for a business transaction that is
routed for Actions in KEW. It includes information such as Document ID, Type,
Title, Route Status, Initiator, Date Created, etc. In KEW, a document typically has
XML content attached to it that is used to make routing decisions.

Document Id See Document Number.

Document Number A unique, sequential, system-assigned number for a document

Document Operation A workflow screen that provides an interface for authorized users to manipulate
the XML and other data that defines a document in workflow. It allows you
to access and open a document by Document ID for the purpose of performing
operations on the document.

Document Search A web interface in which users can search for documents. Users may search by
a combination of document properties such as Document Type or Document ID,
or by more specialized properties using the Detailed Search. Search results are
displayed in a list similar to an Action List.

Document Status See also Route Status.

Document Title The title given to the document when it was created. Depending on the Document
Type, this title may have been assigned by the Initiator or built automatically based
on the contents of the document. The Document Title is displayed in both the
Action List and Document Search.

Document Type The Document Type defines the routing definition and other properties for a set
of documents. Each document is an instance of a Document Type and conducts
the same type of business transaction as other instances of that Document Type.

Document Types have the following characteristics:

• They are specifications for a document that can be created in KEW

Glossary

49

• They contain identifying information as well as policies and other attributes

• They defines the Route Path executed for a document of that type (Process
Definition)

• They are hierarchical in nature may be part of a hierarchy of Document Types,
each of which inherits certain properties of its Parent Document Type.

• They are typically defined in XML, but certain properties can be maintained
from a graphical interface

Document Type Hierarchy A hierarchy of Document Type definitions. Document Types inherit certain
attributes from their parent Document Types. This hierarchy is also leveraged by
various pieces of the system, including the Rules engine when evaluating rule sets
and KIM when evaluating certain Document Type-based permissions.

Document Type Label The human-readable label assigned to a Document Type.

Document Type Name The assigned name of the document type. It must be unique.

Document Type Policy These advise various checks and authorizations for instances of a Document Type
during the routing process.

Drilldown A link that allows a user to access more detailed information about the current
data. These links typically take the user through a series of inquiries on different
business objects.

Dynamic Node An advanced type of Route Node that can be used to generate complex routing
paths on the fly. Typically used whenever the route path of a document cannot be
statically defined and must be completely derived from document data.

E
ECL 1. An acronym for Educational Community License.

2. All Kuali software and material is available under the Educational Community
License and may be adopted by colleges and universities without licensing
fees. The open licensing approach also provides opportunities for support and
implementation assistance from commercial affiliates.

E-Doc An abbreviation for electronic documents, also a shorthand reference to
documents created with eDocLite.

eDocLite A framework for quickly building workflow-enabled documents. Allows you to
define document screens in XML and render them using XSL style sheets.

Embedded Client A type of client that runs an embedded workflow engine.

Employee Status Found on the Person Document; defines the employee's current employment
classification (for example, "A" for Active).

Employee Type Found on the Person Document; defines the employee's position classification (for
example, "P" for Professional).

Glossary

50

Entity An Entity record houses identity information for a given Person, Process, System,
etc. Each Entity is categorized by its association with an Entity Type.

Entity Attribute Entities have directory-like information called Entity Attributes that are associated
with them

Entity Attributes make up the identity information for an Entity record.

Entity Type Provides categorization to Entities. For example, a “System” could be considered
an Entity Type because something like a batch process may need to interfact with
the application.

Exception A workflow routing status indicating that the document routed to an exception
queue because workflow has encountered a system error when trying to process
the document.

Exception Messaging The set of services and configuration options that are responsible for handling
messages when they cannot be successfully delivered. Exception Messaging is
set up when you configure KSB using the properties outlined in KSB Module
Configuration.

Exception Routing A type of routing used to handle error conditions that occur during the routing
of a document. A document goes into Exception Routing when the workflow
engine encounters an error or a situation where it cannot proceed, such as a
violation of a Document Type Policy or an error contacting external services.
When this occurs, the document is routed to the parties responsible for handling
these exception cases. This can be a group configured on the document or a
responsibility configured in KIM. Once one of these responsible parties has
reviewed the situation and approved the document, it will be resubmitted to the
workflow engine to attempt the processing again.

Extended Attributes Custom, table-driven business object attributes that can be established by
implementing institutions.

Extension Rule Attribute One of the rule attributes added in the definition of a rule template that extends
beyond the base rule attributes to differentiate the routing rule. A Required
Extension Attribute has its "Required" field set to True in the rule template.
Otherwise, it is an Optional Extension Attribute. Extension attributes are typically
used to add additional fields that can be collected on a rule. They also define the
logic for how those fields will be processed during rule evaluation.

F
Field Lookup The round magnifying glass icon found next to fields throughout the GUI that

allow the user to look up reference table information and display (and select from)
a list of valid values for that field.

Final A workflow routing status indicating that the document has been routed and has
no pending approval or acknowledgement requests.

Flexible Route Management A standard KEW routing scheme based on rules rather than dedicated table-based
routing.

FlexRM (Flexible Route
Module)

The Route Module that performs the Routing for any Routing Rule is defined
through FlexRM. FlexRM generates Action Requests when a Rule matches the

Glossary

51

data value contained in a document. An abbreviation of "Flexible Route Module."
A standard KEW routing scheme that is based on rules rather than dedicated table-
based routing.

Force Action A true/false flag that indicates if previous Routing for approval will be ignored
when an Action Request is generated. The flag is used in multiple contexts where
requests are generated (e.g., rules, ad hoc routing). If Force Action is False, then
prior Actions taken by a user can satisfy newly generated requests. If it is True,
then the user needs to take another Action to satisfy the request.

FYI A workflow action request that can be cleared from a user's Action List with
or without opening and viewing the document. A document with no pending
approval requests but with pending Acknowledge requests is in Processed status.
A document with no pending approval requests but with pending FYI requests is
in Final status. See also Ad Hoc Routing and Action Request.

G
Group A Group has members that can be either Principals or other Groups (nested).

Groups essentially become a way to organize Entities (via Principal relationships)
and other Groups within logical categories.

Groups can be given authorization to perform actions within applications by
assigning them as members of Roles.

Groups can also have arbitrary identity information (i.e., Group Attributes hanging
from them. Group Attributes might be values for "Office Address," "Group
Leader," etc.

Groups can be maintained at runtime through a user interface that is capable of
workflow.

Group Attribute Groups have directory-like information called Group Attributes hanging from
them. "Group Phone Number" and "Team Leader" are examples of Group
Attributes.

Group Attributes make up the identity information for a Group record.

Group Attributes can be maintained at runtime through a user interface that is
capable of workflow.

H
Hierarchical Tree Structure A hierarchical representation of data in a graphical form.

I
Initialized The state of an Action Request when it is first created but has not yet been

Activated (sent to a user’s Action List).

Initiated A workflow routing status indicating a document has been created but has not
yet been saved or routed. A Document Number is automatically assigned by the
system.

Glossary

52

Initiator A user role for a person who creates (initiates or authors) a new document for
routing. Depending on the permissions associated with the Document Type, only
certain users may be able to initiate documents of that type.

Inquiry A screen that allows a user to view information about a business object.

J
Join Node The point in the routing path where multiple branches are joined together. A Join

Node typically has a corresponding Split Node for which it joins the branches.

K
KC - Kuali Coeus TODO

KCA - Kuali Commercial
Affiliates

A designation provided to commercial affiliates who become part of the Kuali
Partners Program to provide for-fee guidance, support, implementation, and
integration services related to the Kuali software. Affiliates hold no ownership of
Kuali intellectual property, but are full KPP participants. Affiliates may provide
packaged versions of Kuali that provide value for installation or integration
beyond the basic Kuali software. Affiliates may also offer other types of training,
documentation, or hosting services.

KCB – Kuali Communications
Broker

KCB is logically related to KEN. It handles dispatching messages based on user
preferences (email, SMS, etc.).

KEN - Kuali Enterprise
Notification

A key component of the Enterprise Integration layer of the architecture
framework. Its features include:

• Automatic Message Generation and Logging

• Message integrity and delivery standards

• Delivery of notifications to a user’s Action List

KEW – Kuali Enterprise
Workflow

Kuali Enterprise Workflow is a general-purpose electronic routing infrastructure,
or workflow engine. It manages the creation, routing, and processing of electronic
documents (eDocs) necessary to complete a transaction. Other applications can
also use Kuali Enterprise Workflow to automate and regulate the approval process
for the transactions or documents they create.

KFS – Kuali Financial System Delivers a comprehensive suite of functionality to serve the financial system needs
of all Carnegie-Class institutions. An enhancement of the proven functionality of
Indiana University's Financial Information System (FIS), KFS meets GASB and
FASB standards while providing a strong control environment to keep pace with
advances in both technology and business. Modules include financial transactions,
general ledger, chart of accounts, contracts and grants, purchasing/accounts
payable, labor distribution, budget, accounts receivable and capital assets.

KIM – Kuali Identity
Management

A Kuali Rice module, Kuali Identity Management provides a standard API for
persons, groups, roles and permissions that can be implemented by an institution.
It also provdies an out of the box reference implementation that allows for a
university to use Kuali as their Identity Management solution.

Glossary

53

KNS – Kuali Nervous System A core technical module composed of reusable code components that provide
the common, underlying infrastructure code and functionality that any module
may employ to perform its functions (for example, creating custom attributes,
attaching electronic images, uploading data from desktop applications, lookup/
search routines, and database interaction).

KPP - Kuali Partners Program The Kuali Partners Program (KPP) is the means for organizations to get involved
in the Kuali software community and influence its future through voting rights to
determine software development priorities. Membership dues pay staff to perform
Quality Assurance (QA) work, release engineering, packaging, documentation,
and other work to coordinate the timely enhancement and release of quality
software and other services valuable to the members. Partners are also encouraged
to tender functional, technical, support or administrative staff members to the
Kuali Foundation for specific periods of time.

KRAD - Kuali Rapid
Application Development

TODO

KRMS - Kuali Rules
Management System

TODO

KS - Kuali Student Delivers a means to support students and other users with a student-centric system
that provides real-time, cost-effective, scalable support to help them identify
and achieve their goals while simplifying or eliminating administrative tasks.
The high-level entities of person (evolving roles-student, instructor, etc.), time
(nested units of time - semesters, terms, classes), learning unit (assigned to any
learning activity), learning result (grades, assessments, evaluations), learning
plan (intentions, activities, major, degree), and learning resources (instructors,
classrooms, equipment). The concierge function is a self-service information
sharing system that aligns information with needs and tasks to accomplish goals.
The support for integration of locally-developed processes provides flexibility for
any institution's needs.

KSB – Kuali Service Bus Provides an out-of-the-box service architecture and runtime environment for Kuali
Applications. It is the cornerstone of the Service Oriented Architecture layer of
the architectural reference framework. The Kuali Service Bus consists of:

• A services registry and repository for identifying and instantiating services

• Run time monitoring of messages

• Support for synchronous and asynchronous service and message paradigms

Kuali 1. Pronounced "ku-wah-lee". A partnership organization that produces a suite of
community-source, modular administrative software for Carnegie-class higher
education institutions. See also Kuali Foundation

2. (n.) A humble kitchen wok that plays an important role in a successful kitchen.

Kuali Foundation Employs staff to coordinate partner efforts and to manage and protect the
Foundation's intellectual property. The Kuali Foundation manages a growing
portfolio of enterprise software applications for colleges and universities. A
lightweight Foundation staff coordinates the activities of Foundation members
for critical software development and coordination activities such as source code
control, release engineering, packaging, documentation, project management,

Glossary

54

software testing and quality assurance, conference planning, and educating and
assisting members of the Kuali Partners program.

Kuali Rice Provides an enterprise-class middleware suite of integrated products that allow
both Kuali and non-Kuali applications to be built in an agile fashion, such
that developers are able to react to end-user business requirements in an
efficient manner to produce high-quality business applications. Built with Service
Oriented Architecture (SOA) concepts in mind, KR enables developers to build
robust systems with common enterprise workflow functionality, customizable
and configurable user interfaces with a clean and universal look and feel, and
general notification features to allow for a consolidated list of work "action
items." All of this adds up to providing a re-usable development framework that
encourages a simplified approach to developing true business functionality as
modular applications.

L
Last Modified Date The date on which the document was last modified (e.g., the date of the last action

taken, the last action request generated, the last status changed, etc.).

M
Maintenance Document An e-doc used to establish and maintain a table record.

Message The full description of a notification message. This is a specific field that can be
filled out as part of the Simple Message or Event Message form. This can also
be set by the programmatic interfaces when sending notifications from a client
system.

Message Queue Allows administrators to monitor messages that are flowing through the Service
Bus. Messages can be edited, deleted or forwarded to other machines for
processing from this screen.

N
Namespace A Namespace is a way to scope both Permissions and Entity Attributes Each

Namespace instance is one level of scoping and is one record in the system.
For example, "KRA" or "KC" or "KFS" could be a Namespace. Or you could
further break those up into finer-grained Namespaces such that they would roughly
correlate to functional modules within each application. Examples could be "KRA
Rolodex", "KC Grants", "KFS Chart of Accounts".

Out of the box, the system is bootstrapped with numerous Rice namespaces
which correspond to the different modules. There is also a default namespace of
“KUALI”.

Namespaces can be maintained at runtime through a maintenance document.

Note Text A free-form text field for the text of a Note

Notification Content This section of a notification message which displays the actual full message for
the notification along with any other content-type-specific fields.

Glossary

55

Notification Message The overall Notification item or Notification Message that a user sees when she
views the details of a notification in her Action List. A Notification Message
contains not only common elements such as Sender, Channel, and Title, but also
content-type-specific fields.

O
OOTB Stands for "out of the box" and refers to the base deliverable of a given feature

in the system.

Optimistic Locking A type of “locking” that is placed on a database row by a process to prevent
other processes from updating that row before the first process is complete. A
characteristic of this locking technique is that another user who wants to make
modifications at the same time as another user is permitted to, but the first one
who submits their changes will have them applied. Any subsequent changes will
result in the user being notified of the optimistic lock and their changes will not
be applied. This technique assumes that another update is unlikely.

Optional Rule Extension
Attribute

An Extension Attribute that is not required in a Rule Template. It may or may
not be present in a Routing Rule created from the Template. It can be used as
a conditional element to aid in deciding if a Rule matches. These Attributes are
simply additional criteria for the Rule matching process.

Org Doc # The originating document number.

Organization Refers to a unit within the institution such as department, responsibility center,
campus, etc.

Organization Code Represents a unique identifier assigned to units at many different levels within the
institution (for example, department, responsibility center, and campus).

P
Parameter Component Code Code identifying the parameter Component.

Parameter Description This field houses the purpose of this parameter.

Parameter Name This will be used as the identifier for the parameter. Parameter values will be
accessed using this field and the namespace as the key.

Parameter Type Code Code identifying the parameter type. Parameter Type Code is the primary key for
its’ table.

Parameter Value This field houses the actual value associated with the parameter.

Parent Document Type A Document Type from which another Document Type derives. The child type can
inherit certain properties of the parent type, any of which it may override. A Parent
Document Type may have a parent as part of a hierarchy of document types.

Parent Rule A Routing Rule in KEW from which another Routing Rule derives. The child Rule
can inherit certain properties of the parent Rule, any of which it may override. A
Parent Rule may have a parent as part of a hierarchy of Rules.

Permission Permissions represent fine grained actions that can be mapped to functionality
within a given system. Permissions are scoped to Namespace which roughly
correlate to modules or sections of functionality within a given system.

Glossary

56

A developer would code authorization checks in their application against these
permissions.

Some examples would be: "canSave", "canView", "canEdit", etc.

Permissions are aggregated by Roles.

Permissions can be maintained at runtime through a user interface that is capable
of workflow; however, developers still need to code authorization checks against
them in their code, once they are set up in the system.

Attributes

1. Id - a system generated unique identifier that is the primary key for any
Permission record in the system

2. Name - the name of the permission; also a human understandable unique
identifier

3. Description - a full description of the purpose of the Permission record

4. Namespace - the reference to the associated Namespace

Relationships

1. Permission to Role - many to many; this relationship ties a Permission record
to a Role that is authorized for the Permission

2. Permission to Namespace - many to one; this relationship allows for scoping
of a Permission to a Namespace that contains functionality which keys its
authorization checking off of said

Person Identifier The username of an individual user who receives the document ad hoc for the
Action Requested

Person Role Creates or maintains the list used in selection of personnel when preparing the
Routing Form document.

Pessimistic Locking A type of lock placed on a database row by a process to prevent other processes
from reading or updating that row until the first process is finished. This technique
assumes that another update is likely.

Plugins A plugin is a packaged set of code providing essential services that can be
deployed into the Rice standalone server. Plugins usually contains only classes
used in routing such as custom rules or searchable attributes, but can contain
client application specific services. They are usually used only by clients being
implemented by the ‘Thin Client’ method

Post Processor A routing component that is notified by the workflow engine about various events
pertaining to the routing of a specific document (e.g., node transition, status
change, action taken). The implementation of a Post Processor is typically specific
to a particular set of Document Types. When all required approvals are completed,
the engine notifies the Post Processor accordingly. At this point, the Post Processor
is responsible for completing the business transaction in the manner appropriate
to its Document Type.

Glossary

57

Posted Date/Time Stamp A free-form text field that identifies the time and date at which the Notes is posted.

Postal Code Defines zip code to city and state cross-references.

Preferences User options in an Action List for displaying the list of documents. Users can click
the Preferences button in the top margin of the Action List to display the Action
List Preferences screen. On the Preferences screen, users may change the columns
displayed, the background colors by Route Status, and the number of documents
displayed per page.

Primary Delegation The Delegator turns over full authority to the Delegate. The Action Requests
for the Delegator only appear in the Action List of the Primary Delegate. The
Delegation must be registered in KEW or KIM to be in effect.

Principal A Principal represents an Entity that can authenticate into the system. One can
roughly correlate a Principal to a login username. Entities can exist in KIM without
having permissions or authorization to do anything; therefore, a Principal must
exist and must be associated with an Entity in order for it to have access privileges.
All authorization that is not specific to Groups is tied to a Principal.

In other words, an Entity is for identity while a Principal is for access management.

Also note that an Entity is allowed to have multiple Principals associated with
it. The use case typically given here is that a person may apply to a school and
receive one log in for the application system; however, once accepted, they may
receive their official login, but use the same identity information set up for their
Entity record.

Processed A routing status indicating that the document has no pending approval requests
but still has one or more pending acknowledgement requests.

R
Recipient Type The type of entity that is receiving an Action Request. Can be a user, workgroup,

or role.

Required Rule Extension
Attribute

An Extension Attribute that is required in a Rule Template. It will be present in
every Routing Rule created from the Template.

Responsibility See Responsible Party.

Responsibility Id A unique identifier representing a particular responsibility on a rule (or from a
route module This identifier stays the same for a particular responsibility no matter
how many times a rule is modified.

Responsible Party The Reviewer defined on a routing rule that receives requests when the rule
is successfully executed. Each routing rule has one or more responsible parties
defined.

Reviewer A user acting on a document in his/her Action List and who has received an Action
Request for the document.

Rice An abbreviation for Kuali Rice.

Role Roles aggregate Permissions When Roles are given to Entities (via their
relationship with Principals) or Groups an authorization for all associated
Permissions is granted.

Glossary

58

Route Header Id Another name for the Document Id.

Route Log Displays information about the routing of a document. The Route Log is usually
accessed from either the Action List or a Document Search. It displays general
document information about the document and a detailed list of Actions Taken
and pending Action Requests for the document. The Route Log can be considered
an audit trail for a document.

Route Module A routing component that the engine uses to generate action requests at a particular
Route Node. FlexRM (Flexible Route Module) is a general Route Module that
is rule-based. Clients can define their own Route Modules that can conduct
specialized Routing based on routing tables or any other desired implementation.

Route Node Represents a step in the routing process of a document type. Route node
"instances" are created dynamically as a document goes through its routing process
and can be defined to perform any function. The most common functions are to
generate Action Requests or to split or join the route path.

• Simple: do some arbitrary work

• Requests: generate action requests using a Route Module or the Rules engine

• Split: split the route path into one or more parallel branches

• Join: join one or more branches back together

• Sub Process: execute another route path inline

• Dynamic: generate a dynamic route path

Route Path The path a document follows during the routing process. Consists of a set of
route nodes and branches. The route path is defined as part of the document type
definition.

Route Status The status of a document in the course of its routing:

• Approved: These documents have been approved by all required reviewers and
are waiting additional postprocessing.

• Cancelled: These documents have been stopped. The document’s initiator can
‘Cancel’ it before routing begins or a reviewer of the document can cancel it
after routing begins. When a document is cancelled, routing stops; it is not sent
to another Action List.

• Disapproved: These documents have been disapproved by at least one reviewer.
Routing has stopped for these documents.

• Enroute: Routing is in progress on these documents and an action request is
waiting for someone to take action.

• Exception: A routing exception has occurred on this document. Someone from
the Exception Workgroup for this Document Type must take action on this
document, and it has been sent to the Action List of this workgroup.

• Final: All required approvals and all acknowledgements have been received on
these documents. No changes are allowed to a document that is in Final status.

Glossary

59

• Initiated: A user or a process has created this document, but it has not yet been
routed to anyone’s Action List.

• Processed: These documents have been approved by all required users, and is
completed on them. They may be waiting for Acknowledgements. No further
action is needed on these documents.

• Saved: These documents have been saved for later work. An author (initiator)
can save a document before routing begins or a reviewer can save a document
before he or she takes action on it. When someone saves a document, the
document goes on that person’s Action List.

Routed By User The user who submits the document into routing. This is often the same as the
Initiator. However, for some types of documents they may be different.

Routing The process of moving a document through its route path as defined in its
Document Type. Routing is executed and administered by the workflow engine.
This process will typically include generating Action Requests and processing
actions from the users who receive those requests. In addition, the Routing process
includes callbacks to the Post Processor when there are changes in document state.

Routing Priority A number that indicates the routing priority; a smaller number has a higher routing
priority. Routing priority is used to determine the order that requests are activated
on a route node with sequential activation type.

Routing Rule A record that contains the data for the Rule Attributes specified in a Rule Template
It is an instance of a Rule Template populated to determine the appropriate
Routing. The Rule includes the Base Attributes, Required Extension Attributes,
Responsible Party Attributes, and any Optional Extension Attributes that are
declared in the Rule Template. Rules are evaluated at certain points in the routing
process and, when they fire, can generate Action Requests to the responsible
parties that are defined on them.

Technical considerations for a Routing Rules are:

• Configured via a GUI (or imported from XML)

• Created against a Rule Template and a Document Type

• The Rule Template and it’s list of Rule Attributes define what fields will be
collected in the Rule GUI

• Rules define the users, groups and/or roles who should receive action requests

• Available Action Request Types that Rules can route

• Complete

• Approve

• Acknowledge

• FYI

• During routing, Rule Evaluation Sets are “selected” at each node. Default is to
select by Document Type and Rule Template defined on the Route Node

Glossary

60

• Rules match (or ‘fire’) based on the evaluation of data on the document and
data contained on the individual rule

• Examples

• If dollar amount is greater than $10,000 then send an Approval request to Joe.

• If department is “HR” request an Acknowledgment from the
HR.Acknowledgers workgroup.

Rule Attribute Rule attributes are a core KEW data element contained in a document that controls
its Routing. It participates in routing as part of a Rule Template and is responsible
for defining custom fields that can be rendered on a routing rule. It also defines
the logic for how rules that contain the attribute data are evaluated.

Technical considerations for a Rule Attribute are:

• They might be backed by a Java class to provide lookups and validations of
appropriate values.

• Define how a Routing Rule evaluates document data to determine whether or
not the rule data matches the document data.

• Define what data is collected on a rule.

• An attribute typically corresponds to one piece of data on a document (i.e dollar
amount, department, organization, account, etc.).

• Can be written in Java or defined using XML (with matching done by XPath).

• Can have multiple GUI fields defined in a single attribute.

Rule QuickLinks A list of document groups with their document hierarchies and actions that can be
selected. For specific document types, you can create the rule delegate.

Rule Template A Rule Template serves as a pattern or design for the routing rules. All of the
Rule Attributes that include both Required and _Optional_ are contained in the
Rule Template; it defines the structure of the routing rule of FlexRM. The Rule
Template is also used to associate certain Route Nodes on a document type to
routing rules.

Technical considerations for a Rule Templates are:

• They are a composition of Rule Attributes

• Adding a ‘Role’ attribute to a template allows for the use of the Role on any
rules created against the template

• When rule attributes are used for matching on rules, each attribute is associated
with the other attributes on the template using an implicit ‘and’ logic attributes

• Can be used to define various other aspects to be used by the rule creation GUI
such as rule data defaults (effective dates, ignore previous, available request
types, etc)

Glossary

61

S
Save A workflow action button that allows the Initiator of a document to save their

work and close the document. The document may be retrieved from the initiator's
Action List for completion and routing at a later time.

Saved A routing status indicating the document has been started but not yet completed or
routed. The Save action allows the initiator of a document to save their work and
close the document. The document may be retrieved from the initiator's action list
for completion and routing at a later time.

Searchable Attributes Attributes that can be defined to index certain pieces of data on a document so that
it can be searched from the Document Search screen.

Technical considerations for a Searchable Attributes are:

• They are responsible for extracting and indexing document data for searching

• They allow for custom fields to be added to Document Search for documents
of a particular type

• They are configured as an attribute of a Document Type

• They can be written in Java or defined in XML by using Xpath to facilitate
matching

Secondary Delegation The Secondary Delegate acts as a temporary backup Delegator who acts with the
same authority as the primary Approver/the Delegator when the Delegator is not
available. Documents appear in the Action Lists of both the Delegator and the
Delegate. When either acts on the document, it disappears from both Action Lists.

Secondary Delegation is often configured for a range of dates and it must be
registered in KEW or KIM to be in effect.

Service Registry Displays a read-only view of all of the services that are exposed on the Service Bus
and includes information about them (for example, IP Address, or Endpoint URL).

Simple Node A type of node that can perform any function desired by the implementer. An
example implementation of a simple node is the node that generates Action
Requests from route modules.

SOA An acronym for Service Oriented Architecture.

Special Condition Routing This is a generic term for additional route levels that might be triggered by various
attributes of a transaction. They can be based on the type of document, attributes of
the accounts being used, or other attributes of the transaction. They often represent
special administrative approvals that may be required.

Split Node A node in the routing path that can split the route path into multiple branches.

Spring The Spring Framework is an open source application framework for the Java
platform.

State Defines U.S. Postal Service codes used to identify states.

Status On an Action List; also known as Route Status. The current location of the
document in its routing path.

http://www.springsource.org/

Glossary

62

Submit A workflow action button used by the initiator of a document to begin workflow
routing for that transaction. It moves the document (through workflow) to the next
level of approval. Once a document is submitted, it remains in 'ENROUTE' status
until all approvals have taken place.

Superuser A user who has been given special permission to perform Superuser Approvals
and other Superuser actions on documents of a certain Document Type.

Superuser Approval Authority given Superusers to approve a document of a chosen Route Node. A
Superuser Approval action bypasses approvals that would otherwise be required
in the Routing. It is available in Superuser Document Search. In most cases,
reviewers who are skipped are not sent Acknowledge Action Requests.

Superuser Document Search A special mode of Document Search that allows Superusers to access documents
in a special Superuser mode and perform administrative functions on those
documents. Access to these documents is governed by the user's membership in
the Superuser Workgroup as defined on a particular Document Type.

T
Thread pool A technique that improves overall system performance by creating a pool of

threads to execute multiple tasks at the same time. A task can execute immediately
if a thread in the pool is available or else the task waits for a thread to become
available from the pool before executing.

Title A short summary of the notification message. This field can be filled out as part
of the Simple Message or Event Message form. In addition, this can be set by the
programmatic interfaces when sending notifications from a client system.

This field is equivalent to the "Subject" field in an email.

U
URL An acronym for Uniform Resource Locator.

User A person who can log in and use the application. This term is synonymous with
“Principal” in KIM. "Whereas Entity Id represents a unique Person, Principal Id
represents a set of login information for that Person."

V
Viewer A user(s) who views a document during the routing process. This includes users

who have action requests generated to them on a document.

W
Web Service Client A type of client that connects to a standalone KEW server using Web Services.

Wildcard A character that may be substituted for any of a defined subset of all possible
characters.

Workflow Electronic document routing, approval and tracking. Also known as Workflow
Services or Kuali Enterprise Workflow (KEW). The Kuali infrastructure service

Glossary

63

that electronically routes an e-doc to its approvers in a prescribed sequence,
according to established business rules based on the e-doc content. See also Kuali
Enterprise Workflow.

Workflow Engine The component of KEW that handles initiating and executing the route path of a
document.

Workflow QuickLinks A web interface that provides quick navigation to various functions in KEW.
These include:

• Quick EDoc Watch: The last five Actions taken by this user. The user can select
and repeat these actions.

• Quick EDoc Search: The last five EDocs searched for by this user. The user can
select one and repeat that search.

• Quick Action List: The last five document types the user took action with. The
user can select one and repeat that action.

X
XML See also XML Ingester.

1. An acronym for Extensible Markup Language.

2. Used for data import/export.

XML Ingester A workflow function that allows you to browse for and upload XML data.

XML RuleAttribute Similar in functionality to a RuleAttribute but built using XML only

